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Cannon-Thurston maps for surface groups

By Mahan Mj

Abstract

We prove the existence of Cannon-Thurston maps for simply and dou-

bly degenerate surface Kleinian groups. As a consequence we prove that

connected limit sets of finitely generated Kleinian groups are locally con-

nected.
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1. Introduction

Let Γ be a finitely generated Kleinian group, i.e., a finitely generated dis-

crete subgroup of Isom(H3) (= PSL2(C)), the isometry group of hyperbolic

3-space. Then Γ acts on the boundary Riemann sphere S2 (of H3) by confor-

mal automorphisms. The limit set of Γ, denoted by ΛΓ, is the collection of

accumulation points of any Γ-orbit in S2. The limit set is independent of the

Γ-orbit chosen. In particular, for any z ∈ ΛΓ, the orbit Γ.z is dense in ΛΓ. The

complement S2 \ ΛΓ is called the domain of discontinuity of Γ and is denoted

DΓ. The action of Γ on DΓ is properly discontinuous. Thus, the limit set ΛΓ

may be thought of as the locus of chaotic dynamics for the action of Γ on S2

and it would be desirable to “tame” it.

Motivation and statement of results. Towards this, Thurston raises the

following question (see [Thu82, Prob. 14]):

Question 1.1. Suppose Γ has the property that (H3 ∪DΓ)/Γ is compact.

Then is it true that the limit set of any other Kleinian group Γ′ isomorphic to

Γ is the continuous image of the limit set of Γ by a continuous map taking the

fixed points of an element γ to the fixed points of the corresponding element γ′?

Essentially the same question is raised by Cannon and Thurston in [CT85,

§6], [CT07] in the specific context of surface Kleinian groups:

Question 1.2. Suppose that a surface group π1(S) acts freely and properly

discontinuously on H3 by isometries such that the quotient manifold has no

accidental parabolics. Does the inclusion ĩ : S̃ → H3 extend continuously to

the boundary?
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The authors of [CT85] point out that for a simply degenerate surface

Kleinian group, this is equivalent, via the Carathéodory extension theorem, to

asking if the limit set is locally connected. The most general question in this

context is the following.

Question 1.3. Let Γ be a finitely generated Kleinian group such that the

limit set ΛΓ is connected. Is ΛΓ locally connected?

It is a classical fact of general topology that a compact, connected, locally

connected metric space X is homeomorphic to a Peano continuum; i.e., X is

a continuous image of the closed interval [0, 1]. Hence, asking if the limit set

is locally connected is equivalent to asking if there is some parametrization by

[0, 1]. Question 1.1 makes this precise by asking for an explicit parametrization.

For surface Kleinian groups, Question 1.2 asks for a parametrization of ΛΓ by

a circle. In this paper, we give a positive answer to Question 1.2.

Theorems 7.1 and 8.6. Let ρ be a representation of a surface group

H(= π1(S)) into PSL2(C) without accidental parabolics. Let M denote the

(convex core of ) H3/ρ(H). Further suppose that i : S → M , taking parabolic

to parabolics, induces a homotopy equivalence. Then the inclusion ĩ : S̃ → M̃

of universal covers extends continuously to a map î : Ŝ → M̂ between the

compactifications of universal covers. Hence the limit set of ρ(H) is locally

connected.

In [Mj10b] we extend the techniques of this paper to answer Question 1.1

affirmatively. The continuous boundary extensions above are called Cannon-

Thurston maps.

Combining Theorems 7.1 and 8.6 with a theorem of Anderson and Maskit

[AM96], we have the following affirmative answer to Question 1.3.

Theorem 8.9. Let Γ be a finitely generated Kleinian group with connected

limit set Λ. Then Λ is locally connected.

Note that the limit set of a finitely generated Kleinian group Γ is connected

if and only if the boundary of the convex core of H3/Γ is incompressible away

from cusps.

Relationship with the Ending Lamination Theorem. Seminal work of Min-

sky [Min10] and Brock-Canary-Minsky [BCM12], building on work of Masur-

Minsky [MM99], [MM00], has resolved Thurston’s Ending Lamination Con-

jecture. The Ending Lamination Theorem roughly says that for a simply or

doubly degenerate surface Kleinian group Γ without accidental parabolics, the

isometry type of the manifold M = H3/Γ is determined by its end-invariants.

For a doubly degenerate group, the end-invariants are two ending laminations,

one each for the two geometrically infinite ends of M . For a simply degener-

ate group, the end-invariants are an ending lamination corresponding to the
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geometrically infinite end of M and a conformal structure corresponding to

the geometrically finite end of M . The ending lamination corresponding to

a geometrically infinite end may be regarded as a purely topological piece

of data associated to the end. Thus, in the context of geometrically infinite

Kleinian groups, the Ending Lamination Theorem roughly says that “Topol-

ogy implies Geometry”; an analog of Mostow Rigidity for infinite covolume

Kleinian groups.

Theorems 7.1 and 8.6 prove the existence of Cannon-Thurston maps for

surface Kleinian groups but leave unanswered the question about the point

preimages of these maps. In [Mj07], we relate the point preimages of Cannon-

Thurston maps for simply and doubly degenerate surface Kleinian groups to

ending laminations. In particular, the ending lamination corresponding to a

degenerate end can be recovered from the Cannon-Thurston map. More gener-

ally, since topological conjugacies are compatible with Cannon-Thurston maps,

a topological conjugacy of Γ-actions on limit sets comes from a bi-Lipschitz

homeomorphism of quotient manifolds. Hence the Ending Lamination The-

orem [Min10], [BCM12], in conjunction with Theorems 7.1 and 8.6 and the

main result of [Mj07], shows that the geometry of M can be recovered from

the action of Γ on the limit set ΛΓ. This justifies the slogan “dynamics on the

limit set determines geometry in the interior.”

History. Several authors have contributed to the theme of this paper.

We shall give below a brief account of the history of the problem along with

some further developments that use the results of this paper. Cannon and

Thurston [CT07], Minsky [Min94], Alperin, Dicks and Porti [ADP99], Cannon

and Dicks [CD02], [CD06], Klarreich [Kla99], McMullen [McM01], Bowditch

[Bow13], [Bow07] and the author [Mit98b], [Mit98a], [Mj09], [Mj11], [Mj10a],

[Mj05] have obtained partial positive answers to Questions 1.1 and 1.2. We

describe some of this history in brief.

In [Abi76], Abikoff gave an approach to a negative answer to Question 1.3.

However, around 1980, Thurston realized that this approach would not work.

Then, in a foundational paper, Cannon and Thurston [CT85] gave the first

examples furnishing a positive answer to Question 1.1 for geometrically in-

finite surface Kleinian groups; hence the term “Cannon-Thurston map.” In

approximate chronological order, the existence of Cannon-Thurston maps in

the context of Kleinian groups was proven

(1) by Floyd [Flo80] for geometrically finite Kleinian groups;

(2) by Cannon and Thurston [CT85], [CT07] for fibers of closed hyperbolic

3-manifolds fibering over the circle and for simply degenerate groups with

asymptotically periodic ends;

(3) by Minsky [Min94] for closed surface groups of bounded geometry (see also

[Mit98b], [Mj10a]);
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(4) by the author [Mit98b], and independently by Klarreich [Kla99] using dif-

ferent methods, for hyperbolic 3-manifolds of bounded geometry with an

incompressible core and without parabolics;

(5) by Alperin-Dicks-Porti [ADP99] for fibers of the figure eight knot comple-

ment regarded as a fiber bundle over the circle;

(6) by McMullen [McM01] for punctured torus groups (see also [Mj11]).

(7) by Bowditch [Bow13], [Bow07] for punctured surface groups of bounded

geometry (see also [Mj09]);

(8) by Miyachi [Miy02] for handlebody groups of bounded geometry (see also

[Sou06]);

(9) by the author [Mj09] for hyperbolic 3-manifolds of bounded geometry with

core incompressible away from cusps;

(10) by the author [Mj11], [Mj05] for special unbounded geometries.

Further developments. In [Mj07], we give an explicit parametrization of

the limit set of a surface Kleinian group by describing the point pre-images

of the Cannon-Thurston map and relating them to ending laminations. In

a further follow-up paper [Mj10b], we answer Question 1.1 affirmatively and

completely for all finitely generated Kleinian groups, using some preliminary

work in [MD10]. The techniques of this paper can thus be strengthened to show

that Cannon-Thurston maps exist in general for finitely generated Kleinian

groups, thus answering a conjecture of McMullen [McM01].
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1.1. Broad scheme of proof. Let M be a hyperbolic 3-manifold homotopy

equivalent to a closed hyperbolic surface S. We think of S as an embedded

incompressible surface in M . Let S̃ and M̃(= H3) denote the universal covers

of S,M respectively and ĩ : S̃ → M̃ the inclusion of universal covers.
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Given a hyperbolic geodesic segment λ in S̃ lying outside a large ball

about a fixed reference point o ∈ S̃, our aim is to show that the geodesic in H3

joining the endpoints of ĩ(λ) lies outside a large ball about ĩ(o) in H3. This

is sufficient to prove the existence of Cannon-Thurston maps (Lemma 1.8).

Instead of proving this directly, our objective will be to construct a set Lλ
(called a “ladder”) containing ĩ(λ) such that

(1) If λ lies outside a large ball in S̃, then the ladder Lλ lies outside a a large

ball in M̃ . It is much easier to show (and follows from an essentially

elementary argument) that Lλ lies outside a a large ball than to find

the exact (or even approximate) location of the geodesic in H3 joining

the endpoints of ĩ(λ). Hence this approach.

(2) Lλ is quasiconvex with respect to a modified (pseudo) metric dG on M̃ ,

thus forcing the dG geodesic joining the endpoints of λ to lie dG-close

to Lλ.

(3) The pseudometric dG is constructed in such a way that Lλ still controls

(cf. Lemma 2.5) the location of the hyperbolic geodesic βh in H3 joining

the endpoints of ĩ(λ), thus forcing βh to lie outside a large ball in H3.

For ease of notation, we shall often identify any point or subset of S̃ with

its image under ĩ.

1.1.1. The ladder. One of the main steps in proving the sufficient condi-

tion of Lemma 1.8 (and hence concluding the existence of Cannon-Thurston

maps) is to construct a quasiconvex “hyperbolic ladder” as in [Mit98b] and

[Mit98a] containing λ. Suppose that a sequence {Si} of disjoint, equispaced,

embedded, bounded geometry surfaces exiting an end E of M has been “judi-

ciously” constructed. We shall describe a little later what “judicious” means.

We think of {Si} as a sequence of surfaces exiting a vertical end E. Identify S

with the base surface S0.

Choose a basepoint in S and fix a lift p of the base-point in S̃ as the origin.

Let r be a quasigeodesic ray in M , starting at p, exiting E and making linear

progress as it exits E. Suppose λ = [a, b] ⊂ S̃ is a geodesic in the intrinsic

metric on S̃ joining two lifts a(= a0) and b(= b0) of p. Let ra, rb be the lifts

of r starting at a, b respectively. Let ai (resp. bi) be the point at which ra
(resp. rb) intersects S̃i. Let λi be the geodesic in the intrinsic metric on S̃i
joining ai, bi. The ladder associated to the sequence {Si} and the geodesic λ

is Lλ =
⋃
i λi. To prove quasiconvexity of Lλ we construct a retraction Πλ of⋃

i S̃i onto Lλ =
⋃
i λi by defining Πλ on S̃i as the nearest point retraction onto

λi in the intrinsic metric on S̃i. We would like to ensure that Πλ is coarsely

Lipschitz. The construction of Lλ and Πλ is detailed in Section 5.
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The ladder Lλ has the following property that we want: If λ lies outside

a large ball about the origin in S̃, then Lλ lies outside a large ball about the

origin in M̃ .

This construction works exactly for 3-manifolds of bounded geometry,

where the Si’s may be chosen such that

(1) Equispaced condition: the regions between Si and Si+1 are uniformly bi-

Lipschitz to Si × [0, 1] (for all i).

(2) Quasi-isometry condition: The map from S̃i to fiSi+1 that takes (x, i) to

(x, i+ 1) is a uniform quasi-isometry.

Both of these break down in general. In fact, quasiconvexity of Lλ is not

in general true in the hyperbolic metric on M̃ for the choice of the sequence

{Si} we describe below.

The technical tool we shall use to address this issue in this paper is electric

geometry and relative hyperbolicity (Section 2). Let H = {Hi} be a collection

of quasiconvex subsets of H3. The electric (pseudo) metric obtained by elec-

trocuting elements of H essentially allows one to travel for free within any

Hi. However, this metric has the crucial feature that electric geodesics con-

trol hyperbolic geodesics (Lemma 2.5) and hence allows recovery of hyperbolic

geodesics from electric geodesics. We emphasize that it is quasiconvexity of

Hi’s that allows this recovery.

1.1.2. A motivational special case of split geometry. We describe first a

special case of the model geometry of a geometrically infinite unbounded ge-

ometry end E. This will be a particular case of what is referred to as “split

geometry” later on in the paper and is representative in a sense to be expli-

cated. (The model geometry described here was called “graph amalgamation

geometry” in [Mj05].) Suppose we have the following situation:

(1) There exists a sequence {Si} of disjoint, embedded, bounded geometry

surfaces exiting E. These are ordered in a natural way along E; i.e., i < j

implies that Sj is contained in the unbounded component of E \ Si. The

topological product region between Si and Si+1 is denoted Bi.

(2) Corresponding to each such product region Bi, there exists a Margulis tube

Ti such that Ti ⊂ Bi. Further, Ti ∩ Si and Ti ∩ Si+1 are annuli on Si and

Si+1 respectively, with core curves homotopic to the core curve of Ti.

We think of the Margulis tube Ti as “splitting” the block Bi and hence

the surfaces Si and Si+1; see Figure 1. The complementary components Kij

of Bi \ Ti and their lifts K̃ij to ‹E will play a special role later.

Note that we have no control on the geometry of the complementary com-

ponents Kij . So the only thing we can do with them is to electrocute them

and lose the geometry contained within any such component. Electrocuting

Kij ’s forces Si and Si+1 to be equispaced (about distance one apart from each
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Si

Si+1

Ti Kij

Figure 1. A special case of split geometry.

other). It is in this modified electric metric that the sequence {Si} satisfies

both the equispaced condition and the quasi-isometry condition above and the

ladder construction can go through.

It will turn out that the universal covers K̃ij ⊂ ‹E are quasiconvex in a

certain weak sense. Thus, we can electrocute such components and still hope

to recover hyperbolic geodesics from electric geodesics using Lemma 2.5.

1.1.3. Choice of the sequence of surfaces. We shall first describe a couple

of restrictive assumptions on a degenerate end that reduce it to the above

model geometry. We shall then state (very briefly) how one needs to modify

the above model to obtain a model geometry for a general degenerate end.

The special case. We give a brief sketch of the simplifying assumptions

on a general degenerate end that leads us to a model geometry and a choice

of a sequence {Si} as above. First one needs a linear order on incompress-

ible (but not necessarily embedded) surfaces in E. It is at this stage that we

need Minsky’s model manifold from [Min10] and, more generally, the hierarchy

machinery from [MM00]. The model manifold of [Min10] does not quite fur-

nish a sequence of complete surfaces exiting E but rather a sequence of pants

decompositions of S exiting E. A sequence {Pm} of pants decompositions of

S exiting E means the following. Fix an isometry type P of a pair of pants.

Let τm denote the simple multicurve on S forming the boundary curves of

the pants decomposition Pm. Then the complement of a thin (open) annular

neighborhood of τm in S can be identified with Pm. We demand that this

complementary region (identified with Pm) can be embedded in E such that

Pm with the inherited metric is of uniformly bounded geometry; i.e., each pair
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of pants (component) in Pm is uniformly bi-Lipschitz to P. We demand further

that each such embedding of Pm can be extended to a topological embedding

Sm of S and these topological embeddings {Sm} exit the end E.

The sequence {Pm} of (boundary curves of) pants decompositions exiting

E is often referred to as a resolution. The sequence {Pm} in [Min10] is chosen

in such a way that the boundary curves of the pants decompositions {Pm}
occurring in the resolution have short geodesic realization in E.

Each pants decomposition gives a simplex in the curve complex CC(S)

of the surface S. Hence the resolution furnishes a special kind of a path of

simplices in CC(S). Associated to such a path is a geodesic of simplices in

CC(S) called a tight geodesic [Min10]. A tight geodesic furnishes a “tight

sequence” . . . , τi, τi+1, . . . of multicurves on the surface S. (Note the difference

between the suffixes i and m at this stage. This indicates that we are actually

passing to a subsequence.) This material is detailed in Section 3.

Simplifying Assumption 1. Assume, for simplicity, that for all i, the length

of exactly one curve in τi is sufficiently small, less than the Margulis constant

in particular.

Call the short curve τi for convenience. The surface Si (roughly) corre-

sponds to the first occurrence of the vertex τi in the resolution. Since τi is

short, the Margulis tube Ti corresponding to it splits both Si and Si+1.

Simplifying Assumption 2. Assume further that that the surfaces Si have

injectivity radius uniformly bounded below; i.e., the tube Ti is trapped entirely

between Si and Si+1.

The product region Bi between Si and Si+1 will be called a split block as

it is split by Ti. This situation (an end E satisfying Simplifying Assumptions 1

and 2) gives us the model geometry (special case of split geometry) described

above.

The general case. The construction of the sequence {Si} in general (with-

out the simplifying assumptions of the special case) is described in detail in

Section 4.1. Here we content ourselves by providing a couple of caveats.

Note first that Bi \ Ti might be very far from a metric product. Thus

electrocution is a necessity to make the Si’s equispaced.

We point out further that in general (when Simplifying Assumption 2 is

no longer valid) the Margulis tube Ti may not be entirely contained in Bi but

may extend into Bi+1 or Bi−1. As a result, the surface Si may have a thin

part contained entirely in Ti, destroying the product structure of Bi.

To address this issue, we shall excise the interiors of Margulis tubes and

“weld” the “vertical sides” (see Figure 1) of Ti together. The resulting manifold

is called the welded model manifold Mwel. Mwel is thus a quotient space of M
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homeomorphic to M itself. In the previous schematic figure, the thick dark

vertical rectangle denotes a section of the Margulis tube Ti. The quotient map

identifies the vertical sides of this vertical rectangle and collapses the horizontal

I-direction to a point. (Ti should be thought of as a product of the dark vertical

rectangle with a circle.) We shall also construct a new (pseudo) metric dtel on

Bi after welding the vertical sides (the “welded blocks”). This process is called

tube electrocution and is carried out on the welded model manifold Mwel rather

than the model manifold itself in Section 4.3. The pseudometric dtel on the

welded manifold Mwel roughly gives zero length to all horizontal circles of Ti
and a uniformly bounded length to the vertical direction.

1.1.4. Split geometry and graph-quasiconvexity. Lifts K̃ of components of

Bi\Ti to the universal cover flMwel are called split components. We construct an

auxiliary metric dG called the graph (pseudo) metric on flMwel by electrocuting

the family of split components in flMwel. What this means is that for each split

component K̃ ⊂ flMwel, we attach a copy of K̃ × [0, 1
2 ], identifying K̃ × {0}

with K̃ ⊂flMwel and equipping K̃ × {1
2} with the zero metric. (This is slightly

different from Farb’s coning construction [Far98].) A crucial fact we prove in

Sections 4.4 and 4.6 is that the hyperbolic convex hull CH(K̃) has uniformly

bounded diameter in the graph metric dG. We describe this by saying that K̃ is

uniformly graph-quasiconvex as any hyperbolic geodesic joining points in K̃ lies

in a uniformly bounded neighborhood of K̃ in the dG-metric. It follows that

(flMwel, dG) is a (Gromov)-hyperbolic metric space. Equivalently, flMwel is weakly

hyperbolic relative to the collection of split components. Note that we cannot

in general use strong relative hyperbolicity as two adjacent split components›K1,›K2 ⊂flMwel intersect along a lift of a welded Margulis tube. This issue is re-

sponsible for much of the strife in the recovery step below (Sections 6.4 and 6.5).

Gromov-hyperbolicity of (flMwel, dG) ensures quasiconvexity of the ladder

Lλ in (flMwel, dG) whose construction is described above. This is proven in

Section 5.

1.1.5. Recovery of hyperbolic geodesics. There is a fair bit of technical

difficulty at this stage. The graph metric is constructed on the welded model

manifold. So we have to have a way of getting back to the model manifold

from the welded model manifold. To do this, we note that the complement of

the Margulis tubes in the model manifold and the complement of the welded

tubes in the welded model manifold are the same. This allows us to construct

a pseudometric quasi-isometric to dG on the model manifold M itself. Abusing

notation slightly, we call this pseudometric dG also.

The split components of M̃ are obtained from those of flMwel by adjoining

certain Margulis tubes. Weak relative hyperbolicity of M̃ relative to the collec-

tion of split components gives us control over hyperbolic geodesics in terms of
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geodesics in (flMwel, dG). The process of recovering a hyperbolic geodesic from

a geodesic in (flMwel, dG) is detailed in Sections 6.4 and 6.5. A more detailed

sketch of the scheme of recovery is given in Section 6.1.

1.1.6. A flowchart of main ideas. Here is a mnemonic flow-chart of the

above scheme that may be useful:

• M̃ −→flMwel (welding),

• flMwel −→ (flMwel, dtel) (tube-electrocution),

• (flMwel, dtel) −→ (flMwel, dG) (split-component-electrocution),

• (flMwel, dG) −→ (M̃, dG) −→ M̃ (recovery).

The principal purpose behind carrying out each of these steps is given

below in brief:

• Welding allows us to construct a sequence of bounded geometry surfaces

exiting the end(s) of Mwel, though such a sequence might not exist in M .

The sequence of bounded geometry surfaces permits us to construct the

ladder Lλ in flMwel.

• Tube electrocution and split-component-electrocution ensure both the eq-

uispaced condition and the quasi-isometry condition. In a certain sense

therefore, the two electrocution steps allow us to reduce the problem to

a model satisfying conditions (1) and (2) of the bounded geometry case.

We can (as in the bounded geometry case) show that Lλ is quasiconvex in

(flMwel, dG).

• Quasiconvexity of Lλ furnishes a dG-quasigeodesic in flMwel contained in Lλ
joining the endpoints of λ.

• Finally, the recovery step allows us to come back from (flMwel, dG) to M̃ via

(M̃, dG).

1.1.7. Outline of the paper. We recall the notions of relative hyperbolicity

and electric geometry (cf. [Far98]) in Section 2 and derive some consequences

that will be useful in this paper. In Section 3, we collect together features

of the model manifold constructed by Minsky in [Min10] and proven to be

a bi-Lipschitz model for simply and doubly degenerate manifolds by Brock-

Canary-Minsky in [BCM12]. In Section 4, we select out a sequence of split

surfaces from the split surfaces occurring in the model manifold and proceed

to “fill” the intermediate spaces between successive split surfaces by special

blocks homeomorphic to S × I. This gives us a “split geometry” model for

simply and doubly degenerate manifolds. We make crucial use of electric ge-

ometry and relative hyperbolicity at this stage. In Section 5, we construct a

quasiconvex (Gromov) “hyperbolic ladder” in the (Gromov) hyperbolic electric

space constructed in Section 4 and use it to construct a quasigeodesic in the

electric metric joining the endpoints of λ. In Section 6, we recover information
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about the hyperbolic geodesic joining the endpoints of λ from the electric geo-

desic constructed in Section 5. In Section 7 we put all the ingredients together

to prove the existence of Cannon-Thurston maps for closed surface Kleinian

groups (Theorem 7.1). In Section 8 we describe the modifications necessary

for punctured surfaces.

1.1.8. Notation. We shall in general use N (resp. Nh) to denote (the con-

vex core of) a simply or doubly degenerate hyperbolic 3-manifold without (resp.

with) cusps. For a manifold Nh with cusps, N will also denote Nh minus an

open neighborhood of the cusps. M will denote the model manifold (Section 3).

Similarly, S (resp. Sh) shall denote a closed (resp. finite volume with

cusps) hyperbolic surface. For a surface Sh with cusps, S will also denote Sh

minus an open neighborhood of the cusps. We shall sometimes use S to denote

a bi-Lipschitz homeomorphic image of a hyperbolic S. Thus M,N will both

be homeomorphic to S × J , where J = [0,∞) or R according as N is simply

or doubly degenerate.

Since we shall not have specific need for manifolds with cusps until the

last section of this paper, N will denote (the convex core of) a simply or doubly

degenerate hyperbolic 3-manifold without cusps unless otherwise mentioned.

d will denote the hyperbolic (or bi-Lipschitz to hyperbolic) metric on S.

dM will denote the metric on the model manifold.

1.2. Gromov hyperbolic metric spaces and Cannon-Thurston maps. We

start off with some preliminaries about hyperbolic metric spaces in the sense

of Gromov [Gro87]. For details, see [CDP90], [GdlH90]. Let (X, dX) be a

(Gromov) hyperbolic metric space. The Gromov boundary of X, denoted by

∂X, is the collection of equivalence classes of geodesic rays r : [0,∞) → X

with r(0) = x0 for some fixed x0 ∈ X, where rays r1 and r2 are equivalent if

sup{dX(r1(t), r2(t))} <∞. Let “X = X ∪ ∂X denote the natural compactifica-

tion of X topologized the usual way (cf. [GdlH90, p. 124]).

We denote the k-neighborhood of a subset Z of (X, dX) by Nk(Z, dX) or

simply Nk(Z) when dX is understood.

Definition 1.4. A subset Z of (X, dX) is said to be k-quasiconvex if any

geodesic joining points of Z lies in a k-neighborhood Nk(Z, dX) of Z. A subset

Z is quasiconvex if it is k-quasiconvex for some k.

For simply connected real hyperbolic manifolds, this is equivalent to saying

that the convex hull CH(Z) of the set Z lies in a bounded neighborhood of Z.

We shall have occasion to use this alternate characterization.

Definition 1.5. A map f from one metric space (Y, dY ) into another metric

space (Z, dZ) is said to be a (K, ε)-quasi-isometric embedding if
1

K
(dY (y1, y2))− ε ≤ dZ(f(y1), f(y2)) ≤ KdY (y1, y2) + ε.
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If f is a quasi-isometric embedding and every point of Z lies at a uniformly

bounded distance from some f(y), then f is said to be a quasi-isometry.

A (K, ε)-quasi-isometric embedding that is a quasi-isometry will be called

a (K, ε)-quasi-isometry.

A (K, ε)-quasigeodesic is a (K, ε)-quasi-isometric embedding of a closed

interval in R. A (K,K)-quasigeodesic will also be called a K-quasigeodesic. A

(K,K)-quasigeodesic will simply be called a K-quasigeodesic

We shall say that two paths α, β in X “C-track” each other in A ⊂ X if

α∩A and β ∩A lie in a C-neighborhood of each other. The following Lemma

says that quasigeodesics starting and ending close by track each other.

Lemma 1.6 ([GdlH90]). Let (X, d) be a δ-hyperbolic metric space. Then

for any K, ε,D, there exists C = C(δ,K, ε,D) such that if α, β are two (K, ε)-

quasi-geodesics whose starting points (as also ending points) are at most D

apart, then α ⊂ NC(β, d).

The conclusion of Lemma 1.6 is also summarized by saying that α, β C-

fellow travel each other and this property of quasigeodesics is called the C-

fellow traveler property.

Let (X, dX) be a (Gromov) hyperbolic metric space and Y be a subspace

that is (Gromov) hyperbolic with the inherited path metric dY . By adjoining

the Gromov boundaries ∂X and ∂Y to X and Y , one obtains their compacti-

fications “X and “Y respectively. Let i : Y → X denote inclusion.

Definition 1.7. Let X and Y be (Gromov) hyperbolic metric spaces and

i : Y → X be an embedding. A Cannon-Thurston map î from “Y to “X is a

continuous extension of i.

The following lemma ([Mit98a, Lemma 2.1]) says a Cannon-Thurston map

exists if for all M > 0 and y ∈ Y , there exists N > 0 such that if λ lies outside

an N ball around y in Y , then any geodesic in X joining the endpoints of λ lies

outside the M ball around i(y) in X. For convenience of use later on, we state

this somewhat differently and include the proof from [Mj10a] for completeness.

Lemma 1.8. A Cannon-Thurston map from “Y to “X exists if the following

condition is satisfied. Given y0 ∈ Y , there exists a nonnegative function M(N)

such that M(N)→∞ as N →∞ and for all geodesic segments λ lying outside

an N -ball around y0 ∈ Y , any geodesic segment in X joining the endpoints of

i(λ) lies outside the M(N)-ball around i(y0) ∈ X .

Proof. Suppose i : Y → X does not extend continuously. Since i is proper,

there exist sequences xm, ym ∈ Y and p ∈ ∂Y such that xm → p and ym → p

in “Y , but i(xm)→ u and i(ym)→ v in “X, where u, v ∈ ∂X and u 6= v.
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Since xm → p and ym → p, any geodesic in Y joining xm and ym lies

outside an Nm-ball y0 ∈ Y , where Nm → ∞ as m → ∞. Any bi-infinite

geodesic in X joining u, v ∈ ∂X has to pass through some M -ball around i(y0)

in X as u 6= v. There exist constants c and L such that for all m > L, any

geodesic joining i(xm) and i(ym) in X passes through an (M+c)-neighborhood

of i(y0). Since (M+c) is a constant not depending on the index m, this proves

the lemma. �

The above result can be interpreted as saying that a Cannon-Thurston

map exists if the space of geodesic segments in Y embeds properly in the space

of geodesic segments in X.

2. Relative hyperbolicity

In this section, we shall recall first certain notions of relative hyperbolic-

ity due to Farb [Far98], Klarreich [Kla99], Bowditch [Bow12] and the author

[Mj11].

2.1. Electric geometry. We collect together certain facts about the electric

metric that Farb proves in [Far98].

Definition 2.1. Given a metric space (X, dX) and a collectionH of subsets,

let E(X,H) = X
⊔
H∈H(H × [0, 1

2 ]) be the identification space obtained by

identifying (h, 0) ∈ H × [0, 1
2 ] with h ∈ X. Each {h} × [0, 1

2 ] is declared to be

isometric to the interval [0, 1
2 ], and H × {1

2} is equipped with the zero metric.

A path σ : I → E(X,H) is said to be distinguished if σ(I) ∩ {h} × (0, 1
2)

is either empty or all of {h} × (0, 1
2). The distance between two points in

E(X,H) is defined to be the infimum of the lengths of distinguished paths

between them.

The resulting pseudo-metric space E(X,H) is the electric space associated

to X and the collection H. We shall say that E(X,H) is constructed from

X by electrocuting the collection H, and the induced pseudo-metric de will be

called the electric metric. If E(X,H) is (Gromov) hyperbolic, we say that X

is weakly hyperbolic relative to H.

The notion of electrocution above is slightly different from the coning

construction introduced by Farb in [Far98], inasmuch as Farb [Far98]) collapses

H×{1
2} to a point. Thus ours is a geometric (as opposed to topological) version

of Farb’s construction. All paths in E(X,H) will henceforth be assumed to be

distinguished.

Let X be a geodesic metric space. Further suppose that each H ∈ H
is closed. Then (E(X,H), de) is a geodesic (pseudo) metric space. Geodesics

and quasigeodesics in (E(X,H), de) will be referred to as electric geodesics and

electric quasigeodesics respectively.
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Note that since E(X,H) = X
⊔
H∈H(H × [0, 1

2 ]), X can be naturally iden-

tified with a subspace of E(X,H). Paths in (X, dX) (in particular, geodesics

and quasigeodesics) can therefore be regarded as paths in E(X,H).

A collectionH of subsets of (X, dX) is said to beD-separated if dX(H1, H2)

≥ D for all H1, H2 ∈ H;H1 6= H2. D-separatedness is only a technical restric-

tion as the collection {H × {1
2} : H ∈ H} is 1-separated in E(X,H).

Definition 2.2. Given a collectionH of C-quasiconvex, D-separated sets in

a (Gromov) hyperbolic metric space (X, dX) and a number ε we shall say that

a geodesic (resp. quasigeodesic) γ is a geodesic (resp. quasigeodesic) without

backtracking with respect to ε-neighborhoods if γ does not return to Nε(H, dX)

after leaving it for any H ∈ H. A geodesic (resp. quasigeodesic) γ is a geo-

desic (resp. quasigeodesic) without backtracking if it is a geodesic (resp. quasi-

geodesic) without backtracking with respect to ε-neighborhoods for ε = 0.

Notation. For any pseudo metric space (Z, ρ) and A ⊂ Z, we shall use the

notation NR(A, ρ) = {x ∈ Z : ρ(x,A) ≤ R} as for metric spaces.

Lemma 2.3 ([Far98, Lemma 4.5 and Prop. 4.6], [Kla99, Th. 5.3], [Bow12]).

Given δ, C,D, there exists ∆ such that if (X, dX) is a δ-hyperbolic metric space

with a collection H of C-quasiconvex D-separated sets, then

(1) Electric quasigeodesics electrically track (Gromov) hyperbolic geodesics:

For all P > 0, there exists K > 0 such that if β is any electric P -quasi-

geodesic from x to y and γ is a geodesic in (X, dX) from x to y, then

β ⊂ NK(γ, de).

(2) γ ⊂ NK((N0(β, de)), dX).

(3) Relative Hyperbolicity: X is weakly hyperbolic relative to H. E(X,H) is

∆-hyperbolic.

Let (X, dX) be a δ-hyperbolic metric space and H a family of C-quasi-

convex, D-separated, collection of subsets. Then X is weakly hyperbolic rel-

ative to H [Bow12]. Let α = [a, b] be a geodesic in (X, dX) and β an electric

quasigeodesic without backtracking (in E(X,H)) joining a, b. Order from the

left the collection of maximal subsegments of β contained entirely in some H× 1
2

for some H ∈ H. Since β is a distinguished path (by our blanket assumption

about paths in E(X,H)), any such maximal subsegment can be extended by

adjoining vertical subsegments at its endpoints to obtain a path of the form

{p}× [0, 1
2 ]∪ [p× 1

2 , q×
1
2 ]∪{q}× [0, 1

2 ]. We shall refer to these subpaths of β as

extended maximal subsegments. Replace, as per the above ordering, extended

maximal subsegment with endpoints p, q (say) by a geodesic [p, q] in (X, dX).

(Note here that as per the definition of E(X,H), (p, 0) ∈ E(X,H) is identified

with p ∈ X; similarly for (q, 0) and q.) The resulting connected path βq is called
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an electro-ambient representative of β in X. Also, if β is an electric P -quasi-

geodesic (resp. (K, ε)-quasigeodesic) without backtracking (in E(X,H)), then

βq is called an electro-ambient P -quasigeodesic (resp. electro-ambient (K, ε)-

quasigeodesic). If β is an electric geodesic (i.e., a (1, 0)-quasigeodesic) without

backtracking (in E(X,H)), then βq is simply called an electro-ambient quasi-

geodesic.

Remark 2.4. We emphasize a point about the terminology we use here.

An electro-ambient quasigeodesic in our sense is the same as an electro-ambient

(1, 0)-quasigeodesic, not an electro-ambient (K, ε)-quasigeodesic for some K, ε.

Note that βq need not be a (Gromov) hyperbolic quasigeodesic. However,

the proof of Proposition 4.3 of Klarreich [Kla99] gives the following.

Lemma 2.5 (See [Kla99, Prop. 4.3] and [Mj11, Lemma 3.10]). Given δ,

C,P there exists C3 such that the following holds. Let (X, dX) be a δ-hyperbolic

metric space and H a family of C-quasiconvex, collection of quasiconvex sub-

sets. Let (E(X,H), de) denote the electric space obtained by electrocuting ele-

ments of H. Then, if α, βq denote respectively a (Gromov) hyperbolic geodesic

and an electro-ambient P -quasigeodesic with the same endpoints in X , then α

lies in a (Gromov hyperbolic dX-) C3-neighborhood of βq .

For the convenience of the reader, we illustrate the content of Lemma 2.5

by Figure 2. The straight line indicates a hyperbolic geodesic, and the broken

line built up of curves depicts an electro-ambient quasigeodesic.

Proof of Lemma 2.5. The proof closely follows Proposition 4.3 of Klarre-

ich [Kla99]. Let α = [a, b](⊂ X) be a geodesic, and let β = ab(⊂ E(X,H)) be

an electric P -quasigeodesic with the same endpoints. Further, suppose that,

for each H ∈ H, β ∩ (H × {1
2}) is

(a) a maximal subsegment of β contained in H × {1
2},

(b) β ∩ (H ×{1
2}) is a geodesic in H ×{1

2} with respect to the intrinsic metric

on H(= H × {1
2}).

Figure 2. Hyperbolic geodesic lies in a neighborhood of an

electro-ambient quasigeodesic.
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For the purposes of this proof, we shall need to deal with two metrics

(more precisely a metric and a pseudometric) on the topological space E(X,H):

(a) The first is the electric (pseudo) metric de described above.

(b) The other is the (genuine) metric on X
⋃
H∈HH × [0, 1

2 ] obtained as a

quotient space of X along with copies of H× [0, 1
2 ]. We call this metric dq.

Thus de is obtained from dq by redefining distance between points on H ×{1
2}

to be zero.

Recall that (by construction) the electro-ambient quasigeodesic βq is ob-

tained from β by “projecting” maximal subsegments of β to X. It therefore

suffices to show that α lies in a (uniformly) bounded neighborhood of β in

(E(X,H), dq).

Let a = a0, a1, . . . , an, an+1 = b be a sequence of points on β such that for

all i, a2ia2i+1(⊂ ab) are maximal subsegments in Hi × {1
2} for some Hi ∈ H.

Also, assume that n is maximal; i.e., for all i, a2i−1a2i is a union of three

segments:

(a) a vertical segment of the form a2i−1 × [0, 1
2 ] traced from a2i−1 × {1

2} to

a2i−1 × {0},
(b) a geodesic in (X, dX) from a2i−1 (identified with a2i−1×{0}) to a2i (iden-

tified with a2i × {0}),
(c) a vertical segment of the form a2i× [0, 1

2 ] traced from a2i×{0} to a2i×{1
2}.

Note first that the collection {H × {1
2}}, H ∈ H is automatically 1-separated.

Hence de(a2i−1, a2i) ≥ 1.

With this setup, the proof is a small reworking of Proposition 4.3 of

[Kla99]. Choose an R > 0. Let z ∈ [a, b] be a point for which no point

of β = ab lies within R of z. Let (p, q) be a maximal subsegment of [a, b]

containing z such that no point of β = ab lies within R of (p, q).

Let p1 ∈ ab and q1 ∈ ab be points in ab closest to p, q respectively (with

respect to the metric dq). Let p1q1 be the subpath of ab between p1, q1. Also,

let aj , . . . , aj+l be the collection of vertices in ab between p1, q1. Then the proof

of Proposition 4.3 of [Kla99] shows that there exists R0 depending on δ, C,P

such that for all R ≥ R0, l(= (j + l) − j) is bounded in terms of R, δ, C,P .

(This is essentially because l grows like dX(p, q)eR; cf. [Far98].) Let l(R) be

this bound for l.

Choosing R = R0, we find that (p, q) is contained in a (2R0+(l(R0)+4)δ)-

neighborhood of β = ab. This completes the proof. �

Definition 2.6 ([Far98]). Two paths β, γ in (X, dX) with the same end-

points are said to have similar intersection patterns with H if there exists

D > 0, depending only on (X,H), such that



18 MAHAN MJ

• Similar intersection patterns 1: If precisely one of {β, γ} meets some

H ∈ H, then the dX -distance from the first entry point to the last exit

point is at most D.

• Similar intersection patterns 2: If both {β, γ} meet some H ∈ H, then

the distance from the first entry point of β to that of γ is at most D

and similarly for the last exit points.

Definition 2.7 ([Far98]). Suppose that X is weakly hyperbolic relative

to H. Suppose that any two electric quasigeodesics without backtracking and

with the same endpoints have similar intersection patterns with H. Then

(X,H) is said to satisfy bounded penetration and X is said to be strongly

hyperbolic relative to H.

The next condition ensures that (X,H) is strongly hyperbolic relative toH.

Definition 2.8. A collection H of sets in a δ-hyperbolic metric space X is

said to be uniformly D-separated if d(Hi, Hj) ≥ D for all Hi, Hj ∈ H;Hi 6= Hj .

A collection H of uniformly C-quasiconvex sets in a δ-hyperbolic metric space

X is said to be mutually D-cobounded if for all Hi, Hj ∈ H, πi(Hj) has diameter

less than D, where πi denotes a nearest-point projection of X onto Hi. A

collection is mutually cobounded if it is mutually D-cobounded for some D.

Coboundedness ensures strong relative hyperbolicity.

Lemma 2.9 ([Far98, Prop. 4.6], [Bow12]). Let (X, dX) be a (Gromov) hy-

perbolic metric space and H a collection of ε-neighborhoods of uniformly qua-

siconvex mutually cobounded uniformly separated subsets. Then X is strongly

hyperbolic relative to the collection H. Furthermore quasigeodesics without

backtracking in (X, dX) and (E(X,H), de) have similar intersection patterns

with elements of H.

Applications of Lemma 2.9 follow.

Lemma 2.10. Let Mh be a hyperbolic manifold. Let T and H denote

respectively a collection of Margulis tubes and horoballs that are disjoint from

one another. Then the elements of T ∪H are mutually co-bounded. Hence fiMh

is strongly hyperbolic relative to the collection T ∪ H.

Lemma 2.11. Let Sh be a hyperbolic surface, with a finite collection of

disjoint simple closed geodesics σi and cusps Hj . Let S denote the collection

of lifts ‹σi to H2, and let H denote the collection of lifts ›Hj . Then the elements

of S ∪ H are mutually co-bounded. Hence ›Sh is strongly hyperbolic relative to

the collection S ∪H.

A closely related theorem was proved by McMullen [McM01, Th. 8.1]. Let

H be a locally finite collection of horoballs in a convex subset X of Hn (where
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the intersection of a horoball, which meets ∂X in a point, with X is called a

horoball in X).

Definition 2.12. The ε-neighborhood of a bi-infinite geodesic in Hn will

be called a thickened geodesic.

Theorem 2.13 ([McM01]). For K,D ≥ 1, ε ≥ 0, there exists R ≥ 0 such

that the following holds. Let X be a convex subset of Hn, and let H denote

a uniformly D-separated collection of horoballs and thickened geodesics. Let

Y = X \ ⋃H∈HH and γ : I → Y be a (K, ε)-quasigeodesic in Y . Let η be

the geodesic in X with the same endpoints as γ. Let H(η) be the union of

all the horoballs and thickened geodesics in H meeting η. Then η ∪ H(η) is

R-quasiconvex and γ(I) ⊂ BR(η ∪ H(η)). (The hyperbolic metric on Hn is

understood.)

2.2. Electric geometry for surfaces. We now specialize to surfaces. Let S

be a hyperbolic surface with diameter bounded above by K. It follows that

injectivity radius is bounded below by some ε = ε(K). Let σ be a finite col-

lection of disjoint simple closed geodesics on S. Component(s) of S \ σ will

be called the amalgamation component(s) of (S, σ). We shall denote an amal-

gamation components by SA. Let (SGel, dGel) = E(S, SA) be obtained from S

by electrocuting SA’s, and let the universal cover of (SGel, dGel) with the lifted

pseudometric be denoted (fiSGel, dGel). A slightly different path pseudometric

may be constructed on S̃ by declaring that

(1) the length of any path that lies in the interior of an amalgamation

component is zero,

(2) the length of any path that crosses σ once has length one,

(3) the length of any other path is the sum of lengths of pieces of the above

two kinds.

This pseudometric differs from (fiSGel, dGel) by at most one (due to the ini-

tial and final segments of length half). We shall ignore this difference (cf.

Lemma 2.23).

The fundamental group π1(S) may be regarded as a graph of groups with

vertex group(s) the subgroup(s) π1(SA) corresponding to amalgamation com-

ponent(s) and cyclic edge groups Z corresponding to σ. Then (fiSGel, dGel) is

quasi-isometric to the Bass-Serre tree of the splitting.

Continuous paths in SGel and fiSGel will be called electric paths. Contin-

uous geodesics and quasigeodesics in the electric metric will be called electric

geodesics and electric quasigeodesics respectively. We specialize Definition 2.2

to the present context, where it is slightly more restrictive.

Definition 2.14. An electric path γ ⊂fiSGel is said to be an electricK-quasi-

geodesic in (fiSGel, dGel) without backtracking if γ is a K-quasigeodesic in
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(fiSGel, dGel) and γ does not return to any lift ›SA(⊂ fiSGel) of an amalgama-

tion component SA ⊂ S after leaving it.

We now specialize the notion of an electro-ambient quasigeodesic to the

context of surfaces.

Definition 2.15. An electric geodesic λewithout backtracking in (fiSGel, dGel)

is called an electro-ambient quasigeodesic if

(a) each segment of λe lying inside a single lift ›SA meets the boundary

∂›SA at most twice and is perpendicular to ∂›SA whenever they meet.

We shall refer to these segments of λe as amalgamation segments.

(b) If a, b be the points of intersection of two distinct amalgamation seg-

ments of λe with a lift σ̃ of σ, then λe∩ σ̃ is equal to [a, b], the geodesic

segment in σ̃ joining a, b. Such pieces [a, b] shall be referred to as

interpolating segments.

The underlying path of an electro-ambient quasigeodesic of the electro-ambient

quasigeodesic in the hyperbolic metric on S̃ shall be called the electro-ambient

representative λq of λe.

See Figure 3, where the bold line indicates the electro-ambient quasi-

geodesic and the thin lines the geodesics σ̃.

Figure 3. Electro-ambient quasigeodesic.

The next lemma justifies the terminology.

Lemma 2.16 (See [Mj11, Lemma 3.7]). There exists (K, ε) such that each

electro-ambient representative λq of an electric geodesic in (fiSGel, dGel) is a

(K, ε) hyperbolic quasigeodesic.

Proof. Let (Sel, del) denote the surface S with the (collection of) geodesics

σ electrocuted. Note that the electro-ambient quasigeodesics in (fiSGel, dGel)

coincide with those in the universal cover (›Sel, del). Hence it suffices to show

that electro-ambient quasigeodesics in (›Sel, del) are uniform hyperbolic quasi-

geodesics.
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Let λh denote the hyperbolic geodesic joining the endpoints of λe. By

Lemmas 2.9 and 2.11, λh and λe, and hence λh and λq, have similar intersection

patterns with Nε(σ̃) for some small ε > 0 and any lift σ̃ of (an element of)

σ. Also, λh and λq track each other off the collection Nε(σ̃). Further, each

interpolating segment of λq being a hyperbolic geodesic, it follows (from the

“K-fellow-traveler” property of hyperbolic geodesics starting and ending near

each other; Lemma 1.6) that each interpolating segment of λq lies within a

(K + 2ε) neighborhood of λh for some fixed K > 0. Again, since each segment

of λq that does not meet an electrocuted geodesic that λh meets is of uniformly

bounded length (bounded by C say), we have finally that λq lies within a

(K + C + 2ε)-neighborhood of λh. Finally, since λq is an electro-ambient

representative, it does not backtrack. Hence the lemma. �

2.3. Electric isometries.

Definition 2.17. Let S be any hyperbolic surface and σ a collection of

disjoint simple closed geodesics on S. A diffeomorphism φ of S will be called a

component preserving diffeomorphism if it fixes σ pointwise and preserves each

amalgamation component as a set; i.e., φ sends each amalgamation component

of (S, σ) to itself.

Lemma 2.18. Let φ denote a component preserving diffeomorphism of

SG. Then φ induces an isometry of (SGel, dGel).

Proof. In the electrocuted surface (SGel, dGel), any electric geodesic λe has

length equal to the number of times it crosses σ. Any component preserving

diffeomorphism φ preserves the intersection pattern of λe with amalgamation

components. Hence φ is an isometry of (SGel, dGel). �

The proof of Lemma 2.18 goes through verbatim after lifting to the uni-

versal cover (fiSGel, dGel). We let φ̃ denote the lift of φ to (fiSGel, dGel). This gives

Lemma 2.19. Let φ̃ denote a lift of a component preserving diffeomor-

phism φ to (fiSGel, dGel). Then φ̃ induces an isometry of (fiSGel, dGel).

2.4. Nearest-point projections. The next lemma says nearest-point projec-

tions in a δ-hyperbolic metric space do not increase distances much. This is a

standard fact (cf. Lemma 3.1 of [Mit98b]).

Lemma 2.20. Let (Y, dY ) be a δ-hyperbolic metric space and let µ ⊂ Y be

a C-quasiconvex subset ; e.g., a geodesic segment. Let π : Y → µ map y ∈ Y to

a point on µ nearest to y. Then dY (π(x), π(y)) ≤ C3dY (x, y) for all x, y ∈ Y
where C3 depends only on δ, C .

The next lemma (from [Mit98b]) says that quasi-isometries and nearest-

point projections on (Gromov) hyperbolic metric spaces “almost commute.”
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Lemma 2.21 ([Mit98b, Lemma 3.5]). Suppose (Y1, d1) and (Y2, d2) are δ-

hyperbolic. Let µ1 be some geodesic segment in Y1 joining a, b and let p be any

point of Y1. Also let q be a point on µ1 such that d1(p, q) ≤ d2(p, x) for all

x ∈ µ1. Let φ be a (K, ε)-quasiisometric embedding from Y1 to Y2. Let µ2 be a

geodesic segment in Y2 joining φ(a) to φ(b) . Let r be a point on µ2 such that

d2(φ(p), r) ≤ d2(φ(p), x) for x ∈ µ2. Then d2(r, φ(q)) ≤ C4 for some constant

C4 depending only on K, ε and δ.

We shall need the above lemma for quasi-isometries from S̃a to S̃b for two

different bi-Lipschitz metrics on the same surface. We shall also need it for

electrocuted surfaces.

Another property that we shall require for nearest point projections is

that nearest-point projections in the hyperbolic metric on S̃ and that in the

electric metric (fiSGel, dGel) almost agree. To make this precise, we make the

following definition. The hyperbolic metric on S as well as S̃ will be denoted

by d.

Definition 2.22. Let y ∈ (S̃, d), and let µq be an electro-ambient represen-

tative of an electric geodesic µGel in (fiSGel, dGel). Then πe(y) = z ∈ µq if the

ordered pair {dGel(y, πe(y)), d(y, πe(y))} is minimized at z in the lexicographi-

cal order on (R+ ∪ {0})× (R+ ∪ {0}).

The proof of the following lemma shows that this gives us a definition of

πe, which is ambiguous up to a finite amount of discrepancy not only in the

electric metric but also in the hyperbolic metric.

Lemma 2.23. Fix a hyperbolic surface S. For all ε > 0, there exists

C > 0 such that if σ is a finite collection of disjoint simple closed geodesics

such that d(σi, σj) ≥ ε for all σi 6= σj ∈ σ, then the following holds. Let µ be

a hyperbolic geodesic in (S̃, d) joining u, v ∈ S̃. Let (SGel, dGel) be the electric

space obtained from S by electrocuting the amalgamation components of (S, σ).

Let µGel be an electric geodesic in (fiSGel, dGel) joining u, v, and let µq be its

electro-ambient representative. Let πh denote the nearest point projection of

(S̃, d) onto µ. Then d(πh(y), πe(y)) ≤ C .

Proof. Let [u, v] and [u, v]q denote respectively the hyperbolic geodesic

and the electro-ambient quasigeodesic joining u, v ∈ S̃. Since [u, v]q is a hyper-

bolic quasigeodesic by Lemma 2.16, the nearest-point projection of y ∈ (S̃, d)

onto [u, v] and [u, v]q almost agrees in the hyperbolic metric d. Thus, abusing

notation slightly let πh denote nearest-point projection of (S̃, d) onto [u, v]q.

Hence it suffices to show that for any y ∈ S̃, its hyperbolic and electric pro-

jections πh(y), πe(y) onto [u, v]q almost agree. See Figure 4, where we denote

πh(y), πe(y) by p, q respectively.
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Figure 4. Electric and hyperbolic projections.

First note that any hyperbolic geodesic η in S̃ is also an electric geodesic in

(fiSGel, dGel). This follows from the fact that (fiSGel, dGel) maps to the Bass-Serre

tree T of the splitting of S along σ such that the pre-image of every vertex

is a set of diameter zero in the pseudometric dGel. If a path in (fiSGel, dGel)

projects to a path in T that is not a geodesic, then it must backtrack. Hence,

it must leave an amalgamating component and return to it. Such a path can

clearly not be a hyperbolic geodesic in (fiSGel, dGel) since each amalgamating

component is convex.

Next, it follows that hyperbolic projections automatically minimize elec-

tric distances. Otherwise, as in the preceding paragraph, [y, πh(y)] would have

to cut a lift σ̃1 of σ that separates [u, v]q. Further, [y, πh(y)] cannot return to

σ̃1 after leaving it. Let z be the first point at which [y, πh(y)] meets σ̃1 (the

intersection point of the dotted line with σ̃1 in Figure 4). Also let w be the

point on [u, v]q∩σ̃1 that is nearest to z. Since amalgamation segments of [u, v]q
meeting σ̃1 are perpendicular to the latter, it follows that d(w, z) < d(w, πh(y))

and therefore d(y, z) < d(y, πh(y)) contradicting the definition of πh(y). Hence

hyperbolic projections automatically minimize electric distances.

Further, it follows by repeating the argument in the first paragraph that

[y, πh(y)] and [y, πe(y)] pass through the same set of amalgamation components

in the same order; in particular, they cut across the same set of lifts of σ̃. Let

σ̃2 be the last such lift. Then σ̃2 forms the boundary of an amalgamation

component ›SA whose intersection with [u, v]q is of the form [a, b]∪ [b, c]∪ [c, d],

where [a, b] ⊂ σ̃3 and [c, d] ⊂ σ̃4 are subsegments of two lifts of σ and [b, c]

is perpendicular to these two. Then the nearest-point projection of σ̃2 onto

each of [a, b], [b, c], [c, d] has uniformly bounded diameter. Hence the nearest-

point projection of σ̃2 onto the hyperbolic geodesic [a, d] ⊂ ›SA has uniformly

bounded diameter. The result follows. �
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3. The Minsky model

In this section we summarize the notions and facts from [Min10], [BCM12]

and [MM00] that we shall need. Let C(S) and P(S) denote respectively the

curve complex and pants complex of a compact surface S, possibly with bound-

ary, with the usual modifications for surfaces of small complexity. (See [MM00]

for details.)

Split level surfaces. For our purposes, a pants decomposition of S will be

a disjoint collection of 3-holed spheres P1, . . . , Pn embedded in S such that

S \⋃i Pi is a disjoint collection of nonperipheral annuli in S, no two of which

are homotopic. We shall conflate a pants decomposition of S with the collec-

tion of (isotopy classes of) nonperipheral boundary curves of P1, . . . , Pn. Thus

when we refer to a pair of pants in a pants decomposition P1, . . . , Pn of S, we

are referring to one of the Pi’s, and when we refer to a curve in a pants decom-

position of S, we are referring to one of the nonperipheral boundary curves of

one of the Pi’s.

Let N be the convex core of a simply or doubly degenerate hyperbolic

3-manifold minus an open neighborhood of the cusp(s). N is homeomorphic

to S × [0,∞) or S × R according as N is simply or doubly degenerate, where

S is a compact surface, possibly with boundary.

Let θ, ω be positive real numbers. A neighborhood Nε(γ) of a closed

geodesic γ(⊂ N) is called a (θ, ω)-thin tube if the length of γ is less than θ

and the length of the shortest geodesic on ∂Nε(γ) is greater than ω.

Let T denote a collection of disjoint, uniformly separated (θ, ω)-thin tubes

in N such that all Margulis tubes in N belong to T ; in particular, θ is greater

than the Margulis constant. Let M be a 3-manifold bi-Lipschitz homeomorphic

to N and let M(0) be the image of N \⋃T∈T Int(T ) in M under the bi-Lipschitz

homeomorphism F . Let ∂M(0) (resp. ∂M) denote the boundary of M(0)

(resp. M).

Let (Q, ∂Q) be the unique hyperbolic pair of pants such that each com-

ponent of ∂Q has length one. Q will be called the standard pair of pants. An

isometrically embedded copy of (Q, ∂Q) in (M(0), ∂M(0)) will be said to be

flat.

Definition 3.1. A split level surface associated to a pants decomposi-

tion {Q1, . . . , Qn} of S in M(0) ⊂ M is an embedding f : ∪i(Qi, ∂Qi) →
(M(0), ∂M(0)) such that

(1) each f(Qi, ∂Qi) is flat,

(2) f extends to an embedding (also denoted f) of S into M such that

the interior of each annulus component of f(S \ ⋃iQi) lies entirely in

F (
⋃
T∈T Int(T )).
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The class of all topological embeddings from S to M that agree with

a split level surface f associated to a pants decomposition {Q1, . . . , Qn} on

Q1 ∪ · · · ∪Qn will be denoted by [f ].

We define a partial order ≤E on the collection of split level surfaces in an

end E of M as follows: f1 ≤E f2 if there exist gi ∈ [fi], i = 1, 2 such that g2(S)

lies in the unbounded component of E \ g1(S).

Tight geodesics. The complexity of a compact surface S = Sg,b of genus g

and b boundary components is defined to be ξ(Sg,b) = 3g + b.

For any simplex α ∈ C(Y ), γα will denote a collection of disjoint simple

closed curves on S representing the (homotopy classes) of vertices of α. A pair

of simplices α, β in C(Y ) are said to fill an essential subsurface Y of S if all

nontrivial nonperipheral curves in Y have essential intersection with at least

one of γα or γβ, where we assume that representatives γα and γβ have been

chosen to intersect each other minimally.

Given arbitrary simplices α, β in CC(S), form a regular neighborhood of

γα ∪ γβ and fill in all disks and one-holed disks to obtain Y , which is said to

be filled by α, β.

For a subsurface X ⊆ Z, let ∂Z(X) denote the relative boundary of X in

Z, i.e., those boundary components of X that are nonperipheral in Z.

Definition 3.2. Let Y be an essential subsurface in S. If ξ(Y ) > 4, a

sequence of simplices {vi}i∈I ⊂ C(Y ) (where I is a finite or infinite interval

in Z) is called tight if

(1) for any vertices wi of vi and wj of vj where i 6= j, dC1(Y )(wi, wj) = |i−j|;
(2) whenever {i − 1, i, i + 1} ⊂ I, vi represents the relative boundary

∂Y F (vi−1, vi+1).

If ξ(Y ) = 4, then a tight sequence is the vertex sequence of a geodesic in

C(Y ). A tight geodesic g in C(Y ) consists of a tight sequence v0, . . . , vn, and

two simplices in C(Y ), I = I(g) and T = T(g), called its initial and terminal

markings such that v0 (resp. vn) is a sub-simplex of I (resp. T). The length of

g is n. vi is called a simplex of g. Y is called the domain or support of g and

is denoted as Y = D(g). g is said to be supported in D(g).

We denote the obvious linear order in g as vi < vj whenever i < j. A

geodesic supported in Y with ξ(Y ) = 4 is called a 4-geodesic.

Given a surface W with ξ(W ) ≥ 4 and a simplex v in C(W ) we say that Y

is a component domain of (W, v) if Y is a component of W \ collar(v), where

collar(v) denotes a thin collar neighborhood of the simple closed curves.

If g is a tight geodesic with domain D(g), we call Y ⊂ S a component

domain of g if for some simplex vj of g, Y is a component domain of (D(g), vj).
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Hierarchies. The next definition is based on [MM00], describing certain

special paths in P(S) and component domains associated to them. Paths in

P(S) will be maps h from intervals I in Z into P(S) such that h(i), h(i + 1)

are adjacent vertices of P(S) for all i, i + 1 ∈ I. We reverse the logic of the

exposition in [MM00] slightly here by defining a hierarchy path in P(S) first

and then associating a hierarchy of tight geodesics to it.

Definition 3.3. A hierarchy path in P(S) joining pants decompositions P1

and P2 is a path ρ : [0, n]→ P (S) joining ρ(0) = P1 to ρ(n) = P2 such that

(1) There is a collection {Y } of essential, nonannular subsurfaces of S,

called component domains for ρ such that for each component domain

Y , there is a connected interval JY ⊂ [0, n] with ∂Y ⊂ ρ(j) for each

j ∈ JY .

(2) For a component domain Y , there exists a tight geodesic gY supported

in Y such that for each j ∈ JY , there is an α ∈ gY with α ∈ ρ(j).

A hierarchy path in P(S) is a sequence {Pn}n of pants decompositions of S such

that for any Pi, Pj ∈ {Pn}n, i ≤ j, the finite sequence Pi, Pi+1, . . . , Pj−1, Pj is

a hierarchy path joining pants decompositions Pi and Pj . The collection H of

tight geodesics gY supported in component domains Y of ρ will be called the

hierarchy of tight geodesics associated to ρ.

The notion of hierarchy in Definition 3.3 is a special case of “hierarchies

without annuli” described in [MM00]. The next definition allows us to associate

the extra piece of data coming from tight geodesics supported in component

domains of a hierarchy path ρ to the hierarchy path ρ.

Definition 3.4. A slice of a hierarchy H associated to a hierarchy path ρ

is a set τ of pairs (h, v), where h ∈ H and v is a simplex of h, satisfying the

following properties:

(1) A geodesic h appears in at most one pair in τ .

(2) There is a distinguished pair (hτ , vτ ) in τ , called the bottom pair of τ .

We call hτ the bottom geodesic.

(3) For every (k,w) ∈ τ other than the bottom pair, D(k) is a component

domain of (D(h), v) for some (h, v) ∈ τ .

A resolution of a hierarchy H associated to a hierarchy path ρ : I→P(S) is

a sequence of slices τi={(hi1, vi1), (hi2, vi2), . . . , (hini , vini)} (for i∈I, the same

indexing set) such that the set of vertices of the simplices {vi1, vi2, . . . , vini} is

the same as the set of the nonperipheral boundary curves of the pairs of pants

in ρ(i) ∈ P(S).
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Minsky Blocks ([Min10, §8.1]). A tight geodesic in H supported in a com-

ponent domain of complexity 4 is called a 4-geodesic, and an edge of a 4-geo-

desic in H is called a 4-edge.

Given a 4-edge e in H, let g be the 4-geodesic containing it, and let D(e)

be the domain D(g). Let e− and e+ denote the initial and terminal vertices

of e. As usual, let collar(v) denote a small collar neighborhood of v in D(e).

To each e, a Minsky block B(e) is assigned as as follows:

B(e) = (D(e)× [−1, 1]) \ (collar(e−)× [−1,−1/2) ∪ collar(e+)× (1/2, 1]).

That is, B(e) is the product D(e)× [−1, 1], with solid-torus trenches dug out

of its top and bottom boundaries, corresponding to the two vertices e− and

e+ of e.

The gluing boundary of B(e) is

∂±B(e) ≡ (D(e) \ collar(e±))× {±1}.

The gluing boundary is a union of 3-holed spheres. The rest of the boundary

is a union of annuli. The top (resp. bottom) gluing boundaries of B(e) are

(D(e) \ collar(e+))× {1} (resp. (D(e) \ collar(e−))× {−1}.

The model and the bi-Lipschitz Model Theorem. The following theorem

summarizes and paraphrases what we need in this paper from the bi-Lipschitz

Model Theorem of Minsky [Min10] and Brock-Canary-Minsky [BCM12]. (In

particular, see [Min10, Th. 8.1].)

Theorem 3.5 ([Min10], [BCM12]). Let N be the convex core of a simply

or doubly degenerate hyperbolic 3-manifold minus an open neighborhood of the

cusp (s). Let S be a compact surface, possibly with boundary, such that N

is homeomorphic to S × [0,∞) or S × R according as N is simply or doubly

degenerate. There exist L ≥ 1, θ, ω, ε, ε1 > 0, a collection T of (θ, ω)-thin

tubes containing all Margulis tubes in N , a 3-manifold M and an L-bi-Lipschitz

homeomorphism F : N →M such that the following holds.

Let M(0) = F (N \ ⋃T∈T Int(T )), and let F (T ) denote the image of the

collection T under F . Let ≤E denote the partial order on the collection of split

level surfaces in an end E of M . Then there exists a sequence Si of split level

surfaces associated to pants decompositions Pi exiting E such that

(1) Si ≤E Sj if i ≤ j.
(2) The sequence {Pi} is a hierarchy path in P(S).

(3) If Pi ∩Pj = {Q1, · · ·Ql}, then fi(Qk) = fj(Qk) for k = 1 · · · l, where fi, fj
are the embeddings defining the split level surfaces Si, Sj respectively.

(4) For all i, Pi ∩ Pi+1 = {Qi,1, . . . , Qi,l} consists of a collection of l pairs of

pants such that S \ (Qi,1 ∪ · · · ∪ Qi,l) has a single nonannular component

of complexity 4. Further, there exists a Minsky block Wi and an isometric
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map Gi of Wi into M(0) such that fi(S \ (Qi,1 ∪ · · · ∪Qi,l) (resp. fi+1(S \
(Qi,1 ∪ · · · ∪ Qi,l)) is contained in the bottom (resp. top) gluing boundary

of Wi.

(5) For each flat pair of pants Q in a split level surface Si, there exists an

isometric embedding of Q × [−ε, ε] into M(0) such that the embedding

restricted to Q× {0} agrees with fi restricted to Q.

(6) For each T ∈ T , there exists a split level surface Si associated to pants

decompositions Pi such that the core curve of T is isotopic to a nonperiph-

eral boundary curve of Pi. The boundary F (∂T ) of F (T ) with the induced

metric dT from M(0) is a Euclidean torus equipped with a product struc-

ture S1 × S1
v , where any circle of the form S1 × {t} ⊂ S1 × S1

v is a round

circle of unit length and is called a horizontal circle; and any circle of the

form {t} × S1
v is a round circle of length lv and is called a vertical circle.

(7) Let g be a tight geodesic other than the bottom geodesic in the hierarchy H

associated to the hierarchy path {Pi}, let D(g) be the support of g and let

v be a boundary curve of D(g). Let Tv be the tube in T such that the core

curve of Tv is isotopic to v. If a vertical circle of (F (∂Tv), dTv) has length

lv less than nε1, then the length of g is less than n.

Since the above statement is culled out of a large amount of material,

particularly from [Min10], we give specific references here. M(0) (resp. M)

above is denoted by Mν(0) (resp. Mν) in Section 8 of [Min10].

The collection F (T ) is denoted by U in [Min10] and is called the set of

tubes in Mν . The hierarchy H in item (7) of Theorem 3.5 is constructed in

Lemma 5.13 of [Min10] (see also [MM00, Th. 4.6]) and the hierarchy path of

item (2) is obtained from it by constructing a resolution sweeping through it in

Lemma 5.8 of [Min10]. (We have thus reversed the logical order of hierarchies

and hierarchy paths in our treatment.)

The estimate on the length of g in item (7) of Theorem 3.5 comes from

equation 9.6 of [Min10], which gives estimates on meridian coefficients.

The Euclidean structure of F (T ) for T ∈ T in item (6) comes from gluing

together the internal blocks (as well as boundary blocks) described in Section

8.1 and in Theorem 8.1 of [Min10].

Theorem 8.1 of [Min10] further describes the construction of split level

surfaces and items (1), (3) and (4) follow from it. Item (5) simply ensures

the existence of uniform product neighborhoods and follows from the fact that

Minsky blocks are glued by isometries on their 3-holed sphere boundary com-

ponents. In fact, ε = 1
4 suffices. Finally [BCM12] ensures that the model

constructed in [Min10] is indeed bi-Lipschitz homeomorphic to N .

We use the notation of Theorem 3.5 in the rest of this subsection, fixing

N,M .
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Lemma 3.6. Given l > 0, there exists n ∈ N such that the following holds.

Let v be a vertex in the hierarchy H such that the length of the core curve of the

Margulis tube Tv corresponding to v is greater than l. Next suppose (h, v) ∈ τi
for some slice τi of the hierarchy H such that h is supported on Y , and suppose

D is a component of Y \ collar(v). Also suppose that h1 ∈ H such that D is

the support of h1. Then the length of h1 is at most n.

Proof. Let α be a meridian curve on F (∂Tv) such that F−1(α) bounds a

totally geodesic disk in Tv. By item (6) of Theorem 3.5, F (∂Tv) is a metric

product S1 × S1
v . Choose horizontal and vertical curves αh, αv on F (∂Tv).

Then α is homologous to (nαh + αv) for some integer n. Hence l(α) ≥ lv,

where l(α) is the length of α and lv denotes the length of the vertical circle.

Since F is an L-bi-Lipschitz homeomorphism by Theorem 3.5, it follows that

l(F−1(α)) ≥ lv
L . Let ∆ be the totally geodesic disk bounded by F−1(α). Then

the radius rv of ∆ is bounded below by sinh−1( lvL ). Let lc denote the length

of the core curve cv of Tv. Then any geodesic on ∂Tv homotopic to cv in Tv
has length bounded below by lv

L lc.

Also l(F−1(αh)) ≤ L and F−1(αh) is homotopic to the core curve cv.

Hence lv
L lc ≤ L. It follows that lv ≤ L2

lc
≤ L2

l . The lemma now follows from

item (7) of Theorem 3.5. �

One last fallout of the Minsky model ([Min10, Th. 8.1] again) that we

shall need is the following.

Lemma 3.7. Given l > 0 and n ∈ N, there exists L2 ≥ 1 such that the

following holds. Let Si, Sj (i < j) be split level surfaces associated to pants

decompositions Pi, Pj such that

(a) (j − i) ≤ n;

(b) Pi ∩ Pj is a (possibly empty) pants decomposition of S \W , where W

is an essential (possibly disconnected) subsurface of S such that each

component Wk of W has complexity ξ(Wk) ≥ 4;

(c) for any k with i < k < j, and (gD, v) ∈ τk for D ⊂ Wi for some i, no

curve in v has a geodesic realization in N of length less than l.

Then there exists an L2-bi-Lipschitz embedding G : W × [−1, 1]→M such that

(1) W admits a hyperbolic metric given by W = Q1∪ · · · ∪Qm, where each

Qi is a flat pair of pants.

(2) W × [−1, 1] is given the product metric.

(3) fi(Pi \ Pi ∩ Pj) ⊂W × {−1} and fj(Pj \ Pi ∩ Pi) ⊂W × {1}.

Idea of proof. What Lemma 3.7 says is that if a “thick” piece of the man-

ifold N is trapped between split level surfaces Si, Sj , then it is bi-Lipschitz to

a product region on the support of the hierarchy path between Si, Sj . This
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follows from the construction of the model in Section 8.2 of [Min10] along with

equation 9.6 of [Min10]. The lower bound on lengths of hierarchy curves in

hypothesis (c) ensures an upper bound on the twist coefficient ([hv] in [Min10,

eq. 9.6]) exactly as in the proof of Lemma 3.6. Hence the “full hierarchy”

path (including annuli in the sense of [MM00]) between Si, Sj equipped with

markings is of length bounded in terms of l, n. This guarantees the existence

of a bi-Lipschitz product region as required. Since this is the only place where

we shall require full hierarchies and twist coefficients in this paper, and since

the rest of the proof of Lemma 3.7 follows Lemma 3.6, we omit the details,

referring the interested reader to Section 8.2 of [Min10]. (See also [MM00],

where a quasi-isometry is constructed between the mapping class group and

the full marking complex. Interpreted in these latter terms there is a bounded

length element in the mapping class group MCG(W ) taking the marking on

Si ∩W to the marking on Sj ∩W .) �

4. Split geometry

4.1. Constructing split level surfaces. The aim of this subsection is to

extract a special sequence of split level surfaces from the sequence of split

level surfaces constructed in Theorem 3.5. The main point is to ensure that

successive split level surfaces are separated by a definite amount in M(0). We

continue with the notation of Theorem 3.5 in this subsection.

Fix an l > 0. The precise value of l will be less than the Margulis constant

for hyperbolic 3-manifolds and will be determined by the Drilling Theorem 4.21

to be used in the next subsection. We shall henceforth refer to Margulis tubes

that have core curve of length ≤ l as thin Margulis tubes and the corresponding

vertex v as a thin vertex.

For convenience, start with a doubly degenerate surface group. Let ρ(i) =

{Pi} be a hierarchy path provided by item (2) of Theorem 3.5. Let H be the

hierarchy of tight geodesics associated to {Pi} and . . . , τi−1, τi, τi+1, . . . be a

resolution. Let Si be the split level surface corresponding to Pi, and let τi be

the slice whose vertices comprise the curves in Pi. Let Ssi denote the collection

of flat pairs of pants occurring in the image of Si in M(0). The metric on the

model manifold and the induced path metric on M(0) will be denoted by dM
and will be called the model metric. Thus Si is an embedding and Ssi is the

image in M(0) of a collection of pairs of pants.

Definition 4.1. A curve v in H is l-thin if the core curve of the Margulis

tube Tv has length less than or equal to l. A curve v is said to split a pair

of split level surfaces Si and Sj (i < j) if v occurs as a vertex in both τi and

τj−1. A pair of split level surfaces Si and Sj (i < j) is said to be an l-thin pair

if there exists an l-thin curve v such that v occurs as a vertex in both τi and
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τj−1. A pair of split level surfaces Si and Sj (i < j) is said to be an l-thin pair

on a component domain D if

(a) Pi ∩ Pj is a pants decomposition of S \ D, none of whose curves are

l-thin.

(b) There exists a tight geodesic gD ∈ H supported on D such that

(gD, u) ∈ τk for all i < k < j, where the multicurve u contains an

l-thin curve. (Here D could be S itself.) Further we demand that

the initial and final vertices of gD consist of curves contained in (the

boundary curves of) Pi, Pj respectively.

A pair of split level surfaces Si and Sj (i < j) is said to be an l-thick pair

(or an l-thick pair on S) if no curve v ∈ τk is l-thin for i < k < j.

In fact in criterion (b) of the definition of an l-thin pair on a component

domain D, we might as well have assumed that the initial and final markings

of gD, I (gD) and T (gD) respectively, are precisely Pi, Pj . This is the case when

the markings are complete in the sense of [Min10].

By Definition 3.3(1), the set J(v) = {i : v ∈ ρ(i)} is an interval. Consider

the family of intervals {J(v) : v ∈ gH}, where gH is the distinguished main

geodesic (bottom geodesic) for the hierarchy H. Then
⋃
v{J(v) : v ∈ gH} = Z.

This follows from the fact that each τi has a simple closed curve corresponding

to some vertex in gH .

Any pair vi, vi+1 of simplices (multicurves) that form successive vertices

of the base geodesic gH are at a distance of 1 from each other by tightness

of gH .

Selecting split level surfaces. We shall now construct a subset I of Z by

selecting a subsequence of the elements {Pi} of the hierarchy path. Let τmi be

the first slice in the resolution such that (gH , vi) ∈ τmi . Let I1 = {mi : i ∈ Z}.
We shall now expand the set I1, if necessary, as follows.

If some curve in vi is l-thin, then we declare that [mi,mi+1] ∩ I =

{mi,mi+1}; i.e., no integer strictly between mi,mi+1 is added to I1. More

generally, for any j ∈ Z \ I1, choose i such that mi < j < mi+1. Then j ∈ I2 if

and only if there exists k

(a) either with j < k ≤ mi+1 such that Sj , Sk form an l-thin pair on some

component domain D,

(b) or with k < j ≤ mi+1 such that Sk, Sj form an l-thin pair on some

component domain D.

Finally, set I = I1 ∪ I2. Then I = {· · · , ni−1, ni, ni+1, · · · } inherits a linear

order from Z such that j < k implies nj < nk. Note that the same construction

works for simply degenerate groups if we replace Z by N.
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The next few propositions identify some of the features of the selection I.
The main point is to show that the sequence of split level surfaces Sni makes

definite progress out an end.

Proposition 4.2. Let I = {· · · , ni−1, ni, ni+1, · · · } be as above. There

exists a positive integer N0 such that for all i,

(a) either (Sni , Sni+1) is an l-thin pair on some component domain D,

(b) or (Sni , Sni+1) is an l-thick pair and ni+1 − ni ≤ N0.

Proof. Suppose that (Sni , Sni+1) is not an l-thin pair on some compo-

nent domain. Then, by the construction of I and Lemma 3.6, there exists

N1(= N1(l)) such that for all k with ni<k<ni+1, if τk={(hk1, vk1), (hk2, vk2),

. . . , (hkmk , vkmk)}, then the length of the tight geodesic hki satisfies l(hki) ≤
N1. Further, none of the curves in vki are l-thin, ensuring l-thickness of the

pair (Sni , Sni+1).

Note that mk ≤ ξ(S), where ξ(S) is the complexity of S. Also the number

of component domains in W \ collar(v) for W = D(hki) is certainly bounded

above by the number of pairs of pants in a pants decomposition of S and hence

by ξ(S). Therefore (ni+1 − ni) is bounded above by N
ξ(S)
1 × · · · ×N ξ(S)

1 (ξ(S)

times). Choosing N0 = N
ξ(S)2

1 , we are done. �

The next proposition asserts that between two successive split level sur-

faces Smi and Smi+1 selected from the base geodesic, our selection process

“interpolates” a uniformly bounded number of new split level surfaces. Equiv-

alently, the cardinality of the set (I2 ∩ [mi,mi+1]) is uniformly bounded.

Proposition 4.3. Let

I = {· · · , ni−1, ni, ni+1, · · · }

and

I1 = {· · · ,mi−1,mi,mi+1, · · · }
be as above. There exists a positive integer N2 such that for all i, if nj = mi

and nk = mi+1, then k − j ≤ N2.

Proof. Let k ∈ I. So Sk is a split level surface interpolated between Smi
and Smi+1 for some k with mi < k < mi+1. Let the corresponding slice τk =

{(hk1, vk1), (hk2, vk2), . . . , (hkmk , vkmk)}. Then there exists a unique “subslice”

τ0
k = {(hk1, vk1), (hk2, vk2), . . . , (hkrk , vkrk)}, with rk ≤ mk such that the length

of the tight geodesic hki satisfies l(hki) ≤ N1 for all i ≤ rk and Sk is a split

level surface.

Since the total number of such choices is bounded above byN0 by the proof

of Proposition 4.2, and for each such choice at most two (by the construction

of I2 above) split level surfaces are introduced, it follows that the total number
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of l-thin split level surfaces Sk with mi < k < mi+1 is bounded above by

2N0 = 2N
ξ(S)2

1 . Choosing N2 = 2N0, we are done. �

Lemma 4.4. There exists n such that each thin curve splits at most n split

level surfaces in the sequence {Sni : i ∈ I}.

Proof. Since for any i, the number of split level surfaces Sni between Smi
and Smi+1 (mi,mi+1 ∈ I1) is at most N2 by Proposition 4.3, it suffices to prove

that any thin curve splits a uniformly bounded number of Smi ’s. If a curve v

splits both Smi and Smj , then v belongs to both the pants decomposition Pmi
and Pmj−1.

Suppose (gS , vmk) ∈ τmk for k = i, j, where gS denotes the bottom geo-

desic of the hierarchy H. Then the distance between vmi and vmj in C(S) is

at most 3 by tightness; i.e., |i− j| ≤ 3. Taking n = 3N2, we are through. �

Pushing split level surfaces apart. We shall now use item (5) of Theo-

rem 3.5 to “thicken” each of the Sni ’s if necessary, so that successive split level

surfaces can be arranged to be uniformly separated. Recall that Ssi is the col-

lection of flat embedded pairs of pants in M(0) corresponding to the split level

surface Si.

Definition 4.5. A pair of split level surfaces Si and Sj (i < j) is said to

be k-separated if

(a) for all x ∈ Ssi , d(x, Ssj ) ≥ k;

(b) similarly, for all x ∈ Ssj , d(x, Ssi ) ≥ k.

Lemma 4.6. Let I = {· · · , ni−1, ni, ni+1, · · · } be as above. There exist

k0 > 0 and a sequence of split level surfaces Σi and a positive integer N0 such

that for all i, (Σi,Σi+1) is k0-separated and

(a) either (Σi,Σi+1) is an l-thin pair on some component domain D,

(b) or (Σi,Σi+1) is an l-thick pair and ni+1 − ni ≤ N0.

Proof. By Proposition 4.2, the sequence {Sni}i satisfies one of the al-

ternatives (a) or (b). It remains to modify {Sni}i such that (Sni , Sni+1) are

k0-separated for some k0 > 0 and all i.

By item (5) of Theorem 3.5, there exists ε > 0 such that for all flat pairs

of pants Qi in Ssni , there exists an isometric embedding Hi : Qi × [−ε, ε] into

M(0). Also, by Lemma 4.4, there exists n ∈ N such that if Qk ∈ Pni ∩ Pnj ,
then |i− j| ≤ n. Further, the collection {i ∈ I : Qk ∈ Pni} = IQk is an interval

in Z. Let ε2 = ε
n . If IQk = [ak, bk] ⊂ Z, define Qks = Hk|Qk×sε2 . Note that

(bk − ak) ≤ n.

For each embedding fni defining the split level surface Sni , and Qk ∈
Pni ∩ Pnj for some j 6= i, let IQk = [ak, bk] and s = (ni − ak). Then define

f ′ni |Qk = Hk|Qk×sε2 .
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Now, let Σi be the split level surface defined by f ′ni |Qk , whenever Qk ∈ Pni .
Choosing k0 = ε2, it follows that successive split level surfaces are k0-separated.

�

Let Tl denote the collection of tubes in T whose core curves have length

less than l. Also let M(l) = M(0)
⋃
T∈T \Tl F (T ) denote the union of M(0) and

all l-thick tubes.

Definition 4.7. An L-bi-Lipschitz split surface in M(l) associated to a

pants decomposition {Q1, . . . , Qn} of S and a collection {A1, . . . , Am} of com-

plementary annuli in S is an embedding f : ∪iQi
⋃∪iAi →M(l) such that

(1) the restriction f : ∪i(Qi, ∂Qi)→ (M(0), ∂M(0)) is a split level surface,

(2) the restriction f : Ai →M(l) is an L-bi-Lipschitz embedding,

(3) f extends to an embedding (also denoted f) of S into M such that the

interior of each annulus component of f(S \ (∪iQi
⋃∪iAi)) lies entirely

in F (
⋃
T∈Tl Int(T )).

Note. The difference between a split level surface and a split surface is that

the latter may contain bi-Lipschitz annuli in addition to flat pairs of pants.

Let Σs
i denote the union of the collection of flat pairs of pants and bi-

Lipschitz annuli in the image of the embedding Σi.

Theorem 4.8. Let N,M,M(0), S, F be as in Theorem 3.5 and E an

end of M . For any l less than the Margulis constant, let M(l) = {F (x) :

injradx(N) ≥ l}. Fix a hyperbolic metric on S such that each component of ∂S

is totally geodesic of length one. (This is a normalization condition.) There

exist L1 ≥ 1, ε1 > 0, n ∈ N, and a sequence Σi of L1-bi-Lipschitz, ε1-separated

split surfaces exiting the end E of M such that for all i, one of the following

occurs :

(1) An l-thin curve splits the pair (Σi,Σi+1); i.e., the associated split level

surfaces form an l-thin pair.

(2) There exists an L1-bi-Lipschitz embedding

Gi : (S × [0, 1], (∂S)× [0, 1])→ (M,∂M)

such that Σs
i = Gi(S × {0}) and Σs

i+1 = Gi(S × {1}).
Finally, each l-thin curve in S splits at most n split level surfaces in the se-

quence {Σi}.

Proof. By Lemma 4.6, there exist k > 0, a positive integer N0 and a se-

quence of split level surfaces Σ0
i such that for all i, (Σ0

i ,Σ
0
i+1) is k-separated and

(a) either (Σ0
i ,Σ

0
i+1) is an l-thin pair on some component domain D,

(b) or (Σ0
i ,Σ

0
i+1) is an l-thick pair and ni+1 − ni ≤ N0.
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(We add the superscript 0 to indicate that we are still dealing with split level

surfaces and not split surfaces.)

In case (a), there exists an l-thin curve splitting the pair of split level

surfaces (Σ0
i ,Σ

0
i+1). In case (b), let Pni , Pni+1 be the pants decompositions

associated to Σ0
i ,Σ

0
i+1 and let Pni ∩ Pni+1 be a (possibly empty) pants de-

composition of S \W , where W is an essential (possibly disconnected) sub-

surface of S such that each component Wk of W has complexity ξ(Wk) ≥ 4.

Hence by Lemma 3.7, there exist L2 ≥ 1 and an L2-bi-Lipschitz embedding

G : W × [−1, 1]→M such that

(1) W admits a hyperbolic metric given by W = Q1∪· · ·∪Qm, where each

Qi is a flat pair of pants;

(2) W × [−1, 1] is given the product metric;

(3) fni(Pni \Pni∩Pni+1) ⊂W×{−1} and fni+1(Pni+1 \Pni∩Pi) ⊂W×{1}.
Also, from the proof of Lemma 4.6, there exists ε > 0 such that for all i,

there exists an isometric embedding Hni : (Pni ∩Pni+1)× [0, ε]→M such that

Hni(Pni ∩Pni+1)×{0} ⊂ fni(Pni) and Hni(Pni+1 ∩Pni+1)×{ε} ⊂ fni+1(Pni+1).

Finally since (Σ0
i ,Σ

0
i+1) is an l-thick pair, there exist standard annuli

A1, . . . , Ap, L3 = L3(l) ≥ 1, ε1 > 0 and L3-bi-Lipschitz embeddings Γj :

Aj × [−1, 1]→ ⋃
T∈T \Tl F (Int(T )) such that

(a) S = ∪kPk
⋃∪jAj is the union of the pairs of pants above along with

the annuli Aj ,

(b) fni restricted to Aj agrees with Γj restricted to Aj × {−1},
(c) fni+1 restricted to Aj agrees with Γj restricted to Aj × {1}.

Pasting these maps,

(i) G : W × [−1, 1]→M ,

(ii) fni(Pni \ Pni ∩ Pni+1) ⊂W × {−1},
(iii) Hni : (Pni ∩ Pni+1)× [0, ε]→M , and

(iv) Γj : Aj × [−1, 1]→ ⋃
T∈T \Tl F (Int(T )) along the common boundaries,

we obtain an L1-bi-Lipschitz embedding

Gi : (S × [0, 1], (∂S)× [0, 1])→ (M,∂M)

such that the split surfaces Σs
i = Gi(S × {0}) and Σs

i+1 = Gi(S × {1}).
Lemma 4.4 now proves the final assertion. �

Pairs of split surfaces satisfying alternative (1) of Theorem 4.8 will be

called an l-thin pair of split surfaces (or simply a thin pair if l is understood).

Similarly, pairs of split surfaces satisfying alternative (2) of Theorem 4.8 will

be called an l-thick pair (or simply a thick pair) of split surfaces.

Remark 4.9. The notion of split surface could be made a bit more gen-

eral. We might as well require a split surface to be a (uniformly) bi-Lipschitz
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embedding of a bounded geometry subsurface of S containing a pants decom-

position. Theorem 4.8 then summarizes the consequences of the Minsky model

that we shall need in this paper. We have thus constructed the following from

the Minsky model:

(1) A sequence of split surfaces Ssi exiting the end(s) of M , where M is

marked with a homeomorphism to S × J . (J is R or [0,∞) according

as M is totally or simply degenerate.) Ssi ⊂ S × {i}.
(2) A collection of Margulis tubes T in N with image F (T ) in M (under

the bi-Lipschitz homeomorphism between N and M). We refer to the

elements of F (T ) also as Margulis tubes.

(3) For each complementary annulus of Ssi with core σ, there is a Margulis

tube T ∈ T whose core is freely homotopic to σ such that F (T ) inter-

sects Ssi at the boundary. (What this roughly means is that there is an

F (T ) that contains the complementary annulus.) We say that F (T )

splits Ssi .

(4) There exist constants ε0 > 0,K0 > 1 such that for all i, either there

exists a Margulis tube splitting both Ssi and Ssi+1, or else Si(= Ssi ) and

Si+1(= Ssi+1) have injectivity radius bounded below by ε0 and bound

a thick block Bi, where a thick block is defined to be a K0-bi-Lipschitz

homeomorphic image of S × I.

(5) F (T )∩Ssi is either empty or consists of a pair of boundary components

of Ssi that are parallel in Si.

(6) There is a uniform upper bound n = n(M) on the number of surfaces

that F (T ) splits.

For easy reference later on, a model manifold satisfying conditions (1)–(6)

above is said to have weak split geometry.

We have isolated the features of weak split geometry in Remark 4.9 so

as to emphasize the point that it is possible to make a definition independent

of the Minsky model and the hierarchy machinery.1 This will be useful for

easy referencing in [Mj07] and [MS13]. In fact, a strengthening of weak split

geometry will be enough to guarantee the existence of Cannon-Thurston maps,

as we shall see below.

4.2. Split blocks.

Definition 4.10. Let (Σs
i ,Σ

s
i+1) be a thick pair of split surfaces in M . The

closure of the bounded component of M\(Σs
i∪Σs

i+1) will be called a thick block.

1This was our original approach to the main theorem of this paper: Prove it for more

and more general model geometries; e.g., bounded geometry [Mj10a], i-bounded geometry

[Mj11], amalgamation geometry and split geometry [Mj05]. Finally, prove that the Minsky

model satisfies split geometry [Mj06].
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Figure 5. Split components of split block with hanging tubes.

Note that a thick block is uniformly bi-Lipschitz to the product S × [0, 1]

and that its boundary components are Σs
i ,Σ

s
i+1.

Definition 4.11. Let (Σs
i ,Σ

s
i+1) be an l-thin pair of split surfaces in M and

F (Ti) be the collection of l-thin Margulis tubes that split both Σs
i ,Σ

s
i+1. The

closure of the union of the bounded components of M\((Σs
i∪Σs

i+1)
⋃
T∈Ti F (T ))

will be called a split block. Equivalently, the closure of the union of the

bounded components of M(l) \ (Σs
i ∪ Σs

i+1) is a split block.

Topologically, a split block Bs is a topological product Ss×I for some not

necessarily connected Ss. However, its upper and lower boundaries need not

be Ss × 1 and Ss × 0. We only require that the upper and lower boundaries

be split subsurfaces of Ss. This is to allow for Margulis tubes starting (or

ending) within the split block. Such tubes would split one of the horizontal

boundaries but not both. We shall call such tubes hanging tubes. Connected

components of split blocks are called split components. By l-thinness, there is

a nonempty collection of l-thin Margulis tubes, called splitting tubes, splitting

a split block. For each splitting tube F (T ) of a split block Bs, the intersection

(Bs∩F (T )) ⊂M is called the vertical boundary of the splitting tube. Note that

the vertical boundary of a splitting tube is the union of two disjoint annuli.

See Figure 5, where the left split component has four hanging tubes and

the right split component has two hanging tubes. The vertical space between

the components is the place where an l-thin Margulis tube splits the split block

into two split components.

Observe further that for each hanging tube F (T ), there exists a split sur-

face Ss (marked with a dotted line in the figure) that intersects the boundary

F (∂T ) nontrivially and such that Ss contains an annulus whose core-curve is

homotopic (in M) to the core curve of F (T ). Also, the closure of (F (∂T ) \Ss)
consists of precisely two annuli called the vertical boundary of the hanging

tube. We can assume further that

(a) Ss ∩ F (∂T ) is a bi-Lipschitz annulus called the horizontal boundary of

F (T ) in the split block Bs,
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(b) the union of the vertical and horizontal boundaries of an l-thin hanging

tube F (T ) in Bs is precisely equal to F (T ) ∩Bs.

Note that the whole manifold M is the union of

(a) thick blocks (bi-Lipschitz homeomorphic to S × I),

(b) split blocks (homeomorphic to Ss × I for some split surfaces),

(c) l-thin Margulis tubes.

Also note that the union of thick and split blocks is M(l), which is the com-

plement (in M) of the union of l-thin Margulis tubes. Each of these Margulis

tubes splits a uniformly bounded number of split blocks and might end in a

hanging tube.

4.3. Electrocutions. For any hanging tube or splitting tube F (Tj) in a

split block Bs (with top and bottom split surfaces Σs
k,Σ

s
k+1, say), let Aji =

S1 × [0, lji], (i = 1, 2), be the vertical boundaries (i = 1, 2 correspond to the

left and right vertical annuli in Figure 5). Let the metric product S1 × [0, 1]

be called the standard annulus for splitting tubes. For hanging tubes, the

standard annulus will be S1 × [0, 1/2].

We shall define a welded split block Bwel (homeomorphic to S× [0, 1]) to be

a split block with identifications on vertical boundaries of splitting tubes and

hanging tubes. Let H0
ji : [0, lji] → [0, x] be the unique linear surjective map

(scaling) taking 0 to 0 and lji to x, where x is 1 or 1/2 according as F (Tj) is a

splitting tube or a hanging tube. Now define Hji : S1× [0, lji]→ S1× [0, x] by

Hji(y, z) = (y,H0
ji(z)). Finally, extendHj1∪Hj2 continuously to the horizontal

boundaries S1 × [−ε, ε] of hanging tubes F (Tj) as Lipschitz maps to S1 × {p}
by Hj(y, z) = (y, p), where p is either 0 or 1/2 according as the horizontal

boundary of F (Tj) lies at the bottom or the top of the hanging tube. (For

instance, in Figure 5 the horizontal boundary marked with a dotted line lies at

the top of a hanging tube.) Now glue the mapping cylinders of Hj1 ∪Hj2 ∪Hj

(for hanging tubes) and Hj1∪Hj2 (for splitting tubes) to F (∂Tj)∩Bs to obtain

the welded split block Bwel. Note that Bwel is homeomorphic to S × [0, 1]. The

images of the standard annuli in Bwel after the identification shall simply be

called standard annuli in Bwel.

For each hanging tube, there exists one distinguished curve on either Σs
k or

Σs
k+1. When the hanging tube intersects Σs

k+1, this is the image of S1×{1/2}
contained in the standard annulus after identification. Similarly, when the

hanging tube intersects Σs
k, this is the image of S1 × {0} contained in the

standard annulus after identification. Again, for each splitting tube, there

exist two distinguished curves, one each on Σs
k and Σs

k+1 — the images of

S1×{0, 1} contained in the standard annulus after identification. Such simple

closed curves shall be called weld curves. The resulting metric on Bwel will be

denoted by dwel.
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We shall equip Bwel with a new pseudometric. Equip the standard annulus

S1 × [0, x] (where x is 1 or 1/2) with the product of the zero metric on the

S1-factor and the Euclidean metric on the [0, x] factor. Let (S1 × [0, x], d0)

denote the resulting pseudometric. The tube-electrocuted metric dtel is defined

to be the pseudometric metric that agrees with dwel away from the standard

annuli in Bwel and with d0 on the standard annuli in Bwel. To distinguish it

from (Bwel, dwel) we shall represent the new space and the pseudometric on it

by (Btel, dtel). Note that the underlying topological spaces Bwel and Btel are

the same and homeomorphic to S × [0, 1].

Recall that in defining thick blocks, S was equipped with a fixed hyper-

bolic metric. If Σs
k is the bottom split surface of the split block Bs

k and also the

top split surface of a (thick or split) block block Bs
k−1, then the common split

surface Σs
k can be easily extended over complementary annuli to a common

uniformly bi-Lipschitz embedding of S into welded blocks Bwel,k and Bwel,k−1,

where we define Bwel,m = Bm for thick blocks. When Bk−1 is thick, this follows

from the fact that the complementary annuli are uniformly bi-Lipschitz em-

beddings of S1× [0, 1]. When Bs
k−1 is split, the mapping cylinder construction

above restricted to Σs
k is the same whether Σs

k is regarded as the bottom split

surface of Bs
k or the top split surface of Bs

k−1. We shall continue to denote the

extended split surface by Σs
k and call it a split surface in Bwel,k. From now on,

we shall drop the suffix wel from (thick or split) blocks Bwel,k and denote them

simply as Bk. Note that all such extended split surfaces are homeomorphic to

S via uniformly bi-Lipschitz homeomorphisms.

The welded model manifold. Gluing successive welded blocks along com-

mon split surfaces, we obtain the welded model manifold (Mwel, dwel) homeo-

morphic to S × J , where J = R or [0,∞) according as the original manifold

N is doubly or simply degenerate.

It remains to construct the tube-electrocuted pseudometric dtel on Mwel.

The tube electrocuted metrics on successive welded split blocks coincide on

the common split surface. The same is clearly true if the successive blocks are

thick.

If a weld curve lies in Σs
k = Bwel,k ∩ Bwel,k−1 and precisely one of Bwel,k,

Bwel,k−1 is a thick block, then we fix the convention that for the tube electro-

cuted metric dtel on Mwel: All weld curves have length zero.

Gluing successive tube electrocuted blocks using the convention above, we

obtain the tube electrocuted manifold (Mtel, dtel). Observe that the underlying

topological manifolds Mwel and Mtel are the same. (The notation (Mwel, dwel)

and (Mtel, dtel) is used to distinguish the metrics.)

The union of the images of the contiguous mapping cylinders of mapsHj1∪
Hj2∪Hj (or Hj1∪Hj2) in (Mtel, dtel) associated to a particular l-thin Margulis

tube T (and hence F (T )) is topologically a solid torus T t. Equipped with the
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tube electrocuted metric, (T t, dtel) is of diameter at most n by Theorem 4.8.

The collection of all T t’s in (Mtel, dtel) is denoted T t. (We shall continue to

use the same notation T t for the collection of T t’s in (Mwel, dG) to be defined

below.)

The images of split components K of Bs in Btel will continue to be called

split components of Btel. A lift K̃ of a split component K of (Btel, dtel) to the

universal cover (fiBtel, dtel) shall be termed a split component of fiBtel.

Let dG be the (pseudo)-metric obtained by electrocuting the collection K
of split components K̃ in (fiBtel, dtel) ⊂ (fiMtel, dtel) as (Btel, dtel) ranges over

all split blocks. dG will be called the graph metric on fiMtel(= flMwel). Thus

(flMwel, dG) is isometric to E(flMwel,K) with the electric metric.

Remark 4.12 (alternate description). There is an alternate description of

a pseudometric on M̃ that makes it quasi-isometric to (flMwel, dG). For each lift

K̃ ⊂ M̃ of a split component K of a split block of M(l) ⊂ M , there are lifts

of l-thin Margulis tubes that share the boundary of K̃ in M̃ . Adjoining these

lifts to K̃ we obtain extended split components. Let K′ denote the collection of

extended split components in M̃ . We continue to denote the collection of split

components in flM(l) ⊂ M̃ by K. Let flM(l) denote the lift of M(l) to M̃ . Then

the inclusion of flM(l) into M̃ gives a quasi-isometry between E(flM(l),K) and

E(M̃,K′) equipped with the respective electric metrics. This follows from the

last assertion of Theorem 4.8.

Again, by the last assertion of Theorem 4.8, the inclusion of flM(l) intoflMwel gives a quasi-isometry between E(flM(l),K) and E(flMwel,K)(= (flMwel, dG)).

Therefore (flMwel, dG) is quasi-isometric to E(M̃,K′). We shall henceforth iden-

tify E(M̃,K′) with (flMwel, dG) via this quasi-isometry without explicitly men-

tioning the quasi-isometry. The electric metric on E(M̃,K′) shall therefore be

denoted by dG also. We shall find it easier to use E(M̃,K′) when dealing with

all of M̃ , whereas (flMwel, dG) will be more useful when dealing with the block

structure of flMwel.

Remark 4.13. Here is the raison d’etre for the two closely related but

different electric spaces. In the ladder construction of Section 5 below, it is

important that a split surface goes “all the way across,” i.e., is an embedded

copy of S. There is no canonical way to do this in the model manifold M .

In fact for the ladder construction of Section 5 to work, it is important that

a split surface in (Mwel, dwel) is an embedded copy of S having uniformly

bounded geometry. This is simply not possible in M as Margulis tubes may

be arbitrarily thin. On the other hand, we finally need to control hyperbolic

geodesics in ‹N by means of the ladder. Since M is bi-Lipschitz to N , we can

equivalently control them in M̃ . The alternate description above establishes a
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way of transferring this control from (flMwel, dG) to M̃ , which is where we really

want the control on geodesics.

The following definition illustrates this passing back and forth between

these two quasi-isometric electric spaces.

Definition 4.14. Let Y ⊂ ‹N and X = F (Y ). X ⊂ M̃ is said to be ∆-graph

quasiconvex if for any hyperbolic geodesic µ joining a, b ∈ Y , F (µ) lies inside

N∆(X, dG) ⊂ E(M̃,K′).

For X a split component, define CH(X) = F (CH(Y )), where CH(Y ) is

the convex hull of Y in ‹N . Then ∆-graph-quasiconvexity of X is equivalent

to the condition that diaG(CH(X)) is bounded by ∆′ = ∆′(∆) as any split

component has diameter one in (fiMtel, dG).

4.4. Quasiconvexity of split components. We now proceed to show further

that split components are quasiconvex (not necessarily uniformly) in the hy-

perbolic metric, and uniformly quasiconvex in the graph metric; i.e., we need

to show hyperbolic quasiconvexity and uniform graph quasiconvexity of split

components.

Hyperbolic quasiconvexity. LetN=H3/Γ be a complete hyperbolic 3-man-

ifold. Then [CEG87] there exist a geometrically finite hyperbolic manifold with

compact convex core Ngf and a strictly type-preserving embedding i of Ngf

into N , which is a homotopy equivalence. Then for any boundary component

Sh of Ngf , i∗(π1(Sh)) ⊂ π1(N) is called a peripheral subgroup. In the theorem

below, π1(N) will be identified with a Kleinian group Γ and the peripheral

subgroup i∗(π1(Sh)) with a Kleinian subgroup of Γ.

Covering Theorem 4.15 ([CEG87], [Can96]). Let N = H3/Γ be a com-

plete hyperbolic 3-manifold. A finitely generated subgroup Γ′ is geometrically

infinite if and only if it contains a finite index subgroup of a geometrically

infinite peripheral subgroup.

We shall now specialize the Thurston-Canary Covering Theorem 4.15 to

the case under consideration; namely, infinite index free subgroups of surface

Kleinian groups.

Lemma 4.16. Let N be a simply or doubly degenerate hyperbolic 3-mani-

fold homotopy equivalent to a surface equipped with a weak split geometry model

M . For K a split component, let K̃ be a lift to ‹N . Then there exists C0 =

C0(K) such that the convex hull of K̃ minus cusps lies in a C0-neighborhood

of K̃ in ‹N .

Proof. Let Γ = π1(N) and Γ′ = i∗(π1(K))(⊂ Γ). Then Γ itself is the

unique peripheral subgroup. Since Γ′ has infinite index in Γ, it follows from
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Theorem 4.15 that Γ′ is geometrically finite. The result follows. (Cusps need

to be excised because the model manifold is bi-Lipschitz homeomorphic to N

minus cusps.) �

Graph quasiconvexity. Next, we shall prove that each split component is

uniformly graph quasiconvex. We begin with the following lemma. Recall that

we are dealing with simply or totally degenerate groups without accidental

parabolics.

Lemma 4.17. Let Σ be a component of a proper extended split subsurface

Ssi of S. Any (nonperipheral) simple closed curve in S appearing in the hier-

archy whose free homotopy class has a representative lying in Σ must have a

geodesic representative in M lying within a uniformly bounded distance of Ssi
in the graph metric dG.

Proof. Suppose a curve v in the hierarchy is homotopic into Σ. Then v

is at a distance of at most 1 in the curve complex from each of the boundary

components of Σ. Since Σ is a proper subsurface of S, the relative boundary

∂S(Σ) 6= ∅. Let α be such a boundary component. Next, suppose that the

geodesic realization of v in N intersects some block Bs
j (via the correspondence

in Alternate Description 4.12). Then v must be at a distance of at most one

from some curve σ in the base geodesic gH forming an element of the pants

decomposition of the split surface Ssj .

By tightness, the distance from α to σ in the curve complex is at most 2.

Hence the distance (≤ |i − j|) of Ssj from Ssi (in the dG metric) is ≤ 2n from

Lemma 4.4. Therefore v is realized within a distance 2n of Ssi in the graph

metric dG. �

Recall ([CEG87, Def. 8.8.1]) that a pleated surface in a hyperbolic 3-man-

ifold N is a complete hyperbolic surface S of finite area, together with an

isometric map h : S → N such that every x ∈ S is in the interior of some

geodesic segment in S that is mapped by h to a geodesic segment in N . Also,

hmaps cusps to cusps. We refer the reader to Section 8.8 of [CEG87] for further

details. A pleated surface is said to be incompressible if h∗ : π1(S) → π1(N)

is injective. A standard fact about hyperbolic surfaces and pleated surfaces

is Lemma 4.18 below. (See the proof of Proposition 8.8.5 of [CEG87] for

instance.)

An l-thin annulus on a hyperbolic surface Sh is a maximal connected

component of the set {x ∈ Sh : injradx(Sh) < l
2}. This is the 2-dimensional

analogue of an l-thin Margulis tube. Note that an l-thin annulus may also be

a neighborhood of a cusp in Sh.

Lemma 4.18 ([CEG87], [Bon86]). For all l > 0 and g, n ∈ N, there exists

∆ = ∆(l, g, n) > 0 such that the following holds. Let Sh be any hyperbolic
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surface of genus g and n boundary components and/or cusps. Let Al be the

collection of l-thin annuli. Then E(Sh,Al) has diameter less than ∆ in the

electric metric. Again, let N be a hyperbolic 3-manifold, and let Tl be the

collection of l-thin Margulis tubes and cusps in it. Let h : S → N be an

incompressible pleated surface. Then h(S) has diameter less than ∆ in the

electric metric on E(N, Tl).
Next, we show that any (nonperipheral) simple closed curve vi in Ssi (not

just hierarchy curves as in Lemma 4.17) must be realized within a uniformly

bounded distance of Ssi in the graph metric. In fact we shall show further

that any pleated surface that contains at least one boundary geodesic of Σ in

its pleating locus lies within a uniformly bounded distance of Ssi in the graph

metric.

Lemma 4.19. There exists B > 0 such that the following holds. Let Σ

be a proper split subsurface of Ssi . Then any pleated surface with at least one

boundary component coinciding with a geodesic representative of a nonperiph-

eral component of ∂Σ must lie within a B-neighborhood of Ssi in (M,dG) =

(E(M̃,K′))/Γ, where K′ denotes the collection of extended split components in

M̃ and Γ is the fundamental group of M regarded as the group of deck trans-

formations of M̃ . In particular, every simple closed curve in S homotopic into

Σ has a geodesic representative within a B-neighborhood of Ssi in (M,dG).

Proof. Choose a curve vi homotopic to a simple closed curve on Σ. Let α

denote its geodesic realization in N . Let Σp be any pleated (sub)surface whose

boundary coincides with the geodesics representing the boundary components

of Σ. (See [CEG87] for the construction of such pleated surfaces.) In particular,

we may choose Σp such that its pleating locus contains vi. Since Ssi is a

split surface in M , the topological type of Σp has finitely many possibilities.

By Lemma 4.18 the diameter of Σp is bounded by ∆ = ∆(l) in the electric

metric on E(N, Tl). Since the l-thin components of the boundary of Σp are

contained in l-thin tubes bounding Ssi , it follows that Σp (and α in particular)

lies in a ∆-neighborhood of Ssi in the electric metric on E(N, Tl). Since each

T ∈ Tl is contained in the image of some K ∈ K′ under the quotient map

(E(M̃,K′))→ (E(M̃,K′))/Γ = (M,dG), the result follows. �

Remark 4.20. In [Bow05], Bowditch indicates a method to obtain a related

(stronger) result that given B1 > 0, there exists B2 > 0 such that any two

simple closed curves realized within a Hausdorff distance B1 of each other in

M are within a distance B2 of each other in the curve complex.

4.5. Drilling and filling. In this subsection we summarize some material

that will be needed in Section 4.6 to prove uniform graph-quasiconvexity of

split components.
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The Drilling Theorem of Brock and Bromberg [BB04], which built on work

of Hodgson and Kerckhoff [HK98] [HK05], is given below. We shall invoke a

version of this theorem that is closely related to one used by Brock and Souto

in [BS06].

Theorem 4.21 ([BB04]). For each L > 1 and n a positive integer, there

is an ` > 0 so that if Ngf is a geometrically finite hyperbolic 3-manifold and

c1, . . . , cn are geodesics in Ngf with length `Ngf (ci) < ` for all ci, then there is

an L-bi-Lipschitz diffeomorphism of pairs

h : (Ngf \ ∪iT(ci),∪i∂T(c))→ (N0
gf \ ∪iP(ci),∪i∂P(ci)),

where Ngf \∪iT(ci) denotes the complement of a standard tubular neighborhood

of ∪ici in Ngf , N0
gf denotes the complete hyperbolic structure on Ngf \ ∪ici,

and P(ci) denotes a standard rank-2 cusp corresponding to ci.

N0
gf is said to be obtained from Ngf by drilling. We remark here (following

[BB04]) that the drilled manifold is the unique hyperbolic manifold that has

the same conformal structure on its domain of discontinuity but has core curves

of T drilled out to give rank-2 parabolics.

The Filling Theorem of Thurston [CEG87] (generalized by Canary [Can96])

we shall require is stated below.

Theorem 4.22 ([CEG87], [Can96]).Given any quasifuchsian surface group

Γ and N = H3/Γ, there exists δ > 0 depending only on the Euler characteristic

of the surface such that for all x ∈ CC(N), the convex core of N , there exists

a pleated surface Σ such that d(x,Σ) ≤ δ.

4.6. Proof of uniform graph-quasiconvexity. We need to prove the uniform

graph-quasiconvexity of split components. Let Bs be a split block with a

splitting l-thin Margulis tube T . We aim at showing

Proposition 4.23 (Uniform graph-quasiconvexity of split components).

Each (extended) split component K̃ is uniformly graph-quasiconvex in (M̃, dG).

The proof of Proposition 4.23 will occupy this entire subsection. Let

Bs ⊂ B = S × I be a split block with horizontal boundary consisting of split

surfaces Ssj , S
s
j+1. Let

⋃
i Ti be the union of l-thin Margulis tubes splitting

Bs. (We suppress the dependence on the index j for the time being.) Let K

be a split component. Then K = (S1 × I) topologically for a subsurface S1

of S. Also, let ∂sK = ∂S1 × I denote the collection of boundary annuli of K

that abut the splitting tubes. Let ∂S1 =
⋃
i σi = σ be the finite collection of

boundary curves. σ is thus a multicurve. Each σi is homotopic to the core

curve of an l-thin splitting Margulis tube Ti. Let T =
⋃
i Ti. T will be referred

to as a multi-Margulis tube.
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We have already shown in Lemma 4.16 that π1(S1) ⊂ π1(S) includes into

π1(N) as a geometrically finite subgroup of PSL2(C). Let N1 be the cover of

N corresponding to π1(K) = π1(S1). Then N1 is geometrically finite. Let T1

be the multi-Margulis tube in N1 that consists of tubes that are (individually)

isometric to individual components of the multi-Margulis tube T.

Let N1d be the hyperbolic manifold obtained from N1 by drilling out the

core curves of T1. Since N1 is geometrically finite, so is N1d.

We first observe that the boundary of the augmented Scott core X of N1d

is incompressible away from cusps. To see this, note that X is double covered

by a copy of D× I with solid tori drilled out of it, where D is the double of S1

(obtained by doubling S1 along its boundary circles).

Identify X with the convex core CC(N1d) of N1d. We also identify D with

the convex core boundary. Since D is incompressible away from cusps, we have

the following.

Lemma 4.24 ([CEG87, Ch. 8]). D is a pleated surface.

Since N1 is the cover of N corresponding to π1(K) ⊂ π1(N), K lifts to

an embedding into N1. Adjoin the multi-Margulis tube T1 to (the lifted) K

to get an augmented split component K1. Let K1d ⊂ N1d denote K1 with the

components of T1 drilled. We want to show that D lies within a uniformly

bounded distance of K1d in the lifted graph metric on N1d. This would be

enough to prove a version of Proposition 4.23 for the drilled manifold N1d as

the split geometry structure gives rise to a graph metric on N , hence a graph

metric on N1 and hence again, a graph metric on N1d. Finally, we shall use

the Theorem 4.21 to complete the proof of Proposition 4.23.

Lemma 4.25. There exists C1 such that for any split component K , D

lies within a uniformly bounded neighborhood of K1d in N1d.

Proof. Case 1: D ∩ K1d 6= ∅. If D intersects K1d, then the lemma fol-

lows directly from Lemma 4.18: Incompressible pleated surfaces have bounded

diameter in the graph metric dG.

Case 2: D ∩ K1d = ∅. This is the more difficult case because a priori

D might lie far from K1d. Recall that F : N → M is a bi-Lipschitz home-

omorphism between the hyperbolic manifold and the model manifold. Let

M1 = F (N1). Let B denote the block (split or thick) in the model manifold

M containing F (K). Let B1 ⊂ M1 denote its lift to M1. Let B1d denote B1

with T1 drilled.

Then B1d−F (K1d) is topologically a disjoint union of “vertically thickened

flaring annuli” F (Ai), say. Each Ai ⊂ F−1(B1) is of the form S1×[0,∞) where

S1 × {0} lies on Ti.

More elaborately, what this means is the following. Identifying B with

S×I, we may identify B1 with Sa1×I, where Sa1 is the cover of S corresponding
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to the subgroup π1(S1) ⊂ π1(S). Then Sa1 may be regarded as S1 union a

finite collection of flaring annuli F (Ai) (one for each boundary component

of S1). Thus B1 is the union of a core F (K1) and a collection of vertically

thickened flaring annuli of the form F (Ai) × I. Hence B1d is the union of a

core F (K1d) and the collection of vertically thickened flaring annuli F (Ai)× I.

Also the boundary ∂Ai = Ai ∩ Ti is a curve of fixed length ε0. Let us fix one

such annulus A1. Refer to Figure 6 (where we have removed subscripts for

convenience).

A

D
K

X

Figure 6. Graph quasiconvexity.

Recall that D bounds X and X contains K1d. Thicken the convex core

slightly to Nε(X) such that its boundary, Dε is a smooth surface.

Let M̃1 denote the cover of M1 corresponding to i∗π1(A1), where i denotes

the inclusion map. Let ›Dε denote the lift of Dε to M̃1. Then each lift A1×{t}
separates ›Dε since i∗(π1(A1)) ⊂ π1(D) is a subgroup such that the cover ‹D
has two ends. Hence, by a small homotopy of A1, we can assume that

(a) F−1(F (A1) × I) is a smooth manifold (with boundary) bi-Lipschitz

homeomorphic to (F (A1)× I).

(b) F (Dε) is transverse to each (F (A1)×{t}) for t belonging to an interval

I1 of some fixed length h0 > 0 (equal to the uniform lower bound on

the height of split blocks Bs) contained in I.

Since A1 × {t} separates ›Dε in ›N1, it follows that for each t ∈ I1, F (Dε)

intersects (F (A1)×{t}) in an essential loop αt parallel to ∂A1. Hence Dε must

contain an annulus of the form α× I1 ⊂ F (A1)× I1. Also the length of I1 is at

least h0
L , where L is the bi-Lipschitz constant for F . Since this is true for all

ε, it is also true for the pleated surface D. Hence for at least some t ∈ I, the

length of α × {t} is uniformly bounded (by 2Lπ(4g−4)
h0

) by the Gauss-Bonnet

Theorem applied to D. Much more is true in fact, but this is enough for our

purposes.
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Since α×{t} ⊂ A1×{t} and the latter is an exponentially flaring annulus,

it follows that there exist uniform constants C0>0, η>1 such that if d(α×{t},
∂(A1 × {t}) ≥ d0, then the length of α× {t} is bounded below by C0η

d0 .

These two estimates imply that there is some point p ∈ α×{t} ⊂ D such

that d(p, T1) is uniformly bounded (in terms of the genus of S and the minimal

height of split blocks h0), where T1 is the drilled Margulis tube intersecting

A1 × {t} nontrivially.

By Lemma 4.18 and using the bi-Lipschitz homeomorphism F between

N1d and M1d, the diameter of D is uniformly bounded in the graph metric

lifted to M1d. Hence, by the triangle inequality, D lies in a uniformly bounded

neighborhood of K in the graph metric (using either of the descriptions of the

graph metric in Remark 4.12). �

An alternate proof of Lemma 4.25. A simpler proof of the fact that D lies

in a uniformly bounded neighborhood of K1 in the graph metric may alter-

nately be obtained directly as follows. First observe that M1 is geometrically

finite by the Covering Theorem of Thurston [CEG87] and Canary [Can96].

(See Lemma 4.16.) Next, by a theorem of Canary and Minsky [CM96], it fol-

lows that the convex hull boundary D of M1 can be approximated by simplicial

hyperbolic surfaces (see [CM96] for details) homotopic to D with short tracks.

Thus any simplicial hyperbolic approximant Da would have to have bounded

area and hence bounded diameter modulo Margulis tubes (as in Lemma 4.19).

Thus so would D. Now, we repeat the argument in the proof of Lemma 4.26 to

conclude that D and hence the convex core CC(M1) of M1 lies in a uniformly

bounded neighborhood of K1 in the graph metric. �

This approach would circumvent the use of the Drilling Theorem at this

stage. However, since we shall again need it below, we retain our approach here.

Since D bounds X, we would like to claim that the conclusion of Lemma

4.25 follows with X in place of D. Though this does not a priori follow in

the hyperbolic metric, it does follow for the graph metric. This is because the

double cover of X is a “drilled quasifuchsian” manifold; i.e., it is essentially

(D × I) with some short curves drilled. Further, any point in the convex

core of a quasifuchsian (D × I) is close to a pleated surface by Theorem 4.22.

Essentially the same argument as in Lemma 4.25 applies now. Details will be

given below.

Lemma 4.26. There exists C1 such that for any split component K , K1d

is uniformly graph-quasiconvex in M1d.

Proof. X is double covered by D × I with cores of some Margulis tubes

drilled. Let X1 denote this double cover. Note that X1 is convex, being a

double cover of the convex compact X. By Theorem 4.21, there exists l > 0
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such that the drilled and undrilled manifolds are 2-bi-Lipschitz homeomorphic

away from Margulis tubes and cusps provided the Margulis tubes are l-thin.

Perform (1,m) Dehn filling on X1 with sufficiently large m = m(l) to

ensure that the resulting Margulis tube is l-thin. Let X1f be the result-

ing Dehn-filled manifold. By Theorem 4.21, X1f is uniformly quasiconvex

in M1f = H3/Γ where Γ is a quasi-Fuchsian surface group obtained by the

above Dehn filling. (Theorem 4.21 gives a uniform bi-Lipschitz map outside

Margulis tubes.)

Next, by Theorem 4.22, for all x ∈ X1f , there exists a pleated surface

Σ ⊂ X1f such that d(x,Σ) ≤ δ, where δ depends only on the genus of D.

Returning to X1 via the Drilling Theorem 4.21, we see that for all x ∈ X1,

(1) Either there exists a uniformly bi-Lipschitz image of a hyperbolic sur-

face Σ1 ⊂ X1 such that d(x,Σ1) ≤ δ. This is the case that the pleated

surface Σ misses all filled Margulis tubes.

(2) Or, there exists a uniformly bi-Lipschitz image of a subsurface Σ1 of a

hyperbolic surface such that d(x,Σ1) ≤ δ and such that the boundary

of Σ1 lies in a Margulis tube. This is the case that the pleated surface

Σ meets some filled Margulis tubes. Here, we can take Σ1 to be the

image of the component of (Σ minus Margulis tubes) that lies near x.

Again, passing down to X under the double cover (from X1 to X), for all

x ∈ X, we have

(1) Either there exists a uniformly bi-Lipschitz image of a hyperbolic sur-

face Σ1 ⊂ X parallel to D such that d(x,Σ1) ≤ δ.
(2) Or, there exists a uniformly bi-Lipschitz image of a subsurface Σ1 of a

hyperbolic surface such that d(x,Σ1) ≤ δ and such that the boundary

of Σ1 lies on a Margulis tube. Further, Σ1 is incompressible in the

complement of l-thin Margulis tubes.

In either case, the argument for Lemma 4.25 now shows that for all x ∈ X
the distance dG(x,K1d) is uniformly bounded in the graph-metric dG. Thus,

we have shown that K1d is uniformly graph-quasiconvex in M1d. �

To complete the proof of Proposition 4.23 it is necessary to translate the

content of Lemma 4.26 to the “undrilled” manifold N1. We shall need to invoke

the Drilling Theorem 4.21 again.

Concluding the proof of Proposition 4.23. While recovering data about

N1, it is slightly easier to handle the case where D ∩ K1d = ∅. Since we

shall use the convex core boundary for both the drilled as well as the undrilled

manifolds in the rest of the proof, we change notation slightly and use

(a) Dd for the convex core boundary of the drilled manifold Nd,

(b) D for the convex core boundary of the undrilled manifold N .
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Case 1: Dd ∩ K1d = ∅. Filling N1d along the (drilled) T1, we get back

N1. Since Dd misses K1d, the filled image of X in N1 is C1-quasiconvex for

some C1, depending on the bi-Lipschitz constant of Theorem 4.21 above. (One

can see this easily, for instance, from the fact that there is a uniform Lipschitz

retract of N1d −X onto Dd.)

Case 2: Dd∩K1d 6= ∅. If Dd meets some Margulis tubes T1, we enlarge D

to D′ in X1 by letting D′ be the boundary of X1 = X ∪T1. The annular inter-

sections of D with Margulis tubes are replaced by boundary annuli contained

in the boundary of T1.

It is easy enough to check that X1 is uniformly quasiconvex in the hyper-

bolic metric: look at a universal cover ›X1 of X1 in ›N1. Then ›X1 is a union of‹X and the lifts of T that intersect it. All these lifts of T are disjoint. Hence ›X1

is a “star” of convex sets, all of which intersect the convex set ‹X. By (Gromov)

δ-hyperbolicity, such a set is uniformly quasiconvex. Then, as before, there is a

uniform Lipschitz retract of N1d−X1 onto D′. But now D′ misses the interior

of K1d and we can apply the previous argument.

By Theorem 4.21 above, the diameter of the convex core boundary D

(or D′ if D intersects some Margulis tubes) in N1 is bounded in terms of the

diameter of the convex core boundary Dd in N1d and the uniform bi-Lipschitz

constant L obtained from Theorem 4.21 above. Further, the distance of D

from K1 ∪T1 in N1 is bounded in terms of the distance of Dd from K1d ∪ ∂T1

in N1d and the bi-Lipschitz constant L.

Hence we can translate the content of Lemma 4.26 to the “undrilled”

manifold N1. This concludes the proof of Proposition 4.23: Split components

are uniformly graph-quasiconvex. �

Remark 4.27. Our proof above uses the fact that the convex core X of

N1d is a rather well-understood object, namely, a manifold double covered by

a drilled convex hull of a quasi-Fuchsian group. Hence, it follows that the

convex core X is uniformly congested; i.e., it has a uniform upper bound on

its injectivity radius. This is an approach to a conjecture of McMullen [Bie].

(See also Fan [Fan97], [Fan99].)

A further point to be noted is that we have implicitly used here the idea

of drilling disk-busting curves introduced by Canary in [Can93] and used again

by Agol in his resolution of the tameness conjecture [Ago04].

Remark 4.28. Recall that extended split components were defined in ‹N by

adjoining Margulis tubes abutting lifts of split components to ‹N . The proof of

Proposition 4.23 establishes also the uniform graph-quasiconvexity of extended

split components in ‹N . The metric obtained by electrocuting the family of

convex hulls of extended split components in ‹N will be denoted as dCH.
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4.7. Hyperbolicity in the graph metric. First a word about the modifica-

tions necessary for simply degenerate groups.

Simply degenerate groups. We have so far mostly assumed, for simplicity,

that we are dealing with totally degenerate groups. In a simply degenerate

N , the Minsky model is uniformly bi-Lipschitz to N only in a neighborhood

E of the end. In this case (N \ E) is homeomorphic to S × I. We declare

(N \ E) to be the first block — a “thick block” in the split geometry model.

Thus the boundary blocks of Minsky are put together to form one initial thick

block. This changes the bi-Lipschitz constant, but the rest of the discussion,

including Proposition 4.23, go through as before.

Construct a second auxiliary metric ‹N2 = (‹N, dCH) by electrocuting the

elements CH(K̃) of convex hulls of extended split components. We show that

the spaces ‹N1 = (‹N, dG) and Ñ2 = (‹N, dCH) are quasi-isometric. In fact we

show that the identity map from ‹N to itself induces this quasi-isometry after

the two different electrocutions.

Lemma 4.29. The identity map from ‹N to itself induces a quasi-isometry

of ‹N1 and ‹N2.

Proof. We use d1, d2 as shorthand for the electric metrics dG and dCH on‹N1 and ‹N2. Since K̃ ⊂ CH(K̃) for every split component, we have straightaway

d1(x, y) ≤ d2(x, y) for all x, y ∈ M̃.

To prove a reverse inequality with appropriate constants, it is enough to

show that each set CH(K̃) (of diameter one in ‹N2) has uniformly bounded

diameter in ‹N1. To see this, note that by definition of graph-quasiconvexity,

there exists n such that for all K̃ and each point a in CH(K̃), there exists a

point b ∈ K̃ with d1(x, y) ≤ n. Hence by the triangle inequality,

d2(x, y) ≤ 2n+ 1 for all x, y ∈ CH(K̃).

Therefore,

d2(x, y) ≤ (2n+ 1)(d1(x, y) + 1) for all x, y ∈ ‹N.
This proves the lemma. �

Corollary 4.30. ‹N1 = (‹N, dG) is Gromov-hyperbolic.

Proof. By Lemma 2.3, ‹N2 = (‹N, dCH) is a δ-hyperbolic metric space for

some δ ≥ 0. By quasi-isometry invariance of Gromov hyperbolicity, so is‹N1 = (‹N, dG). �

We have thus constructed a sequence of split surfaces that satisfy the

following two conditions in addition to Conditions (1)–(6) of Remark 4.9 for

the Minsky model of a simply or totally degenerate surface group.
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Definition 4.31. A model manifold of weak split geometry is said to be of

split geometry if

(7) Each split component K̃ is quasiconvex (not necessarily uniformly) in

the hyperbolic metric on ‹N .

(8) Equip ‹N with the graph-metric dG obtained by electrocuting (extended)

split components K̃. Then the convex hull CH(K̃) of any split compo-

nent K̃ has uniformly bounded diameter in the metric dG.

Hence by Lemma 4.16 and Proposition 4.23, we have the following.

Theorem 4.32. Any simply or doubly degenerate surface group without

accidental parabolics is bi-Lipschitz homeomorphic to a model of split geometry.

5. Constructing quasiconvex ladders and quasigeodesics

To avoid confusion we summarize the various metrics on M̃, ‹N and related

models that will be used:

(1) The hyperbolic metric d on ‹N .

(2) The weld-metric dwel obtained after welding the boundaries of Margulis

tubes of M̃ to standard annuli (and before tube electrocution) where

each horizontal circle of a Margulis tube T has a fixed nonzero length.

This gives the welded model manifold (Mwel, dwel).

(3) The tube-electrocuted metric (Mtel, dtel). We remind the reader that

the underlying manifolds Mwel,Mtel are the same.

(4) The graph metric dG. This is the notation for the electric metric on

E(flMwel,K), where K denotes the collection of split components. We

shall also use it for the electric metric on E(‹N,K′), where K′ denotes

the collection of extended split components in ‹N . The two electric

metrics are quasi-isometric by Remark 4.12.

There will be two (families of) metrics on the universal cover S̃ of S:

(1) The graph-electrocuted metric dGel obtained by electrocuting the amal-

gamation components of S̃ that the lift of a weld-curve cuts S̃ into.

(2) The (Gromov) δ-hyperbolic metric d on S̃ obtained by lifting the metric

on the welded surface. Recall that the metric d on S̃ is the lift to the

universal cover of a metric on S obtained by cutting out thin annuli

and then welding the boundaries of the resulting extended split surface

together. The latter is uniformly bi-Lipschitz to a fixed hyperbolic

structure on S. Hence we shall use d to denote both the hyperbolic

metric as well as those uniformly bi-Lipschitz to it.

Note that the path metric induced on S̃ ⊂ ‹B by the graph metric dG on

E(flMwel,K) is precisely dGel.
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5.1. Construction of quasiconvex sets for building blocks. In this subsec-

tion, we describe the construction of a hyperbolic ladder Lλ restricted to build-

ing blocks B. Putting these together we will show later that Lλ is quasiconvex

in (flMwel, dG).

Construction of Lλ(B): thick block. Let B be a thick block. By definition

B is a uniformly bi-Lipschitz homeomorphic image of S×I. Let FB : S×I → B

denote the bi-Lipschitz homeomorphism.

Let λ = [a, b] be a geodesic segment in S̃. Let λBi denote FB(λ × {i})
for i = 0, 1. Equivalently, let φ : FB(S̃ × {0}) → FB(S̃ × {1}) be given

by φ(FB(x, 0)) = FB(x, 1). The induced map on geodesics will be denote

by Φ, which can be described as follows. Let λ be a geodesic joining a, b ∈
FB(S̃ × {0}), and let Φ(λ) denote the a geodesic joining φ(a), φ(b). Let λB1

denote Φ(λ)× {1}.
For the universal cover ‹B of the thick block B, define

Lλ(B) =
⋃
i=0,1

λBi.

Definition 5.1. Each S̃ × i for i = 0, 1 will be called a horizontal sheet of‹B when B is a thick block.

Construction of Lλ(B): split block. As above, let λ = [a, b] be a geodesic

segment in S̃, where S is regarded as the base surface of B in the tube elec-

trocuted model. Let λB0 denote λ × {0}. Then for each split component K,

K∩(S×i) (i = 0, 1) is an amalgamation component of S̃. Also, S×i (i = 0, 1),

are the boundary welded split surfaces forming the horizontal boundary of B,

uniformly bi-Lipschitz to S with a fixed hyperbolic metric. Note further that

the induced path metric dGel on S̃ × i (i = 0, 1) is the electric pseudo-metric

on S̃ obtained by electrocuting amalgamation components of S̃.

Let λGel denote the electro-ambient quasigeodesic (Lemma 2.16) joining

a, b in (S̃, dGel). Let λB0 denote λGel×{0}. Then the map φ : S×{0} → S×{1}
taking (x, 0) to (x, 1) is a component preserving diffeomorphism. Let φ̃ be the

lift of φ to S̃ equipped with the electric metric dGel. Then φ̃ is an isometry by

Lemma 2.19. Let Φ denote the induced map on electro-ambient quasigeodesics;

i.e., if µ = [x, y] ⊂ (S̃, dGel), then Φ(µ) = [φ(x), φ(y)] is the electro-ambient

quasigeodesic joining φ(x), φ(y). Let λB1 denote Φ(λGel)× {1}.
For the universal cover ‹B of the split block B, define

Lλ(B) =
⋃
i=0,1

λBi.

Definition 5.2. Each S̃ × i for i = 0, 1 will be called a horizontal sheet of‹B when B is a split block.



CANNON-THURSTON MAPS FOR SURFACE GROUPS 53

Construction of Πλ,B : thick block. For i = 0, 1, let ΠBi denote nearest

point projection of S̃ × {i} onto λBi in the path metric on S̃ × {i}. For the

universal cover ‹B of the thick block B, define

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, 1.

Construction of Πλ,B : split block. For i = 0, 1, let ΠBi denote nearest-

point projection of S̃ × {i} onto λBi. Here the nearest-point projection is

taken in the sense of the definition preceding Lemma 2.23, i.e., minimizing the

ordered pair (dGel, d) in the lexicographic order on R × R (where dGel, d refer

to electric and (bi-Lipschitz)-hyperbolic metrics respectively).

For the universal cover ‹B of the split block B, define

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, 1.

Πλ,B is a coarse Lipschitz retract : thick block. The proof for a thick block

is exactly as in [Mit98b] and [Mj10a]. We omit it here.

Lemma 5.3 ([Mj10a, Th. 3.1]). There exists C > 0 such that the fol-

lowing holds. Let x, y ∈ S̃ × {0, 1} ⊂ ‹B for some thick block B. Then

d(Πλ,B(x),Πλ,B(y)) ≤ Cd(x, y).

Πλ,B is a retract : split block.

Lemma 5.4. There exists C > 0 such that the following holds. Let x, y ∈
S̃×{0, 1} ⊂ ‹B for some split block B. Then dG(Πλ,B(x),Πλ,B(y)) ≤ CdG(x, y).

Proof. It is enough to show this for the following cases.

Case 1: x, y ∈ S̃ × {0} or x, y ∈ S̃ × {1}. This follows directly from

Lemma 2.20.

Case 2: x = (p, 0) and y = (p, 1) for some p ∈ S̃. First note that (S̃, dGel)

is uniformly δ-hyperbolic as a metric space (in fact uniformly quasi-isometric

to a tree) and φ̃ : S̃ × {0} → S̃ × {1} induces an isometry of the dGel metric

by Lemma 2.19 as φ is a component preserving diffeomorphism. Case 2 now

follows from the fact that quasi-isometries and nearest-point projections almost

commute (Lemma 2.21 ). �

In the next section, we shall come across the situation where one horizontal

surface S̃ × {i} can occur as the bottom surface of a split block B2 and as the

top surface of a thick block B1, or vice versa. Alternately it could occur as

the bottom surface of a split block and as the top surface of a different split

block where the collection of splitting tubes differ. In either situation we shall

denote the bottom block by B1 and the top block by B2. In this case, the

nearest-point projection could be in any of the following senses:
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(a) projection onto a (bi-Lipschitz)-hyperbolic geodesic [a, b] in the (bi-

Lipschitz)-hyperbolic metric d on S̃;

(b) projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the

ordered pair (dGel1, d), where dGel1 denotes the electric metric on S

induced by the split block B1;

(c) projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the

ordered pair (dGel2, d), where dGel2 denotes the electric metric on S

induced by the split block B2.

Lemma 5.5. Πλ,B is coarsely well defined. There exists C0 > 0 such that

the following holds. Suppose that Π1
λ,B and Π2

λ,B are projections defined in any

two of the above senses. Then

d(Π1
λ,B(p),Π2

λ,B(p)) ≤ C0

for all p ∈ S̃.

Proof. By Lemma 2.23, hyperbolic and electric projections of p onto the

(Gromov) δ-hyperbolic geodesic [a, b] and the electro-ambient geodesic [a, b]ea

respectively “almost agree.” If πh and πe denote the hyperbolic and electric

projections, then there exists (uniform) C1 > 0 such that d(πh(p), πe(p)) ≤ C1.

The lemma follows if one of the blocks are thick.

If both blocks are split blocks, then d(πh(p),Πi
λ,B(p)) ≤ C1 for i = 1, 2 by

the above argument. Taking C0 = 2C1, we are through. �

5.2. Construction of Lλ and Πλ. A subset Z ⊂ (X, d) shall be called a

coarse k-net in X if X = Nk(Z, d). A subset Z ⊂ (X, d) shall be called a coarse

net if it is a coarse k-net in X for some k.

Given a manifold M of split geometry, we know that M is homeomorphic

to S × J for J = [0,∞) or (−∞,∞). By definition of split geometry, there

exists a sequence of blocks Bi (thick or split) such that Mwel = ∪iBi. Denote

• Lµ,Bi = Liµ,

• Πµ,Bi = Πiµ.

Now for a block B = S×I (thick or amalgamated), a natural map ΦB may

be defined taking µ = Lµ(B)∩FB(S̃×{0}) to a geodesic Lµ(B)∩FB(S̃×{1}) =

ΦB(µ). Similarly Φ−1
B may be defined taking µ = Lµ(B) ∩ FB(S̃ × {1}) to

Lµ(B) ∩ FB(S̃ × {0}) = Φ−1
B (µ). Let the map ΦBi (resp. Φ−1

Bi
) be denoted as

Φi (resp. Φ−1
i ).

We start with a reference blockB0 and a reference geodesic segment λ = λ0

on the “lower surface” S̃ × {0}. Now inductively define

• λi+1 = Φi(λi) for i ≥ 0,

• λi−1 = Φ−1
i (λi) for i ≤ 0.
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Finally, define

Lλ =
⋃
i

λi.

Lλ is the hyperbolic ladder promised.

Recall that each S̃ × i for i = 0, 1 is called a horizontal sheet of ‹B. We

will restrict our attention to the union of the horizontal sheets fiMH ⊂ flMwel

with the metric induced from the graph model. Since fiMH is a coarse 1-net

in (flMwel, dG), we will be able to get all the coarse information we need by

restricting ourselves to fiMH .

Clearly, Lλ ⊂ fiMH ⊂ flMwel. Let the bottom horizontal sheet of B̃i be

denoted as S̃i. Πiλ is defined to be the nearest-point projection of S̃i onto λi.

Remark 5.6. As noted earlier, the nearest-point projection Πiλ could be

in any of the following senses:

(a) projection onto a (bi-Lipschitz)-hyperbolic geodesic [a, b] in the (bi-

Lipschitz)-hyperbolic metric d on S̃;

(b) projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the

ordered pair (dGel1, d), where dGel1 denotes the electric metric on S

induced by the split block B1 whose top boundary is S;

(c) projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the

ordered pair (dGel2, d), where dGel2 denotes the electric metric on S

induced by the split block B2 whose bottom boundary is S.

By Lemma 5.5, Πiλ is coarsely well defined ; i.e., any two choices are a uni-

formly bounded d-distance apart.

Hence we define the projection

Πλ =
⋃
i

Πiλ.

Πλ is defined from fiMH to Lλ.

Theorem 5.7. There exists C > 0 such that for any geodesic λ = λ0 ⊂
S̃ × {0} ⊂›B0, the retraction Πλ : fiMH → Lλ satisfies

dG(Πλ(x),Πλ(y)) ≤ CdG(x, y) + C.

Proof. This is now a direct consequence of Lemmas 5.3 and 5.4 and Re-

mark 5.6. �

For Theorem 5.7, note that all that we really require is that the universal

cover S̃ is a Gromov-hyperbolic metric space. There is no restriction on fiMH .

In fact, Theorem 5.7 would hold for general stacks of (Gromov) hyperbolic

metric spaces with blocks of split geometry. However, in the present situation

we have more

Corollary 5.8. Lλ is quasiconvex in (flMwel, dG).
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Proof. By Corollary 4.30, (flMwel, dG) is (Gromov)-hyperbolic. Hence Lλ
is a coarse Lipschitz retract in a (Gromov)-hyperbolic space by Theorem 5.7.

Therefore Lλ is quasiconvex in (flMwel, dG). �

5.3. Heights of blocks. Recall that each thick or split block Bi is identified

with S × I where each fiber {x} × I has length ≤ li for some li, called the

thickness of the block Bi.

Observation. fiMH is a “coarse net” in (flMwel, dG) in the graph metric, but

not in the weld metric dwel, the tube-electrocuted metric dtel, nor the model

metric dM (cf. Remark 4.12 for dM ). In the graph model, any point can be

connected by a vertical segment of length ≤ 1 to one of the boundary horizontal

sheets.

However, there are points within split components that are at a dwel-

distance of the order of li from the boundary horizontal sheets. Since li could be

arbitrary, fiMH is no longer necessarily a “coarse net” in (M̃, dwel) or (M̃, dtel).

Lemma 5.9. There exists a function g : Z → N such that for any block

Bi (resp. Bi−1) and x ∈ λi, there exists x′ ∈ λi+1 (resp. λi−1) for i ≥ 0 (resp.

i ≤ 0), satisfying

dwel(x, x
′) ≤ g(i), dM (x, x′) ≤ g(i).

Proof. Let µ ⊂ S̃ × {0} ⊂ B̃i be a geodesic in a (thick or split) block.

Then from the product structure on the block Bi, there exists a (Ki, εi)-quasi-

isometry ψi from S̃ × {0} to S̃ × {1} and Ψi is the induced map on geodesics.

Hence, for any x ∈ µ, ψi(x) lies within some bounded distance Ci of Ψi(µ).

But x is connected to ψi(x) by

Case 1: thick blocks. A vertical segment of uniformly bounded length

(≤ C say).

Case 2: split blocks. Thus x can be connected to a point x′ ∈ Ψi(µ) by a

path of length less than g(i) = li + Ci + C. Recall that λi is the geodesic on

the lower horizontal surface of the block B̃i. The same can be done for blocksflBi−1 and going down from λi to λi−1.

By Remark 4.12, the same argument works for the model manifold (M̃,dM).

�

6. Recovery

The previous section was devoted to constructing a quasiconvex ladder in

the graph metric that is an electric metric. In this section we shall be con-

cerned with recovering information about hyperbolic geodesics from electric

ones. Since a host of metrics will make their appearance in this section, we shall
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refer to (quasi)geodesics in (flMwel, dG), (flMwel, dwel), (fiMtel, dtel) and (M̃, dCH)

as dG-(quasi)geodesics, dwel-(quasi)geodesics, dtel-(quasi)geodesics and dCH-

(quasi)geodesics respectively. Recall that the union of the horizontal sheets

S̃i ⊂flMwel is denoted as fiMH and that the projection Πλ occurring in Theo-

rem 5.7 is defined only on fiMH and not all of flMwel.

6.1. Scheme of recovery. The recovery is in several stages. We sketch

the scheme of recovery in some detail in this subsection for the convenience

of the reader. A first problem in recovering data about hyperbolic geodesics

from dG-geodesics is the absence of canonical representatives in (flMwel, dwel) of

dG-geodesics. In Section 6.2, we address this problem by making a choice of

paths in (flMwel, dwel) representing dG-geodesics. We call these admissible paths.

Roughly speaking, admissible paths are built up of

(a) vertical segments of the form {x} × [0, 1] ⊂ ‹B = S̃ × [0, 1], where B is a

block (thick or split) and x ∈ S̃;

(b) horizontal segments consisting of geodesics in the horizontal sheets of fiMH .

Let λ ⊂ S̃(⊂ flMwel) be a geodesic in the intrinsic metric on S̃, where S is

identified with the base surface S×{0} of the first block in fiMH . Let βe denote

an admissible path representing a dG-geodesic joining the endpoints of λ in

(flMwel, dG).

We would like to project βe using Πλ onto the ladder Lλ to obtain a

quasigeodesic contained in Lλ. Unfortunately, Πλ is defined only on fiMH and

there is no natural way to extend it to all of flMwel. To circumvent this problem

we first define in Section 6.2 a subcollection of the family of admissible paths,

called Lλ-admissible paths. Roughly speaking, Lλ-admissible paths are those

admissible paths whose horizontal segments lie on or near Lλ.

Then in Section 6.3 we project βe∩fiMH using Πλ onto the ladder Lλ. Since

βe is itself an admissible path, there is a sequence of points a1, b1, a2, b2, . . . ,

ak, bk such that the piece of βe joining ai to bi is horizontal, whereas the piece

of βe joining bi to ai+1 is vertical. In particular, bi and ai+1 must lie in the

same split component if they lie in (the universal cover of) a split block. In

this case Πλ(bi) and Πλ(ai+1) must also lie in the same split component. This

allows us to join the sequence of points

Πλ(a1),Πλ(b1),Πλ(a2),Πλ(b2), . . . ,Πλ(ak),Πλ(bk)

by alternating horizontal and vertical segments to obtain an Lλ-admissible

path βadm representing a (uniform) dG-quasigeodesic joining the endpoints of

λ in (flMwel, dG). Lemma 6.5 now establishes that if λ lies outside a large ball

about a reference point in S̃, then βadm also lies outside a large ball about a

reference point in (flMwel, dwel).
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From the Lλ-admissible paths constructed in Section 6.3, we construct in

Section 6.4 an electro-ambient quasigeodesic βea in (flMwel, dG). The idea is

simple. Denote by K̃ij ⊂ B̃i the split components in the universal cover of a

split block Bi. Replace the intersection βadm∩K̃ij (of βadm with any such split

component K̃ij) by a geodesic in K̃ij joining the endpoints of βadm∩K̃ij . Then

βea continues to satisfy the conclusions of Lemma 6.5; i.e., if λ lies outside a

large ball in S̃, then βea lies outside a large ball in (flMwel, dwel). What is crucial

at this stage of the recovery is the quasiconvexity of S̃i and fiSi+1 in B̃i, where

the quasiconvexity constant depends only on i.

Finally, in Section 6.5 we construct an electro-ambient quasigeodesic βea2

in (M̃, dCH) from βea. To do this, we first replace βea by a path βea1 in

M̃ such that βea1 coincides with βea outside Margulis tubes and consists of

hyperbolic geodesic segments within Margulis tubes. Then as above, we replace

the intersection βea1∩CH(K̃ij) (of βea1 with the convex hull CH(K̃ij) of a split

component K̃ij) by a geodesic in CH(K̃ij) joining the endpoints of βea1 ∩
CH(K̃ij). This gives us the required electro-ambient quasigeodesic βea2 in

(M̃, dCH). Again, βea2 continues to satisfy the conclusions of Lemma 6.5; i.e.,

if λ lies outside a large ball in S̃, then βea2 lies outside a large ball in M̃ (where

the latter is equipped with the model metric). The last statement follows from

the uniform graph quasiconvexity of split components (Proposition 4.23).

It is a small step from here to the main Theorem 7.1 in Section 7, so

we mention it here. Lemma 2.5 ensures that the geodesic βh in M̃ joining

the endpoints of βea2 lies in a uniformly bounded neighborhood of βea2 (see

Figure 2). Note that it is at this stage that we use explicitly the weak relative

hyperbolicity of M̃ relative to the collection of convex hulls of split components.

Though βea2 could be very far from a hyperbolic geodesic, Lemma 2.5 forces

βh to lie in a bounded neighborhood of it. Hence if λ lies outside a large ball

in S̃, then βh lies outside a large ball in M̃ . Lemma 1.8 now furnishes the

Cannon-Thurston map we want.

6.2. Admissible paths. We want to first define a collection of paths lying

in a bounded neighborhood of Lλ in (flMwel, dG). Since Lλ is not connected, it

does not make sense to speak of the path metric on Lλ. To remedy this, in

this subsection we shall introduce the class of Lλ-elementary admissible paths

whose horizontal pieces are contained in a neighborhood of Lλ in fiMH . Further

the distance of Lλ-elementary admissible paths from Lλ will be controlled. An

Lλ-admissible path will be a composition of Lλ-elementary admissible paths.

We first define admissible paths in general. Let B be a thick or split block

in Mwel. We shall identify B with a product S × I as usual. In particular, for

B a split block and any x ∈ S̃, a vertical segment of the form x× [0, 1] will be

assumed to be contained in some split component K̃ ⊂ ‹B.
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Definition 6.1. An admissible path in ‹B (⊂flMwel) is a path that can be

decomposed into subpaths of the following two types:

(1) horizontal segments along some S̃ × {i} for i = {0, 1},
(2) vertical segments of the form x× [0, 1] where x ∈ S̃.

An admissible path σ in flMwel is a path such that for every (thick or split)

block B, any connected component of σ ∩ ‹B is an admissible path in ‹B. An

admissible K- quasigeodesic is an admissible path that is a K-quasigeodesic in

(flMwel, dG).

Lemma 6.2. Given K ≥ 1, there exists K1 ≥ 1 such that the following

holds. Let βe be a (dG-) K-quasigeodesic in (flMwel, dG). Then there exists an

admissible K1-quasigeodesic β′e joining the endpoints of βe.

Proof. Without loss of generality, we can assume that βe does not back-

track relative to the collection of split components, as any back-tracking can be

removed without increasing the dG-length of βe (see [Far98] for instance). We

shall now convert βe into an admissible electric quasigeodesic without back-

tracking, joining the same pair of points as βe. To do this we shall look at

connected components of βe ∩ ‹B for any block B and replace them with ad-

missible paths. We identify B with S × [0, 1], and we call S̃ ×{0} and S̃ ×{1}
the lower and upper boundary components of ‹B. Also let P0, P1 denote the

natural projections from S̃ × [0, 1] to S̃ × {0} and S̃ × {1} respectively given

by P0(x, t) = (x, 0) and P1(x, t) = (x, 1).

Now let B be a block (thick or split), and let βe∩ ‹B 6= ∅. Let β1 be a con-

nected component of βe∩ ‹B. Let b1, b2 be the endpoints of β1. Two cases arise.

• If both b1, b2 belong to the same boundary component, then we replace

β1 by β′1 = Pi(β1), where i = 0 or 1 according as b1, b2 ∈ S̃ × {0} or

S̃ × {1}.
• If b1, b2 belong to different boundary components, then assume without

loss of generality that b1 ∈ S̃×{0} and let b2 = (z, 1) ∈ S̃×{1}. Then

replace β1 by β′1 = P0(β1) ∪ {z} × [0, 1].

Performing this replacement for every block B and every connected com-

ponent of βe ∩ ‹B we obtain the required admissible quasigeodesic β′e joining

the endpoints of βe.

It remains to show that if βe is a (dG-quasi) K-quasiquasigeodesic, then β′e
is indeed an admissible K1-quasiquasigeodesic, where K1 depends only on K.

For B a split block, the dG-length of any β1 ⊂ ‹B is the same as the

dG-length of the corresponding β′1 constructed to replace it as above. This is

because the dG-length of β1 is equal to the number of split blocks that β1 cuts.

For B a thick block, the inclusion of S̃ × {0} (or S̃ × {1}) into ‹B is a

uniform quasi-isometry as the thickness of thick blocks is uniformly bounded.
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Hence β′1 is a K1-quasiquasigeodesic where K1 depends only on K. The lemma

follows. �

We shall now choose a subclass of these admissible paths to define Lλ-

elementary admissible paths. The constants C,C(B),K(B), etc. below will be

independent of the geodesic λ, the initial geodesic in the ladder Lλ.

Lλ-elementary admissible paths in the thick block. Let B = S× [i, i+1] be

a thick block, where each (x, i) is connected by a vertical segment to (x, i+ 1).

Let φ be the map that takes (x, i) to (x, i + 1). Also let Φ be the map on

geodesics induced by φ. Let Lλ ∩ ‹B = λi ∪ λi+1, where λi lies on S̃ × {i} and

λi+1 lies on S̃×{i+ 1}. Let πj for j = i, i+ 1 denote nearest-point projections

of S̃ × {j} onto λj . Since φ is a quasi-isometry, there exists C > 0 such that

(a) for all (x, i) ∈ λi, (x, i+ 1) lies in a C-neighborhood of Φ(λi) = λi+1;

(b) for all z ∈ S̃, dwel(πi(z, i), πi+1(z, i+ 1)) ≤ C (by Lemma 5.3 or Theo-

rem 5.7).

We emphasize here that C is independent of both the thick block B and the

geodesic λ (and hence the ladder Lλ). It depends only on the model mani-

fold M .

The same conclusions hold for φ−1 and points in λi+1, where φ−1 denotes

the quasi-isometric inverse of φ from S̃×{i+1} to S̃×{i}. The Lλ-elementary

admissible paths in ‹B are defined to be paths consisting of the following:

(1) Horizontal geodesic subsegments of λj , j = {i, i+ 1}.
(2) Vertical segments of dG-length 1 joining x×{0} to x×{1}. Note that

for thick blocks, dG = dwel.

(3) Horizontal geodesic segments lying in a C-neighborhood of λj , j =

i, i+ 1.

Lλ-elementary admissible paths in the split block. Let B = S × [i, i + 1]

be a split block, where each (x, i) is connected by a segment of dG-length

one and dwel-length ≤ C(B) (due to bounded thickness of B, Lemma 5.9) to

(x, i + 1). As before we regard φ as the map from S̃ × {i} to S̃ × {i + 1}
that is the identity on the first component. Also let Φ be the map on electro-

ambient quasigeodesics induced by φ. Let Lλ ∩ ‹B =
⋃
j=i,i+1 λj where λj lies

on S̃ × {j}. πj denotes nearest-point projection of S̃ × {j} onto λj (in the

appropriate sense — minimizing the ordered pair of electric and hyperbolic

distances). Since φ is an electric isometry, but a hyperbolic quasi-isometry,

there exist C > 0 (uniform constant) and K = K(B) such that

(a) for all x ∈ λi, φ(x) lies in a (dG-quasi) C-neighborhood and a dwel-

quasi K-neighborhood of Φ(λi) = λi+1;

(b) for all z ∈ S̃, dG(πi(z, i), πi+1(z, i + 1)) ≤ C (by Lemma 5.4 or Theo-

rem 5.7) and dwel(πi(z, i), πi+1(z, i+ 1)) ≤ K (by Lemma 5.3).
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The last statement follows from the fact that the block B is topologically a

product and hence the map φ is a quasi-isometry, with quasi-isometry constants

depending on B.

We re-emphasize here that C is independent of both the split block B and

the geodesic λ (and hence the ladder Lλ), whereas K = K(B) depends on the

split block B but is independent of the geodesic λ.

The same holds for φ−1 and points in λi+1, where φ−1 denotes the quasi-

isometric inverse of φ from S̃ × {i + 1} to S̃ × {i}. It is worth pointing out

here that Remark 4.12 will be used later to pull back information from the

graph metric in (Mwel, dG) to the model manifold (M̃, dM ) and hence via the

bi-Lipschitz homeomorphism F−1 to ‹N to give information in the hyperbolic

metric.

Again, since λi and λi+1 are electro-ambient quasigeodesics, we further

note that for all (x, i) ∈ λi, (x, i + 1) ∈ NK(λi+1, d), where d is the (bi-

Lipschitz) hyperbolic metric on S̃.

The Lλ-elementary admissible paths in ‹B consist of the following:

(1) Horizontal subsegments of λj , j = {i, i+ 1}.
(2) Vertical segments joining x×{i} to x×{i+ 1}. These have dwel-quasi-

“thickness” l = l(B) and dG-thickness one, by Lemma 5.9.

(3) Horizontal geodesic segments lying in a (bi-Lipschitz) hyperbolic K(=

K(B))-neighborhood of λj , j = i, i+ 1.

(4) Horizontal (bi-Lipschitz) hyperbolic segments of electric length ≤ C

and (bi-Lipschitz) hyperbolic length ≤ K(B) joining points of the form

(φ(x), i+ 1) to a point on λi+1 for x ∈ λi.
(5) Horizontal (bi-Lipschitz) hyperbolic segments of electric length ≤ C

and (bi-Lipschitz) hyperbolic length ≤ K(B) joining points of the form

(φ−1(x), i) to a point on λi for x ∈ λi+1.

Definition. An Lλ-admissible path is a continuous path that can be de-

composed as a union of a sequence of Lλ-elementary admissible paths with

disjoint interiors.

The next lemma follows from the above definition and Lemma 5.9.

Lemma 6.3. There exists a function g : Z → N such that for any block

Bi, and x lying on an Lλ-admissible path in B̃i, there exist y ∈ λi and z ∈ λi+1

such that

dwel(x, y) ≤ g(i),

dwel(x, z) ≤ g(i),

dM (x, y) ≤ g(i),

dM (x, z) ≤ g(i).
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The following is an easy corollary of Lemma 6.3.

Corollary 6.4. There exists a function h : Z → N such that for any

block Bi, and x lying on a Lλ-admissible path in B̃i, there exist y ∈ λ0 = λ

such that

dwel(x, y) ≤ h(i),

dM (x, y) ≤ h(i).

Proof. Let h(i) = Σj=0···ig(j) be the sum of the values of g(j) as j ranges

from 0 to i (with the assumption that increments are by +1 for i ≥ 0 and by

−1 for i ≤ 0). �

Note. In Lemma 6.3 and Corollary 6.4, it is important to note that the

distance dwel (resp. dM ) is the weld (resp. model) metric, not the graph metric.

This is because the lengths occurring in Lλ-elementary admissible paths of

types (4) and (5) above are (bi-Lipschitz) hyperbolic lengths depending only

on i (in Bi).

Lemma 6.5. There exists a function M(N) : N→ N such that M(N)→∞
as N→∞, for which the following holds. For any geodesic λ⊂ S̃×{0}⊂›B0, a

fixed reference point p ∈ S̃ × {0} ⊂›B0 and any x on an Lλ-admissible path,

d(λ, p) ≥ N ⇒ dwel(x, p) ≥M(N) and dM (x, p) ≥M(N).

Proof. Suppose that λ lies outside BN (p), the N -ball about a fixed ref-

erence point p on the boundary horizontal surface S̃ × {0} ⊂ ›B0. Then by

Corollary 6.4, any x lying on an Lλ-admissible path in B̃i satisfies

dwel(x, p) ≥ N − h(i).

Also, since the electric, and dwel-“thickness” (the shortest distance be-

tween its boundary horizontal sheets) is ≥ k0 (by uniform k0-separatedness of

horizontal sheets), we get

dwel(x, p) ≥ |i|k0.

Assume for convenience that i ≥ 0. (A similar argument works, reversing signs

for i < 0.) Then,

dwel(x, p) ≥ mini, max{ik0, N − h(i)}.

Let h1(i) = h(i) + ik0. Then h1 is a monotonically increasing function on

the integers. If M(N) = h−1
1 (N) denote the largest positive integer n such that

h1(n) ≤ N , then clearly M(N) → ∞ as N → ∞. Also, dwel(x, p) ≥ k0M(N),

and the first conclusion of the lemma follows. The same arguments work for

(M̃, dM ). �
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6.3. Projecting to Lλ and joining the dots.

Definition 6.6. An Lλ-admissible (dG) K-quasigeodesic is an Lλ-admis-

sible path that is a K-quasigeodesic in (flMwel, dG).

Our strategy in this subsection is to project the intersection of an admis-

sible quasigeodesic (Lemma 6.2) with the horizontal sheets fiMH onto Lλ and

then obtain a connected Lλ-admissible quasigeodesic from it by interpolating

Lλ-admissible paths. We think of this last step as “joining the dots.” The end

product is thus a connected dG-quasigeodesic built up of Lλ admissible paths.

Lemma 6.7. There exist K ≥ 1 and a function M(N) : N → N with

M(N)→∞ as N →∞ such that the following holds. Let B0 denote the first

block (thick or split) in Mwel, and let S × {0} denote its lower boundary. For

a fixed reference point p ∈ S̃ × {0} ⊂ ›B0 and any geodesic λ ⊂ S̃ × {0} ⊂›B0, there exists an Lλ-admissible (dG) K-quasigeodesic βadm ⊂flMwel without

backtracking such that

(1) βadm joins the endpoints of λ.

(2) d(λ, p) ≥ N ⇒ dwel(βadm, p) ≥M(N).

Proof. Let a, b denote the endpoints of λ. First, by Lemma 6.2 there

exists an admissible dG-geodesic βe ⊂ flMwel joining a, b. We now look at

Πλ(βe ∩fiMH) obtained by acting on βe ∩fiMH by Πλ. From Theorem 5.7, we

shall conclude that the image Πλ(βe ∩fiMH) is a dG quasigeodesic carried by

Lλ in an appropriate sense as explicated below.

Since βe is itself an admissible path, there is a sequence of points a =

a1, b1, a2, b2, . . . , ak, bk = b such that the piece of βe joining ai to bi is hor-

izontal, whereas the piece of βe joining bi to ai+1 is vertical. In particular,

bi and ai+1 must lie in the same split component if they lie in (the uni-

versal cover of) a split block. In this case, Πλ(bi) and Πλ(ai+1) must also

lie in the same split component. We shall now join the sequence of points

Πλ(a1),Πλ(b1),Πλ(a2),Πλ(b2), . . . ,Πλ(ak),Πλ(bk) by horizontal and vertical

segments to obtain an Lλ-admissible path βadm as follows.

For all i, [Πλ(ai),Πλ(bi)] will be a geodesic in the horizontal sheet S̃i, join-

ing Πλ(ai),Πλ(bi). The Lλ-admissible path joining Πλ(bi),Πλ(ai+1) requires

more care to define. For notational simplicity, let bi = p and ai+1 = q.

(1) Let [p, q] be a vertical segment in a thick block joining p, q. Then

Πλ(p),Πλ(q) are a uniformly bounded dwel-distance apart by Theorem 5.7.

Hence, by Lemma 5.3, we can join Πλ(p),Πλ(q) by an Lλ-admissible path of

length bounded by some C0 (independent of B, λ).

For a thick block, we define the Lλ-admissible path joining Πλ(p),Πλ(q)

to be any such Lλ-admissible path of uniformly bounded dwel-length.
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(2) Let [p, q] be a vertical segment in a split block B̃i of dG-length one and

dwel-length ≤ li joining p, q, where p ∈ S̃i, the lower horizontal boundary of B̃i
and q ∈ fiSi+1, the upper horizontal boundary of B̃i. Since p, q lie within a split

component, dG(Πλ(p),Πλ(q)) = 1; that is to say, Πλ(p),Πλ(q) also lie within a

split component. This is because the projection of a split component lies within

a single split component. Hence there exists an admissible path [Πλ(p),Πλ(q)]

of dG-length one joining Πλ(p),Πλ(q). Further, by Lemma 5.3 again, we can

join Πλ(p),Πλ(q) by an Lλ-admissible path of dwel-length bounded by some Ci
(dependent on Bi but independent of λ). Note that since Ci depends on Bi, it

depends on li in particular.

(3) By Remark 5.6, the two images under nearest projection of a point in

S̃i onto respectively a hyperbolic geodesic and an electro-ambient quasigeodesic

in S̃i (joining any pair of points) are a uniformly bounded (bi-Lipschitz)-

hyperbolic distance apart. Hence, by Lemma 5.5, we can join them by an

Lλ-admissible path of length bounded by some uniform C1 (independent of

Bi, λ).

A clarificatory remark as to why segments of type (3) are necessary. In

defining Lλ, we have had to make a choice. Suppose λi ⊂ S̃i. Then Si is the

common boundary of two blocks. In case both are split blocks then there is a

choice of λi out of two electro-ambient quasigeodesics involved. If one is a split

block and the other a thick block, then there is a choice of λi involved out of

an electro-ambient quasigeodesic and a geodesic. The different nearest-point

projections corresponding to the different choices of λi differ by a uniformly

bounded amount (Remark 5.6). Segments of type (3) take care of this bounded

discrepancy.

For a split block, we define the Lλ-admissible path joining Πλ(p),Πλ(q) to

consist of one Lλ-admissible path constructed in step (2) above and (at most)

two segments of uniformly bounded dwel-length as in step (3). Thus an Lλ-

admissible path joining Πλ(p),Πλ(q) contains one vertical segment of type (2)

typically sandwiched between two segments of type (3).

Joining Πλ(ai),Πλ(bi) by [Πλ(ai),Πλ(bi)] and Πλ(bi),Πλ(ai+1) by Lλ-ad-

missible paths as above, we obtain the required Lλ-admissible (dG) K-quasi-

geodesic βadm ⊂flMwel.

By Theorem 5.7, there exists K ≥ 1 such that βadm represents a (dG)−K-

quasigeodesic. This proves statement (1) of the lemma.

After “joining the dots” by Lλ-admissible paths as above, we can assume

further that the Lλ-admissible quasigeodesic βadm thus obtained does not back-

track relative to split components. Conclusion (2) of the lemma now follows

from Lemma 6.5 since we have obtained an admissible quasigeodesic built up

out of Lλ-admissible paths. �
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6.4. Recovering electro-ambient quasigeodesics I. This subsection is de-

voted to extracting an electro-ambient quasigeodesic βea in (flMwel, dG) from an

Lλ-admissible quasigeodesic βadm. βea shall satisfy the property indicated by

Lemma 6.7.

Lemma 6.8. There exist κ ≥ 1 and a function M ′(N) : N → N with

M ′(N) → ∞ as N → ∞ such that the following holds. Let B0 denote the

first block (thick or split) in Mwel, and let S × {0} denote its lower boundary.

For a fixed reference point p ∈ S̃ × {0} ⊂ ›B0 and any geodesic λ ⊂ S̃ × {0}
⊂›B0, there exists an electro-ambient κ-quasigeodesic βea without backtracking

in (flMwel, dG) such that

• βea joins the endpoints of λ,

• d(λ, p) ≥ N ⇒ dwel(βea, p) ≥M ′(N).

Proof. From Lemma 6.7, we have an Lλ-admissible κ-quasigeodesic βadm

without backtracking (with respect to the collection K of split components K̃)

and a function M(N) satisfying the conclusions of the lemma. Since βadm does

not backtrack, we can decompose it as a union of nonoverlapping segments

β1, . . . , βk such that only successive βi’s intersect at one common endpoint and

each βi is
(a) either an Lλ- admissible quasigeodesic lying outside split components,

(b) or an Lλ-admissible quasigeodesic lying entirely within some split compo-

nent K̃n(i).

Further, since βadm does not backtrack relative to split components, we can

assume that all K̃n(i)’s are distinct; i.e., i 6= j ⇒ K̃n(i) 6= K̃n(j).

We modify βadm to an electro-ambient quasigeodesic βea in (flMwel, dG) as

per the following recipe:

(1) βea coincides with βadm outside split components.

(2) If some βi lies within a split component K̃n(i), then we replace it by a

geodesic βea
i in the intrinsic metric on K̃n(i) joining the endpoints of βi.

Of course βea
i lies within K̃n(i).

Since βea coincides with βadm outside split components and since βadm is

a (dG) κ-quasigeodesic, thus βea represents a (dG) κ-quasigeodesic. Hence, the

resultant path βea is an electro-ambient κ-quasigeodesic without backtracking.

Next, since any amalgamation component of S̃ is quasiconvex in the split

component K̃ containing it, each segment βea
i lies in a Ci-neighborhood of

βi. Here Ci depends on the quasiconvexity constants of the amalgamation

components in split components and hence only on the thickness li of the split

component Kn(i).

We let C(m) denote the maximum of the (finitely many) values of Ci for

the split components of B̃m, where we take C(m) = 0 if Bm is thick. (This
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makes sense as βea coincides with βadm outside split components.) Then, as in

the proof of Lemma 6.5, for any z ∈ βea ∩ B̃m, we have

d(z, p) ≥ max(mk0,M(N)− C(m)).

Again, as in Lemma 6.5, this gives us a (new) function M ′(N) : N → N
such that M ′(N)→∞ as N →∞, for which

d(λ, p) ≥ N ⇒ dwel(βea, p) ≥M ′(N).

This proves the lemma. �

6.5. Recovering electro-ambient quasigeodesics II. This subsection is de-

voted to extracting an electro-ambient quasigeodesic βea2 in M̃2 = (M̃, dCH)

from an electro-ambient quasigeodesic βea in M̃1 = (flMwel, dG). βea2 shall sat-

isfy the property indicated by Lemmas 6.7 and 6.8.

Recall that M̃2 = (M̃, dCH) denotes M̃ with the electric metric obtained

by electrocuting the convex hulls CH(K̃) of extended split components K̃.

Also, recall that an electro-ambient k-quasigeodesic γ in (M̃, dCH) is a k-quasi-

geodesic in (M̃, dCH) such that in an ordering (from the left) of the convex hulls

of split components that γ meets, each γ∩CH(K̃) is a geodesic in the intrinsic

metric on CH(K̃) (which in turn is uniformly bi-Lipschitz to the hyperbolic

metric on CH(K̃) under the bi-Lipschitz homeomorphism between the model

manifold M and the hyperbolic manifold N).

The underlying sets flMwel (for M̃1) and M̃ (for M̃2) are homeomorphic as

topological spaces. Also, M̃1 is obtained by electrocuting the welded metric,

i.e., (flMwel, dwel), whereas M̃2 is obtained by electrocuting the model metric,

i.e., (M̃, dM ). Note further that the metrics (M̃, dwel) and (M̃, dM ) coincide

off Margulis tubes.

Now we need to set up a correspondence between paths in (flMwel, dwel)

and (M̃, dM ), and hence between M̃1 = (M̃, dG) and M̃2 = (M̃, dCH).

Remark 6.9. Paths αi ⊂ M̃i (i = 1, 2) are said to correspond if
(1) they coincide off Margulis tubes,

(2) each piece of α2 inside a (closed) Margulis tube is a geodesic in the

model metric dM .

It follows that any path α1 ⊂ M̃1 corresponds to a unique α2 ⊂ M̃2.

Lemma 6.10. There exist κ ≥ 1 and a function M ′(N) : N→ N such that

M ′(N)→∞ as N →∞ for which the following holds. Let B0 denote the first

block (thick or split) in Mwel, and let S×{0} denote its lower boundary. For a

fixed reference point p ∈ S̃×{0} ⊂›B0 and any geodesic λ ⊂ S̃×{0} ⊂›B0, there

exists an electro-ambient κ-quasigeodesic βea without backtracking in (flMwel, dG)

and a path βea1 corresponding to βea in (M̃, dCH) such that

(1) βea1 joins the endpoints of λ,

(2) d(λ, p) ≥ N ⇒ d(βea1, p) ≥M ′(N).
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Proof. By Lemma 6.8, there exists an electro-ambient κ0-quasigeodesic βea

in M̃1 = (flMwel, dG) joining the endpoints of λ (where κ0 is independent of λ).

By Remark 6.9, βea corresponds to a unique path, which we call βea1, in M̃2.

βea1 is obtained by replacing intersections of βea with tube-electrocuted Mar-

gulis tubes by hyperbolic geodesics lying in the corresponding Margulis tubes

as per Remark 6.9. From Lemma 4.29, (M̃, dCH)(= M̃2) is quasi-isometric to

(M̃, dG). Hence there exists κ ≥ 1 such that for any λ, the path βea1 is a

κ-quasigeodesic in M̃2.

Also by Lemma 6.8, there exists a function M(N) : N → N such that

M(N)→∞ as N →∞ for which the following holds. If d(λ, p) ≥ N , then βea

lies outside a large M(N)-ball about p in (M̃wel, dwel).

It follows that the intersection of βea with the boundary ∂‹T of the lift ‹T of

any Margulis tube T lies outside an M(N)-ball about p. Each point x ∈ βea ∩
∂‹T lies on a unique totally geodesic hyperbolic disk Dx ⊂ ‹T . Also, βea1 ∩ ‹T ⊂⋃
x∈βea∩∂T̃

Dx by the convexity of
⋃
x∈βea∩∂T̃

Dx. Let the maximum diameter of

Margulis tubes intersecting the ith block in M̃ be ti. Then dM (βea1 ∩ B̃i, p) ≥
dwel(βea∩B̃i, p)−ti ≥M(N)−ti. Now, a reprise of the argument in Lemma 6.5

shows that βea1 lies outside a large M ′(N) ball about p, where M ′(N) → ∞
as N →∞. �

To obtain an electro-ambient quasigeodesic βea2 in (M̃, dCH) from βea1,

first observe that there exists D0 such that the diameter in the dG metric

diaG(βea1 ∩ CH(K̃)) ≤ D0 for any CH(K̃). This follows from the fact that

βea1 is a κ-quasigeodesic in (M̃, dG) and from Lemma 4.29, which says that

(M̃, dCH) and (flMwel, dG) are quasi-isometric.

Lemma 6.11. For every D0 ≥ 0 and split component K̃ ⊂ flMwel, there

exists D1 ≥ 0 such that the following holds. Let α ⊂ CH(K̃) ⊂ M̃ be a path

such that the path η in flMwel corresponding to it is of length at most D0 in the

dG metric. Further suppose that

(a) α ∩ ‹C(⊂ M̃) for any split component ‹C is a geodesic in the intrinsic

metric on ‹C ,

(b) α ∩ T is a hyperbolic geodesic for any lift T of a Margulis tube.

Let γ = [a, b] be the (model) hyperbolic geodesic in (M̃, dM ) joining the end-

points a, b of α. Then γ lies in a (dM -) D1-neighborhood of α.

Proof. Note first that the complement in M̃ of the union of split compo-

nents is the union of the universal covers of thick blocks and Margulis tubes.

Hence by the hypotheses α can be described as the union of at most 3D0 pieces

α1, . . . , αj(j ≤ 3D0) such that each αi is either a geodesic in the intrinsic metric

on ‹C for some split component ‹C or a geodesic in (M̃, dM ).
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Let βi be the geodesic in (M̃, dM ) joining the endpoints of αi. Then

d(γ,∪iβi) ≤ jδ0 ≤ 3D0δ0, where δ0 is the (Gromov) hyperbolicity constant

of M̃ .

Since α meets a bounded number of split components, there exists C1 ≥ 0

such that each split component ‹C that α meets is C1-quasiconvex. Note that

C1 depends only on the convex hull CH(K̃) and the fact that any CH(K̃)

meets the lifts of only a uniformly bounded number of split components by

graph-quasiconvexity (Theorem 4.31). Hence for any αi ⊂ ‹C, dM (αi, βi) ≤ C1.

Choosing D1 = C1 + 3D0δ0, we are through. �

We are now in a position to obtain the last “recovery” lemma of this

section. The main part of the argument is again a reprise of a similar argument

in Lemma 6.5. We shall recount it briefly for completeness.

Lemma 6.12. There exist κ ≥ 1 and a function M0(N) : N→ N such that

M0(N)→∞ as N →∞, for which the following holds. Let B0 denote the first

block (thick or split) in Mwel, and let S×{0} denote its lower boundary. For a

fixed reference point p ∈ S̃×{0} ⊂›B0 and any geodesic λ ⊂ S̃×{0} ⊂›B0, there

exists an electro-ambient κ-quasigeodesic βea2 without backtracking in (M̃, dCH)

such that

(1) βea2 joins the endpoints of λ,

(2) d(λ, p) ≥ N ⇒ dM (βea2, p) ≥M0(N).

Proof. By Lemma 6.10, there exist κ0 and a function M ′(N) : N → N
such that for any geodesic λ ⊂ S̃ × {0} ⊂ ›B0 with d(λ, p) ≥ N , there exists a

path α in (M̃, dCH) corresponding (as per Remark 6.9) to an electro-ambient

quasigeodesic in (M̃, dG) satisfying the following:

(a) α joins the endpoints of λ,

(b) dM (α, p) ≥M ′(N),

(c) N →∞⇒M ′(N)→∞.

Let βea2 be an electro-ambient quasigeodesic in (M̃, dCH) joining the end-

points of α. Let CH(‹K) be the collection of (images under the bi-Lipschitz

homeomorphism F of) convex hulls of extended split components. Recall

that βea2 is obtained by looking at the intervals of intersection of α with

CH(K̃) ∈ CH(‹K), ordered from the left, and replacing maximal intersections

with (model) hyperbolic geodesics in CH(K̃).

Let x ∈ βea2 ∩ CH(K̃) for an extended split component K̃. Then by

construction of the electro-ambient quasigeodesic βea2 from α and Lemma 6.11,

there exists y ∈ α ∩ CH(K̃) and D1 = D1(K) such that d(x, y) ≤ D1.

By uniform graph-quasiconvexity (Theorem 4.31), for each i, there exist

finitely many extended split components K such that B̃i∩CH(K̃) 6= ∅. Let Di

be the maximum value of the D1(K)’s for these split components. Hence x ∈
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βea2∩B̃i implies that d(x, p) ≥M ′(N)−Di. Also, by uniform k0-separatedness

of split surfaces, x ∈ B̃i implies that d(x, p) ≥ ik0. Therefore,

d(βea2, p) ≥ mini max

Ñ
ik0,M

′(N)−
∑
j≤i

Dj

é
.

Defining M0(N) to be M0(N) = mini max(ik0,M
′(N)−∑

j≤iDj) and ob-

serving that M0(N)→∞ as N →∞ (by the same argument as in Lemma 6.5),

we are through. �

6.6. Application to sequences of surface groups. The main proposition of

this subsection will be used in [MS13]. The proof of Lemma 6.12 gives the

following.

Corollary 6.13. Let D be a positive integer. Let

B−D, . . . , B0, . . . , Bn, . . . , Bn+D

be a collection of split blocks, and let B1
n be the union of these blocks glued

along the common boundary split surfaces (i.e., Bi−1 is glued to Bi along Si).

We assume that this gluing can be done consistently (i.e., the Margulis tubes

are compatible). Let Bn =
⋃n

1 Bi ⊂ B1
n. Let M be a manifold of split geometry

(not necessarily simply or doubly degenerate; i.e., we allow M to have finitely

many split blocks) such that each split component is D-graph quasiconvex and

B1
n ⊂ M . Then for all L ≥ 0, there exists N ≥ 0 such that the following

holds. For all geodesic segments λ lying outside an N -ball around o ∈ S̃0 and

any electro-ambient quasigeodesic βnea2 without backtracking in M̃ joining the

endpoints of λ, βnea2 ∩›Bn lies outside the L-ball around o ∈ M̃ .

Corollary 6.13 will be used to prove the convergence of Cannon-Thurston

maps for quasi-Fuchsian groups converging strongly to a simply degenerate

group.

Remark 6.14. In Corollary 6.13, we could replace B1
n by

B2
n = B−n−D, . . . , B0, . . . , Bn, . . . , Bn+D,

and the same conclusions follow. This will be used to prove the convergence

of Cannon-Thurston maps for quasi-Fuchsian groups converging strongly to a

doubly degenerate group.

7. Cannon-Thurston maps for surfaces without punctures

We note the following properties of (M̃, dG) and K where (M̃, dG) is the

graph model of M̃ and K consists of the split components. There exist C,D,∆

such that

(1) Each split component is C-graph quasiconvex by Theorem 4.31.

(2) (M̃, dG) is ∆-hyperbolic.
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(3) Given K, ε, there exists D0 such that if γ is a (K, ε) quasigeodesic in

(M̃, dM ) joining a, b and if β is a (K, ε) electro-ambient quasigeodesic in

(M̃, dG) joining a, b, then γ lies in a D0-neighborhood of β in (M̃, dM ).

This follows from Lemma 2.5.

We shall now assemble the proof of the main theorem.

Theorem 7.1. Let M be a simply or doubly degenerate hyperbolic 3-mani-

fold without parabolics, homeomorphic to S × J (for J = [0,∞) or (−∞,∞)

respectively). Fix a base surface S0 = S×{0}. Then the inclusion i : S̃0 → M̃

extends continuously to a map between the compactifications î : Ŝ0 → M̂ .

Hence the limit set of S̃0 is locally connected.

Proof. By Theorem 4.31, M has split geometry, and we may assume that

S0 ⊂ B0, the first block. Let (M̃, dCH) and (M̃, dG) be as above, and let dM
be the model metric on M̃ . Suppose λ ⊂ S̃0 lies outside a large N -ball about

p in the (bi-Lipschitz) hyperbolic metric on S̃0. By Lemma 6.12 we obtain an

electro-ambient quasigeodesic without backtracking βea2 joining the endpoints

of λ and lying outside an M0(N)-ball about p in (M̃, dM ), where M0(N)→∞
as N →∞.

Suppose that βea2 is a (κ, ε) electro-ambient quasigeodesic. Note that κ, ε

depend on “the coarse Lipschitz constant” of Πλ and hence only on S̃0 and M̃ .

From Lemma 2.5 we know that if βh denotes the (model) hyperbolic geo-

desic in M̃ joining the endpoints of λ, then βh lies in a (uniform) C ′-neighbor-

hood of βea2.

Let M1(N) =M0(N) − C ′. Then M1(N)→∞ as N →∞. Further, the

(model) hyperbolic geodesic βh lies outside an M1(N)-ball around p. Hence, by

Lemma 1.8, the inclusion i : S̃0→M̃ extends continuously to a map î : Ŝ0→M̂ .

Since the continuous image of a compact locally connected set is locally

connected [HY61] and the (intrinsic) boundary of S̃0 is a circle, we conclude

that the limit set of S̃0 is locally connected. This proves the theorem. �

8. Modifications for surfaces with punctures

In this section, we shall describe the modifications necessary to prove

Theorem 7.1 for surfaces with punctures.

8.1. Partial electrocution. Two general references for this subsection are

[MR08], [MP11], where much of what follows is done in a considerably more

general setting. Let M be a convex hyperbolic 3-manifold with a neighborhood

of the cusps excised. Then each component of the boundary of M is of the

form σ × P , where P is either an interval or a circle, and σ is a horocycle of

some fixed length e0. Each component of the boundary of the universal cover

M̃ is a flat horosphere of the form σ̃ × P̃ . Note that P̃ = P if P is an interval

and R if P is a circle (the case for a (Z + Z)-cusp).
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The construction of partially electrocuted horospheres below is half way

between the spirit of Farb’s construction (in Lemmas 2.3 and 2.9, where the

entire horosphere is coned off) and McMullen’s Theorem 2.13 (where nothing

is coned off and properties of ambient quasigeodesics are investigated).

Partial electrocution of horospheres. Let Y be a convex simply connected

hyperbolic 3-manifold. Let B denote a collection of horoballs. Let X denote

Y minus the interior of the horoballs in B. Let H denote the collection of

boundary horospheres. Then each Hα ∈ H with the induced metric is isometric

to a Euclidean product E1 × Lα for an interval Lα ⊂ R. Here E1 denotes

Euclidean 1-space.

“Partially electrocute” each Hα by giving it the product of the zero metric

with the Euclidean metric; i.e., on E1 put the zero metric and on Lα put the

Euclidean metric. Thus we are in the following situation:

(1) X is (strongly) hyperbolic relative to a collection H of horospheres.

(2) Each horosphere Hα is equipped with a pseudometric making it iso-

metric to a Euclidean product E1 × Lα for an interval Lα ⊂ R. We

shall denote the collection of Lα’s by L.

The resulting pseudometric space is denoted (X, dpel) and is called the partially

electrocuted space associated to the pair (X,H).

Its worth pointing out here that (X, dpel) is essentially what one would

get (in the spirit of [Far98]) by gluing to each Hα the mapping cylinder of

the projection of Hα onto the Lα-factor. Let G denote the collection of these

projections gα : Hα → Lα. Thus, instead of coning all of a horosphere down

to a point, we cone only horocyclic leaves of a foliation of the horosphere.

Effectively, therefore, we have a cone-line rather than a cone-point. We shall

denote the union of X and all the mapping cylinders of gα by E(X,H,L,G) in

the spirit of the notation we have used for electric spaces. As pointed out above,

E(X,H,L,G) and (X, dpel) are quasi-isometric and both contain naturally em-

bedded copies of X as a subset (though not as a metric subspace). We shall

therefore conflate E(X,H,L,G) and (X, dpel) in this subsection. Geodesics

and quasigeodesics in the partially electrocuted space will be referred to as

partially electrocuted geodesics and quasigeodesics respectively. In this situa-

tion, we conclude as in Lemma 2.3.

Lemma 8.1 ([MP11, Lemma 1.20]). Let (X,H,L,G) be a 4-tuple as above.

Then the spaces E(X,H,L,G) as well as (X, dpel) are hyperbolic metric spaces.

Further, the subsets Lα and Hα are quasiconvex in E(X,H,L,G) and (X, dpel)

respectively.

Recall that X is obtained from a simply connected convex hyperbolic

manifold Y by excising a family of uniformly separated (open) horoballs.
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Lemma 8.2 ([MP11, Lemma 1.21]). Let (X,H,L,G) be a 4-tuple as above.

Given K, ε ≥ 0, there exists C > 0 such that the following holds. Let γpel and γ

denote respectively a (K, ε) partially electrocuted quasigeodesic in E(X,H,L,G)

and a (K, ε) hyperbolic quasigeodesic in Y joining a, b. Then γ\⋃Hα∈HHα lies

in a C-neighborhood of (any representative of ) γpel in (X, d). Further, outside

of the horoballs that γ meets, γ and γpel track each other; i.e., they lie in a

C-neighborhood of each other.

Note. E(X,H,L,G) is strongly hyperbolic relative to the sets {Lα}. In

fact the space obtained by electrocuting the sets Lα in E(X,H,L,G) is just

the space E(X,H) obtained by electrocuting the sets {Hα} in X.

Next, we show that partial electrocution preserves quasiconvexity.

Lemma 8.3. Given C , there exists C1 such that if A and A ∩B (for any

horoball B ∈ B) are C-quasiconvex in Y , then (A ∩X, dpel) is C1-quasiconvex

in (X, dpel).

Proof. It is given that A(⊂ Y ) as also A ∩ B for all B ∈ B are C-quasi-

convex. Then given a, b ∈ A ∩X, the hyperbolic geodesic λ in Y joining a, b

lies in a C-neighborhood of A. Since horoballs are convex, λ cannot backtrack.

We let H = ∂B be the boundary horosphere of the horoball B, and we let L

be the element of L corresponding to H.

Let λpel be the partially electrocuted geodesic joining a, b ∈ (X, dpel).

Clearly, λpel does not backtrack. Then by Lemma 8.2 above, we conclude that

for all H ∈ H that λ intersects, there exist points aH , bH of λpel close (in Y ) to

the entry and exit points of λ with respect to H. The points aH , bH therefore

lie close to A ∩ H. Further, the corresponding L (resp. H) is quasiconvex in

E(X,H,L,G) (resp. (X, dpel)) by Lemma 8.1. It follows that λpel ∩ L (resp.

λpel ∩H) lies within a uniformly bounded distance of A ∩H in E(X,H,L,G)

(resp. (X, dpel)). The conclusion now follows from Lemma 8.2. �

8.2. Split geometry for surfaces with punctures. Recall that Nh denotes

(the convex core of) a simply or doubly degenerate hyperbolic 3-manifold with

cusps. N will denote Nh minus an open neighborhood of the cusps. M will

denote the model manifold (Section 3) bi-Lipschitz homeomorphic to N . Since

the proof in the case of surfaces with punctures is only a small modification

of the case of surfaces without punctures modulo known results (cf. [MP11,

Mj09]), we shall only sketch the proof, indicating the necessary changes.

It is worth noting here that the purpose of the partial electrocution oper-

ation in the previous subsection is to ensure that successive split surfaces with

boundary are uniformly separated so as to ensure a model of weak split geom-

etry as defined in Remark 4.9. We shall proceed to construct a split geometry
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structure on M outlined in the steps below. In Steps (1)–(4) below we set up

the model manifold of split geometry for S with boundary.

Step 1: Preliminary. For a hyperbolic surface Sh (possibly) with punc-

tures, we fix a (small) e0 and excise the cusps leaving horocyclic boundary

components of (ordinary or Euclidean) length e0. We then take the induced

path metric on Sh minus cusps and call the resulting surface S. This induced

path metric will still be referred to as the hyperbolic metric on S (with the

understanding that now S possibly has boundary). Note that the horocycle

boundary components are now totally geodesic in S.

Step 2: Definition of thick and split blocks and hyperbolic quasiconvexity

of split components. A thick block in M is uniformly bi-Lipschitz to S × I as

before.

The definitions and constructions of split building blocks and split compo-

nents now go through with very little change. The only difference is that S

now might have boundary curves of length e0.

There is one subtle point about hyperbolic quasiconvexity (in M̃) of split

components. Hyperbolic quasiconvexity (cf. Lemma 4.16) does not hold in

the metric obtained by merely excising the cusps and equipping the resulting

horospheres with the Euclidean metric. What we demand is that each split

component along with the parts of the horoballs that abut it be quasiconvex in

Ñh. Note that the intersection of split components in M̃ with horoballs that

abut it are (metric) products of horocycles with closed intervals. Lemma 4.16

furnishes the required quasiconvexity in this case.

When we excise horoballs from Nh to obtain N and then partially elec-

trocute horospheres in N (or its bi-Lipschitz model M) in Step 3 below and

we consider quasiconvexity in the resulting partially electrocuted space, split

components will remain quasiconvex by Lemma 8.3.

Step 3: Partially electrocuting horospherical boundaries in M . Next, we

modify the metric on M by partially electrocuting its boundary horospherical

components so that the metric on the horospherical boundary components of

any (thick or split) block S × I is the product of the zero metric on the horo-

cycles of fixed (Euclidean) length e0 and the Euclidean metric on the I-factor.

The resulting blocks will be called partially electrocuted blocks. Note that Mpel

may also be constructed directly from M by excising a neighborhood of the

cusps and partially electrocuting the resulting horospheres. By Lemma 8.1,

M̃pel is a hyperbolic metric space, and by Lemma 8.3, partially electrocuted

split components are quasiconvex in M̃pel.

Step 4: Split blocks in M̃pel and graph-quasiconvexity. Again, the defini-

tions and constructions of split blocks and split components go through mutatis
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Figure 7. Horo-ambient quasigeodesic.

mutandis for the partially electrocuted manifold M̃pel. By Lemma 8.3, qua-

siconvexity of split components as well as quasiconvexity of lifts of Margulis

tubes are preserved by partial electrocution. Hence in the model Mpel ob-

tained by gluing together partially electrocuted blocks, the split components

are uniformly graph-quasiconvex.

In Steps (5)–(7) we indicate the modifications in the construction and use

of the ladder Lλ and the retract Πλ.

Step 5: Horo-ambient quasigeodesics. Let λh be a hyperbolic geodesic

in S̃h. We replace pieces of λh that lie within horodisks by shortest horocyclic

segments joining its entry and exit points (into the corresponding horodisk).

Such a path is called a horo-ambient quasigeodesic; cf. [Mj09]. See Figure 7.

A small modification might be introduced if we electrocute horocycles.

Geodesics and quasigeodesics without backtracking then travel for free along

the zero metric horocycles. This does not change matters much as the geodesics

and quasigeodesics in the two constructions track each other by Lemma 2.9.

Thus, our starting point for the construction of the hyperbolic ladder Lλ is not

a hyperbolic geodesic λh but a horoambient quasigeodesic λ.

Step 6: Construction of the ladder Lλ. The construction of Lλ,Πλ and

their properties go through mutatis mutandis and we conclude that Lλ is quasi-

convex in the graph metric (M̃pel, dG) on the partially electrocuted space M̃pel.

As before, fiMHpel will denote the collection of horizontal sheets.

The modification of Theorem 5.7 in this context is given below.

Theorem 8.4. There exists C > 0 such that for any horo-ambient geo-

desic λ = λ0 ⊂ S̃ × {0} ⊂›B0, the retraction Πλ : fiMHpel → Lλ satisfies

dG(Πλ(x),Πλ(y)) ≤ CdG(x, y) + C.

Step 7: Decomposing the ladder Lλ into Lcλ and Lbλ. From this step on, the

modifications for punctured surfaces follow [Mj09]. As in [Mj09], we decompose

λ into parts λc and λb consisting of (closures of) maximal segments that lie

along horocycles and complementary pieces that do not intersect horocycles.
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Accordingly, we decompose Lλ into two parts Lcλ and Lbλ consisting of parts

that lie along horocycles and those that do not. As in Lemma 6.5, we get

Lemma 8.5. There exists a function M(N) : N→ N such that M(N)→∞
as N→∞ for which the following holds. For any horo-ambient quasigeodesic

λ ⊂ S̃ × {0} ⊂›B0, a fixed reference point p ∈ S̃ × {0} ⊂›B0 and any x on Lbλ,

d(λb, p) ≥ N ⇒ dwel(x, p) ≥M(N).

In Steps (8)–(10) we indicate the process of recovering a hyperbolic geo-

desic.

Step 8: Projecting and joining the dots. Admissible paths are constructed

as in Section 6.2. Now if λ ⊂ S̃ × {0} ⊂›B0 is a horo-ambient geodesic joining

a, b, let β be an admissible path representing a dG geodesic in flMpel. Project

β∩fiMHpel onto Lλ by Πλ and “join the dots” as in Section 6.3 to get a connected

ambient electric quasigeodesic βamb.

Step 9: Recovery. As in Sections 6.4 and 6.5, construct from βamb ⊂ M̃ a

partially electrocuted quasigeodesic γ in (M̃pel, dpel). Observe that the parts

of γ that do not lie along partially electrocuted horospheres lie close to Lbλ.

Hence by Lemma 8.5, if λh lies outside large balls in Sh, then each point of

γ \⋃Hα∈HHα also lies outside large balls in M̃ .

At this stage we transfer the information to ‹N (=Ñh minus horoballs).

Let F : M → N be the bi-Lipschitz homeomorphism between M and N , and

let ‹F denote its lift between universal covers. We thus conclude that if λh lies

outside large balls in Sh, then each point of ‹F (γ \⋃Hα∈HHα) also lies outside

large balls in ‹N .

Note that in the case of surfaces without punctures, γ itself was a (bi-

Lipschitz) hyperbolic geodesic in M̃ . However in the present situation of sur-

faces with punctures, one more step of recovery is necessary.

Step 10: Conclusion. Let γh denote the hyperbolic geodesic in ‹Nh joining

the endpoints of ‹F (γ). By Lemma 8.2, ‹F (γ) and γh track each other away

from horoballs. Then, every point of γh ∩ ‹N must lie close to some point of‹F (γ) lying outside partially electrocuted horospheres. Hence from step (9),

if λh lies outside a large ball about p in Sh, then γh ∩ ‹N also lies outside a

large ball about p in ‹N . In particular, γh enters and leaves horoballs at large

distances from p. From this it follows. (See [Mj09, Th. 5.9] for instance) that

γh itself lies outside a large ball about p. Hence by Lemma 1.8, there exists a

Cannon-Thurston map and the limit set is locally connected.

We now summarize the conclusion.
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Theorem 8.6. Let Nh be a simply or doubly degenerate 3-manifold home-

omorphic to Sh × J (for J = [0,∞) or (−∞,∞) respectively) for Sh a finite

volume hyperbolic surface such that i : Sh → Mh is a proper map inducing a

homotopy equivalence. Then the inclusion i : S̃h → ‹Nh extends continuously

to a map î : Ŝh → “Nh. Hence the limit set of S̃h is locally connected.

A part of the argument in Lemmas 6.8 and 6.10 and Step 9 does not use

the full strength of the hypothesis that M is a model for a surface group. If

we only assume that each end E of a manifold M is equipped with a split

geometry structure where each split component is incompressible, then the

same arguments furnish the following.

Lemma 8.7. Let N be the convex core of a complete hyperbolic 3-manifold

Nh minus a neighborhood of the cusps. Equip each degenerate end with a split

geometry structure such that each split component is incompressible. Let M

be the resulting model of split geometry and F : N → M be the bi-Lipschitz

homeomorphism between the two. Let ‹F be a lift of F to the universal covers.

Then for all C0 > 0 and o ∈ ‹N , there exists a function Θ : N → N satisfying

Θ(n) → ∞ as n → ∞ such that the following holds. For any a, b ∈ ‹N ⊂ Ñh,

let λh be the hyperbolic geodesic in Ñh joining them and let λhthick = λh ∩ ‹N .

Similarly let βhea be an electro-ambient C0-quasigeodesic without backtracking

in M̃ ⊂ E(M̃,K′) joining ‹F (a), ‹F (b). Let βea = βhea \ ∂M̃ be the part of

βhea lying away from the (bi-Lipschitz) horospherical boundary of M̃ . Then

dM (βea, ‹F (o)) ≥ n implies that dH3(λhthick, o) ≥ Θ(n).

This will be useful in [Mj10b]

8.3. Local connectivity of connected limit sets. Here we shall use a theo-

rem of Anderson and Maskit [AM96] along with Theorems 7.1 and 8.6 to prove

that connected limit sets are locally connected. The connection between The-

orems 7.1 and 8.6 and Theorem 8.9 via Theorem 8.8 is similar to one discussed

by Bowditch in [Bow07].

Theorem 8.8 (Anderson-Maskit [AM96]). Let Γ be an analytically finite

Kleinian group with connected limit set. Then the limit set Λ(Γ) is locally

connected if and only if every simply degenerate surface subgroup of Γ without

accidental parabolics has locally connected limit set.

Combining Theorems 7.1 and 8.6 with Theorem 8.8, we have the following

affirmative answer to Question 1.3.

Theorem 8.9. Let Γ be a finitely generated Kleinian group with connected

limit set Λ. Then Λ is locally connected.

Note that Λ is connected if and only if the convex core of H3/Γ is incom-

pressible away from cusps. In [Mj07] we prove that for surface groups without
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accidental parabolics, the point pre-images of the Cannon-Thurston map for

points having multiple pre-images are precisely the endpoints of leaves of the

ending lamination. In [Mj10b] we shall use the techniques developed in this

paper to answer Question 1.1 affirmatively.
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