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Invariant varieties for polynomial
dynamical systems

By Alice Medvedev and Thomas Scanlon

Abstract

We study algebraic dynamical systems (and, more generally, σ-varieties)

Φ : AnC → AnC given by coordinatewise univariate polynomials by refining

an old theorem of Ritt on compositional identities amongst polynomials.

More precisely, we find a nearly canonical way to write a polynomial as

a composition of “clusters” from which one may easily read off possible

compositional identities. Our main result is an explicit description of the

(weakly) skew-invariant varieties, that is, for a fixed field automorphism

σ : C → C those algebraic varieties X ⊆ AnC for which Φ(X) ⊆ Xσ. As

a special case, we show that if f(x) ∈ C[x] is a polynomial of degree at

least two that is not conjugate to a monomial, Chebyshev polynomial or

a negative Chebyshev polynomial, and X ⊆ A2
C is an irreducible curve

that is invariant under the action of (x, y) 7→ (f(x), f(y)) and projects

dominantly in both directions, then X must be the graph of a polynomial

that commutes with f under composition. As consequences, we deduce a

variant of a conjecture of Zhang on the existence of rational points with

Zariski dense forward orbits and a strong form of the dynamical Manin-

Mumford conjecture for liftings of the Frobenius.

We also show that in models of ACFA0, a disintegrated set defined

by σ(x) = f(x) for a polynomial f has Morley rank one and is usually

strongly minimal, that model theoretic algebraic closure is a locally finite

closure operator on the nonalgebraic points of this set unless the skew-

conjugacy class of f is defined over a fixed field of a power of σ, and that

nonorthogonality between two such sets is definable in families if the skew-

conjugacy class of f is defined over a fixed field of a power of σ.

1. Introduction

Let f1, . . . , fn ∈ C[x] be a finite sequence of polynomials over the complex

numbers, and let Φ : AnC → AnC be the map (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn))
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given by applying the polynomials coordinatewise. We aim to explicitly de-

scribe those algebraic varieties X ⊆ AnC that are invariant under Φ. To do so,

we solve a more general problem. We fix a field automorphism σ : C → C,

describe those algebraic varieties X ⊆ AnC that are (weakly) skew-invariant in

the sense that Φ(X) ⊆ Xσ, and recover the solution to the initial problem by

taking σ to be the identity map.

We consider this more general problem of classifying the skew-invariant

varieties in order to import some techniques from the model theory of difference

fields and because we are motivated by some fine structural problems in the

model theory of difference fields. A difference field is a field K equipped with

a distinguished endomorphism σ : K → K. The theory of difference fields,

expressed in the first-order language of rings expanded by a unary function

symbol for the endomorphism, admits a model companion, ACFA, the models

of which we call difference closed, and it is the rich structure theory of the

definable sets in difference closed fields developed in [4] that we employ.

In [11] the first author refined the trichotomy theorems of [4], [6] for sets

defined by formulas of the form σ(x) = f(x), where f is a rational function,

showing that they are disintegrated, or what is sometimes called trivial, unless

f is covered by an isogeny of algebraic groups in the sense that there is a one-

dimensional algebraic group G, an isogeny φ : G→Gσ, and a dominant rational

function π : G→P1 with f ◦ π=πσ ◦ φ. In this context, disintegratedness is a

very strong property: it asserts that all algebraic relations amongst solutions to

disintegrated equations are reducible to binary relations. This consequence and

the fact that the dynamical systems arising from isogenies are well-understood

reduce the problem of describing general Φ-skew-invariant varieties to that of

describing skew-invariant curves in the affine plane.

Thus, the bulk of the technical work in this paper concerns the problem

of describing those affine plane curves C ⊆ A2
C that are (f, g)-skew-invariant

when f and g are disintegrated polynomials in the sense of the previous para-

graph. It is not hard to reduce this problem to describing triples (h, π, ρ) of

polynomials satisfying f ◦ π = πσ ◦ h and g ◦ ρ = ρσ ◦ h (see Proposition 2.34).

Possible compositional identities involving polynomials over C were explicitly

classified by Ritt in [15], and Ritt’s work has been given a conceptually cleaner

presentation and has been refined to give a very sharp answer to the question

of which quadruples of polynomials (a, b, c, d) in C[x] satisfy a◦b = c◦d in [21].

Our combinatorial analysis of the ingredients of Ritt’s theorem yields a

refinement that is in some ways weaker and in other ways stronger than the

ones in [21]. Applying our refinements of Ritt’s theorem to the compositional

equations involving f , g, h, π, and ρ, we explicitly describe all (f, g)-skew-

invariant plane curves in terms of a decomposition of f as a compositional

product.
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We should say a few words as to what we mean by weaker and stronger.

Ritt’s theorem asserts that any one decomposition of a polynomial over C may

be obtained from any other decomposition via a finite sequence of explicit

identities, which we call Ritt swaps. From this theorem one might expect

that it would be a routine matter to put a polynomial into a standard form

as a composition of indecomposable polynomials. However, ambiguity as to

the character of certain polynomials may be introduced through compositions

with linear polynomials. A central part of our argument (as well as of [21])

consists of characterizing exactly how compositional identities involving the

special polynomials appearing in Ritt’s theorem and linear polynomials may

hold. While the individual steps in these calculations are very easy, pinning

down all of the possibilities requires an exhaustive analysis. From this point,

our results on canonical forms diverge. While the formalism of [21] is well suited

to studying decompositions of compositional powers, it is not well adapted to

the problem of describing possible skew-invariant varieties. We discuss the

comparison between our theorems on polynomial decompositions and those

from [21] in detail in the body of the paper.

Our key technical innovation is the notion of a clustering of a decompo-

sition whereby the various compositional factors are grouped, or “clustered,”

according to their combinatorial properties; for example, compatible Cheby-

shev polynomials are clustered together. Clusterings are not canonical, but

using some invariants computed from clusterings we may read off properties

of possible compositional identities. Specifically, with Theorem 4.37 we show

that the number and types of the clusters (see Definition 4.2) appearing in

a clustering of a decomposition, as well as the location of the “gates” (see

Definition 4.15), are invariants of a polynomial, independent of a choice of

decomposition.

In every reasonable sense, for almost every pair of polynomials (f, g), there

are no (f, g)-skew-invariant curves other than products of the form {ξ} × A1

or A1 × {ζ} where f(ξ) = σ(ξ) (respectively, g(ζ) = σ(ζ)). Indeed, even if

f = g = gσ, in most cases, the only additional (f, f)-invariant curves are

graphs of iterates of f and their converse relations. For instance, it is easy

to see that this holds for f indecomposable by using our reformulation of the

existence of an (f, g)-skew-invariant curve in terms of compositional identities

f ◦ π = πσ ◦ h and g ◦ ρ = ρσ ◦ h.

More generally, there are four basic sources for skew-invariant curves.

Some come from (skew) iteration. If f is any polynomial and g = fσ
n
, then

the graph of f♦n := fσ
n−1 ◦fσn−2 ◦· · ·◦f is (f, g)-skew-invariant. In particular,

when f = fσ is fixed by σ, the graphs of iterates of f (and their converse

relations) are (f, f)-invariant. If f is polynomial of degree at least two, then

the set of linear polynomials L that skew commute with f in the sense that
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f ◦ L = Lσ ◦ f is generally finite but sometimes is nontrivial. If L skew-

commutes with f , then the curve defined by y = L(x) is necessarily (f, f)-

skew-invariant. When f is expressible as a nontrivial compositional product,

f = a ◦ b , then considering what we call a plain skew-twist of f , g := bσ ◦ a,

we see that the graph of b is (f, g)-skew-invariant. While all possible plain

skew-twists can be easily read off from one expression of f as a composition of

indecomposable polynomials, it takes more work to characterize the possible

sequences of plain skew-twists that originate from f . Finally, it can happen

that graphs of monomial identities (or their conjugates via some linear change

of variables) may be (f, g)-invariant. For example, if f(x) = x · (1 + x3)2 and

g(y) = y · (1 + y2)3, then the curve defined by y2 = x3 is (f, g)-invariant. Our

primary task is to prove a precise version of the assertion that these examples

exhaust the possibilities for skew-invariant curves.

Our characterization of the skew-invariant varieties appears as a combina-

tion of Theorem 2.30 with Theorem 6.26. Given a regular map Φ : AN → AN
of the form (x1, . . . , xN ) 7→ (f1(x1), . . . , fN (xN )) where each fi is a noncon-

stant polynomial, the coordinates may be partitioned according the trichotomy

theorem for difference fields. That is, Φ may be realized as a Cartesian prod-

uct of three maps of this form where in the first map each polynomial fi is

linear, for the second map each fi is linearly conjugate to a power map, a

Chebyshev polynomial or a negative Chebyshev polynomial, and for the third

map each fi is disintegrated. Then, the Φ-skew-invariant varieties are prod-

ucts of the skew-invariant varieties for each of these three components. It is

a routine matter to classify the skew-invariant varieties for sequences of linear

polynomials. It follows from the theory of one-based groups (or a straightfor-

ward degree computation) that the skew-invariant subvarieties for sequences of

power maps and Chebyshev polynomials come from algebraic tori. Moreover,

a skew-invariant variety for sequences of power maps and Chebyshev polyno-

mials may be further decomposed into products of skew-invariant subvarieties

for the subsequences consisting of power maps and Chebyshev polynomials of

the same degree. We collect all of these observations in Theorem 2.30.

The most complicated class of skew-invariant varieties appear as skew-

invariant subvarieties of (AN ,Φ) where for some sequence of disintegrated

polynomials f1, . . . , fN the map Φ takes the form

(x1, . . . , xN ) 7→ (f1(x1), . . . , fN (xN )).

Using disintegratedness, we see that any Φ-skew-invariant variety must be a

component of the intersection of pullbacks of (fi, fj)-skew-invariant varieties

ranging over all pairs (i, j) with 1 ≤ i < j ≤ n. Thus, the classification of

Φ-skew-invariant varieties reduces to the case that N = 2. With Theorem 6.22

we clarify the sense in which such skew-invariant curves must come from com-

positions of skew-twists, monomial equations, and graphs of twisted iterates.
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In particular, we give very tight bounds on the degrees of the monomial equa-

tions that might appear. These bounds are in terms of some refined degrees

of the indecomposable polynomials appearing in some complete decomposition

of f1 and are bounded by the degree of f1 in the usual sense. The following is

an especially notable special case.

Theorem (see Theorem 6.24). Let f(x) ∈ C[x] be a polynomial of degree

at least two that is not conjugate to a monomial, a Chebyshev polynomial or a

negative Chebyshev polynomial. Let N ∈ Z+ be a positive integer and X ⊆ ANC
be an irreducible subvariety of affine N -space over the complex numbers that is

invariant under the coordinatewise action of f . Then X is defined by equations

over the form xi = g(xj) and xk = ξ, where g is a polynomial that commutes

with f and ξ is a fixed point of f . Moreover, g takes the form L◦h◦m for some

m ∈ N where h◦` = f for some ` and L is a linear polynomial that commutes

with a compositional power of h.

We apply our results on skew-invariant varieties to address problems of

two different kinds. We prove variants of two conjectures of Zhang [20] on the

arithmetic of dynamical systems. We also pin down definable structure on, and

definable relations between, sets defined by σ(x) = f(x) for some polynomial

f in ACFA0.

Zhang conjectured that if φ : X → X is a polarizable dynamical system

over some number field K, then there is a point a ∈ X(Kalg) whose forward

orbit under φ is Zariski dense (Conjecture 4.1.6 of [20]). We consider a situation

inspired by Zhang’s conjecture, but which is at one level more general in that

we drop the polarizability hypothesis and strengthen the conclusion in that

one need not pass to the algebraic closure to find the desired point with a

Zariski dense orbit, but in another sense is more special in that the map φ is

assumed to be given by a sequence of univariate polynomials. Let us note here

a somewhat special case of our Theorem 7.16.

Theorem. If K is any field of characteristic zero and Φ : AnK → AnK is

given by a sequence of univariate polynomials each of degree at least two, then

there is a point a ∈ An(K) with a Zariski dense Φ-forward orbit.

In fact, we prove a somewhat stronger result in which some of the fi’s are

allowed to be linear.

In another direction we prove a refined version of Zhang’s Manin-Mumford

conjecture for dynamical systems lifting a Frobenius. Zhang conjectured that

if φ : X → X were a polarized dynamical system over C and Y ⊆ X were an

irreducible closed subvariety for which the φ-preperiodic points lying on Y were

Zariski dense in Y , then Y would be a φ-preperiodic variety (Conjecture 1.2.1

of [20]). Counterexamples to this statement have been advanced, and the con-

jecture itself has been reformulated [7]. As with our theorem on the density of
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rational orbits, our dynamical Manin-Mumford theorem is both more and less

general than what is predicted by the corrected dynamical Manin-Mumford

conjecture. We do not require polarizability, though we do consider only peri-

odic points and dynamical systems arising from liftings of the Frobenius. Our

precise statement is given as Theorem 7.33. Let us mention a special case here.

Theorem. Suppose that q is a power of a prime p and that f(x) ∈ Z[x] is

a polynomial of degree q for which f(x) ≡ xq mod pZ[x] but f is not conjugate

to xq itself, nor to the qth Chebyshev polynomial, nor to the negative Chebyshev

polynomial of degree q. Then any irreducible variety X ⊆ AnC containing a

Zariski dense set of n-tuples of f -periodic points is defined by equations of the

following two forms. Some equations are of the form xi = ξ for some f-periodic

point ξ. The rest are of the form xj = L ◦ α◦m(xk) for some m ∈ N where

α◦N = f for some N and L commutes with some compositional power of α.

In the case of differential fields, Hrushovski and Itai showed that there are

model complete theories of differential fields other than the theory of differen-

tially closed fields [9]. It is still open whether or not there are model complete

theories of difference fields other than ACFA. But if there were some formula

θ(x) defining in a difference closed field a set of D-rank one having only finitely

many algebraic realizations such that for every other formula η(y, z), the set

of parameters {b : θ(x) is nonorthogonal to η(y, b)} were definable, then one

could produce a new model complete difference field by omitting the nonalge-

braic types in θ. Towards this goal, we prove Theorem 7.6.

Theorem (Theorem 7.6). For a nonconstant polynomial f , the set of

polynomials g with (A1, g) 6⊥ (A1, f) is definable if and only if f is not skew-

conjugate to fσ
n

for every positive integer n ∈ Z+.

Two byproducts of this analysis are an explicit characterization of the

algebraic closure operator on disintegrated sets defined by σ(x) = f(x) and

the computation of Morley rank and degree of these sets. As long as f is

disintegrated, this set has Morley rank one, and if f is also not skew-conjugate

to xku(x)n for some polynomial u and some n > 1, then the set is strongly

minimal.

This paper is organized as follows. In Section 2 we lay out our notation

and begin our analysis by reducing the problem to that of describing skew-

invariant curves for pairs of disintegrated polynomials. We then convert this

problem to one about compositional identities and lay out the problem in terms

of certain monoid actions. The technical work on compositional identities is

spread over the next four sections. In Section 3 we identify all of the possible

ways in which one Ritt polynomial may be linearly related to another Ritt

polynomial. In Section 4 we study clusterings of decompositions, ending the
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section with a theorem on invariants of polynomials computed from these clus-

terings. In Section 5 we intensify the study of the monoid actions producing

canonical forms. In Section 6, we finally obtain the characterization of the

skew-invariant curves for actions of pairs of polynomials from the results on

clusterings and monoid actions. In Section 7 we conclude with three applica-

tions of our results to definability of orthogonality, Zhang’s conjecture on the

density of dynamical orbits, and a version of the dynamical Manin-Mumford

conjecture for Frobenius lifts.

We thank M. Zieve for sharing a preliminary version of [21] and for dis-

cussing issues around compositional identities of polynomials and rational func-

tions. We thank the referee for subjecting our manuscript to a thorough review

and suggesting numerous improvements.

2. Coarse structure of skew-invariant varieties

In this section we compare the formalism of algebraic dynamical systems

and of σ-varieties to establish the relevance of the model theory of difference

fields to the study of algebraic dynamics. We then interpret the fundamental

trichotomy theorem for difference fields in terms of skew-invariant varieties.

Using this interpretation, we reduce the analysis of skew-invariant varieties for

maps given by coordinatewise actions of univariate polynomials on affine space

to that of describing the skew-invariant curves in A2 for pairs of disintegrated

polynomials. We close out this section by recalling Ritt’s theorem on poly-

nomial decompositions in detail and by formalizing that theorem in terms of

actions of various monoids. In so doing, we convert the problem of describ-

ing invariant varieties into questions about canonical forms for these monoid

actions.

2.1. Algebraic dynamics and σ-varieties.

Definition 2.1. A difference field (L, σ) is a field L given together with a

distinguished field endomorphism σ : L → L. The fixed field of a difference

field (L, σ) is the subfield Fix(σ) := {a ∈ L : σ(a) = a}.

If X is an algebraic variety over the difference field (L, σ), then the

σ-transform of X, Xσ is the base change of X to L via σ. More concretely, if

X is a closed subvariety of some affine space, then Xσ is defined by the same

equations as X but with σ applied to the coefficients. At the level of rational

points, a ∈ X(K) ↔ σ(a) ∈ Xσ(K). The σ-transform gives a endofunctor of

the category of algebraic varieties over L. That is, if f : X → Y is a morphism

of varieties over L, then there is a uniquely defined morphism fσ : Xσ → Y σ

of varieties over L where again, concretely, on affine charts the polynomials

defining fσ are the images under σ of the polynomials defining f .
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Definition 2.2. Following Pink and Rössler [13], a σ-variety over the dif-

ference field (L, σ) is a pair (X, f) where X is an algebraic variety over L and

f : X → Xσ is a dominant morphism from X to its σ-transform Xσ. A mor-

phism of σ-varieties α : (X, f) → (Y, g) is given by a morphism of varieties

α : X → Y for which ασ ◦ f = g ◦ α:

X
f−−−−→ Xσ

α

y yασ
Y

g−−−−→ Y σ.

We say that two σ-varieties (X, f) and (Y, g) are skew-conjugate if they

are isomorphic as σ-varieties.

In particular, univariate polynomials f and g (which give σ-varieties on A1)

are skew-conjugate if there is a linear polynomial α such that g = ασ ◦f ◦α−1.

Definition 2.3. An algebraic dynamical system over a field K is a pair

(X, f) consisting of an algebraic variety X over K and a dominant regular

map f : X → X. A morphism α : (X, f) → (Y, g) of algebraic dynamical

systems is given by a regular map α : X → Y for which α ◦ f = g ◦ α.

The algebraic dynamical system (X, f) over K may be regarded as a σ-

variety over (K, idK). An algebraic dynamical system (X, f) gives rise to a

monoid action of N on X via iteration of f . We define f◦n by recursion on n

with f◦0 := idX and f◦(n+1) := f ◦ f◦n. For a rational point a ∈ X(K), we

define the forward orbit of a under f to be Of (a) := {f◦n(a) : n ∈ N}. The

point a is said to be periodic if f◦n(a) = a for some n ∈ Z+ and to be pre-

periodic if Of (a) is finite (or, equivalently, if f◦n(a) is periodic for some n ∈ N).

If (X, f) is an algebraic dynamical system and Y ⊆ X is a subvariety,

then we say that Y is an f -invariant variety if f(Y ) = Y . Equivalently, Y is

f -invariant when f(Y (K)) is Zariski dense in Y when K is an algebraically

closed field. We say that Y is weakly f -invariant if f(Y ) ⊆ Y . If (X, f) is

an algebraic dynamical system and a ∈ X(K) is any point, then the Zariski

closure ofOf (a) is a weakly f -invariant subvariety of X. Thus, Of (a) is Zariski

dense in X if and only if for no n ∈ N does f◦n(a) lie on a (possibly reducible)

proper f -invariant variety. In this way Zhang’s conjecture on the existence

of algebraic points with Zariski dense forward orbits (see Section 7.2) may be

understood as an assertion that there are few f -invariant varieties.

In the more general context of a σ-variety, iteration need not give rise to

maps from X back to itself, but it still makes sense. For a σ-variety (X, f)

over (L, σ), we define the skew-iteration of (X, f) by recursion on n setting

f♦0 := idX and f♦(n+1) := fσ
n ◦ f♦n. Observe that (X, f♦n) is a σn-variety

over (L, σn).
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To distinguish Cartesian powers from f♦n and f◦n, we sometimes write

f×n for the map f×n : X×n → (Xσ)×n given by

(x1, . . . , xn) 7→ (f(x1), . . . , f(xn)).

For (X, f) a σ-variety over the difference field (L, σ), a sub-variety Y ⊆ X
is weakly f -skew-invariant if f(Y ) ⊆ Y σ. The subvariety Y is f -skew-invariant

if f(Y ) = Y σ, or, equivalently, if (Y, f � Y ) is a σ-variety. A weakly skew-

invariant variety need not be skew-invariant, but there is a naturally associated

maximal f -skew-invariant subvariety.

Definition 2.4. Let (X, f) be a σ-variety and Y ⊆ X a subvariety of X.

The f -skew-invariant part of Y is the subvariety Yinv :=
⋂∞
n=0(f♦n(Y ))σ

−n
.

Proposition 2.5. If (X, f) is a σ-variety and Y ⊆ X is a subvariety of

X , then Yinv is the maximal f -skew-invariant subvariety of Y . If Y is weakly

f -skew-invariant, then Yinv = (f♦n(Y ))σ
−n

for n� 0.

Proof. From its definition, we have

Y σ
inv =

( ∞⋂
n=0

(f♦n(Y ))σ
−n)σ ⊆ ( ∞⋂

n=1

(f♦n(Y ))σ
−n)σ

=
∞⋂
m=0

f♦m+1(Y )σ
−m

= f
( ∞⋂
m=0

f♦m(Y )σ
−m)

= f(Yinv).

As dim(Y σ
inv)≥dim(f(Yinv)) and the number of components of Y σ

inv is at least

that of f(Yinv), we conclude that f(Yinv)=Y σ
inv. On the other hand, if Z ⊆ Y

were f -skew-invariant, then for every n we would have Z = f♦n(Z)σ
−n ⊆

f♦n(Y )σ
−n

. Hence, Z ⊆ Yinv so that Yinv is the maximal f -skew-invariant

subvariety of Y .

If Y were weakly f -skew-invariant, then the intersection defining Yinv

would be an intersection over a decreasing chain and, thus, equal to f♦n(Y )σ
−n

for n� 0 by Noetherianity. �

Proposition 2.6. If π : (X, f)→ (Y, g) is a map of σ-varieties, Z ⊆ X

is a subvariety of X and W ⊆ Y is a subvariety of Y , then π(Zinv) = π(Z)inv

and π−1(Winv) = π−1(W )inv.

Proof. From the fact that πσ◦f = g◦π, we conclude that πσ
n◦f♦n = g♦n◦π

for any n ∈ N. Thus, from the definition of the skew-invariant part we have

π(Z)inv =
∞⋂
n=0

(g♦n(π(Z)))σ
−n

=
∞⋂
n=0

(πσ
n ◦ f♦n(Z))σ

−n

= π
( ∞⋂
n=0

(f♦n(Z))σ
−n)

= π(Zinv),

as claimed.
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Likewise,

π−1(W )inv =
∞⋂
n=0

(f♦nπ−1W )σ
−n

=
∞⋂
n=0

((πσ
n
)−1g♦n(W ))σ

−n

= π−1
∞⋂
n=0

(g♦n(W ))σ
−n

= π−1(Winv). �

Let us note that if (X, f) is a σ-variety over (K, idK), then (X, f) is simply

an algebraic dynamical system over K, f♦n = f◦n for each n ∈ N, and a sub-

variety Y ⊆ X defined over K is f -skew-invariant just in case it is f -invariant.

However, if we start with an algebraic dynamical system (X, f) over some

field K and then form the base change (X, f)L to some difference field (L, σ)

where σ � K = idK , the notions of an f -invariant subvariety and of an f -skew-

invariant variety need not coincide. Moreover, there are algebraic dynamical

systems (X, f) and (Y, g) that are nonisomorphic as algebraic dynamical sys-

tems (and remain so after any field extension) but that become isomorphic as

σ-varieties after an appropriate base extension. For example, (A1, x 7→ x+ 1)

and (A1, id) are clearly not isomorphic as algebraic dynamical systems, but

after base change to a difference field containing a solution to the difference

equation σ(b) = b+ 1, they become isomorphic as σ-varieties.

2.2. Model theory of difference fields. In this section we translate some of

the fundamental theorems on the model theory of difference fields to a more

geometric language. The reader can find a more thorough treatment of these

connections in [5]. All of the theorems on the model theory of difference fields

that we require can be found in [4].

A difference field (K,σ) is difference closed if it is existentially closed in

the class of difference fields. That is, if a finite system of difference equations

and inequations over K has a solution in some difference field extending (K,σ),

then it already has a solution in (K,σ). By successively adjoining solutions to

such systems of difference equations and inequations, one sees that every dif-

ference field embeds into a difference closed field. The class of difference closed

fields is axiomatized by three schemata of axioms expressible in the language

of difference fields, the language of rings augmented by a unary function sym-

bol for the distinguished endomorphism. It is obvious that the first schema

is given by a first-order sentence. A routine argument expresses the second

as a countable list of sentences. However, the last schema requires absolute

irreducibility of a variety to be a first-order property of the coefficients of the

defining equations. This is attained by bounding the degrees for the ideal

membership problem in polynomial rings.

Fact 2.7 (Theorem 1.1 of [4]). A difference field (K,σ) is difference closed

if and only if
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(1) σ is an automorphism of K ;

(2) K is algebraically closed ; and

(3) for any irreducible affine variety X defined over K and any irreducible

subvariety Y ⊆ X×Xσ for which the two projections Y → X and Y → Xσ

are dominant, there is a point a ∈ X(K) with (a, σ(a)) ∈ Y (K).

From the axioms for difference closed fields, we see that if (K,σ) is a

difference closed field, X is an irreducible variety over K, Γ ⊆ X ×Xσ is an

irreducible subvariety of X × Xσ for which the two projections Γ → X and

Γ→ Xσ are dominant, and we define the (K,σ) points of (X,Γ) by

(X,Γ)](K,σ) := {a ∈ X(K) : (a, σ(a)) ∈ Γ(K)},

then (X,Γ)](K,σ) is Zariski dense inX. In particular, if (X, f) is an irreducible

σ-variety over a difference closed field (K,σ), then

{a ∈ X(K) : f(a) = σ(a)} = (X,Γ(f))](K,σ)

is Zariski dense in X, where Γ(f) is the graph of f . Moreover, an abso-

lutely irreducible subvariety Y ⊆ X is f -skew-invariant if and only if Y (K) ∩
(X,Γ(f))](K,σ) is Zariski dense in Y . In this sense, there are enough ra-

tional points defined over a difference closed field to reflect the geometry of

σ-varieties, or even of algebraic dynamical systems regarded as σ-varieties ob-

tained by base change from the fixed field. We use this observation to translate

results from the structure theory of definable sets in difference closed fields to

the language of algebraic dynamical systems and σ-varieties.

Let us recall the notion of orthogonality, specialized to the case of σ-vari-

eties. That σ-varieties of different characters (e.g., those coming from group

actions versus those unrelated to groups) are orthogonal is the first step in the

reduction of the study of skew-invariant varieties in general to the special case

of skew-invariant curves in the plane.

Definition 2.8. Two absolutely irreducible σ-varieties (X, f) and (Y, g)

over a difference field (K,σ) are almost orthogonal, written (X, f) ⊥aK (Y, g),

if every (f, g)-skew-invariant subvariety of X × Y is a finite union of products

of components of f -skew-invariant and g-skew-invariant varieties. If for every

extension of difference fields (L, σ) ⊇ (K,σ) we have (XL, f) ⊥aL (YL, g), then

(X, f) and (Y, g) are orthogonal, written (X, f) ⊥ (Y, g),

Remark 2.9. What we are calling (almost) orthogonality is usually called

full (almost) quantifier-free orthogonality in the model theory literature. The

subtler notions of orthogonality for types, while present in the background, are

not directly relevant to the problems we consider here. In fact, nonorthogonal-

ity of (X, f) and (Y, g) need not imply that some type in (X, f)] is nonorthog-

onal to some type in (Y, g)], as the (f, g)-skew-invariant subvariety witnessing



92 ALICE MEDVEDEV and THOMAS SCANLON

nonorthogonality in our sense may have no sharp points at all. Our notion does

correspond to eventual nonorthogonality: if (X, f) and (Y, g) are nonorthog-

onal in our sense, then for some m, some type in (X, f♦m)], where (X, f♦m)

is regarded as a σm-variety, is nonorthogonal to some type in (Y, g♦m)], even

in the reduct to σm. We return to issues around quantifier elimination in

Section 7.1.

Remark 2.10. The distinction between almost orthogonality and orthog-

onality is real. For example, if K is any field of characteristic zero, then the

σ-varieties (A1, idA1) and (A1, x 7→ x+ 1) are almost orthogonal over (K, idK).

However, after base extension to any difference field containing a solution a

to the difference equation σ(x) = x + 1, these σ-varieties are isomorphic as

σ-varieties via the map x 7→ x+a. Then the graph of this isomorphism gives a

skew-invariant variety not expressible as a product, witnessing the nonorthog-

onality of these two σ-varieties. As a general rule, such instances of almost

orthogonality but nonorthogonality are mediated by the action of a definable

group. Thus, for the σ-varieties of principal concern to us, the disintegrated

σ-varieties (see Definition 2.20), at least when working over an algebraically

closed base, there is no difference between almost orthogonality and orthogo-

nality.

The nonorthogonality relation defines an equivalence relation on the set

of σ-varieties whose underlying varieties are irreducible curves.

Proposition 2.11. Suppose that X , Y , and Z are absolutely irreducible

curves and (X, f), (Y, g), and (Z, h) are σ-varieties over some difference field

K . If (X, f) 6⊥ (Y, g) and (Y, g) 6⊥ (Z, h), then (X, f) 6⊥ (Z, h).

Remark 2.12. From the model theoretic perspective, Proposition 2.11 is

almost a special case of the fact that the nonorthogonality relation is an equiv-

alence relation on minimal types. The provisos in Remark 2.9 explain the sense

in which this remark is only approximately true.

When we view a subvariety Γ ⊆ X×Y as a many valued function from X

to Y , we call it a correspondence from X to Y . Before proving Proposition 2.11,

we recall what it means to compose correspondences and record some basic

properties of this operation.

Definition 2.13. Let X, Y , and Z be three varieties over some field K,

and let Γ ⊆ X × Y and Ξ ⊆ Y × Z be subvarieties of X × Y and Y × Z,

respectively. Let π : X × Y ×Z → X ×Z be the projection map onto the first

and third coordinates. We define Ξ◦Γ := π((Γ×Z)∩ (X×Ξ)), the projection

of the fibre product of Γ and Ξ over Y . If W ⊆ X is any subvariety, then

Γ(W ) is the projection to Y of Γ ◦∆W , where ∆W ⊆ W ×X is the graph of

the embedding of W in X.
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Remark 2.14. At the level of points, provided that K = Kalg, Ξ ◦Γ is the

Zariski closure of the set

{(a, c) ∈ (X × Z)(K) : (∃b ∈ Y (K)) (a, b) ∈ Γ(K) & (b, c) ∈ Ξ(K)}.

Remark 2.15. One treats a correspondence Γ ⊆ X × Y as a many valued

function from X to Y . Provided that the projection map π : Γ → X is

dominant, this “function” is defined almost everywhere. If f : X → Y is a

rational function, then one regards f as a correspondence by identifying f with

its graph Γ(f). Switching the roles of input and output in Γ(f) gives what

we call the converse relation to the graph of f . If the projection map to the

output coordinate is finite, then Γ may be regarded as a finite valued function.

In the cases of interest to us, X and Y are irreducible curves and Γ is a curve,

each of whose components projects dominantly to X and to Y . Here, Γ(K)

really is a finite-to-finite correspondence between X(K) and Y (K).

Remark 2.16. Even if X, Y , Z, Γ, and Ξ are all irreducible, then Ξ ◦ Γ

may be reducible. For example, if X = Y = Z = A1, f : A1 → A1 is any

polynomial of degree at least two, Γ is the graph of f , and Ξ is its converse

relation, then Ξ ◦ Γ is defined by f(x) = f(z), which always has the diagonal

as one component and other components corresponding to the factors of the

polynomial f(x)−f(z)
x−z .

Lemma 2.17. Let (X, f), (Y, g) and (Z, h) be σ-varieties over some dif-

ference field (K,σ). Suppose that Γ ⊆ X × Y is weakly (f, g)-skew-invariant

and that Ξ ⊆ Y × Z is weakly (g, h)-skew-invariant. Then Ξ ◦ Γ is weakly

(f, h)-skew-invariant and (Ξ ◦ Γ)inv = (Ξinv ◦ Γinv)inv.

Proof. Clearly, the intersection of two (weakly) (f, g, h)-skew-invariant va-

rieties is (f, g, h)-skew-invariant so that (Γ× Z) ∩ (X × Ξ) is weakly (f, g, h)-

skew-invariant and (Γinv × Z) ∩ (X × Ξinv) is (f, g, h)-skew-invariant. Let

π : X×Y ×Z → X×Z be the projection map. By Proposition 2.6, (Ξ◦Γ)inv =

(π((Γ×Z)∩(X×Ξ)))inv = (π((Γinv×Z)∩(X×Ξinv)))inv = (Ξinv◦Γinv)inv. �

With our observations on compositions in place, we prove Proposition 2.11.

Proof. Taking a base change if need be, we find Γ ⊆ X × Y and Ξ ⊆
Y ×Z that are (f, g)-skew-invariant (respectively, (g, h)-skew-invariant) curves

witnessing (X, f) 6⊥ (Y, g) and (Y, g) 6⊥ (Z, h). By Lemma 2.17, (Ξ◦Γ)inv is an

(f, h)-skew-invariant subvariety of X ×Z. Since Ξ and Γ are curves for which

the restriction of the various projection maps are all finite, Ξ ◦ Γ is a curve all

of whose components project dominantly onto X and Z. Because the maps f ,

g, and h are finite, dim(Ξ ◦Γ)inv = dim(Ξ ◦Γ) = 1. Hence, (Ξ ◦Γ)inv witnesses

(X, f) 6⊥ (Z, h). �
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We employ the theory of orthogonality to reduce the study of skew-

invariant varieties to that of plane curves. To this end we use a simple, but

powerful, observation that orthogonality of products of σ-varieties follows from

pairwise orthogonality.

Proposition 2.18. Given a difference field (K,σ) and two sequences of

σ-varieties (X1, f1), . . . , (Xn, fn) and (Y1, g1), . . . , (Ym, gm) for which (Xi, fi) ⊥
(Yj , gj) for each i ≤ n and j ≤ m, we have

n∏
i=1

(Xi, fi) ⊥
m∏
j=1

(Yj , gi).

Remark 2.19. In model theoretic stability theory, Proposition 2.18 is usu-

ally deduced as an immediate consequence of transitivity for the independence

relation coming from nonforking.

Proof. Working by induction, one sees that it suffices to show that if

(X, f), (Y, g), and (Z, h) are σ-varieties for which (X, f) ⊥ (Y, g) and (X, f) ⊥
(Z, h), then (X, f) ⊥ (Y × Z, (g, h)). Now let (L, σ) be some difference field

extension of (K,σ) and U ⊆ (X × (Y × Z))L an (f, g, h)-skew-invariant va-

riety over L. For any difference field extension (M,σ) of (L, σ) and point

a ∈ (Z, h)](M,σ), the fibre Ua of U is a (f, g)-skew-invariant subvariety of

(X × Y )M . Since (X, f) ⊥ (Y, g), we know that Ua is a finite union of va-

rieties of the form V (a) ×W (a), where V (a) ⊆ XM is f -skew-invariant and

W (a) ⊆ YM is g-skew-invariant. Since this is true for every point in (Z, h)], it

follows from compactness that there are finite sequences of locally closed sets

Vi ⊆ X × Z and Wi ⊆ Y × Z (for i ≤ n) so that for any a ∈ (Z, h)](M,σ),

there is some J ⊆ {1, . . . , n} with

Ua =
⋃
i∈J

((Vi)a × (Wi)a).

Taking the sequences to be minimal, we see that each Vi is a component of

an (f, h)-skew-invariant subvariety of X ×Z, and and each Wi is a component

of a (g, h)-skew-invariant subvariety of Y × Z. Hence, by orthogonality, we

may write each Vi as a finite union of products of f -skew-invariant varieties

with h-skew-invariant varieties. Hence, U itself is a finite union of products

of components of f -skew-invariant varieties with components of (g, h)-skew-

invariant varieties. �

It is difficult to determine whether two given σ-varieties are orthogonal,

though one expects that “most” pairs of σ-varieties are orthogonal. How-

ever, we exhibit a procedure to determine orthogonality in the special case

of σ-varieties of the form (A1, f). On the other hand, there are some easily

verified sufficient conditions for orthogonality. For example, if f : P1 → P1
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and g : P1 → P1 are two rational functions and deg(f) 6= deg(g), then

(P1, f) ⊥ (P1, g). (This follows immediately from degree computations.) In

a different direction, the dichotomy between σ-varieties coming from group

actions and disintegrated σ-varieties gives a basic instance of orthogonality.

Two contradictory notions of triviality for σ-varieties appear in the liter-

ature. Sometimes (see, for example, [5]) one says that (X, f) is trivial if it is

isomorphic (as a σ-variety) to a σ-variety of the form (Y, idY ). On the other

hand, sometimes (see, for instance, the preprint version of this very paper [12])

one says that (X, f) is trivial if every type in (X, f)] is trivial in the sense of

its forking geometry. Since this latter property also goes under the name of

disintegratedness, we use this term. Just as orthogonality is usually defined

using the theory of forking, so is disintegratedness, but we give a geometric

definition for σ-varieties.

Definition 2.20. Let (X, f) be a σ-variety over the difference field (K,σ).

We say that (X, f) is disintegrated if for each natural number n ∈ N and each

algebraically closed difference field (L, σ) extending (K,σ), each component

of an f×n-skew-invariant subvariety Z ⊆ X×nL is a component of the inter-

section
⋂

1≤i≤j≤n π
−1
i,j πi,j(Z), where πi,j : X×n → X×2 is the projection map

(x1, . . . , xn) 7→ (xi, xj).

With the next proposition we note that for any product of disintegrated

σ-varieties, the algebraic relations are essentially binary.

Proposition 2.21. If (X1, f1), . . . , (Xn, fn) is a finite sequence of disin-

tegrated σ-varieties over the difference field (K,σ) where each Xi is an abso-

lutely irreducible curve, then for every difference field (L, σ) extending (K,σ),

every component Z of a skew-invariant subvariety of
∏n
i=1(Xi, fi) is a compo-

nent of
⋂

1≤i≤j≤n π
−1
i,j πi,j(Z), where πi,j :

∏n
i=1Xi → Xi ×Xj is the projection

map (x1, . . . , xn) 7→ (xi, xj).

Proof. By Proposition 2.11 we may partition the components of this prod-

uct so that the factors are nonorthogonal within each block of the partition

but are orthogonal between blocks. By Proposition 2.18 we may assume that

for every pair, we have (Xi, fi) 6⊥ (Xj , fj). In particular, for each i ≤ n, there

is an (fi, f1)-skew invariant curve Yi ⊆ Xi ×X1, none of whose components is

a vertical or horizontal line. Let Y :=
∏
Yi be regarded as an (f1, . . . , fn; f×n1 )-

skew-invariant subvariety of
∏n
i=1Xi ×X×n1 . Let ρ : Y → ∏n

i=1Xi be the re-

striction of the projection map onto the first n-coordinates and η : Y → X×n1

the projection onto the last n coordinates.

Suppose now that W ⊆ ∏n
i=1Xi is an (f1, . . . , fn)-skew-invariant variety

and that Z ⊆ W is an irreducible component. By Lemma 2.17, Y (W ) is

a weakly f×n1 -skew-invariant variety and W = Winv = (Y −1(Y (W )inv))inv.

Thus, there is a component V ⊆ (Y (W ))inv with Z ⊆ Y −1(V ).
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Since (X1, f1) is disintegrated, V is a component of
⋂

1≤i≤j≤n π
−1
i,j πi,jV .

Since Y respects the product decomposition, it follows that Y −1(V ) is con-

tained in
⋂

1≤i≤j≤n π
−1
i,j πi,jY

−1(V ). As Z is a component of Y −1(V ), the result

follows. �

As we noted above, σ-varieties coming from algebraic groups are never

disintegrated.

Proposition 2.22. Let (K,σ) be a difference field, G a connected positive

dimensional algebraic group over K , φ : G→ Gσ a dominant map of algebraic

groups, and g ∈ G(K) a K-rational point. Let τg : G → G be defined by

τg(x) := gx. Let f : G → Gσ be given by f := φ ◦ τg . Then (G, f) is not

disintegrated.

Proof. Let (L, σ) be a difference field extending (K,σ) and containing

a solution h to the difference equation σ(h) = φ(h) · φ(g)−1. One checks

immediately that the subvariety Γ of G×3
L defined by the equation z = x ·

h · y is an irreducible, proper closed f×3-skew-invariant variety that projects

onto G×2 for each pair of coordinate projections, witnessing that (G, f) is not

disintegrated. �

More generally, quotients of such σ-varieties and σ-varieties coming from

actions of algebraic groups are never disintegrated. In a precise sense, the main

theorem of [4], [6] asserts that the presence of a group action is the only ob-

struction to disintegratedness. Specializing to the case of σ-varieties of the form

(A1, f) over a difference field of characteristic zero, the main theorem of the first

author’s doctoral dissertation [11] characterizes the nondisintegrated σ-vari-

eties as exactly those coming from monomials and Chebyshev polynomials.

Definition 2.23. For each positive integer n ∈ Z+, we write Pn(x) := xn ∈
Z[x] for the standard nth power monomial. We define Cn(x) ∈ Z[x] to be the

unique polynomial satisfying the functional equation Cn ◦ π = π ◦ Pn where

π : Gm → A1 is given by x 7→ x+ 1
x . We call Cn the nth Chebyshev polynomial.

By a negative Chebyshev polynomial we mean a polynomial of the form −Cn for

some n ∈ Z+. In practice, when we speak of a power function, Chebyshev poly-

nomial, or negative Chebyshev polynomial we mean one of degree at least two.

Remark 2.24. What we call the nth Chebyshev polynomial is sometimes

called the nth Dickson polynomial. Moreover, our normalization differs from

that of the Chebyshev polynomials of the first kind, Tn(x), defined by the

relation Tn(cos(θ)) = cos(nθ), in that Cn(x) = 2Tn(1
2x).

In the following theorem and throughout this paper we abuse notation

by saying that f is a disintegrated polynomial (respectively, rational function)

when we mean that (A1, f) (respectively, (P1, f)) is a disintegrated σ-variety.
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Fact 2.25 (Theorem 10 of [11]). Over a difference field of characteristic

zero, a polynomial of degree greater than one is disintegrated unless it is (pos-

sibly after base change) skew-conjugate to a Chebyshev polynomial, negative

Chebyshev polynomial, or a monomial.

Using Proposition 2.18, the observation that polynomials of different de-

grees are orthogonal, and Fact 2.25 we see that for a σ-variety (An,Φ) where

Φ : An → An takes the form (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)), we may

partition the coordinates so that (An,Φ) is a product of pairwise orthogo-

nal σ-varieties, each of which has the form (Am,Ψ) where Ψ(x1, . . . , xm) =

(g1(x1), . . . , gn(xn)) with the gi’s univariate polynomials for which exactly one

of the following occurs:

• each gi is linear,

• there is some N ∈ Z+ so that each gi is skew-conjugate to ±CN or PN , or

• (Am,Ψ) is disintegrated and the polynomials gi are pairwise nonorthogonal.

The skew-invariant varieties for σ-varieties of the first two kinds are very

easy to describe.

After base change, a σ-variety of the form (A1, g) with g linear is skew-

conjugate to (A1, id). Clearly, the skew-invariant subvarieties of (Am, id) are

precisely those varieties that are defined over the fixed field. Thus, if Φ :

An → An is any dominant affine map, then, after a base change required

to find an isomorphism of σ-varieties α : (An,Φ) → (An, id), the Φ-skew-

invariant varieties are precisely the varieties of the form α−1Y , where Y ⊆ An
is a variety defined over the fixed field. Which of these descend to Φ-skew-

invariant varieties defined over our base field can be an interesting question

best addressed through the Picard-Vessiot theory for difference equations. We

do not pursue the matter here other than to spell out what happens in the

category of algebraic dynamics.

Definition 2.26. Let K be a field of characteristic zero. A sequence

f1, . . . , fn ∈ K[x] of linear polynomials over K is independent if one of the fol-

lowing conditions holds: (1) the numbers f ′1(0), . . . , f ′n(0) are multiplicatively

independent or (2) the multiplicative group generated by f ′1(0), . . . , f ′n(0) has

rank n− 1 and fj(x) = x+ b for some j ≤ n and some b 6= 0

Proposition 2.27. Let K be a field of characteristic zero, let f1, . . . , fn ∈
K[x] be an independent sequence of linear polynomials over K , and define

Φ : AnK → AnK by Φ(x1, . . . , xn) := (f1(x1), . . . , fn(xn)). Then there is some

a = (a1, . . . , an) ∈ An(K) for which OΦ(a) is Zariski dense.

Proof. In general, if K is an algebraically closed field, G is an algebraic

group over K, µ : G ×X → X is a morphism of varieties giving an action of

G on X, and g ∈ G(K) is any K-rational point, then we have an algebraic
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dynamical system (X,µ(g, ·)) given by the action of g on X. Let H ⊆ G be

the Zariski closure of the group generated by g, which is itself an algebraic

group. Note that a subvariety Y ⊆ X is µ(g, ·)-invariant just in case it is

H-invariant. Thus, the µ(g, ·)-invariant varieties correspond exactly to the

H-orbits. Specializing to the case that G is the affine group acting on An and

µ(g, ·) is given by a sequence of univariate linear polynomials, it is easy to see

that we may make a change of variables so that each such component has the

form fi(x) = λi · x or fj(x) = x+ 1. For the remainder of this calculation, we

shall assume that the polynomials do have this form. The Zariski closure H of

the group generated by g is then isomorphic to either Grm or Grm ×Ga, where

r is the rational rank of the multiplicative group generated by the scalars λi
and there is a Ga factor just in case at least one of the fj is x + 1. For any

point a ∈ Gnm(K), the stabilizer of a in H is trivial. Hence, as long as we

arrange for ai 6= 0 when fi(x) = λix, the dimension of the Zariski closure of

the µ(g, ·)-orbit of a = (a1, . . . , an) is dim(H) = r or r + 1. �

Proposition 2.28. LetK be a field of characteristic zero and let f1, . . . , fn
∈ K[x] be a sequence of polynomials of degree at least two such that each fi is a

power function, a Chebyshev polynomial, or a negative Chebyshev polynomial.

Let Φ : AnK → AnK be defined by

Φ(x1, . . . , xn) := (f1(x1), . . . , fn(xn)).

Then there is a point a ∈ An(K) for which OΦ(a) is Zariski dense.

Proof. In the case of the power functions of degree N > 1, a fairly routine

argument with degrees shows that any irreducible skew-invariant subvariety

of (Ggm, x 7→ xN ) is a translate of an algebraic group [8]. From the point of

view of the model theory of difference fields, this result is a special case of the

classification of definable groups [3]. Since the map π : (Gm, PN ) → (A1, CN )

is a dominant map of σ-varieties, we see that any skew-invariant subvariety of

(An, (f1, . . . , fn)), where each fi is either PN or CN , pulls back to a weakly

skew-invariant variety for (An, (PN , . . . , PN )) and thus comes from images of

multiplicative translates of algebraic tori. In general, if each fi : A1 → A1 is

merely (after base change) skew-conjugate to PN or ±CN , then as with the

linear polynomials, after base change, the skew-invariant varieties are precisely

the images under the isomorphism with the standard polynomials of certain

images of torsion translates of algebraic tori, but the question of which ones

descend to skew-invariant varieties over our base field reduces to problems in

difference Galois theory. Since it is easy to find points in Gnm not contained in

any proper algebraic subgroups, for example, take a = (p1, . . . , pn) ∈ Gnm(Q)

where the pi’s are distinct primes, one sees that for dynamical systems given

by sequences of power maps and Chebyshev polynomials, there are rational

points with Zariski dense orbits. �
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Let us collect all of these observations into a single theorem in which we

reduce the problem of describing skew-invariant subvarieties for σ-varieties on

An given by sequences of univariate polynomials to the study of disintegrated

polynomials.

Notation 2.29. If we are given a finite sequence of polynomials f1, . . . , fn
and a subset S⊆{1, . . . , n}, then we write (AS,fS) for the σ-variety

∏
i∈S(Ai,fi).

Theorem 2.30. Suppose that (K,σ) is an algebraically closed difference

field of characteristic zero and f1, . . . , fn is a sequence of nonconstant poly-

nomials. Then there is a partition P of {1, . . . , n} so that for distinct S and

T from P, (AS , fS) ⊥ (AT , fT ), implying that if X ⊆ An is a component of

an (f1, . . . , fn)-skew-invariant variety, then it is a product of components of

fS-skew-invariant varieties as S ranges through P and for each S ∈ P exactly

one of the following is true:

• the polynomial fi has degree one for each i ∈ S and the fS-skew-invariant

varieties are obtained (after base change) by pullback from an isomorphism

with (AS , id) from the varieties defined over the fixed field ;

• there is a number N > 1 so that each fi is skew-conjugate to PN or ±CN
for i ∈ S and the fS-skew-invariant varieties are obtained from algebraic

tori ; or

• all of the polynomials fi are pairwise nonorthogonal and disintegrated for i ∈
S, implying that the irreducible fS-skew-invariant varieties are components

of intersections of pullbacks of (fi, fj)-skew-invariant curves in A2 and (i, j)

ranges through S2.

Remark 2.31. A version of Theorem 2.30 holds for rational functions in

arbitrary characteristic. The first case must include purely inseparable maps

and the second case must include Lattès maps and their additive analogues in

positive characteristic (see [11]).

2.3. From curves to polynomials. We now convert the problem of describ-

ing (f, g)-skew-invariant curves to a question about polynomial compositional

identities.

Notation 2.32. In what follows we work with an algebraically closed differ-

ence field (K,σ) of characteristic zero on which σ is an automorphism. When

we speak of a polynomial f we mean a polynomial with coefficients from K.

For the associated σ-variety, we may write (A1, f) or in some cases (P1, f). A

rational function g : P1 → P1 is a polynomial if ∞ is a totally ramified fixed

point for g.

Lemma 2.33. Let f be a disintegrated polynomial. If C is a smooth, pro-

jective, irreducible curve, (C, h) is a σ-variety and γ : (C, h)→ (P1, f) is a non-

constant morphism of σ-varieties, then C = P1 and h and γ are polynomials.
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Proof. The preimage S := γ−1({∞}) of ∞ under γ is finite and totally

invariant for h (that is, h−1(S) = S). Thus, by an easy Riemann-Hurwitz

argument (see Theorem 1.6 of [19]), we see that C = P1 and either h and γ

are polynomials, or S has exactly two elements and (P1, h) is isomorphic to

(P1, x 7→ 1
xdeg(f)

). However, such a σ-variety cannot be disintegrated as the

restriction of this map to Gm is an isogeny. �

It follows from Lemma 2.33 that all (f, g)-invariant curves for f a disinte-

grated polynomial come from solutions to polynomial compositional identities.

Proposition 2.34. If f and g are disintegrated polynomials and C ⊆ A2

is an irreducible (f, g)-skew-invariant curve, then there are a polynomial h and

polynomial morphisms of σ-varieties π : (A1, h) → (A1, f) and ρ : (A1, h) →
(A1, g) for which C is parametrized by the map t 7→ (π(t), ρ(t)). That is, there

are polynomials h, ρ, and π satisfying the compositional equations f ◦π = πσ◦h
and g ◦ ρ = ρσ ◦ h:

A1 π←−−−− A1 ρ−−−−→ A1

f

y yh yg
A1 πσ←−−−− A1 ρσ−−−−→ A1.

Proof. Passing to the closures in P1× P1, the projective curve C is (f, g)-

skew-invariant. Let h be the restriction of (f, g) to C. Let β : C ′ → C be the

normalization map. Since C ′ is a smooth curve and β is an isomorphism off a

finite set, there is regular map h : C ′ → C ′ for which β : (C ′, h) → (C, h) is a

map of σ-varieties.

Let αi : C → A1 be the projection map onto the ith coordinate for i = 1

or 2. Since the result is obvious if either projection map is constant, we shall

assume that both α1 and α2 are nonconstant. By Lemma 2.33 applied to

γ = α1 ◦ β (or γ = α2 ◦ β), C ′ = P1 and h is a polynomial. Take π := α1 ◦ β
and ρ := α2 ◦ β. �

Combining these observations we see that nonorthogonality between dis-

integrated polynomials is always witnessed by a solution to a system of poly-

nomial compositional identities.

Corollary 2.35. Given two disintegrated polynomials f and g, then

(A1, f) 6⊥ (A1, g) if and only if there are a natural number M and nonconstant

polynomials π, ρ and h for which f♦M ◦ π = πσ
M ◦ h, and g♦M ◦ ρ = ρσ

M ◦ h:

A1 π←−−−− A1 ρ−−−−→ A1

f♦M

y yh yg♦m
A1 πσ

M

←−−−− A1 ρσ
M

−−−−→ A1.
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Proof. If (A1, f) 6⊥ (A1, g), then, possibly after base change, we find an

(f, g)-skew-invariant curve C ⊆ A2 none of whose components is horizontal or

vertical. Taking M sufficiently divisible, we find a component C ′ of C that is

(f♦M , g♦M )-skew-invariant (with respect to σm). The existence of π, ρ, and h

now follows from Proposition 2.34.

In the other direction, the curve C := (π, ρ)(A1) ⊆ A2 witnesses that

(A1, f♦M ) 6⊥ (A1, g♦M ) as σM -varieties. The curve C ′ :=
⋃M−1
j=0 (f♦j , g♦j)(C)σ

−j

witnesses that (A1, f) 6⊥ (A1, g). �

2.4. Decompositions and actions. In this section we analyze the identities

of Corollary 2.35 through the combinatorics of decompositions of polynomials.

Definition 2.36. A polynomial f is indecomposable if deg(f) ≥ 2, and it

cannot be written as a composition f = g ◦ h of two nonlinear polynomials g

and h.

A finite sequence ~f := (fk, . . . , f1) of polynomials fi is a decomposition of

a polynomial f if f = fk ◦ · · · ◦ f1 and each fi is indecomposable.

Remark 2.37. What we call decompositions are called “complete decom-

positions” in the literature (see, for example, [21]). Note how we index the

factors of a decomposition: decreasing from left to right, so that the first fac-

tor to be applied to an input has index 1.

Remark 2.38. Induction on degree shows that every nonlinear polynomial

has a decomposition. Linear polynomials are compositional units. As such, if

L is a linear polynomial, then we write L−1 for its compositional inverse. More

concretely, if L(x) = ax+ b, then L−1(x) = 1
ax−

b
a .

Definition 2.39. The decompositions (fk, . . . , f1) and (gk, . . . , g1) are lin-

early equivalent if there are linear polynomials Lk−1, . . . , L1 for which gk =

fk ◦ Lk−1, gi = L−1
i ◦ fi ◦ Li−1 for k > i > 1, and g1 = L−1

1 ◦ f1.

Polynomials a and b are linearly related if there are linear L and M such

that L ◦ a ◦M = b.

If ~f and ~g are linearly equivalent, then they are decompositions of the

same polynomial. Linear equivalence, as the name suggests, is an equivalence

relation. Corresponding factors of linearly equivalent decompositions are lin-

early related.

Definition 2.40. The linear-equivalence class of a decomposition ~f is de-

noted by [~f ]. For a polynomial f , LEf is the set of linear-equivalence classes

of decompositions of f .

Not all decompositions of a polynomial are linearly equivalent; for exam-

ple, (x2, x3 +x) and (x3 +2x2 +x, x2) are both decompositions of (x ·(x2 +1))2.
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Ritt’s theorem [15] gives a precise sense in which all decompositions of a poly-

nomial may be obtained from one given decomposition.

Definition 2.41. A Ritt polynomial is an indecomposable polynomial of

one of the following kinds:

• Monomial: Pp(x) := xp, p a prime;

• Chebyshev: Cp(x), p an odd prime;

• xk · u(x`)n, where k 6= 0, gcd(k, `) = 1, gcd(k, n) = 1, u(0) 6= 0, u is

monic nonconstant, and at least one of ` and n is greater than one.

The following identities involving Ritt polynomials are the basic Ritt iden-

tities:

• Pp ◦ Pq = Pq ◦ Pp for prime p 6= q,

• Cp ◦ Cq = Cq ◦ Cp for odd prime p 6= q,

• Pp ◦ (xk · u(x`p)n) = (xk · u(x`)pn) ◦ Pp for prime p.

Remark 2.42. These notions are closely related but not identical to “Ritt

moves” and “Ritt neighbors” in [21].

Definition 2.43. If ~g and ~f are two decompositions of the same polyno-

mial, we say that ~g is obtained from ~f by a Ritt swap at i if there are linear

polynomials L, M , and N such that

gi := S ◦N−1, gi+1 = L ◦R, gj := fj for j 6= i, i+ 1,

and (L−1 ◦ fi+1 ◦M) ◦ (M−1 ◦ fi ◦N) = R ◦ S is a basic Ritt identity.

An indecomposable polynomial f is swappable if it is linearly related to a

Ritt polynomial.

Remark 2.44. The compositional identity C2 ◦ Cp = Cp ◦ C2 is not a

basic Ritt identity, but (Cp, C2) can be obtained by a Ritt swap at 1 from

(C2, Cp) as follows. As Cp is an odd polynomial, it is of the form x ·u(x2), and

C2(x) = x2 − 2 = L ◦ P2 where L(x) = x− 2. Now taking M = N = id makes

(L−1 ◦C2 ◦M) ◦ (M−1 ◦Cp ◦N) look like the left side of a basic Ritt identity.

This is pursued in great detail in Section 3.

Remark 2.45. While it may be possible to obtain many different decom-

positions from the same ~f by a Ritt swap at the same i by choosing different

linear witnesses L, M , and N , we show (see page 123) that all decompositions

so obtained are linearly equivalent. This invariance result is also proved in [21]

and is already implicit in Ritt’s work.

Remark 2.46. The term “swap” should suggest that when a decomposition

is obtained from another via a Ritt swap, then the factors involved swap places.

However, a Ritt swap arising from a basic Ritt identity of the third kind is not

really a swap in that one of the factors, linearly related to xk · u(xp), not only



INVARIANT VARIETIES FOR POLYNOMIAL DYNAMICAL SYSTEMS 103

switches places with the monomial but also “becomes” a different polynomial,

linearly related to xk · u(x)p.

Remark 2.47. We depart from [15] in requiring Ritt polynomials to be

monic. An easy computation verifies that this has no effect on the meaning of

“Ritt swap” and the truth of Ritt’s Theorem below.

Fact 2.48 (Ritt, [15]). Over C, any two decompositions of the same poly-

nomial have the same number of factors. Indeed, if ~f and ~g are decomposi-

tions of the same polynomial, then ~g is linearly equivalent to a decomposition

obtained from ~f by a finite sequence of Ritt swaps.

Ritt’s Theorem may be stated loosely as “decompositions of polynomials

are unique up to permutations,” and indeed it is tempting to look for an action

by the symmetric group, identifying the Ritt swap at i with the transposition

τi := (i i+ 1) ∈ Symk in the symmetric group on k elements.

Since often nothing can be obtained from ~f by a Ritt swap at i (for ex-

ample, when one of the factors fi and fi+1 is not swappable), at best this is

a partial action. In light of Remark 2.45, Ritt swaps can only act on decom-

positions up to linear equivalence, that is on LEf . The next two results show

that this action is well defined when it is defined.

Lemma 2.49. If ~f , ~g, and ~h are decompositions of the same polynomial,

~g is obtained from ~f by a Ritt swap at i, and ~h is linearly equivalent to ~f ,

then there is a decomposition obtained from ~h by a Ritt swap at i and linearly

related to ~g.

Proof. Let Rk−1, . . . , R1, L, M , and N be linear polynomials witnessing

our hypotheses. That is, the R’s witness that ~h is linearly related to ~f :

hk = fk ◦Rk−1, hj = R−1
j ◦ fj ◦Rj−1 for 1 < j < k, h1 = R−1

1 ◦ f1.

The other linear polynomials witness the Ritt swap:

(L−1 ◦ fi+1 ◦M) ◦ (M−1 ◦ fi ◦N) = T ◦ S

is a basic Ritt identity, gi := S ◦N−1, gi+1 = L ◦ T , and gj := fj for the other

j ≤ k. To simplify the notation, we define Rk(x) = R0(x) = x.

Define L̃ := R−1
i+1 ◦L, M̃ := R−1

i ◦M and ‹N := Ri−1 ◦N . It is now routine

to check that this choice of L̃, M̃ , and ‹N witnesses that ~h admits a Ritt swap

at i and that the resulting decomposition is linearly equivalent to ~g. �

With the following theorem, whose proof is delayed to page 123, we show

that the action of Ritt swaps on linear equivalence classes of decompositions

is well defined. Stronger versions of this result are obtained in [21] and [15].
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Theorem 2.50. If two decompositions ~h and ~g are both obtained from ~f

by a Ritt swap at i, then ~h is linearly equivalent to ~g.

In the symmetric group, the adjacent transpositions τi := (i, i + 1) have

order 2 and satisfy the braid relations τiτi+1τi = τi+1τiτi+1 for all i and τiτj =

τjτi for j 6= i± 1. While Ritt swaps do satisfy the braid relations, they do not

quite have order two. We formalize this symmetric group-like action via Ritt

swaps as an action of a certain monoid.

Definition 2.51. Let RMk be the free monoid on the (k − 1) generators

t1, . . . , tk−1. The permutation represented by a word tar · · · ta2ta1 in RMk is the

product τar · · · τa2τa1 ∈ Symk.

The action ? of RMk on LE∗f := LEf ∪{∞} is defined by

• ti ? [~f ] is the linear equivalence class of a decomposition obtained from
~f by a Ritt swap at i, if one exists;

• otherwise, ti ? [~f ] :=∞;

• ti ?∞ =∞ for all i.

For w ∈ RMk and [
−→
f ] ∈ LEf , we say that w? [

−→
f ] is defined if w? [~f ] 6=∞.

We often abuse notation writing w ?
−→
f = −→g for w ? [

−→
f ] = [−→g ].

With the following theorem, whose proof is completed on page 142, we

show that Ritt swaps satisfy the braid relations and that ti has order 2 except

when ti ? w = ∞. The first two parts of Theorem 2.52 are immediate given

Theorem 2.50, but the last is not so easy.

Theorem 2.52. For any [
−→
f ] ∈ LEf and i < k,

• If ti ? [
−→
f ] is defined, then t2i ? [

−→
f ] = [

−→
f ].

• For j 6= i ± 1, titj ? [
−→
f ] = tjti ? [

−→
f ]. In particular, one is defined if

and only if the other is.

• titi+1ti ? [
−→
f ] = ti+1titi+1 ? [

−→
f ]. In particular, one is defined if and only

if the other is.

With these identities, a purely combinatorial analysis yields (see Section 5)

normal forms for words in the Ritt monoid, roughly corresponding to insert-

sort and to merge-sort. That is, for each w ∈ RMk, we find another word

w′ of a special form, representing the same permutation and such that w′ ? ~f

is defined and equal to w ? ~f whenever w ? ~f is defined. For example, w′ is

the empty word when w = titi. This implies that if two words w and w′

represent the same permutation and both w ? [~f ] and w′ ? [~f ] are defined, then

w ? [~f ] = w′ ? [~f ] (see Corollary 5.12). This also provides an invaluable explicit

computational tool for the rest of the paper.

Remark 2.53. A stronger version of Corollary 5.12, that the polynomial

f and the sequence of degrees of the factors fi already determine the linear
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equivalence class of the decomposition ~f , is shown in [21]. It seems that our

stronger Theorem 2.52 is not a simple consequence of the work in [21]. The

canonical forms in the present paper are substantially different from those

in [21] and are better suited to our purposes.

2.5. Skew-twists. Recall that the purpose of studying decompositions is

to characterize polynomial identities in Proposition 2.34:

(1)

A1 f−−−−→ A1

π

x xπσ
A1 g−−−−→ A1

for disintegrated polynomials f and g. We eventually show that all such identi-

ties come from those where π is indecomposable or linear. For indecomposable

π, these identities are either rare exceptions characterized in Proposition 5.23,

or single skew-twists where π is an initial compositional factor of f , and also

a terminal compositional factor of g twisted by σ. The rest of this section is

devoted to the study of sequences of single skew-twists.

Definition 2.54. The decomposition (fσ1 , fk, . . . , f2) is called the single-

skew-twist of the decomposition ~f := (fk, . . . , f2, f1) and denoted φ? ~f . (Here,

φ stands for “forward.”)

If ~f is a decomposition of a polynomial f , then φ ? ~f is a decomposition

of a (probably different) polynomial h; we call h a single-skew-twist of f .

For polynomials f and g, the relation “f is a skew-twist of g” is the

symmetric-transitive closure of the relation “f is a single-skew-twist of g.”

That is, f is a skew-twist of g if there are f = f0, f1, . . . , fn = g such that each

fi is a single-skew-twists of fi+1, or vice versa.

To undo what φ does, we define β ? ~f := (fk−1, . . . , f1, f
(σ−1)
k ). (Here, β

stands for “back.”)

When n < k and ~g = φn ? ~f , we call g a plain skew-twist of f .

Remark 2.55. A polynomial may have several single-skew-twists, coming

from different decompositions. In composing a correspondence from f to g

with one from g to h, both of which come from single skew-twists, the decom-

positions of g used to represent the skew-twists may differ. Thus, to describe

correspondences obtained from sequences of skew-twists, we need to keep track

of decompositions of intermediate polynomials.

Definition 2.56. For a given positive integer k ∈ Z+, the skew-twist monoid,

STk, is the free monoid generated by the symbols φ, β, t1, . . . , tk−1. If ~f =

(fk, . . . , f1) is a decomposition of a polynomial f and w := wn · · ·w2w1 ∈
STk where each wi is a generator, then a sequence of decompositions ~f =
~f0, ~f1, . . . , ~fn is a witnessing sequence for w ? ~f if for each j,
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• if wj = ti, then [~f j+1] = wj ? [~f j ]; and

• if wj is φ or β, then ~f j+1 = wj ? ~f
j in the sense of Definition 2.54.

The correspondence A encoded by this witnessing sequence is the compos-

ite of the curves Bn ◦ · · · ◦ B1 where
• if wj = ti for some i, then Bj = ∆A1 is the graph of the identity map

on A1;

• if wj = φ, then Bj is the graph of f j1 ; and

• if wj = β, then Bj is the converse relation of the graph of f j+1
1 .

We also say that A is a correspondence encoded by w ? ~f .

While the witnessing sequence uniquely determines the correspondence, w

and ~f do not uniquely determine the witnessing sequence because Ritt swaps

are only defined up to linear equivalence, and even linearly equivalent de-

compositions may produce different single-skew-twists. We define skew-linear-

equivalence and then formalize an action of the skew-twists monoid.

Remark 2.57. Suppose that w = vu ∈ STk and w ? ~f = ~h is defined. Let

{~f j} be a witnessing sequence for this, let D be the correspondence from f

to h encoded thereby, and let ~g be the element of this sequence coming from

u ? ~f . Then D = B ◦ A, where A and B are the curves encoded by the two

witnessing sequences (~f, . . . , ~g) and (~g, . . . ,~h), respectively.

Definition 2.58. Two decompositions ~f and ~h are skew-linearly-equivalent

if there is a linear L such that ~h is linearly equivalent to (Lσ◦fk, fk−1, . . . , f2, f1

◦ L−1).

Remark 2.59. Skew-linear-equivalence is an equivalence relation. Skew-

linearly-equivalent decompositions may be decompositions of different, but al-

ways skew-conjugate, polynomials. Indeed,
~f 7→ ~g := (Lσ ◦ fk, fk−1, . . . , f2, f1 ◦ L−1)

is a bijection between decompositions of f and decompositions of g := Lσ ◦ f ◦
L−1, and this bijection respects linear equivalence.

Definition 2.60. Let SEf be the set of skew-linear-equivalence classes of

decompositions of skew-twists of f . We write [[~f ]] for the skew-linear equiva-

lence class of ~f .

The action ? of STk on SE∗f := SEf ∪{∞} is given by
• ti still acts by the Ritt swap at i as in Definition 2.51;

• φ ? [[fk, . . . , f1]] := [[fσ1 , fk, . . . , f2]] and φ ?∞ =∞;

• β ? [[~f ]] := [[fk−1, . . . , f1, f
(σ−1)
k ]] and β ?∞ =∞.

For w ∈ STk and [[
−→
f ]] ∈ SEf , we say that w? [

−→
f ] is defined if w? [~f ] 6=∞.

Lemma 2.61.

(1) Ritt swaps are well defined up to skew-linear-equivalence.
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(2) Single skew-twists are well defined up to skew-linear-equivalence.

(3) Suppose that w ∈ STk and ~f is a decomposition of a polynomial f . Sup-

pose that ~g and ~h are witnessing sequences for w ? ~f with corresponding

encoded correspondences A and B between (A1, f) and (A1, g) (and (A1, f)

and (A1, h), respectively). Then there is a linear L with h = Lσ ◦ g ◦ L−1

and B = L ◦ A. That is, h is skew-conjugate to g and the correspondence

is off by the same linear factor.

Proof. The proof of the first two parts serves as the induction (on the

length of w) step for the proof of the last part. For the first part, note that if a

decomposition (hk, hk−1, . . . , h2, h1) of f is obtained from ~f by a Ritt swap at

i, then the decomposition (Lσ ◦ hk, hk−1, . . . , h2, h1 ◦L−1) of g := Lσ ◦ f ◦L−1

is obtained from ~g := (Lσ ◦ fk, fk−1, . . . , f2, f1 ◦ L−1) by a Ritt swap at i.

For the second part, take

~g := (Lσ ◦ fk ◦ L−1
k−1, Lk−1 ◦ fk−1 ◦ L−1

k−2, . . . , L
−1
2 ◦ f2 ◦ L1, L

−1
1 ◦ f1L

−1)

skew-linearly equivalent to ~f . The same linear factors, reindexed, witness that

single skew-twists of ~g are skew-linearly equivalent to the corresponding single

skew-twists of ~f .

For the third part, let n be the length of w and take witnessing sequences

~gj and ~hj for w ? ~f = ~g and for w ? ~f = ~h; so ~g0 = ~f = ~h0 and ~gn = ~g

and ~hn = ~h. We induct on n, strengthening the induction hypothesis from

h = Lσ ◦ g ◦ L−1 to ~h = Lσ ◦ ~g ◦ L−1.

Let v := wn−1 · · ·w1. and let A0 and B0 be the curves encoded by v? ~f via

these witnessing sequences. By induction hypothesis and the first two parts,

there is a linear factor L such that ~hn−1 is linearly equivalent to Lσ ◦ ~g ◦ L−1

and B = L ◦ A. If wn is a Ritt swap, the same L works: look at the proof of

the first part of this lemma to prove the first part of the induction hypothesis,

and note that the curve encoded is the same for v and w to prove the second

part of the induction hypothesis. If wn is a single skew-twist, then composing

the graph of the first or last factor of ~h with L ◦ A cancels L and introduces

a new linear factor, one of the witnesses of the linear equivalence of ~hn−1 and

Lσ ◦ ~g ◦ L−1. �

Remark 2.62. The definition of witnessing sequences and encoded corre-

spondences allows linear equivalence and skew-conjugacy in some cases but not

in others. Because of this inconsistency, it is safest to artificially reintroduce

the linear factor L at the end, as we do in Theorems 6.22, 6.24 and 6.26.

Corollary 2.63. If two correspondences A and B between the polynomi-

als f and g are both encoded by w ∈ STk, then they are off by a skew-symmetry

L of g, that is, B = L ◦ A and Lσ ◦ g ◦ L−1 = g.



108 ALICE MEDVEDEV and THOMAS SCANLON

Our characterization of correspondences encoded by words in STk comes

from the canonical form for such words, obtained in Proposition 2.70 and

Lemmata 6.16 through 6.18. Here we state an imprecise nontechnical version

as motivation.

Remark 2.64. This is a motivational imprecise nontechnical version of

Proposition 2.70 and Lemmata 6.16 through 6.18.

Any word w ∈ STk such that w ? ~f is defined is equivalent to a word of

the form φNkw0 or βNkw0 where the length of w0 is bounded by a constant

depending only on the degree of f .

Any (f, g)-skew-invariant curve coming from skew-twists is a composition

of the graph of f♦N for some N ∈ N with a correspondence both of whose

degrees are bounded by 2 ·deg f ; or a composition of a correspondence both of

whose degrees are bounded by 2 ·deg f with the converse relation to the graph

of g♦N for some N ∈ N.

We define equivalence for words in the skew-twist monoid so as to make

the second part of Remark 2.64 a consequence of the first. Thus, it must take

into account the curves encoded by the words in the monoid, but it need not

keep track of their strictly skew-pre-periodic components.

Definition 2.65. Fix v, w ∈ STk and a decomposition ~f = (fk, . . . , f1).

We say that v and w are equivalent with respect to ~f and write v ≈~f w if

v ? [[~f ]] = w ? [[~f ]] and there are witnessing sequences (~gj) and (~hj) for v ? ~f

and w ? ~f , respectively so that the final ~gn and ~hn are decompositions of the

same polynomial g, and (Av)inv = (Aw)inv for the curves Av and Aw encoded

by v (respectively, w) via (~gj) (respectively, (~hj)).

When v ≈~f w for all ~f , we write v ≈ w and say that the two words are

equivalent.

This notion is weaker than the purely syntactic one in Definition 5.3 of

v ' w for v, w ∈ RMk.

Lemma 2.66.

(1) φβ ≈ id ≈ βφ.

(2) Suppose u1 ≈~f v1, and so let ~g := u1 ? ~f = v1 ? ~f , and suppose u2 ≈~g v2;

then u2u1 ≈~f v2v1.

(3) For any word w in STk, wφk ≈ φkw and wβk ≈ βkw.

(4) tiφ ≈ φti+1 for i < k − 1 while tiβ ≈ βti−1 for i > 1

Proof. (1) The (f, f)-skew-invariant correspondence Aβφ encoded by βφ

is defined by f1(x) = f1(y). The diagonal is one of its irreducible components,

is (f, f)-skew-invariant, and is equal to the image (f, f)(Aβφ) of the whole

curve. Thus, βφ ≈~f id for any decomposition ~f .
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(2) This is an immediate consequence of Lemma 2.17, Lemma 2.61 and

Corollary 2.63.

(3) Since φk ? ~f = ~fσ and βk ? ~f = ~f (σ−1), it is clear that φk and βk

commute with Ritt swaps. Part (1) ensures that they commute with φ and β.

(4) After a shift, the same two factors participate in the Ritt swap on the

two sides of each equation. �

Lemma 2.67. For all w ∈ STk, there is some u ∈ STk that does not

contain β nor φk as a substring and such that w ≈ φmku or w ≈ βnku.

Proof. We may introduce extra βiφi pairs into the word w. We introduce

enough of them to obtain w′ ≈ w so that β only occurs in multiples of k

in w′. Then we pull all βk to the left and obtain βNkw′′ ≈ w′ where w′′

contains no instances of β. Then we can also pull all φk to the left and obtain

βNkφMku ≈ βNkw′′ where u contains no instances of β and no instances of φr

for r ≥ k. Then we cancel βφ pairs on the left. �

Remark 2.68. Here is the geometry behind this bit of combinatorics. When

w ? ~f is defined, the correspondence A encoded is (an irreducible component

of) the fiber product of a diagram

(A1, f)↔ · · · ↔ (A1, g),

where each arrow corresponds to an occurrence of φ or β in w. What we just

proved is that, for correspondences coming from skew-twists, we may instead

look at irreducible components of the fiber product of the diagram

(A1, f)
F←− (A1, gσ

−N
)

(gσ
−N

)♦N−−−−−−→ (A1, g)

or

(A1, f)
F←− (A1, gσ

N
)

g♦N←−− (A1, g),

where we know one arrow, g♦N , exactly, and the other arrow is a sequence of

plain skew-twists.

In most cases, it is also possible to bring together all the φ’s in u in

Lemma 2.67, and then F must be skew-compositional power of g composed

with (a not necessarily indecomposable) factor of g. However, it is not always

possible to do this. Consider the following example:

φt1φ?(x·(x5+1), x5)=φt1?(x5, x·(x5+1))=φ?(x·(x+1)5, x5)=(x5, x·(x+1)5).

The encoded correspondence, defined by y = x25, is not a compositional

power of x5 · (x5)4 in any sense. The trouble is that Lemma 2.66 does not give

a way to simplify tk−1φ and βtk−1. We deal with this issue by introducing

what we call the border guard monoid whose action on decompositions leaves

the leftmost factor fixed, though possibly altering it via Ritt swaps in the sense

of Remark 2.46.
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Definition 2.69. For a fixed positive integer k ≥ 2, BGk is the free monoid

on the symbols ψ, γ, and t1, . . . tk−2. (There are no generators of the form ti if

k = 2.) Regard BGk as a submonoid of STk by mapping ti to ti, ψ to (tk−1φ),

and γ to (βtk−1).

The action of BGk on SEf is the restriction of the action of STk. More

concretely,

ψ ? (fk, . . . , f1) = tk−1φ ? (fk, . . . , f1)

= tk−1 ? (fσ1 , fk, . . . , f2) = (f̂k, f̂
σ
1 , . . . , f2),

γ ? (fk, fk−1, . . . , f1) = βtk−1 ? (fk, . . . , f1)

= β ? (’fk−1, f̂k, . . . , f1) = (f̂k, . . . , f1,’fk−1

σ−1

).

We use BGk to establish the bounds in Remark 2.64. Indeed, finding the

word w′ of the following proposition goes a long way towards producing the

short word w0 of Remark 2.64.

Proposition 2.70. Any word w in STk is equivalent to φNw′ or to βNw′

for some N ∈ N and some word w′ ∈ BGk.

Proof. We take w ∈ STk, start from the right, and move to the left. At

every step, we have a word wbadβ
aφbwgood with wbad ∈ STk and wgood ∈ BGk.

Working by induction on the length of wbad, it is clearly sufficient to prove that

if s is a generator of STk, then there are natural numbers a′ and b′ and some

u ∈ BGk with sβaφb ≈ βa′φb′u. If s = β, then we may take a′ := a+ 1, b′ = b,

and u the empty word. If s = φ and a = 0, then we take a′ = 0, b′ = b+1, and

u the empty word. If s = φ and a > 0, then then we take a′ = a − 1, b′ = b,

and u the empty word.

We work by induction on (a + b) for the case that s = ti for some i < k.

In the base case of a = b = 0, if i < k − 1, then we may take a′ = b′ = 0

and u = ti. For i = k − 1, we note tk−1 ≈ φβtk−1 = φγ, so that we may take

a′ = 0, b′ = 1, and u = γ. If a = 0 and i 6= k − 1, then tiφ ≈ φti+1 and we can

apply the inductive hypothesis to ti+1φ
b−1. If a = 0 and i = k− 1, then b 6= 0.

If b = 1, then we are looking at (tk−1φ), so we let a′ = b′ = 0 and u = ψ. If

b ≥ 2, note that tk−1φ
2 ≈ φ2t1, so we can apply the inductive hypothesis to

t1φ
b−2. If a 6= 0 and i 6= 1, then tiβ ≈ βti−1, and we can apply the inductive

hypothesis to ti−1β
a−1φb. If a 6= 0 and i = 1, note that t1β ≈ β2tk−1φ. If

a = 1, then we get t1βφ
b ≈ β2tk−1φ

b+1 and we can apply the second inductive

step to tk−1φ
b+1. If a ≥ 2, we get t1β

aφb ≈ β2tk−1φβ
a−1φb ≈ β2tk−1β

a−2φb,

and we can apply the inductive hypothesis to tk−1β
a−2φb. �

Remark 2.71. It is sometimes helpful to think of SEf as a bunch of inde-

composable factors arranged in a circle, rather than a line, with fk standing
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next to f1. In that spirit, both γ and ψ act by a Ritt swap between these

two. To be more precise, for any decomposition ~f , the following three are

equivalent:

• γ ? ~f is defined,

• ψ ? ~f is defined,

• t1 ? (fσ1 , fk) is defined.

Corollary 2.72. If w ∈ STk and w?~f is defined and fk is not swappable,

then the correspondence encoded by w? ~f is already encoded by φN ?~g or βN ?~g

for some N ∈ N and some decomposition ~g of f .

Proof. Get the φNw′ ≈ w or βNw′ ≈ w from Proposition 2.70, with

w′ ∈ BGk. Because fk is not swappable, w′ ? ~f is only defined if w′ ∈ RMk.

Let ~g := w′ ? ~f . Then the correspondence encoded by w ? ~f is the same as the

one encoded by φN ? ~g, or βN ? ~g, as the case may be. �

Of course, the hypothesis that fk is the special unswappable factor is

purely artificial.

Corollary 2.73. If w ∈ STk and w? ~f is defined and fi is not swappable

for some i, then the correspondence encoded by w ? ~f is already encoded by

φNuφi ? ~f or βNuφi ? ~f for some N ∈ N and some u ∈ RMk.

Proof. Recall that wβiφi ≈ w. Since the kth factor fσi of ~h := φi ? ~f is

unswappable, Corollary 2.72 applies to (wβi) ? ~h, with the sequence u of Ritt

swaps giving the potentially necessary new decomposition ~g in the statement

of that corollary. �

Remark 2.74. The hypothesis that fk is not swappable is unnecessarily

strong. Requiring merely that t1 ? (gσ1 , gk) is not defined where ~g := u ? ~f for

some u ∈ RM would suffice. Many explicit examples satisfying this requirement

appear in a previous draft of this paper [12] related to the concept of a “crack.”

Outline of the technical Sections 3–6

The next four sections constitute technical proofs of the results described

in Section 2. Three of the four sections are devoted to refinements of Ritt’s

Fact 2.48, and the last one uses these refinements to obtain the desired char-

acterization of skew-invariant curves.

The characterization of linear relatedness between Ritt polynomials in

our Section 3 is also carried out in [21] and is implicit in [15]. We include our

analysis because we use many of the intermediate results in the two following

Sections 4 and 5.

In Section 4, we describe a nearly unique way to write a polynomial as a

composition of clusters. One of our two kinds of clusters is the same as one

of the two kinds of blocks in [21], but our C-free clusters are nothing like their
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monomial blocks. Again, similar technical issues come up for us and for them,

such as the fact that no more than one quadratic factor may cross a boundary

between clusters in the same direction. Our first use of these clusters is to prove

our fundamental Theorem 2.52 for the Ritt monoid action, that titi+1ti ? ~f is

defined if and only of ti+1titi+1 ? ~f is defined. While it follows immediately

from [21] that the two are equal when defined, it is not clear to us whether our

stronger result follows from their work.

In Section 5, we use the fact that the action of the Ritt monoid on linear-

equivalence classes of decompositions factors through the “braid monoid” to

find canonical forms for sequences of Ritt swaps, roughly corresponding to

insert-sort and to merge-sort. To the best of our understanding, our results on

canonical forms do not follow easily from [21], where different canonical forms

are used to obtain tighter bounds on the number of Ritt swaps necessary to

obtain one decomposition from another. Applying the second canonical form

to a clustering produces particularly strong results. We end that section with

a characterization (see Proposition 5.23) of those rare polynomial identities

πσ ◦ f = g ◦ π that have nothing to do with skew-twists. A slight weakening

of it follows immediately from [21], and the full version can be deduced with a

little more work.

Section 6 combines all of our technical tools and finally characterizes skew-

invariant curves. In Section 6.1, we introduce more generators into our monoids

in order to encode correspondences coming from Proposition 5.23 rather than

from skew-twists. Within this formalism, we describe precisely how the corre-

spondences arising from Proposition 5.23 interact (commute) with those arising

from skew-twists. In Section 6.2, we then combine our work on clusterings with

our understanding of skew-twists in order to obtain a characterization of corre-

spondences encoded by w? ~f for w ∈ STk for those rare ~f that are not subject

to Corollary 2.73. In Section 6.3, Theorem 6.22 is a complete, precise, and tech-

nical characterization of (f, g)-invariant curves for disintegrated polynomials f

and g. The technical conclusion of Theorem 6.22 becomes much more readable

in the special case of (h, h)-invariant curves. It is stated in Theorem 6.24 and

then used to obtain a more readable but less tight characterization for the

general case in Theorem 6.26.

Notation 2.75. Throughout the next four technical sections we work over

a fixed difference-closed field of characteristic zero with automorphism σ. We

reserve the symbol “x” for the variable in the polynomial ring. When we speak

of a polynomial, linear polynomial, scalar, etc., we mean a polynomial over this

field, linear polynomial over this field, element of this field, etc. Occasionally,

and especially towards the end, we explicitly note how our results specialize to

the category of algebraic dynamical systems defined over the fixed field of σ.
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3. Linear relations between Ritt polynomials

In this section we identify the possible linear relations between Ritt poly-

nomials and identify certain classes of Ritt polynomials admitting extra linear

relations. Using these results on linear relations we complete the proof of The-

orem 2.50 showing that the action of a Ritt swap at i is well-defined on the

linear equivalence classes of decompositions of a polynomial. Much of the ba-

sic work on linear relations appears also in [21] (see Lemmas 3.20–3.22) and is

implicit in [15].

3.1. Definitions and examples.

Definition 3.1. A scaling is a linear polynomial of the form (·λ) := λx

for some nonzero scalar λ. A translation is a linear polynomial of the form

(+A) := x + A for some scalar A. Two linearly related polynomials f and g

are translation related (respectively, scaling related) if g = L ◦ f ◦M for some

translations (respectively, scalings) L and M .

Remark 3.2. The group of automorphisms of A1
K may be identified with

the semidirect product of the group of translations by the group of scalings.

Definition 3.3. Given a polynomial f and a nonzero scalar λ, we define

λ ∗ f := (·λ− deg(f)) ◦ f ◦ (·λ).

Remark 3.4. If f is monic, then so is λ ∗ f . On the other hand, if f and

g are monic polynomials and (·µ) ◦ f ◦ (·λ) = g, then µ = λ− deg(f). That is,

g = λ ∗ f .

Remark 3.5. For any n ∈ N and scalar λ, we have λ ∗ Pn = Pn. More

generally, if f = xk ·U(x`) for some polynomial U and λ a scalar, then λ ∗ f =

xk · (λ` ∗ U)(x`). Thus if f is a Ritt polynomial, then so is λ ∗ f for any

nonzero λ. In particular, if ` is maximal for which f takes this form, then

λ ∗ f = f if and only if λ is an `th root of unity.

The above observations imply that to describe all instances of linear re-

latedness between Ritt polynomials, it suffices to separately describe those

witnessed by translations and those witnessed by scalings.

Lemma 3.6. If f and g are linearly related Ritt polynomials, then there is a

third Ritt polynomial h which is translation related to f and scaling related to g.

Proof. Let L and M be linear polynomials with L ◦ f ◦M = g. Write

L = (·λ) ◦ (+B) and M = (+A) ◦ (·µ) for appropriate scalars A, B, λ, and

µ. Set h := (+B) ◦ f ◦ (+A). Since translations preserve the highest degree

term, h is still monic and translation related to f . As h = (·λ−1)◦ g(·µ−1) and

both g and h are monic, we conclude by Remark 3.4 that h = µ−1 ∗ g. From

Remark 3.5 we see that h is a Ritt polynomial. �



114 ALICE MEDVEDEV and THOMAS SCANLON

By similar reasoning, the class of basic Ritt identities other than Cp◦Cq =

Cq ◦ Cp is closed under scalings.

Proposition 3.7. If b ◦ a = d ◦ c is a basic Ritt identity, at least one of

a or b is not a Chebyshev polynomial, and λ and µ are nonzero scalars, then

there are scalars η and ν for which (µ ∗ b) ◦ (λ ∗ a) = (η ∗ d) ◦ (ν ∗ c) is a basic

Ritt identity.

Proof. At least one of a or b must be a monomial Pp for some prime p. If

they are both monomials, then the result is immediate as λ∗Pp = Pp. Suppose

now that a = Pp and b takes the form xk ·u(x`)n for some monic u with nonzero

constant term. Then d = Pp and c = xk · u(xp`)
n
p . We saw in Remark 3.5 that

µ∗ b = xk · (µ` ∗u)(x`)n and λ∗a = a. Thus, (µ∗ b)◦ (λ∗a) = (1∗d)◦ ( p
√
µ∗ c).

Likewise, if b = Pp, we may take η = λp and ν = 1. �

Since Chebyshev polynomials of odd degree are odd functions, every Ritt

polynomial is of the form xk · u(x`)n with k`n > 1 and therefore is involved

in a nontrivial scaling relation to a Ritt polynomial. We focus on translation

relations amongst Ritt polynomials; it turns out that these appear in only two

special classes, what we call types A (for “adaptable”) and C (for “Chebyshev-

like”).

Definition 3.8. A type A Ritt polynomial is a Ritt polynomial of the form

f(x) = x` ·(x−A)mu(x)n, where u is a monic polynomial with nonzero constant

term, A is some nonzero scalar, and both gcd(`, n) > 1 and gcd(m,n) > 1. A

type A swappable polynomial is a polynomial that is linearly related to a type

A Ritt polynomial.

Remark 3.9. Since a Ritt polynomial must be indecomposable, in Defini-

tion 3.8 we must have gcd(`,m, n) = 1.

Remark 3.10. Lemma 3.6, the observation that for any λ and f , either

both f and λ ∗ f are type A Ritt polynomials, or neither one is, and Theo-

rem 3.15 together imply that a Ritt polynomial that happens to be a type A

swappable polynomial is, in fact, a type A Ritt polynomial.

Definition 3.11. A type C swappable polynomial is a polynomial of odd

prime degree that is linearly related to a Chebyshev polynomial.

Definition 3.12. For a natural number n and scalar λ, we define Cn,λ :=

λ ∗Cn and “Cn,λ := λ ∗ ((+2) ◦Cn ◦ (−2)). For odd prime n, these are the type

C Ritt polynomials.

It follows from Remark 3.5 that Cn,λ is a Ritt polynomial for odd prime

n and nonzero λ. For odd n, we show (Proposition 3.13) that both “Cn,1 =

(+2) ◦ Cn ◦ (−2) and “Cn,−1 = (−2) ◦ Cn ◦ (+2) are of the form x · u(x)2 as

a consequence of the fact that Cn commutes with C2(x) = x2 − 2. It then
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follows from Remark 3.5 that “Cn,λ are Ritt polynomials for all odd prime n

and nonzero λ. It follows from Theorem 3.15 that these are the only Ritt

polynomials amongst type C swappable polynomials.

Proposition 3.13. For every odd prime p and scalar λ, the polynomial“Cp,λ is a Ritt polynomials of the form x · u(x)2. Moreover, for any number n,

we have “Cn,−1 = (−4) ◦ “Cn,1 ◦ (+4).

Proof. For odd n, we show that both “Cn,1 = (+2)◦Cn ◦ (−2) and “Cn,−1 =

(−2) ◦ Cn ◦ (+2) are of the form x · u(x)2 as a consequence of the fact Cn
commutes with C2(x) = x2 − 2. For the first observation, we compute

Cn ◦ C2 = C2 ◦ Cn,
Cn ◦ (−2) ◦ P2 = (−2) ◦ P2 ◦ Cn,

(+2) ◦ Cn ◦ (−2) ◦ P2 = P2 ◦ Cn.

Thus, since “Cn = (+2) ◦Cn ◦ (−2) appears in a basic Ritt identity with P2, it

must be of the form x ·u(x)2 for some polynomial u. By Remark 3.5, it follows

that the same holds of “Cn,λ for all nonzero λ.

For the second, first observe that

i ∗ C2 =
1

i2
((ix)2 − 2) = −(−x2 − 2) = x2 + 2.

Now

Cn ◦ C2 = Cn ◦ (· − 1) ◦ (· − 1) ◦ C2 ◦ (·i) ◦ (· − i)

= (· − 1) ◦ Cn ◦ (x2 + 2) ◦ (· − i) = C2 ◦ Cn.

Bringing all outside linear factors to the right and introducing (−2) on the left,

(−2) ◦ Cn ◦ (+2) ◦ P2 = (−2) ◦ (· − 1) ◦ C2 ◦ Cn ◦ (·i).

Now, [(−2) ◦ (· − 1) ◦ C2](x) = −(x2 − 2)− 2 = −x2 = [P2 ◦ (· ± i)](x), so

(−2) ◦ Cn ◦ (+2) ◦ P2 = P2 ◦ (· ± i) ◦ Cn ◦ (·i) = P2 ◦ (i ∗ Cn). �

Although C2 is not a Ritt polynomial, how it might be linearly related to

itself or to the monomial P2 is important in Section 4 and is summarized with

the following remark.

Remark 3.14. Since the only way P2 is linearly related to itself is by scal-

ings λ ∗ P2 = P2, the only way C2(x) = x2 − 2 is linearly related to itself

is by Aλ ◦ C2 ◦ (·λ) = C2 for Aλ(x) := 1
λ2
x + 2

λ2
− 2. Note the immediate

consequence that if L ◦ P2 ◦M = C2, then M = ·λ is a scaling, and L = Bλ
where Bλ(x) := 1

λ2
x− 2 = (−2) ◦ (· 1

λ2
)(x). Note that Aλ(x) is never a scaling

unless λ = ±1 and Aλ = id, and Bλ is never a scaling.
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3.2. Characterization of translation related Ritt polynomials. In the next

theorem, whose proof occupies the rest of this subsection, we collect all in-

stances of linear relatedness amongst Ritt polynomials via translations. Using

Lemma 3.6, a general description follows.

Theorem 3.15. If f and g are Ritt polynomials and A and B are scalars,

not both zero, for which (+B) ◦ f ◦ (+A) = g, then either

• B = 0, f and g are type A Ritt polynomials, or

• B 6= 0, f and g are type C Ritt polynomials.

In fact, if B 6= 0, then either f = Cp,λ and g = “Cp,λ, where λ = −2
A = p

»
2
B

and p is an odd prime, or f = “Cp,µ and g = “Cp,−µ, where µ = 4
A = p

»
−4
B and

p is an odd prime.

We turn to the task of proving Theorem 3.15, reformulating its statement

as the solution of the following problem.

Problem 3.16. For which Ritt polynomials f and g and scalars A and

B can we have

(+B) ◦ f ◦ (+A) = g?

In the solution of Problem 3.16 and in the course of the analysis of the

monoid actions introduced in Section 2.4, we make use of some refined degrees

of Ritt polynomials.

Definition 3.17. If f is any polynomial that is not a monomial, then f may

be expressed as xk · u(x`)n, where u is a polynomial with a nonzero constant

term and n and ` are maximal. The number k is the order of vanishing of f

at 0. The number n, which we call the out-degree of f , is the greatest common

divisor of the orders of vanishing of f at points other than 0. The number `,

which we call the in-degree of f , is the size of the multiplicative stabilizer of

the set of roots of f .

Remark 3.18. Of course, it is true that a monomial may be expressed in

the above form, taking u = 1, but then no maximal n nor ` would exist. If f

is a nonmonomial Ritt polynomial, then either its in-degree or its out-degree

must be at least two.

Remark 3.19. By considering type A Ritt polynomials, one sees that even

for Ritt polynomials, the out-degree and in-degree are not invariants of the

linear relatedness class of a polynomial. However, two scaling related Ritt

polynomials f and λ ∗ f clearly have the same in-degrees and out-degrees.

It is natural to state the next lemma here, even though its proof requires

some later results. Rest assured that the lemma is not used until after those

later results are proved.
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Lemma 3.20. All Cp,λ have in-degree 2 and out-degree 1. All “Cp,λ have

in-degree 1 and out-degree 2.

Proof. Since Cp is an odd function, its in-degree is divisible by 2. From

the computations in the proof of Proposition 3.13, it follows that the out-

degree of “Cp is divisible by 2. The rest of the result for Cp and “Cp follows by

Proposition 3.24 and Lemma 3.29, and Remark 3.19 finishes the proof. �

Returning to Problem 3.16 we observe that A = B = 0 and f = g always

gives a trivial solution. On the other hand, evaluating both sides at 0 we see

that there are no solutions with A = 0 6= B. Thus, we may and do assume that

A 6= 0 and examine the cases where B = 0 and where B 6= 0 separately. We

have already found some solutions of these problems: type A Ritt polynomials

for the case when B = 0 and type C Ritt polynomials for the case B 6= 0. Our

task is to prove that there are no others. Using an appropriate scaling, we

reduce to the case that A = 1.

Lemma 3.21. If A, B, f , and g give a solution to Problem 3.16, then 1,
B

Adeg(f) , A ∗ f , A ∗ g is also a solution to Problem 3.16.

Proof. (+ B
Adeg(f) ) ◦ (A ∗ f) ◦ (+1) = A− deg(f)f(A(x + 1)) + A−deg(f)B =

A− deg(f)(f(Ax+A) +B) = A ∗ ((+B) ◦ f ◦ (+A)) = A ∗ g. �

Reduction 3.22. For the remainder of this section, we assume that A=1.

Thus, we seek solutions to

(+B) ◦ f ◦ (+1) = g,

where f and g are Ritt polynomials. By way of notation, we write f = f1 =

xk1u1(x`1)n1 and g = f2 = xk2u2(x`2)n2 , where `i is the in-degree of fi and ni
is the out-degree of fi. We write si := deg(ui) and ti for the number of zeros

of ui, not counted with multiplicity.

Let us record a simple ramification calculation.

Lemma 3.23. Let k, `, n be natural numbers with gcd(k, `)=gcd(k, n)=1

and u a polynomial with u(0) 6= 0. Set f := xk · u(x`)n. Let t be the number

of zeros of u not counted with multiplicity, and let s := deg(u). Then the

following hold :

• The number of points (counted with multiplicity) at which both f and f ′

vanish, that is, the number of ramification points above zero, is (k − 1) +

`(ns− t).
• The number of points at which f ′ vanishes but f does not, that is, the

number of ramification points lying above points other than zero, is `t.

Moreover, this set of points is closed under multiplication by the group of

`th roots of unity.
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Proof. This is a straightforward computation, which we include for com-

pleteness:

f ′(x) = kxk−1u(x`)n + xknu(x`)n−1u′(x`)`x`−1

= xk−1u(x`)n−1(ku(x`) + `nu′(x`)x`).

Since u(0) 6= 0, we see that ord0 f
′ = k− 1. For any other root a of f , we

must have u(a`) = 0. If u′(a`) = 0, then orda f
′ = (n− 1) orda` u+ orda` u

′ =

n orda`(u)− 1. Otherwise, orda`(u) = 1 and orda`(f) = n− 1. Summing over

the distinct roots of u, we finish the calculation of the total ramification over

zero. If we let ũ := gcd(u, u′), by which we mean the monic polynomial that

generates the ideal generated by u and u′, then the other zeros of f ′ come from

the zeros of k uũ(x`) + `nu
′

ũ (x`)x`−1, which has degree exactly `t. �

Differentiating the equation (+B) ◦ f1 ◦ (+1) = f2, we see that f ′1 ◦ (+1)

= f ′2. Hence, for any point a, we have orda f
′
2 = orda+1 f

′
1. That is, (+1)

translates the zeros of f ′2 to the zeros of f ′1 respecting multiplicities. If B = 0,

then the ramification above zero is matched. If B 6= 0, then there is one

nonzero point for which the ramification of f2 above zero is matched with the

ramification of f1 above that point and vice versa. It is this consequence that

makes these seemingly trivial observations useful.

Proposition 3.24. In the notation from Reduction 3.22, either `1 = 1

or `2 = 1.

Proof. If `1 > 1, then the sum of the roots of f1 is zero as is the sum of

the roots of f ′1. Indeed, zero contributes nothing to the sum. The other roots

both of f1 and of f ′1 are partitioned into cosets of the `th1 roots of unity over

which the sum is zero. Because f ′2 = f ′1 ◦ (+1), we see that the sum of the

roots of f ′2 is (1− deg(f1)) 6= 0 (as deg(f1) ≥ 3). �

Reduction 3.25. For the remainder of this section, we take `1 = 1.

Lemma 3.26. If B = 0, then `2 = 1.

Proof. As f2(x + 1) = f1(x), we see that k1 = ord0 f1 = ord−1 f2. That

is, −1 is a k1-fold zero of u2(x`2)n2 . We thus have ord−ζ f2 = k1 for any other

`th2 root of unity ζ. Unless `2 = 1, we can choose ζ so that −ζ + 1 6= 0, but

then k1 = ord−ζ+1 f1 = ord−ζ+1 u1(x)n1 , so n1 divides k1. If n1 > 1, this

contradicts the indecomposability of f1. Otherwise, n1 = `1 = 1, so f1 is not

a Ritt polynomials, again a contradiction. �

We first complete the solution for the case where B = 0.

Proposition 3.27. In Problem 3.16, if B = 0 and `1 = `2 = 1, then

there are positive integers m1, m2 and a monic polynomial U for which u1(x) =

(x − 1)m1U(x)n2 and u2(x) = (x + 1)m2U(x + 1)n1 . In particular, f1 and f2

are type A Ritt polynomials.
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Proof. As k2 = ord0 f2 = ord1 f1, we see that k2 | n1. Set m1 := k2
n1

.

Observe that ord1 u1 = m1. Likewise, since k1 = ord0 f1 = ord−1 f2, n2

divides k1. Write m2 := k1
n2

, and observe that ord−1 u2 = m2. Express u1(x) =

(x − 1)m1V1(x) and u2(x) = (x + 1)m2V2(x). Specializing Problem 3.16, we

have the following equation:

(x+ 1)m2n2 · [xm1V1(x+ 1)]n1 = xm1n1 · [(x+ 1)m2V2(x)]n2 .

Canceling (x + 1)m2n2xm1n1 we obtain V1(x + 1)n1 = V2(x)n2 . Recalling that

n2m2 = k1 and n1 are relatively prime, so that gcd(n1, n2) = 1, it must be that

V1 is an nth
2 power and V2 an nth

1 power. Write V1 = Un2
1 and V2 = Un1

2 . As

f1 is monic, we may take each of U1 and U2 to be monic. As U1(x+ 1)n1n2 =

U2(x)n1n2 , we have U1(x+ 1) = U2(x), as required. �

Reduction 3.28. In what follows, we assume that B 6= 0.

Lemma 3.29. Given our reductions, k1 = k2 = 1, all roots of u1 and u2

are simple, and n1 = n1`1 = n2`2 = 2.

Proof. Concretely, we are considering the equation f1(x+ 1) +B = f2(x).

Since gcd(k2, `2) = 1, if f2(a) 6= 0 and ζ 6= 1 is an `th2 root of unity, then

f2(ζa) 6= f2(a). Thus, in each of the cosets of the `th2 roots of unity contained

in the critical points of f2 there can be at most one point that maps to B under

f2. As translation by 1 takes the critical points of f2 over B to the critical

points of f1 over 0, we conclude from Lemma 3.23 (taking into account that

`1 = 1) that

(k1 − 1) + (n1s1 − t1) ≤ t2.

On the other hand, since translation by 1 induces a (multiplicity preserving)

bijection between the critical points of f2 with those of f1, we see that the

other critical points of f2 must be mapped to critical points of f1 not above 0.

From Lemma 3.23 again we see that

(k2 − 1) + `2(n2s2 − t2) + (`2 − 1)t2 ≤ t1.

Combining these two inequalities we obtain

(k1 − 1) + (k2 − 1) + n1s1 + `2n2s2 ≤ 2t1 + 2t2.

Bearing in mind that ti ≤ si, 2 ≤ n1`1 = n1, 2 ≤ n2`2, and 1 ≤ ki, we see

that all of these inequalities must be equalities. �

Thus, we are left with describing those solutions where `2 = 2 and n2 =1

and where `2 = 1 and n2 = 2. We already have examples of these in Defini-

tion 3.12 and Proposition 3.13; the next two propositions say that there are

no others.
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Proposition 3.30. For each positive integer s, there is a unique monic

polynomial u of degree s for which there is some nonzero scalar B and polyno-

mial v satisfying

(2) (+B) ◦ (x · u(x)2) ◦ (+1) = (x · v(x)2).

Proof. The polynomials u and v have only simple roots by Lemma 3.29.

Since u is monic, we may assume that v is monic as well.

Differentiating, we obtain

(3) u(x+ 1)(u(x+ 1) + 2(x+ 1)u′(x+ 1)) = v(x)(v(x) + 2xv′(x)).

Since B 6= 0, it follows that u(x + 1) and v(x) are coprime. Hence,

u(x+ 1) + 2(x+ 1)u′(x+ 1) is a scalar multiple of v(x) and v(x) + 2xv′(x) is

a scalar multiple of u(x+ 1). Taking into account the leading coefficients, we

deduce the following equations:

(2s+ 1)v(x) = u(x+ 1) + 2(x+ 1)u′(x+ 1),(4)

(2s+ 1)u(x+ 1) = v(x) + 2xv′(x).(5)

Differentiating equation (4), we obtain

(6) (2s+ 1)v′(x) = 3u′(x+ 1) + 2(x+ 1)u′′(x+ 1).

Multiplying equation (5) by (2s + 1), and then using equations (4) and

(6) to eliminate v and v′, we obtain

(7)

(2s+1)2u(x+1) = u(x+1)+2(x+1)u′(x+1)+2x(3u′(x+1)+2(x+1)u′′(x+1)).

Collecting terms, we see that u(x+1) must satisfy the following differential

equation:

(8) (2s2 + 2s)Y + (−4x− 1)Y ′ + 2(−x− x2)Y ′′ = 0.

A routine calculation shows that if u(x + 1) is a solution to equation (8)

and we define v(x) via equation (4) and set B := −u(1)2, then these data

satisfy equation (2).

The linear differential operator L = 2(−x−x2) d2

dx2
+(−4x−1) d

dx+(2s2+2s)

defines a linear operator on the (s + 1)-dimensional space of polynomials of

degree s. With respect to the standard monomial basis of this space, the

matrix M = (Mi,j) of L is upper triangular. On the main diagonal, we have

Mj,j = 2(1 − j)j − 4j + (2s2 + 2s) = (2s2 + 2s) − (2j2 + 2j), and just above

the diagonal, we have Mj,j+1 = −(j + 1)(3 + 2j). In particular, Ms,s = 0 so

that rank(L) ≤ s while the (s, s)-minor is invertible. Thus, the rank of L is s

and the dimension of the space of solutions to equation (8) is exactly one. As

we require u to be monic, there is exactly one solution of degree s. �
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Proposition 3.31. For each positive integer s, there is a unique monic

polynomial u of degree s and nonzero parameter B for which there is another

monic polynomial v satisfying

(9) (+B) ◦ (x · u(x)2) ◦ (+1) = (x · v(x2)).

Proof. As before, since B 6= 0, u(x+ 1) and v(x2) are coprime. Differen-

tiating, we obtain

(10) u(x+1)·(u(x+1)+2(x+1)u′(x+1)) = v(x2)+2x2v′(x2) = (v+2x·v′)◦P2.

The zeros of the right-hand side of equation (10) come in ±-pairs. We

claim that for each such pair, one is a root of u(x+ 1) and the other is a root

of (u(x+1)+2(x+1)u(x+1)). Indeed, it cannot happen that u(c+1) = 0 and

u(−c+1) = 0 for equation (9) would yield cv(c2) = B = −cv((−c)2) = −cv(c2),

contrary to the fact that B 6= 0. Thus, at most one of each pair of roots of the

right-hand side is also a root of u(x+ 1). As the degree of the right-hand side

of equation (10) is twice that of u, it follows that at least one root from each

pair must be a root of u(x+ 1). Matching leading coefficients, we conclude:

(11) (−1)s(2s+ 1)u(x+ 1) = (u(−x+ 1) + 2(−x+ 1)u′(−x+ 1)).

Substituting z := −x+ 1, we see that u satisfies the following difference-

differential equation:

(12) 0 = u(z) + 2zu′(z)− (2s+ 1)(−1)su(2− z).

The difference-differential operator in equation (12) is a linear operator

on the space of degree s polynomials, and it is given by an upper triangular

matrix relative to the standard monomial basis. The entries along the main

diagonal are

1 + 2j − (−1)j+s(2s+ 1).

Hence, the rank of this operator is exactly s implying that there is a unique

monic solution. �

This concludes the proof of Theorem 3.6. �

3.3. Proof of Theorem 2.50 and related results. We collect some observa-

tions about Ritt swaps towards and around the proof of Theorem 2.50.

Remark 3.32. It is clear from the definitions that if some decomposition

may be obtained from ~f by a Ritt swap at i, then one of the following must

happen:

• both fi and fi+1 are linearly related to monomials,

• both fi and fi+1 are linearly related to odd-degree Chebyshev polynomials,

• fi is linearly related to a monomial Pp and fi+1 is linearly related to a Ritt

polynomial whose out-degree is a multiple of p, or
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• fi+1 is linearly related to a monomial Pp and fi is linearly related to a Ritt

polynomial whose in-degree is a multiple of p.

Remark 3.33. The in-degree of a type A swappable f is 1, in the sense

that any Ritt polynomial linearly related to f has in-degree 1. Remark 3.32

then implies that if fi is type A, then no decomposition may be obtained from
~f by a Ritt swap at i.

We now prove some useful consequences of Theorem 3.15, including The-

orem 2.50. We begin with a few slightly more comprehensive results about

Chebyshev polynomials.

Corollary 3.34. If L and M are linear, p ≥ 3 is prime, and L◦Cp◦M =

Cp, then both M and L are (· ± 1).

Proof. As in the proof of Lemma 3.6, there are scalars A, B, λ, and µ

such that L = (·λ) ◦ (+B) and M = (+A) ◦ (·µ). Let h := (+B) ◦Cp ◦ (+A) =

(· 1λ)◦Cp ◦ (· 1µ). By the first equality, h is monic, so h = 1
µ ∗Cp = Cp, 1

µ
is a Ritt

polynomial. Since Cp has in-degree at least 2, so does h. By Theorem 3.15, h

cannot be nontrivially translation related to another Ritt polynomial Cp with

in-degree 2, so A = B = 0 and h = Cp. Since all complex roots of Cp are real,

Cp 6= Cp, 1
µ

unless µ = ±1. �

Lemma 3.35. For any Ritt swap involving a type C swappable, the un-

derlying basic Ritt identity is either of the form Cp ◦ Cq = Cq ◦ Cp for odd

prime p and q or of the form P2 ◦ Cp = “Cp ◦ P2 for some odd prime p. In

particular, if a type C swappable fi “becomes” gj through Ritt swaps, in the

sense of Remark 2.46, then gj is also a type C swappable.

Proof. By Theorem 3.15, Cp (for odd prime p) is not linearly related to

any Ritt polynomials except Cp,λ and “Cp,λ. By Lemma 3.20, all these have in-

and out-degrees 1 and 2, so they can only participate in basic Ritt identities

of the third kind with the quadratic P2. It is easy to obtain the identity

P2 ◦ Cp = “Cp ◦ P2 from C2 ◦ Cp = Cp ◦ C2 and the definition of “Cp. (See the

proof of Proposition 3.13.) �

Next, we generalize Corollary 3.34 to decomposable Chebyshev polynomi-

als.

Lemma 3.36. If A and B are linear, n 6= 2, and B ◦ Cn ◦ A = Cn, then

each of A and B are scalings by ±1.

Proof. Let pk, . . . , p1 be the prime factors of n, with repetitions, with

pk, . . . , pm equal to 2 and the rest odd. Now (B ◦ Cpk , Cpk−1
, . . . , Cp2 , Cp1 ◦A)

must be linearly equivalent to (Cpk , Cpk−1
, . . . , Cp2 , Cp1). Let Lk−1, . . . , L1 wit-

ness this. Induct right-to-left.
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If any pi are odd, then p1 is odd, so in L−1
1 ◦Cp1 ◦A = Cp1 we must have

L1 = A = (·(±1)) by Corollary 3.34. Then at each step, L−1
i ◦ Cp ◦ (·(±1))

forces Li = (·(±1)) (even for p = 2), and finally at the last step, B = (·(±1)).

If all pi = 2, then k ≥ 2. From L−1
1 ◦ C2 ◦ A = C2 we get (using Re-

mark 3.14) that A = (·λ) is a scaling and L−1
1 (x) := 1

λ2
x + 2

λ2
− 2. From the

next step (since k ≥ 2, there is a next step), we see that L1 must also be a

scaling, so λ = ±1 and A is as desired, and L1 = id. Now inducting, at each

step L−1
i ◦ C2 = C2 makes all Li = id, and at the last step, B = id. �

The next lemma is something of a converse to Proposition 3.7.

Lemma 3.37. If a and b are Ritt polynomial and not both type C; L, M ,

and N are linear; and (L◦b◦M−1)◦(M ◦a◦N−1) = d̃◦c̃ is a basic Ritt identity,

then L, M , and N are scalings. Furthermore, there are Ritt polynomial c and d

such that b◦a = d◦ c is another basic Ritt identity, which is linearly equivalent

to the first one and, in particular, (d̃, c̃) is linearly equivalent to (d, c).

Proof. Since a and b are not both type C, one of them must be (linearly

related to, and therefore equal to) a monomial.

If a is a monomial, then M and N must be scalings, since monomials

are not translation related to any other Ritt polynomial. Since both b and

L ◦ b ◦M−1 are Ritt polynomial and M is a scaling, L must also be a scaling

because the equation in Problem 3.16 has no solutions with B 6= 0 = A.

If b is a monomial, then L and M must be scalings. Since both a and

(M ◦ a ◦ N−1) must be Ritt polynomial, either N is a scaling or both a and

(M ◦a◦N−1) must be type A. However (L◦b◦M−1,M ◦a◦N−1) is swappable,

contradicting Remark 3.33.

The “furthermore” clause follows immediately from Proposition 3.7. �

We complete the proof of Theorem 2.50: If two decompositions ~h and ~g

are both obtained from ~f by a Ritt swap at i, then ~h is linearly equivalent

to ~g.

Proof. (This is the proof of Theorem 2.50.) Let us collect and name the

witnesses for the two Ritt swaps at i. That is, for j = 1 or 2, we have linear

polynomials Lj , Mj , and Nj and Ritt polynomial polynomials Gj , Hj , “Gj , and“Hj such that

• Gj = L−1
j ◦ fi+1 ◦Mj ,

• Hj = M−1
j ◦ fi ◦Nj ,

• Gj ◦Hj = “Hj ◦ “Gj is a basic Ritt identity,

• gi+1 = L1 ◦ “H1,

• gi = “G1 ◦N−1
1 ,

• hi+1 = L2 ◦ “H2, and

• hi = “G2 ◦N−1
2 .
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We seek a linear R for which

(L1 ◦ “H1) ◦R = (L2 ◦ “H2) and R−1 ◦ (“G1 ◦N−1
1 ) = “G2 ◦N−1

2 .

Let

L := L−1
2 ◦ L1, M := M−1

2 ◦M1, and N := N−1
1 ◦N1.

Then

L ◦G1 ◦M−1 = G2 and M ◦H1 ◦N−1 = H2.

Applying L2 to the left of the first equation below and N−1
2 to the right of the

second one shows that it is sufficient to find R such that

(L ◦ “H1) ◦R = “H2 and R−1 ◦ (“G1 ◦N−1) = “G2.

Recall that Gj ◦Hj = “Hj ◦ “Gj are basic Ritt identities, so the above equations

are linear relations between Ritt polynomial polynomials.

We claim that R = M−1 always works and is always a scaling. We consider

separately the three cases that none, one, or both of G1 and H1 are monomials.

Since G2 is linearly related to G1, G2 is a monomial if and only if G1 is, and

if both are monomials, then G1 = G2, and similarly for Hi.

(none) In this case, “G1 = G1 = G2 = “G2 and “H1 = H1 = H2 = “H2 are

Chebyshev polynomials of odd degree, since commuting Chebyshevs

are the only basic Ritt identity not involving any monomials. Then by

Corollary 3.34, L, M , and N are scalings by ±1, and R := M−1 works.

(one) This is done in Lemma 3.37, with b := G1, a := H1, with one less

assumption.

(two) In this case, “Gi = Gi and “Hi = Hi are monomials, since this is the only

basic Ritt identity with two monomials on one side. Then R = M−1

works. (In fact, L, M , and N are scalings in this case, as monomials

are not nontrivially translation related to themselves.) �

We end this section with a lemma closely resembling Lemma 3.37. This

time we demand that both, rather than at least one, of the Ritt polynomials

not be type C, but we give more freedom to the linear factors.

Lemma 3.38. Suppose that a and b are Ritt polynomials and neither is

type C; L, M , R, and S are linear; and b̃ := S◦b◦R and ã := M ◦a◦L are Ritt

polynomials ; and b̃ ◦ ã = d̃ ◦ c̃ is a basic Ritt identity. Then L, M , and S are

scalings ; and there are scalars A and λ, and a Ritt polynomial b̂ := b ◦ (+A)

such that b ◦ R = λ ∗ b̂; and for some d and c, b̂ ◦ a = d ◦ c is a basic Ritt

identity. Unless b is type A, A = 0 and b̂ = b.

Proof. Since neither a nor b is type C, M and S must be scalings. If L is

not a scaling, then a and ã must be type A, but this contradicts Remark 3.33.

Thus, L is a scaling, say, by λ, and ã = λ ∗ a.
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Write C = (+A) ◦ (·µ) for scalars A and µ. Then b̂ := b ◦ (+A) is a

monic polynomial scaling related to the Ritt polynomial b̃, so it is itself Ritt

polynomial. Thus if A 6= 0, then b is type A, and in any case b̃ = µ ∗ b̂.
Thus (µ ∗ b̂) ◦ (λ ∗ a) = d̃ ◦ c̃ is a basic Ritt identity. By Proposition 3.7,

there are η and ν such that b̂ ◦ a = (η ∗ d̃) ◦ (ν ∗ c̃) is a basic Ritt identity. �

4. Clusters

In this section, we describe a natural and nearly canonical way to break a

decomposition of a disintegrated polynomial into clusters in a way that controls

the linear factors floating amongst Ritt polynomials and makes it easy to see

what other decompositions can be obtained via sequences of Ritt swaps.

One of our two kinds of clusters is the same as one of the two kinds of

blocks in [21], but our C-free clusters are nothing like their monomial blocks.

Our first use of these clusters is to prove the fundamental Theorem 2.52

for the Ritt monoid action, that titi+1ti? ~f is defined if and only if ti+1titi+1? ~f

is defined. While it follows immediately from [21] that the two are equal when

defined, it is not clear to us whether our stronger result follows from their work.

We end up showing that any polynomial all of whose indecomposable fac-

tors are swappable can be written almost uniquely (not up to permutations!) as

a composition of lower-degree polynomials (compositions of “clusters”) each of

which is linearly related to a (possibly decomposable) Chebyshev polynomial,

or to a composition of several Ritt polynomials, none of them type C.

We do not work out the straightforward generalization that includes de-

compositions with unswappable factors in this analysis by allowing a third kind

of cluster, a single unswappable indecomposable: our case-outs are unwieldy

enough as it is. Corollary 2.73 suffices to characterize (f, g)-skew-invariant

curves when one of f or g polynomials has at least one unswappable factor.

The polynomial then admits a decomposition where linear factors are

collected outside these clusters, Ritt swaps can only take place inside these

clusters, and can always be witnessed (with respect to this decomposition) by

identity linear factors — almost. Factors of degree two are the only source of

ambiguity in choosing these clusters, and one of them is always involved in any

Ritt swap between two clusters.

Further refining our analysis of the linear factors between clusters, we

show that, when the clusters are maximal enough, only one quadratic may

cross the boundary between two clusters, and then only in one direction.

Throughout this section we constantly use the results of the Section 3

without explicit reference.

Definition 4.1. Given a sequence ~f := (fk, . . . , f1) of polynomials and

integers k ≥ b 
 a ≥ 0, we use the following notation:
~f[b,a) :=(fb, fb−1, . . . , fa+1), ~f◦[b,a) :=fb◦fb−1◦· · ·◦fa+1, ~f◦ :=fk◦fk−1◦· · ·◦f1.
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Definition 4.2. Let ~f be a decomposition of a polynomial f .

• If B ◦ ~f◦[b,a) ◦A = Cn is a Chebyshev polynomial for some integer n that

is not a power of 2, and some linear A and B, then ~f[b,a) is a C cluster.

• If ~f[b,a) is linearly equivalent to (B ◦ hb, hb−1, . . . , ha+2, ha+1 ◦ A) for

some linear A and B and some Ritt polynomials hi none of which are

type C, then ~f[b,a) is an C-free cluster.

In either case, ~f[b,a) is a cluster of ~f .

A preclustering of a decomposition ~f is a sequence k = ar > ar−1 > · · · >
a1 > a0 = 0 such that ~f[aj ,aj−1) is a cluster for each j. We say that i is a cluster

boundary of ~a if i = aj for some j.

Definition 4.3. If k = ar > ar−1 > · · · > a1 > a0 = 0 is a preclustering of

a decomposition ~f , the data (hk, . . . , h1;Lk, Lk−1, . . . , L0) is a cleanup of this

preclustering if

(1) (Lk ◦ hk ◦ Lk−1, hk−1 ◦ Lk−2, . . . , h1 ◦ L0) is linearly equivalent to ~f ;

(2) all Li are linear, and Li = id except when i is a cluster boundary of ~a;

(3) inside C clusters (that is, whenever ~f[aj ,aj−1) is a C cluster and aj ≥ i >

aj−1) hi = Cdeg(fi) are Chebyshev polynomials;

(4) inside C-free clusters (that is, whenever ~f[aj ,aj−1) is a C-free cluster and

aj ≥ i > aj−1) hi are Ritt polynomials;

(5) the linear factor Laj to the right of any C-free cluster ~f[aj+1,aj) is a trans-

lation, and if haj+1 ◦ Laj is a Ritt polynomial, then Laj = id.

Remark 4.4. Swappable factors of a decomposition ~f are linearly related

to Ritt polynomials, and the linear factors witnessing this can be gathered

outside clusters in the following somewhat canonical fashion. Applying the

definition of “cluster” to all clusters of a preclustering puts a linear factor on

each side of each cluster. Composing pairs of linear factors that sit between

clusters, we may assume that only the leftmost cluster has a linear factor on the

left of it. To obtain a cleanup, push all scalings through C-free clusters as far

left as possible (Lemma 4.6). Generalizing the results of Section 3 from single

indecomposable factors to clusters (Lemma 4.7 and Lemma 3.36) shows that

these cleanups are essentially unique up to scalings by ±1 (Proposition 4.10).

The decomposition with k = 0 factors, whose clustering has r = 0 clusters

and whose cleanup has no hi and L0 = id, provides a conveniently trivial base

case for proofs by induction on the number of clusters.

Remark 4.5.

(1) A decomposition with an unswappable factor does not admit a clustering.

Dealing with such decompositions is much easier and does not require the

machinery of this section.



INVARIANT VARIETIES FOR POLYNOMIAL DYNAMICAL SYSTEMS 127

(2) If every factor fi of ~f is swappable, then r := k and aj := j is a preclus-

tering of ~f .

(3) All these notions (cluster, preclustering, cleanup) only depend on the linear

equivalence class of the decomposition ~f .

(4) A nonempty subsequence of a cluster is a cluster, unless a C cluster loses

all of its odd-degree factors. That is, if ~f[b,a) is a cluster of ~f and b ≥ b′ >
a′ ≥ a, and ~f[b′,a′) is not a cluster, then ~f◦[b′,a′) is linearly related to C2M

for some M ≥ 1 and the original cluster ~f[b,a) was a C cluster.

(5) If ti ? ~f is defined, then (fi+1, fi) is a cluster.

The next lemma is used to achieve the last part of the definition of

“cleanup.”

Lemma 4.6. Any C-free cluster ~f[b,a) is linearly equivalent to

(B ◦ h̃b, h̃b−1, . . . , h̃a+2, h̃a+1 ◦A)

for some Ritt polynomials h̃i, some linear B, and some translation A such that

h̃a+1 ◦A is a Ritt polynomial only if A = id.

Proof. Take linearA0 andB0 and Ritt polynomials hi from the definition of

C-free cluster. Write A0 :=S0 ◦A1 for a scaling S0 =:(·λ) and a translation A1.

Let S1 := (·λdeg(h)); by Remark 3.5, h̃a+1 := λ ∗ ha+1 = S−1
1 ◦ ha+1 ◦ S0

is a Ritt polynomial. Similarly, there is a scaling S2 such that h̃a+2 := S−1
2 ◦

ha+2 ◦ S1 is Ritt polynomial; and so on until we get ~f[b,a) linearly equivalent

to (B0 ◦ Sb−a ◦ h̃b, h̃b−1, . . . , h̃a+2, h̃a+1 ◦A1). Set B := B0 ◦ Sb−a.
Finally, if h̃a+1 ◦A1 is Ritt polynomial, replace h̃a+1 by h̃a+1 ◦A1, and let

A := id. Otherwise, leave h̃a+1 as is, and let A := A1. �

The next lemma in some sense generalizes the results of Section 3 from

single indecomposable factors to whole C-free clusters; for C clusters, this is

already done in Lemma 3.36. The two are induction steps of the proof of

uniqueness of cleanups in Lemma 4.10.

Lemma 4.7. Suppose that all hi and h̃i are Ritt polynomials, not type C;

that B and B̃ are linear, and A and Ã are translations ; and that

(B ◦ hb, hb−1, . . . , ha+2, ha+1 ◦A)

is linearly equivalent to

(B̃ ◦ h̃b, h̃b−1, . . . , h̃a+2, h̃a+1 ◦ Ã).

Then B = B̃, and hi = h̃i for all i > a + 1, and h̃a+1 ◦ Ã = ha+1 ◦ A.

Furthermore, if ha+1 is not type A, then also h̃a+1 = ha+1 and A = Ã.
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Proof. Let Lb, . . . , La+2 witness linear equivalence:

(B◦hb◦Lb, L−1
b ◦hb−1◦Lb−1, . . . , La+2◦ha+1◦A) = (B̃◦ h̃b, h̃b−1, . . . , h̃a+1◦Ã).

We induct right-to-left from i = a + 2 to show that all Li = id, and for

i > a+ 2, all h̃i−1 = hi−1.

For the base case i = a+ 2, we have

L−1
a+2 ◦ ha+1 ◦A = h̃a+1 ◦ Ã.

Since the right-hand side of the equation is monic, La+2 is a translation. Since

ha+1 is not type C, La+2 = id, so h̃a+1 ◦ Ã = ha+1 ◦A.

For the induction step a+ 1 < i < b, we have Li−1 = id and L−1
i ◦ hi−1 ◦

Li−1 = h̃i−1 with both hi−1 and h̃i−1 Ritt polynomials not type C, so Li = id

and hi = h̃i.

Finally, we have Lb = id and B ◦ hb ◦ L−1
b = B̃ ◦ h̃b, which forces B = B̃

and hb = h̃b. �

Lemma 4.8. Every preclustering admits a cleanup.

Proof. Let k = ar > · · · > a1 > a0 = 0 be a preclustering of a decom-

position ~f , and induct on r the number of clusters. For the trivial base case,

L0 := id is a cleanup of the preclustering with zero clusters of the decomposi-

tion with no factors.

The preclustering k′ := ar−1 > · · · > a1 > a0 = 0 of ~f[k′,0) has one less

cluster, so by induction it admits a cleanup (~h[k′,0); ~L[k′,0])). Let ~h[k,k′) and

linear A0 and B0 witness that ~f[k,k′) is a cluster.

Now ~f is linearly equivalent to (B ◦ hk, hk−1, . . . , hk′+1 ◦ A ◦ Lk′ , hk′ ◦
Lk′−1, . . . , h1 ◦L0). (Here, A and B are A0 and B0 or their inverses, depending

on kind of cluster.) Set Lk := B; replace Lk′ by A ◦ Lk′ ; and, if ~f[k,k′) is a

C-free cluster, apply Lemma 4.6 to (B ◦hk, hk−1, . . . , hk′+1 ◦Lk′) to obtain the

desired cleanup of ~f . �

The next lemma says that cleanups are unique, up to two minor variations

arising from Lemmas 3.36 and 4.7: a translation to the right of a type A factor

is not well defined, and scalings by ±1 can appear and disappear as in the

following remark.

Remark 4.9. Here is what scalings by −1 can do. Suppose that (~h, ~L) is

a cleanup of a preclustering ~a of a decomposition ~f , and that ~f[aj+1,aj) is a C

cluster. A new cleanup (~g, ~M) of ~a can be obtained by introducing a scaling by

−1 into Laj and then pushing it left through the cleanup until it is swallowed

by a factor of even degree or absorbed into the last linear factor of the cleanup.

To state this precisely, let b := aj to lighten notation.

• For i < b, let gi := hi and Mi := Li.
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• Let gb := hb and Mb := (· − 1) ◦ Lb.
• For i > b, let si := deg(~f◦[i,b))). (We only care about its parity.)

• For k > i > b, let Mi := (·−1)◦si ◦Li◦(·−1)◦si and let gi := (−1)si ∗hi.
Finally, let Mk := Lk ◦ (· − 1)◦sk .

Of course, this can happen several times with different starting points b.

Lemma 4.10. Suppose that (~h, ~L) and (~g, ~M) are two different cleanups

of the same preclustering ~a of the same decomposition ~f . Then

(1) gi = (±1) ∗ hi for all i except as in (3) below ;

(2) Mk = Lk ◦ (·(±1)) and Mi = (·(±1)) ◦ Li ◦ (·(±1)) for all i except as

in (3) below ;

(3) if faj+1 is type A, then there is a translation T such that

g̃aj+1 := gaj+1◦T = (±1)∗haj+1 and M̃aj := T−1◦Maj = (·(±1))◦Laj◦(·(±1)).

Remark 4.9 gives more detail about the scalings (·(±1)).

Proof. By definition of cleanup, both (Lk ◦hk ◦Lk−1, hk−1 ◦Lk−2, . . . , h1 ◦
L0) and (Mk◦gk◦Mk−1, gk−1◦Mk−2, . . . , g1◦M0) are linearly equivalent to ~f , so

they are linearly equivalent to each other. Name the linear factors witnessing

this, and then start from the right and induct leftward, exactly as in the proof

of Lemma 4.8.

More formally, induct again on the number of clusters, with the same

trivial base case of the unique cleanup (; id) of the clusterless preclustering of

a decomposition with zero factors. Once again, from the preclustering k =

ar > · · · > a1 > a0 = 0 of the decomposition ~f , we obtain a preclustering

k′ := ar−1 > · · · > a1 > a0 = 0 of ~f[k′,0), with one less cluster.

Now (~g; (E◦Mk′ ,Mk′−1, . . . ,M0)) and (~h; (D◦Lk′ , Lk′−1, . . . , L0)) are both

cleanups of this preclustering of ~f[k′,0) for some linear D and E. Applying the

inductive hypothesis, we get the desired conclusion for hi with i ≤ k′ and Li
with i < k′, and we also get that

(13) E ◦Mk′ = D ◦ Lk′ ◦ (·(±1)).

Finally, the last cluster f[k,k′) is now linearly equivalent to both (Lk ◦
hk, hk−1, . . . , hk′+1 ◦D−1) and (Mk ◦ gk, gk−1, . . . , gk′+1 ◦ E−1).

If this last cluster is a C cluster gi = Cdeg(fi) = hi and Lemma 3.36 gives

Mk = Lk ◦ (·(±1)) and E−1 = D−1 ◦ (·(±1)). This together with equation (13)

gets us the desired conclusion for Mk′ and Lk′ .

If this last cluster is a C-free cluster, then Mk′ and Lk′ are both transla-

tions, so in equation (13) the scaling parts of D and E are off by ±1. That is,

for some scaling S and some translations T and U , we have E−1 = (·±1)◦U ◦S
and D−1 = T ◦S. So now we have (Lk ◦hk, hk−1, . . . , hk′+1 ◦T ) linearly equiva-

lent to (Mk ◦gk, gk−1, . . . , gk′+1 ◦ (·±1)◦U). Once we push the scaling by (±1)
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left through the factors gi, Lemma 4.7 applies, giving us the desired conclusion

for Lk and Mk, and for hi and gi for i 6= k′ + 1. If hk′+1 is not type A, that

lemma also gives the desired conclusion for hk′+1 as well as T = U , which gives

E = (·±1)D, and then the desired conclusion for Lk′ and Mk′ . If hk′+1 is type

A, we fall into case (3) of the conclusion. �

The next proposition says that, for a given preclustering and cleanup, any

Ritt swap inside a cluster can be witnessed by identity linear factors relative

to the factors of that cleanup and so can be accomplished without changing

the linear factors of the cleanup.

Proposition 4.11. Suppose that (~h, ~L) is a cleanup of a preclustering ~a

of a decomposition ~f ; that ti ? ~f is defined ; and that i is not a cluster boundary

of ~a. Then ~a is also a preclustering of ti ? ~f , and it admits a cleanup (~g, ~L)

where gi′ = hi′ for all i′ 6= i, i + 1, and where gi+1 ◦ gi = hi+1 ◦ hi is a basic

Ritt identity.

Proof. Inside a C cluster, all factors are type C or degree two, and we

have shown (Lemma 3.35) that the only Ritt swaps amongst these come from

Cm ◦ Cn = Cn ◦ Cm, which clearly satisfy the conclusion of this proposition.

Inside a C-free cluster, this follows immediately from Lemma 3.37. �

If each decomposition admitted a unique preclustering with maximal clus-

ters, all possible Ritt swaps would be completely described by Proposition 4.11

because of the observation (Remark 4.5(5)) that (fi+1, fi) is a cluster whenever

ti ? ~f is defined. The following example demonstrates how this can fail.

Remark 4.12. Consider ~f := (C3, C2, x
17 · (x2 + 1)). Clearly, 3 > 1 > 0

is a preclustering of ~f , with a cleanup given by hi = fi and Li = id for all i.

But 3 > 2 > 0 is also a preclustering, with a cleanup (C3, x
2, x17 · (x2 + 1);

(id,+(−2), id)). Both Ritt swaps are defined, but for each preclustering, only

one of them is inside a cluster. It is also clear that ~f is not a single cluster.

How clusters might fuse and overlap can be read off easily from the linear

factors in a cleanup. It is not hard to see that two adjacent clusters of the

same kind (both C or both C-free) can be fused into one cluster if and only if

the linear factor between them is identity in some cleanup. It is a good deal

harder to show that a C cluster and a C-free cluster can only fuse when the

C-free cluster is made up of a single factor of degree two. Along the way we

show that two overlapping clusters fuse, unless at least one is a C cluster and

the overlap is a single factor of degree two.

Lemma 4.13. Suppose that (~h, ~L) is a cleanup of a preclustering k > · · · >
c > b > a > · · · > 0 of a decomposition ~f ; that ~f[c,b) and ~f[b,a) are both C-free

clusters ; and their concatenation ~f[c,a) is also a cluster. Then Lb = id and
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(~h, ~L) is also a cleanup of the preclustering k > · · · > c > a > · · · > 0 with the

two clusters fused.

Proof. Since ~f[a,c) is a cluster, k > · · · > c > a > · · · > 0 is indeed a

preclustering of ~f , which admits a cleanup (~g, ~M) withMb = id. Clearly, (~g, ~M)

is also a cleanup of the original preclustering k > · · · > c > b > a > · · · > 0.

Apply Lemma 4.10 to compare the translations Mb and Lb sitting to the right

of the C-free cluster ~f[a,b) in these two cleanups of the original preclustering.

If fb+1 is not type A, part (2) of that lemma immediately gives Lb = Mb. If

fb+1 is type A, part (3) of that lemma gives a translation T such that

gb+1 ◦ T = (±1) ∗ hb+1 and T−1 ◦Mb = (·(±1)) ◦ Lb ◦ (·(±1)).

So gb+1 = ((±1) ∗ hb+1) ◦ T−1 = ((±1) ∗ hb+1) ◦ ((·(±1)) ◦ Lb ◦ (·(±1))) is a

Ritt polynomial. With the more detailed analysis of (·(±1))) in Remark 4.9,

it follows that hb+1 ◦ Lb is a Ritt polynomial, and Lb = id. �

Lemma 4.14. Suppose that (~h, ~L) is a cleanup of a preclustering k >

· · · > c > b > a > · · · > 0 of a decomposition ~f ; that ~f[c,b) and ~f[b,a) are both C

clusters ; and their concatenation ~f[c,a) is also a cluster. Then Lb = (· ± 1).

If Lb = id, then (~h, ~L) is also a cleanup of the preclustering k > · · · > c >

a > · · · > 0 with the two clusters fused. Otherwise, Lb = (· − 1) and a cleanup

of this preclustering may be obtained by pushing the scaling (· − 1) left as in

Remark 4.9.

Proof. As in Lemma 4.13, any cleanup of the new preclustering k > · · · >
c > a > · · · > 0 is also a cleanup of the old preclustering, and applying

Lemma 4.10 to compare the two cleanups of the old preclustering immediately

gives Lb = (· ± 1). �

It is clear that a C cluster cannot merge with a C-free cluster unless all

factors inside the C-free cluster are quadratic. The issue of quadratics is some-

what delicate. The intent of the next definition is that a quadratic needs a

gate in the correct direction to get from one cluster to another.

Definition 4.15. Suppose that (~h, ~L) is a cleanup of a preclustering ~a of a

decomposition ~f . Whether or not there are gates between two of the clusters

depends on the kinds (C or C-free) of the two clusters and the linear factor

between them. Fix aj 6= 0, k, call ~f[aj+1,aj) the left cluster, call ~f[aj ,aj−1) the

right cluster, and let Laj =: L.

• If the left cluster and the right cluster are both C clusters, this preclustering

has

– a left-to-right gate at j if L is a scaling; and

– a right-to-left gate at j if L = Aλ or L = (· − 1) ◦ Aλ for some λ (see

Remark 3.14 for the definition of Aλ).
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• If the left cluster is a C-free cluster and the right cluster is a C cluster, this

preclustering has

– a left-to-right gate at j if L = id and haj+1 is a monomial or a Ritt

polynomial with in-degree greater than 1; and

– a right-to-left gate at j if haj+1 ◦ L ◦ (−2) is a Ritt polynomial.

• If the left cluster is a C cluster and the right cluster is a C-free cluster, this

preclustering has

– a left-to-right gate at j if L is a scaling; and

– a right-to-left gate at j if L = Bλ or L = (· − 1) ◦Bλ for some λ. (See

Remark 3.14 for the definition of Bλ.)

• If both are C-free clusters, then this preclustering has a two-way gate at

j if L = id.

In general, there is a two-way gate whenever there are both a right-to-left

gate and a left-to-right gate. Otherwise, there is a one-way gate.

Gates are a property of a preclustering and decomposition together, but

when ~f is understood, we often say “~a has a such-and-such gate at j,” and

vice versa.

Proposition 4.16. If a cleanup of a preclustering has a two-way gate at

j, then the jth and the (j + 1)st cluster are of the same kind (both C or both

C-free), and the concatenation ~f[aj+1,aj−1) of the two is itself a cluster.

Proof. Between clusters of different kinds, two-way gates are not possible.

If the C cluster is on the left, note that Bλ is never a scaling. If the C cluster

is on the right, note that in order for both haj+1 ◦ L and haj+1 ◦ L ◦ (−2) to

be Ritt polynomials, they must be type A, but that is incompatible with the

“monomial or nontrivial in-degree” part of the definition.

Between two C-free clusters, a two-way gate means that the linear factor

Laj is identity by definition. Between two C clusters, a two-way gate means

that Laj is both a scaling and (·(±1)) ◦ Aλ for some λ, which is only possible

for Laj = (·(±1)), which can then be absorbed into or passed through the left

C cluster. �

Lemmas 4.13 and 4.14 give the converse of Proposition 4.16.

Lemma 4.17.

(1) Gates are properties of the preclustering, independent of the cleanup.

(2) In Proposition 4.11, the preclustering of the pre-swap decomposition and

the preclustering of the post-swap decomposition obtained there have gates

in the same places, in the same directions.

Proof. For the first part, it is easy to see that the definition of gates is

invariant under the few ways listed in Lemma 4.10 for two cleanups of the same

decomposition to differ from each other.
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For the second part, recall that the kinds (C or C-free) of clusters and

the linear factors of the cleanup do not change in Proposition 4.11. Thus,

continuing to use the notation from the definition of gates, the only case that

needs any work is when the left cluster is a C-free cluster and the right cluster

is a C cluster, and (faj+2, faj+1) are the factors involved in the Ritt-swap.

By Remark 3.33, the (aj+1)st factors haj+1 of the pre-swap decomposition

and gaj+1 of the post-swap decomposition are not type A. So for fixed linear

M , haj+1◦M is a Ritt polynomial if and only if M = id, if and only if gaj+1◦M
is a Ritt polynomial. �

Lemma 4.18. If ~a is preclustering of a decomposition ~f , then for any

linear M and N , ~a is also a preclustering of the decomposition ~g := (N ◦
fk, fk−1, . . . , f2, f1 ◦M), with the same kinds of gates in the same places.

Proof. For any b and c, it follows immediately from the definition of “clus-

ter” that ~g[c,b) is a cluster if and only if ~f[c,b) is a cluster, so ~a is also a preclus-

tering of ~g. It clearly suffices to prove that the gates remain the same in two

special cases, when both M and N are scalings, and when both M and N are

translations. Let (~h, ~L) be a cleanup of ~f .

If both M and N are translations, then one of (~h; (N ◦ Lk, Lk−1, . . . L1,

L0 ◦M) or ((hn, . . . h2, h1 ◦ L0 ◦M); (N ◦ Lk, Lk−1, . . . L1, id)) is a cleanup of

~g. Since the two outside linear factors Lk and L0 do not contribute to gates in

any way, ~g obviously has the same gates as ~f .

If both M := (·λ) and N are scalings, then a cleanup of ~g is obtained by

pushing M left through (~h, ~L) until it hits a C cluster or the leftmost linear

factor Lk, as in the proof of the existence of cleanups (Lemma 4.8). That is,

the linear factors L′i of the new cleanup of ~g will be given by L′i := µi ∗ Li for

i < j0, L′j0 := Lj0 ◦ (·µj0), and L′i := Li for i > j0, where j0 is the index of the

rightmost C cluster of ~f , or j0 = k if ~f has no C clusters; and µi are integer

powers of λ.

The cluster boundaries with j > j0 are clearly unaffected. The cluster

boundaries j < j0 lie between two C-free clusters, so ~f has a gate at j if

and only if Laj = id, if and only if µaj ∗ Laj = id, if and only if ~g also has

a gate at j. If j0 is a cluster boundary, then it has a C cluster on the left

and a C-free cluster on the right. Thus ~f has a left-to-right gate at j0 if

and only if Laj0 is a scaling, if and only if Laj0 ◦ (·µaj0 ) is a scaling, if and

only if ~g also has a left-to-right gate at j. Similarly, ~f has a right-to-left

gate at j0 if and only if Laj0 = Bν = (−2) ◦ (· 1
ν2

) for some ν, if and only if

Laj0 ◦ (·µaj0 ) = (−2) ◦ (· 1
ν2

) ◦ (·µaj0 ) = Bν′ for ν ′ := ν√
µaj0

, if and only if ~g also

has a right-to-left gate at j. �
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Definition 4.19. If there is a left-to-right gate at j and faj+1 is quadratic,

or if there is a right-to-left gate at j and faj is quadratic, we say that this

quadratic is a wandering quadratic.

If the wandering quadratic fi is a whole cluster (that is, aj = i and aj−1 =

i− 1 for some j ), then fi is a fake wandering quadratic of this preclustering.

Otherwise, it is a semi-persistent wandering quadratic.

A one-way gate with no fake wandering quadratics next to it is a semi-

persistent one-way gate.

Remark 4.20. Like gates, fake and semi-persistent wandering quadratics

and semi-persistent one-way gates are properties of the preclustering, indepen-

dent of the cleanup.

A straightforward exercise in matching Remark 3.14 with the definition

of gates shows that the concatenation of a cluster f[b,a) and an adjacent qua-

dratic factor fa (respectively, fb+1) is a cluster if and only if any preclustering

of ~f with aj+1 = b and aj = a has a right-to-left gate at j (respectively, a

left-to-right gate at j + 1). This implies that the adjacent factor is a wander-

ing quadratic. Almost conversely, if the adjacent factor is a semi-persistent

wandering quadratic, then the concatenation is a cluster.

Lemma 4.21. If faj (respectively, faj+1) is a semi-persistent wandering

quadratic of a preclustering ~a of a decomposition ~f , then ~b given by bj := aj−1

(respectively, bj := aj + 1) and bi = ai for all i 6= j is another preclustering of
~f . For any cleanup (~h, ~L) of ~a, there is a cleanup (~g, ~M) of ~b with gi = hi for

i 6= j (respectively, i 6= j + 1) and with Mi = Li for i 6= j − 1, j (respectively,

for i 6= j, j + 1). In particular, ~a and ~b have the same gates at all j′ 6= j.

Proof. First, we show that all ~f[bi,bi−1) are clusters. One of these is the

concatenation of a cluster of ~a and an adjacent semi-persistent wandering qua-

dratic of ~a, so it is a cluster by Remark 4.20. Another is a cluster of ~a that lost

a semi-persistent wandering quadratic, so it is nonempty by semi-persistence

and a cluster by Remark 4.5. The rest are clusters of ~a.

The rest of the proof is the same straightforward exercise in matching

Remark 3.14 with the definition of gates as in the second part of Remark 4.20.

�

The next lemma somewhat justifies the terminology “semi-persistent.”

Lemma 4.22. Suppose that two preclusterings ~a and ~b of the same decom-

position ~f only differ at one place j and only by 1; that is,

k = ar = br > · · · > aj+1 = bj+1 > bj = aj + 1 > aj > aj−1

= bj−1 > · · · > a0 = b0 = 0.
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Then ~a and ~b agree on whether the contested factor fbj is a wandering qua-

dratic; and if it is, they also agree on whether the gate at j is one-way or

two-way. Of course, if the gate is one-way, it goes in different directions for

the two preclusterings.

Proof. Since aj+1 = bj+1 > bj = aj + 1 > aj , the contested factor fbj is

semi-persistent if it is a wandering quadratic. This keeps other nontrivial linear

factors of the cleanup from interfering. This proof is another straightforward

exercise in matching Remark 3.14 with the definition of gates. �

We now return to the question of fusing and overlapping clusters. The next

Lemma 4.23 serves two purposes. First, it describes a way for the concatenation

of a C cluster and a C-free cluster to be itself a cluster. Lemma 4.24 asserts

that this is the only way. Second, Lemma 4.23 states that if the concatenation

of two clusters is not a cluster, but a quadratic factor can enter one cluster

from the other, then a gate in the correct direction must be present at this

cluster boundary in the original preclustering, and a gate in the other direction

is present in the new preclustering; thus, no other quadratic can follow this

one. A similar result is mentioned on page 4 of [21] but is not explicitly stated

as a theorem in the text.

Lemma 4.23. Fix a preclustering ~a of a decomposition ~f , and suppose

that the concatenation of a C cluster and an adjacent factor fi is a cluster.

Then either fi is a wandering quadratic, or it comes from another C cluster,

and the concatenation of these two clusters is itself a cluster.

Proof. To state the lemma more precisely and less readably, let c := aj+1,

b := aj , and a := aj−1 to lighten notation. The lemma then says:

If ~[c, b) is a C cluster and the concatenation ~f[c,b−1) of it and the next

factor fb is a cluster, then one of the following happens.

(1) The whole concatenation ~f[c,a) of the two clusters if itself a cluster; the

other cluster ~[b, a) either is a C cluster, or has only one (quadratic)

factor so b = a+ 1.

(2) The factor fb is a semi-persistent wandering quadratic, and Lemma 4.22

applies to the original preclustering and the preclustering k > · · · >
c > b− 1 > a > · · · > 0.

Similarly, if ~f[b,a) is a C cluster and the concatenation ~f[b+1,a) of it and

the next factor fb+1 is a cluster, then either the whole ~f[c,a) is a cluster and

the other cluster ~f[c,b) is a C cluster or a single quadratic factor; or fb+1 is a

wandering quadratic next to a one-way gate in both preclusterings.

The new factor fb or fb+1 joining the C cluster must be type C or quadratic.

A type C factor must come from a C cluster, and then the whole ~f[c,a) is a cluster
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by Lemma 4.14 and Proposition 4.16. For the rest of the proof, we assume

that the new factor is quadratic, and a wandering quadratic by the first part

of Remark 4.20.

If the gate next to this wandering quadratic is two-way, by Proposition 4.16

the other cluster must be a C cluster, and the whole ~f[c,a) is a cluster.

If the new quadratic factor is a fake wandering quadratic (that is, a whole

cluster), the whole ~f[c,a) is precisely the thing assumed to be a cluster in the

first place. �

Lemma 4.24. Fix a preclustering ~a of a decomposition ~f , and suppose

that the concatenation of a C cluster and more than one factor of a neighboring

cluster is itself a cluster. Then the concatenation of these two clusters is itself

a cluster, and the other cluster is a C cluster.

Proof. Again, let c := aj+1, b := aj , and a := aj−1 to lighten notation.

Suppose the new factors fb, . . . , fb′+1 are to the right of the C cluster ~f[c,b), all

inside the next cluster ~f[b,a). The other case, when the new factors are to the

left of the C cluster, is essentially identical.

Note that ~f[c,d) is a C cluster for any d with b ≥ d ≥ b′, because it sits

inside a C cluster and has a C cluster sitting inside it.

In particular, the concatenation ~f[c,b−1) of the C cluster ~f[c,b) and one

factor fb is a cluster, so Lemma 4.23 applies. If the other cluster ~f[b,a) is a C

cluster and the concatenation ~f[c,a) is a cluster, we are done.

Otherwise, fb is a wandering quadratic and we work toward a contradic-

tion. Since more than one factor from ~f[b,a) does something in the hypothesis of

this lemma, fb cannot be fake and must be a semi-persistent quadratic. Thus

the new preclustering k = ar > · · · > aj+1 > aj − 1 > aj−1 > · · · > a0 = 0

from Lemma 4.22 has a one-way left-to-right gate at j. More than one factor

from ~f[b,a) joins ~f[c,b), so ~f[c,b−2) must also be a cluster. If fb−1 is quadratic,

then by Remark 4.20 there must be a right-to-left gate at j, a contradiction.

If fb−1 is not quadratic, then Lemma 4.14 implies that there is a two-way gate

at j, also a contradiction. �

Lemma 4.25. Fix a decomposition ~f . If two clusters overlap, that is, ~f[d,b)

and ~f[c,a) are both clusters with d > c > b > a, then either the whole ~f[d,a) is a

cluster, or one of the clusters is a C cluster and c = b + 1 and fb+1 = fc is a

semi-persistent wandering quadratic of every preclustering · · · d > c > a > · · ·
of ~f .

Proof. Consider the three pieces ~f[d,c), ~f[c,b), and ~f[b,a). If both original

clusters ~f[d,b) and ~f[c,a) are C-free clusters, then all three of those pieces are

C-free clusters, and Lemma 4.13 forces the whole ~f[d,a) to be a C-free cluster.



INVARIANT VARIETIES FOR POLYNOMIAL DYNAMICAL SYSTEMS 137

If both ~f[d,b) and ~f[c,a) are C clusters and the middle piece ~f[c,b) is a C

cluster, then the whole ~f[d,a) is a cluster by Lemma 4.14.

The only possibility left is that at least one of ~f[d,b) and ~f[c,a) is a C cluster,

but the middle piece ~f[c,b) is not a C cluster. We handle the case when ~f[d,b) is

a C cluster; the other case is identical.

Since ~f[c,b) sits inside a C cluster but is not a C-cluster itself, it must be

linearly related to C2M for some M . Thus the leftover f[d,c) of the C cluster

f[d,b) is still a C cluster. If M ≥ 2, this C cluster f[d,c) absorbs more than one

factor from the adjacent cluster f[c,a), so by Lemma 4.24, f[c,a) is again a C

cluster and the whole ~f[d,a) is a cluster. The case M = 1 is precisely the last

option in the conclusion of this lemma. �

The next definition characterizes preclusterings that have as few clusters

as possible. The next few results build up to show that this minimal number of

clusters, as well as the presence or absence of a gate at each cluster boundary,

are properties of a polynomial, independent of decomposition; and that clus-

ter boundaries can only change by 1 between two clusterings, and then only

because of quadratic factors.

Definition 4.26. A preclustering ~a of ~f is a clustering if

• the concatenation of any two adjacent clusters is not a cluster, and

• no cluster consists of only wandering quadratics.

(The second part is only relevant for clusters with exactly two factors.)

Remark 4.27. The second part of the definition of “clustering” can be

replaced by

• No cluster with exactly two factors can be devoured by adjacent clus-

ters: if ai = ai−1 + 2, then ~f[ai+1,ai−1) and ~f[ai−1,ai−2) are not both

clusters.

It follows from the first part of the definition of “clustering” that if this con-

dition is violated, both factors of the violating cluster must be wandering

quadratics. The advantage of this formulation is that it is entirely in terms of

which ~f[c,b) are clusters.

Lemma 4.28. If ~a is clustering of a decomposition ~f , then for any linear

M and N , ~a is also a clustering of the decomposition

~g := (N ◦ fk, fk−1, . . . , f2, f1 ◦M).

Proof. By Lemma 4.18, ~a is a preclustering of ~g. As noted in the proof of

that lemma, for any b and c, ~g[c,b) is a cluster if and only if ~f[c,b) is a cluster.

As noted in Remark 4.27, this suffices to show that ~a is a clustering of ~g. �
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Remark 4.29. By Proposition 4.16, there are no two-way gates in a clus-

tering. Thus, between two C-free clusters of a clustering, there are neither

gates nor wandering quadratics. There are no fake wandering quadratics in a

clustering. Thus, all gates in a clustering are semi-persistent one-way gates.

Lemma 4.30. If all factors of ~f are swappable, then ~f admits a clustering.

Proof. We already know that ~f admits a preclustering, so take one, and

induct on the number of clusters in it: with Remark 4.27, it is clear how to

rectify a violation of either of the two extra requirements of a clustering, and

both decrease the number of clusters. �

Lemma 4.31. Suppose that ~a is a clustering of ~f , that i is not a cluster

boundary of ~a, and that ~g := ti ? ~f is defined. Then ~a is also a clustering of ~g.

Proof. By Proposition 4.11, ~a is a preclustering of ~g. The rest is trivial. �

Lemma 4.32. If faj (respectively, faj+1) is a wandering quadratic of a

clustering ~a of a decomposition ~f , then ~b given by bj := aj − 1 (respectively,

bj := aj + 1) and bj′ = aj′ for all j′ 6= j is another clustering of ~f . For each

j′, either both clusterings have a gate at j′, or neither has a gate at j′.

Proof. We first show that ~b is a preclustering of ~f , then that ~b has gates

in the same places as ~a, and then that ~b is a clustering.

By Remark 4.29, the clustering ~a has no two-way gates and no fake wan-

dering quadratics, so faj (respectively, faj+1) is a semi-persistent wandering

quadratic of ~a. Then ~b is a preclustering of ~f by Lemma 4.21 and has the same

gates as ~a by Lemmas 4.21 and 4.22. It remains to show that ~b is a clustering.

We first show that for every i, the factor fi is a wandering quadratic of

~a if and only if it is a wandering quadratic of ~b. For i = aj (respectively,

i = aj + 1), this is Lemma 4.22. For all other cluster boundaries, this is

Lemma 4.21. It is clear that the two factors adjacent to faj (respectively,

faj+1) are not wandering quadratics of ~b, so it remains to show that they are

not wandering quadratics of ~a. By Remark 4.29, the clustering ~a has no two-

way gates and no fake wandering quadratics, so faj+1 (respectively, faj ), the

factor on the other side of the cluster boundary, is not a wandering quadratic

of ~a. Since the jth (respectively, (j + 1)st) cluster of ~a does not consist of

two wandering quadratics, faj−1 (respectively, faj+2) is also not a wandering

quadratic of ~a. From now on we say “wandering quadratic” without specifying

~a or ~b.

Let us now verify the two parts of the definition of clustering for the two

clusters of ~b that differ from those of ~a. We handle the case when faj+1 is the

wandering quadratic; the other case is analogous.
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Two instances of the second part of the definition of clustering need to be

verified.

• Since the jth cluster ~f[aj ,aj−1) of ~a is not a single wandering quadratic, the

jth cluster ~f[aj+1,aj−1) of ~b does not consist of two wandering quadratics.

• We have already shown that the rightmost factor fbj+1 = faj+2 of the

(j + 1)st cluster of ~b is not a wandering quadratic.

Three instances of the first part of the definition of clustering need to be

verified.

• The concatenation ~f[aj+1,aj−2) of the jth and the (j−1)st clusters of~b is not

a cluster because it is the concatenation of the quadratic fbj = faj+1 and
~f[aj ,aj−2), and this ~f[aj ,aj−2) is not a cluster because it is the concatenation

of the corresponding clusters of ~a.

• The concatenation of the (j + 1)st and the jth clusters of ~b is exactly the

same as the concatenation of the (j+ 1)st and the jth clusters of ~a, so it is

not a cluster.

• If the concatenation ~f[aj+2,aj+1) of the (j + 2)nd and the (j + 1)st clus-

ters of ~b is a cluster, then it overlaps the (j + 1)st cluster ~f[aj+1,aj) of ~a

in ~f[aj+1,aj+1). We have already shown that the rightmost factor of this

overlap faj+2 is not a wandering quadratic, so by Lemma 4.25 the concate-

nation ~f[aj+2,aj) of these overlapping clusters is itself a cluster. But that is

also the concatenation of two clusters of ~a, which cannot be a cluster. �

Proposition 4.33. Suppose that ~a is a clustering of ~f . If (faj+1, faj )

is a cluster and one of faj+1 and faj is not quadratic, then the other one of

faj+1 and faj is a semi-persistent wandering quadratic, and one of the clusters
~f[aj+1,aj) and ~f[aj ,aj−1) is a C cluster.

Proof. Lemma 4.25 applies to the clusters ~f[aj+1,aj) and (faj+1, faj ) that

overlap in faj+1. If faj+1 is a wandering quadratic and ~f[aj+1,aj) is a C cluster,

we are done. If faj+1 is a wandering quadratic and (faj+1, faj ) is a C cluster,

then faj is type C, so ~f[aj ,aj−1) is a C cluster, and we are done. Otherwise, the

whole ~f[aj+1,aj−1) is a cluster.

Now Lemma 4.25 applies to this ~f[aj+1,aj−1) and ~f[aj ,aj−1), which overlap

in faj . The whole ~f[aj+1,aj−1) is the concatenation of two clusters of ~a, so it

cannot be a cluster. Thus faj is a wandering quadratic and one of ~f[aj+1,aj−1)

and ~f[aj ,aj−1) is a C cluster. It is easy to see that ~f[aj+1,aj) is a C cluster

whenever ~f[aj+1,aj−1) is, so we are done in either case. �
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Lemma 4.34. If ~a is a clustering of ~f and taj ?
~f = ~g is defined, then there

is a clustering ~b of ~g with bj′ = aj′ for all j′ 6= j. At each j′ 6= j, the clustering

~a of ~f and the clustering ~b of ~g have the same gate(s). As for bj , either

• faj+1 is a wandering quadratic of the clustering ~a of ~f , and bj := aj + 1,

and the clustering ~b of ~g has a one-way right-to-left gate at bj ; or

• faj is a wandering quadratic of the clustering ~a of ~f , and bj := aj−1, and

the clustering ~b of ~g has a one-way left-to-right gate at bj .

Proof. As noted in Remark 4.5, since taj ?
~f is defined, (fai+1, fai) is a

cluster. As tautological Ritt swaps are not permitted, faj+1 and faj are not

both quadratic. By Proposition 4.33 one of fai+1 and fai is a semi-persistent

wandering quadratic. By Lemma 4.32, ~b is a clustering of ~f . Since aj is not

a cluster boundary of ~b, by Lemma 4.31, ~b is also a clustering of ~g. By the

second part of Lemma 4.17, ~f and ~g have the same gates in the same places

with respect to ~b. �

With the next lemma and proposition we show that two clusterings of

the same decomposition can only differ by putting wandering quadratics into

different clusters.

Lemma 4.35. Any two clusterings ~a and ~b of the same decomposition ~f

have the same number of clusters. For each j, either bj = aj − 1 (respectively,

bj = aj + 1) and faj (respectively, faj+1) is a wandering quadratic of both, or

bj = aj . At each j, either both clusterings have a gate at j, or neither has a

gate at j.

Proof. Let ~a of length r and ~b of length s be two clusterings of the same

decomposition ~f . Intuitively, we start from the right and match clusters of ~b

with those of ~a one at a time. More formally, we induct on the number r of

clusters in ~a. For the base case of the induction, take r = 1, i.e., the whole

decomposition is a single cluster; clearly, no other clustering is possible.

For the induction step, we first match the rightmost clusters of the two

clusterings; that is, we show that k = ar > · · · > a2 > b1 > b0 = a0 = 0 is

another clustering of ~f , with gates at the same places as ~a. If a1 = b1, we are

done. Suppose that b1 > a1. Since the concatenation ~f[a2,a0) of the first two

clusters of ~a is not a cluster, and ~f[a2,a1) is not a single wandering quadratic,

this ~f[a2,a0) cannot be contained in the first cluster of ~b. That is, a2 > b1.

Applying Lemma 4.25 to ~f[a2,a1) and ~f[b1,b0), we see that b1 = a1 + 1 and fb1
is a wandering quadratic of ~a. Identical reasoning shows that if a1 > b1, then

a1 = b1 + 1 and fa1 is a wandering quadratic of ~a. In any case, Lemma 4.32

makes k = ar > · · · > a2 > b1 > b0 = a0 = 0 another clustering of ~f , with

gates at the same places as ~a.
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Now~b′ := (bs−b1, . . . , b2−b1, 0 = b1−b1) and ~a′ := (ar−b1, . . . , a2−b1, 0 =

b1−b1) are both clusterings of ~f[k,b1), so by induction hypothesis, ′s−1 = r−1,

and ~b′ and ~a′ have gates at the same boundaries, which finishes the proof. �

Proposition 4.36. Given a clustering ~a of ~f , another tuple ~b of the same

length as ~a is a clustering of ~f if and only if for each j where aj 6= bj , there is

a wandering quadratic fi such that {aj , bj} = {i, i+ 1}.

Proof. The “if” follows from applying Lemma 4.32 at each j where aj 6= bj .

The “only if” follows immediately from Lemma 4.35. �

Theorem 4.37. The number of clusters in a clustering, the kind (C or

C-free) of each cluster, and the presence of a gate between the jth and the

(j+1)st clusters are properties of the polynomial, independent of decomposition,

clustering, and cleanup.

Proof. It suffices to show that these are invariant under Ritt swaps, and

we have in fact already done so. Suppose that ~f and ~g := ti ? ~f are two

decompositions of the same polynomial and ~a is a clustering of ~f .

If i 6= aj for any j, Lemma 4.31 shows that ~a is also a clustering of ~g, and

Lemma 4.17 shows it has all the same gates in the same places. Wandering

quadratics are unchanged from ~f to ~g unless the swap brings a quadratic to a

gate or moves a quadratic inside a cluster away from the gate.

If i = aj for some j, then Lemma 4.34 shows that Lemma 4.23 applies and

gives a clustering of ~g with aj moved left or right by one; in any case, gates in

this new clustering are the same as in the old clustering, except that the one

at j switches direction. �

The next few results begin to apply the technical machinery around clus-

terings to the action of the Ritt monoid.

Lemma 4.38. If ti+1?~f and ti?~f are both defined, then either (fi+2,fi+1,fi)

is a cluster, or fi+1 is a wandering quadratic (in any clustering of ~f ).

Proof. As remarked in Remark 4.5, both (fi+2, fi+1) and (fi+1, fi) must

be clusters, and Lemma 4.25 finishes the proof. �

Lemma 4.39. If titi+1ti ? ~f (respectively, ti+1titi+1 ? ~f ) is defined, then

(fi+2, fi+1, fi) is a cluster.

Proof. Note that in either sequence, each factor swaps with every other

factor. So as long as at least one of the two is defined, all of fi, fi+1, and fi+2

are swappable, and no more than one is quadratic.

Lemma 4.38 applies to the first intermediate decomposition ~g := ti ? ~f

(respectively, ~g := ti+1 ? ~f). If ~g is a cluster, we are done. Otherwise, the

second intermediate decomposition ~h := ti+1ti ? ~f (respectively, ~h := titi+1 ? ~f)
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has a cluster boundary between hi+1 and hi (respectively, hi+2 and hi+1), and

neither one of these is quadratic, so the last swap ti ?~h (respectively, ti+1 ?~h)

is not defined. �

Our fundamental Theorem 2.52 is now an easy corollary.

Proof. (This is the proof of Theorem 2.52.) We need to show that ti+1titi+1

? ~f is defined if and only if titi+1ti ? ~f is defined, and they are equal when de-

fined.

By Lemma 4.39, the whole (fi+2, fi+1, fi) must be a cluster, so Ritt swaps

can be witnessed by identity linear factors, and the result is immediate. �

Let us prove two more statements of this flavour, with a view towards

normal forms.

Proposition 4.40. Suppose that ~h := (tk−1tk−2 · · · t1) ? ~f is defined, and

let ~a be a clustering of ~f with r > 1 clusters. Then f1 is quadratic and there

are (one-way) right-to-left gate at every j 6= 0, r. Furthermore, ~b given by

bj = aj − 1 for all j 6= 0, r is a clustering of ~h, which has (one-way) left-to-

right gates at every j 6= 0, r.

Proof. If k = 2 and t1 ? ~f is defined, then the whole ~f is a cluster by

Remark 4.5, contradicting the hypothesis that r > 1. So k − 1 ≥ 2.

For 0 ≤ i < k, let ~f i := (titi−1 . . . t1) ? ~f . We inductively define cluster-

ings ~ai of ~f i, starting with ~a0 = ~a. As long as i is not a cluster boundary,

Lemma 4.31 applies to ti ? ~f
i−1 = ~f i, so ~ai := ~ai−1 works. In particular, ~a is

still a clustering of ~fa1−1.

Since both ta1 ?
~fa1 and ta1+1 ? ~f

a1 are defined, by Lemma 4.38, either

(fa1a1+2, f
a1
a1+1, f

a1
a1 ) is a cluster, or fa1a1+1 is a wandering quadratic. The first

option is impossible, as it would force the first two clusters of ~fa1 to fuse

(Lemma 4.25).

Since f1 becomes fa1a1+1 via ~fa1 = ta1 . . . t1 ?
~f in the sense of Remark 2.46,

f1 must also be quadratic. Since f1 becomes f i−1
i via ~f i := (titi−1 . . . t1) ? ~f in

the same sense, f i−1
i are also quadratic for each i.

We now continue to inductively define clusterings ~ai of ~f i. If i is not

a cluster boundary of ~ai−1, then Lemma 4.31 applies to ti ? ~f
i−1 = ~f i, so

~ai := ~ai−1 works. If i = ai−1
j is a cluster boundary of ~ai−1, then Lemma 4.34

applies to ti? ~f
i−1 = ~f i. We already know that f i−1

i is quadratic, so the second

option in Lemma 4.34 happens. (The first option cannot happen because at

most one factor in a Ritt swap can be quadratic.) Thus, ~ai with aij = ai−1
j − 1

and aij′ = ai−1
j′ for all j′ 6= j is a clustering of ~f i. It is now clear that ~b := ~ak−1

is as wanted. �
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Lemma 4.41. Suppose that k ≥ 3, let v1 := tk−1tk−2 · · · t2 and v2 :=

tk−2tk−3 · · · t1, and suppose that v2v1 ? ~f is defined. Then the whole ~f is a

cluster, unless k = 3 and f3 is quadratic.

Proof. Let ~g := v1 ? ~f , and note that Proposition 4.40 applies to both

(1) vi ? ~f[k,1) = ~g[k,1) and (2) v2 ? ~g[k−1,0). If f1 = g1 is not quadratic, (2)

makes ~g[k−1,0) a cluster. If f2 is not quadratic, (1) makes both ~g[k,1) and ~h[k,1)

a cluster. If either f1 or f2 is quadratic, then none of the other factors fi with

i ≥ 3 are quadratic, since we do not allow tautological Ritt identities.

We now treat the four cases separately.

Case 1. If neither f1 nor f2 is quadratic, then Lemma 4.25 applies to the

clusters ~g[k−1,0) and ~g[k,1). If ~g is a cluster, then so is ~f . Otherwise, the overlap

~g[k−1,1) is a single quadratic g2, so k = 3, v1 = t2, and f3 is quadratic.

Case 2. Suppose f1 = g1 is not quadratic but f2, and therefore gk, is. Now

(gk−1, . . . , g2, g1 = f1) is a cluster. On the other hand, tk−1~g = tk−2 · · · t2 ? ~f
is defined, so (gk, gk−1) is also cluster, and gk−1 is not quadratic. Then by

Lemma 4.25 the whole ~g (and, therefore, ~f) is a cluster as desired.

Case 3. Suppose f1 = g1 is quadratic but f2, and therefore gk, is not. Now

(gk, . . . , g2) is a cluster. But v2 ?~g is defined, so t1 ?~g is defined, so (g2, g1) is a

cluster. Since g2 is not quadratic, by Lemma 4.25 the whole ~g (and, therefore,
~f) is a cluster as desired.

Case 4. Finally, suppose that both f1 and f2 are quadratic. If (fk, . . . , f3)

is not a cluster, according to Proposition 4.40 there must be a right-to-left gate

at every boundary between clusters inside there, which becomes a one-way left-

to-right in the corresponding place in (gk−1, . . . , g2). That, according to the

same proposition, makes it impossible for v2 ? ~g to be defined. So (fk, . . . , f3)

is a cluster. Since t2 ? ~f is defined, (f3, f2) is also a cluster. Since f3 is not

quadratic, this makes (fk, . . . , f2) a cluster. Then (gk, . . . , g2) is also a cluster.

Since t1 ? ~g is defined, (g2, g1)) is a cluster. Since g2 is not quadratic, this

means the whole ~g is a cluster. So ~f is a cluster. �

5. Canonical forms

Much of this section is devoted to using syntactic operations on words in

the Ritt monoid RMk that appear in Theorem 2.52 to show that any decom-

position of a polynomial may be obtained from any other by a sequence of Ritt

swaps in a particular canonical order. The words in the Ritt monoid RMk

corresponding to such sequences are said to be in a canonical form.

If one thinks of permuting factors as putting them in a particular order,

then our first canonical form roughly corresponds to an insert-sort, and the
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second one to a merge-sort. While it is well known that every permutation is

represented by a sequence of transpositions of each of these forms, we could

not find a reference in the literature for the more refined results taking into

account the irreversibility of operation (1) in Remark 5.1 below.

For each of our two canonical forms, we show (see Propositions 5.11 and

5.15) that for any word w ∈ RMk, there is a word ŵ of this canonical form

such that whenever w ? ~f is defined, ŵ ? ~f = w ? ~f . For example, for w = titi,

we set ŵ to be the empty word.

While it is convenient to speak of the factors of ~f in the statements and

proofs of intermediate results, the canonical word ŵ ultimately only depends

on w and works for all ~f .

Remark 5.1. Recall the three syntactic operations on words in the Ritt

monoid RMk from Theorem 2.52.

(1) Delete subword titi.

(2) Replace subword titj by tjti for nonconsecutive i and j.

(3) Replace subword ti+1titi+1 by titi+1ti, or vice versa.

Operations (2) and (3) are reversible, while (1) is not. Operation (1) decreases

the length of the word, while (2) and (3) leave it the same.

Remark 5.2. If a word v is obtained from a word w by operations (1), (2)

and (3) above, then they represent the same permutation (see Definition 2.51),

the length of v is less than or equal to the length of w, and for any decompo-

sition ~f , if w ? ~f is defined, the v ? ~f = w ? ~f . It may be that v ? ~f is defined

while w ? ~f is not.

If v and w also have the same length or, equivalently, if one was obtained

from the other by operations (2) and (3) alone, then v ? ~f = w ? ~f for all ~f .

These observations motivate the following definitions.

Definition 5.3. If two words v, w ∈ RMk can be obtained from each other

by operations (2) and (3) above, we write w ' v. A word w ∈ RMk is length-

minimal if no strictly shorter word v may be obtained from w by operations

(1), (2), and (3) above.

Remark 5.4. This notion of equivalent words, only used in this section,

is stronger than ≈ in Definition 2.65. For example, they disagree on the pair

titjtjtj and titititj for j 6= i − 1, i, i + 1. By Theorem 2.52, v ' w implies

v ≈ w.

Instead of inducting on the length of w, we begin most proofs in this

section with replacing w by some length-minimal word that can be obtained

from it by operations (1)–(3), and then we reach a contradiction every time

we get a chance to cancel titi.
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Remark 5.5. Let t, u, v be words in the Ritt monoid. If w′ = tuv is length-

minimal, then u is length-minimal.

We use the same interval-subscript notation for long sequences of ti as we

did for long sequences of fi. These intervals may be increasing or decreasing,

and open or closed on either end.

Definition 5.6.

• If a < b, then t(a,b] = t[a+1,b] = t(a,b+1) = t[a+1,b+1) := ta+1ta+2 · · · tb. A

word of this form is a left-to-right transit.

• If a > b, then t(a,b] = t[a−1,b] = t(a,b−1) = t[a−1,b−1) := ta−1ta−2 · · · tb. A

word of this form is a right-to-left transit.

• If a = b, then t[a,b] := ta = tb, while t(a,b] = t[a,b) = t(a,b) is the empty word.

Transits are so named because, for example, when a > b, in t(a,b] ? ~f = ~g

one factor fb “travels” left from its original bth position to become (in the sense

of Remark 2.46) the factor ga in ath position in ~g.

The following generalizations of operation (3) are useful. The last one

says that if two adjacent factors fa and fa−1 travel some number of steps to

the left and then switch places, they could just as well have switched places

first and traveled later.

Lemma 5.7.

• If r + 1 > r ≥ s, then trt[r+1,s] ' t[r+1,s]tr+1.

• If p > r ≥ s, then trt[p,s] ' t[p,s]tr+1.

• If b ≥ a, then t[b,a−1]t[b,a] ' t[b−1,a−1]t[b,a]ta−1.

Proof. For (1), trtr+1tr ' tr+1trtr+1, and then tr+1 commutes with tr−1

through ts. For (2), note that tr commutes with tp through tr+2 and then (1)

applies. We prove (3) by induction on b − a. The base case b = a is exactly

operation (3) in Remark 5.1. For the induction step, b 
 a, so b − 2 ≥ a − 1

and b− 1 ≥ a in the following computations:

t[b,a−1]t[b,a] = tbtb−1t[b−2,a−1]tbt[b−1,a] ' tbtb−1tbt[b−2,a−1]t[b−1,a]

' tb−1tbtb−1t[b−2,a−1]t[b−1,a] = tb−1tbt[b−1,a−1]t[b−1,a] =: u.

Applying the inductive hypothesis to t[b−1,a−1]t[b−1,a], we get

u ' tb−1tbt[b−2,a−1]t[b−1,a]ta−1 ' tb−1t[b−2,a−1]tbt[b−1,a]ta−1. �

A sequence of Ritt swaps in the first canonical form is a sequence of

right-to-left transits whose action resembles an insert-sort: having arranged

fk through fi+1 in the right order, this sequence inserts fi in the required ath
i

place among fk through fi+1 and then proceeds to deal with fi−1, and so on,

until all factors are arranged as wanted.
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Definition 5.8. A word w ∈ RMk is in first canonical form if it has the

form w = t(a1,1]t(a2,2] · · · t(ak−1,k−1] for some a1, a2, . . . , ak−1 such that i ≤ ai ≤
k for each i.

A word w ∈ RMk is in reverse first canonical form if it has the form

w = t[ak,k)t[a3,3) · · · t[a2,2) for some a1, a2, . . . , ak−1 such that 1 ≤ ai ≤ i for

each i.

For example, if k = 4, a2 = 2, a3 = 1, and a4 = 3, then w = (t3)(t1t2)() =

t3t1t2.

Remark 5.9. Omitting those transits that are empty words and reindexing

gives an alternative formulation of first canonical form as t[am,bm]t[am−1,bm−1]

· · · t[a1,b1] with ai ≥ bi for all i, and bm < bm−1 < · · · < b1.

The three syntactic operations in Remark 5.1 are invariant under switching

left and right, so anything that holds for the first canonical form also holds,

mutatis mutandis, for the reverse first canonical form.

We now work towards taking an arbitrary word in RMk and finding an

equivalent word in first canonical form. The following lemma straightens out

two right-to-left transits that occur in the wrong order.

Lemma 5.10. If a ≥ b and c ≥ d and w′ := t[a,b]t[c,d] is length-minimal,

then it is equivalent to a single right-to-left transit, or to t[a′,b′]t[c′,d′] for some

a′, b′, c′, d′ such that a′ ≥ b′ and c′ ≥ d′ and b′ < d′.

Proof. If b < d, then w′ is already of the desired form. So assume b ≥ d.

Now compare b and c:

• If b > c + 1, then ŵ = t[c,d]t[a,b] works, because in this case each ti in

the first transit of w′ commutes with each tj in the second transit, and

b > c+ 1 > d.

• If b = c+ 1, then w′ is already a single transit as wanted.

• If b = c, then operation (1) shortens the word w′ contradicting length-

minimality.

• This leaves the case where c > b ≥ d for which we use Lemma 5.7 and

another case-out.

So c > b ≥ d; compare a and c:

• If a < c, then Lemma 5.7 can be applied to each ti for a ≥ i ≥ b giving

w′ ' t[c,d]t[a+1,b+1] =: ŵ, of the desired form because d ≤ b implies d < b+1.

• If a ≥ c, Lemma 5.7 can still be applied to each ti for c− 1 ≥ i ≥ b giving

w′ = t[a,b]t[c,d]

= t[a,c]t[c−1,b]t[c,d]

' t[a,c]t[c,d]t[c,b−1],

contradicting length-minimality, as tctc sits in the middle of t[a,c]t[c,d]. �
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Proposition 5.11. For every w ∈ RMk, there exists a unique ŵ ∈ RMk

in first canonical form that represents the same permutation as w. This ŵ can

be obtained from w by operations (1), (2), and (3) above, so for any decompo-

sition ~f such that w ? ~f is defined, ŵ ? ~f = w ? ~f .

Proof. First, replace w by some length-minimal w′ obtained from w by

operations (1), (2), and (3) in Remark 5.1. Any word including w′ can be

written as a sequence of right-to-left transits t[am,bm]t[am−1,bm−1] · · · t[a1,b1] with

ai ≥ bi for all i. To achieve the additional requirement that bm < bm−1 <

· · · < b1 in Remark 5.9, use Lemma 5.10 repeatedly to straighten out pairs of

adjacent out-of-order bi’s. Clearly, this process terminates. �

Corollary 5.12. If two words w and w′ in the Ritt monoid RMk rep-

resent the same permutation and both w ? ~f and w′ ? ~f are defined, then

w ? ~f = w′ ? ~f .

Proof. For every permutation there is a unique word in the first canonical

form representing it. �

Another immediate consequence is a bound on the length of words and the

number of (linear equivalence classes of) decompositions of a given polynomial;

better bounds are obtained in [21].

Corollary 5.13. For any polynomial f and decomposition (fk, . . . , f1)

of f , there are at most k! other decompositions ~g of f (up to linear equivalence,

of course), and any one of them can be reached by a sequence of at most k(k−1)
2

Ritt swaps.

Our main use of the first canonical form is to define and obtain our second

canonical form.

It is sometimes natural and often useful to break a decomposition into

chunks before analyzing it. For example, in analyzing the commutative dia-

gram πσ ◦ f = g ◦ π, it is natural to start with a decomposition of g ◦ π that

is a decomposition of π followed by a decomposition of g. Clusterings in Sec-

tion 4 are another example. Words in second canonical form (with respect to

such a break-up into chunks) first shuffle factors within each chunk as much

as necessary and only then move factors between chunks. That is, these words

perform a merge-sort.

Definition 5.14. Given integers k = cr > cr−1 > · · · > c1 > c0 = 0, a

word w ∈ RMk is in second canonical form with respect to ~c if it is of the form

w = vwrwr−1 · · ·w1 and all of the following hold.

• All wi and v are in first canonical form.

• For each j, only ti with cj+1 > i > cj appear in wj ; that is, wj only

permutes factors in ~f[cj+1,cj).
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• For any two transits t[a,b] and t[a′,b′] in v (including empty transits in Def-

inition 5.8!) with both b, b′ ∈ [cj+1, cj) for some j, a < a′ if and only if

b < b′. That is, v does not change the order of two factors originating

inside the same ~f[cj+1,cj).

Note that wi in the definition above act on disjoint sets of factors, and

therefore commute with each other.

Proposition 5.15. For every word w ∈ RMk and every tuple ~c of integers

with k = cr > cr−1 > · · · > c1 > c0 = 0, there is a word ŵ ∈ RMk in second

canonical form with respect to ~c that represents the same permutation as w.

This ŵ can be obtained from w by operations (1), (2), and (3) in Remark 5.1,

so for any decomposition ~f such that w ? ~f is defined, ŵ ? ~f = w ? ~f .

We first prove a special case r = 2 of this proposition in the following

lemma. We then prove the full proposition.

Lemma 5.16 (Proposition 5.15 for r = 2). Fix k > e > 0. For every

w ∈ RMk, there are v, wG, wH ∈ RMk such that

• vwGwH is obtained from w by operations (1), (2), and (3) in Remark 5.1;

• only ti with i > e occur in wH ;

• only ti with i < e occur in wG;

• v = t[am,bm]t[am−1,bm−1] · · · t[a1,b1] is in first canonical form, and

b1 = e, b2 = e− 1, . . . , bm = e−m+ 1 and a1 > a2 > · · · > am.

Proof. First reductions : Without loss of generality, we may assume that

w is already in first canonical form; that is,

w = wnwn−1 · · ·w1 where each wi = t[ci,di]

with d1 > d2 > · · · > dn and ci ≥ di for each i.

We may further assume that e ≤ d1. Indeed, otherwise let j ≤ n be the

greatest such that dj > e, and let

w̃H := wjwj−1 · · ·w1 and w′ := wn · · ·wj+1 so that w = w′w̃H .

Since w̃H only involves ti with i > e, it clearly suffices to prove the proposition

for w′.

So, we have

w = wnwn−1 · · ·w1 where each wi = t[ci,di]

in first canonical form with

e ≥ d1 > d2 > · · · > dn and ci ≥ di for each i.

The first inequality above makes dn ≤ e− n+ 1.

Claim. There are v and wG satisfying the last two requirements in the

lemma with m ≤ n, such that vwG ' w.

We obtain these v and wG by induction on n.
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Base case. When n = 1, consider the one and only transit wn = t[cn,dn]

of w. We know that dn ≤ e.

Case 1. If cn < e, then wn ∈ RMe, so v := ∅ and wG := wn work.

Case 2. If cn ≥ e, then wn = t[cn,e]t[e−1,dn], and v := t[cn,e] and wG :=

t[e−1,dn] work.

Induction step. We apply the induction hypothesis to the initial (n − 1)

chunks of w to get

wn−1 · · ·w1 ' ṽw̃G
for some

ṽ = t[am,e−m+1]t[am−1,e−m+2] · · · t[a1,e]
with m ≤ n − 1 and a1 > a2 · · · > am, and some w̃G ∈ RMe (so w̃G only

involves ti with i < e). So

w = wnwn−1 · · ·w1 ' wnṽw̃G.
Let w′ := wnṽ, so that w = w′w̃G.

Subclaim. There are words v and uG such that w′ ' vuG, and uG ∈ RMe

(so uG only involves ti with i < e), and v has the required shape.

Once we prove this subclaim, v and wG := uGw̃G will satisfy the claim.

Proof of the subclaim. We have

w′ = t[cn,dn]t[am,e−m+1]t[am−1,e−m+2] · · · t[a1,e]
and m≤n−1 and a1>a2 · · ·>am and dn≤e− n+1. So dn ≤ e−m, and so

t[cn,dn] = t[cn,e−m]t[e−m−1,dn]

and, since the least index appearing in ṽ is e − m + 1 and the greatest in

t[e−m−1,dn] is e−m− 1,

w′ = t[cn,e−m]t[e−m−1,dn]ṽ ' t[cn,e−m]ṽt[e−m−1,dn].

Since t[e−m−1,dn] can be absorbed into uG, it suffices to prove the subclaim

for the special case where dn = e−m. If now cn < am, we may set am+1 := cn
and set v := t[cn,e−m]ṽ and be done.

So, it suffices to prove the subclaim for

w′ = t[cn,e−m]t[am,e−m+1]t[am−1,e−m+2] · · · t[a1,e],
where a1 > a2 · · · > am but cn ≥ am. So

w′ = t[cn,am+1]t[am,e−m]t[am,e−m+1]t[am−1,e−m+2] · · · t[a1,e].
By Lemma 5.7, t[am,e−m]t[am,e−m+1] ' t[am−1,e−m]t[am,e−m+1]te−m, so

w′ ' t[cn,am+1]t[am−1,e−m]t[am,e−m+1]te−mt[am−1,e−m+2] · · · t[a1,e]
' t[cn,am+1]t[am−1,e−m]t[am,e−m+1]t[am−1,e−m+2] · · · t[a1,e]te−m
' t[am−1,e−m]t[cn,em+1]t[am,e−m+1]t[am−1,e−m+2] · · · t[a1,e]te−m.
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Now if cn < am−1, we are done, because tm−e may be absorbed into uG, and the

rest is already of the right form. Otherwise, we move t[cn,am−1+1] one more step

to the right in exactly the same way and then compare cn to am−2. Since there

is no requirement on a1, this process ends in success after at most m steps. �

The full version of Proposition 5.15 now follows by an easy induction.

Proof. (This is the proof of Proposition 5.15.) We induct on the number

of chunks r. For r = 1, this is just first canonical form. The case r = 2 is

Lemma 5.16. For the induction step, we suppose that the proposition holds

for r = s and prove that it holds for r = s + 1. Fix w and k = cs+1 > cs >

· · · > c1 > c0 = 0.

First, apply Lemma 5.16 to ~d where k = d2 > c1 = d1 > d0 = 0. That

is, replace w by vQ ◦ u1 ◦ u2, where u1 only involves ti with i < c1, u2 only

involves ti with i > c1, and vQ does what it is supposed to.

Then, apply the inductive hypothesis to u2 and k = cs+1 > cs > · · · >
c2 > c0 = 0 to get u2 ' v′w′2w

′
3 · · ·w′s+1. So w ' vQu1v

′w′2w
′
3 · · ·w′s+1 '

vQv
′u1w

′
2w
′
3 · · ·w′s+1, the second equivalence because u1 and v′ act on disjoint

sets of factors. Finally, let v := vQv
′, w1 := u1, and wi := w′i for i ≥ 2. �

When the second canonical form is applied to a clustering, the character-

ization of v can be substantially strengthened.

Remark 5.17. Suppose that ~a is a clustering of a decomposition ~f , and

fix w ∈ RMk for which w ? ~f is defined. If w = vw1w2 · · ·wt is in second

canonical form with respect to ~a, then each wj only permutes factors within

the jth cluster, and v only moves factors left from cluster to cluster but does not

change the order of those originating in the same cluster. Since only quadratics

can move between clusters, the Ritt swaps in v can only move quadratics.

These quadratics can go left or right, but cannot overtake each other because

of gates, and cannot collide with each other because tautological Ritt swaps

are not allowed.

By Proposition 4.11, all Ritt swaps in wj may be witnessed by identity

linear factors. Now ~a is still a clustering of ~g := w1w2 · · ·wt ? ~f . To illustrate

what can happen in v ? ~g, we describe in detail an initial chunk of v.

The rightmost symbol in v is taj for some j, since v does not swap factors

inside a cluster. By Lemma 4.34, exactly one of gaj and gaj+1 must be a

wandering quadratic of ~a and ~g.

• If gaj is a wandering quadratic, v moves it to the left, leaves a one-way

left-to-right gate at j, and then only permutes factors further right. That

is, v = v′t[b,aj ] for some b ≥ aj and t[b,aj ] ?~g has a one-way left-to-right gate

between the jth and the (j+1)st clusters, and v′ is a word in {ti | j < aj−1}.
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• If gaj+1 is a wandering quadratic, v moves it right to a new position, and

the rest of v cannot move other quadratics left past that new position.

That is, v = v′tbtb+1 · · · taj and v′ is a word in {ti | i < b− 1}.

Applying the same analysis to the remaining v′ gives an inductive charac-

terization of v as a concatenation of (left-to-right or right-to-left) transits, each

of which moves a wandering quadratic of ~g some number of steps (right or left).

Our first application of canonical forms is Proposition 5.23 characterizing

those (f, g)-skew-invariant curves that have nothing to do with skew-twists.

More precisely, we consider triples of polynomials (f, g, π) satisfying πσ ◦ f =

g ◦π, where f and π share no initial compositional factors, and πσ and g share

no terminal compositional factors. We continue to only consider disintegrated

polynomials f and g, that is f and g that are not skew-conjugate to monomials,

Chebyshev polynomials, and negative Chebyshev polynomials. We begin by

defining the terminology in the conclusion of Proposition 5.23.

Definition 5.18. A decomposition ~f has in-degree (respectively, out-degree)

divisible by n if no fi is linearly related to Pp for any p that divides n, and

every nonmonomial factor of the decomposition is monic and has in-degree

(respectively, out-degree) divisible by n. In particular, this forces all fi to be

Ritt polynomials.

We first show (Lemma 5.21) that a skew-conjugacy class of decompositions

of disintegrated polynomials has at most one decomposition with nontrivial in-

or out-degree, up to skew-conjugating by scalings.

Remark 5.19. In- and out-degrees make sense for decomposable polyno-

mials (see Definition 3.17), and if ~f has in-degree divisible by p, then indeed

the in-degree of ~f◦ is divisible by p. A converse requires additional hypotheses

and is proved in [21].

Remark 5.20. It is clear that if ~h is skew-linearly equivalent to ~f via

scalings, then ~f and ~h have the same in- and out-degrees.

Lemma 5.21. If ~f is a decomposition of a disintegrated polynomial, ~g is

skew-linearly equivalent to ~f via translations, and each of the two has nontrivial

in- or out-degree, then ~g = ~f .

Proof. We actually prove the following generalization. Suppose that ~f is

a decomposition of a disintegrated polynomial and that ~g is linearly equivalent

via translations to ML ◦ ~f ◦MR for some translations ML and MR. If both ~f

and ~g have nontrivial in- or out-degree, then ML = id.

Let ~a be a clustering of ~f ; it is then also a clustering of ~g. Consider the

leftmost clusters of the two decompositions. For some translation U , ~g[k,ar−1) is
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linearly equivalent to (ML◦fk, fk−1, . . . , far−1+2, far−1+1◦U). If this is a C-free

cluster, then by Lemma 4.7, ML = id. So suppose that this is a C cluster.

Recall that the only Ritt polynomials linearly related to Chebyshev poly-

nomials are Cp,λ and “Cp,λ, whose in- and out-degrees are 2. Thus, in order for

the whole decomposition to have nontrivial in- or out-degree, there must be no

quadratic factors, so all factors inside C clusters have odd degree. Furthermore,

~f◦[k,ar−1) = (·λ−Nf ) ◦ T−1
f ◦ CN ◦ Tf ◦ (·λf )

and

~g◦[k,ar−1) = (·λ−Ng ) ◦ T−1
g ◦ CN ◦ Tg ◦ (·λg)

for some nonzero scalars λf and λg and translations Tf and Tg by 0 or by −2.

So,

ML ◦ (·λ−Nf ) ◦ T−1
f ◦ CN ◦ Tf ◦ (·λf ) ◦ U = (·λ−Ng ) ◦ T−1

g ◦ CN ◦ Tg ◦ (·λg).

Now by Lemma 3.36, each of Tg ◦(·λNg )◦ML ◦(·λ−Nf )◦T−1
f and Tf ◦(·λf )◦

U ◦ (·λg)−1 ◦ T−1
g must be scalings by ±1. So λf = ±λg, and Tg ◦ M̃L ◦ T−1

f =

Tf ◦ Ũ ◦ T−1
g = id where Ũ = U±1 and M̃L = M±1

L . Thus, M̃L = T−1
g ◦ Tf and

Ũ = T−1
f ◦ Tg = (M̃L)−1. Therefore, U = id if and only if ML = id.

Since ~f is a decomposition of a disintegrated polynomial, and each fi is a

Ritt polynomial, it cannot consist of a single C cluster. So, consider now the

second leftmost cluster ~f[ar−1,ar−2). If it is a C-free cluster, U must be identity

as before. If it also a C cluster, a straightforward computation, which we leave

to the reader, shows that either U is identity, or the concatenation ~f[k,ar−2) is

itself a cluster, contradicting the fact that ~a is a clustering. �

Proposition 5.22. Suppose that ~f is a decomposition of a disintegrated

polynomial, ~g is skew-linearly equivalent to ~f , and each has nontrivial in-

or out-degree. Then there is some λ such that gi = λmi ∗ fi, where mi :=

deg(~f◦(i,1]). In particular, their in- and out-degrees are the same.

Proof. As usual, we can deal with scalings and translations separately.

Separating scalings from translations in the linear factors witnessing skew-

linear equivalence, we find an intermediate decomposition ~h that is skew-

linearly equivalent to ~f via scalings, and skew-linearly equivalent to ~g via

translations. By Remark 5.20, ~h has the same in- and out-degrees as ~f . By

Lemma 5.21, ~h = ~g. �

The last proposition essentially says that for decompositions of disinte-

grated polynomials, in- and out-degrees are invariant under skew-linear equiv-

alence.

Proposition 5.23. If two disintegrated polynomials f and g satisfy g ◦
π = πσ ◦ f , and f and π share no initial compositional factors, and πσ and

g share no terminal compositional factors, then there are linear L and M
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such that M ◦ π ◦ L is a monomial whose degree divides the in-degree of some

decomposition of (Mσ)−1 ◦ g ◦M and the out-degree of some decomposition of

Lσ ◦ f ◦ L−1.

The following slight weakening of this proposition, which does not refer

to decompositions, is an immediate consequence of Lemma 2.8 of [21], and the

full version follows from other results in that paper.

Corollary 5.24. If two nonlinear polynomials f and g satisfy g ◦ π =

πσ ◦ f , and f and π share no initial compositional factors, and πσ and g

share no terminal compositional factors, then there are linear L and M such

that either Lσ ◦ f ◦ L−1 and (Mσ)−1 ◦ g ◦M are both monomials, Chebyshev

polynomials, or negative Chebyshev polynomials (and then we say nothing about

π); or M ◦ π ◦ L(x) = xn is a monomial, Lσ ◦ f ◦ L−1(x) = xk · u(xn), and

(Mσ)−1 ◦ g ◦M(x) = xk · u(x)n for some polynomial u.

Our slightly stronger statement is the one we use to characterize skew-

invariant curves. The rest of this section constitutes the proof of Proposi-

tion 5.23. The next proposition translates it into the language of decomposi-

tions and canonical forms.

Proposition 5.25 (Translating Proposition 5.23). Suppose that polyno-

mials f , g, and π satisfy g ◦ π = πσ ◦ f , and suppose that f and π share no

initial compositional factors, and πσ and g share no terminal compositional

factors. Let m be the number of factors in (any) decomposition of π, and let l

be the number of factors in (any) decomposition of f (or g). Then there are

decompositions ~π of π, ~f is f , ~g of g, and ~ρ of πσ (which ~ρ need not be (~π)σ)

such that

(t[`,1] · · · t[`+m−2,m−1]t[l+m−1,m]) ? ~g~π = ~ρ~f.

Proof. Let (πm, . . . , π1) be a decomposition of π and (gl, . . . , g1) be a de-

composition of g. Let w = vw1w2 be the word in the second canonical form

that yields a decomposition of f followed by a decomposition of πσ. Since we

were free to choose the decompositions of π and g, we may assume, losing this

freedom, that wi are empty. So we get decompositions as above and

v = t[ak,bk]t[ak−1,bk−1] · · · t[a1,b1]

with ai ≥ bi−1 for all i ( ai = bi−1 means that the word (tai , · · · tbi) is empty);

bi = length(~π) + 1− i, and ak < · · · < a2 < a1; and

v ? ~g~π = ~ρ~f.

Now it follows immediately that k = length(~π), for otherwise t1 does not occur

in v, so the rightmost factor π1 in ~g~π is untouched by the action of v, so it is a

shared initial factor of π and f , contradicting a hypothesis of the proposition.
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For exactly the same reasons, unless ai = length(~g)+length(~π)−i for all i,

ρ and g will share a terminal factor, which is also not supposed to happen. So

v = t[`,t1] · · · t[`+m−2,m−1]t[`+m−1,m] as wanted. �

We have v := v1v2 · · · vm where vi := t[`+1−i,i], and we have v ?~g~π defined.

The next lemma shows that ~g~π is a cluster or one of π and g has degree 2.

The following two lemmas handle these two cases.

Lemma 5.26. Suppose that the conclusion of Proposition 5.25 holds, but

~g~π is not a cluster. Then one of π and g is quadratic.

Proof. Suppose that ~g~π is not a cluster, and fix a clustering ~a of it.

If the leftmost cluster (gk, . . . , ge) of ~a does not contain all of ~g, then

(gk, . . . , g1, πm) is not a cluster, so Proposition 4.40 applied to vm ? ~g~π =:

(π′m, ~g
′, πm−1, πm−2, . . . , π1) makes πm quadratic and leaves one-way left-to-

right gate between g′e and g′e−1. This prevents πm−1 from crossing into the

leftmost cluster, contradicting the conclusion of Proposition 5.25, so there must

be no πm−1, so the whole of π = πm is quadratic.

Symmetrically, if the rightmost cluster of ~a does not contain all of π, then

g must be quadratic.

So suppose that the two clusters of ~a are exactly ~g and ~π. Since (g1, πm)

is swappable, one of them must be a wandering quadratic of this clustering. If

g1 is the wandering quadratic, then πm cannot move further left, so there must

be no more left for it to go, i.e., g = g1 is quadratic. If πm is the wandering

quadratic, then it leaves a one-way left-to-right gate between the two clusters,

so πm−1 cannot enter the left cluster, so there must be no πm−1, so the whole

of π = πm is quadratic. �

Lemma 5.27. Proposition 5.23 holds when one of π and g has degree 2.

Proof. If π is quadratic, then skew-conjugate f and g to make π = P2.

Let ~a be a clustering of ~g. Applying Proposition 4.40 to vm ? (~gP2) shows that

there must be a right-to-left gate between any two clusters of ~a. In order for

π = P2 to enter, ~a must also have a right-to-left gate at 0. At the far left end,

~a must also have a right-to-left gate at k, since after all the Ritt swaps are

performed, the now leftmost quadratic factor must exit as πσ = P2 with no

additional linear factors. It is now routine to verify that having all these gates

is sufficient for the conclusion of Proposition 5.23.

If g is quadratic, the in/out degrees of the factors of π that are not type C

are irreversably changed by the traversing quadratic factor, so C-free clusters

in π must be purely monomial. Similarly, if π is not a single cluster, then the

gates in π (before the quadratic gets across to become f) and in πσ (after the

quadratic has gotten across) do not match up. Thus we can skew-conjugate

f and g to make π a monomial or a Chebyshev polynomial. It is now routine
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to verify that this forces f and g to be monomials or Chebyshev polynomials,

contradicting disintegratedness. �

Lemma 5.28. Proposition 5.23 holds when ~g~π is a cluster.

Proof. We may and do assume that neither g nor π are quadratic, since

Lemma 5.27 takes care of those cases. The statement of Proposition 5.23 is

invariant under skew-conjugating f and g (and changing π accordingly), so we

may do so during the proof without loss of generality.

First reductions. Since ~g~π is a single cluster, there are linear A and B

and Ritt polynomials g̃i and π̃i such that ~g~π is linearly equivalent to (A ◦
g̃`, g̃`−1, . . . , g̃1, π̃m, . . . , π̃2, π̃1 ◦B). Skew-conjugating f by B, we may assume

that B = id.

Now there is a linear C such that (C−1 ◦ π̃m, . . . , π̃2, π̃1) is linearly equiv-

alent to ~π and (A ◦ g̃`, g̃`−1, . . . , g̃1 ◦ C) is linearly equivalent to ~g. Skew-

conjugating g by C, that is replacing π by C ◦π and replacing g by Cσ ◦g◦C−1,

and replacing A by Cσ ◦A, we may assume that C = id.

Thus, replacing ~π and ~g by linearly equivalent decompositions, we may

assume that all πi are Ritt polynomials π̃, that gi for i 6= ` are Ritt polynomials

g̃i, and that g` = A ◦ g̃` for the linear A and Ritt polynomial g̃`.

Case 1. If this is a C cluster, then all g̃i and πi are Chebyshev poly-

nomials, so π = πσ is a Chebyshev polynomial and g = A ◦ Cdeg(g). Now

v ? ~g~π = (A ◦ πm, πm−1, . . . , π1, gl, . . . , g2, g1) is linearly equivalent to ~ρ~f for

some decompositions ~f of f and some decomposition ρ of the Chebyshev poly-

nomial πσ of degree greater than 2. In particular, there is a linear D such that

A ◦ Cdeg(π) ◦ D = Cdeg(π), so by Lemma 3.36, A = (· ± 1), contradicting the

hypothesis that g is disintegrated.

Case 2. If ~g~π is a C-free cluster, at least one of g and π must be linearly

related to a monomial.

Suppose towards contradiction that π is not monomial, so at least one

factor πi is not monomial, nor type C. In v ?~g~π = ~ρ~f , each such factor πi(x) =

xki · u(x`i)ni becomes, in the sense of Remark 2.46, ρ̃i with new in-degree

`i · deg(f) and new out-degree ni
deg(f) . For some linear D, the decomposition ~ρ

of πσ is linearly equivalent to (ρ̃m, . . . , ρ̃2, ρ̃1 ◦D). (Recall that the action ? is

only defined up to linear equivalence.) Since σ(~π) is another decompositions of

πσ, it must be possible to obtain σ(~π) from (ρ̃m, . . . , ρ̃2, ρ̃1 ◦D) by a sequence

of Ritt swaps. Recall that in order for v ? ~g~π to be defined, the degrees of the

monomial factors of π must be relatively prime to deg(f), so Ritt swaps within

~ρ cannot undo the changes to in- and out-degrees. None of ρi are type C, and

all have nontrivial in-degree, so inserting linear factors also cannot undo those

changes. This is a contradiction.
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Thus, all πi and the whole π are monomials, so

v ? ~g~π = (A ◦ πm, πm−1, . . . , π1, fl, . . . , f2, f1).

Thus, there is a linear D such that A ◦ Pdeg(π) ◦ D = Pdeg(π), so A must be

a scaling. As we are working over a difference-closed field, we can get rid of

A by skew-conjugating g by an appropriate scaling. All Ritt swaps within a

cluster can be witnessed by identity linear factors, so fi have the requisite in-

and out-degrees. �

Having finished the proof of Proposition 5.23, we note two consequences

of it.

Corollary 5.29. If f , g, and π are as in Proposition 5.23, then there

are indecomposable πi for i ≤ m, and polynomials f = f0, f1, . . . , fm = g such

that ~π◦ = π, and for each i, fi−1, πi, and fi are also as in Proposition 5.23.

Corollary 5.30. If f , g, and π are as in Proposition 5.23, then the

degree of π is bounded by the degree of any indecomposable factor of f , so

a fortiori bounded by the degree of f .

6. Classification of skew-invariant curves from clusterings

In this last technical Section 6, we bring together clusterings, the action

by the skew-twist monoid STk on skew-linear-equivalence classes of decompo-

sitions, and the characterization in Proposition 5.23 of indecomposable curves

that do not come from skew-twists in order to finally state and prove our clas-

sification of irreducible plane curves that are (f, g)-skew-invariant for a given

pair (f, g) of disintegrated polynomials.

In order to describe how correspondences not coming from skew-twists

interact with skew-twists, we bring them into our monoid-action formalism

via new monoid generators. To characterize correspondences coming from

skew-twists, we describe the interaction between clusterings and skew-twists.

Finally, we put it all together to write out the final characterization, and we

then state a few special cases and more readable weakenings.

6.1. Augmented skew-twist monoid. By Corollary 5.29, skew-invariant cor-

respondences arising from Proposition 5.23 (rather than from skew-twists) can

also be broken down into indecomposable factors that are graphs of monomials

of prime degree p. For each prime p, the graph Pp and its converse relation will

be encoded by the new generators δp and εp, respectively. Most of the time,

the action of these new generators will be undefined, since Proposition 5.23

forces the decomposition to have a nontrivial in- or out-degree, which is rare.

Proposition 5.22 essentially shows that the action is well defined on skew-linear

equivalence classes.
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We now do for correspondences coming from Proposition 5.23 what we did

for skew-twists in Section 2.5: we define a new monoid with more generators,

its action on decompositions, witnessing sequences, encoded correspondences,

its action on skew-linear equivalence classes of decompositions, and a notion

of equivalence for words in the new monoid. As for skew-twists, we then

show that the correspondence encoded is essentially well-defined, and prove

enough equivalences for words to get enough control on degrees to characterize

invariant curves.

Definition 6.1. The free monoid generated by the generators of STk to-

gether with countably many new symbols εp and δp as p ranges through the

primes is denoted by ST+
k .

If ~f has nontrivial in-degree divisible by p, then εp ? ~f := ~g where gi := fi
whenever fi is a monomial, and for all other i there are monic nonconstant

polynomials ui and integers ki ≥ 1 such that fi(x) = xki · ui(xp`i)ni and

gi := xki · ui(x`i)pni .
To undo what εp does, we define δp?~g := ~f as above when ~g has nontrivial

out-degree divisible by p.

Lemma 6.2. Suppose that ~f and ~h are skew-linearly equivalent decompo-

sitions of disintegrated polynomials, both have nontrivial in-degree divisible by

p, and ~g = εp ? ~f and ~̃g = ε ?~h. Then there is some λ such that hi = λmi ∗ fi,
where mi := deg(~f◦(i,1]), and g̃i = µmi ∗ gi for µ = λp. The corresponding result

holds for δ in place of ε.

Proof. The first conclusion is Proposition 5.22, and the second follows

immediately. �

Definition 6.3. Suppose that ~f is a decomposition of a polynomial f and

w := wn · · ·w2w1 ∈ ST+
k , where each wj is a single generator: a Ritt swap ti,

a single skew-twist φ or β, or one of the new generators εpj or δpj for some

prime pj .

A sequence of decompositions ~f = ~f0, ~f1, . . . , ~fn is a witnessing sequence

for w ? ~f if for each j,

• if wj is ti, φ, or β, see Definition 2.56;

• if wj = εp, then ~f j is skew-linearly equivalent to some ~h that has

nontrivial in-degree divisible by pj , and ~f j+1 = εp ? ~h;

• if wj = δp, switch the roles of ~f j and ~f j+1 above.

If such a sequence exists, we write w ? [[~f ]] = [[~fn]]; otherwise, w ? [[~f ]] =∞.

The correspondence A encoded by this witnessing sequence is again the

composite of curves Bj ; for 1 ≤ j ≤ n,
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• if wj is ti, φ, or β, the curve Bj is exactly as in Definition 2.56;

• if wj = εp, Cj is the graph of Pp ◦ Tj , where Tj is the outside linear

factor witnessing that εp ? [[~f j ]] is defined;

• if wj = δp, then Cj is the converse of this graph.

We also say that A is a correspondence encoded by w ? ~f .

Remark 6.4. Note that it may well be that ε ? [[~f ]] is defined but ε ? ~f is

not. By Lemma 6.2, the witnessing sequence is well defined up to skew-linear

equivalence, so w?[[~f ]] is well defined and gives an action of ST+
k on skew-linear

equivalence classes of decompositions.

Further, by Lemma 6.2 and the fact that λ∗Pp = Pp, the curve encoded by

ε? [[~f ]] = [[~g]] does not depend on the choice of the witnessing ~h, up to a termi-

nal linear factor exactly as Lemma 2.61. The same holds for δ, so Lemma 2.61

holds for words in ST+
k , along with Remark 2.57, which says that concatenation

of words corresponds to composition of encoded correspondences.

We define equivalence for words in ST+
k exactly as in Definition 2.65 for

words in STk.

Definition 6.5. Fix v, w ∈ ST+
k and a decomposition ~f = (fk, . . . , f1).

We say that v and w are equivalent with respect to ~f and write v ≈~f w if

v ? [[~f ]] = w ? [[~f ]] and there are witnessing sequences (~gj) and (~hj) for v ? ~f

and w ? ~f , respectively, so that the final ~gn and ~hn are decompositions of the

same polynomial g, and (Av)inv = (Aw)inv for the curves Av and Aw encoded

by v (respectively, w) via (~gj) (respectively, (~hj)).

When v ≈~f w for all ~f , we write v ≈ w and say that the two words are

equivalent.

Remark 6.6. It is clear that this equivalence again respects concatenation:

if u ≈ u′ and v ≈ v′, then uv ≈ u′v′.

Lemma 6.7.

• For any of the old generators x = ti, φ, ψ and any prime p, εpx ≈ xεp and

δpx ≈ xδp.
• For any p 6= q and any x, y ∈ {ε, δ}, xpyq ≈ yqxp.
• εpδp ≈ id.

Proof. It is clear that single skew-twists do not change the in- and out-

degrees of a decomposition. To see that Ritt swaps also do not change them,

recall that a decomposition with nontrivial in- or out-degree divisible by p

cannot have the monomial Pp among its factors; when p = 2, this precludes

wandering quadratics and makes clusterings completely rigid. This also takes

care of the second part. The last part is obvious. �
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Remark 6.8. The (f, g)-(skew-)invariant curve encoded by δpεp ? f = g,

defined by xp = yp, is the union of p lines whose slopes are pth roots of unity.

Because Pp is not a compositional factor of f , components other than the

diagonal may be skew-periodic, unlike in the case of skew-twists, so it is not

true that δpεp ≈ id. However, composing the curve defined by xp = yp with

the one defined by yp = zp does not give anything new, so δpεpδpεp ≈ δpεp.

The next corollary together with Corollary 5.30 bounds the degrees of the

correspondence coming from Theorem 5.23.

Corollary 6.9. For any word w consisting entirely of εp and δp for

various p, there are words u and v such that w ≈ uv, and u consists entirely of

δp for various p, and v consists entirely of εp for various p. Thus, the degrees

of the two monomials encoded by u and v are bounded by deg(f).

6.2. Clusterings and skew-twists. The interaction between clusterings and

skew-twists is the key to finishing the characterization of curves encoded by

words in STk. Recall (Remark 2.71 ) that in the context of skew-twists one

should imagine the factors of a decomposition standing in a circle, rather than

in a line, with only a faint marker between the “first” and “last” factors to

remind one to act by σ or σ−1 on factors passing the marker. In this vein,

recall that the skew-twist monoid STk acts on skew-linear equivalence classes of

decompositions, that is on decompositions up to linear equivalence and skew-

conjugacy.

When a preclustering is skew-twisted, one of the clusters might end up cut

in two by that faint marker, some of its factors on one end of the decomposition

and some on the others. The following definition addresses this issue.

Definition 6.10. A sequence k ≥ ar > · · · > a1 > 0 with r ≥ 2 is a skew-

preclustering of a decomposition ~f if f[ai,ai−1) is a cluster for each r ≥ i > 1,

and (fσa1 , f
σ
ai−1, . . . , f

σ
1 , fk, . . . , far+1) is also a cluster. When ar = k, that last

cluster is simply (fσa1 , . . . f
σ
1 ). For example, if ~f is itself a cluster, then the

sequence (k) is a skew-preclustering of ~f .

A skew-preclustering is a skew-clustering if r = 1; or if r ≥ 2 and no

cluster, including
(fσa1 , f

σ
a1−1, . . . , f

σ
1 , fk, . . . , far+1),

consists of two wandering quadratics, and the concatenation of two adjacent

clusters is never a cluster, including the concatenations

(fσa2 , f
σ
a2−1, . . . , f

σ
1 , fk, . . . , far+1) and (fσa1 , f

σ
ai−1, . . . , f

σ
1 , fk, . . . , far−1+1)

that wrap around the end of the polynomial.

The next lemma collects a number of immediate observations that connect

skew-clusterings to clusterings and uses the new freedom of skew-conjugacy to

improve cleanups.
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Lemma 6.11.

(1) Suppose that ~a is a skew-clustering of a decomposition ~f . Then there is

a skew-clustering ~b of the decomposition βm ? ~f such that i is a cluster

boundary of ~a if and only if (i + m) mod k, that is, the remainder of

(i + m) upon division by k, is a cluster boundary of ~b. Similarly, there

is a skew-clustering ~c of the decomposition φm ? ~f such that i is a cluster

boundary of ~a if and only if (i−m) mod k is a cluster boundary of ~c. The

same is true for skew-preclusterings.

(2) If ~a is a skew-clustering of a decomposition ~f and ar=k, then (ar, . . . , a1, 0)

is a clustering of ~f . In this case, we call (ar, . . . , a1) a robust skew-cluster-

ing of ~f and (ar, . . . , a1, 0) a robust clustering of ~f .

(3) For any preclustering (ar, . . . , a1, a0) of any decomposition, (ar, . . . , a1) is

a skew-preclustering of the same decomposition.

(4) Any skew-preclustering can be refined to a skew-clustering ; in particular,

every decomposition with no unswappable factors admits a skew-clustering.

(5) Every decomposition with no unswappable factors has a plain skew-twist

that has a robust clustering.

(6) Every robust clustering admits (up to skew-conjugacy !) a cleanup with Lk
= id.

(7) If (~L,~h) is a cleanup of a robust clustering ~a of ~f with Lk = id, then the

clustering of φai ? ~f obtained in part (1) is also robust, and reindexing Li
and hi and applying σ as necessary produces a cleanup of it.

Remark 6.12. The notion of robust clustering is necessary in that parts

(2) and (7) become much more complicated without this extra hypothesis,

because a plain skew-twist might break a C cluster into two pieces, and things

become complicated if one of the pieces does not contain an odd-degree factor,

and particularly complicated if that piece has degree two.

Proof. For part (4), induct on the number of clusters exactly as in the

proof of the existence of clusterings, Lemma 4.30.

Only part (6) merits detailed explanation. Take some cleanup (~L,~h) of a

robust skew-clustering. Skew-conjugating, we may absorb the translation part

of Lk into L0 and assume without loss of generality that Lk is a scaling.

If there is a C cluster, skew-conjugate to move scaling Lk into L0 and then

move it left as in the proof of the existence of cleanups until it sits to the right

of a C cluster, where it may stay without violating the definition of “cleanup.”

If there are no C clusters, skew-conjugating by · 1λ and moving the new

scaling left as in the proof of the existence of cleanups replaces Lk by Lk ◦
(· λσ

λdeg(f)
). Here again, because we are working over a difference closed field,

there is no problem to find λ such that Lk ◦ (· σ(λ)

λdeg(f)
) = id. If one is interested
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only in the case of an algebraic dynamical system, then it suffices to find a

(deg(f)− 1)st root of the leading coefficient of f inside the fixed field of σ. �

For a robust skew-clustering and a cleanup with Lk = id, it is clear what

“gate at k” should mean, except maybe when ~f is itself a cluster. Recall that

the factors are now standing in a circle, so a gate at k and a gate at 0 are

intuitively the same thing.

Definition 6.13. Let ~a be a robust skew-clustering of a decomposition ~f ,

and let (~L,~h) be a cleanup of it with Lk = id.

If ~a has more than one cluster, then ~f with ~a has a (left-to-right or

right-to-left) gate at k if and only if the clustering and cleanup of φai ? ~f =

(fσa1 , f
σ
a1−1, . . . , f

σ
1 , fk, fk−1, . . . , fa1+1) obtained in (7) above has a gate in that

direction between fσ1 and fk.

If ~a = (k) has exactly one cluster, then ~f has a (left-to-right or right-to-

left) gate at k if and only if the preclustering (2k, k, 0) of ~fσ ~f has a gate in

that direction at k.

Recall that two adjacent clusters with a two-way gate between them can

be fused into a single cluster; this has the following convenient consequence.

Lemma 6.14. Suppose that ~f is a decomposition of a disintegrated poly-

nomial f and that a skew-clustering (ar, . . . , a1) of ~f has a two-way gate at

some j. Then ~f is a single C-free cluster with at least one nonmonomial factor

and admits a cleanup with no linear factors.

Proof. Lemma 4.16 forbids two-way gates between distinct clusters of a

clustering, so j = r and ar = k. If ~f has more than one cluster, this makes

(fσa1 , f
σ
ai−1, . . . , f

σ
1 , fk, . . . , far−1+1) into a cluster, contradicting the definition

of skew-clustering. If ~f is a single cluster, then the two-way gate at k means

that (up to skew-conjugacy) ~f admits a cleanup with Lk = id and L0 = (·±1).

Since f is disintegrated, ~f cannot consist of a single C cluster or a single C-free

cluster with only monomial factors. �

The next remark gathers the results we have proved about the interaction

of (skew-)clusterings, Ritt swaps, and skew-twists.

Remark 6.15. Since robust skew-clusterings correspond precisely to robust

clusterings, different robust clusterings of skew-linearly equivalent decomposi-

tions obey Proposition 4.36: they have the same number of clusters, the same

cluster boundaries with gates (possibly in different directions), and cluster

boundaries may only differ by one, and then only by one wandering quadratic.

(This is the case when the gate changes direction.) It is clear that the two

robust skew-clusterings have the same gates at k.
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Skew-twists act on skew-clusterings (and their gates) via the first part of

Lemma 6.11: given a skew-clustering ~a of ~f , the corresponding skew-clustering
~b of φi ? ~f has cluster boundaries at (aj − i) mod k, and similarly for βi. This
~b is robust if and only if i = aj for some j. It is clear that ~f has a gate at

the cluster boundary at aj if and only if φi ? ~f has a gate at the corresponding

cluster boundary at (aj − i) mod k.

As noted in Lemmas 4.17 and 4.31, a Ritt swap inside a cluster (that is,

ti for some i 6= aj for all j) does not affect the clustering or its gates. By

skew-twisting until the boundary is inside, it is clear that the new notion of

gates at k for a skew-clustering is also unaffected.

Recall (Lemma 4.34) that a Ritt swap across clusters (that is, taj for

some j) always involves a wandering quadratic that leaves one cluster and

enters the other, changing the direction of the gate at the boundary.

It should now be clear that the number of clusters in a robust skew-

clustering, and the presence of a gate between particular clusters, are invariant

under skew-linear equivalence, Ritt swaps, and plain skew-twists by whole

clusters, though the indexing of the clusters changes in this last case.

The conclusion of Lemma 6.16 is used in Lemma 6.17 to bound the num-

ber of consecutive ψ’s or γ’s in a word from the border guard monoid (see

Definition 2.69) acting on ~g.

Lemma 6.16. Every decomposition ~f of a disintegrated polynomial has

a plain skew-twist ~g := φi ? ~f that has a robust clustering ~a with one of the

following properties :

(1) ~a has no gates at k;

(2) ~a has a one-way gate at k;

(3) ~g is a single C-free cluster, ~a has a two-way gate at k, and gk is not a

monomial.

Proof. We know that ~f has a skew-clustering ~b. If some bj satisfies one of

the first two items in the conclusion, let i := bj . Otherwise, Lemma 6.14 says

that any plain skew-twist of f is a single cluster and one of the factors fi is

not a monomial. In any case, the plain skew-twist φi ? ~f or βk−i ? ~f with the

corresponding skew-clustering works. �

Lemma 6.17. If ~g and ~a satisfy one of the three conclusions of Lemma 6.16,

and if w ∈ BGk such that w ? ~g =: ~h is defined, then ~h satisfies the same con-

clusion. If, furthermore, w contains no instances of β (respectively, γ), then

the number of instances of γ (respectively, β) in w is bounded by 0 in the first

case of Lemma 6.16, by 1 in the second case, and by the degree of gk in the

last case.
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These bounds are useful because in any word in the border guard monoid,

the ψ’s can be separated from the β’s in the following sense.

Lemma 6.18. For any word w ∈ BGk, there are wi ∈ BGk such that

w ≈ w2w1 and γ does not appear in w1 and ψ does not appear in w2.

Proof. Given w ∈ BGk, we find an equivalent word w′ that has no sub-

strings of the form ψuγ for some u ∈ RMk−1. Clearly, w′ is the desired word.

To construct w′, we prove a

Claim. For any u ∈ RMk−1, there are words v′, v′′ ∈ RMk−1 such that

ψuγ ≈ v′ or ψuγ ≈ v′′γtk−2ψv
′.

Then replacing a substring ψuγ by one of these does not increase the

number of instances of ψ and γ in a word and straightens out one ψ, γ pair

in the wrong order. Thus, after finitely many such operations we obtain the

desired w′.

Proof of claim. Without loss of generality, we may assume that u ∈
RMk−1 is in first canonical form; i.e., either u = v or u = tbtb−1 · · · t1v,

where t1 does not appear in v ∈ RMk−1. Now vγ ≈ γv′ for some word

v′ ∈ RMk−1 by part (4) of Lemma 2.66. In the first case that u = v, this makes

ψuγ ≈ v′. For the second case, by part (4) of Lemma 2.66, ψtb . . . t2 ≈ v′′ψ

where v′′ := tb−1 . . . t1. Thus, ψuγ ≈ v′′ψt1γv
′. To see that ψt1γ ≈ γtk−2β,

recall that tk−1tk−2tk−1 ≈ tk−2tk−1tk−2 and βtk−1φ ≈ φt1β, and use part (4)

of Lemma 2.66 again. �

6.3. Characterization of skew-invariant curves. Finally, we show that ev-

ery skew-invariant curve is encoded by some word in the augmented skew-twist

monoid ST+
k , give a normal form for such words, and thereby obtain a normal

form for the skew-invariant curves.

Proposition 6.19. For any disintegrated polynomials f and g and any

irreducible (f, g)-skew-invariant plane curve B, there are a word w ∈ ST+
k ,

a decomposition (fk, . . . , f1) of f , and a curve A encoded by w ? ~f such that

B ⊂ A.

Proof. By Proposition 2.34, B = ρ ◦ (π−1) for some polynomials π and

ρ; here π−1 denotes the converse relation to the graph of π and ◦ is curve

composition in the sense of Definition 2.13.

By successively factoring out single skew-twists from both sides of π, it

is clearly possible to write π := π3 ◦ π2 ◦ π1 so that π1 is a skew-twist from

h to some polynomial hf , and π3 is a skew-twist from some polynomial fh
to f , and the middle diagram πσ2 ◦ hf = fh ◦ π2 satisfies the hypotheses of

Theorem 5.23; that is, hf and π2 share no initial compositional factors, and

fh and πσ2 share no terminal compositional factors. In a like manner, we may

write ρ = ρ3 ◦ ρ2 ◦ ρ1.
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Now the graphs of ρi and the converses of graphs of πi are encoded by

words in ST+
k , so the composition B = ρ3 ◦ ρ2 ◦ ρ1 ◦ (π−1

1 ) ◦ (π−1
2 ) ◦ (π−1

3 ) is

encoded by the concatenation of these words. �

Proposition 6.20. For any word w ∈ ST+
k and any decomposition ~f ,

there are integers M,N ∈ N with M < k, words w2, w1 ∈ BGk with no in-

stances of γ in w1 and no instances of ψ in w2, and a word w̃ consisting only

of εp and δp for various p such that w ≈~f φ
N w̃w2w1φ

M or w ≈~f β
N w̃w2w1φ

M .

Proof. By Lemma 6.16, we find M < k such that ~g := φM ? ~f satisfies one

of the three possible conclusions of that lemma. By Lemma 2.66, w ≈ wβMφM .

By Lemma 6.7, there are ŵ ∈ STk and w̃ consisting only of εp and δp for various

p such that wβM ≈ w̃ŵ, and by Remark 6.6, w ≈ w̃ŵφM . By Proposition 2.70

and Lemma 6.18, there are N and wi as desired such that ŵ ≈ φNw2w1 or

ŵ ≈ βNw2w1. Again by Remark 6.6, w ≈ w̃φNw2w1φ
M or w ≈ w̃βNw2w1φ

M .

One last application of Lemma 6.7 finishes the proof. �

Definition 6.21. A monomial curve is plane curve C ⊆ A2 defined by

xn = ym for some m,n ∈ N.

Recall (Remark 2.62) that curves encoded by words in ST+
k are only de-

fined up to a linear terminal compositional factor L that must be added man-

ually.

Theorem 6.22. For any disintegrated polynomials f and g, any irre-

ducible (f, g)-skew-invariant plane curve B is an irreducible component of ĝ ◦
g̃ ◦ A ◦ D ◦ f̃ where

• f̃ is (the graph of ) an initial compositional factor of f or linear L;

• D is a monomial curve encoded by a word in the border guard monoid whose

degrees are bounded by Lemma 6.17, and in any case by the degree of f ;

• A is a monomial curve encoded by a word in εp and δp whose degrees are

bounded the product of in- and out-degrees of a compositional factor of f ,

and in any case by the degree of f ;

• ĝ and g̃ are one of the following for some N ∈ N:

– g̃ is the converse of the graph of an initial compositional factor of gσ
N

or linear, and ĝ is the converse of the graph of g♦N ;

– g̃ is the graph of an initial compositional factor of gσ
−N

or linear, and

ĝ is the graph of (g(σ−N ))♦N .

Remark 6.23. If some factor of ~f is unswappable, or if some robust clus-

tering of ~f has no gate at some cluster boundary, then D and A above must

be diagonals. Then one of ĝ ◦ g̃ and f̃ cancels with part of the other, and the

whole (f, g)-skew-invariant plane curve B is the graph of something like ĝ ◦ g̃.

More generally, by Remark 5.19 amd Proposition 5.23, A is the diagonal unless
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~f is skew-conjugate to a polynomial of the form xk · u(x`)n for some integers

k ≥ 1 and `, n such that `n ≥ 2.

The characterization of (f, g)-invariant curves becomes particularly sim-

ple when the two polynomials are the same.

Theorem 6.24. Fix an algebraic dynamical system (A2, (h, h)) for a dis-

integrated polynomial h. Any irreducible (h, h)-invariant plane curve B is the

graph, or the converse of the graph, of L ◦ h̃` for some linear linear L that

commutes with some compositional power of h and some h̃ such that h̃◦r = h

for some r.

Proof. Let f := g := h, and let ĝ, g̃, A, D, and f̃ be as in the conclusion

of that theorem so that B is an irreducible component of ĝ ◦ g̃ ◦ A ◦ D ◦ f̃ .

Nontrivial A irreparably damages in- and out-degrees of factors fi in a

decomposition of f = h. This cannot be fixed by D or by Ritt swaps inside

the decomposition because the monomials of A are not among the fi (see

Definition 5.18). If the same monomial occurs in both directions in A, then A
is reducible and its factors are given by replacing xp = yp in its definition by

x = ξy for various pth roots of unity ξ.

Nontrivial D irreparably damages the gates of a clustering of ~h in the

second case of Lemma 6.16 and irreparably damages the in- and out-degrees

of the factor fi guarding the border in the third case of Lemma 6.16.

Now, as in Remark 6.23, one of ĝ◦g̃ and f̃ cancels part of the other, leaving

behind the graph of a “fractional compositional power of h,” since f = g = h is

defined over the fixed field of σ. That is, B is the graph (or the converse of the

graph) of h0 ◦ h◦s for some s, where h0 is linear or the identity h ◦ h0 = h0 ◦ h
is a plain skew-twist. That is, for some h1, both h0 ◦ h1 = h and h1 ◦ h0 = h.

The theorem now follows from Ritt’s theorem on commuting rational func-

tions [16]. �

Recall (see Corollary 2.35) that for every f and g, there is some h so that

all (f, g)-invariant curves can be understood in terms of (h, h)-invariant curves.

Lemma 6.25. Suppose that f and g are disintegrated polynomials and

there is an irreducible (f, g)-invariant curve. Then there are polynomials π, ρ,

and h such that π ◦ h = f ◦ π and ρ ◦ h = g ◦ ρ, and any irreducible (f, g)-

invariant curve A is of the form (π, ρ)(B0) for some irreducible (h, h)-periodic

curve B0.

Proof. Proposition 2.34 produces polynomials π, ρ, and h as required.

Proposition 2.6 applied to the map of algebraic dynamical systems (π, ρ) :

(A2, (h, h)) → (A2, (f, g)) finishes the proof: any irreducible component B0 of

((π, ρ)−1(A))inv works. �
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An (h, h)-periodic curve is (h◦m, h◦m)-invariant for some m, so Theo-

rem 6.24 almost applies to the conclusion of Lemma 6.25.

Theorem 6.26. Suppose that f and g are disintegrated polynomials and

there is an irreducible (f, g)-invariant curve. Then there are polynomials π, ρ,

and h such that π◦h = f◦π and ρ◦h = g◦ρ, and any irreducible (f, g)-invariant

curve A is of the form (π, ρ)(B0), where B0 is the graph, or the converse of

the graph, of L ◦ h̃` for some linear L that commutes with some compositional

power of h and some h̃ such that h̃◦r = h◦m for some r and m.

7. Applications

In this section we use our characterization of skew-invariant varieties to

answer some open questions about the model theory of difference fields and

the arithmetic of algebraic dynamical systems.

7.1. Disintegrated minimal sets in ACFA. In this subsection we address

some fine structural questions about minimal sets in difference closed fields of

characteristic zero. Specifically, we consider minimal sets of the form (A1, f)].

We show that if the isomorphism class of (A1, f) is defined over the fixed

field of some power of the distinguished automorphism, then nonorthogonality

to (A1, f)] is definable. Conversely, whenever the moduli point of (A1, f) is

transcendental over the fixed field, it is undefinable. We close out this section

by showing that when f is disintegrated, (A1, f)] has Morley rank one.

Notation 7.1. We fix a difference closed field (U, σ) of characteristic zero.

All of the objects we discuss, such as polynomials, varieties, definable sets,

etc., are defined over U. Sometimes, we abuse notation writing expressions

like “a ∈ (X, f)]” to mean that X is an algebraic variety over U, f : X → Xσ

is a dominant regular map, and a ∈ (X, f)](U, σ) is a (U, σ)-rational point of

the σ-variety (X, f).

Notation 7.2. When we speak of properties of polynomials being definable,

we are considering the polynomial ring as an ind-definable set. More concretely,

we say that some class K of n-tuples of polynomials is definable if there is some

natural number d and definable set K ⊆M(d+1)×n(U) for which

K =
{( d∑

i=0

ai,1x
i, . . . ,

d∑
i=0

ai,nx
i
)

: (ai,j) ∈ K
}
.

Lemma 7.3. For any given natural number d, the relation that two poly-

nomials of degree d are skew-conjugate is definable.

Proof. The action of the group of linear polynomials by skew-conjugation

is definable with respect to our presentation of the space of degree d polyno-

mials as a constructible subset of Ad+1(U) . �
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Lemma 7.4. If f is a polynomial that is skew-conjugate to fσ , then there

is a polynomial g that is skew-conjugate to f and satisfies gσ = g.

Proof. By hypothesis, there is some linear λ with fσ = λσ ◦ f ◦ λ−1. As

pre-composition with λ−1 defines an automorphism of the space of degree d

polynomials, from the geometric axiom for difference closed fields, there is some

linear µ satisfying µσ◦λ = µ. Set g := µσ◦f◦µ−1. Then gσ = µσ
2◦fσ◦(µσ)−1 =

µσ
2 ◦ λσ ◦ f ◦ λ−1 ◦ (µσ)−1 = (µσ ◦ λ)σ ◦ f ◦ (µσ ◦ λ)−1 = µσ ◦ f ◦ µ−1 = g. �

Remark 7.5. The above lemmata hold more generally. For example, if

X = Xσ is an algebraic variety that descends to the fixed field, Aut(X) is

represented by a connected algebraic group, and (X, f) is a σ-variety on X

that is isomorphic as a σ-variety to (X, fσ), then there is a map g : X → X

for which gσ = g and (X, g) is isomorphic to (X, f).

With these observations in place, let us prove a theorem on definability of

nonorthogonality.

Theorem 7.6. For a nonconstant polynomial f , the set of polynomials g

with (A1, g) 6⊥ (A1, f) is definable if and only if f is not skew-conjugate to fσ
n

for every positive integer n ∈ Z+.

Proof. If f is linear, then the set of polynomials orthogonal to f is precisely

the set of linear polynomials, which is clearly definable. Likewise, if f is skew-

conjugate to Pn or Cn or −Cn for n = deg(f), then (A1, f) 6⊥ (A1, g) if and

only if g is skew-conjugate to Pn or Cn or −Cn. As this class is also definable,

we may restrict to the study of disintegrated f . By Proposition 6.19, g is

nonorthogonal to f just in case the skew-conjugacy class of some decomposition

of g is in the image of some (any) decomposition of f under the action of the

augmented skew-twist monoid ST+
k . As this monoid is countable, there are at

most countably many skew-conjugacy classes of polynomials nonorthogonal to

f . The map f♦n : (A1, f) → (A1, fσ
n
) witnesses nonorthogonality between f

and fσ
n
. Thus, if f is not skew-conjugate to any of its images under σn, we see

that there are exactly ℵ0 skew-conjugacy classes of polynomials nonorthogonal

to f . As every infinite definable set in a sufficiently saturated model must be

uncountable, we conclude that nonorthogonality to such an f is not definable.

Finally, consider the case when f is disintegrated and is skew-conjugate

to some fσ
n
. Then by Lemma 7.4, we my assume that f itself is equal to fσ

n
.

Considering Proposition 6.19 again we see that if g were nonorthogonal to

f , then this nonorthogonality would be witnessed by the composition of plain

skew-twists, monomial correspondences (with degrees bounded by deg(f)), an-

other plain skew-twist, and graphs of skew-composites f♦m with m < n. As

the set of such curves is finite (up to isomorphism), the set of polynomials

skew-conjugate to f is definable. �



168 ALICE MEDVEDEV and THOMAS SCANLON

Remark 7.7. Curiously, if f is a polynomial defined over some small differ-

ence subfield K of U, then model theoretic algebraic closure defines a locally

finite closure operator on (A1, f)] r acl(K) just in case the skew-conjugacy

class of f is transcendental over the fixed field. If we further assume that K

is finitely generated as a difference field, then it is not unreasonable to guess

that (A1, f)] ∩ acl(K) is finite. (This is plainly false when f is skew-conjugate

to fσ
n

for some n ∈ Z+.)

Because quantifier elimination fails for ACFA, definable sets of D-rank one

need not have Morley rank one. Indeed, it is easy to see that the fixed field is

minimal, but its induced structure is unstable. More sophisticated examples of

stable minimal sets of infinite multiplicity constructed from Hecke correspon-

dences appear in [4]. Here we show that if f is a disintegrated polynomial,

then (A1, f)] has Morley rank one and is “usually” strongly minimal.

Lemma 7.8. Let X be an algebraic variety for which X = Xσ . Let f :

X → X and g : X → X be two self-maps. Define φ := f ◦ g and ψ := gσ ◦ f .

Then g : (X,φ)] → (X,ψ)] is onto:

X
g−−−−→ X

f−−−−→ X

φ

y yψ yφσ
X

gσ−−−−→ X
fσ−−−−→ X.

Remark 7.9. This proof works for any inversive difference field. It is not

necessary to work with a difference closed field.

Proof. Let P ∈ (X,ψ)]. Set Q := σ−1f(P ). Let us note that the identity

φσ ◦ f = fσ ◦ gσ ◦ f = fσ ◦ ψ shows that f : (X,ψ) → (X,φσ) is a map of

σ-varieties so that f(P ) ∈ (X,φσ)]. Applying σ−1, we have Q ∈ (X,φ)]. We

compute g(Q) = gσ−1f(P ) = σ−1gσf(P ) = σ−1ψ(P ) = σ−1σ(P ) = P . �

Lemma 7.10. If (X, f) is any σ-variety and n ∈ Z+, then the map f♦n :

(X, f)] → (Xσn , fσ
n
) is onto.

Proof. Working by induction on n, it suffices to consider the case of n = 1.

Let a ∈ (Xσ, fσ)]. Set b := σ−1(a). Then f(b) = f(σ−1(a)) = σ−1fσ(a) =

σ−1σ(a) = a. �

With the next lemma we characterize the image of a power map.

Lemma 7.11. Given a nonconstant polynomial u, positive integer k, and

a prime `, we set f(x) := xku(x`) and g(x) := xku(x)`. In general, (A1, g)]

is the image of P` on
⋃
ζ∈µ`(A

1, ζf)]. If σ does not act on µ`, the group of

`th roots of unity, by raising to the kth power, then P` : (A1, f)] → (A1, g)] is

surjective.
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Proof. Let a ∈ (A1, g)]. Let b ∈ A1(U) be any solution to P`(b) = a.

From the equation P` ◦ f = g ◦ P`, we see that P`(f(b)) = g(a) = σ(a) while

we also know that P`(σ(b)) = σ(a). Hence, there is some ξ ∈ µ` for which

ξf(b) = σ(b).

We assume now that σ does not act by raising the kth power on µ`. Thus,

the map µ` → µ` given by ζ 7→ σ(ζ)/ζk is onto. Thus, we may choose ζ ∈ µ`
with σ(ζ)/ζk = ξ. We compute f(ζb) = (ζb)ku((ζb)`) = ζkbku(b`) = ζkf(b) =

ζkξσ(b) = ζkξσ(ζ)−1σ(ζb) = σ(ζb). Thus, ζb ∈ (A1, f)] and P`(ζb) = a. �

Combining the above lemmata, we conclude that disintegrated sets of the

form (A1, f)] have Morley rank one.

Theorem 7.12. If f is a disintegrated polynomial, then (A1, f)] has Mor-

ley rank one.

Proof. The quantifier-elimination to bounded existential quantifiers for

ACFA together with the work around finite σ-stable extensions in [4] imply

that every infinite definable subset of (A1, f)] is (up to a finite sets) a finite

union of sets of the form h(A1, g)], where h : (A1, g) → (A1, f) is a map of

σ-varieties.

By Theorem 6.22, h may be expressed as a composite of a sequence of

skew-twists, power maps of degree bounded by deg(f), and maps of the form

k♦n. By Lemmata 7.8 and 7.10, the maps of the first and third type are always

onto. By Lemma 7.11, there are at most deg(f) many distinct sets arising

from the power maps. �

7.2. Density of dynamical orbits. In this subsection we apply Theorem 6.24

to deduce a version of a conjecture of Zhang on the density of dynamical orbits.

Let us recall Zhang’s conjecture.

Conjecture 7.13 (Conjecture 4.1.6 of [20]). Let f : X → X be a polar-

izable dynamical system over a number field k. Then there is point a ∈ X(kalg)

algebraic over k whose forward orbit Of (a) := {f◦n(a) : n ∈ Z+} is Zariski

dense in X .

The dynamical systems we have been considering, namely, (An,Φ) given

by coordinatewise univariate polynomials as above, do not fit Conjecture 7.13

as stated for a couple of reasons. First, as An is affine, no dynamical system

on An can be polarized. More seriously, even if we pass to a projective closure,

the hypothesis of polarizability forces all of the polynomials involved to have

the same degree. We shall prove that there are dense orbits without these

restrictions.

In light of our results and a geometric version of Conjecture 7.13 due to

Amerik and Campana [2], we propose a more general conjecture on the density

of dynamical orbits.
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Conjecture 7.14. Let K be an algebraically closed field of characteristic

zero, X an irreducible algebraic variety over K , and Φ : X → X a rational

self-map. We suppose that there do not exist a positive dimensional algebraic

variety Y and a dominant rational map g : X → Y for which g ◦Φ = g gener-

ically. Then there is some point a ∈ X(K) with a Zariski dense forward orbit.

Remark 7.15. In [1], Amerik, Bogomolov, and Ravinsky prove some in-

stances of Conjecture 7.14, without imposing any polarizability hypotheses,

but instead arguing from the local behaviour of the dynamical system.

We shall prove the instance of Conjecture 7.14 in which X is affine space

and Φ is given by a sequence of univariate polynomials.

Theorem 7.16. Let K be a field of characteristic zero, f1, . . . , fn ∈ K[x]

nonconstant polynomials over K in one variable. Suppose that the linear poly-

nomials amongst the fi’s are independent in the sense Definition 2.26. Let

Φ : AnK → AnK be given by (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)). Then there is

a point a ∈ An(K) for which OΦ(a) is Zariski dense.

Remark 7.17. As one sees from the proof, in some sense almost every

point in An(K) has a Zariski dense orbit. We do not pursue the issue of giving

a quantitative treatment of this observation.

Remark 7.18. As the reader will see, the notion of independence is exactly

what is required so that there is no dominant map from (An,Φ) to a positive

dimensional trivial algebraic dynamical system. We do not pretend that the

inclusion of linear polynomials in this statement is deep, but we have included

them as there is little extra work involved in doing so and they round out the

statement.

Remark 7.19. Theorem 7.16 may be read as saying that there are points

a ∈ An(K) having the property that for no positive integer, N is Φ◦N (a) con-

tained in any proper σ-subvariety of (An,Φ) when K is treated as a difference

field with σ = idK . In fact, we prove Theorem 7.16 by explicitly describing the

irreducible σ-subvarieties of (An,Φ◦M ) for all M ∈ Z+ and then observing that

there are points in An(K) whose forward orbits miss all such σ-subvarieties.

We prove Theorem 7.16 as a consequence of a number of simple lemmata.

Lemma 7.20. Let f : X → X be an algebraic dynamical system over

some field K with X being irreducible. A point a ∈ X(K) has a Zariski dense

forward orbit if and only if there is no natural number m and proper f -invariant

subvariety (not necessarily irreducible) of X containing f◦m(a).

Proof. For any point a ∈ X(K), as f(Of (a)) = Of (f(a)) ⊆ Of (a), for

m � 0 the variety Of (f◦m(a)) is an f -invariant subvariety of X. Hence, if
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Of (a) is not Zariski dense in X, then Of (f◦m(a)) is a proper f -invariant subva-

riety of X. Conversely, if f◦m(a) ∈ Y ( X and Y is f -invariant, then Of (a) ⊆
Y (K)∪{f◦i(a) : 0 ≤ i ≤ m} so thatOf (a) ⊆ Y ∪{f◦i(a) : 0 ≤ i ≤ m} ( X. �

Lemma 7.21. If f : X → X is an algebraic dynamical system over some

field K , X is irreducible, and a ∈ X(K) has a Zariski dense forward orbit,

then for any m ∈ Z+, X = Of◦m(a).

Proof. For i = 0, . . . ,m − 1, let Zi := Of◦m(f◦i(a)). Then as Of (a) =⋃m−1
i=0 Of◦m(f◦i(a)), we have X =

⋃m−1
i=0 Zi. Hence, X = Zi for some i. As X

has a dense f -orbit, the map f : X → X is necessarily dominant (otherwise,

Of (a) ⊆ {a}∪f(X) ( X). As f maps Zj to Zj+1 mod m, we must have X = Zj
for all j. In particular, X = Z0 = Of◦m(a). �

Lemma 7.22. Suppose that f : X → X and g : Y → Y are algebraic

dynamical systems over the field K , (X, f) ⊥ (Y, g), and that there are rational

points a ∈ X(K) and b ∈ Y (K) with Of (a) = X and Og(b) = Y . Then

O(f,g)(a, b) = X × Y .

Proof. Let Z :=O(f,g)(a, b) be the Zariski closure of the forward (f, g)-orbit

of (a, b). As (f, g)(O(f,g)(a, b)) ⊆ O(f,g)(a, b), possibly after removing finitely

many points the variety Z is (f, g)-invariant. As (X, f) ⊥ (Y, g), Zinv must

be a finite union of varieties of the form A × B where A ⊆ X is f -invariant

and B ⊆ Y is g-invariant. Let A × B be a component containing (a, b). By

Lemma 7.21, X = Of (a) ⊆ A ⊆ X and Y = Og(b) ⊆ B ⊆ Y . Hence,

X × Y = O(f,g)(a, b). �

Lemma 7.23. Let K be a field of characteristic zero and f and g two

disintegrated polynomials over K . Then there is a point (a, b) ∈ A2(K) for

which O(f,g)(a, b) is Zariski dense in A2
K .

Proof. If f and g are orthogonal, Lemma 7.22 shows that (a, b) works

whenever a is not f -preperiodic and b is not g-preperiodic, which can always

be arranged. Thus we may assume that f and g are nonorthogonal. By Theo-

rem 2.35 there are a natural number m, a polynomial h, and dominant maps of

dynamical systems ρ : (A1, h)→ (A1, f◦m) and π : (A1, h)→ (A1, g◦m). It fol-

lows from Ritt’s theorem on polynomials with common iterates [14] that there

is a maximal k for which we may write h = L−1 ◦ (ζh̃◦k) ◦ L for some linear

L and some root of unity ζ. Let R be a finitely generated subring of K over

which f , g, h̃, π, ρ, and all symmetries of h̃ are defined and which contains the

multiplicative inverse of the leading coefficient of each of these polynomials.

Let ‹R be the integral closure of R in its field of fractions, regarded as a subfield

of K. Let â ∈ ‹R and b̂ ∈ K r ‹R so that neither â nor b̂ is h-pre-periodic. Set

a := π(â) and b := ρ(b̂).
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We claim that there is no (possibly reducible) weakly (h, h)-invariant curve

C with (â, b̂) ∈ C(K). As neither â nor b̂ is preperiodic, we see that we may

assume that each component of C projects dominantly in both directions. If

(â, b̂) ∈ C(K), then for n � 0, we would have (h◦n(â), h◦n(b̂)) ∈ Cinv(K) so

that (h◦n(â), h◦n(b̂)) would lie on an irreducible (h◦nN , h◦nN )-invariant curve

for some N � 0. By Theorem 6.24, such a curve is defined by y = L ◦ h̃`(x)

or x = L ◦ h̃`(y). Neither such curve can contain a K-rational point of the

form (c, d) with c ∈ ‹R and d /∈ ‹R, which is exactly the form of (h◦n(â), h◦n(b̂))

as the polynomial h maps R to R and cannot map a nonintegral point to an

integral point as its leading coefficient is a unit.

It follows that (a, b) = (f, g)(â, b̂) cannot lie on any weakly (f, g)-invariant

curve as the pullback of such a curve would be weakly (h, h)-invariant. Thus,

O(f,g)(a, b) = A2. �

Lemma 7.24. Let K be a field of characteristic zero, and let f, . . . , fr ∈
K[x] be a a sequence of nonconstant polynomials over K . We assume that

each fi has degree at least two and is not conjugate to a monomial, Chebyshev

polynomial, or negative Chebyshev polynomial. Then there is a rational point

a = (a1, . . . , an) ∈ An(K) with a dense (f1, . . . , fn)-orbit.

Proof. Let R ⊆ K be some finitely generated subring over which complete

decompositions of each fi are defined and the leading coefficient of each inde-

composable factor is a unit. We argue by induction on i that we can find some

finitely generated ring B containing R and contained in K for which there is a

point (a1, . . . , ai) ∈ Ai(B) with O(f1,...,fi)(a) Zariski dense in Ai. In the case of

i = 1, the result follows by height considerations. (For example, by embedding

R ⊆ C if we take a ∈ R with |a| � 0, then limm→∞ f
◦m
1 (a) = ∞ so that, in

particular, a is not preperiodic.)

In the inductive case, we have (a1, . . . , ai) ∈ Ai(B) with a Zariski dense

(f1, . . . , fi)-orbit. Let ai+1 ∈ K be any element of K that is not integral over B.

Then for every m, f◦m(an+1) is also nonintegral, so by the second half of the

proof of Lemma 7.23, (f◦m(aj), f
◦m(ai+1)) does not belong to any (f◦mj , f◦mi+1)-

invariant curve. By disintegratedness, it follows that (f◦m1 (a), . . . , f◦mi+1(a)) does

not belong to any (f◦m1 , . . . , f◦mi+1)-invariant variety. �

Let us now combine these results to complete the proof of Theorem 7.16.

Proof. Reordering the indices if need be, we may express (An,Φ) as a

product (An` , λ) × (AnG , γ) × (Ant , τ), where λ is given by a sequence of uni-

variate linear polynomials, γ is given by a sequence of polynomials of degree

at least two each conjugate to a monomial, Chebyshev polynomial, or negative

Chebyshev polynomial, and τ is given by a sequence of disintegrated polyno-

mials. By Proposition 2.27 there is some a ∈ An`(K) with Oλ(a) Zariski dense
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in An` , by Proposition 2.28 there is some b ∈ AnG(K) with Oγ(b) Zariski dense

in AnG , and by Lemma 7.24 there is some c ∈ Ant)(K) with Oτ (x) Zariski

dense in Ant . By Lemma 7.22, OΦ((a, b, c)) is Zariski dense in An. �

7.3. Difference equations for Frobenius lifts. In this section we observe

that for dynamical systems lifting the Frobenius, one can capture the periodic

points with a difference equation. Consequently, our results on the structure of

difference varieties imply strong restrictions on the algebraic relations amongst

the periodic points of such dynamical systems.

Notation 7.25. In what follows, K is a field with a valuation v, ring of

integers R := {x ∈ K : v(x) ≥ 0}, maximal ideal m := {x ∈ R : v(x) > 0}, and

residue field k := R/m of characteristic p > 0. We assume that σ : K → K is an

automorphism lifting the p-power Frobenius in the sense that v(σ(x)) = v(x)

for all x ∈ K and σ(x) ≡ xp mod m for x ∈ R. We assume, moreover, that

K is maximally complete and algebraically closed. The results we prove about

periodic points descend from K to subfields, so the reader may comfortably

drop these last two hypotheses, but some of our intermediate results require

at least completeness. Ultimately, we shall assume that K has characteristic

zero, but for now, this is not necessary.

Notation 7.26. If X is a scheme over R, then we write X0 for the base

change of X to k and Xη for the base change of X to K. We write π : X(R)→
X0(k) for the natural reduction map.

With Theorem 7.27 we show that difference equations given by liftings

of the Frobenius give dynamical Teichmüller maps. Towards the end of this

section we specialize to the case of dynamical systems given by sequences of

univariate polynomials and thereby deduce form our earlier work that algebraic

relations amongst periodic points of such systems are highly restricted.

Theorem 7.27. Let X be a separated scheme of finite type over R. We

assume that X is smooth over R. Suppose that Γ ⊆ X × Xσ is a closed

subscheme of X × Xσ for which the projection Γ → X is étale. Suppose,

moreover, that q = pn is a power of p and Γ lifts the Frobenius in the sense that

some component of the special fibre Γ0 is the graph of the geometric q-power

Frobenius morphism F : X0 → X
(q)
0 . Then the reduction map π : X(R) →

X0(k) restricts to a bijection between (X,Γ)](R, σn) and X0(k).

Proof. To ease notation, let us write ρ := σn. Let us first show that

π : (X,Γ)](R, ρ)→ X0(k) is surjective. Let a ∈ X0(k) be any k-rational point

on X0. Pick any point ã ∈ X(R) with π(ã) = a. From the hypothesis that X

is smooth over R, we may fix an étale covering f : U → AmR where ã ∈ U(R),

U ⊆ X is an affine open subset and f(ã) = 0. Note that fρ : Uρ → AmR gives

analytic coordinates on Xρ near ρ(ã).
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As Γ→ X is étale, the set (f, fρ)(Γ(R) ∩ π−1{a} × (πρ)−1{F (a)}) is the

graph of an analytic function g : mm → mm where g(x1, . . . , xm) ≡ (xq1, . . . , x
q
m)

mod m · R[[x1, . . . , xm]]. That we can find a solution to g(x) = ρ(x) follows

from Newton’s method. (See [18] in this context.)

That is, if for some γ > 0 we have a solution to g(x) ≡ ρ(x) mod Iγ
where Iγ := {z ∈ R : v(z) ≥ γ}, we can find some x′ with x ≡ x′ mod Iγ
but g(x) ≡ ρ(x) mod Iγ+ := {z ∈ R : v(z) > γ}, and then taking limits we

find a true solution within the given neighborhood. In our case, we already

know that g(0) ≡ 0 mod m = I0+ . Given an approximate solution x, suppose

that g(x) ≡ ρ(x) mod Iγ with γ > 0. Let ε ∈ R with v(ε) = γ. We seek

to find x′ = x + cε with c = (c1, . . . , cm) and v(ci) ≥ 0 for each i. We

have g(x+ cε) = g(x) +
∑m
i=1

∂g
∂Xi

(x)cε+ ε2∗ ≡ g(x) mod Iγ+ as ∂g
∂Xi
≡ qXq−1

i

mod mR[[X1, . . . , Xm]]. On the other hand, ρ(x+cε) = ρ(x)+ρ(c)ρ(ε) ≡ ρ(x)+

(cq1, . . . , c
q
m)ρ(ε) mod Iγ+ . Subtracting, we need only solve ρ(ε)(cq1, . . . , c

q
m) ≡

g(x) − ρ(x) mod Iγ+ . By hypothesis, each component of g(x) − ρ(x) has

valuation at least γ = v(ρ(ε)). As k is perfect, we may solve these equations.

These calculations demonstrate that the restriction of π to (X,Γ)](R, ρ)

is injective as well since the solution c = (c1, . . . , cm) is uniquely determined

modulo m. Since we know the residue of the solution, this shows that the

reduction map is injective. �

Corollary 7.28. With X and Γ as in Theorem 7.27, for any natural

number N , one has (X,Γ)](R, ρ) = (X,Γ♦N )](R, ρN ).

Proof. A composite of étale extensions is étale. Hence, the hypotheses of

Theorem 7.27 apply to X, Γ♦N , and mN . So, π : (X,Γ♦N )](R, ρN )→X0(k)

is also a bijection. As (X,Γ)](R, ρ) ⊆ (X,Γ♦N )](R, ρN ), these sets must be

equal. �

Specializing Γ somewhat, we may use Theorem 7.27 to find a difference

equation for periodic points.

Theorem 7.29. Let X be a separated scheme of finite type over R, smooth

over R, and f : X → X a morphism lifting the q = pn-power Frobenius. Let

ρ := σn. We assume that f = fρ and X = Xρ. Then every f -periodic

R-rational point belongs to (X, f)](R, ρ).

Proof. Let b ∈ X(R) be an f -periodic point of order M . There are

only finitely many solutions to f◦M (x) = x (as, for instance, this is true

on the special fibre). Hence, ρN (b) = b for some N > 0. Thus, b satisfies

ρMN (x) = f◦MN (x). That is, b ∈ (X, f◦MN )](R, ρMN ), which is (X, f)](R, ρ)

by Corollary 7.28. �

Remark 7.30. Theorem 7.29 holds for f analytic. This observation yields

interesting information in the case that X is a moduli space of abelian varieties,
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Γ ⊆ X ×X is a p-power Hecke correspondence, and f : X → X (or, really, f

is defined on some dense open subset) is a branch of Γ lifting the Frobenius.

In this case, the difference equation captures the canonical lifts. (See [17] for

more details.)

Remark 7.31. If in Theorem 7.29 we assume that k = Falg
p , then as every

point in X(k) is f -periodic, every point in (X, f)](R, ρ) is f -periodic.

Remark 7.32. This method of obtaining interesting difference equations

for periodic points by lifting equations on the Frobenius has been used in

the study of Manin-Mumford questions [10], [13]. When more structure (for

instance, a group) is available, then more complicated equations beyond simply

f(x) = σ(x) may be used to give deeper information. We expect that these

equations in the more general dynamical context will be useful, but we have

not pursued this issue.

Let us conclude by specializing to the case of sequences of univariate

polynomials.

Theorem 7.33. Let q = p` be a power of p. We suppose that K has

characteristic zero. Let f1, . . . , fn ∈ R[x] be polynomials with fi(x) ≡ xp

mod mR[x] for each i ≤ n. We suppose that for some m > 0, each fi = fσ
m

i

for each i. If X ⊆ AnK is an irreducible subvariety containing a Zariski dense

set of points of the form (ζ1, . . . , ζn) where ζi ∈ R is fi-periodic, then X is

a difference subvariety of (An, (f♦m1 , . . . , f♦mn )) and has the shape described in

Theorem 6.26. Moreover, if deg(fi) = q for each i, then we may replace the

hypothesis “ζi ∈ R ” by “ζi ∈ K .”

Proof. By Theorem 7.29, the (f1, . . . , fn)-periodic points in An(R) are all

contained in (An, (f♦m1 , . . . , f♦mn ))](R, σ`m). Hence, if X contains a Zariski

dense set of periodic points from An(R), then

X ∩ (An, (f♦m1 , . . . , f♦mn ))](R, σ`m)

is Zariski dense in X implying that X is a difference subvariety of

(An, (f♦m1 , . . . , f♦mn )).

The description of X now follows from our description of such difference vari-

eties.

For the “moreover” clause, observe that if deg(fi) = q, then every fi-

periodic point is integral over R and, hence, actually an element of R as R is

integrally closed in K. �

Remark 7.34. Further specializing Theorem 7.33, one obtains statements

about algebraic relations amongst the periodic points of a polynomial without
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reference to valuations as announced in the introduction. For example, let

q be a power of a prime number p. Suppose that f(x) = xq + pg(x) where

g(x) ∈ Z[x] and deg(g) ≤ q. Suppose, moreover, that f is not linearly conjugate

to a monomial or a Chebyshev polynomial or a negative Chebyshev polynomial.

Then every irreducible variety X ⊆ AnC that contains a Zariski dense set of n-

tuples of f -periodic points is defined by a sequence of equations of the form

g(xi) = xj or g(x`) = a for a some fixed f -periodic point and g a polynomial

that commutes with f .
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