Finite time singularities for the free

Annals of Mathematics 178 (2013), 1061-1134
http://dx.doi.org/10.4007 /annals.2013.178.3.6

boundary incompressible Euler equations

By ANGEL CASTRO, DIEGO CORDOBA, CHARLES FEFFERMAN,

FRANCISCO GANCEDO, and JAVIER GOMEZ-SERRANO

Abstract

In this paper, we prove the existence of smooth initial data for the

2D free boundary incompressible Euler equations (also known for some

particular scenarios as the water wave problem) for which the smoothness

of the interface breaks down in finite time into a splash singularity or a

splat singularity.
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I. Introduction

ILA. Statement of the problem. In this paper, we prove that water waves
in two space dimensions can form a singularity in finite time by either of two
simple, natural scenarios, which we call a “splash” and a “splat.”

The water wave equations (or 2D incompressible free boundary Euler
equations) describe a system consisting of a water region 2(t) C R? and a
vacuum region R? \ ©(¢), evolving as a function of time ¢, and separated by a
smooth interface

o0(t) = {z(a,t) : a € R}.
We write Q1 (t) = R2\ Q(t), Q%(t) = Q(t). The fluid velocity v(z,y,t) € R? and
the pressure p(z,y,t) € R are defined for (z,y) € Q(t). The fluid is assumed
to be incompressible and irrotational,

(I.1) V.v=0, curlv=0 1in Q(t),
and to satisfy the 2D Euler equation
(12) [at + (’U ’ vm)]Q)(mv yvt) - _VP(:I}7y7t) - (ng) in Q(t)7

where g > 0 is a constant and the term (0, g) takes gravity into account.
Neglecting surface tension, we assume that the pressure satisfies

(1.3) p=7p*(t) at 9Q(t), where p*(t) is a function of ¢ alone.
Finally, we assume that the interface moves with the fluid, i.e.,
(1.4) dz(a,t) = v(z(a,t),t) + ¢ (o, 1)daz(a, t),
where ¢ (o, ) is an arbitrary smooth function of a,t (the choice of ¢# affects
only the parametrization of 0€(¢)) and z(«,t) = (z1(e, 1), 22(v, 1)).

At an initial time tg, we specify the fluid region (¢y) and the veloc-
ity v(x,y,t0) ((z,y) € Q(tg)), subject to the constraint (I.1). We then solve
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equations (I.1)—(I.4) with the given initial conditions, and we ask whether a
singularity can form in finite time from an initially smooth velocity v(-,%y) and
fluid interface 99Q(tp).

The water wave problem comes in three flavors:

e Asymptotically Flat: We may demand that z(a,t) — (o,0) — 0 as o —
+o0.

e Periodic: We may instead demand that z(«,t) — (a,0) is a 27-periodic
function of «.

e Compact: Finally, we may demand that z(a,t) is a 2w-periodic function
of a.

To obtain physically meaningful solutions in the Asymptotically Flat and
Periodic flavors, we demand that

p(z,y,t) + g9y = O(1)  in Q)
and that
/ lv(z,y,t)|*dzdy < oo (finite energy),
Q(t)

where we regard (t) as a subset of T x R, T = R/27Z, in the Periodic case.

In this paper, we restrict attention to periodic water waves, although our
arguments can be easily modified to apply to the other flavors. (See Remark 1.5
below.)

Let us summarize some of the previous work on water waves. We discuss
the real-analytic case later in this introduction. The existence and Sobolev
regularity of water waves for short time is due to S. Wu [30]. Her proof applies
to smooth interfaces that need not be graphs of functions, but [30] assumes
the arc-chord condition

|z(a, t) — 2(B,t)| > cacla— B] for all a, 5 € R.

The constant cpc > 0 is called the arc-chord constant, which may vary with
time.

The issue of long-time existence has been treated in Alvarez-Lannes [3],
where well-posedness over large time scales is shown and several asymptotic
regimes are justified. By taking advantage of the dispersive properties of the
water-wave system, Wu [32] proved exponentially large time of existence for
small initial data.

In three space dimensions, Wu [31] proved short-time existence; and Ger-
main et al. [19], [20] and Wu [33] proved existence for all time in the case of
small initial data.

There are several important variants of the water wave problem. One can
drop the assumption that the fluid is irrotational. See Christodoulou-Lindblad
[12], Lindblad [23], Coutand-Shkoller [16], Shatah-Zeng [28] and Zhang-Zhang
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p=0 p=0 _ p=0
p=1 p=1

(a) The initial water region Q(to). (b) The water region (¢1) at a later
time ¢1.

(c) A “splash” forms at time to > t1.

Figure 1. Evolution of a “splash” singularity.

[35]. Lannes [21] considered the case in which water is moving over a fixed bot-
tom. Ambrose-Masmoudi [4] considered the case where the equations include
surface tension and the limit where the coefficient of surface tension tends to
zero. Lannes [22] discussed the problem of two fluids separated by an interface
with small nonzero surface tension. Alazard et al. [1] took advantage of the
dispersive properties of the equations to lower the regularity of the initial data.
See also the papers of Cérdoba et al. [13] and Alazard-Metivier [2].

In the case of large data for the two-dimensional problem (I.1)—(1.4), Cas-
tro et al. in [10], [9] showed that there exist initial data for which the interface
is the graph of a function, but after a finite time the water wave “turns over”
and the interface is no longer a graph. For previous numerical simulations
showing this turning phenomenon, see Baker et al. [5] and Beale et al. [7].

Next, we describe a singularity that can form in water waves. We start by
presenting what we believe based on numerical simulations; then, we explain
what we can prove.

Our simulations show an initially smooth water wave, for which the fluid
interface is a graph as in Figure 1(a). At a later time ¢, the water wave has
“turned over” as described in [10], [9]; i.e., the interface is no longer a graph.
Finally, in Figure 1(c), the fluid interface self-intersects at a single point,! but
is otherwise smooth. We call this scenario a “splash,” and we call the single
point at which the interface self-intersects the “splash point.” Beyond the

1Here, we regard the fluid interface as sitting inside T X R; recall that our water waves
are 2m-periodic under horizontal translation.
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time ty pictured in Figure 1(c), there is no physically meaningful solution of
(I1.1)—(1.4).

Note that the arc-chord condition holds for times ¢ < t5, but the arc-chord
constant tends to zero as t tends to to.

The numerics that led us to Figures 1(a), 1(b) and 1(c) were performed
using the method of Beale-Hou-Lowengrub [6], with special modifications to
maintain accuracy up to the splash. In this paper, we use the numerics only as
motivation for conjectures, so we omit a detailed discussion of the algorithms
used. Actual results from our simulations are shown in Figures 3, 4 and 5.
Figures 1 and 2 are cartoons.

Now let us explain what we can prove regarding the splash scenario. Recall
that [10], [9] already proved that a water wave may start as in Figure 1(a) and
later evolve to look like Figure 1(b). In this paper, we prove that a water wave
may start as in Figure 1(b) and later form a splash, as in Figure 1(c).

We would like to prove that an initially smooth water wave may start
as in Figure 1(a), then turn over as in Figure 1(b), and finally produce a
splash as in Figure 1(c). To do so, our plan is to use interval arithmetic [24]
to produce a rigorous computer-assisted proof that, close to the approximate
solution arising from our numerics, there exists an exact solution of (I.1)—(L.4)
that ends in a splash. The stability result announced in [8, Th. 4.1] is a first
step in this direction. We are grateful to R. de la Llave for introducing us to
interval arithmetic and demonstrating its power.

A variant of the splash singularity is shown in Figures 2(a) and 2(b).

The water wave starts out smooth, as in Figure 2(a), although the interface
is not a graph. At a later time, the interface self-intersects along an arc, but
is otherwise smooth. Again, no physically meaningful solution of (I.1)—(1.4)
exists after the time depicted in Figure 2(b). We call this scenario a “splat.”
In this paper, we prove that water waves can form a splat.

The stability theorem announced in [8] shows that a sufficiently small
perturbation of initial conditions that lead to the splash will again lead to a
splash. We expect that the analogous statement for a splat is not true.

(a) The initial water region (b) The “splat.”

Figure 2. Evolution of a “splat” singularity.
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We make no claim that the splash and the splat are the only singularities
that can arise in solutions of the water wave equation.

[.B. Elementary potential theory. To formulate precisely our main results,
and to explain some ideas from their proofs, we recall some elementary poten-
tial theory for irrotational divergence-free vector fields v(z,y,t) defined on a
region () C R? with a smooth periodic boundary {z(a,t) : a € R} for fixed ¢.
We assume that v is smooth up to the boundary and 27-periodic with respect
to horizontal translations. We suppose that v has finite energy.

Such a velocity field v may be represented in several ways.

e We may write v = V¢ for a velocity potential ¢(z,y,t) defined on Q(t)
and smooth up to the boundary.

e We may also write v = V¢ = (=9,1,0,1)) for a stream function 1,
defined on (¢) and smooth up to the boundary.

e The normal component of v at the boundary, given by

(Qaz(a,t))*

unormal(a7 t) = 'U(Z(Oé, t)7 t) . m’

uniquely specifies v on Q(t). Here, ut = (—ug,u1) for u = (ug,us) € R?,
and we always orient 9€(t) so that the normal vector (92(a,t))* points
into the vacuum region R? \ (t).

The function unermal(@, t) satisfies

/ unormal(aat)’aaz(a,t)’da =0,
T

but it is otherwise arbitrary.

Note that, because v has finite energy, ¢ and v are 2m-periodic with
respect to horizontal translations. (Without the assumption of finite en-
ergy, ¢ and ¥ could be “periodic plus linear.”) The functions ¢ and v are
conjugate harmonic functions.

e There is another way to specify v; namely,

(L5)

1
v(z,y,t) = %PV R |[(x — 21(B,t),y — z2(8, 1))

for a 2m-periodic function w(f,t) called the “vorticity amplitude.” See [5].

T —z —Z 5
(z — 21(B.1),y 2(5’t))|2w(ﬁ,t)dﬁ, () € Q)

Formula (I.5) holds only in the interior of §(¢). Taking the limit as
(z,y) = (z1(a,t), 22(c, t)) € 9(t) from the interior, we find that

Oaz(a,t)

(L6) v(z(a,t),t) = BR(z,w) (e, 1) + %‘”(a’ ) Burla D
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where BR denotes the Birkhoff-Rott integral
(1.7)

(z1(a,t) — z1(B, 1), z2(a, t) — 22([3’,75))L
BR(z w)(e, V/ |(z1(cr, t) — 21(B, 1), 22(av, t) —zQ(ﬁ,t))Pw(ﬂ’t)dB'

To see that v may be represented as in (I.5), (I1.6), one applies the Biot-
Savart law to a discontinuous extension of v from its initial domain Q(t) to all

of R?; to make the extension, one solves a Neumann problem in R?\ Q(t).
Thus, our velocity field v admits multiple descriptions. Note that the
description in terms of w is significantly different from the descriptions in terms
of ¢, ¥ and Upermal, because we bring in the Neumann problem on R? \ ()
to justify (I.5) and (I.6). When 0€Q(t) is a “splash curve” as in Figure 1(c),
there is no problem defining ¢ and it is smooth up to the boundary, except
that it can take two different values at the splash point, for obvious reasons.
The same is true of ¢. Similarly, upormal (@, t) continues to behave well.
However, there is no reason to believe that w(a, t) will be well defined and
smooth for a splash curve since R? \ Q(t) is a somewhat pathological domain.

%, where t; is the time of the

Our numerics suggest that max, |w(a,t)| ~

splash.

Let us apply the above potential theory to the water wave problem. A
standard formulation of the problem [5] takes z(«, t) and w(c,t) as unknowns.
This has the advantage that at least we know where our unknown functions
are supposed to be defined, which is more than we can say for ¢, ¥ and wu.
Standard computations (see, e.g., [13, §2]) show that the water wave problem
is equivalent to the following equations:

(1.8) Oz(a,t) = BR(z,w)(a, t) + ¢(a, t)Onz(ax, t)
and

(1.9) Oww(a,t) = — 2042(a, t) - O BR(z,w)(a, t)

wl?
— Oa (4"8!2‘2) (a0, t) + O (¢(a, t)w(ayt))
+ 2¢(, t)0pz(a, t) - 04BR(z,w) (i, t) — 290422(ax, t).

Here, ¢(a,t) is a function that we may pick arbitrarily since it influences only
the parametrization of 0€)(¢). For future reference, we write down several
standard equations that follow from (I.1)—(I.4) by routine computation and
elementary potential theory:

(L.10)

Apd(z,y,t) = Agtp(x,y,t)=0 in Q(t), ¢ and 1 are harmonic conjugates,

1
p(xayvt) - —8t¢($,y,t) - §’v¢($7yat)‘2 — g9,



1068 CASTRO, CORDOBA, FEFFERMAN, GANCEDO, and GOMEZ-SERRANO

MV ap) = —m, where ®(a,t) = ¢(2(a, t),t) and n is the
outward-pointing unit normal to 0€(t),
Y(x+2m,y,t) = Y(zr,y,t) and ¢(x + 2m,y,t) = ¢(z,y,t),
Y(z,y,t) =0(1) as y — —o0,
v =V in Q2),

Oz(a,t) = v(z(e, t),t) + c(a, t)0az(a, t),
)= Lluteta,n), 0

+ cla, )v(z(a,t),t) - Ouz(ayt) — gyla, t) + p*(t).
We may write u(a, t) to denote v(z(a,t),t).

[.C. Main results. Our main result is the following theorem. For the def-
inition of a splash curve, see Definition II.1 in Section II. The interface shown
in Figure 1(c) is an example of a splash curve.

THEOREM L.1. Let 2°(a) be a splash curve, where the splash point is given

by 2%(a1) = 2%a2), aq # ag. Let ud . (a) be a scalar function in H*(T),
satisfying

(L) [ thormar(@)[0a2"(@)]da = 0

and

(Il2> ugormal(al)v u?lormal<a2) <0.

defined fort € [0,T]

Then there exist a time T > 0; a time-varying domain §)(t)
t € [0,T] such that the

and a velocity field v(x,y,t) defined for (x,y) € Q(t),
following hold:
(I.13) Q(t) and v(z,y,t) solve the water wave equations (1.1)—(1.4)
for allt € 0,77,

(I.14) 09(t) is given as a parametrized curve {z(a,t) : a € R},

with z(a,t) — («,0) 2m-periodic in o for fived t |
(L15) z(a,t) — (a,0) € C([0,T), HX(T)) and v(z(a, t),t) € C([0,T], H3(T)),
(L16) z(c,0) = 2%(a) and upormar(@,0) = w0y, (@) for all o € R,
(I.17) For each t € [0,T], the curve 0S)(t) satisfies the arc-chord condition,

but the arc-chord constant tends to zero ast — 0.

This result was announced in [8]. To prove that “splash singularities” can

form, we note that the water wave equations are invariant under time reversal.
Therefore, it is enough to exhibit a solution of the water wave equations that
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starts as a splash at time zero, but satisfies the arc-chord condition for each
small positive time. Theorem 1.1 provides such solutions.

Since the curve touches itself, it is not clear if the vorticity amplitude is
well defined, although the velocity potential remains nonsingular. In order to
get around this issue we will apply a transformation from the original coor-
dinates to new ones, which we will denote with a tilde. The purpose of this
transformation is to be able to deal with the failure of the arc-chord condition.
Let us consider the scenario in the periodic setting and then the transforma-
tion defined by Z(«,t) = P(z(a,t)), where P is a conformal map that will be

o= (0 (3))”

and the branch of the root will be taken in such a way that it separates the

given as

self-intersecting points of the interface. We will also need that the interface
passes below the points (+m,0) (or, equivalently, that those points belong to
the vacuum region) in order for the tilde region to lie inside a closed curve
and the vacuum region to lie on the outer part. See Figures 3 and 4. Here
P(z) will refer to a two-dimensional vector whose components are the real and
imaginary parts of P(z1 + iz2). Its inverse is given by

P (w) =ilog (

In this setting, P~!(z) will be well defined modulo multiples of 27.

1 — iw?

1-1-2) = 2arctan(w?) for w € C.
iw

Remark 1.2. Note that P(z) is periodic such that P(z + 2kw) = P(z).
Moreover, P(z) is one-to-one in the water region and single-valued except at
the splash point.

Remark 1.3. Although the transformation to the tilde domain is conve-
nient, the real reason for Theorem I.1 is that the potential theory inside the
water region does not go bad as we approach the splash even though it goes
bad in the vacuum region.

We define the following quantities:

D(E, §,t) = (P&, §), 1),
O(%,3,t) = ¢(PH(&,§),1), (&, §,t) = Vo(Z,7,1),

b(a,t) = d(2(a, ), 1), ‘I’(Out) = P(2(a,t),1).

Also we define Q(t ) = P(Q(t)). Let us note that since ¢ and ¢ are 2
periodic, the resulting w and d) are well defined. We do not have problems
with the harmonicity of ¢ or (;5 at the point that is mapped from minus infinity
times 4 (which belongs to the water region) by P since ¢ and 1 tend to finite
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Figure 3. Splash singularity at times ¢ = 0 (Solid - splash),
t = 4-107% (Dashed - turning) and ¢ = 7-10~3 (Dotted - graph).

limits at minus infinity times i. Also, the periodicity of ¢ and v causes 45 and
1 to be continuous (and harmonic) at the interior of P(Q2(t)).

Let us assume that there exists a solution of (I.10) and that we take
Unormal = % such that upormal (1), Unormal(2) < 0 for all 0 < ¢t < T, with T
small enough; thus z(«, t) satisfies the arc-chord condition and does not touch
the removed branch from P(w).

The system (I.10) in the new coordinates reads

(L18)
Ap(,5,8) =0 in P(Q*(1)),
~ L Do (a,t)
Ot Hat)  |Za(ot)]
7=V in P(Q3(t)),

Z(a,t) = Q*(a, t)i(a, t) + c(a, t)Za(a, t),

i’t(a,t) = %QQ(a,t)W(a,t)\z + cla, t)a(a, t) - Zo(a, t) — gPQ_I(Z(a,t)),
#(a,0) = 2%a),

0o (,0) = Do (a) = Do (),

where 4 is the limit of the velocity coming from the fluid region in the tilde

domain and

2 2
Qe 0).0) = [Go(P )| @at) = |G ((an)
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We can solve the Neumann problem in the complement of (t). Therefore we
can represent the velocity field v in terms of a vorticity amplitude @.
We will see that Z and @ satisfy the following equations:

(119)  Z(a,t) = Q*(a, )BR(Z,@) (e, t) + &, t)Za(a, t),
(1.20)  @i(a,t) = —20:BR(2,@)(a,t) - Za(a, t) — |BR(Z,@)|?0.Q%(a, t)
Q*(o,t) w(a,t)

o (TP
+ 0o (6(c, ) (v, 1)) — 2000 (P31 (2(o 1)) -

Remark 1.4. Equations (1.19)—(1.20) are analogous to (1.8)—(1.9). In fact,
if we set @ =1 in (1.19)—(1.20), we recover (1.8)—(1.9).

“Z

) +26(ct, )0 BR(Z, @) - Zala, )

Our strategy will be the following: we will consider the evolution of the
solutions in the tilde domain and then see that everything works fine in the
original domain.

We will have to obtain the normal velocity once given the tangential ve-
locity, and vice versa. To do this, we just have to notice that

&)a(oh t) = a(a, t) . Ea(a, t) = BR(E’@) . 204(05, t) + JJ(Z? t) '

From that, we can invert the equation (see [13]) and get @. Equation (I1.6) in
the tilde domain then tells us © on the boundary dQ(t).

We now note that a solution of the system (I.18) in the tilde domain gives
rise to a solution of the system (I.10) in the nontilde domain by inverting the
map P. In fact, this will be the implication used in Theorem I.1 (finding a
solution in the tilde domain, and therefore in the nontilde).

Remark 1.5. Tt is likely that a similar argument works for the other two
settings (closed contour and asymptotic to horizontal) by choosing an appro-
priate P(w) that separates the singularity. For example, for the closed contour,
we could consider P.,(z) = 1/z, taking the branch so that it separates the sin-
gularity, and for the asymptotic to horizontal scenario, it is enough to move
the interface such that the water region is entirely contained in the lower half-
plane (and the point —i belongs to the vacuum region) and apply the relation
H=VE

We now state the local existence results that lead to the proof of the
existence of a splash singularity (Theorem I.1). To avoid the failure of the
arc-chord condition, we will prove the local existence in the tilde domain. This
can be done in two different settings, namely in the space of analytic functions
and the Sobolev space H?.
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For the analytic version, we define
Sr = {a+in, || <r},
sy =3 [ 15(a2in) P,
IF17 = 1f1Z20s,) + 1900 17205,
we consider the space
H3(9S,) = {f analytic in S, ||f]|? < oo, f 27r-periodic}

and we take (21 — a, 20, ®) € (H3(9S,))? = X,

The first results concerning the Cauchy problem for small data in Sobolev
spaces near the equilibrium point are due to Craig [18], Nalimov [25] and
Yosihara [34]. Beale et al. [6] considered the Cauchy problem in the linearized
version. For local existence with small analytic data, see Sulem-Sulem [29].
Our main results regarding local existence in the tilde domain are the following
theorems.

THEOREM 1.6 (Local existence for analytic initial data in the tilde do-

main). Let 2°(a) be a splash curve, and let u® - é—%'(a) = %(a} be the initial

tangential velocity such that
(2(1)(04) -, 28, (a)v (I)O(a)) € Xma

for some ro > 0, and satisfying

(1) u?lormal(al) = Unormal (@1,0) <0, ugormal(a2) = Unormal (@2,0) < 0;
2) / WO (0)]8a2(a)|da = 0.
T

normal
Then there exist a finite time T > 0, 0 < r < 19, a time-varying curve Z(c,t)
and a function ®(a,t) satisfying
(1) P71(zZ1(t)) — a, P71(%2(a, t)) are 2m-periodic;
(2) P7Y(2(a,t)) satisfies the arc-chord condition for all t € (0,T],
and u(a,t) with

(21(a, t), Z2(a, t), B(a, 1)) € C([0,T], X,),

which provides a solution of the water wave equations (1.18) with Z°(a) =
P(2%(a)) and a(a,0) - (Za)* (e, 0) = @%(a) - (2°)5 (ev).

«

The main tool in the proof is an abstract Cauchy-Kowalewski theorem
from [26] and [27]. For more details, see [11].
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For the proof of local existence in Sobolev spaces we will take the following
é(a,t):

c(a,t) = a;;ﬂ- /7r (QQBR(E,@))B(@Q . Mdﬂ

- Z3(5.0P
[T A EZICN
| (@ BRE,@)5(5.1) - £ s

This choice of ¢ will ensure that |Z(«,t)| depends only on ¢. We will also
define an auxiliary function ¢(a, t) analogous to the one introduced in [6] (for
the linear case) and [4] (for the nonlinear case), which helps us to bound several
of the terms that appear:

2(a, t)o(a
(1.21) Bla 1) = Lol ) 2(’2;()@ (t)" )

Then, we can prove the following theorem.

— (o, t)|Za(a, t)].

THEOREM 1.7 (Local existence for initial data in Sobolev spaces in the tilde
domain). In the setting of Section 1.B, let 2°(a) be the image of a splash curve
by the map P parametrized in such a way that |0,2°(a)| does not depend on
a and such that 29(a), 23(a) € HA(T). Let $(a,0) € H3+%(']I‘) be as in (1.21)
and let &(a,0) € H?(T). Then there exist a finite time T > 0, a time-varying
curve Z(a,t) € C([0,T); H*), and functions &(a,t) € C([0,T); H?) and ¢ €
C(]0,7); H3+%) providing a solution of the water wave equations (1.19)—(1.20).

The proof is based on the adaptation of the local existence proof in [13]
to the tilde domain.

Some of the relevant estimates from [13] obviously hold here as well, with
essentially unchanged proofs. We state such results in Lemmas IV.2 and Lem-
mas IV.5-IV.9 below, and we refer the reader to the relevant sections of [13]
for the proofs.

However, [13] contains several “miracles,” i.e., complicated calculations
and estimates that lead to simple favorable results for no apparent reason.
To see that analogous “miracles” occur in our present setting, we have to go
through the arguments in detail; see Lemmas IV.10 and IV.12-1V.15 below.
We have tried to make it possible to check the correctness of our arguments
without extreme effort and without undue repetitions from [13].

It would be very interesting to understand a priori why the “miracles”
in this paper and in [4], [13] occur. Presumably there is a simple, conceptual
explanation, which at present we do not know.

At the end of Section II we will define the notion of a “splat curve.”
The curve depicted in Figure 2(b) is an example of a splat curve. In the
statement of Theorem 1.7, we may take Zy(«) to be the image of a splat curve
under P rather than the image of a splash curve. The proof of Theorem 1.7
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goes through for this case with trivial changes. Consequently, we obtain an
analogue of Theorem 1.6, with hypothesis (1) replaced by

HypPOTHESIS 1'. ugormal = Unormal (@, 0) is negative for all o € Iy U Iy,

where 11, Is are the intervals appearing in the definition of a splat curve in
Section II.

Just as Theorem 1.6 implies the formation of splash singularities for water
waves, the above analogue of Theorem 1.6 for splat curves implies

COROLLARY 1.8 (Splat singularity). There exist solutions of the water
wave system that collapse along an arc in finite time but remain otherwise
smooth.

I.D. Further results. Here we mention some immediate consequences of
our results that are relevant.

1. (Splash and Splat singularities for 3D water waves). It is possible to
extend our results to the periodic three-dimensional setting by con-
sidering scenarios invariant under translation in one of the coordinate
directions. While preparing the final revisions of this manuscript, we
noticed that in a very recent arXiv posting [17], Coutand-Shkoller con-
sider additional 3D splash singularities.

2. (No gravity). The existence of a splash singularity can also be proved
in the case where the gravity constant g is equal to zero, as long as the
Rayleigh-Taylor condition holds.

II. Splash curves: transformation to the tilde domain and back

In this section we will rewrite the equations by applying a transformation
from the original coordinates to new ones, which we will denote by tilde. The
purpose of this transformation is to be able to deal with the failure of the
arc-chord condition.

For initial data, we are interested in considering a self-intersecting curve
in one point. More precisely, we will use as initial data splash curves, which
are defined this way.

Definition 11.1. We say that z(«a) = (21(«), 22()) is a splash curve if

(1) z1(a) — , zo(cx) are smooth functions and 27-periodic.

(2) z(«) satisfies the arc-chord condition at every point except at «; and
ag, with a1 < ag where z(a1) = z(a2) and |zo (1), |2a(az2)| > 0. This
means z(aq) = z(az), but if we remove either a neighborhood of a; or
a neighborhood of as in parameter space, then the arc-chord condition
holds.

(3) The curve z(a) separates the complex plane into two regions; a con-
nected water region and a vacuum region (not necessarily connected).
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Figure 4. Tilde domain at times ¢t = 0 (Solid - splash), t =
4-1073 (Dashed - turning) and t = 7-10~3 (Dotted - graph).
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Figure 5. Zoom of the splash singularity at times ¢ = 0 (Solid -
splash), t = 4-1073 (Dashed - turning) and ¢ = 7-10~3 (Dotted
- graph).

The water region contains each point = + iy for which y is large neg-

ative. We choose the parametrization such that the normal vector

n = (_8‘12‘28(52(’2()121(0‘)) points to the vacuum region. We regard the

interface to be part of the water region.
We can choose a branch of the function P on the water region such
that the curve Z(a) = (Z1(«), Z2(«)) = P(z(«)) satisfies:

(a) Z1(a) and Z3(«) are smooth and 27-periodic,

(b) Z is a closed contour,

(c) Z satisfies the arc-chord condition.
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We will choose the branch of the root that produces that

lim P(x+iy) = —e /4
Yy——00
independently of x.

(5) P(w) is analytic at w and %(w) # 0 if w belongs to the interior of the
water region. Furthermore, (£7,0) and (0,0) belong to the vacuum
region.

(6) 2(a) # ¢ for 1 =0,...,4, where

s (-1 -1 , (1 -1
! _(\@\/i) ! _<\/§\/§>

From now on, we will always work with splash curves as initial data unless
we say otherwise. Condition 6 will be used in the local existence theorems and
can be proved to hold for short enough time as long as the initial condition sat-
isfies it. It is also immediate to check that the previous choice of P transforms
any periodic interface into a closed curve. Here are two examples of curves
that are not splash curves (see Figure 6).

05

-05

Figure 6. Two examples of nonsplash curves.
Now we will show a careful deduction of the equations in the tilde domain.
From the definition of Z, we have that
(I1.2) Za(a,t) = VP(z(a,t)) - 2o, t)
and
(I1.3)
Zi(a,t) = VP(z(a, 1)) - ze(a, t) = VP(2(e, 1)) - (u(a, t) + c(a, t)zo(a, t))
= VP(z(a,t)) - u(a, t) + cZo(a, t).



FREE BOUNDARY INCOMPRESSIBLE EULER EQUATIONS 1077

Since ¢ = ¢po P and v = V¢ = V(¢ o P), we obtain
N . oP;
(I1.4) vi = 0ip = 0i(¢po P) =D (djdo P)a—; = (550 P)O; P;.
j Y

This implies that

(IL.5) u(o, t) = VP(z(a,t)) T a(a, t).

Plugging this into (II.3), we get

(I1.6) Z(a,t) = VP(z(aut)) - VP(z(a, )T - e, t) 4 cZa(a, t).

From the Cauchy-Riemann equations,

2
P
(L7)  VP((0,1) - VP(:(a 1) = QXart) - Iy, Q(at) = ‘d 59
In this particular case, this means that
1+ Z(a,t)? 2

Q*(a,t) = ‘ , Z(a,t) = Z1(a,t) +iZa(a,t).

4z (e, t)

Recall that ® is the restriction of ¢ to the interface; i.e., O(a,t) =
?(Z(a, t),t). Then

(I1.8)  ®(a,t) = &(Z(a,t),t) = ¢(P_1(§(a,t)),t) = ¢(z(a,t),t) = D(a, t).
Thus, ® satisfies

(1L9)
90 — Slule 0P + (o futan 1) - za(an 1) — g2a(0r 1)

= %|VP(z(oz,t))T (o t)]? + e(as t)a(ont) - Zola, t) — gPy t(Z(ayt)),
where the subscript in the gravity term of the last line denotes the second
component. Thus the system (I.10) in the new coordinates reads
(IL10)  Ad(z,y,t) =0 in P(Q2(1)),
o i)a(a, t)
Z(ast) |Za (v, )]’
v =V+iy in P(Q%(t)),

Ont)
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We have seen that ¥ can be represented in the form

— A1 t),§ = B )

t) = vt —P / (Z = %o t)d
0(Z,9,t) = V=4 (Z,9,1) |4 G m(at).5— B t))|2w(a7 )dex
Taking limits from the fluid region we obtain

(o, t) = BR(Z,0) + ﬁza

The evolution of @ is calculated in the following way. First, let us recall the
equations

(IL11) Z(a,t) = Q*(a, t)i(a,t)+c(a, t)Za(a,t),
Bu(0,1) = S Qa0 Do) P-+elar e 1) o) — 95 3les 1),
Do, t) = ala,t) - Zo(a,t),
#(a,0) = 2%(a),

d,(a,0) = B2 () = B4 ().
Substituting the expression for @(c, t) and performing the change é¢(a, t) =
cla,t) + 2Q2(a t) @, §|2, we obtain

ENCY
(IL12)
Z(a,t) = Q*(a, t)BR(Z, @) (a, t) 4 (v, t) Za(ai, t),
B, 1) = BR(Z,)(0, 1) - Za(on ) + %(Ij(a,t),

Bifan, 1) = 5Q%( )i, O +efa, il 1) - Zalast) — gP5 (1),

Q*(a,t) @(at)?
8 |Za(a,t)?

_ %QQ(a,t)\BR(éaaf)(aat)fz -

+6(a,t)BR(Z,az)-éa(a,t)+%é(a,t)@( £) — 9Py (3 (e t)).

On the one hand, by taking derivatives with respect to ¢t in the second
equation, it follows that

(I1.13)
Do, t) = OBR(Z,@)(a,t) - Zola, t) + BR(Z,@)(a,t) - Zar(a, t) +
= O:BR(2,®) - Za(a, t) + |BR(Z, @)|?0.Q%(a, t)
+ Q*(a,t)BR(2,®) - 0,BR(2,@) + éa(a, 1)BR(2,@) - Z4(a, t)

(Z)t(Oé,t)
5 .

wt(av t)
2

+ é(a, t)BR(Z,@) - Zaa(a,t) +
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On the other hand, taking derivatives with respect to « in the third equation
in (I1.12) yields

(I1.14) Ppp(a,t) = }]BR(E @) [204 Q2( t) + Q*(a, t)BR(2,®) - 9,BR(Z, %)
2 wl

50 (Q o att))P) + (0, )BR(Z,@) - Za(a )

+ ¢(a, t)0,BR(Z,0) - Zo(a,t) + (e, t)BR(Z,0) - Zaa(a,t)

¥ 50n (ela 150, 1)) — B (95 (3o 1))
Combining both equations, we find that

(I1.15) @, t) = —20;BR(Z,0)(a, t) - Za(a, t) — |BR(Z,0)[20.Q%(a, t)

QD) B(a,1)?
a‘*( I [l >|2
+ aa (5(0" t)o?(oz, t)) -

) +26(ct, )0 BR(Z, @) - Za(a,t)

Oa (9P ' (2(ast))) -

We will proceed in the following way: we will consider the evolution of
the solutions in the tilde domain and see that everything works fine in the
original domain. For example, the sign condition on the normal vectors in
the nontilde domain has an equivalent form in the tilde domain (i.e., the two
normal components have negative sign).

In the nontilde domain, this implies that the interface moves away from
the branch removed from the square root, and therefore the interface touches
neither the branch cut nor the conflictive points ¢!. (See Condition 6 in Def-
inition II.1.) Hence P and P~! will be well defined and one-to-one. (See
Figure 9.)

Let us note that getting ¢ = ¢ o P is not a problem since ¢ is bounded
and harmonic. Moreover, as & = V11 and

v=VPT(t0P)

and VP has exponential decay at infinity, the velocity v belongs to L?(2%(t) N
[—m, 7] X R).

Remark I1.2. ¥, ®,u and z have easy transformations to the tilde domain
but w has not.

We would like to discuss what happens to the amplitude of the vorticity
w in the nontilde domain as the curve approaches the splash. If the vorticity
belongs to C([0, Teplash], C°(T)), then the normal velocity should be continuous
at the splash point, and therefore the normal component of the restriction of
the velocity to the curve from the water region cannot have the same sign
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at z(a1) and z(az) (see Theorem I.1). This means that the C°—norm of the
amplitude of the vorticity becomes unbounded at the time of the splash.

We illustrate this phenomenon by plotting 1/ max |w| (see Figure 7), where
the blue curve is the calculated w and the red curve is a potential fitting to
the data, as numerical instabilities do not allow us to compute w with enough
precision when we are in the regime which is close to the splash. Time has been
reversed so that the splash occurs at time ¢ = 0 and the interface separates
from itself at ¢ > 0.

w EN )}
T T T

1/max(|o|)

N
T

0 015 1‘ 1‘.5 2
t x10
Figure 7. Vorticity amplitude in the nontilde domain. The vor-

ticity reaches infinity at a rate of approximately T }1_ pyos
splash

(T#_t) The fit is given by F' = 23.72:t9966 _1.476.1076. Dot-
ted: values of the computed solution at different times. Solid

line: fit

We also have performed numerical simulations in order to get a blowup
rate for the arc-chord condition. As in Figure 7, we plot the inverse of the
arc-chord constant. The blue curve is made by the calculated points, and the
red curve is the interpolating one. We see a very good fitting. Time follows
the same convention as before, and the numerical evidence indicates a blowup
of the arc-chord as o plalsh_ i

We also kept track of the energy conservation. If we consider the following
energy (not to be confused with the one in Section IV),

1

~ 2 Joz
1 s
+3 / (z(cs )20z (a, H)da = Ey(t) + Ey(t),

where z(a,t) = (z1(a, t), 22(, t)), u(e, t) = v(z(a, t),t), and Q?(t) = Q%(t) N
[, 7] X R is a fundamental domain in the water region in a period, then we
can see that the energy is conserved; this is a check of the accuracy of our
numerics:

The results can be seen in Figure 8.

(I.16) Es(t) |o(x, y,t)|*dedy
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Figure 8. Arc-chord condition in the nontilde domain. The arc-

chord reaches infinity at a rate of approximately ﬁ The
splas

fit is given by F = 11.41-t+5.104-107". Dotted: values of the

computed solution at different times. Solid line: fit.

(I1.17) dE;t(t) = /92 v(z,y,t) (v (x,y,t) +v(x,y,t) - Vo(z,y,t))dxedy

1
|
@\
(Y
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N
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=
N
+
Q
<
=
o N
N
=¥
Nad

= —/ gza(o, hu(a, t) - Opzt(a, t)day,

where we have used the incompressibility of the fluid (V - v = 0) and the
continuity of the pressure on the interface (p*(t)|5q2 0 = 0). Next,

(I1.18) d%’t(t) :/ gz2(a, 1) 0 zo(a, 1) D21 (e, t)da

+%/ 9(22(0,t))? 01021 (cv, t)dox
:/ gz2(a, t)Orza (o, t)0n21 (o, t)da

- / 922(a7t)aaz2(a7t)atzl(aat)da

= /7r gzo(a, t)u(a, t) - Dpzt(a, t)do.
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This proves that the energy is constant. Note that

() [ oy )fdedy= [ Vo, 0 dudy
Q3(t) Q3 (t)

S DL C S
f

A1)

MO oVl y.t) - T dudy
Q1))

so the numerical calculation is restricted to the values at the boundary. We
observe that the energy of our system is conserved, as we have

max Fg(t) — mtin Es(t)

Eg(t) ~ 38.3936, —' ~6-1071

mtin Es(t)
We now give the proof of Theorem I.1 using Theorem 1.7.

Proof of Theorem 1.1. Using the fact that there is local existence to the
initial data in the tilde domain and applying P~! to the solution obtained
there, we can get a curve z(a,t) that solves the water wave equation in the
nontilde domain. Details on the local existence in the tilde domain are shown
below. Note that the sign condition (I.12) assumed in Theorem I.1 guaran-
tees that for positive time ¢, the curve in the nontilde domain will separate
(as depicted in Figure 9(a)) instead of crossing itself (as depicted in Fig-
ure 9(b)). More precisely, we check that for small positive time ¢, the curve
a z(a,t) = (z1(a,t), 22(a, ) = P71 (Z(, t)) € R/27Z x R is a simple closed
curve, i.e., that a — z(«,t) is one-to-one. Indeed, if not, there exist a sequence
of positive times ¢, — 0 and points «.,, o, such that a,, # «,, mod 27Z, but
z(a,,t,) = z(al,t,). Since the initial splash curve a — z(a,0) satisfies the
modified chord-arc condition described in Condition 2 of Definition II.1, we
may assume without loss of generality that a:j — o1 and a;’ — ag (with aq, ag
as in Definition II.1). The sign condition (I.12) therefore guarantees that (for
large v), Z(cr,,t,) and Z(a,,t,) lie in the image of the (open) time-zero water
region under the map P. Moreover (for large v), Z(c,,t,) # Z(a,,t,) since
2(0[1, O) 7& 2(052, 0).

Since P! is one-to-one on the image of the open time-zero water region
under P, it follows that (for large ) we have z(a,,t,) # z(a,,,t,) € R/27ZxR,
with z(a, t) = P71 ((a, t)). This contradicts the defining condition z(c,,t,) =
z(a:j/,tu), completing the proof that a — z(a,t) is a simple closed curve for
small positive t.

The proof of Theorem I.1 is complete. O
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We end this section by defining a “splat curve,” as promised in Section I.
To do so, we simply modify our Definition II.1 for a splash curve by replacing
Condition 2 in that definition by the following

Condition 2'. We are given two disjoint closed nondegenerate intervals
I, I5 C [0,27) whose images under a — (z1(), z2()) € R/277Z x R coincide.

The map a — (21(a), 2z2(«)) € R/27Z x R satisfies the chord-arc condition
when restricted to the complement of any open interval J such that J D I; or
J DI

As promised, the curve depicted in Figure 2(b) is a splat curve. Observe
that the curve in Figure 2(b) cannot be real-analytic.

ITI. Proof of real-analytic short-time existence in tilde domain

The main goal of this section is to prove Theorem 1.6. In order to accom-
plish this task we will prove local well-posedness for the system (III.1) below.
In this section, we will drop the tildes from the notation. The system arises
from (II.11) taking ¢ = 0:

2 = 1§5<P-1<z>>\22,
O = 3| PE)| a2 - 9Py (2),

u = BR(z,w) + ﬁza,
¢, = 4 +BR(2,w) - zq,

dP / p— 2 1+ (21 (a,t)+iza(a,t))?
’@(P I(Z(a,t)))’ = %6’ ' ill((gz,t)l-iZQQ((()l,t)))Q
By (s(ent) = log LGS R

(IT1.1)

2

)

We demand that 2°(a) # (0,0) to find the function %(P_l(z(a,t))) well

defined. This condition is going to remain true for short time. We also consider
Da)£q,l=1,...,4in (IL1) to get Py '(2(a,t)) well defined. Again this is
going to remain true for short time.

The main tool in this section is a Cauchy-Kowalewski theorem. (See [10,
§5] for more details.) We recall the following definitions:

Sy = {a + 1, |77| < ’I”},
#1305,y = 3 | 1@ in) Pda
:t —T

IFIIZ = 1£1120s,) + 102 f 12205,
the space
H3(0S,) = {f analytic in S, ||f||? < oo, f 27r—periodic} ,
and we now take (21, z2, ®) € (H3(9S,))3 = X,.. We have the following theorem.
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THEOREM IIL1. Let 2°() be a curve satisfying the arc-chord condition

20(a) — La— B> _ 1
32 e

which does not touch the points q;, | = 0,...,4 in (IL1), and (2°, ®°) € X, for
some rg > 0. Then, there exist a time T > 0 and 0 < r < rg such that there is
a unique solution to the system (I1I11.1) in C([0,T], X,) with initial conditions
2(a,0) = 2%(a), ®(a, 0) = ®%(a), for all a € T.

Equation (III.1) can be extended for complex variables:
a(ati6,t) = F(z(a +i6,1), (a +i€, 1)),
Oy(a+ ik, t) = F?(z(a+ i€, 1), Do + i€, 1)).

Here
2

u,

ap

Fl(z,®) =
w

(P™H(2))

where we abuse notation by writing

dP 2
7o (P (a6, 1))
_ 1T (s +46 1) — g1)* + (22(a + i€, 1) — )]
16 (z1(a+14&,t))% + (z2(a + i€, 1))?
and
u(a + i€, t) = BR(z(a + i€, t), w(a + £, 1))
N 1 ( w(a +14€,t)0pz(a + &, T) )
2 \ (Oaz1(a+ i€, )% + (Dazo(a + i€, 1))?
with

BR(z(a+i¢, t), w(a+i€, 1))

_ i PV/ (22(05—’—@5 - Bat) - ZQ(a+i£>t)a Zl(a+i€7t) - Zl(Ol-f-Zg - th))

S 2r T (21(a+i€, 1) — 21(a+i€ — B,1))2+(22(a+i&, 1) — 22(a+i€ — B,1))?
X w(a+15 - 6at)d6

and w given implicitly by

¢, = % + BR(z,w) - 24.
We will also abuse notation by writing |u|? for u3 + u3, even for complex
u = (u1,u2). The operator F? is given by
_1|dpP

2
Fo(e,®) = 5 |50 (P7)| Jul? — 9Py (2),
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where

4
= = (=)' og[(21(a +i&,t) — ¢})* + (22(a + i€, 1) — ¢3)?)].
=1

Pyl (2(a +i€,t)

l\D\*—‘

Below we will use a strip of analyticity small enough so that the complex
logarithm above is continuous. We use the following proposition.

PROPOSITION II1.2. Consider 0 < r<r’ and the open set O C X,» given by
0 ={(2,®) € X, : |zi]lw, |®]],w < B,
inf  |(z1(a +i€) — 1) + (z2(a + i) — 3)%| > B2,

a+ifESy
[=0,....4, inf G(2)(a+it, B)> R‘2}
gelam

with
G(2) (o + 18, B)
| Gila+i€) — zi(a+ i€ — B))? + (22(a + i) — zo(a + i€ — B3))?
= P
Then the function F = (F*, F?) for F : O — X, is a continuous mapping. In
addition, there is a constant Cg (depending on R only) such that

C
(I11.2) 1z, @)l < 5 Il(z @)l
(IIL.3) IF(2%,@%) — F(z', @), < TCR (=% = 2, @ — 1),
and
(I11.4) sup |Fl(z,®)(a + i) — F1(z,®)(a +i& — B)| < Cg|f|
a+iéeSy
Be[_ﬂ—ﬂr}

for z,27,®,®I € O.

Proof. First we point out that w is given in terms of ®, and z by the
implicit equation

1
o, = % + BR(z,w) - 24 = 5([-1— J)(w).

It is well known that the operator (I +J) is invertible on L? for real functions
with mean zero. (See [13, §5] for more details.) Writing

1 / (z(aEir) — 2(B)) - zo(a £ ir)

wlatir) =28a(atir) - o | 2(a £ ir) — 2(B)[?

w(B)dg,

one can find that

lwllz2as,) < 2[1Pallr2(as,) + Crllwl L2(850)
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(where Cr depends on R) for (z,®) € O. The bound of (I + J)~! for real
functions yields

wllz2(as0) < 211+ J) Hlz2oz21®all2(080) < Crll®allzz(as,)-
Thus
lwllz2(as,) < Crll®allr2(as,)-
Analogously, one finds that
183wl 2(95,) < Crll®]l:-
This allows us to assert that w is at the same level as @, in terms of derivatives:
(I1L5) lwllz2(s,) + 12l 5205, < Crl®ll, < Crl®ll-

Then, inequality (II1.2) follows as in [10, §6.3]. We will see how to deal
with the most singular terms. For the first term in the norm, it is easy to find
that

(II1.6) 1E(z, @)l L2(95,) < Crll(2, @)llr < Crl|(2, @)l

In order to control the second one, we will show how to deal with F' as F? is
analogous. Here we point out that the functions

P, ,
(P (2 + i 1)

2
. Pyl (z(a+ i)

have no loss of derivatives and they are regular as long as (z, ®) € O. Therefore,
in 932 F! the most singular term is given by

2

P Bula + i€, t)

(P ea + 6 1)

as the rest can be estimated in an easier manner. (See [13, §6.1] as an example
2
with more details.) From the definition it is easy to bound ’%(P*I(Z))' in

L°°; it remains to control d3u in L?(8S,.). To simplify the exposition we ignore
the time dependence of the functions, we denote v = a % ir,

(z1(7) — 210y = B))? + (22(7) — 22(y — B))? = |2(7) — 2(v — B)I2,
(80421('7))2 + (aaZQ(V)V Zoc(’y) 37

and

(2(y) — 2(v — B)*.

(22(y = B) — 22(7), 21(7) — 21(v — B))

Next, we split as follows:

Bu=I+IL+ I3+ I+ Is+ I + lo.t.,
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where “l.o.t.” denotes lower order terms that can be estimated in an easier
manner. We have

(932(7) — 032(v — B)*
V/ 20—zt —pp 0 A

() -2-B)*
A B (e w s PSS U )
(022(v) = 032(y — B))w(y — B)dp,
1

() = 7—5))L
_ev [T wly = BB,

D=0 HE
4
Ll <>aa<>7

2 )R
1), o
5= e ) O
1 98(1)00=(0)
2 B

Iy = PV

and
Is =
For Ig, we find
1 _ S
Mollz2os,) < 5100zl m(s,y( inf  G)(1.8))  I0%w]z2(os,)-
Be[fﬂp:ﬂ']
and since (z,®) € O, we get
16l r2(05,) < CrllOawl r2(0s,)

by using Sobolev embedding. A simple application of the Cauchy formula gives

c
HaOéfHL2((9ST) S ,r/ o ’r,)’

which allows us to find

R
1Z6llz2(0s,) < i 103wl r2(05.,)-

The bound (III.5) finally gives
Cr

116l 205,y < r H@Hr

In a similar way we obtain

114l 1285,y + 5]l 22(05,) < CrllOazlr2(0s,)

In I3 we decompose further: I3 = I31 + I3 2, where

1 ~ 1 2zt
I3, = %PV /_7T K(v,B)03w(y — B)dB, I3 = 3 |§a(gy))|’2ﬁH(8gw)(7),
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where H denotes the Hilbert transform and the kernel K is given by

(z(v) —z(v=8)"  z() 1
12(7) —2(v =B |za(7)]2 2tan(B/2)

We can integrate by parts dg(—92w(y — 8)) in I3 to find

13.11122(08,) < CrllOawllL2(0s,) < CrII®|;
see [13, §3] for more details. The term I35 can be estimated by
Cr

r—r

1132l 12(05,) < CrIH (93w) | 12(08,) = CrllOawllr2(85,) < @]

A similar splitting in Iy = Iz 1 + Iz 2 with
1 w
Iy =—PV [ L(3,8)- (032(1)~0%=(y—5))dp,
—Tr

w ZJ_
hfrxgkﬁﬁhwymﬁ@w>

(where A = HO,) gives the kernel L as follows:

w 2+ Za (532 — 93 5(~v—

w(’y—ﬁ)(z(ry)—z('y—ﬁ))J‘ —z(v— . 32; — 32: —
T o) e pEE 28 - (02200 ~9e=(v=0)).

Heuristically, we regard this operator as no better or no worse than a Hilbert

transform of 93 2. It is easy to prove that

11211l 208,y < CrllOazl12(68,) < CrIIPw;
see [13, §6.1] for more details. The term I52 can be bounded as follows:

Cr
74,_74||Z||r/-

122l r2(08,) < CrIAO32) | 12(08,) = CrllOazl12(55,) <

Analogously, for I; we find

Cr
r’—r

11l r2as,) < [12]J-

This strategy allows us to deal with d3u and therefore with 93 F''. The same
applies to 92 F2, and we can finally get (IT1.2).
To get (II1.3), we write

1 1
O = S+ L)Y, %=+ 1)),

where

J,i(w) = 2BR(2’,w) - 2/
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for 27 € O and j = 1,2. This implies
w? —w!
2 ol = 5 +BR(2%,w? —w!') - 22 + BR(2%,w!) - 22 = BR(z',w!) - 2},

which yields
(W?—wh) = 2(I4+J,2) " H (@2 - ) —2(I+J,2) " (BR(2%,wh)-22 —BR(z!, wh)-2}).
This helps us to find
lo? = w295,y + [102w? = Daw'L2(as,) < C(R)(||@? — @1l + [2° — 21|,).
We use a decomposition similar to the one used to prove (II1.2), which allows
us to finally get (II1.3). Inequality (III1.4) follows in an easier manner. O
Proof of Theorem 111.1. We apply the following result of Nirenberg [26]
and Nishida [27].
ABSTRACT CAUCHY-KOWALEWSKI THEOREM Consider the equation

dul(t
(I1L.7) Z(t ) Flu(t) for t] < o
with initial condition
(IT1.8) u(0) = u® € X,,.

For some numbers C’, R> 0, assume the following hypothesis:

For every pair of numbers r,r’ such that 0 <1’ <r <rg, Fisa
Lipschitz map from {u € X, : |lu —u®||x, < R} into X,/, with

Lipschitz constant at most rg,. Then equation (IIL.7) with
initial condition (II1.8) has a solution u(t) in C([—46,0], X,) for
small enough r,§ > 0.

The above Abstract Cauchy-Kowalewski Theorem is obviously equivalent
to a special case of Nishida’s Theorem [27], although our notation differs from
that of [26]. In place of (IIL.7), Nirenberg and Nishida treat the more general
equation dqjl—(tt) = F(u(t),t).

The proof of the Abstract Cauchy-Kowalewski Theorem in [26] proceeds

by showing that the obvious iteration scheme
t
W) = 0 + / F(u*(s))ds
0

converges in X, for small enough r (depending on t).

Our system (III.1) has the form ‘Cll—? = F(u) for v = (z,®). Propo-
sition III.2 tells us that the hypothesis of the Abstract Cauchy-Kowalewski
Theorem holds for the system (II1.1). In particular, for R > 0 small enough,
we obtain the arc-chord condition for every u = (z,®) such that ||(z,®) —
(29, 8%)||x, < R for any (arbitrarily small) » > 0. Hence, the conclusion of

Theorem III.1 follows from the Abstract Cauchy-Kowalewski Theorem. O
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Proof of Theorem 1.6. Applying Theorem III.1, we obtain a solution of
the water wave equation, with the correct initial conditions, in the tilde do-
main. Passing from the tilde domain back to the original problem, we obtain
a solution of the water wave equations as asserted in Theorem I.6.

We have to make sure that, for small positive time, the splash curve evolves
as in Figure 9(a), rather than Figure 9(b).

(a) Good (b) Bad
Figure 9. Two different evolutions of the interface.

This is guaranteed by the hypothesis of Theorem 1.6 regarding the sign of
the normal component of the initial velocity at the splash point. O

IV. Proof of short-time existence in Sobolev spaces
in the tilde domain

In this section we will show how to obtain a local existence theorem for
the water wave equations in the tilde domain. The proof is based on energy
estimates and uses the fact that the Rayleigh-Taylor function is positive.

IV.A. The Rayleigh-Taylor function in the tilde domain. We begin by
recalling the function ¢(«,t), which will be studied in detail in Section IV.C
and in the definition of the Rayleigh-Taylor condition, by the expression

Q*(a,t)

(IV.1) Plast) = g

— ¢lZa(a, t)].

Next we introduce the R-T function:

(IV.2) o= (BRt(E,J)) + |;|BRa(z,w)> i it <2at + “Dzaa) 5t
2

(VQ)(2) - 23 + (VP H)(2) - 24

w
BR(z,& —Z
+Q’ (z,w) + 2‘2a|2za

This function ¢ coincides with the expression 2+ (o, t)-Vp(Z(a, t),t), where
p =po P! Indeed, it is easy to check that

B 2
(IV.3) O+ % 81> = —p — gP5 "+ p*(t).
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And taking the gradient on the equation (IV.3) yields

(IV.4) By + = (vcf) 5] + Q*(#- V)b = —Vp — gV Py L.
In addition, we know that

- I o)
(IV.5) 0(Z(a,t),t) = BR(Z,@)(a, t) + 2|2a(a,t)|22a(a’t>

and therefore

(V.6) Lo(3(a,t).t) = ABRE, @) (0 1)

dt
Bot) Sot)
RICE S ECRRE = o ety
On the other hand, by using (IV.4), we have
(IV.7)
D5(z0,1).1) = AR 1) + (300D DG

= 2 (V@) [8:(0, 1), ) — QX0 1), 1) - V)0(2(0, ), 1)
—Vp( (a,t),1) — gV Py (o 1)) + (9eZ(a, 1) - V)T (E(a 1), 1).
Furthermore, equation (II.12) together with (IV.5) gives rise to
(IV.8)

3 JPvYP Q%0 (e t)
Oz (a,t) = Q*0(3(a, t),t) — Wza(a )+ éZa(a,t)
= Q%(3(a N Qo) o0 i) 5a(a
R ] e LNl XN
Therefore by (IV.1), we obtain
(IV.9) 3o 1) =Q%3(3(a, 1), 1) — B(av, t)m.

By introducing (IV.9) in (IV.7), we have
d_, .
%v(z(a t) t)
(VQ )18z, t), ) = Q*(8(2 (e, 1), 1) - V)T(2 (e, 1), 1)
—Vp( (a,),t) — gV Py (2(a 1))

+QX(3(a, ), 1) - V)30, 1), 1) — (o t)i(’t) V(30,1 1).
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Therefore

d_, . 1 . B 0

(IVlO) 70(2(047 t)a t) = _5 <VQ2) |'U(Z(O[7 t)v t)‘Q - QO(O[, t) 3
— Vp(2(a,t),t) — gV Py L (Z(a, t)).

Next we take a derivative with respect to « in the equation (IV.5) to get

(IV.11)
9ad(Z(a,t),t) = OuBR(Z, )(a £)

Multiplying equation (IV.10) by Z(a,t) and using (IV.11), we learn
d.. . SL
(IV.12) (£v(z(a,t),t)> (1)

= —QVQ - Zy (o, 1)[5(2(a 1), 1)
Plat) o WBR(Z,@) (o, t) - Z-(a,t)

" a0
Pot) (Bt \.

gl b ) EECURR

VR0, 1) 50 0) — VB (R0 1) - ).

On the other hand, by multiplying (IV.6) by ZX(«,t), we have

(IV.13) (%5(z(a,t),t)>-%( 1) = OBR(Z,w) - Z-(a, )

w

W&tga(aa t) - Zi(a, t).
(6% 9

_|_

From (IV.12) and (IV.13) we find

(IV.14)
8BR(Z,w) - Z- (i, ) + matia(a,t)-éj(a,t)
——QVQ- @ il 0P ~ 2D 0,BR(. )00 Z et
plvt) [ @lat) . )
" Talast) (2!za(a t)2> el ) (o)

= Vi(E(e, 1),1) - 23 (@, 1) — gV Py (E (e ) - 25 ().
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Finally, rearranging the terms in (IV.14) yields
— Vp(E(a,t),t) - Z- (o, t)

[0}

_ (@BR(%,&))(@J) + ga(o"?agmz,mm,w) il (a,t)

L _Glant) (8t2a(oz7t) + W%) (o t) + gV P 2 (o t)

2[Za(a, 1) |Za (e, t)]
- Sont) o on st
+Q BR(z,0)(a,t) + Wza(a, t) (VQ -z (a,t)) ,

and then, comparing with (IV.2), we obtain the desired result
—Vi(z(a,t),t) - ZH(a,t) = o(a, t).
Note that for the tilde domain, the Rayleigh-Taylor condition is the same
as in the first domain; i.e,
Vp(a,t) - z5 (a,t) = Vi(a, t) - 25 (ast),
where p = po P! and

Zalant) = VP(2(a 1) - zala,t) = 22 (a,t) = (~IVP(2(a, 1)) - 25 (a, t),

1
«
where J is the rotation matrix (¥ _01).
equations, this implies that

(=JVP(z(a,t))J]) = VP(z(a,t)).

Together with the Cauchy-Riemann

Moreover
Vp(a,t) = VP(z(a, 1)) Vi(a, t).

Hence

(Vpla,t), 2z (. 1)) = (VP(z(a, 1) Vi(a, 1), (VP(2(a, 1)) 25 (o 1))

= (Vi(a ), Zy (@, 1)).

By taking the divergence on the Euler equation (I.1)—(I1.2) and because

the flow is irrotational in the interior of the regions 7(t), it follows that
—Ap = |Vo|? >0,
which, together with the fact that the pressure is zero on the interface and
p(z,y,t) + gy = O(1) when y tends to —oo, then Hopf’s lemma in Q2(¢) yields
o(o,t) = —|z2 (a, 1)|0np(2(a, t), 1) > 0,

except in the case v = 0. This argument was suggested by Hou and Caflisch
(see [31]), although the proof of the positivity of the Rayleigh-Taylor condition
in the nontilde domain for all time was first introduced by Wu in [30].

The above proof shows that o > 0 provided our domain () arises by
applying the map P to a domain Q(¢) with smooth boundary. Here, 0€Q(t)
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may be a splash curve, but we cannot allow boundaries d€(t) whose inverse
images under P look like Figure 9(b).

Nevertheless, since ¢ > 0 for the image of P applied to a splash curve, we
know that o > 0 at time ¢t = 0 in the context of Theorem 1.7. Our estimates
below will guarantee that the condition o > 0 persists for a short time. Thus,
in proving Theorem 1.7, we may use the positivity of o.

IV.B. Definition of c in the tilde domain. From now on, we will drop the
tildes from the notation for simplicity. We will choose the following tangential
term:

_atm [T 2 s (M2 7B
wis) =" [ (@R, et | @sw); s

)

Here and in (I1.12) we find

i+ (z1(ot) + iz(, 1))
i — (21(a,t) +iz(a,t))?

Pyt =Pyl (z(ant)) = log<

and
+ (z1(a,t) + 129(x 4
Q=Q(z(a,t)) = *1 ‘1 (z1(a ?) 2(a, 1)) ‘

4 z1(a, t) +iz9(a, t)

These functions are regular as long as z(a,t) # ¢'. We deal with initial data

that satisfy the above condition and we will show that it is going to remain
true for short time. In order to measure it, we define

m(@)(t) = min2(a,1) — ¢

forl =0,...,4.
We also point out that, because of our choice of ¢(«, t), solutions of (1.19)—
(1.20) satisfy that
|zo(a,t)|> = A(t) forany a € T
as in [14, egs. (2.2)—(2.5)].

IV.C. Time evolution of the function ¢ in the tilde domain. Recall that
we have defined an auxiliary function ¢(a,t) adapted to the tilde domain,
which helps us to bound several of the terms that appear:

_ Qo t)w(at)

(IV.16) o(a,t) = (et cla, t)|zal(a, t)].

We will show how to find the evolution equation for ;. We have
Q*w
¥ = M — c|2q|
and therefore

o2 B Q%w?  2|zy|? -

Q2 - 4|Za|2 Qz

cw,
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which yields

2 2, .2 2 2
()4 (85) 2% e

The equation for w; reads
(IV.17) wi = —2BRy - 2o — 2QQ4|BRJ?
2 2, |2
¥ c*|zal -1
+2cBRy - 2 —0a <Q2) +0a < 0 ) —20, (gP5 ") .
la N——
(1a) o

For the quantity (1) = (1a) 4+ (1b), we write

(1) = (1a) + (1b) = 2¢BRy, - 20 + O <02\za|2>

Q?
calzal?  c|zal?Qa
=2c|BRy 24 + 0? - 0°
|2 / 2 (Q2BR)a'2a C|Za’2Qa
0z B dB— _
{ +org | (@B s S5 0
|20 |? R) _ 2QoBR - z, B |za|*Qa
27@2 5 T Q Q¢ |
and then (IV. 17) becomes
(IV.18)
2 <P2 C’Zcx‘Q T2
Wt = — QBRt *Za — QQQO{‘BR| — 8a @ + 7rQ2 - (Q BR)/B ‘ ’2
4cQuBR - 2o 2¢%|24]?Qq 1
— — — 204 (gP. .
Q QS (g 2 )
Furthermore,
sz QQWt
a " Ao a1 a (e
QQt|za| 2|Za|32 Zat T+ PN i(clzal)
w Qw 1 [ 2
= Q@i — 5 s | @sw); o

+ Q’ {—QBRt < Zo — 2QQ4|BR|? — 04 <‘P22>
2|zq| Q
C’Za‘Z T2
B
+ ﬂ_QQ _ﬂ(Q R’)/B ‘ ’2

. 2
_4cQagR a2 Zx?[ Qo _ 99, (ng)} = Oilelzal)-
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We should remark that we have used that

Za Zat = 5o (Q2BR) - zgdf.
For simplicity, we denote
1 2
(IV.19) B(t) = o / (@*BR)s - 1 |2dﬁ
Computing
w  Qw Q? Q* Qo ppe @7 (902>
= — ———B(t) ——BR; - 24 — R —— 00 | =
A PN R P P R PR R B PR L Ve
(2a)
2 2
+c‘za’B(t)_2CQQaBRza— C |ZOl’QOé _ Qia ( ) —815(0’2,1‘),
T ’ a‘ Q ‘ oz|

we can write

(2) =(2a) + (2b) = —B(t)¢,

and it yields

(IV..20)
_ Q? 902 2 Ra O (9P2_1>
=B~ 5o () - @ (Bme 2+ T)
QO 2BR- 2 QQ, - Q“ 2zl =L Q0 BRI = dy(clzal)

|2al |2l EX

We will use the equation above to perform energy estimates.

IV.D. Definition and a priori estimates of the energy in the tilde domain.
Let us consider for k& > 4 the following definition of energy E(t):

T Q*(2)o

’ 2

(IV.21)  B(t) =1+ |l2llFe1 (2) + 210k 2 Pdoc+ | F(2) 3= (1)

—r |2

2 4
2 2 |20
+ ol (8) + el oy (8) + +>

where

16l
|2(e) = z(a = B)|"
and m(Q?0) = minaer{Q?(2(c,t))o(,t)}. In the next section we shall show
a proof of the following lemma.

F(z) = a,f € [—m, 7]
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LEMMA IV.1. Let z(a,t) and w(a,t) be a solution of (1.19)—(1.20). Then,
the following a priori estimate holds:

(IV.22) %E(t) < CE"(t)

for k>4 and C and p constants depending only on k.

The following subsections are devoted to proving Lemma IV.1 by showing
the regularity of the different elements involved in the problem: the Birkhoff-
Rott integral, z; (o, t), wi(a, t), w(a, t); BRy(a, t), the R-T function o(«,t) and
its time derivative o¢(a, t).

IV.D.1. Estimates for BR. In this section we show that the Birkhoff-Rott
integral is as regular as J,z.

LEMMA IV.2. The following estimate holds:
(Iv.23) IBR(z, )l g+ < CUF ()T + N2l G + llwllFe )
for k > 2, where C' and j are constants independent of z and w.

Remark 1V.3. Using this estimate for k = 2, we find easily that
(IV.24)  [|0aBR(z,w)[[zee < C(IF ()T + ll2l172 + llwl|F2)’

which shall be used throughout the paper, where C' and j are universal con-
stants.

Proof. The proof can be done as in [13, §6.1] since the definition for the
Birkhoff-Rott operator is independent of the domain. O

IV.D.2. Estimates for z;. In this section we show that z; is as regular
as Oy 2.

LEMMA IV.4. The following estimate holds:

4 J
1
V.25 < C | IIFR)Z 2 2 R
( ) lztl e < <H Iz +||Z||Hk+l+||w||Hk+§m(ql)(t)>

for k > 2, where C and j are constants that depend only on k.

Proof. 1t follows from [13, §6.2]. The only additional thing we need to
control is an L> norm of @2, which we can easily bound by the m(q') terms
that control the distance from the curve to the ¢! points, more precisely, the
one that controls the distance from the origin. ([l

IV.D.3. Estimates for w;. This section is devoted to showing that w; is as
regular as Jyw.
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LEMMA IV.5. The following estimate holds:
(IV.26)

4 J
1
<C F 2oo 2 2 2
[well e < (H (2)lz +HzHHk+z+IIwIIHk+1+||soHHk+1+l§:07m(ql)(t)

for k> 1, where C' and j are constants that depend only on k.

Proof. We use formula (IV.18) and proceed as in [13, §6.3]. Note that
in [13] an exponential growth appears in the bound of the estimates for the
nonlocal operator acting on w; (see equation (IV.18)). However, in a recent
paper [15] the authors get a polynomial growth for the operator in both two
and three dimensions. Note that even the exponential growth is still good
enough to prove Theorem I.7. U

IV.D.4. Estimates for w. In this section we show that the amplitude of
the vorticity w lies at the same level as d,2z. We shall consider z € H¥(T),
p e HE3 (T) and w € H*2(T) as part of the energy estimates. The inequality
below yields w € H*1(T).

LEMMA IV.6. The following estimate holds:
(Iv.27)

4 J
1
w1 < C (IIf(Z)H%oo + 1213k + lwllFm—e + lllzm— + )
1 " " ; m(q')(t)

for k > 3, where C and j are constants that depend only on k.

Proof. We can apply the same techniques as in [13, §6.4] since the most
singular terms are treated there and the other terms are harmless and can be
easily estimated. The impact of @ is now taken into account by the m(q')
terms (which now cover all of the points ¢°, ..., ¢%). O

IV.D.5. Estimates for BR;. Here we prove that the time derivative of the
Birkhoff-Rott integral is at the same level as 92 z.

LEMMA IV.7. The following estimate holds:

(IV.28)
4

J
1
IBR¢|[ggx < C (IIJ'"(Z)I%OO +lellfpse + Il + el + D2~ >
= m(d)(®)

for k> 2, where C' and j are constants that depend only on k.

Proof. We proceed as in [13, §6.5], where BR; appears in formula (IV.2).
We use (IV.25) and (IV.26) to bound z; and w; in BRy respectively. O

IV.D.6. Estimates for the Rayleigh-Taylor function o. Here we prove that
the Rayleigh-Taylor function is at the same level as 02 z.
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LEMMA IV.8. The following estimate holds:
(IV.29)

4 J
1
<C F 2Oo 2 2 2
ol < <| (D)o + N2l 7rs2 + llwll g + el + l; () (®)

for k > 2, where C and j are constants that depend only on k.

Proof. We proceed as in [13, §6.5] using formula (IV.2). There is a new
2
term in the definition of o, namely Q 'BR(z,w) + ﬁza’ (VQ)(2) - z+, but

this term is less singular than BR(z,w) - zo. Hence, the new term causes no
trouble. 0

IV.D.7. Estimates for o;. In this section we obtain an upper bound for
the L* norm of o; that will be used in the energy inequalities and in the
treatment of the Rayleigh-Taylor condition.

LEMMA IV.9. The following estimate holds:
(IV.30)

4 J
1
loellpee < C {IF )0 + 2017 + ol + el + > —rrs |
t H H " l; m(q")(t)
where C' and j are universal constants.
Proof. Again, as in the previous subsection, the new term is less singular

than the terms treated in [13, §6.6]. Hence we deal with them with no problem.
([

IV.D.8. Energy estimates on the curve. In this section we give the proof
of the following lemma when, again, k = 4. The case k > 4 is left to the reader.
Regarding ||04z(|3,, let us remark that we have

2 2
1V.31 84 2 — Q J|Za| 2d < |Za| / Q g 84 2d )
( ) H aZHL2( ) QQO_‘ | | | Q= m(QZO')(t) T |Za|2| aZ| Q

LEMMA IV.10. Let z(a, t) and w(a,t) be a solution of (1.19)—(1.20). Then,

the following a priori estimate holds:

d T 2
(1v.32) (Il + / ) fjaj;mszﬁdw IF ()l ) < S(t) + CEP(2)
for
(1V.33) / 2Q% 2 8 . (3’c fp)da

and k > 4, where C and p are constants that depend only on k.
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(The term S(t) is uncontrolled, but it will appear in the equation of the
evolution of ¢ with the opposite sign.)

Proof. Using (IV.25) and (IV.31) one easily gets

SlelBe < € [ (2(@) ()| +1035(0)]|03(e))da
< CE"(t).
We obtain
d
@Ilf(Z)H%oo < CE"(1)

in a similar manner as in [13, §7.2]. It remains to deal with the quantity

d 4 T QPN a2 4 a4
dt/ . |2ya +[2da /_W(\zaP) 01 da+/ |Qaaz 0 zda
=0 + I>.
The bounds (IV.25), (IV.31) and (IV.30) give us
L < CE"(t).

Next for I, we write

s 2 T
Iy = / 2070 7912 9 (Q*BR)da + Q"a‘* 0% (cO2)da

|zl N
=Ji+ Jo.
The most singular terms in J; are given by Kj, Ko, K3 and Kjy:
04z — 022t
Kl:PV[ﬂ[W‘a|2 |Z— /|2 UJd,Bdaa
_ (z—2 )J— / 4 4 N 7
Kg———PV ’ ‘2 0,2 APy (z—2") - (052 — 0,2 )w'dBda,
—7 |Ra Z
K szv/ / ~ ) ot fapda
3 ) \Za|2 2 — 22 @
and
Q3
Ky = / P |284 -BRVQ(2) - 9% zda,
™ T |Ra

where the prime denotes a function in the variable o — f3; i.e., f' = f(a — f3).
Then we write

T Qo) o (h2(0) — A=)

—rJ—7 |Zoz|2

1 ™ ™ 4
= 77T\Za|2 PV/_7r /_W(?az(a)

1
Ky =—-PV
™
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.(5342’(04 532( )) Q*(a)o()w(B) + Q*(B)o(B)w(a)
\ z(a) — z(B) 2

7T%PPV ﬂ/ O (
(9a2(a) = 932(8)) " Q*(a)a(a)w(B) — Q*(B)a(B)w(a)
|2(ar) = 2(B)[? 2
= L1+ Lo.

dBda

dBda

That is, we have performed a manipulation in K7, allowing us to show that
Ly, its most singular term, vanishes:

Ly = 2Pv/ / 952(
7| za |

(Oa2( )— ( )) QY () (a)w(B) + Q1 (B)o(Bw(e)

|z( 1= 5 dBda
27T|Za‘2 PV/ B (92 2( 22(8))
(9a2(e) = 032(8)* Q4( Jo(ar)w (6%+Q40%0<ﬁ%u@wdﬁda
|2(a) = 2(B)[? 2

=0.

The term Ly involves an S.I.O. (Singular Integral Operator) acting on 922 («)
thanks to the minus sign between the two terms Q*ow. One can show that

Ly < O||F(2)[7 2l lwllcrsllollons|Qlcrs 9521172 < CEP(2).
Inside Ko we find that (z — 2’) - (922 — 922') can be written as follows:
(Iv.34) (z=2)- (D22 —02Y) = (2 — 2/ — 2a8) - (922 — D12))
— Bl2a = 2) - 057
+ B(za - 0%z — 2 - 922).
Then using that
(IV.35) 2o 0%z =—30%2. 032,

we can split K as a sum of S.I.O.’s operating on d%z(a), plus a kernel of the

form % acting on 02z - 93z with n € C2, allowing us to obtain again the

estimate
Ky, < CEP(t).
Note that below we will also use a variant of (IV.35); namely,

(IV.36) 2o - (082 —012) = (2, — 24) - 022 —3(0%2- 032 — 022 - 537).
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The term K3 is a sum of

L Qe T [— ) o .
Ly = 2 / - a 04w dBd
1= L e _ﬂ{rz—sz a2 tan(3/2) | 2 P

plus the following term:
™ 4 8
L4 = Q ‘ |4 H(8 )dOé
a

We can integrate by parts on L3 with respect to 3 since 9w’ = —85(8gw' ).
This calculation gives an S.I.O. acting on 92w, which can be estimated as
before.

Next in L4, we write

L4—/ Q4822 (83)

|Za|4

and decompose further

T 64Z-ZJ‘ Q2 QQ
i = 2 _Ya a A 3 —_A 3
4 . Q g ‘Za’:s 2’205‘ <8ozw) (6a(2’2a‘W)) da
4 Oz 2t
+/ 2Q? " |3 A(D2p)da
& 8
+/ 2% ‘3 Do 2\ (38 (c] 2l o
=M_1+S+M

for S(t) given by (IV.33). In M_; we find a commutator that allows us to
obtain
M_; < CEP(t).

Using (IV.15) for M;, we have

a
_ _2/ H(Q2 %2 . )64(C|za|))da — N+ No+ Ny + Ny,

where
4
N1_2/ Q2az‘3 )Q?BR., - |8|d
Oz 2t
Ngzz/ H(Q2 222 22 ) 20  BR - 22 da,
- | Oc‘ | Oé‘
Ny=4 [ H(Q% a| B )QVQ 932BR - |Z ‘d :

and Ny is given by the rest of the terms, which can be controlled easily by the
estimates from Section IV.D.1 for the Birkhoff-Rott integral.
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Regarding N; a straightforward calculation gives

Ny < CEP(1),
and analogously for N3,
N3 < CEP(t).
Again, in Ny we consider the most singular terms given by
™ 02z 2t (022 -0 ’)
O:/H27——PV/ W'dBda,
=) @ ol 7 e
02z
Oz = —/ H(Q% =
( e |3 )IZ |
PV =20 oy (0t — 014\ dad
- \z—z’\‘l z 02— 0,2 )w dadf,
Q% 8 225N\ o Za 4
03_2/ )@ - BR(=, w)da

Using the decomposition (IV.34) we can easily estimate Oy as in our discussion
of KQ.
In O3 we find

T Y A 1
Z - BR(z,0%w) = -2 . / (2 =2 = 2aB)” pa g,

2t J_x |z — 2'|?

Above we can integrate by parts as in our discussion of Ls. We find that
O3 < CEP(t).

Next we split Oy into an S.I.O. acting on (922)*, which can be estimated
as before, plus the term

P = / ) H(Q%a 2k ) QA% - A((942) ) dar

’Za|3 |Za|3

Then the following estimate for the commutator,

Za o

|Q%w o A ((932)1) _A(Q2w|z 5 (1)1l < CEP(2),
yields

Py < CEP(t) + R,
where
i Otz 27 2,
R= _/_ Q* 203 0a(Q? B |3(8§ ) da

Using that



1104 CASTRO, CORDOBA, FEFFERMAN, GANCEDO, and GOMEZ-SERRANO

we can write

L 4, 1
R / Q% Oz 2] 8a(Q2w)6°‘z Za g

203 |20 |3
@ 02z Otz 2t
2 a 2 « [o}
——=\d
+/ Q%o | a‘3 = Qw ( ’2a|3 ) «,

and a straightforward integration by parts let us control R. This calculation
allows us to get

P, < CEP(t).
We can easily show that

Ky < CEP(t)
because we can bound Q3¢ BRVQ in L™. So finally we have controlled J; in
the following manner:

J1 < CEP(t) 4+ S.
To finish the proof let us observe that the term Jy can be estimated

integrating by parts, using the identity 01z - 9,2 = —3022 - 922 to treat its
most singular component. We have obtained

2,
1
/ |Q |284 - Dp208cda =3 PAER 0a(Q%002 2 - 022)03 cda,
T [Ra T [Ra
and this yields the desired control. O

IV.D.9. Energy estimates for w. In this section we show the following
result.

LEMMA IV.11. Let z(a, t) and w(a,t) be a solution of (1.19)—(1.20). Then,
the following a priori estimate holds:

d
(IV.37) llelea(t) < CEP(t)

for k > 4, where C' and p are constants that depend only on k.

Proof. We will discuss the case k = 4, leaving the other cases to the reader.
Formula (IV.26) shows easily that

ol (o)
4 J
< (\If(z)llﬁoo(t) + 20 0)+ o ) + el )+ 3 )
=0

which together with (IV.27) yields

d
—lwli=(t) < CEP(). O
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IV.D.10. Finding the Rayleigh-Taylor function in the equation for Onp:.
In this section we get the R-T function in the evolution equation for d, ;.

LEMMA IV.12. Let z(a,t) and w(a, t) be a solution of (1.19)~(1.20). Then,
the following identity holds:

(IV.38) par = NICE — |<pw - Q%Z‘Tz '? ,
where NICE satisfies

(IV.39) [ " A@BF T 0)0E2(NICE)da < CEP(t)
and

(IV.40) INICE|| gre—2 < CE"(t)

for k > 4, where C' and p are constants that depend only on k.
Proof. We will give the proof for £ = 4. From now on, when we show that
a term f satisfies

| M@)o sda < CEE) and| Sl < CE )

we say that this term is “NICE.” Then, f becomes part of NICE and by abuse
of notation we denote f by NICE. Notice that, whenever we can estimate the
L? norm of AY/202f by CEP(t), then f is NICE.

We use (IV.20) to compute

o= =B 00 (50 (5) ) ~(@2 (o 22+ 082 ey

2|za| EN

(3a)

(o) (Zmta)

|2al
(3b)

Expanding (3) = (3a) + (3b),
(3) = (3a) + (3b) = (Q?BRt ) ~ (clzal)ar

al

Ia\

(@8R,

Ia\
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- -amre- ().
Zo

— (%l B®), + (Q*BR)a - ()  2(QQBR). -

|2al !za\

We use that

to find
(IV.41)
82 (902) Qa 2 J_Zocoz . ZJ‘
at — -B a ~ o B - — e} B
Pat (t)(p 2‘2a| +0, ’ZQ‘Q Q Ri -z |Zo¢‘3 (’Z | (t>)t

(®) (6)

2 Lzat ZJ_
(Q BR) ’ ‘3 +2(QQtBR)a ’Z ‘

(13) (7)

(), (sen),

(8) 9)
Za Qa
(omm = 00.) (o) (Lot

|2a
(10) (11) (12)

a

The term (|z4|B(t)): depends only on ¢, so it is going to be part of NICE.
Now we have

(4) = —B(t)pq is NICE (at the level of ¢,),
20,2
(5) = %@ _ Pa P

2|zq] a ’Za| m
The first term is at the level of ¢,, so it is NICE. The second one is the
transport term that appears in (IV.52). Next,

(6) — 8a ( Qa 802> _ Qi902 + QQa(P(Pa + = (Qa)

[a70'M

|24|Q 2a]@*  |24l@ |2al

Above we find the first term at the level of z,, so it is NICE. The second term
is at the level of ¢, so it is NICE. We write the last one as

Qa :902 (v ) v J_Zaa Zl
<|za|> g \VeE ] +Q @ TP
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The first term is at the level of z,, so it is NICE. For the second term we

have used that
(Z> _ ZaaZa Za
|24 | a ‘Za|2 ’za|

Finally,
2 1
QO J_Zaa * Za

6) = NICE + =VQ -z} ,
(6) 0 e

Za
(7) =2(QQ:BR)a - —

|24

= 2QaQ:BR - éfa +20Q (&) BR - 24 + 2QQ:BRq - %

The first term is at the level of z,, 2z, BR ~ z,, so it is NICE. We use that

Qu_ Qut (VO 20 _ (qry. ) —vare) (L)

|za B EA B |24l |za @

Using equation (IV.19),

Za " Rat
Bt
PAE (t)
and
(Za) _ e Fa o
|ZOé| t ‘Za|2 |Zo¢|7
we find that
L
(1V.42) Do _ z (VQQ(Z) ' Za) +VQ(z) - 2t za
|ZO¢‘ | Oc‘ ‘Zoz|

L VQ(2) - 22 B(1).

|za |

That yields

(7) = 2QQBR)a

|2al

= NICE + 2QBR - 24 2 - <V2Q(z) : Z“)

EA

NICE (at the level of z4,2¢,BR)
z
—B(t)

. |za

NICE (at the level of zq,2¢,BR)

oL
+20BR - 2,VQ(z) - 2+ Z“; ’f;“

|24

+2QBR - 2,VQ(2)

+200,BR,, - —*.

|2al
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Finally,

W)=2«thRM£§

— NICE + 2QBR - 2VQ(2) - 2 LZ“” ;L +20QQBR,, - ’%

Then )
(8) = — (Qz (gpz‘l(z))a> _ <Q2VgP21(Z) . Za)
Zal| a |2a a
= —2QVQ - 2 VgP; ' (2) - |a—wf%ﬁ(v%P;%@-;3>
NICE (at the level of zq) NICE (at the level of zy)

L
— Q*VgPy l(z)  ap oe e

which means

12’ z ZJ‘
(8) = (¢<(»ﬂ = NICE — Q*VgP; '(2) - 24

|2al |2al?

Next,

(9) = (QQq ‘) = QaQﬁgﬁ
a (0%

NICE (at the level of za,zt)

We use (IV.42) to deal with g—zt' We find that

+QQ“w+Q@<||)

|2al

(9) = (QQt‘a’) ~ NICE + QuVQ(2) - - iffa,i +QQt<|a>

For the next term,

(10) = <2cBR QQQ> —2¢BR - B ‘QQ <QCBR ) QQ.

|2al a |2al

NICE as before

1 Raa” ZL R 2
—2eBR - 24QVQ(2) - 22 e QCBR‘WQZQ'(V Q(2)) - za -

NICE as before

Therefore

|za ||

(10) = — <2cBR- ZQQQQ) = NICE — <2cBR ) QQa

o

Zaa * 2+
—2¢BR - 2,QVQ - 2+ a

* |zal?
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Next
_ ro o Qa 02’204‘ Zaa ZJ_
1) == (G al) == (Phaal), G~ VR e
2 2
_ Za'(v Q(Z) ) 2| a’+ 2|Za‘-

Q2
The fact that the last two terms are NICE allows us to find that

20, |2 L
(11) = - (G2lzal) =NICE - (Paal), L - Toebvgpe) s e

Finally,

(12) = - (rBR| %)a

|24/
3Q%QABR]”  @°
EX | Zal|

NICE

(IBR*)a@Q

1
—ﬁusm? (V2Q(2) - 2) —Q*BRIPVQ(2) - 2 ézj‘“ \2’,

NICE

which implies that

(12) = - (, L bR Qa>a

~NICE — & (BR)0Q. — QUBREVQ(:) - 2

o 3
Za Za

We gather all the formulas from (4) to (12), keeping term (13) unchanged.
They yield

vat = NICE — 20,
|zl
p* 1 Raa z 2 Lzaa Z 2 1 Zaa ZJ‘
+ 7VQ(Z) Za 3 —Q"BR; - “a 3 -Q VQPQ ( ) “a 3
Q EX |za |2

(16a) (15a) (15b)

+QWVQ(2) - 2 LZTt ,’i, +QQt<

(18a) (14a) (18b)

1
+ QQ:2BRa - ‘z | <2CBR > QQuo —2¢BR - 2,QVQ(2) - 74 22 ‘g’

‘a| |a

J_Zat ZL
7l ). +2QBR - 2,VQ(2) - 2 PAE

(14b) (17a) (16b)
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2 Qa 02‘Za’2 1 Raa” ZJ‘
—(c |Za|>a6_ Q VQ(Z)'Zoc ‘Za|3 _ﬁ(‘BR| )aQa

(17b) (16¢) (17¢)

1 L
—QUBRIPVQ(z) 2 55 +(QPBR)a 2y 15

(16d)

We compute
(14) = (14a) + (14b) = QQt(’ ‘) L QO2BR, - 2o

|za
QtQ2< w > +2@Q2BRQ‘ Fa

Q“ \oll). "0 el
Qr, 5@ w5 o, @
=280~ 28 (@agy ~ 2 @aBR - 5 + 25 B,

The last formula allows us to conclude that (14)=NICE.
We reorganize, gathering

(15) = (15a) 4 (15b),
(16) = (16a) 4 (16b) + (16¢) + (16d),
+

(17) = (17a) + (17b) + (17c)
and
(18) = (18a) + (18b)
as follows:
1
— Zaa Ry
fat NICE — 2 0n QA (BR, 25 + VgFy ' (2) - 22) 123
(15)
21 20| BR -z Zoa " Za
_0* (BRI |zl 5 o ¥ L Zaa 2y
Q<| |+ Q4 +2c Q2 Q4 VQ() Fao |Za‘3

(16)

2 1L ”at” Zé_ 1L Rat " zi
+ (Q“BR)q - 2 PAE + (Qw+2QBR - z,)VQ(2) - 2, PAE

(18)

(e o 2) o

(17)
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We add and subtract terms in order to find the R-T condition. We recall
here that
_ 2 1 w ' 1
= | BR;+ —BR, ] - —_ —_ .
g < t + |Za| a) zZy + 2|Za|2 (zat + |Za|Zaa) o

2
VQ(2) 25 +VgPy '(2) - 2.

w
+QBR+ 7=
2|2al

Then, we find

Pat =NICE — 4 T Paa
|24
1
Zaa * 2y
—Q? ((BR# ? BR, > +2|°J2< at+|f|zaa)»zj“+VgP2_l(z)ozi‘) P

|2al

2 L Zat " Zy 2<<P w ( ® ) J.)Zaa'z
BRQ' BR « T faa | T *q
HQBR)e 2T o Vet g0 %) T
(19)
A|zal? BR - 2z, Zoo - 22
—Q3(BR2+ +2c - )VQ -
[BR| Q4 Q? Q* ()2 |2a |3
Lzat ZL

+(QuH2QBR - 2)VQ() 25 1

_<Q3(||S§2)a+(c2|;a) i (e M) Q) ..

Line (19) can be written as

1
Zat * Rq
QQBR L
(19) = (Q*BR), - =4 25
2 1
Y Zaa - Z Q*w 4 1 Raa " Zy
+ Q*’BR, zl + <z + —=z >'z —_—
“ |Za| ‘Za|3 2| a|2 o EA o “ |Za|3
i 1
Zat 2 P Raa Ry
Q’BR),, - 2z Q’BR _Ffea o
= (@BR)a- 2 5= + (QBR)- % 470
Q*w L, P 1\ Zaa - 2z
+72|Z ‘2 Zat * Rg, +m2aa Za O[z |3a
(07 (e} o
oL
2QQ.BR -z} -0 Fa
EMREN

Q®w 1 1, 9 1 I
T el Jeal? \ ot % T [Fee Fa | Faa Za

- QQQQBR-Z§|Z oy



1112

CASTRO, CORDOBA, FEFFERMAN, GANCEDO, and GOMEZ-SERRANO

1 2w
= |Z ‘3 (Zat : Zi_ + ‘;0|zo¢oz Z ) ((QZBR)Q Z + 2? ’2Zaa z
«a «a Za
oL
~2QQuBR - 2}t - 00 e

|2l

|2a |3

We expand z,; to find

We denote
(IV.43)

We claim that
(IV.44)

where

(IV.45)

That means

Thus

We write

D(a) =

part of AN, at the level of z4

(19)

1 2 L Q% )
— B o oo ”
oo (@B 4 5
© Zaa - zL
T RQBR ZL| Tl
« Za
2 QQW 1
D(a) = (Q°BR), 2|za|22aa zy -

D(a) = AN(a) + [z0|H (Datp),

|AN|| gz < CEP(t).

(D(a))* = NICE.

J_ ¥ Zaa ZL
|Za’3

(19) = NICE — 2QQ.BR - 2

‘za|

Ly [,

part of AN, we use (IV.36)

2QQuBR - 2+ Va7 %a) " Za yq5
N—————

1
—Q*= PV/MZO‘(Z —2') (20 — 2)W'dpB
part of AN, we use (IV.34) and (IV.35)
2 Q*w 1
+ Q“BR(z,wq) - z —1—2’ a|2zaa Czg

AN + L H(wa)
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Therefore
D(a) = AN + |20 Q2H ( =~ AR
= [e% 2‘ a| 2‘Za|2 (0704 (6%
Q*w Q*w 1
= AN o H Y aa " <q
+ |24 <<2|Za| . +2|Za|2z z
2 Q%w 1
= AN + |24 H(Oat) + H ((clza]*)a) + DIRERIEE
AN H H((Q?B Qw 1
= + 20| H(pa) — <(Q R)a - za) + Wzaa CRa
We have
o )J_ .z
(Q°BR)4 - 2o = 2QQuBR - z, +Q2—PV / —O‘/P“w’dﬁ
—_——
AN
1 (z—2) L - Z
2 - o
AN, we use that (z—2')L za=(2—2"—B2a)+ 24
L
9 L -
—P ——w.d
+ Q27T V/ |z — 2|2 Wadh
AN, we use that (2—2')L -za=(2—2'—B24)+ 24
For the second term on the right, one finds
— 4 _ 94 /
( PV/ 20 = %) ’dﬁ) PV/ (%% Za Oo? ,2 Z%’dﬁ
|z — 2 |
—PV/ Zo“:zf“%w’dﬁ 0tz 4 —PV/ Vo " %) Fag3 g
PV/ ,’4 “a (z—2)- (832 — Oizl)w'dﬂ + Lo.t.,

where in l.o.t. we gather the terms of lower order. Then, all the terms above
can be estimated in L? except the first one on the right. That is equal to

5.1
EH <Q28az Zaw>

2 | 20|

plus a commutator that can be estimated in L?. This means that

(@°BR)a - 20 = AN + H (Q?ZL o w).

|2a
Taking Hilbert transforms,

ZJ' 2o

|2al?

~H ((Q*BR)q - 24) = AN — H2 (QQZW "2“ ) AN + Q2 w.
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Using that 22, 24 = —Zaa-Za We complete the proof of (IV.44). Thus (19) yields

Pat = NICE — i‘paa
|2l
— Q2 ((BRt n ‘f’BRa> 2k

1
w _ Zow * 2
TR (Zat+|;p|zaoz> -25+V9P21(2)-Z$> e
« «
3 9 02\za|2 BR -z, ¢? | Zaa " %y
—Q° | |IBR]” + 0 + 2c 2 o VQ(z) -z

ENE
L
+ (Qw + 2QBR - 2,)VQ(z) - 2+ ZT: EO‘
3 2 2
_ Q°(|BR| )a+ (c ’za|)a+ 2¢BR . 2% Q) Qu
EN Q |24l a
(20)
O Zaa - Zr
—2QQ.BR - 21 a
20| |2al?

(21)

For (20), we write
12¢[* = QBRI + ¢®|24|* + 2Q*cBR - 24

(2> _ Q*BR]* | [zl Za
= + + 2QcBR - —.
Q|zal EX Q |24/
Now )
(20) = NICE — (gt\L )|“ Qo
(0%
which means
(20) + (21) = NICE — (|Zt|2)°‘Q — 2QQ.BR - 2L P Faa s
Q|zal “ “ “Nzal |2al®
We write
Ra il i‘
Zat = (Zat : Za) W + (Zat : Za) > |2
(0% (6%
only depends on ¢

1

z
= B(t) za+t ((Q2BR)a ’ Zch_ + Czaa - Zi_) Za2

See (IV.19) “

L 1

Z ‘% 1 2o

= B(t D a T .

(t)za + & PAE |Za‘zaa z; PAE

as in (IV.43)
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Writing z; = Q?BR + cz, we compute

L
ot 2 = Q*BR - 2,B(t) + DQ?BR - B |2
—_—
NICE \—z—a-’
NICE because D is nice
o J_
— T Zaa 2L Q’BR - 5 +cB(t t)|2al? .
|24 \ al —_—
NICE
To simplify we write
J_
Zat - 2 = NICE — =244 - 24 Q*BR - 2.
Iz | \Za!

Setting the above formula in the expression of (20)+(2

(20) + (21) = NICE .
This yields

w =NICE — 2 0.,

|2al

s ((BRI*U@BR)

1
w Zowor " 2
ton (zat + ‘pzaa> + VgPQ‘l(z)> e
2|z |2l

2 2 BR. - o 2 o 1
_Q3 (’BR|2—|—C ‘Za’ + 2¢ Z o ¥ )VQ(Z)ZLZ a Ry

Q* Q? Q*

ot
+ (Qw + 2QBR - 2,)VQ(2) - 2+ ZT; ;a .

We now complete the formula for ¢ in (IV.2) to find

1
at = NICE — 25, — Q%0200 "0
|2a |24
w 2 Zaa * 2
+Q3 BR + VQ 1l raa” ~<a
PIPAERS “ Jzal?
(22)

2 Oc2 B Ao (770 +
+Q3(—\BR2—C’Z‘ _ g BR2 +‘p>vc2(z)-ziz “a

Q* Q? Q*

+ (Qw + 2QBR - 2,)VQ(2) - 2 LZTt ;l

(24)

1115

1) allows us to find
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Expanding
©? B w? Aza|*  we
QY 4zl QY Q¥
we find
(22) + (23)
2 1
3 od w BR: -z, wc | Zao " Za
= 55 + BR- —2 - — |V . ]
@ (g PR e 2 g ) VO A
Writing

Zat * Zi‘ = (QQBR)Q . Z(i_ + CZoor * Z(Jl_,

we obtain that

(24) = (Qw + 2QBR - 2,) VQ(z) - zéw

+ (Qw +2QBR - 2,) VQ(2) - Ziczoﬁéé-
Thus
(22) + (23) + (24)

2

1

3 w w 1L Raa " Zg

—Q* (-2 +BRz, L P00 %o
Q (2‘Za|2 +BR -z |Za’2>VQ(z) z; e

+ (Qw +2QBR - 2,) VQ(2) - 2

|2al?
— QVQ() -2 (w+2BR- 2,) (;ﬁz o (62213;{&)Ig Zi>
=QVQ(2) -zt (w+2BR - z,) ]zi\?’D(a)
= NICE.
Finally, we obtain
Yot = NICE — ﬁ(paa_Q2Jzaa'Zo% -

| a| |Zoz‘3

COROLLARY IV.13. If we disregard the condition on the H*=2 norm for
the definition of the NICE terms, imposing only the first condition, then

2 _Raa” Zé_
Yat = NICE — Q“c 7
EX
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IV.D.11. Higher order derivatives of o. In this section we deal with the
highest order derivative of the R-T function. We show that

LEMMA IV.14. Let z(a,t) and w(a, t) be a solution of (1.19)~(1.20). Then,
the following identity holds:

(1V.46) OE1(Q%0) = ANN + |20 [H(9E " 00) + oH (0Lp),
where ANN satisfies
(Iv.47) [ANN]|z2 < CEP(t)

for k > 4, where C' and p are constants that depend only on k.

Proof. We show the proof for £ = 4. From now on, if a term f satisfies
Ifllz2 < CEP(2),

we say that this term becomes part of ANN. By abuse of notation we will
denote f by ANN. We recall

2
Q% = Q@ (BR + 2 BR, ) -2t + L (o + s ) -2t
‘Za| 2|Za’2 |Za’
2

BR+ ———5z24| VQ -2z + Q*VgPy (2) - 2t .

3
L GENER

this term is also in H3

this term is in H3 so its third derivative is in ANN

We write

Q*w Y L
2|Za‘2 ot | a‘ ‘o

2| 2 ( QQBR zé + CZaa - zof + %zm . zj)
Ot (0%

m P(Q%R Zé*(*wﬂ>%”49

2
( (Q*BR), - 25 + %zm . zé)

2| a!2

2|Zo¢’2 D(a).
Above we use (IV.43) and (IV.44) to find

QQW ' 1 Q2w
V.4 Y it e ) 2t = AN H(py),
(IV .48) IPNE Zot + ‘Za|z z + PN (pa)

where AN is as in (IV.45). The remaining terms in Q% are

L=@Q? BR, - z1.

M
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We take three derivatives and consider the most dangerous characters:

03(L) = My + My + M3z + ANN,

where
2
M, = Q*BR(z, 03wy - 2+ + ?z TBR(z,@iw) -zt
(07
1 (™ (3 —032) =
Mo = 27/ o a~t a /d
2 =@ 21 J_x |z — 2'|2 wdp
QQSO:[/T( (832 — aéz/) i zaw/dﬁ
|2al 27 J_# |z — 2'|? ’

Q* [T (2—2) 24 3 3
M3 = - /7r W(Z —2') (92 — Oz)w'dfs
Q% [T (2—2) 2
|zalm Jor |2 — 24

(z—2)- (922 — 92\ dB.

Here we point out that in order to deal with BR; in the less singular terms,
we proceed using estimate (IV.28). In My we find

Q*w

2
= mA(@izt ca) + PN @2 2) + ANN,

M.
? PIERE

For the second term, we use the usual trick
83,2 e = —3(’922  Zaa-

For the first term, we recall that

1
|za|2 =A(t) = 2o Zat = §A'(t) = (20 2at)a =0

= Zaa * Zat T 2o Zaat = 0= Zaao  Zat 22&04 “Zaat 1 2o Zacat = 0

= 2o Zaaat = —2Zaa * Zaat — Zaaa * Fat-
This allows us to control Ms. For Ms, we find

Q*w

M3 =——"—
|Za|2

A(zq - Bizt) -

so it can be estimated as M,. There remains M;. Using that (z — 2/)* - 2+ =

(z —2') - 24, we find

2
(IV.49) My = S H(D3w) + ;2;' H(dpw) + ANN.
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We compute
2 2
(IV.50) % H(03w;) = <a3 (Q2 ) ) + ANN
t

= H(02(120l0)e) + H(93(|2alc)r) + ANN
= |2a| H(OP¢1) + H(020,(—(Q*BR)a - 24)) + ANN.

We compute the most singular term in

2 3. /\L .
920,(—(Q*BR)4 - 20) = — Q/ (%% t‘;aazt) 2 /a8

27 — 2|2

T _ L.
T NG T o

T Jox |22

extra cancellation in (z 2t za=(2—2"—2za8)1 20

PV/ =)z widf +ANN.

extra cancellation as above

This shows that
Q*w

2 . 2 X _
90t (—(Q"BR)q - za) 2|20 |2

A(D3 2 - z4) + ANN.

That gives

Q*w
2|Za‘2

B20H(—(Q*BR)a - 20) = —A ( ot ) | ANN,

which implies

2 2 = QQUJ
HUGEO (@B ) = 0 (525

2
:—2?2728 (832t z, )+ANN.

32t - za) + ANN

Plugging the above formula in (IV.50), we find that

2
Q H(Pwy) = |za H(O2 1) — 2? “”2 (032 - 25 ) + ANN
3 Q2 3 2
= |zl H(0%e0) = 5750 0o (93(Q°BR) - ;)
Q*w

—2’2 |28 <084z 2 >+ANN
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As we did before, we expand d,(93(Q?BR) - z1) to find
(02 (Q’BR) - 21) = QQVQ( )-022BR - 2zt

4., 4/
PV/ 82 %) Za 145

/|2

PV/ 2= 7) — ) (012 — 92\ dp

\z—z’\‘l

PV/ ,‘2 M E) 5 510/ dB + ANN.

Therefore, we can use (IV.34), (IV.35) and (IV.35) to show that the most
dangerous term is given by Q%4 H (dAw). It implies

0u(0(QBR) - =) = Q* S H(0kw) + ANN,
and therefore
2, 02
S H (o)

COq (842 2z )—i—ANN

2
& H(0300) = |zl HD 1) —

Q%w
2|zq|?

We use the above formula and expand ¢ to find

2
M, = - H(33w,) + @ 2 H(8 w) + ANN
2 2|zq|
_ 3 _g 4N QQW 4
= |2alH(9ap1) = =5 cH(04w) 2|Za’2ca (047 23 ) + ANN
= |2 H(O3pi) — c|zo|H [ D2 Quw Qw ——— 0, (84z-zL)+ANN
“ “ “ 2|zq] 2|Za’2 “ “
= |20l H(D3¢1) = ¢lzal H (0a¢) — c|2al H(95(c|2al))
2
—;fz‘"; cda (942 - 2) + ANN.

We will show that

2
(IV.51) — |z H(D2 (c|2a])) — mcaa ((942 2z ) ANN.
It yields
2 2
Q H(O3wy) + Q% H(02w) = |2a| H(92 01) — c|za| H (aigo) + ANN,

2|z
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which together with (IV.48) allows us to obtain (IV.46). We have

—c|za|H(92(c|2a])) — 2? (T O (8;1; : zj)
2

_ 4 2 Q7w 4 1

= —cH(Oa(clzal") = 57 5¢0u (a7 - 20)

= cH(02((Q*BR)q - 2a)) — ;f “|’ c0a (042 - 225) .
We repeat the calculation for dealing with the most dangerous terms in

2
(@ BR) - 70) = A <a§zi . za;f’z) £ ANN.

We recognized, as before, terms in ANN using that (z — 2/)*

cancellation. We find that

- Zq glves an extra

HOR(QBR). 20)) = %0, (94 24)

2 2

2’2a|2 2‘2a|2

_ a1 wQ? Q*w 4 1
= —c0O, (8az -za2’2a‘2> - Q\ZQIQCaa (6az . za> + ANN.

Using that 9221 - 2z, = —0%2 - 22, we are done proving (IV.51). O

IV.D.12. Energy estimates for ¢. In this section we prove the following
result.

LEMMA IV.15. Let z(a,t) and w(a, t) be a solution of (1.19)~(1.20). Then,

the following a priori estimate holds:

(1V.52) H<pH 1 (1) < =5(1) + CE(1)

Hk_7
for k > 4, where C and p are constants that depend only on k.

Proof. We shall present the details in the case k = 4, leaving the other
cases to the reader.
Using the estimates obtained before, one has

d
el () < CE ().
Developing the derivative using Lemma IV.12, we get that
d
(1V.53) IR 3a(0) =2 [ M@0 puda
=L + I+ I,
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where
I _2/A 3 )02 (NICE)da,

= _2/ A (/3 82 |§0aa)d

We use (IV.39) to control I;. The most singular term in I5 is the one given by

1 1
2 [ Nl )ppda =2 [ N2 (0ke) [N 2(0ke) - A (p0kp)] do

1
+ [ 0urlA 2 (3he) P

|2al

Using the commutator estimate

(IV.54) gAY 2(Baf) — A2 (900 f)IL2 < llgllczllf ]l 12,

we can bound I. In I3 we split further, considering the most singular terms

Za

ENE
Oz 2

= -2 / AD2p)Q% PRE * da,

1
Zaa * Rg
:—2/A 30)02(Q%0) P da.

|2al

Jy = —2 / A D2 0) Q20200 - O2(22 Yda,

The term J; can be estimated as before. Recalling (IV.33), we see that Jo =
—S(t). It remains to control J3 in order to find (IV.52).
We decompose J3 = K7 + Ka, where

2ot ZJ'

K1_2/H )02 (Q°0) (5 o

and
1
Zaa 24

do.

KQ—Q/H 30)03(Q%0)

|2a[?
Inequality (IV.29) for k = 4 allows us to obtain

K; < CEP(t).
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To finish the proof we use formula (IV.46) for k = 4 to find Ko = Ly + Lo+ L3,
where

Zaeo zi‘
|2a|3

Ly =2 [ H(@2¢) ol H(0E0)

L1_2/H 3 5)ANN do,
Zoo " Za

|Za|3

do,

. ZJ-
L3—2/H 30)pH (0 )aa 5 -da.
|2al
The term L; can be easily estimated using (IV.47). For Lo we substitute the
expression (IV.52) for 83p; to get Ly = My + Ma + Ms:

1

oo’ Za do,

My =2 | H(G) | H@2NICE))

|Za|

PPLaa )) Zao * zi_

My =—2/H o)zl HR(FE0) 5
« «

do,

L L
= =2 [ H@0)|eal HO2(Q20 050 2 da.
|2a |2al
By equation (IV.39), M is bounded. Ms is bounded knowing that we have
room for half derivative in the term that is not the third factor. Finally we

can bound M3 in virtue of Lemma IV.8. To finish, in L3 we integrate by parts
to find

/\H B0 200 ( ZTQ‘I?’ )da < CEP(t)

using Sobolev embedding. O
IV.D.13. Energy estimates for — | a‘ y T Yiso m( 1)( Nk

LEMMA IV.16. Let z(a,t) and w(a, t) be a solution of (1.19)—(1.20). Then,
the following a priori estimate holds:
4

d Za|? 1
(IV.55) - (m(‘QQ(’I) ot > — ol t)) < CE"(1)

=0

for k > 4, where C' and p are constants that depend only on k.

Proof. Inequalities (IV.25) and (IV.30) show that (Q%¢) € C'([0,7] x
[, 7]) for some T and therefore m(Q?c)(t) is a Lipschitz function differen-
tiable almost everywhere by Rademacher’s theorem. Let

m(@)(t) = min (Q0)(a.1) = (Q%0)(ax. 1)

We can calculate the derivative of m(Q?c)(t) to obtain

(m(Q%0))'(t) = (Q®0)¢(au, 1)
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for almost every t. Then it follows that

IR _ (@oant)
dt(m(@%))“) ~m(Q20)2 )

almost everywhere. By using the previous a priori estimates for the L

bounds, we get to
d |2a®
t) < CEP(t).
il (1) < CEX()

m(Q?c)
1
On the other hand, we can apply the same argument to W Denoting
m(q
again by a; the point where the minimum is attained, we have that
4 (L g 2ot Cleu =
dt \ m(q') (m(q"))?(t) ’
which again can be easily bounded and we get (IV.55), as desired. (]

IV.E. Proof of short-time existence (Theorem 1.7). To conclude the proof
of the local existence, we shall use the previous a priori estimates. We now
introduce a regularized version of the evolution equation that is well-posed for
short time independently of the sign condition on o(a,t) at t = 0. But for
o(a,0) > 0, we shall find a time of existence uniformly in the regularization,
allowing us to take the limit.

Now, let 25’5’“(04,1‘/) be a solution of the following system (compare with
(IV.18)):

(IV.56) 250 (e t) = g5 % 65 (QP(25)BR(zM, w0 ) (a, 1)
+ ou * <c5’5’“ (¢u * 8az5’5’“>> (o, 1),

(IV.57)
TR QX (==4) i, e
wp = Q2(266M)¢5*¢5* m[_QBR(ZE w0 - 2
(5777
= 2Q(=#5) Q5 o [BR(55, w0 2 — ), (Qw)
i Fy é Z;(SM
R L £,0,14 NN TN N .
+ 7 Q2502 /_N(Q(Z )PBR(25%, w™)) g | Zéupdﬁ

40675#@(2676,/1)&]3}{(26,5,#, ws,&u) . Z;&u
Q=)

_ Q(ZE M) 90, (gP21(Ze,a,u))D
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WEOk

2](%25’5’“(@, t)]
|0 252054

Q2(z=:0m) (Q(zs’é’“)ﬁtQ(zEv@u)

QQ(ZE767M)(A}E767M
B 2|0 2803

b5 % 5 % (Q(f"s’“)@Q(zE"s’“)

QZ(Zs,rF,u)we,é,u
209,253

aaze,&u . aaatze,&u)

WEOH

2|8az€’5’“(a, )]
|aoéz‘€7§7l"/

Q2 (Zaﬁ,u)

aazwiu . 8a8t2876’u)

04, 25767u|

IRCEED

A(¢,u * ¢/L * 90876#)’

259 (@, 0) = z9(a) and w®(a,0) = wo(a) for € > 0,6 > 0,1 > 0, ¢5 and ¢,
even mollifiers, and

oz+7r/” 852575’“(6))
21 J_r [Op2=0H(B)[?

s * 05 * (D5(Q7 (25 (B)BR(25, w™4))(8))dp

B / Dpz="4(3)

—x |9pz=0H(B)[2
s x ds * (9(Q(25%1) (B)BR(259#, ™)) (8))d8,
cop QUMW
YT T 2000
1 [T 0280 (e, t

B = 5 /_7r yaaze@u((a, t))2

s €,0,1h
o _ a+7r/ 0pz=%H(3)
‘ ¢5*¢‘“‘< or )r [05200(B)]

(5@ (=" M)BR(=55, w™4))) (5)d5 )

* 02" (B)
— s * G5 * (/_7r 002755(9)]

- (95(Q%(z77) (B)BR(27#, w™ ))(ﬁ))dﬁ) :

Ce,é,u(a) —

8767
— CEOH,

- 9a(Q(259M)BR (25, ™)) (v, t)dev,

We start proving the following lemma.

LEMMA IV.17. Let 25%*(a,t) € HY(T), w*%*(a,t) € H*(T), ®%"(a,t) €
H3(T). Then w®%*(a,t) € H3(T).
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Proof. We can write w®%* as

2|0 20|
’57 P & ’67 ?67
CL)E ® - Q2(Z€’6Hu‘) (()06 IUJ + CE “) .
Taking three derivatives yields
€0, |8 z° l £,0
Pw " = SAFE +Q2( Eéu)fﬁc "
_ 2|6 Z€6u| 2 8@2’«6157# 2(.¢€,0, £,0 €,0,
= SAFE - 0 65“)(1)5*@1)5*6& W (0a(Q7 (257M)BR(25%H, w®%H)))
_ 2|8 ZE&M' a € 2/ .&,0, 3 €,0, €,0,
= SAFE — QQ( 55#) ¢5*¢5* (8 55M| (Q (Z H)aaBR(z va H))
_ 2|a Zaéu' 8285 2/, €,0 g,0,u 23, €,0
= SAFE — 02 65#)¢5*¢5* (8 ] Q7 (z52M)BR (25, Oow™ ) |,
where SAFE means bounded in L?. Using the representation
O0n 2% 5’“)
BR €,0,1h 83 e,0,0\ __ SAFE 7( 83 €,0,
( ) + 9 |8 25 6u’2 ( )

we get that

2|90 250
Q‘Q(im)'wm

(@i O gy S

PPwsOH = SAFE —

2 |DgzE0H |2

=0

and we are done. We should remark that the lemma holds independently of 6,
wand €. (]

We define a distance between data (z,w) and (z,w) by taking
d((z,w), (z,w)) = llz = 2l g+ + lw — @l + [l = @llus,

where ¢ and ¢ arise from (z,w) and (z,w) respectively by (IV.16). Let XX
denote the resulting metric space. The proof of Lemma IV.17 gives also the
following

COROLLARY IV.18. The map (z,w) — w is Lipschitz from any ball in X X
into H3(T).

We note that throughout this section we will repeatedly use the following
commutator estimate for convolutions:

(IV.58) 165 % (Dafg) — 905 * (Oaf)llL2 < CllOagllLefl L2,
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where the constant C' is independent of 4, f and g. We can now operate to get
the following expression for ¢=%#:

8 8’5“u . Q(25767pf)atQ(ZE767/'L)w€76nU'
tSD - |8a2’€767/"‘|
QQ(Zs,cS,u)we,&,u s s Q2(Za,§,,u)atwe,5,u s
— 8 ‘577“.08 ‘5771"/ _aCEHM
2|0 25043 (% t0a% + 2|0 z= 0] t
Q% (%) 5 5 5
f— -+ r 7 _2BR g, 7/‘7 £,0, 14 . SE0, 1
Ps * g * (2|aaze,5“u,(a’t)| [ (= W) - 25
0,10\ 2
SOE, 7”)
= 2Q(=5 Q25 01) o [BR(2501, w2 - (é(zg,a,up)
30sh
O 2800 2 / T 5.4\ 2 5 5 )
e Q Ze’ Hu/) BR(Ze’ ”LL,(JJE’ 7/»1')) . d/B
TQ(25:0H)?2 _W( ( B \z;’d’“P
B 4@&#@(Zs,é,u)aBR(ZE,&u7ws,&u) . zgg&u
Q(z€7§uu‘)
2(cE 02280 2Q(250H) o _1/e0
_ Q(z8757/‘)3 — 20, (gP2 (2% #))
£,0,14
€,0, edpuy_ Y
s 05+ (QEEMOQE

2( &0, &0,
Q¥ MMw
2|0 2803

— eA(dy * Py * p7O1) — TN,

8az€’6’“ . 8a3t2’€’5’“)

The right-hand side of the evolution equations for z5%* and ¢=%* are
Lipschitz in the spaces H*(T) and H 3+%(T) since they are mollified. For the
case of w®%* (Lipschitz in the space H%(T)), we use that for § small enough,
@5 * ¢g is close to the identity and the a priori bounds. In all of the cases we
have taken advantage of Lemma IV.17. Therefore we can solve (IV.56)—(IV.57)
for short time, thanks to Picard’s theorem.

Now, we can perform energy estimates as in the a priori case to get
uniform bounds in u, and we can let i go to zero. The energy estimates that
we can get are the following:

d 5 5
pn <||Za’6’”||%{4 + | F ) 7o + ™%

4
1
£,0,141|2
+”§0 HH:H-% + ; 0: m575’“(ql)> (t)
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< C(e,9) (IIZa"S’“IIfqzx HIF ) oo + [l Fpe

4 1

J
&,0,141|2
+H90 HH3+% + lz:;) mg’é’“(ql)> (t)

We should note that for the new system without the ¢, mollifier, the
length of the tangent vector |8az€’5| is now constant in space and depends only
on time. Lemma IV.17 still applies and we can still perform energy estimates
as in the a prior: case. The only difference relies on the fact that we should
have to move the mollifiers and apply the estimate (IV.58). We should also
remark that because of the dissipative term eAg®?, it is enough to use the
following estimate:

2dt||A1/2( S056 ||2 /A ()065 883 E(Sda

5|12 3, 82
< ZIA@6™) 3 + C 002
and hence require only that d;p™% € H3(T) (instead of the H 3+3 (T) that was
required before) except for the transport term that can be estimated as in Sec-
tion IV.D.12. The estimations are performed following exactly the same steps
of Section IV.D. More precisely, we can get the following energy estimates:

d
o7 (HZE(SHH HIF () Zo0 + w2+ 107001 3+;+Z msg(q)> (t)

j
<C(e) | Iz~ () Eoo 1w 2+ 10712 01y +ZT (t).
m=*(q')
Under these conditions, we can let 4 go to zero.
Finally, let z°(«,t) be a solution of the following system (compare with
(IV.18)):

(IV.59) 2 (a,t) = Q*(2°)(a, t)BR(2%,w®) (o, t) + ¢ (, 1) 00 2% (e, 1),

(IV.60)

o = BRGS0 2~ 20)Q N B w0 — 00 (21
e B e e

- AL _ 20, (975 () - 2o 20,
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2%(a,0) = zp(a) and w®(«, 0) = wp(«) for € > 0, where

o) =5 [ QN PBR W) )5

— /‘l 8/3za(§) - 95(Q°(2°)(B)BR(=%, %) (8))ds,
2 A
€ _ M — 0aq2°|c°

B(t) = % L zm  0n(Q2(=7)BR(%, &) (@, £)dav.

Proceeding as in Section IV.C (compare with equation (IV.41)), we find

(Iv.61)
£ __ € £ agé((()ps)Q) aaQ(ZE) £\2
datp; = =B (t)pg — W + O0a (MQ(ZE)((P ) )
022° - 8&25 B

— Q(z°)’0BR(2",w%) - 0y 2° PR 9¢(10a2°|B5(t))
0y0p2% - O+ 28
£\2 e, e)). ol eYtY «

+0u(QUAPBR( ) - o2 e

T 204 (Q(=)0Q(=")BR(:" w».,gg;;

(D) o (oo )
— O (20€BR 2w |g o |Q(za)8aQ(z€)> — O (8226(22(5;)(&)2\6&5\)

Q) o
0 (,8a L BRG0P0 >) A

We also define (compare with equation (IV.2))

5

\3 °|

- w® € 4L 90 2 %€ 1 e

+2\6 €P((%Zt . 8‘804 )0z
€

+Q(=°) |BR(2%,wf) + ﬂgu—'a (VQ(%)) - L=

+ g(VPQ_l(zs)) . 8525.

Remark IV.19. The system (IV.59)—(IV.60) is analogous to the system
considered in [13, §8]. We point out an unfortunate typographical error in

= (0;BR(2%,w") + DaBR(2°,w%)) - 0L 2°

—_
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that section; the Laplacian should have been written as the square root of the
Laplacian.

For this e-system (IV.59)-(IV.60), we now know that there is local-exis-
tence for initial data satisfying F(20)(a, 5) < 0o even if o°(c, 0) does not have
the proper sign. In the following we shall show briefly how to obtain a solution
of the regularized system with 2 € C([0,T¢], H¥), »* € C([0, T¢], Hk_%), we €
C([0,T¢], H*2) for k > 4.

The next step is to integrate the system during a time 7" independent of €.
We will show that for this system, we have

(1v.62) 4B < cer),

where E(t) is given by the analogous formula (IV.21) for the e-system, and C
and p are constants independent of e.

In the following we shall see what the impact of the € system is on the
a priori estimates and check that there is no practical impact for sufficiently
small €. To do that, we will show the corresponding uniform estimates for
k = 4 and leave to the reader the remaining easier cases. Let us consider the
one corresponding to I3 in Section IV.D.12. We have

i 1
IE = -2 A 3 € 2 20,6\ 92 ¢ ol _e .
3 /7r e (020° () 02(Q*(25)0°022° - O 2°)da

Proceeding in the same way as before, we can perform the same splittings and
get uniform bounds such that I§ = —S5° + Mj + “bounded terms,” where S*®
corresponds to S in (IV.33),

| “bounded terms”| < CEP(t),

and

2 € 1 e
T 052° -0y %
—n |0a2f|?

Then we can write My as follows:

Mji = —2¢ H(920°)H(AD2 %) dar.

T 2. .9l ¢
M=o [ A;(Wmag@)ﬁ(ﬂamw

and therefore, for small ¢,
My < HA%8§¢8H%2 + “bounded terms,”

which gives
d €
aE(t) < CE"(t) — iHA(aiSD)”QL%

This finally shows (IV.62) and therefore
E(t) < (Ct(1 — p) + E7P(0))/ (=),
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Now we are in position to extend the time of existence T° so long as the above
estimate works and obtain a time 7" dependent only on the initial data (arc-
chord, Rayleigh-Taylor, distance to the points ¢, ..., ¢*, and Sobolev norms of
z,w, and ¢). We can let ¢ tend to 0 and get a solution of the original system.
This concludes the proof.
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