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The c-function expansion of a basic
hypergeometric function
associated to root systems

By J. V. Stokman

Abstract

We derive an explicit c-function expansion of a basic hypergeometric

function associated to root systems. The basic hypergeometric function in

question was constructed as an explicit series expansion in symmetric Mac-

donald polynomials by Cherednik in case the associated twisted affine root

system is reduced. Its construction was extended to the nonreduced case

by the author. It is a meromorphic Weyl group invariant solution of the

spectral problem of the Macdonald q-difference operators. The c-function

expansion is its explicit expansion in terms of the basis of the space of

meromorphic solutions of the spectral problem consisting of q-analogs of

the Harish-Chandra series. We express the expansion coefficients in terms

of a q-analog of the Harish-Chandra c-function, which is explicitly given

as product of q-Gamma functions. The c-function expansion shows that

the basic hypergeometric function formally is a q-analog of the Heckman-

Opdam hypergeometric function, which in turn specializes to elementary

spherical functions on noncompact Riemannian symmetric spaces for spe-

cial values of the parameters.

Contents

1. Introduction 253

2. The basic hypergeometric function 257

3. Basic Harish-Chandra series 273

4. The c-function expansion 281

5. Special cases and applications 288

References 296

1. Introduction

In this paper we establish the c-function expansion of a basic hypergeo-

metric function E+ associated to root systems. Besides the base q, the basic

hypergeometric function E+ depends on a choice of a multiplicity function k on
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an affine root system naturally associated to the underlying based root system

data. It will become apparent from the c-function expansion that E+ formally

is a q-analog of the Heckman-Opdam [14], [15], [33] hypergeometric function,

which in turn reduces to the elementary spherical functions on noncompact

Riemannian symmetric spaces for special parameter values. We distinguish

three important subclasses of the theory: the reduced case, the GLm case and

the nonreduced case.

In the reduced case E+ is Cherednik’s global spherical function from [5], [7],

[8], or a reductive extension thereof. It is a Weyl group invariant, meromorphic,

self-dual common eigenfunction of the Macdonald q-difference operators, con-

structed as an explicit convergent series in symmetric Macdonald polynomials.

In the rank one case E+ can be explicitly related to the basic hypergeomet-

ric series solutions of Heine’s basic hypergeometric q-difference equation (see

Section 5.3).

The GLm case is a special case of the reduced case with the underlying

root system of type Am−1. It is of special interest since it relates to Ruijse-

naars’ [35] relativistic quantum trigonometric Calogero-Moser model. In fact,

the associated Macdonald q-difference operators were first written down by

Ruijsenaars [35] as the corresponding quantum Hamiltonians.

In the nonreduced case the associated affine root system is the nonreduced

affine root system of type C∨Cn. The multiplicity function k now comprises

five degrees of freedom (four if the rank n is equal to one). The associated basic

hypergeometric function E+ was constructed in [42]. Duality of E+ now involves

a nontrivial transformation of the multiplicity k to a dual multiplicity function

kd. (We use the convention that the dual multiplicity function kd equals k in

the reduced case.) The associated Macdonald q-difference operators include

Koornwinder’s [22] multivariable extension of the Askey-Wilson [1] second-

order q-difference operator. It is the nonreduced case that is expected to be

amenable to generalizations to the elliptic level; cf. [34].

The basic Harish-Chandra series “Φη(·, γ) with base point given by a torus

element η is a meromorphic common eigenfunction of the Macdonald q-differ-

ence operators having a converging series expansion of the form“Φη(t, γ) = Ŵη(t, γ)
∑
µ∈Q+

Γµ(γ)t−µ, Γ0(γ) = 1

deep in the appropriate asymptotic sector, where Q+ consists of the elements

in the root lattice that can be written as sum of positive roots. The prefactor

Ŵη(t, γ) is an explicit quotient of theta functions satisfying the asymptotic

Macdonald q-difference equations (see Section 3.3). It is normalized such that

it reduces to the natural choice (3.7) of the prefactor when restricting t to

the q-lattice containing ηγ0,d, where γ−1
0,d (respectively γ−1

0 ) denotes the torus
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element associated to the kd-deformation (respectively k-deformation) of the

half sum of positive roots; cf. (2.3). For the construction of the basic Harish-

Chandra series “Φη we closely follow [31], [30].

Let W0 be the Weyl group of the underlying finite root system. The space

of common meromorphic eigenfunctions of the Macdonald q-difference opera-

tors has, for generic γ, the W0-translates “Φη(·, wγ) (w ∈W0) as a linear basis

over the field of quasiconstants. (This follows from combining and extending

[31, Cor. 5.14], [30, Rem. 5.13] and [43, Thm. 5.16].) Hence, for generic γ, we

have

(1.1) E+(t, γ) = ĉη(γ0)−1
∑
w∈W0

ĉη(wγ)“Φη(t, wγ)

for a unique coefficient ĉη(γ), which turns out to be independent of t due to the

particular choice Ŵη of the prefactor. We will call (1.1) the (monic form of)

the c-function expansion of E+. We will prove the following explicit expression:

(1.2) ĉη(γ) =
ϑ((w0η)−1ξγ)

ϑ(ξγ)
ckd,q(γ)

for the expansion coefficient, where w0 ∈W0 is the longest Weyl group element,

ϑ(·) is the theta-function (2.8) associated to the given root system data, ξ is

an explicit torus element depending on the multiplicity function k (see Corol-

lary 4.7 for the explicit expression of ξ; in the reduced case it is the unit element

1 of the complex torus) and ckd,q(γ) (4.9) is “half” of the inverse of the dual

weight function of the associated symmetric Macdonald-Koornwinder polyno-

mials. The expression of ck,q(·) as product of q-shifted factorials (equivalently,

as product of q-Gamma functions) is given by (4.10) in the reduced case and

by (4.11) in the nonreduced case. It is the q-analog of the Gindikin-Karpelevic

[12] type product formula [14, Def. 6.4] of the Harish-Chandra c-function for

the Heckman-Opdam hypergeometric function.

Note that for η = 1, the theta function factors in the expression for ĉη(γ)

cancel out. The c-function expansion (1.1) thus simplifies to

(1.3) E+(t, γ) = ckd,q(γ0)−1
∑
w∈W0

ckd,q(wγ)“Φ1(t, wγ).

Comparing this formula for t on the q-lattice containing γ0,d to the c-function

expansion [15, Part I, Def. 4.4.1] of the Heckman-Opdam hypergeometric func-

tion, it is apparent that E+ is formally a q-analog of the Heckman-Opdam hy-

pergeometric function. The corresponding classical limit q → 1 can be made

rigorous if the underlying finite root system is of type A1; see [21]. In this

paper we will not touch upon making the limit rigorous in general; see [7,

Thm. 4.5] for further results in this direction.

It is important to consider the c-function expansion for arbitrary η. In the

rank one nonreduced case, a self-dual Fourier transform with Fourier kernel E+
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and (Plancherel) density

µη(γ) =
1

ĉη(γ)ĉη(γ−1)

was defined and studied in [20], [19]. The extra theta function contributions

in µη(γ) compared to the usual weight function µ1(γ) of the Macdonald-

Koornwinder polynomials (which, in the present nonreduced rank one setup,

are the Askey-Wilson [1] polynomials) give rise to an infinite sequence of dis-

crete mass points in the associated (Plancherel) measure. In the interpretation

as the inverse of a spherical Fourier transform on the quantum SU(1, 1) group

these mass points account for the contributions of the strange series represen-

tations of the quantized universal enveloping algebra (see [20]).

The basic hypergeometric function E+(t, γ) is self-dual,

E+(t, γ) = E+,d(γ
−1, t−1),

where E+,d is the basic hypergeometric function with respect to the dual kd

of the multiplicity function k. This implies that E+(t, γ) solves a bispectral

problem, in which dual Macdonald q-difference equations acting on γ are added

to the original Macdonald q-difference equations acting on t. We show that

a suitable, explicit renormalization Φ(·, ·) = Φ(·, ·; k, q) of the basic Harish-

Chandra series “Φη also becomes a self-dual solution of the bispectral problem.

We will derive the c-function expansion (1.1) as a consequence of the more

refined asymptotic expansion of E+,

(1.4) E+(t, γ) =
∑
w∈W0

c(t, wγ)Φ(t, wγ),

where c(t, γ) now is an explicit meromorphic function, quasiconstant in both t

and γ.

To prove the existence of an expansion of the form (1.4) we make essential

use of Cherednik’s [6] double affine Hecke algebra and of the bispectral quantum

Knizhnik-Zamolodchikov (KZ) equations from [31], [30]. We show that E+ is

the Hecke algebra symmetrization of a nonsymmetric analog E of the basic hy-

pergeometric function, whose fundamental property is an explicit transforma-

tion rule relating the action of the double affine Hecke algebra on the first torus

variable to the action of the double affine Hecke algebra on the second torus

variable. (This goes back to [5] in the reduced case and [42] in the nonreduced

case.) The Hecke algebra symmetrizer acting on such functions factorizes as

φ◦ψ with ψ mapping into the space KW0×W0 of Weyl group invariant meromor-

phic solutions of the bispectral quantum KZ equations. The map φ is the differ-

ence Cherednik-Matsuo map from [3]. This implies that the basic hypergeomet-

ric function E+ is the image under φ of the Weyl group invariant meromorphic
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solution ψ(E) ∈ KW0×W0 of the bispectral quantum KZ equations. This ob-

servation is essential because it allows us to use the asymptotic analysis of the

bispectral quantum KZ equations from [31], [30]. It implies that the space K
of meromorphic solutions of the bispectral quantum KZ equations has a basis

over the field of quasiconstants defined in terms of W0-translates of a self-dual

asymptotically free solution F . The image of F under the difference Cherednik-

Matsuo map φ is the self-dual basic Harish-Chandra series Φ in (1.4).

In Theorem 4.6 we give an explicit expression of the quasiconstant coeffi-

cient c(t, γ) in the expansion (1.4) as product of theta functions. The higher

rank theta function ϑ(·) (2.8) and Jacobi’s one-variable theta function (2.7)

are both involved. The coefficient c(t, γ) splits in two factors; the first fac-

tor is an explicit product of higher rank theta functions, the second factor

is ckd,q(γ)Skd,q(γ)/Lq(γ) with Lq(γ) the leading term of the asymptotic se-

ries of Φ(·, γ) and Skd,q(γ) the holomorphic function capturing the singulari-

ties of Φ(t, γ) in γ (see Theorem 3.6 and Definition 3.8). The appearance of

the higher rank theta functions and of ckd,q(γ) is due to the asymptotics of

a suitable renormalization of the basic hypergeometric function E+(·, γ); see

Corollary 4.3 and Proposition 4.5. (In the reduced case the asymptotics of the

basic hypergeometric function was considered by Cherednik [7, §4.2].) Sim-

ilarly to ckd,q(γ), the factor Skd,q(γ)/Lq(γ) can be explicitly expressed as a

product of q-Gamma functions. By the Jacobi triple product identity their

product ckd,q(γ)Skd,q(γ)/Lq(γ) admits an expression as a product of Jacobi

theta functions.

Recently [45] explicit connection coefficient formulas for the self-dual basic

Harish-Chandra series Φ are derived. They do not lead to a new proof of the

c-function expansion though; see [45, §1.5] for a detailed discussion.

As an application of the c-function expansion we establish pointwise asymp-

totics of the Macdonald-Koornwinder polynomials in Section 5.1. (The L2-

asymptotics was obtained by different methods in [36], [9], [10].) In addition,

in Sections 5.2 and 5.3 we relate and compare our results to the classical the-

ory of basic hypergeometric series [11] when the rank of the underlying root

system is one.

2. The basic hypergeometric function

In this section we give the definition of the basic hypergeometric function

associated to root systems. It was introduced by Cherednik in [5] for irreducible

reduced twisted affine root systems. In [42] it was defined for the nonreduced

case (sometimes called the Koornwinder case, or C∨C case). We give a uniform

treatment in which we allow extra freedom in the choice of the associated

translation lattice. This enables us to include the GLm-extension of the reduced

type A case in our treatment.
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2.1. Affine root systems and extended affine Weyl groups. In this subsec-

tion we recall well-known facts on affine root systems and affine Weyl groups.

(For further details see, e.g., [6], [28].) Let V be an Euclidean space of dimen-

sion m with scalar product
Ä
·, ·
ä

and corresponding norm | · |. Let R0 ⊂ V be

a finite set of nonzero vectors, and let V0 be its real span. We suppose that

R0 ⊂ V0 is a crystallographic, reduced irreducible root system. We write R0,s

(respectively R0,l) for the subset of R0 of short (respectively long) roots. If all

roots of R0 have the same root length, then R0,s = R0 = R0,l by convention.

Let n = dim(V0) ≤ m be the rank of R0. Let ∆0 = (α1, . . . , αn) be an ordered

basis of R0 and R0 = R+
0 ∪R

−
0 the corresponding decomposition of R0 in pos-

itive and negative roots. We order the basis elements in such a way that αn
is a short root. We write ϕ ∈ R+

0 (respectively θ ∈ R+
0 ) for the corresponding

highest root (respectively highest short root). They coincide if R0 has only one

root length. Let Q =
⊕n
i=1 Zαi be the root lattice, and set Q+ =

⊕n
i=1 Z≥0αi.

View “V = V ⊕ Rc as the space of real valued affine linear functions on V

by

v + rc : v′ 7→ (v, v′) + r, (v, v′ ∈ V, r ∈ R).

We extend the scalar product
Ä
·, ·
ä

to a semi-positive definite form on “V such

that the constant functions Rc are in the radical. The canonical action of

the affine linear group GLR(V ) n V on V gives rise to a linear action on “V
by transposition. We denote the resulting translation actions by τ . Thus

τ(v)v′ = v + v′ and

τ(v)(v′ + rc) = v′ + (r − (v, v′))c.

For 0 6= α ∈ V and r ∈ R, let sα+rc be the orthogonal reflection in the affine

hyperplane {v ∈ V | (α, v) = −r}. Then sα+rc ∈ GLR(V ) n V . In fact,

sα+rc = τ(−rα∨)sα with α∨ := 2α/|α|2.

The twisted reduced affine root system R• associated to R0 is

R• :=

®
α+ r

|α|2

2
c | α ∈ R0, r ∈ Z

´
⊂ “V .

The affine Weyl group W • of R• is the subgroup of GLR(V )n V generated by

sa (a ∈ R•). It preserves R•. In addition, W • ' W0 n Q with W0 the Weyl

group of R0. We extend the ordered basis ∆0 of R0 to an ordered basis

∆ = (a0, a1, . . . , an) :=

Ç
|θ|2

2
c− θ, α1, . . . , αn

å
of R•. It results in the decomposition R• = R•,+ ∪R•,− of R• in positive and

negative roots.

The Weyl group W0 and the affine Weyl group W • are Coxeter groups,

with Coxeter generators the simple reflections si := sαi (1 ≤ i ≤ n) respectively

s0 := sa0 , s1, . . . , sn.



THE c-FUNCTION EXPANSION OF A BASIC HYPERGEOMETRIC FUNCTION 259

Let Q∨ be the coroot lattice of R0; i.e., it is the integral span of the

coroots α∨ = 2α/|α|2 (α ∈ R0). Fix a full lattice Λ ⊂ V satisfying Q ⊆ Λ andÄ
Λ, Q∨

ä
⊆ Z.

Remark 2.1. In this remark we relate the triples (R0,∆0,Λ) to the notion

of a based root datum (cf., e.g., [38, §1] for a survey on root data). Using the

notations from [38, §1], suppose that Ψ0 = (X,Φ,∆, X∨,Φ∨,∆∨) is a nontoral

based root datum with associated perfect pairing 〈·, ·〉 : X × X∨ → Z and

associated bijection α 7→ α∨ of Φ onto Φ∨. Assume that the root system Φ is

reduced and irreducible. Choose a Weyl group invariant scalar product
Ä
·, ·
ä

on

V := R⊗ZX. Now we use the scalar product to embed X∨ as a full lattice in V .

Thus ξ ∈ X∨, regarded as element of V , is characterized by the requirement

that (ξ, x) equals 〈x, ξ〉 for all x ∈ X. The element α∨ ∈ Φ∨ then corresponds

to the coroot 2α/|α|2 in V . It follows that the triple (R0,∆0,Λ) := (Φ,∆, X)

in V satisfies the desired properties.

Let
P := {λ ∈ V0 | (λ, α∨) ∈ Z ∀α ∈ R0}

be the weight lattice of R0. Let ‹$i ∈ P (1 ≤ i ≤ n) be the fundamental weights

of P with respect to the ordered basis ∆0 of R0. In other words, ‹$i ∈ V0 is

characterized by (‹$i, α
∨
j ) = δi,j (Kronecker delta function) for 1 ≤ i, j ≤ n.

Since Q ⊆ P with finite index and Q ⊆ Λ, there exists for each i ∈ {1, . . . , n}
a smallest natural number mi such that $i := mi‹$i ∈ Λ. Then {$i}ni=1 is

a basis of a W0-invariant, rank n sublattice of Λ ∩ V0 with the basis elements

satisfying ($i, α
∨
j ) = 0 if j 6= i and ($i, α

∨
i ) = mi ∈ Z>0. Set

Λc := Λ ∩ V ⊥0 .

Note that LΛ ⊆ Λc ⊕
⊕n

i=1 Z$i for L := m1 · · ·mn. In particular, Λc is a full

sublattice of V ⊥0 .

We list here the three key examples of triples (R0,∆0,Λ).

Example 2.2. (i) If V0 = V , then a natural choice for Λ is the weight

lattice P . Then $i = ‹$i.

(ii) Let V = Rm with orthonormal basis {εi}mi=1. Take as root system of

type Am−1 the set {εi − εj}1≤i 6=j≤m and take as ordered basis

∆0 = (ε1 − ε2, ε2 − ε3, . . . , εm−1 − εm).

Then V0 ⊂ V is of codimension one and n = m − 1. In this case we can take

Λ =
⊕m
i=1 Zεi. The corresponding elements $i ∈ Λ (1 ≤ i < m) are given by

$i = mi‹$i, with mi the smallest natural number such that imi ∈ mZ and

with ‹$i = ε1 + · · ·+ εi −
i

m
(ε1 + · · ·+ εm).

The lattice Λc is generated by ε1 + · · ·+ εm.
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(iii) Let R0 ⊂ V0 = V = Rn be the root system of type A1 if n = 1 and of

type Bn if n ≥ 2. In this case we can take Λ = Q. The corresponding elements

$i (1 ≤ i ≤ n) are given by $i = ‹$i (1 ≤ i < n) and $n = 2‹$n. They form a

basis of Λ.

We call W := W0 n Λ the extended affine Weyl group associated to the

triple (R0,∆0,Λ). It preserves R•, and it contains the affine Weyl group W •

as normal subgroup.

The length function on W is defined by

l(w) = #
Ä
R•,+ ∩ w−1R•,−

ä
, w ∈W.

Let Ω ⊂W be the subgroup

Ω = {w ∈W | l(w) = 0}.

It normalizes W •, and W ' Ω nW •. In particular, Ω ' W/W • ' Λ/Q as

abelian groups.

The action of Ω on R• restricts to an action on the unordered basis

{a0, . . . , an} of R•. We also view it as action on the indexing set {0, . . . , n}
of the basis, so that wsiw

−1 = sw(i) for w ∈ Ω and 0 ≤ i ≤ n. By the same

formula, Ω acts on the affine braid group B associated to the Coxeter system

(W •, (s0, . . . , sn)) by group automorphisms.

The elements of the group Ω can alternatively be described as follows. For

λ ∈ Λ, write u(λ) ∈ W for the unique element in the coset W0τ(λ) ⊂ W of

minimal length. We have u(λ) = τ(λ) if λ ∈ Λ−, where

Λ± := {λ ∈ Λ | ± (λ, α∨) ≥ 0 ∀α ∈ R+
0 }

is the set of dominant and antidominant weights in Λ respectively. Let

Λ+
min := {λ ∈ Λ | 0 ≤ (λ, α∨) ≤ 1 ∀α ∈ R+

0 }

be the set of miniscule dominant weights in Λ. Then Ω = {u(λ) |λ ∈ Λ+
min}.

Note that (Λ, a∨) = Z or = 2Z for a ∈ R•, where a∨ = 2a/(a, a). Define

a subset S = S(R0,∆0,Λ) of the index set {0, . . . , n} of the simple affine roots

by

S := {i ∈ {0, . . . , n} | (Λ, a∨i ) = 2Z}.

Case-by-case verification shows that S = ∅ or #S = 2. If #S = 2 and

n = 1 then R0 is of type A1. If #S = 2 and n ≥ 2, then R0 is of type Bn and

S = {0, n} (recall that αn is short). We call S = ∅ the reduced case and #S = 2

the nonreduced case. Thus the GLm case (corresponding to Example 2.2(ii))

will be regarded as a special case of the reduced case.

We define a Λ-dependent extension of the reduced irreducible affine root

system R• as follows.



THE c-FUNCTION EXPANSION OF A BASIC HYPERGEOMETRIC FUNCTION 261

Definition 2.3. The irreducible affine root system R = R(R0,∆0,Λ) ⊂ “V
is defined by

R := R• ∪
⋃
j∈S

W •(2aj).

In the reduced case we simply have R = R•. In this case the W -orbits of

R are in one-to-one correspondence with the W0-orbits of R0. Concretely, the

affine root α + r |α|
2

2 c ∈ R lies in the same W -orbit as β + r′ |β|
2

2 c ∈ R if and

only if α ∈W0β.

In the nonreduced case, we have

R = R• ∪W (2a0) ∪W (2an).

It is the nonreduced irreducible affine root system of type C∨Cn; cf. [26]. The

basis ∆ of R• is also a basis of R, and W is still the associated affine Weyl

group. Note that R now has five W -orbits:

W (a0),W (2a0),W (ϕ),W (θ),W (2θ).

In the nonreduced case, Λ+
min = Λc and Λ = Q ⊕ Λc; hence W = Λc ×W •.

The reductive extension Λc of the root lattice will always play a trivial role in

the nonreduced case. To simplify the presentation we will therefore assume in

the remainder of the paper that V0 = V , in particular Λ = Q, Λc = {0} and

Ω = {1}, if we are dealing with the nonreduced case.

2.2. The double affine Hecke algebra. References for this subsection are

[6], [28], [39]. We call a function k : R→ C∗, denoted by a 7→ ka, a multiplicity

function if kwa = ka for w ∈ W and a ∈ R. We will assume throughout the

paper that

(2.1) 0 < ka < 1 ∀a ∈ R.

We write k• for its restriction to R• and ki := k•ai for 0 ≤ i ≤ n. We set

k2a := ka if a ∈ R and 2a 6∈ R.

Definition 2.4. (i) The affine Hecke algebra H•(k•) = H•(R0,∆0; k•) is

the unique associative unital algebra over C with generators T0, . . . , Tn satis-

fying the affine braid relations of B and satisfying the quadratic relations

(Ti − ki)(Ti + k−1
i ) = 0, 0 ≤ i ≤ n.

(ii) The extended affine Hecke algebra H(k•) = H(R0,∆0; k•) is the

crossed product algebra Ω nH•(k•), where Ω acts by algebra automorphisms

on H•(k•) by w(Ti) = Tw(i) for w ∈ Ω and 0 ≤ i ≤ n.

Recall that the lattice Λ is W0-stable; hence W0 acts on the complex

algebraic torus T = Hom(Λ,C∗) by transposition. Writing tλ for the value of

t ∈ T at λ ∈ Λ, we thus have (w−1t)λ = twλ for w ∈W0.
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Fix 0 < q < 1. TheW0-action on T extends to a q-dependent leftW -action

(w, t) 7→ wqt on T by

τ(λ)qt := qλt,

where qλ ∈ T is defined by ν 7→ q(λ,ν).

Let C[T ] be the space of regular functions on T with C-basis the monomials

t 7→ tλ (λ ∈ Λ). Let C(T ) be the corresponding quotient field. Let M(T ) be

the field of meromorphic functions on T . By transposition the q-dependent

W -action on T gives an action by field automorphisms on both C(T ) and

M(T ). This action will also be denoted by (w, p) 7→ wqp. Let C(T ) oq W ⊂
M(T )oqW be the corresponding crossed product algebras. They canonically

act on M(T ) by q-difference reflection operators.

For t ∈ T and a = α+ r |α|
2

2 c ∈ R•, write

taq := qrαt
α,

where qα := q
|α|2
2 . Define for a ∈ R• the rational function ca = ca(·; k, q) ∈

C(T ) by

(2.2) ca(t) :=
(1− kak2at

a
q)(1 + kak

−1
2a t

a
q)

(1− taq)(1 + taq)
.

It satisfies ca(w
−1
q t) = cwa(t) for a ∈ R• and w ∈ W . The following funda-

mental result is due to Cherednik in the reduced case (see [6, Thm. 3.2.1] and

references therein) and due to Noumi [32] in the nonreduced case.

Theorem 2.5. There exists a unique faithful algebra homomorphism

π = πk,q : H(k•)→ C(T ) oq W

satisfying

πk,q(Ti) = ki + k−1
i cai(si,q − 1), 0 ≤ i ≤ n,

πk,q(w) = wq, w ∈ Ω.

Remark 2.6. In the reduced case πk,q is a one-parameter family of algebra

embeddings of H(k•) (with q being the free parameter). In the nonreduced

case, πk,q is a three-parameter family of algebra embeddings of H(k•) (with

q, k2θ, k2a0 being the free parameters).

The double affine Hecke algebra H = H(k, q) is the subalgebra of the

crossed product algebra C(T ) oq W generated by C[T ] and πk,q(H(k•)). In

the remainder of the paper we will often identify H(k•) with its πk,q-image in

H(k, q). In addition, for λ+ rc (λ ∈ Λ and r ∈ R), we write

Xλ+rc
q = qrXλ
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for the element in the double affine Hecke algebra corresponding to the regular

function t 7→ qrtλ on T .

Under the canonical action of C(T ) oq W on C(T ), the subspace C[T ] is

H-stable. It is called the basic, or polynomial, representation of the double

affine Hecke algebra.

2.3. Nonsymmetric Macdonald-Koornwinder polynomials. The results on

nonsymmetric Macdonald and Koornwinder polynomials in this subsection are

well known. In the reduced case they are due to Cherednik (the definition of the

nonsymmetric Macdonald polynomial was independently given by Macdonald);

see, e.g., [6, §3.3] and [28] and references therein. In the nonreduced case

the results in this subsection are from [32], [37], [40]. The current uniform

presentation of these results follows [39].

For w ∈ W with reduced expression w = u(λ)si1 . . . sil (λ ∈ Λ+
min, 0 ≤

ij ≤ n and l = l(w)), we write

Tw := u(λ)Ti1 · · ·Til ∈ H(k•).

The expression is independent of the choice of reduced expression. By unpub-

lished results of Bernstein and Zelevinsky (cf. [25]), there exists a unique in-

jective algebra homomorphism C[T ] ↪→ H(k•), which we denote by p 7→ p(Y ),

such that Y λ = Tτ(λ) for λ ∈ Λ+. Its image in H(k•) is denoted by CY [T ].

The center Z(H(k•)) of H(k•) is CY [T ]W0 .

For x ∈ C∗ and α ∈ R0, define xα
∨ ∈ T by λ 7→ x(λ,α∨) (λ ∈ Λ). Let

γ0 = γ0(k) ∈ T be the torus element

(2.3) γ0 :=
∏
α∈R+

0

Ä
k

1
2
αk

1
2

α+|α|2c/2

ä−α∨ ∈ T.
More generally, define for λ ∈ Λ the element γλ := γλ(k, q) ∈ T by

γλ := u(λ)qγ0.

For λ ∈ Λ−, we thus have γλ = qλγ0.

Theorem 2.7. Let λ ∈ Λ. There exists a unique Pλ = Pλ(·; k, q) ∈ C[T ]

such that

πk,q(p(Y ))Pλ = p(γ−1
λ )Pλ ∀ p ∈ C[T ]

and such that the coefficient of tλ in the expansion of Pλ(t) in monomials tν

(ν ∈ Λ) is one.

Pλ is the monic nonsymmetric Macdonald polynomial of degree λ in the

reduced case and the nonsymmetric monic Koornwinder polynomial in the

nonreduced case. We refer to Pλ in the remainder of the text as the monic

nonsymmetric Macdonald-Koornwinder polynomial. (Similar terminology will

be used later for the normalized and symmetrized versions of Pλ.)
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Write k−1 for the multiplicity function a 7→ k−1
a . Similarly to Theorem 2.7,

there exists, for λ ∈ Λ, a unique P ′λ = P ′λ(·; k, q) ∈ C[T ] such that

πk−1,q−1(p(Y ))P ′λ = p(γλ)P ′λ ∀ p ∈ C[T ]

and such that the coefficient of tλ in the expansion of P ′λ(t) in monomials tν

(ν ∈ Λ) is one.

Next we define the normalized versions of Pλ and P ′λ. For this we first

need to recall the evaluation formulas for Pλ and P ′λ.

The multiplicity function kd on R dual to k is defined as follows. In the

reduced case, kd := k. In the nonreduced case, kd0 := k2θ, k
d
2θ := k0 and the

values on the remaining W -orbits of R are unchanged. Set γλ,d = γλ(kd, q).

The evaluation formulas for the nonsymmetric Macdonald-Koornwinder poly-

nomials then read

Pλ(γ0,d) =
∏

a∈R•,+∩u(λ)−1R•,−

(kda)−1ca(γ0; kd, q),(2.4)

P ′λ(γ−1
0,d) =

∏
a∈R•,+∩u(λ)−1R•,−

kdaca(γ
−1
0 ; (kd)−1, q−1).

By the conditions on the parameters ka and q, we have Pλ(γ0,d) 6= 0 6= P ′λ(γ−1
0,d)

for all λ ∈ Λ. Hence the following definition makes sense.

Definition 2.8. Let λ ∈ Λ. The normalized nonsymmetric Macdonald-

Koornwinder polynomial E(γλ; ·) = E(γλ; ·; k, q) ∈ C[T ] of degree λ is defined

by

E(γλ; t) :=
Pλ(t)

Pλ(γ0,d)
.

Similarly, we define E′(γ−1
λ ; ·) = E′(γ−1

λ ; ·; k, q) ∈ C[T ] by

E′(γ−1
λ ; t) :=

P ′λ(t)

P ′λ(γ−1
0,d)

.

It is related to E(γλ; t) by the formula

(2.5) E′(γ−1
λ ; t−1) = k−1

w0

Ä
πk,q(Tw0)E(γ−w0λ; ·)

ä
(t),

where w0 ∈W0 is the longest Weyl group element and kw :=
∏
α∈R+

0 ∩w−1R−0
kα

for w ∈W0. (See [6, (3.3.26)] for a proof of (2.5) in the reduced case; its proof

easily extends to the nonreduced case.)

An important property of the nonsymmetric Macdonald-Koornwinder poly-

nomials is duality,

E(γλ; γν,d; k, q) = E(γν,d; γλ; kd, q), ∀λ, ν ∈ Λ.

A similar duality formula is valid for E′.
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Define N(λ) = N(λ; k, q) (λ ∈ Λ) by

N(λ) :=
∏

a∈R•,+∩u(λ)−1R•,−

c−a(γ0; kd, q)

ca(γ0; kd, q)
.

They appear as the quadratic norms of the nonsymmetric Macdonald-Koorn-

winder polynomials. Concretely, if the parameters satisfy the additional con-

ditions |kak−1
2a | ≤ 1 for all a ∈ R (this only gives additional constraints in the

nonreduced case), then

〈E(γλ; ·; k, q), E(γ−1
ν ; k−1, q−1)〉k,q = 〈1, 1〉k,qN(λ; k, q)δλ,ν

for all λ, ν ∈ Λ with respect to the sesquilinear pairing

〈p1, p2〉k,q :=

∫
Tu

p1(t)p2(t)
( ∏
a∈R•,+

1

ca(t; k, q)

)
dt, p1, p2 ∈ C[T ].

Here Tu := Hom(Λ, S1) ⊂ T with S1 the unit circle in the complex plane, and

dt is the normalized Haar measure on the compact torus Tu.

2.4. Theta functions. The results in this section are from [6, §3.2] in the

reduced case and from [42] in the nonreduced case.

The q-shifted factorial isÄ
x; q
ä
r

:=
r−1∏
i=0

(1− qix), r ∈ Z≥0 ∪ {∞}.

(By convention, empty products are equal to one.) The q-Gamma function is

(2.6) Γq(x) := (1− q)1−x

Ä
q; q
ä
∞Ä

qx; q
ä
∞

;

see [11, §1.10]. Set

(2.7) θ(x; q) :=
Ä
q; q
ä
∞

Ä
x; q
ä
∞

Ä
q/x; q

ä
∞.

It is the Jacobi theta function
∑∞
r=−∞ q

r2

2 (−q−
1
2x)r, written in multiplicative

form via the Jacobi triple product identity. It satisfies the functional equations

θ(qrx; q) = (−x)−rq−
r(r−1)

2 θ(x; q) ∀ r ∈ Z.

The theta function associated to the lattice Λ is the holomorphic W0-invariant

function ϑ(·) = ϑΛ(·) on T defined by

(2.8) ϑ(t) :=
∑
λ∈Λ

q
|λ|2
2 tλ.

Since the base for ϑ(·) will always be q, we do not specify it in the notation. The

theta function ϑ(·) satisfies the functional equations ϑ(qλt) = q−
|λ|2
2 t−λϑ(t) for

all λ ∈ Λ.
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Remark 2.9. We will always specify the variable dependence, θ(·; q) and

ϑ(·), to avoid confusion with the highest short root θ and the highest root ϑ

of R0.

Definition 2.10. Define G = Gk,q ∈M(T ) by

G(t) := ϑ(t)−1

in the reduced case and

G(t) :=
Ä
q2
θ ; q

2
θ

ä−n
∞

∏
α∈R0,s

Ä
−qθk0k

−1
2a0
tα; q2

θ

ä−1

∞

in the nonreduced case.

Note that G(·) is W0-invariant, and that G(t) = G(t−1).

Remark 2.11. In the nonreduced case the set Rs,+0 of positive short roots

is an orthogonal basis of V and a Z-basis of Λ = Q (cf. Section 5.2). By the

Jacobi triple product identity it then follows that G(t) equals ϑ(t)−1 in the

nonreduced case if k0 = k2a0 .

We recall the most fundamental property of G(·) in the following propo-

sition. It implies that G(·) serves as the analog of the Gaussian in the context

of the double affine Hecke algebra. For proofs and more facts, we refer to [5],

[42].

Proposition 2.12. (i) Given a multiplicity function k on R, the assign-

ment kτa0 := k2a0 , kτ2a0 = ka0 and kτai := kai , k
τ
2ai

:= k2ai for 1 ≤ i ≤ n

determines a multiplicity function kτ on R.

(ii) There exists a unique algebra isomorphism τ : H(k, q)
∼−→ H(kτ , q)

satisfying

τ(T0) = X−a0q T−1
0 ,

τ(Ti) = Ti, 1 ≤ i ≤ n,

τ(Xλ) = Xλ, λ ∈ Λ,

τ(u(λ)) = q−
|λ|2
2 Xλu(λ), λ ∈ Λ+

min.

(iii) For all Z ∈ H(k, q), we have

Gk,q(·)ZGk,q(·)−1 = τ(Z)

in M(T ) oq W , where we view both H(k, q) and H(kd, q) as subalgebras of

M(T ) oq W .
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2.5. The nonsymmetric basic hypergeometric function. The nonsymmetric

Macdonald-Mehta weight Ξ(·) = Ξ(·; k, q) : Λ→ C is

Ξ(λ; k, q) :=
Gkτd,q(γλ,τ )

Gkτd,q(γ0,τ )N(λ; kdτ , q)
,

where γλ,τ := γλ(kτ , q), kτd = (kτ )d and kdτ = (kd)τ . (See [5, §7] in the

reduced case and [40, §6.1] in the nonreduced case.) We have Ξ(0; k, q) = 1

and

Ξ(λ; k, q) = Ξ(λ; kd, q),(2.9)

Ξ(−w0λ; k, q) = Ξ(λ; k, q)

for all λ ∈ Λ. Due to the factor Gkτd,q(γλ,τ ) in the weight Ξ(λ), the discrete

Macdonald-Metha integral M := M(k, q) defined by

M := G(γ0; kdτ , q)G(γ0,d; k
τ , q)

∑
λ∈Λ

Ξ(λ; k, q)

is convergent. It can be evaluated explicitly; see [5, Thm 1.1] in the reduced

case and [42, Prop. 6.1] in the nonreduced case. It will play the role of

normalization constant for the (nonsymmetric) basic hypergeometric function.

For i ∈ {1, . . . , n}, we denote the simple root −w0αi by αi∗ . Write K for

the field of meromorphic functions on T × T .

Theorem 2.13. (i) There exists a unique anti-isomorphism ξ : H(k, q)→
H((kd)−1, q−1) satisfying

ξ(Ti) = T−1
i∗ , 1 ≤ i ≤ n,

ξ(Y λ) = X−w0λ, λ ∈ Λ,

ξ(Xλ) = Tw0Y
λT−1

w0
, λ ∈ Λ.

(ii) There exists a unique E(·, ·) = E(·, ·; k, q) ∈ K satisfying

(1) (t, γ) 7→ Gkτ ,q(t)
−1Gkdτ ,q(γ)−1E(t, γ; k, q) is a holomorphic function on

T × T ,

(2) πtk,q(Z)E = πγ
(kd)−1,q−1(ξ(Z))E for all Z ∈ H(k, q), where πt(Z) and

πγ(ξ(Z)) are the actions of π(Z) and π(ξ(Z)) on the first and second

torus variable respectively,

(3) E(γ0,d, γ0) = 1.

Explicitly,

E(t, γ; k, q)

= M−1
k,qGkτ ,q(t)Gkdτ ,q(γ)

∑
λ∈Λ

Ξ(λ; k, q)E(γ−w0λ,τ ; t; kτ , q)E′(γ−1
λ,dτ ; γ; kdτ , q),

with γλ,dτ := γλ(kdτ , q). The sum converges normally for (t, γ) in compacta of

T × T .
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Proof. (i) Set (If)(t) := f(t−1) for f ∈ C(T ). There exists a unique

algebra isomorphism η : H(k, q)
∼−→ H(k−1, q−1) such that πk,q(Z) ◦ I = I ◦

πk−1,q−1(η(Z)) for all Z ∈ H(k, q) (both sides of the identity viewed as operators

on C(T )). Then

ξ(Z) = Tw0(δ(η(Z)))T−1
w0
,

with δ : H(k−1, q−1)
∼−→ H((kd)−1, q−1) the linear duality anti-isomorphism

mapping Ti to T−1
i (1 ≤ i ≤ n), Xλ to Y −λ and Y λ to X−λ (λ ∈ Λ). See

[6, §3.3.2] in the reduced case and [37] in the nonreduced case for further details

on the duality anti-isomorphism δ, as well as [16], [13].

(ii) A nonsymmetric kernel function Ẽ ∈ M(T × T ) was defined and

studied by Cherednik [5, §5] in the reduced case (denoted in [5] as Eq−1) and

by the author [42, §5] in the nonreduced case (denoted in [42] as E‡). Its

transformation property with respect to the actions of the double affine Hecke

algebra is

πtk−1,q−1(Z)Ẽ = πγ
(kd)−1,q−1(δ(Z))Ẽ ∀Z ∈ H(k−1, q−1).

Our kernel E can be expressed in terms of Ẽ by

E(t, γ) =
Ä
πγ

(kd)−1,q−1(Tw0)Ẽ
ä
(t−1, γ)

up to normalization; cf. the proof of (i). �

Definition 2.14. We call E(·, ·) = E(·, ·; k, q) the nonsymmetric basic hy-

pergeometric function associated to the triple (R0,∆0,Λ).

Remark 2.15. As already noted in the proof of Theorem 2.13, the def-

inition of the nonsymmetric basic hypergeometric function E differs slightly

from the definitions of the kernel functions in [5], [42], [7]. With our definition

of E , the connection with meromorphic solutions of the bispectral quantum

Knizhnik-Zamolodchikov equations will be more transparent (see Section 3.1).

The difference between the definitions disappears upon symmetrization; cf.

Section 2.6.

Note that E(·, γ) for γ ∈ T such that Gkdτ ,q(γ) 6= 0 is a meromorphic

solution of the spectral problem

πk,q(p(Y ))f = (w0p)(γ
−1)f ∀ p ∈ C[T ].

In view of Theorem 2.13 we actually have E ∈ V = Vk,q, where

(2.10) Vk,q := {f ∈ K | πtk,q(Z)f = πγ
(kd)−1,q−1(ξ(Z))f ∀Z ∈ H}.

V is a vectorspace over FW0×W0 , with F ⊂ K the subfield

(2.11) F := {f ∈ K | f(qλt, qλ
′
γ) = f(t, γ) ∀λ, λ′ ∈ Λ}

of quasiconstant meromorphic functions on T × T .
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Proposition 2.16. (i) The involution ι of K, defined by (ιf)(t, γ) =

f(γ−1, t−1), restricts to a complex linear isomorphism

ι|Vk,q : Vk,q
∼−→ Vkd,q.

(ii) The nonsymmetric basic hypergeometric function E is self-dual :

ι
Ä
E(·, ·; k, q)

ä
= E(·, ·; kd, q).

Proof. (i) Let f ∈ Vk,q, and set g := ιf . Recall the isomorphism η from

the proof of Theorem 2.13. Denote ηd for the isomorphism η with respect to

dual parameters (kd, q). Then

πtkd,q(Z)g = πk−1,q−1(ξ̃(Z))g ∀Z ∈ H(kd, q),

with anti-isomorphism ξ̃ = η−1 ◦ ξ−1 ◦ ηd : H(kd, q) → H(k−1, q−1). Since

η(Ti) = T−1
i , η(Xλ) = X−λ and η(Y λ) = Tw0Y

w0λT−1
w0

for 1 ≤ i ≤ n and

λ ∈ Λ (cf. [6, Prop. 3.2.2]), ξ̃ is the anti-isomorphism ξ with respect to dual

parameters (kd, q). Hence g ∈ Vkd,q.
(ii) It follows from the explicit series expansion of E , (2.5) and (2.9) that

ι(E(·, ·; k, q)) = πtkd,q(Tw0)πγk−1,q−1(Tw0)E(·, ·; kd, q).

But this equals E(·, ·; kd, q) since ξ(Tw0) = T−1
w0

. �

2.6. The basic hypergeometric function. We first recall some well-known

facts about symmetric Macdonald-Koornwinder polynomials from, e.g., [6],

[28], [32], [37], [42]. For p ∈ C[T ]W0 , we decompose the q-difference reflection

operator πk,q(p(Y )) associated to the central element p(Y ) ∈ Z(H(k•)) as

πk,q(p(Y )) =
∑
w∈W0

Dk,q
p,wwq, Dk,q

p,w ∈ C(T ) oq τ(Λ).

The Macdonald operator Dp = Dk,q
p associated to p is defined by

Dk,q
p :=

∑
w∈W0

Dk,q
p,w.

The Macdonald operators Dp (p ∈ C[T ]W0) are pairwise commuting, W0-equi-

variant, scalar q-difference operators (see, e.g., [24, Lemma 2.7]). Explicit

expressions of Dp can be given for special choices of p ∈ C[T ]W0 , in which case

they reduce to the original definitions of the Macdonald, Koornwinder and

Ruijsenaars q-difference operators from [27], [22] and [35] respectively (see [28,

§4.4]).

The idempotent

C+ :=
1∑

w∈W0
k2
w

∑
w∈W0

kwTw ∈ H(k•)
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satisfies TiC+ = kiC+ = C+Ti for 1 ≤ i ≤ n. (We do not specify the k•-depen-

dence of C+, it will always be clear from the context.) It follows that πk,q(C+) :

M(T ) →M(T ) is a projection operator with image M(T )W0 . Consequently,

if f ∈M(T ) satisfies the q-difference reflection equations

πk,q(p(Y ))f = p(γ−1)f ∀ p ∈ C[T ]W0

for some γ ∈ T , then f+ := πk,q(C+)f ∈M(T )W0 satisfies

Dpf+ = p(γ−1)f+ ∀ p ∈ C[T ]W0 .

In particular, the normalized symmetric Macdonald-Koornwinder polynomial

E+(γλ; ·) := πk,q(C+)E(γλ; ·) ∈ C[T ]W0 , λ ∈ Λ−

satisfies

Dp

Ä
E+(γλ; ·)

ä
= p(γ−1

λ )E+(γλ; ·) ∀ p ∈ C[T ]W0 .

The monic symmetric Macdonald-Koornwinder polynomial

P+
λ (·) = P+

λ (·; k, q) ∈ C[T ]W0 , λ ∈ Λ−

is the renormalization of E+(γλ; ·) having an expression

P+
λ (t) =

∑
µ∈Q+

dµt
w0λ−µ

in monomials with leading coefficient d0 = 1. Then

E+(γλ; ·) = P+
λ (γ0,d)

−1P+
λ (·)

since E+(γλ; γ0,d) = 1. Self-duality and the evaluation formula for the symmet-

ric Macdonald-Koornwinder follow from the corresponding results for the non-

symmetric Macdonald-Koornwinder polynomials by standard symmetrization

arguments. Alternatively, they can be derived from the asymptotic analysis of

the bispectral quantum Knizhnik-Zamolodchikov equations; see Remark 3.11.

Before symmetrizing the nonsymmetric basic hypergeometric function E ,

we first introduce and analyze the natural space it will be contained in; cf. [31,

Def. 6.13] for GLm and [30, Def. 6.4] for the reduced case.

Definition 2.17. We set U := Uk,q for the F-vector space of meromorphic

functions f on T × T satisfyingÄ
Dt
pf
ä
(t, γ) = p(γ−1)f(t, γ),(2.12) Ä‹Dγ

pf
ä
(t, γ) = p(t)f(t, γ)

for all p ∈ C[T ]W0 , where ‹Dp = D
(kd)−1,q−1

p . The superindices t and γ indicate

that the q-difference operator is acting on the first and second torus component

respectively.
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Note that U is a W0 ×W0-invariant subspace of K.

View πtk,q(C+) and πγ
(kd)−1,q−1(C+) as projection operators on K. Their

images are KW0×{1} and K{1}×W0 respectively.

Lemma 2.18. (i) The restrictions of the projection operators πtk,q(C+) and

πγ
(kd)−1,q−1(C+) to Vk,q coincide and map into UW0×W0

k,q .

(ii) The involution ι of K restricts to a complex linear isomorphism

ι|Uk,q : Uk,q
∼−→ Ukd,q.

(iii) For all f ∈ V ,

πtkd,q(C+)(ιf) = ι(πtk,q(C+)f).

Proof. Since ξ(C+) = C+, the restrictions of πtk,q(C+) and πγ
(kd)−1,q−1(C+)

to Vk,q coincide. Let f ∈ Vk,q, and set f+ := πtk,q(C+)f . Since ξ(p(Y )) =

p(X−1) for all p ∈ C[T ]W0 and since the projection operator πk,q(C+) on

K has range KW0×{1}, the meromorphic function f+ satisfies the first set of

equations from (2.12). For the second set of equations of (2.12), note that f+

is W0-invariant in the second torus component since f+ = πγ
(kd)−1,q−1(C+)f .

Then for p ∈ C[T ]W0 ,

D(kd)−1,q−1

p f+ = πγ
(kd)−1,q−1(C+p(Y ))f

= πγ
(kd)−1,q−1(C+)π(kd)−1,q−1(Tw0p(Y )T−1

w0
)f

= πtk,q(p(X))πγ
(kd)−1,q−1(C+)f

= πtk,q(p(X))f+

since ξ(p(X)) = Tw0p(Y )T−1
w0

. Hence f+ ∈ UW0×W0
k,q , proving (i). Part (iii)

follows from (i) and the fact that

ι ◦ πtk,q(C+) = πγk−1,q−1(C+)

(which in turn follows from the fact that η(C+) = C+). It remains to prove (ii).

It suffices to show that I ◦Dk,q
p ◦I = Dk−1,q−1

p for p ∈ C[T ]W0 as endomorphism

of M(T ), where (Ig)(t) := g(t−1). This follows from η(p(Y )) = p(Y ) for

p ∈ C[T ]W0 ; cf. the proof of Proposition 2.16 (see also [30, Lemma 6.2]). �

The nonsymmetric basic hypergeometric function E associated to the

triple (R0,∆0,Λ), being a distinguished element of V, thus gives rise to a dis-

tinguished W0×W0-symmetric meromorphic solution of the bispectral problem

(2.12).

Definition 2.19. We call E+(·, ·) = E+(·, ·; k, q) := πtk,q(C+)E(·, ·; k, q) ∈
UW0×W0 the basic hypergeometric function associated to the triple (R0,∆0,Λ).
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In the reduced case, E+ is Cherednik’s [5], [7] global spherical function. In

the nonreduced case, E+ was defined by the author in [42].

We list the key properties of the basic hypergeometric function in the

following theorem.

Theorem 2.20. (i) Explicit series expansion :

E+(t, γ; k, q) = M−1
k,qGkτ ,q(t)Gkdτ ,q(γ)

×
∑
λ∈Λ−

Ξ+(λ; k, q)E+(γλ,τ ; t; kτ , q)E+(γλ,dτ ; γ−1; kdτ , q)

with Ξ+(λ; k, q) :=
∑
ν∈W0λ Ξ(ν; k, q). The sum converges normally for (t, γ)

in compacta of T × T .

(ii) Inversion symmetry :

E+(t, γ; k, q) = E+(t−1, γ−1; k, q).

(iii) Duality :

ι
Ä
E+(·, ·; k, q)

ä
= E+(·, ·; kd, q).

(iv) Reduction to symmetric Macdonald-Koornwinder polynomials :

E+(t, γλ; k, q) = E+(γλ− ; t; k, q) ∀λ ∈ Λ,

with λ− ∈ Λ− the unique antidominant weight in the orbit W0λ.

Proof. We only sketch the proof. For detailed proofs, see [5] in the reduced

case and [42] in the nonreduced case.

(i) This follows from rather standard symmetrization arguments, using

the fact that π(C+)E(γλ; ·) only depends on the orbit W0λ of λ and that

(2.13) E′+(γ−1
λ ; t) = E+(γ−w0λ; t−1)

for λ ∈ Λ−, where E′+(γ−1
λ ; ·) := πk−1,q−1(C+)E′(γ−1

λ ; ·). Formula (2.13) is a

direct consequence of (2.5).

(ii) This follows from (i) and the formula E+(γλ; t−1) = E+(γ−w0λ; t) for

λ ∈ Λ−. The latter formula is a consequence of (2.13) and the fact that

E′+(γ−1
λ ; t) = E+(γλ; t) for λ ∈ Λ− (see, e.g., [28, (5.3.2)]).

(iii) This follows from (i) and the self-duality Ξ+(λ; k, q) = Ξ+(λ; kd, q) of

the weight Ξ+. Alternatively, use Proposition 2.16 and Lemma 2.18(iii).

(iv) This is Cherednik’s generalization of the Shintani-Casselman-Shalika

formula in the reduced case (see [5, (7.13)],[7, (3.11)]). For the nonreduced

case, see [42, Thm. 6.15(d)]. �
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3. Basic Harish-Chandra series

In this section we generalize and analyze the basic Harish-Chandra series

from [31] (GLm case) and from [30] (reduced case). The basic Harish-Chandra

series is a q-analog of the Harish-Chandra series solution of the Heckman-

Opdam hypergeometric system associated to root systems (see [15, Part I,

Chap. 4] and references therein).

Our approach differs from the classical treatment in the sense that we

construct, following [31], [30], the basic Harish-Chandra series as matrix coef-

ficient of a power series solution of a bispectral extension of Cherednik’s [4],

[3] quantum affine Knizhnik-Zamolodchikov (KZ) equations associated to the

minimal principal series of H(k•) (the extension being given by a compatible

set of equations acting on the central character of the minimal principal series

representation). This is essential for two reasons:

(1) Convergence issues: formal power series solutions of the (bispectral) quan-

tum KZ equation are easily seen to converge deep in the asymptotic sector,

in contrast to formal power series solutions of the spectral problem for the

Macdonald q-difference operators.

(2) The formal power series solution of the bispectral quantum KZ equation

gives rise to a self-dual, globally meromorphic q-analog of the classical

Harish-Chandra series. The self-duality plays an important role in our

proof of the c-function expansion of the basic hypergeometric function in

Section 4.

Our approach also gives new proofs of the self-duality and the evalua-

tion formula for the symmetric Macdonald-Koornwinder polynomials (see Re-

mark 3.11).

3.1. Bispectral quantum Knizhnik-Zamolodchikov equations. In this sub-

section we show that the space V (see (2.10)) is isomorphic to the space of solu-

tions of a bispectral extension of the quantum affine Knizhnik-Zamolodchikov

(KZ) equations.

We will first introduce the bispectral quantum KZ equations, following and

extending [31], [30]. Tensor products and endomorphism spaces will be over

C unless stated explicitly otherwise. Let χ : R0 → {0, 1} be the characteristic

function of R−0 . Set M :=
⊕

w∈W0
Cvw. Define elements

Ck,q(w,1), C
k,q
(1,w) ∈ K⊗ End(M)

for the generators w = si, w = u(λ) (0 ≤ i ≤ n and λ ∈ Λ+
min) of the extended

affine Weyl group W by
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Ck,q(s0,1)(t, γ)vw :=
γ−w

−1θvsθw
k0c0(t; k−1, q)

+

Ñ
c0(t; k−1, q)− k−2χ(w−1θ)

0

c0(t; k−1, q)

é
vw,

Ck,q(si,1)(t, γ)vw :=
vsiw

kici(t; k−1, q)
+

Ñ
ci(t; k

−1, q)− k−2χ(−w−1αi)
i

ci(t; k−1, q)

é
vw,

Ck,q(u(λ),1)(t, γ)vw := γw
−1w0λvv(λ)−1w

for 1 ≤ i ≤ n, λ ∈ Λ+
min and w ∈ W0, where v(λ) ∈ W0 is the element of

minimal length such that v(λ)λ ∈ Λ−, and

Ck,q(1,s0)(t, γ)vw :=
twθvwsθ

kd0c0(γ−1; (kd)−1, q)

+

Ç
c0(γ−1; (kd)−1, q)− (kd0)−2χ(wθ)

c0(γ−1; (kd)−1, q)

å
vw,

Ck,q(1,si)
(t, γ)vw :=

vwsi
kdi ci(γ

−1; (kd)−1, q)

+

Ç
ci(γ

−1; (kd)−1, q)− (kdi )−2χ(−wαi)

ci(γ−1; (kd)−1, q)

å
vw,

Ck,q(1,u(λ))(t, γ)vw := t−ww0λvwv(λ).

The following theorem is [31, Cor. 3.4, Lemma 4.3] in the GLm-case and [30,

Cor. 3.8, Lemma 4.3] in the reduced case. The extension to the nonreduced

case is straightforward.

Theorem 3.1. There exists a unique left W ×W -action ((w1, w2), g) 7→
∇k,q((w1, w2))g on K⊗M satisfying

∇k,q(w, 1)g = Ck,q(w,1)w
t
qg,

∇k,q(1, w)g = Ck,q(1,w)w
γ
q−1g

for g ∈ K, w = sj (0 ≤ j ≤ n) and w = u(λ) (λ ∈ Λ+
min), where

(wtqg)(t, γ) = g(w−1
q t, γ), (wγq−1g)(t, γ) = g(t, w−1

q−1γ).

We say that g ∈ K⊗M satisfies the bispectral quantum Knizhnik-Zamolod-

chikov equations if g is a solution of the compatible system

(3.1) ∇(τ(λ), τ(λ′))g = g ∀ (λ, λ′) ∈ Λ× Λ

of q-difference equations. Restricting the equations (3.1) to Λ × {0} and fix-

ing the second torus variable γ ∈ T gives, in the reduced case, Cherednik’s

[4], [3] quantum affine KZ equation associated to the minimal principal series

representation of H(k•) with central character γ.
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Definition 3.2. We write K = Kk,q for the F-vector space consisting of

g ∈ K⊗M satisfying the bispectral quantum KZ equations (3.1).

Note that K is a W0 × W0-module, with action the restriction of ∇ to

W0 ×W0.

Let σ be the complex linear automorphism of K⊗M defined by

σ(f ⊗ vw) := ιf ⊗ vw−1 .

Then

(3.2) σ ◦ ∇k,q((w,w′)) = ∇kd,q((w′, w)) ◦ σ ∀w,w′ ∈W.

In particular, σ restricts to a complex linear isomorphism Kk,q
∼−→ Kkd,q.

Define complex linear maps

ψ := ψk,q :K→ K⊗M,

φ := φk,q :K⊗M → K

by

ψ(f) :=
∑
w∈W0

(πtk,q(Tww0)f)⊗ vw,

φ
Ä ∑
w∈W0

fw ⊗ vw
ä

:=
k−1
w0∑

w∈W0
k−2
w

∑
w∈W0

k−1
w fw.

Note that φ ◦ ψ = πtk,q(C+). Recall from Lemma 2.18 that πtk,q(C+) restricts

to a complex linear map πtk,q(C+) : V → UW0×W0 . It factorizes through the

solutions space KW0×W0 of the bispectral quantum KZ equations:

Theorem 3.3. (i) ψ restricts to a FW0×W0-linear isomorphism ψ : V ∼−→
KW0×W0 .

(ii) φ restricts to an injective W0×W0-equivariant F-linear map φ : K ↪→U .

(iii) ψkd,q ◦ ι|Vk,q = σ ◦ ψk,q|Vk,q and φkd,q ◦ σ|KW0×W0
k,q

= ι ◦ φk,q|KW0×W0
k,q

.

Proof. (i) The analogous statement in the reduced case for the usual quan-

tum affine KZ equations was proved in [43, Thm. 4.9]. Its extension to the

nonreduced case is straightforward. The bispectral extension follows by a rep-

etition of the arguments for the dual part of the quantum KZ equations (i.e.,

the part acting on the second torus component).

(ii) This is the bispectral extension of the difference Cherednik-Matsuo

correspondence [4, Thm. 3.4(a)]. See [31, Thm. 6.16, Cor. 6.21] for the GLm-

case and [30, Thm. 6.6] for the reduced case. (The injectivity follows from the

asymptotic analysis of the bispectral quantum KZ equations, which we will also

recall in Section 3.2.) The extension to the nonreduced case is straightforward.

An alternative approach is to extend the techniques from [43, §5] to the present

bispectral (and nonreduced) setting.
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(iii) Using η(Tww0) = T−1
w0w−1 for w ∈W0, it follows that

ψkd,q(ιf) = σ
Ä ∑
w∈W0

πγ
(kd)−1,q−1(T−1

w0w)f ⊗ vw
ä

for f ∈ K. The first part then follows from the observation that

ψk,q(f) =
∑
w∈W0

πγ
(kd)−1,q−1(T−1

w0w)f ⊗ vw

if f ∈ Vk,q, since ξ(Tww0) = T−1
w0w for w ∈ W0. For the second equality, let

f ∈ KW0×W0 and set g = ψ−1(f) ∈ V. Then

φ(σ(f)) = πt(C+)ψ−1(σ(f))

= πt(C+)(ιg)

= ι(πt(C+)g)

= ι(φ(f)),

where we use the first part of (ii) for the second equality and Lemma 2.18(iii)

for the third equality. �

Corollary 3.4. E+ ∈ φ(KW0×W0).

Proof. E+ = πt(C+)E = φ(ψ(E)) and ψ(E) ∈ KW0×W0 since E ∈ V. �

3.2. Asymptotically free solutions of the bispectral quantum KZ equations.

We recall the results on asymptotically free solutions of the bispectral quantum

KZ equations from [31] (GLm case) and [30] (reduced case). The extension to

the nonreduced case presented here follows from straightforward adjustments

of the arguments of [31], [30].

Define W(·, ·) =W(·, ·; k, q) ∈ K by

W(t, γ) :=
ϑ(t(w0γ)−1)

ϑ(γ0t)ϑ(γ−1
0,dγ)

.

There is some flexibility in the choice of W(·, ·). The key properties we need

it to satisfy are the functional equations

(3.3) W(qλt, γ) = γλ0 γ
w0λW(t, γ), λ ∈ Λ

and the self-duality property

ι
Ä
W(·, ·; k, q)

ä
=W(·, ·; kd, q).

For ε > 0, set

Bε := {t ∈ T | |tαi | < ε ∀ i ∈ {1, . . . , n}}

and B−1
ε := {t−1 | t ∈ Bε}.
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Theorem 3.5. There exists a unique F (·, ·) = F (·, ·; k, q) ∈ Kk,q such

that F (t, γ) = W(t, γ)H(t, γ) with H(·, ·) = H(·, ·; k, q) ∈ K ⊗M satisfying,

for ε > 0 sufficiently small,

H(t, γ) =
∑

µ,ν∈Q+

Hµ,νt
−µγν (Hµ,ν ∈M), H0,0 = vw0

for (t, γ) ∈ B−1
ε ×Bε, with the series converging normally for (t, γ) in compacta

of B−1
ε ×Bε.

Proof. See [31, Thm. 5.3] (GLm case) and [30, Thm. 5.4] (reduced case).

The proofs are based on the asymptotic analysis of compatible systems of q-

difference equations using classical methods that go back to Birkhoff [2] (see the

appendix of [31]). These results extend immediately to the present setup if one

restricts the bispectral quantum KZ equations (3.1) to λ, λ′ in the sublattice⊕n
i=1 Z$i of Λ. But the resulting function F (·, ·) then automatically satisfies

(3.1) for all λ, λ′ ∈ Λ due to the compatibility of the bispectral quantum KZ

equations (3.1) (cf. the proof of [45, Thm. 3.4]). �

For a ∈ R•, let na(·) = na(·; k, q) be the rational function

na(t) =

1− k−2
a taq if 2a 6∈ R,

(1− k−1
a k−1

2a t
a
q)(1 + k−1

a k2at
a
q) if 2a ∈ R.

Note that ca(t; k
−1, q) = na(t; k, q)/na(t;1, q) for a ∈ R•, with 1 the multiplic-

ity function identically equal to one. Let L(·) = Lq(·) and S(·) = Sk,q(·) be

the holomorphic functions on T defined by

Lq(t) :=
∏

α∈R+
0
,

r∈Z>0

n
α+r

|α|2
2
c
(t;1, q), Sk,q(t) :=

∏
α∈R+

0
,

r∈Z>0

n
α+r

|α|2
2
c
(t; k, q).

We give the key properties of F (·, ·) in the following theorem. The proof

follows from straightforward adjustments of the arguments in [31], [30] (which

corresponds to the GLm case and reduced case respectively).

Theorem 3.6. (i) F ∈ K is self-dual : σ(F (·, ·; k, q)) = F (·, ·; kd, q).
(ii) {∇(1, w)F}w∈W0 is a F-basis of K.

(iii) T × T 3 (t, γ) 7→ Sk,q(t−1)Skd,q(γ)H(t, γ; k, q) is holomorphic.

(iv) For ε > 0 sufficiently small, there exist unique holomorphic M -valued

functions Υµ(·) on T (µ ∈ Q+) such that

Skd,q(γ)H(t, γ; k, q) =
∑
µ∈Q+

Υµ(γ)t−µ

for (t, γ) ∈ B−1
ε ×T , with the series converging normally for (t, γ) in compacta

of B−1
ε × T .

(v) Υ0(γ) = Lq(γ)vw0 .
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From the third part of the theorem, we conclude

Corollary 3.7. Let Zk,q ⊆ T be the zero locus of Sk,q(·) and set Z−1
k,q :=

{t−1 | t ∈ Zk,q}. Then H(·, ·; k, q) is holomorphic on T \ Z−1
k,q × T \ Zkd,q .

In the reduced case,

Zk,q = {t ∈ T | tα ∈ k2
αq
−Z>0
α for some α ∈ R+

0 }.

In the nonreduced case,

Zk,q =
¶
t ∈ T | tα ∈ {aq−2Z>0

θ , bq−2Z>0

θ , cq−2Z>0

θ , dq−2Z>0

θ } for some α ∈ R+
0,s

or tβ ∈ k2
ϑq
−Z>0

ϑ for some β ∈ R+
0,l

©
,

where

(3.4) {a, b, c, d} := {kθk2θ,−kθk−1
2θ , qθk0k2a0 ,−qθk0k

−1
2a0
}.

3.3. Basic Harish-Chandra series. Following [31, §6.3] and [30, §7], we

have the following fundamental definition.

Definition 3.8. The self-dual basic Harish-Chandra series

Φ(·, ·) = Φ(·, ·; k, q) ∈ Uk,q

is defined by

(3.5) Φ := φ(F ) =Wφ(H).

The properties of F from Theorem 3.6 (singularities, self-duality, leading

term) can immediately be transferred to the self-dual basic Harish-Chandra

series Φ. In particular, by Theorem 3.3(iii) the self-duality of F gives the

self-duality of Φ,

ι
Ä
Φ(·, ·; k, q)

ä
= Φ(·, ·; kd, q).

In the derivation of the c-function expansion of the basic hypergeometric

function, we initially make use of the self-dual basic Harish-Chandra series. To

make the connection to the classical theory more transparent we will reformu-

late these results in terms of a renormalization of Φ(t, γ) that is closer to the

standard normalization of the classical Harish-Chandra series (see the intro-

duction). It is a γ-dependent renormalization of Φ(t, γ), which also depends

on a base point η ∈ T (indicating the choice of normalization of the prefactor).

This renormalization of Φ breaks the duality symmetry.

To define the renormalized version of the basic Harish-Chandra series,

consider first the renormalization “H(·, ·) = “H(·, ·; k, q) ∈ K⊗M of H(·, ·) given

by “H(t, γ) :=
Skd,q(γ)

∑
w∈W0

k2
w

Lq(γ)
H(t, γ).
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Note that for ε > 0 sufficiently small,“H(t, γ) =
∑
µ∈Q+

“Υµ(γ)t−µ

for (t, γ) ∈ B−1
ε × {γ ∈ T | Lq(γ) 6= 0}, and φ(“Υ0) ≡ 1.

The monic basic Harish-Chandra series “Φη(·, ·) = “Φη(·, ·; k, q) with generic

reference point η ∈ T is now defined by“Φη := Ŵηφ(“H),

with prefactor Ŵη(·, ·) = Ŵη(·, ·; k, q) ∈ K defined as follows. Let

ρ∨s :=
1

2

∑
β∈R+

0,s

β∨

with R+
0,s ⊂ R+

0 the subset of positive short roots. For x ∈ R>0, let xρ
∨
s ∈ T

be the torus element λ 7→ x(ρ∨s ,λ) (λ ∈ Λ). Then Ŵη is defined to be

Ŵη(t, γ) =
Ŵ(t, γ)

Ŵ(ηγ0,d, γ)

with

Ŵ(t, γ) =
ϑ
Ä
γ−1

0 (k−1
0 k2a0)ρ

∨
s t(w0γ)−1

ä
ϑ((k−1

0 k2a0)ρ∨s t
ä .

(Note that (k−1
0 k2a0)ρ

∨
s = 1 in the reduced case.) The prefactor Ŵη(t, γ)

satisfies the same functional equations as function of t ∈ T as the self-dual

prefactor W(t, γ),

Ŵη(q
λt, γ) = γλ0 γ

w0λŴη(t, γ) ∀λ ∈ Λ.

Corollary 3.9. Let γ ∈ T such that Lq(γ) 6= 0. The monic basic Harish-

Chandra series “Φη(·, γ) satisfies the Macdonald q-difference equations

(3.6) Dp
“Φη(·, γ) = p(γ−1)“Φη(·, γ) ∀ p ∈ C[T ]W0

and has, for t ∈ B−1
ε with ε > 0 sufficiently small, a convergent series expan-

sion “Φη(t, γ) = Ŵη(t, γ)
∑
µ∈Q+

Γµ(γ)t−µ,

where Γµ(γ) := φ(“Υµ(γ)). (In particular, Γ0(γ) = 1.) The series converges

normally for t in compacta of B−1
ε .

Since

(3.7) Ŵη(q
ληγ0,d, γ) = γλ0 γ

w0λ ∀λ ∈ Λ,
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the monic basic Harish-Chandra series “Φη(·, γ) is the natural normalization of

the basic Harish-Chandra series when restricting the Macdonald q-difference

equations (3.6) to functions on the q-lattice ηγ0,dq
Λ.

Proposition 3.10. Fix λ ∈ Λ−. For generic values of the multiplicity

function k, we have

(3.8) “Φη(t, γλ) = (ηγ0,d)
−w0λP+

λ (t).

Proof. Fix λ ∈ Λ−. Note that

Ŵ(t, γλ) = q
−|λ|2

2 k
(λ,ρ∨s )
0 k

−(λ,ρ∨s )
2a0

tw0λ.

Hence for t ∈ B−1
ε with ε > 0 sufficiently small,

(3.9) “Φη(t, γλ) =
∑
µ∈Q+

dµt
w0λ−µ

as normally convergent series for t in compacta of B−1
ε , with leading coefficient

(3.10) d0 = (ηγ0,d)
−w0λ.

(This requires Lq(γλ) 6= 0, which we impose as one of the genericity conditions

on the multiplicity function.) Since k is generic, this characterizes “Φ(·, γλ)

within the class of formal power series f ∈ C[[X−αi ]]Xw0λ satisfying the eigen-

value equations Ä
Dpf

ä
(t) = p(γ−1

λ )f(t) ∀ p ∈ C[T ]W0

(cf., e.g., [24, Thm. 4.6]). The result now follows since f(t) = d0P
+
λ (t) satisfies

the same characterizing properties. �

Remark 3.11. The explicit evaluation formula [6, §3.3.2] for the symmet-

ric Macdonald-Koornwinder polynomial P+
λ (γ0,d) = P+

λ (w0γ0,d) = P+
λ (γ−1

0,d)

(λ ∈ Λ−) can be derived from Proposition 3.10 and the fundamental proper-

ties of the self-dual basic Harish-Chandra series

(3.11) Φ(t, γ) =
W(t, γ)

Ŵη(t, γ)

Lq(γ)

Skd,q(γ)
∑
w∈W0

k2
w

“Φη(t, γ)

as follows. By a direct computation using Proposition 3.10,

(3.12) Φ(γ−1
µ,d, γλ; k, q) =

W(γ−1
0,d , γ0; k, q)∑
w∈W0

k2
w

γ−λ0,d

Lq(γλ)

Skd,q(γλ)
P+
λ (γ−1

µ,d; k, q)

for λ, µ ∈ Λ−. By the self-duality of Φ and of W(·, ·), it is also equal to

(3.13) Φ(γ−1
λ , γµ,d; k

d, q) =
W(γ−1

0,d , γ0; k, q)∑
w∈W0

k2
w

γ−µ0

Lq(γµ,d)
Sk,q(γµ,d)

P+
µ (γ−1

λ ; kd, q).
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Setting λ = µ = 0, we get

Lq(γ0)

Skd,q(γ0)
=
Lq(γ0,d)

Sk,q(γ0,d)
.

Setting µ = 0, we then get the evaluation formula

P+
λ (γ−1

0,d) = γλ0,d
Lq(γ0)

Skd,q(γ0)

Skd,q(γλ)

Lq(γλ)
.

Returning to (3.12) and (3.13) it yields the well-known self-duality

E+(γλ; γ−1
µ,d; k, q) = E+(γµ,d, γ

−1
λ ; kd, q) ∀λ, µ ∈ Λ−

of the symmetric Macdonald-Koornwinder polynomials. Using E+(γλ; t) =

E+(γ−w0λ; t−1) and γ−1
λ = w0γ−w0λ for λ ∈ Λ−, the self-duality can be rewrit-

ten as

E+(γλ; γµ,d; k, q) = E+(γµ,d; γλ; kd, q) ∀λ, µ ∈ Λ−.

4. The c-function expansion

The existence of an expansion of the basic hypergeometric function E+ in

terms of basic Harish-Chandra series now follows readily.

Proposition 4.1. {Φ(·, w·)}w∈W0 is a F-basis of the subspace φ(K) of U .

Hence there exists a unique c(·, ·) = c(·, ·; k, q) ∈ F such that

(4.1) E+(t, γ) =
∑
w∈W0

c(t, wγ)Φ(t, wγ).

Proof. Since φ : K → U is W0 ×W0-equivariant, we have

φ(∇(1, w)F ) = Φ(·, w−1·), w ∈W0.

The first statement then follows from Theorem 3.6(ii). By Corollary 3.4, we

have

E+(t, γ) =
∑
w∈W0

cw(t, γ)Φ(t, wγ)

in φ(K) ⊂ U for unique cw ∈ F (w ∈ W0). Since E+ is W0 ×W0-invariant,

cw(t, γ) = c1(t, wγ) for w ∈W0. �

We are now going to derive an explicit expression of the expansion co-

efficient c ∈ F in terms of theta functions. As a first step we will single out

the t-dependence. The following preliminary lemma is closely related to [7,

Thm. 4.1(i)] (reduced case).

Set

ρ̃ := $1 + · · ·+$n ∈ Λ+.
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Lemma 4.2. Fix generic γ ∈ T with |γ−αi | ≤ 1 for 1 ≤ i ≤ n. For

λ ∈ Λ−, define hλ ∈M(T ) by

hλ(t) := γ−λ0 γ−w0λ

Ö ∏
α∈R+

0,s

Ä
−qθk0k

−1
2a0
t−α; q2

θ

ä
−(λ,α∨)/2Ä

−qθk2a0k
−1
0 t−α; q2

θ

ä
−(λ,α∨)/2

è
E+(qλt, γ)

Gkτ ,q(t)Gkdτ ,q(γ)
.

(In the reduced case we have k0 = k2a0 , hence in this case the product over

R+
0,s is one; in the nonreduced case (λ, α∨) is even for all α ∈ R+

0,s.) Then hλ
is holomorphic on T and

lim
r→∞

h−rρ̃(t)

converges to a holomorphic function h−∞(t) in t ∈ T .

Proof. Observe thatÖ ∏
α∈R+

0,s

Ä
−qθk0k

−1
2a0
t−α; q2

θ

ä
−(λ,α∨)/2Ä

−qθk2a0k
−1
0 t−α; q2

θ

ä
−(λ,α∨)/2

è
Gkτ ,q(q

λt)

Gkτ ,q(t)

is a regular function in t ∈ T and Gkτ ,q(q
λt)−1Gkdτ ,q(γ)−1E+(qλt, γ) is holo-

morphic in (t, γ) ∈ T ×T . Hence hλ(t) is holomorphic. It remains to show that

the hλ(t) (λ ∈ Λ−) are uniformly bounded for t in compacta of T . Without

loss of generality it suffices to prove uniform boundedness for t in compacta of

B−1
ε for sufficiently small ε > 0.

Set

F(t, γ) :=
E(t, γ)

Gkτ ,q(t)Gkdτ ,q(γ)
,

which is the holomorphic part of the nonsymmetric basic hypergeometric func-

tion E . For w ∈W0, let v∗w be the K-linear functional on K⊗M mapping vw′

to δw,w′ . Recall from Theorem 3.3 that

E+ = πt(C+)E = φ(ψE)

and ψE ∈ K. Hence

(ψE)(qλt, γ) = C(τ(λ),1)(q
λt, γ)(ψE)(t, γ),

so that

hλ(t) =
k−1
w0∑

w∈W0
k−2
w

∏
α∈R+

0,s

Ä
−qθk0k

−1
2a0
t−α; q2

θ

ä
−(λ,α∨)/2Ä

−qθk2a0k
−1
0 t−α; q2

θ

ä
−(λ,α∨)/2

×
∑

w,w′∈W0

k−1
w

Ä
πt(Tw′w0)F

ä
(t, γ)v∗w

Ä
γ−λ0 γ−w0λC(τ(λ),1)(q

λt, γ)vw′
ä
.

It thus suffices to give bounds for v∗w(Dλ(t)vw′) (λ ∈ Λ−), uniform for t in

compacta of B−1
ε , where

Dλ(t) := γ−λ0 γ−w0λC(τ(λ),1)(q
λt, γ).
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Recall from Theorem 3.5 the asymptotically free solution F (·, ·) =W(·, ·)H(·, ·)
of the bispectral quantum KZ equations. Then

γw0λ−ww0λDλ(t)Hw(t) = Hw(qλt), w ∈W0,

with

Hw(t) :=
Ä
∇(e, w)H

ä
(t, γ) = C(1,w)(t, γ)H(t, w−1γ).

(Note that the C(1,w)(t, γ) (w ∈W0) do not depend on t.) Furthermore, writing

Hw′(t) =
∑
w∈W0

aw
′

w (t)vw,

the matrix A(t) :=
Ä
aw
′

w (t)
ä
w,w′∈W0

is invertible (cf. proof of [31, Lemma 5.12])

and both A(t) and A(t)−1 are uniformly bounded for t ∈ B−1
ε . Writing N(t, λ)

for the matrix
Ä
v∗w(Dλ(t)vw′)

ä
w,w′∈W0

, we conclude that

N(t, λ) = A(qλt)M(λ)A(t)−1,

where M(λ) is the diagonal matrix
Ä
δw,w′γ

−w0λ+ww0λ
ä
w,w′∈W0

. The matrix

coefficients of M(λ) are bounded as function of λ ∈ Λ− since |γ−αi | ≤ 1

for all i. This implies the required boundedness conditions for the matrix

coefficients of N(t, λ). �

Set

(4.2)

cϑ(t, γ; k, q) :=
ϑ(γ−1

0 (k−1
0 k2a0)ρ

∨
s t(w0γ)−1)ϑ(γ0t)ϑ(γ−1

0,dγ)ϑ((k−1
0 k2a0)ρ

∨
s γ0,d)

ϑ((k2a0k
−1
2θ )ρ∨s γ)ϑ(t(w0γ)−1)ϑ((k−1

0 k2a0)ρ∨s t)
.

Observe that cϑ satisfies the functional equations

cϑ(qλt, γ) = cϑ(t, γ),

cϑ(t, qλγ) = γ2λ
0,dc

ϑ(t, γ)

for λ ∈ Λ. Since γ−1
0 γ0,d = (k0k

−1
2θ )ρ

∨
s , in addition we have

(4.3) cϑ(γ0,d, γ) =
1

W(γ0,d, γ)
.

Corollary 4.3. The expansion coefficient c ∈ F in (4.1) is of the form

(4.4) c(t, γ) = cϑ(t, γ)cθ(γ)

for a unique cθ(·) = cθ(·; k, q) ∈M(T ) satisfying the functional equations

(4.5) cθ(qλγ) = γ−2λ
0,d cθ(γ) ∀λ ∈ Λ.
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Proof. In view of the functional equations of cϑ(t, γ) in γ it suffices to prove

the factorization for generic t, γ ∈ T satisfying |γ−αi | < 1 for all 1 ≤ i ≤ n.

Since

(4.6)
1

Gkτ ,q(t)

∏
α∈R+

0,s

Ä
−qθk0k

−1
2a0
t−α; q2

θ

ä
∞Ä

−qθk2a0k
−1
0 t−α; q2

θ

ä
∞

= ϑ
Ä
(k−1

0 k2a0)ρ
∨
s t
ä

(which is trivial in the reduced case and follows by a direct computation in the

nonreduced case), we have

h−∞(t) =
ϑ((k−1

0 k2a0)ρ
∨
s t)

Gkdτ ,q(γ)
(4.7)

×
∑
w∈W0

c(t, wγ)W(t, wγ) lim
r→∞

γr(w0ρ̃−w−1w0ρ̃)(φH)(q−rρ̃t, wγ)

=
ϑ((k−1

0 k2a0)ρ
∨
s t)c(t, γ)W(t, γ)Lq(γ)

Gkdτ ,q(γ)Skd,q(γ)
∑
w∈W0

k2
w

by Theorem 3.6, Proposition 4.1, (3.3), (3.5) and the assumption that |γ−αi |<1

for all 1 ≤ i ≤ n. It follows from this expression that the holomorphic function

h−∞ satisfies

h−∞(qλt) = q−
|λ|2
2

Ä
γ−1

0 (k−1
0 k2a0)ρ

∨
s t(w0γ)−1

ä−λ
h−∞(t) ∀λ ∈ Λ.

Consequently,

h−∞(t) = cstϑ
Ä
γ−1

0 (k−1
0 k2a0)ρ

∨
s t(w0γ)−1

ä
for some cst ∈ C independent of t ∈ T . Combined with the second line of (4.7)

one obtains the desired result. �

The factor cϑ(t, γ) is highly dependent on our specific choice of (self-dual,

meromorphic) prefactor W in the self-dual basic Harish-Chandra series. We

will see later that this factor simplifies when considering the expansion of the

basic hypergeometric function in terms of the monic basic Harish-Chandra

series. In particular it will no longer depend on the first torus variable t ∈ T .

The next step is to compute cθ(γ) = cθ(γ; k, q) explicitly. We will obtain

an expression in terms of the Jacobi theta function θ(·; q). Recall that

(4.8)
Sk,q(t)
Lq(t)

=
∏

α∈R+
0
,

r∈Z>0

c
α+r

|α|2
2
c
(t; k−1, q).

We define a closely related meromorphic function c(·) = ck,q(·) ∈M(T ) by

(4.9) c(t) :=
∏

α∈R+
0
,

r∈Z≥0

c
−α+r

|α|2
2
c
(t; k, q).
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An explicit computation yields expressions of both (4.8) and (4.9) in terms of

of q-shifted factorials. For c(t), it reads

(4.10) c(t) =
∏
α∈R+

0

Ä
k2
αt
−α; qα

ä
∞Ä

t−α; qα
ä
∞

in the reduced case and

(4.11) c(t) =
∏

α∈R+
0,l

Ä
k2
ϑt
−α; qϑ

ä
∞Ä

t−α; qϑ
ä
∞

∏
β∈R+

0,s

Ä
at−β, bt−β, ct−β, dt−β; q2

θ

ä
∞Ä

t−2β; q2
θ

ä
∞

in the nonreduced case, where R+
0,l ⊂ R

+
0 is the subset of positive long roots and

{a, b, c, d} are given by (3.4). The product formula of ckd,q(γ) in the reduced

case is the q-analog of the Gindikin-Karpelevic [12] product formula of the

Harish-Chandra c-function as well as of its extension to the Heckman-Opdam

theory (see [15, Part I, Def. 3.4.2]).

Taking the product
Sk,q(t)ck,q(t)
Lq(t)

of (4.8) and (4.9), the q-shifted factorials can be combined pairwise to yield

the following explicit expression in terms of Jacobi’s theta function θ(·; q).

Lemma 4.4. (i) In the reduced case,

Sk,q(t)ck,q(t)
Lq(t)

=
∏
α∈R+

0

θ(k2
αt
−α; qα)

θ(t−α; qα)
.

(ii) In the nonreduced case,

Sk,q(t)ck,q(t)
Lq(t)

=
∏

α∈R+
0,l

θ(k2
ϑt
−α; qϑ)

θ(t−α; qϑ)

×
∏

β∈R+
0,s

θ(at−β; q2
θ)θ(bt

−β; q2
θ)θ(ct

−β; q2
θ)θ(dt

−β; q2
θ)Ä

q2
θ ; q

2
θ)

3
∞θ(t

−2β; q2
θ)

.

In Section 3.2 we have seen that

Lq(γ)

Skd,q(γ)
∑
w∈W0

k2
w

is the leading coefficient of the power series expansion of (φH)(t, γ) in the

variables t−αi (1 ≤ i ≤ n). On the other hand, it is closely related to the

evaluation formula for the symmetric Macdonald-Koornwinder polynomials,

see Remark 3.11. In the next proposition we show that the meromorphic func-

tion c(t) governs the asymptotics of the symmetric Macdonald-Koornwinder
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polynomial. In the reduced case it is due to Cherednik [7, Lemma 4.3]. (For

the rank one case see, e.g., [18].)

Proposition 4.5. For ε > 0 sufficiently small,

(4.12) lim
r→∞

γrρ̃0,dt
rw0ρ̃E+(γ−rρ̃; t) =

c(t)

c(γ0,d)
,

normally converging for t in compacta of B−1
ε .

Proof. The proof in the reduced case (see [7]) consists of analyzing the

gauged Macdonald q-difference equations trw0ρ̃ ◦ Dp ◦ t−rw0ρ̃ (p ∈ C[T ]W0) in

the limit r →∞ and observing that the left and right-hand side of (4.12) are

the (up to normalization) unique solution of the resulting residual q-difference

equations that have a series expansion in t−µ (µ ∈ Q+), normally converging

for t in compacta of B−1
ε . This proof can be straightforwardly extended to the

nonreduced case. �

Theorem 4.6. We have

E+(t, γ; k, q) =
∑
w∈W0

c(t, wγ; k, q)Φ(t, wγ; k, q),

with c(·, ·) = c(·, ·; k, q) ∈ F given by

(4.13) c(t, γ; k, q) = cϑ(t, γ; k, q)cθ(γ; k, q),

where cϑ(·, ·) = cϑ(·, ·; k, q) ∈ K is given by (4.2) and cθ(·) = cθ(·; k, q) ∈M(T )

is given by

(4.14) cθ(γ; k, q) =
Skd,q(γ)ckd,q(γ)

Lq(γ)

∑
w∈W0

k2
w

ckd,q(γ0)
.

In view of Lemma 4.4, formula (4.14) provides an explicit expression of

cθ(γ) as product of Jacobi theta functions.

Proof. Using Lemma 4.4 it is easy to check that the right-hand side of

(4.14) satisfies the functional equations (4.5). Hence it suffices to prove the

explicit expression (4.14) of cθ(γ) for generic γ ∈ T such that |γ−αi | is suffi-

ciently small for all 1 ≤ i ≤ n. We fix such γ in the remainder of the proof.

Recall the associated holomorphic function hλ(t) in t ∈ T from Lemma 4.2.

By Theorem 2.20, using (4.6) for the first equality and Proposition 4.5 for the

second equality,

h−∞(γ0,d) =
ϑ
Ä
(k−1

0 k2a0)ρ
∨
s γ0,d

ä
Gkdτ ,q(γ)

lim
r→∞

γrρ̃0 γrw0ρ̃E+(γ−rρ̃,d; γ; kd, q)

=
ϑ
Ä
(k−1

0 k2a0)ρ
∨
s γ0,d

ä
ckd,q(γ)

ckd,q(γ0)Gkdτ ,q(γ)
.
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On the other hand, by (4.7), Corollary 4.3 and (4.3),

h−∞(γ0,d) =
ϑ((k−1

0 k2a0)ρ
∨
s γ0,d)Lq(γ)

Gkdτ ,q(γ)Skd,q(γ)
∑
w∈W0

k2
w

cθ(γ).

Combining these two formulas yields the desired expression for cθ(γ). �

A direct computation using (3.11) now gives the following c-function ex-

pansion of the basic hypergeometric function E+ in terms of the monic basic

Harish-Chandra series “Φη.

Corollary 4.7. For generic η ∈ T , we have

(4.15) E+(t, γ; k, q) = ĉη(γ0; k, q)−1
∑
w∈W0

ĉη(wγ; k, q)“Φη(t, wγ; k, q),

with ĉη(·) = ĉη(·; k, q) ∈M(T ) explicitly given by

ĉη(γ; k, q) =
ϑ
Ä
(w0η)−1(k2a0k

−1
2θ )ρ

∨
s γ
ä

ϑ
Ä
(k2a0k

−1
2θ )ρ∨s γ

ä ckd,q(γ).

In the rank one case the c-function expansion of E+ was established by

direct computations in [8] (GL2 case) and in [19], [41] (nonreduced rank one

case). We return to the rank one case and establish the connections to basic

hypergeometric series in Section 5.

In the reduced case, by (4.10) the coefficient ĉη explicitly reads

ĉη(γ) =
ϑ((w0η)−1γ)

ϑ(γ)

∏
α∈R+

0

Ä
k2
αγ
−α; qα

ä
∞Ä

γ−α; qα
ä
∞

.

By (4.11) an explicit expression of the monic c-function ĉη can also be given

in the nonreduced case; see (5.3) for the resulting expression.

Note that the formula for ĉη(γ) simplifies, for η = 1, to

ĉ1(γ; k, q) = ckd,q(γ).

As remarked in the introduction this shows that E+ formally is a q-analog of

the Heckman-Opdam [14], [15], [33] hypergeometric function.

The η-dependence is expected to be of importance in the applications

to harmonic analysis on noncompact quantum groups. In [20], [19] a self-

dual spherical Fourier transform on the quantum SU(1, 1) quantum group was

defined and studied, whose Fourier kernel is given by the nonreduced rank one

basic hypergeometric function E+, which is the Askey-Wilson function from

[19] (see Section 5.2). The Fourier transform and the Plancherel measure were

defined in terms of the Plancherel density function

(4.16) µη(γ) =
1

ĉη(γ)ĉη(γ−1)
.
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The extra theta-factors compared to the familiar Macdonald density

µ1(γ) =
1

ckd,q(γ)ckd,q(γ
−1)

lead to an infinite set of discrete mass points in the associated (inverse of the)

Fourier transform. In its interpretation as spherical Fourier transform, these

mass points account for the contributions of the strange series representations

to the Plancherel measure. (The strange series is a series of irreducible unitary

representations of the quantized universal enveloping algebra that vanishes in

the limit q → 1; see [29].) Crucial ingredients for obtaining the Plancherel and

inversion formulas are the explicit c-function expansion and the self-duality of

the Askey-Wilson function E+. The generalization of these results to arbitrary

root systems is not known.

5. Special cases and applications

5.1. Asymptotics of symmetric Macdonald-Koornwinder polynomials. As

a consequence of the c-function expansion we can establish pointwise asymp-

totics of the symmetric Macdonald-Koornwinder polynomials when the degree

tends to infinity. The L2-asymptotics was established in [36] for GLm, [9] for

the reduced case and [10] for the nonreduced case. (For the rank one cases see,

e.g., [18], [11, §7.4 & §7.5] and references therein.)

For λ ∈ Λ−, set

m(λ) := max((λ, αi) | 1 ≤ i ≤ n) ∈ R≤0.

Corollary 5.1. Fix t ∈ T such that Sk,q(wt) 6= 0 for all w ∈W0. Then

(5.1) E+(γλ; t; k, q) =
∑
w∈W0

ck,q(wt)

ck,q(γ0,d)
γλ0,dt

w−1w0λ +O(q−m(λ))

as m(λ)→ −∞.

Proof. By the c-function expansion in self-dual form, Theorem 2.20(ii)–

(iv), (3.11) and the expression “Φη = Ŵηφ(“H), we have for λ ∈ Λ−,

E+(γλ; t; k, q) = E+(γλ, t; k
d, q)

=
∑
w∈W0

c(γλ, wt; k
d, q)W(γλ, wt; k

d, q)
Lq(wt)

Sk,q(wt)
∑
v∈W0

k2
v

(φ“H)(γλ, wt; k
d, q).

The corollary now follows easily from the asymptotic series expansion in γ−αλ
(α ∈ Q+) of (φ“H)(γλ, wt, k

d; q), together with (3.3), (4.3) and the explicit

expression (4.13) of c ∈ F. �
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5.2. The nonreduced case. We realize the root systemR0 ⊂ V0 = V of type

Bn as R0 = {±εi}ni=1 ∪ {±(εi ± εj)}1≤i<j≤n, with {εi}ni=1 a fixed orthonormal

basis of V . We take as ordered basis

∆0 = (ε1 − ε2, . . . , εn−1 − εn, εn)

so that R+
0,s = {εi}ni=1, R+

0,l = {εi ± εj}1≤i<j≤n and θ = ε1, ϑ = ε1 + ε2. We

include n = 1 as R0 = {±ε1}, the root system of type A1. (It amounts to

omitting the factors involving the long roots {±(εi ± εj)}i<j in the formulas

below.) We have Λ =Q=
⊕n
i=1 Zεi. We identify T '

Ä
C∗
ä
n, taking ti := tεi as

the coordinates. Note that qθ = q
1
2 and qϑ = q.

The q-difference operator Dp with respect to

p(t) :=
n∑
i=1

(ti + t−1
i )

was identified with Koornwinder’s [22] multivariable extension of the Askey-

Wilson second order q-difference operator by Noumi [32]. It can most conve-

niently be expressed in terms of the Askey-Wilson parameters

{a, b, c, d} =
{
kθk2θ,−kθk−1

2θ , q
1
2k0k2a0 ,−q

1
2k0k

−1
2a0

}
and the dual Askey-Wilson parameters{

ã, b̃, c̃, d̃} = {kθk0,−kθk−1
0 , q

1
2k2θk2a0 ,−q

1
2k2θk

−1
2a0

}
(which are the Askey-Wilson parameters associated to the multiplicity function

kd dual to k) as

Dp = ã−1k
2(1−n)
ϑ

(
D +

n∑
i=1

(
ã2k

2(2n−i−1)
ϑ + k

2(i−1)
ϑ

))
with

D =
n∑
i=1

Ä
Ai(t)(τ(−εi)q − 1) +Ai(t

−1)(τ(εi)q − 1)
ä
,

Ai(t) =
(1− ati)(1− bti)(1− cti)(1− dti)

(1− t2i )(1− qt2i )
∏
j 6=i

(1− k2
ϑtitj)(1− k2

ϑtit
−1
j )

(1− titj)(1− tit−1
j )

.

If follows that P+
λ (λ ∈ Λ−) are the monic symmetric Koornwinder [22] polyno-

mials and E(γλ; ·) (λ ∈ Λ−) are Sahi’s [37] normalized symmetric Koornwinder

polynomials.

We now make the (monic version of) the c-function expansion of the as-

sociated basic hypergeometric function E+ more explicit (see Corollary 4.7).

First note that ρ∨s =
∑n
i=1 εi and that

γ−1
0 =

Ä
ãk

2(n−1)
ϑ , · · · , ãk2

ϑ, ã),

γ−1
0,d =

Ä
ak

2(n−1)
ϑ , . . . , ak2

ϑ, a).
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In the present nonreduced setup, the higher rank theta function ϑ(t) (2.8) can

be written in terms of Jacobi’s theta function,

(5.2) ϑ(t) =
n∏
i=1

θ
Ä
−q

1
2 ti; q

ä
.

This allows us to rewrite the theta function factor of ĉη(γ) (see Corollary 4.7)

as
ϑ((w0η)−1(k2a0k

−1
2θ )ρ

∨
s γ)

ϑ((k2a0k
−1
2θ )ρ∨s γ)

=
n∏
i=1

θ(qηiγi/d̃)

θ(qγi/d̃)
.

The normalized c-function ĉη(γ) thus becomes

ĉη(γ) =
n∏
i=1

Ä
ãγ−1

i , b̃γ−1
i , c̃γ−1

i , d̃γ−1
i /ηi, qηiγi/d̃; q

ä
∞Ä

γ−2
i , qγi/d̃; q

ä
∞

(5.3)

×
∏

1≤i<j≤n

Ä
k2
ϑγ
−1
i γj , k

2
ϑγ
−1
i γ−1

j ; q
ä
∞Ä

γ−1
i γj , γ

−1
i γ−1

j ; q
ä
∞

,

where we use the shorthand notationÄ
α1, . . . , αj ; q

ä
r

:=
j∏
i=1

Ä
αi; q

ä
r
.

In the remainder of this subsection we set n = 1. Then D is the Askey-

Wilson [1] second-order q-difference operator. In this case the c-function ex-

pansion (Corollary 4.7) was proved in [19], [41] using the theory of one-variable

basic hypergeometric series. Important ingredients are the explicit basic hy-

pergeometric series expressions for E+ and “Φη, which we now recall.

The r+1φr basic hypergeometric series [11] is the convergent series

(5.4)

r+1φr

Ç
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

å
:=

∞∑
j=0

Ä
a1, a2, . . . , ar+1; q

ä
jÄ

q, b1, . . . , br; q
ä
j

zj , |z| < 1.

The very-well-poised 8φ7 basic hypergeometric series is given by

8W7(α0;α1, α2, α3, α4, α5; q, z) :=
∞∑
r=0

1− α0q
2r

1− α0
zr

5∏
j=0

Ä
αj ; q

ä
rÄ

qα0/αj ; q
ä
r

, |z| < 1.

Very-well-poised 8φ7 basic hypergeometric series solutions of the eigenvalue

equation

(5.5) Df = (ã(γ + γ−1)− ã2 − 1)f

were obtained in [17]. On the other hand, we already observed that E+(γ−r; ·)
(r ∈ Z≥0) is the inversion invariant, Laurent polynomial solution of (5.5) with

spectral point γ = γ−r and that both E+(·, γ) and “Φη(·, γ) satisfy (5.5). These

solutions are related as follows.
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Proposition 5.2. For the nonreduced case with n = 1, we have

(5.6) E+(γ−r; t) = 4φ3

Ç
q−r, qr−1abcd, at, a/t

ab, ac, ad
; q, q

å
, r ∈ Z≥0,

(5.7) E+(t, γ) =

(
qatγ

d̃
, qaγ
d̃t
, qad ,

q
ad ; q

)
∞(

ãb̃c̃γ, qγ
d̃
, qtd ,

q
dt ; q

)
∞

8W7

( ãb̃c̃γ
q

; at,
a

t
, ãγ, b̃γ, c̃γ; q,

q

d̃γ

)

for |q/d̃γ| < 1, and“Φη(t, γ) =
θ
Ä
ad
η ; q
ä
θ
Ä
qãtγ
d ; q

ä
θ
Ä
d̃
ηγ ; q

ä
θ
Ä
qt
d ; q
ä ( qaγãt , qbγãt , qcγãt , qãγdt , dt ; qä∞(

q
at ,

q
bt ,

q
ct ,

q
dt ,

q2γ2

dt ; q
)
∞

(5.8)

× 8W7

(qγ2

dt
;
qγ

ã
,
qγ

d̃
, b̃γ, c̃γ,

q

dt
; q,

d

t

)
for |d/t| < 1.

Proof. Formula (5.6) follows from [41, Thm. 4.2], (5.7) from [41, Thm. 4.2]

and (5.8) from [19, §4]. �

The proposition shows that E+(γ−r; ·) is the normalized symmetric Askey-

Wilson [1] polynomials of degree r ∈ Z≥0 and that E+ coincides up to a constant

multiple with the Askey-Wilson function from [19].

In the present nonreduced, rank one setting, the c-function expansion

(5.9) E+(t, γ) = ĉη(γ0)−1
Ä
ĉη(γ)“Φη(t, γ) + ĉη(γ

−1)“Φη(t, γ
−1)
ä

with

ĉη(γ) =

Ä
ãγ−1, b̃γ−1, c̃γ−1, d̃γ−1/η, qηγ/d̃; q

ä
∞Ä

γ−2, qγ/d̃; q
ä
∞

is a special case of Bailey’s three-term recurrence relation for very-well-poised

8φ7-series (see [11, (III.37)]). This follows by repeating the proof of [19, Prop.

1]. (Formula (5.9) is more general since it does not involve restriction to a

q-interval.) See also [44] for a detailed discussion.

Remark 5.3. The explicit expressions of E+ and “Φη as meromorphic func-

tions on C∗×C∗ can be obtained from the above explicit expressions by writing

the 8W7 series as the sum of two balanced 4φ3 series using Bailey’s formula [11,

(III.36)]; see, for instance, formula [19, (3.3)] for E+. (The basic r+1φr series

(5.4) is called balanced if z = q and qa1a2 · · · ar+1 = b1b2 · · · br.)
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5.3. The GLm case. In this subsection we use the notations from Ex-

ample 2.2(ii). We identify T '
Ä
C∗
äm

, taking ti := tεi as the coordinates

(1 ≤ i ≤ m). Note that the multiplicity function k is constant (its constant

value will also be denoted by k). The q-difference operators Der associated to

the elementary symmetric functions

er(t) =
∑

I⊆{1,...,m}
#I=r

∏
j∈I

tj , 1 ≤ r ≤ m

are Ruijsenaars’ [35] quantum Hamiltonians of the relativistic quantum trigono-

metric Calogero-Moser-Sutherland model,

(5.10) Der =
∑

I⊆{1,...,m}
#I=r

Ñ ∏
i∈I,j 6∈J

k−1ti − ktj
ti − tj

é
τ
Ä∑
i∈I

εi
ä
q
, 1 ≤ r ≤ m.

The monic version of the c-function (Corollary 4.7) becomes

(5.11) ĉη(γ) =
ϑ((w0η)−1γ)

ϑ(γ)

∏
1≤i<j≤m

Ä
k2γj/γi; q

ä
∞Ä

γj/γi; q
ä
∞

.

Also in the present GLm case, the higher rank theta functions appearing in

(5.11) can be expressed as product of Jacobi theta functions by (5.2).

Our results for GL2 can be matched with the extensive literature on

Heine’s q-analog of the hypergeometric differential equation (see, e.g., [11,

Chap. 1], [23, Chap. 3, §1.7] and [28, §6.3]). It leads to explicit expressions

of E+(γλ; ·), Φ and “Φη in terms of Heine’s q-analog of the hypergeometric

function. For completeness, we detail this link here.

Heine’s basic hypergeometric q-difference equation is

z(c− abqz)(∂2
qu)(z) +

Ç
1− c
1− q

+
(1− a)(1− b)− (1− abq)

1− q
z

å
(∂qu)(z)

−(1− a)(1− b)
(1− q)2

u(z) = 0,

(5.12)

with

(∂qu)(z) :=
u(z)− u(qz)

(1− q)z
the q-derivative. Note that (5.12) formally reduces to the hypergeometric

differential equation

z(1− z)u′′(z) + (c− (a+ b+ 1)z)u′(z)− abu(z) = 0

by replacing in (5.12) the parameters a, b, c by qa, qb, qc and taking the limit

q → 1. A distinguished solution of (5.12) is Heine’s basic hypergeometric
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function

(5.13) φH(z) := 2φ1

Ç
a, b

c
; q, z

å
for |z| < 1.

Note that for GL2,

Ŵ(t, γ) =
θ
Ä
−q

1
2kt1/γ2; q

ä
θ
Ä
−q

1
2 t2/kγ1; q

ä
θ
Ä
−q

1
2 t1; q

ä
θ
Ä
−q

1
2 t2; q

ä .

Lemma 5.4. Fix γ ∈ T '
Ä
C∗
ä2

. If u ∈ M(C∗) satisfies Heine’s basic

hypergeometric q-difference equation (5.12) with the parameters a, b, c given by

(5.14) a = k2, b = k2γ1/γ2, c = qγ1/γ2,

then the meromorphic function f(t) := Ŵη(t, γ)u(qt2/k
2t1) satisfies

(5.15) Derf = er(γ
−1)f, r = 1, 2,

where the Der are the GL2 Macdonald-Ruijsenaars q-difference operators. Con-

versely, if f is a meromorphic solution of (5.15) of the form f(t1, t2) =

Ŵη(t, γ)u(qt2/k
2t1) for some u ∈ M(C∗), then u satisfies (5.12) with param-

eters a, b, c given by (5.14).

Proof. Direct computation. �

Corollary 5.5 (GL2 case). (i) The normalized symmetric Macdonald

polynomial E+(γλ; t) (λ = λ1ε1 + λ2ε2 with λi ∈ Z and λ1 ≤ λ2) is given by

(5.16)

E+(γλ; t) = kλ1−λ2

Ä
q1+λ1−λ2/k2; q

ä
λ2−λ1Ä

q1+λ1−λ2/k4; q
ä
λ2−λ1

tλ21 tλ12 2φ1

Ç
k2, qλ1−λ2

q1+λ1−λ2/k2; q,
qt2
k2t1

å
.

(ii) The monic basic Harish-Chandra series is explicitly given by

(5.17) “Φη(t, γ) = Ŵη(t, γ)2φ1

Ç
k2, k2γ1/γ2

qγ1/γ2
; q,

qt2
k2t1

å
for |qt2/k2t1| < 1.

Proof. (i) Consider the solution

φH(z) = 2φ1

Ç
k2, qλ1−λ2

q1+λ1−λ2/k2; q, z

å
of the basic hypergeometric q-difference equation (5.12) with parameters a, b, c

given by (5.14) and with γ = γλ = (qλ1k−1, qλ2k). It is a polynomial in z of

degree λ2 − λ1. (It is essentially the continuous q-ultraspherical polynomial.)

In addition, Ŵ(t, γλ) = q−
|λ|2
2 tλ21 tλ12 . By the previous lemma we conclude
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that P+
λ (t) = tλ21 tλ12 φH(qt2/k

2t1); see also [28, §6.3] and [6, Chap. 2]. The

normalization factor turning P+
λ (t) into the normalized symmetric Macdonald

polynomial E+(γλ; t) can, for instance, be computed using the q-Vandermonde

formula [11, (II.6)].

(ii) Ŵη(t, γ)φH(qt2/k
2t1) with the parameters a, b, c in φH given by (5.14)

and “Φη(t, γ) both satisfy (5.15) and have the same asymptotic expansion for

small |t2/t1|. This forces them to be equal (cf., e.g., [23, Chap. 3, §1.7] and [8,

Thm. 2.3]). �

The monic GL2 c-function expansion

(5.18) E+(t, γ) = ĉη(γ0)−1
Ä
ĉη(γ)“Φη(t, γ) + ĉη(w0γ)“Φη(t, w0γ)

ä
,

where w0γ = (γ2, γ1) and

ĉη(γ) =
θ(−q

1
2γ1/η2; q)θ(−q

1
2γ2/η1; q)

θ(−q
1
2γ1; q)θ(−q

1
2γ2; q)

Ä
k2γ2/γ1; q

ä
∞Ä

γ2/γ1; q
ä
∞

,

thus yields an explicit expression of the GL2 basic hypergeometric function

E+(t, γ) as the sum of two 2φ1 basic hypergeometric series.

Another solution of Heine’s basic hypergeometric q-difference equation

(5.12) is

v(x) :=
θ(ax; q)

θ(x; q)
2φ1

Ç
a, qa/c

qa/b
; q,

qc

abx

å
=

θ(ax; q)
Ä
a, q2/bx; q

ä
∞

θ(x; q)
Ä
qa/b, qc/abx; q

ä
∞

2φ1

Ç
q/b, qc/abx

q2/bx
; q, a

å
;

see, e.g., [23, Chap. 3, §1.7]. (The second formula follows from Heine’s trans-

formation formula [11, (III.1)].) By Lemma 5.4 it yields yet another solution,

f(t) = Ŵη(t, γ)
θ(qt2/t1; q)

θ(qt2/k2t1; q)

Ä
qt1γ2/t2γ1; q

ä
∞Ä

qt1/k2t2; q
ä
∞

2φ1

Ç
qγ2/k

2γ1, qt1/k
2t2

qt1γ2/t2γ1
; q, k2

å
,

of the system (5.15) of GL2 Macdonald q-difference equations. The various 2φ1

basic hypergeometric series solutions of (5.15) are related by explicit connec-

tion coefficient formulas; see, e.g., [44].

We finish this subsection by relating the monic GL2 basic Harish-Chandra

series “Φη (5.17) to the monic nonreduced rank one basic Harish-Chandra se-

ries (5.8), which we will denote here by “Φnr
ξ . Recall that in the nonreduced

rank one setting the associated multiplicity function is determined by the four

values knr = (knr
θ , k

nr
2θ, k

nr
0 , k

nr
2a0). We write θ(x1, . . . , xr; q) =

∏r
j=1 θ(xj ; q) for

products of Jacobi theta functions.
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Proposition 5.6. Let η = (η1, η2) ∈
Ä
C∗
ä2

and ξ ∈ C∗. Let knr be the

multiplicity function knr = (k, k, 0, 0) with 0 < k < 1. For γ = (γ1, γ2) ∈Ä
C∗
ä2

, set γ±2 := (γ±2
1 , γ±2

2 ). Then

(5.19) “Φη(t, γ
2; k, q) = Cη,ξ(t, γ)“Φnr

ξ

( t1
t2
,
γ1

γ2
; knr, q

)
with “Φη the GL2 monic basic Harish-Chandra series (5.17) and

Cη,ξ(t, γ)

=
θ(−q

1
2 η1/k,−q

1
2 η2k,−q

1
2kγ2/ξγ1,−q

1
2kt1/γ

2
2 ,−q

1
2 t2/kγ

2
1 ,−q

1
2 t1/t2; q)

θ(−q
1
2 η1/γ2

2 ,−q
1
2 η2/γ2

1 ,−q
1
2k2/ξ,−q

1
2 t1,−q

1
2 t2,−q

1
2kt1γ1/t2γ2; q)

.

Proof. If the meromorphic function f(x, z) in (x, z) ∈ C∗×C∗ satisfies the

Askey-Wilson second-order q-difference equation

Df(·, z) = (ã(z + z−1)− ã2 − 1)f(·, z)

with respect to the multiplicity function knr = (k, k, 0, 0), then

g(t) := Cη,ξ(t, γ)f
( t1
t2
,
γ1

γ2

)
satisfies the GL2 Macdonald-Ruijsenaars q-difference equations

(5.20)
Ä
Derg

ä
(t) = er(γ

−2)g(t), r = 1, 2;

cf. [44]. Here we use that the prefactor Cη,ξ(t, γ) satisfies

Cη,ξ(τ(−εr)qt, γ) = γ−1
1 γ−1

2 Cη,ξ(t, γ)

for r = 1, 2. Hence both sides of (5.19) satisfy (5.20). In addition, both sides

of (5.19) have an expansion of the form

Ŵη(t, γ
2)
∞∑
r=0

Ξr
( t2
t1

)r
, Ξ0 = 1

for |t2/t1| sufficiently small. This forces the identity (5.19); cf. the proof of

(5.17). �

A similar statement is not true if the role of the basic Harish-Chandra

series in Proposition 5.6 is replaced by the associated basic hypergeometric

functions. This follows from a comparison of the associated c-function expan-

sions.

Remark 5.7. By (5.17) and (5.8), formula (5.19) is an identity expressing a

very-well-poised 8φ7 basic hypergeometric series as a 2φ1 basic hypergeometric

series. After application of the transformation formula [11, (III.23)] to the

very-well-poised 8φ7 series, this identity becomes a special case of [11, (3.4.7)].



296 J. V. STOKMAN

Acknowledgment. The author was partially supported by the Netherlands

Organization for Scientific Research (NWO) via the VIDI-grant “Symmetry

and modularity in exactly solvable models.”

References

[1] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials

that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), iv+55.

MR 0783216. Zbl 0572.33012. http://dx.doi.org/10.1090/memo/0319.

[2] G. D. Birkhoff, The generalized Riemann problem for linear differential equa-

tions and the allied problems for linear difference and q-difference equations, Proc.

Amer. Acad. 49 (1913), 521–568. JFM 44.0391.03. http://dx.doi.org/10.2307/

20025482.

[3] I. Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations,

and Macdonald’s operators, Internat. Math. Res. Notices 1992, no. 9, 171–180.

MR 1185831. Zbl 0770.17004. http://dx.doi.org/10.1155/S1073792892000199.

[4] I. Cherednik, Quantum Knizhnik-Zamolodchikov equations and affine root sys-

tems, Comm. Math. Phys. 150 (1992), 109–136. MR 1188499. Zbl 0849.17025.

http://dx.doi.org/10.1007/BF02096568.

[5] I. Cherednik, Difference Macdonald-Mehta conjecture, Internat. Math. Res.

Notices 1997, no. 10, 449–467. MR 1446838. Zbl 0981.33012. http://dx.doi.

org/10.1155/S1073792897000317.

[6] I. Cherednik, Double Affine Hecke Algebras, London Math. Soc. Lect. Note Ser.

319, Cambridge Univ. Press, Cambridge, 2005. MR 2133033. Zbl 1087.20003.

http://dx.doi.org/10.1017/CBO9780511546501.

[7] I. Cherednik, Whittaker limits of difference spherical functions, Internat. Math.

Res. Notices 2009, no. 20, 3793–3842. MR 2544730. Zbl 1181.33017. http://dx.

doi.org/10.1093/imrn/rnp065.

[8] I. Cherednik and D. Orr, One-dimensional nil-DAHA and Whittaker functions

I, Transform. Groups 17 (2012), 953–987. MR 3000477. Zbl 06136955. http:

//dx.doi.org/10.1007/s00031-012-9204-7.

[9] J. F. van Diejen, Asymptotic analysis of (partially) orthogonal polynomials

associated with root systems, Internat. Math. Res. Notices 2003, no. 7, 387–410.

MR 1939571. Zbl 1009.42019. http://dx.doi.org/10.1155/S1073792803206024.

[10] J. F. van Diejen, An asymptotic formula for the Koornwinder polynomials,

J. Comput. Appl. Math. 178 (2005), 465–471. MR 2127898. Zbl 1065.33012.

http://dx.doi.org/10.1016/j.cam.2004.04.018.

[11] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia Math.

Appl. 35, Cambridge Univ. Press, Cambridge, 1990. MR 1052153. Zbl 0695.

33001.

[12] S. G. Gindikin and F. I. Karpelevič, Plancherel measure for symmetric Rie-
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