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Stationary measures and invariant subsets
of homogeneous spaces (III)

By Yves Benoist and Jean-François Quint

Abstract

Let G be a real Lie group, Λ be a lattice in G and Γ be a compactly

generated closed subgroup of G. If the Zariski closure of the group Ad(Γ)

is semisimple with no compact factor, we prove that every Γ-orbit closure

in G/Λ is a finite volume homogeneous space. We also establish related

equidistribution properties.
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1. Introduction

1.1. Orbit closures, the real case. Let G be a real Lie group with Lie

algebra g. We let Ad : G→ GL(g) denote the adjoint representation of G. In

this article, by using the results of [4], we shall prove the following

Theorem 1.1. Let G be a real Lie group, Λ be a lattice in G and Γ be

a compactly generated closed sub-semigroup of G. We assume that the Zariski

closure of the semigroup Ad(Γ) ⊂ GL(g) is semisimple with no compact factor.

Then, for every x in G/Λ, there exists a closed subgroup H of G with Γ ⊂ H

such that Γx = Hx and Hx carries an H-invariant probability measure νx.

Througout this article, by a semisimple algebraic group, we mean a Zariski

connected semisimple algebraic group.

This result on orbit closures answers a question by Shah [25] and Margulis

[16]. In case Ad Γ itself is a semisimple subgroup of GL(g) with no compact fac-

tor, it follows from Ratner’s Theorem [23]. Under the stronger assumption that

G is simple and Γ is Zariski dense in G, Theorem 1.1 is the main result of [1].

Theorem 1.1 is already new in the following “concrete” cases:

– when G = SL(2,R)× SL(2,R) and Γ is Zariski dense in G,

– when G = SL(3,R) and Γ is Zariski dense in the subgroup SO(2, 1).

Let G, Λ and Γ be as above, and set X = G/Λ. For any x in X, we let νx
be, as in Theorem 1.1, the unique probability measure on Γx that is invariant

under the stabilizer of this set in G. We shall say that a sequence of Borel prob-

ability measures (νn) on X converges toward a Borel probability measure ν if,

for any continuous compactly supported function ϕ on X,
∫
X ϕdνn converges

toward
∫
X ϕdν. Theorem 1.1 will follow from the following equidistribution

result.

Theorem 1.2. Let G, Λ and Γ be as above, and let µ be a compactly

supported Borel probability measure on Γ whose support spans a dense sub-

semigroup of Γ. Then, for every x in G/Λ, one has

1

n

n−1∑
k=0

µ∗k ∗ δx −−−→
n→∞

νx.
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Theorems 1.1 and 1.2 have been announced in [2]. Equidistribution in law

as in Theorem 1.2 suffices to prove Theorem 1.1. However, we shall prove the

following almost sure equidistribution property, which implies it and is also of

independent interest.

Theorem 1.3. Let G, Λ, Γ and µ be as above. Let g1, . . . , gn, . . . be

a sequence of independent identically distributed random elements of Γ with

law µ. Then, for every x in G/Λ, almost surely,

1

n

n−1∑
k=0

δgk···g1x −−−→n→∞
νx.

In Theorem 1.3, “almost surely” means for µ⊗N
∗
-almost every choice of

the sequence g1, . . . , gn, . . . .

This result may be seen as a random analogue of the equidistribution

properties of unipotent flows on homogeneous spaces, due to Ratner [23] and

Dani-Margulis [9].

1.2. Orbit closures, the S-adic case. Let p be a prime number. As in [24],

a p-adic Lie group G is said to be weakly regular if any two of its one-parameter

subgroups ϕ1, ϕ2 : Qp → G are equal as soon as their derivatives at e are equal.

Any real Lie group is said to be weakly regular.

Fix a finite set S whose elements are prime numbers and∞. In this paper,

as in [4], by a weakly regular S-adic Lie group, we shall mean a topological

group that is isomorphic to a closed subgroup of a product of weakly regular

p-adic Lie groups, p ∈ S.

Let G be a weakly regular S-adic Lie group with Lie algebra g =
⊕

p∈S gp
and Γ be a sub-semigroup of G. We let Ad Γ

Z
denote the Zariski closure of

the image of Γ under the adjoint representation of G, that is the product∏
p∈S Adgp Γ

Z
of the Zariski closures of the images of Γ in GL(gp), p ∈ S. We

also let Ad Γ
Z,nc

denote the smallest normal Zariski closed subgroup of Ad Γ
Z

such that the image of Γ in Ad Γ
Z
/Ad Γ

Z,nc
is bounded.

We get the following S-adic extension of Theorems 1.1, 1.2 and 1.3.

Theorem 1.4. Let G be a weakly regular S-adic Lie group, Λ be a lattice

in G and Γ be a closed compactly generated sub-semigroup of G such that Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

.

(a) For every x in G/Λ, there exists a closed subgroup H ⊃ Γ of G such

that Γx = Hx and Hx carries an H-invariant probability measure νx.

(b) If µ is a compactly supported Borel probability measure on Γ whose

support spans a dense sub-semigroup of Γ, then

1

n

n−1∑
k=0

µ∗k ∗ δx −−−→
n→∞

νx.
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(c) More precisely, if g1, . . . , gn, . . . is a sequence of independent identically

distributed random elements of Γ with law µ, then, almost surely,

1

n

n−1∑
k=0

δgk···g1x −−−→n→∞
νx.

Note that Theorem 1.4 is already new in the following “concrete” cases:
– when G = SL(2,Qp) and Γ is Zariski dense and unbounded in G,

– when G = SL(2,R)× SL(2,Qp) and the projection of Γ on each factor

is Zariski dense and unbounded.

1.3. Equidistribution of invariant subsets. Our methods also allow us to

get some properties of the set of invariant homogeneous subsets.

Let G be a locally compact topological group, Λ be a discrete subgroup of

G and X = G/Λ. We shall say that a closed subset Y of X is a finite volume

homogeneous subspace if the stabilizer GY of Y in G acts transitively on Y and

preserves a Borel probability measure νY on Y . If Γ is a sub-semigroup of GY ,

we shall say that Y is Γ-ergodic if Γ acts ergodically on (Y, νY ).

Let Γ be a sub-semigroup of G. We set

SX(Γ) :=

ß
Γ-invariant and Γ-ergodic finite volume

homogeneous subspaces Y of X

™
.

When G, Λ, X and Γ are as in Theorem 1.4, this set plays a key role in the

proofs since, according to the main result of [4], every Γ-invariant Γ-ergodic

probability measure on X is equal to νY for some Y in SX(Γ).

We may identify SX(Γ) with a set of Borel probability measures on X

through the map Y 7→ νY . In particular, we endow SX(Γ) with the topology

of weak convergence, so that a sequence (Yn) in SX(Γ) converges toward Y∞ ∈
SX(Γ) if and only if νYn converges toward νY∞ .

For every compact subset K ⊂ X, we set

SK(Γ) := {Y ∈ SX(Γ) | Y ∩K 6= ∅}.

As we will see in the corollaries, the following Theorem 1.5 is very efficient

for computing the limit of a sequence in SX(Γ).

Theorem 1.5. Let G, Λ and Γ be as in Theorem 1.4, and let L be the

centralizer of Γ in G.

(a) For every compact subset K of X , the set SK(Γ) is compact.

(b) If (Yn) ⊂ SX(Γ) converges to Y∞ ∈ SX(Γ), then there exists a sequence

(`n) ⊂ L converging to e such that, for n large, Yn ⊂ `nY∞.

In particular, when Λ is cocompact, the set SX(Γ) itself is compact.

We denote by X := X ∪ {∞} the one point compactification of X and by

δ∞ the Dirac mass at ∞. The set SX(Γ) ∪ {δ∞} can be seen as a set of Borel

probability measures on X.
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Corollary 1.6. Let G, Λ and Γ be as in Theorem 1.4. Then the set

SX(Γ) ∪ {δ∞} is compact.

Corollary 1.6 is an analogue of the main theorem of Mozes and Shah in [19]

(see also [11]) which asserts, in case G is a real Lie group, if E is the space of

finite volume homogeneous subsets of X that are invariant and ergodic under

some Ad-unipotent one-parameter subgroup of G, then the set E ∪ {δ∞} is

compact.

When Γ has discrete centralizer, the statement of Theorem 1.5 becomes

simpler. A subset F of X = G/Λ is said to be Γ-invariant if gF ⊂ F for all g

in Γ.

Theorem 1.7. Let G, Λ and Γ be as in Theorem 1.4. Assume the cen-

tralizer L of Γ in G is discrete.

(a) The set SX(Γ) is compact.

(b) If (Yn) ⊂ SX(Γ) converges to Y∞ ∈ SX(Γ), then, for n large, one has

Yn ⊂ Y∞.

(c) Every closed Γ-invariant subset of X is a finite union of elements of

SX(Γ).

In particular, if (Yn) is a sequence in SX(Γ) such that, for any Y ∈ SX(Γ)

with Y 6= X, for all but finitely many n, one has Yn 6⊂ Y , then νYn −−−→n→∞
νX ;

that is, the orbits Yn become equidistributed in X when n is large.

Let us state a particular case of this result. We will say that Γ is Ad-Zariski

dense in G if Ad Γ
Z

= AdG
Z
.

Corollary 1.8. Let G be a connected semisimple real Lie group with no

compact factor, Λ be an irreducible lattice in G and Γ be a Ad-Zariski dense

subgroup of G.

Every infinite Γ-invariant subset of X is dense in X ; any sequence (Yn)

of distinct finite Γ-orbits in X satisfies νYn −−−→n→∞
νX .

Under the stronger assumption that G is simple, Corollary 1.8 is the main

result of [1]. It also extends previous results by Clozel, Oh and Ullmo in [8]

about equidistribution of Hecke orbits (see also [12]).

1.4. Actions on tori and nilmanifolds. We now specialize our results to

automorphisms of tori and other nilmanifolds.

Let N be a connected simply connected nilpotent real Lie group, Λ be a

lattice in N and X be the compact nilmanifold X = N/Λ. As in [4, §1.2], we

say a closed subset of X is an affine submanifold if it is a translate of the image

in X of some closed connected subgroup of N . By Mal’cev’s rigidity theorem

(see [22, II.2.11]), we may consider the group Aut(Λ) of automorphisms of Λ as
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a subgroup of the group Aut(N) of automorphisms of N . In particular, we may

see X as a quotient of the group Aut(Λ)nN by its lattice Aut(Λ)nΛ. Then,

the action of Aut(Λ) on X reads as its natural action by automorphisms. Any

homogeneous subspace of X, viewed as a homogeneous space of Aut(Λ)nN ,

is a finite union of affine submanifolds.

Example 1.9. If N = Rd and Λ = Zd, we retrieve the standard action

of GL(d,Z) on the torus Td. Any homogeneous subspace is a finite union of

(parallel) subtori.

Theorems 1.4 and 1.5 and their corollaries now give the following partial

answers to [16, Prob. 3].

Corollary 1.10. Let X = N/Λ be a compact nilmanifold and Γ ⊂
Aut(Λ) be a finitely generated sub-semigroup whose Zariski closure in Aut(N)

is a Zariski connected semisimple subgroup with no compact factor. Let L ⊂ N
be the subgroup of Γ-invariant elements in N .

(a) Every Γ-orbit closure is a finite homogeneous union of affine subman-

ifolds.

(b) Let µ be a finitely supported Borel probability measure on Γ whose sup-

port spans Γ and g1, . . . , gn, . . . be a sequence of random independent

identically distributed elements of Aut(Λ) with law µ. Then, almost

surely, as n goes to ∞, 1
n

∑n−1
k=0 δgk···g1x converges to the homogeneous

probability measure of Γx.

(c) The set SX(Γ) is compact. If (Yn) ⊂ SX(Γ) converges to Y∞ ∈ SX(Γ),

then there exists a sequence (`n) ⊂ L converging to e such that, for n

large, Yn ⊂ `nY∞.

Corollary 1.11. Assume, moreover, that the centralizer L of Γ in N is

trivial. Then every closed Γ-invariant subset F in X is a finite union of affine

submanifolds.

Corollary 1.12. Assume X is a torus Td and Γ acts strongly irreducibly

on Qd. Then every infinite Γ-invariant subset of X is dense in X . Any se-

quence of distinct finite Γ-orbits in X equidistributes toward the Haar proba-

bility of Td.

The statement about invariant closed subsets in Corollary 1.12 is due

to Guivarc’h and Starkov [13] and Muchnik [20]. In case Γ is proximal and

acts strongly irreducibly on Rd, the one about equidistribution of finite orbits

follows from the results of Bourgain, Furman, Lindenstrauss and Mozes [6].

To conclude, we point out that even the following special case of Corol-

lary 1.10(b) seems to be new.
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Corollary 1.13. Let g1, . . . , gn, . . . be a sequence of independent iden-

tically distributed random elements of SL(2,Z) whose law µ has finite support

and generates a nonsolvable group. Then, starting from any irrational point x

in the 2-torus T2, almost surely, the trajectory gn · · · g1x equidistributes toward

the Haar probability on T2.

1.5. Structure of the article. The remainder of this paper is devoted to

the proof of Theorems 1.4, 1.5 and 1.7. After replacing G by a compactly

generated open subgroup that contains Γ and acts transitively on X, we may

assume G is second countable.

In Section 2, we prove homogeneity of the orbit closures and convergence

in law in Theorem 1.4. Knowing the recurrence results from [10] and [3] and

the classification of stationary probability measures from [4], the main problem

is to check that the centralizer L of Γ has only countably many orbits in SX(Γ).

We give the proof of this property for real Lie groups and postpone the general

case to the appendix.

In Section 3, we establish preliminary results on Markov chains, mainly

in order to prove the almost sure equidistribution statement in Theorem 1.4.

Our starting point is Breiman’s law of large numbers for Markov chains with

a unique invariant measure [7]. In our case, as there may be several stationary

measures, we have to prove that almost surely, starting from a point that does

not belong to a given Y in SX(Γ), the trajectory will spend most of the time

far away from Y . This is done by exhibiting an exponentially recurrent subset

in the complement of Y and by establishing large deviation properties for the

return times in this subset. These techniques strengthen certain ideas from

[17] and [4, §6].

In Section 4, we apply the results of Section 3 to the proofs of the almost

sure equidistribution statement in Theorem 1.4 and of Theorem 1.5. We then

deduce Theorem 1.7 from these.

In the appendix, we establish the countability of L-orbits in SX(Γ) in the

S-adic case. In Appendix A, we develop some tools to overcome the difficulty

due to the fact that lattices in semiconnected S-adic Lie groups are not nec-

essarily finitely generated, whereas Appendix B is devoted to the proof itself,

whose structure mimics the real case.

2. Equidistribution in law

In this section, we establish the homogeneity of the orbit closures and

the convergence in law in Theorem 1.4. We will first prove a countability

statement for the set SX(Γ) (Proposition 2.1). The claims will then follow from

the recurrence result from [3] and the classification of stationary probability

measures from [4].
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2.1. Countability of ergodic invariant homogeneous subsets. Note that, if

Γ± denotes the closed subgroup spanned by Γ, we have SX(Γ) = SX(Γ±), so

that we will assume in the next two sections Γ is a subgroup of G.

Proposition 2.1. Let G be a second countable weakly regular S-adic Lie

group, Λ be a discrete subgroup of G, X = G/Λ, Γ be a compactly generated

subgroup of G such that Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

, and L be the

centralizer of Γ in G. Then, there exists a countable set Y ⊂ SX(Γ) such that

SX(Γ) = {`Y | ` ∈ L , Y ∈ Y}.

In particular, when the centralizer of Γ in g is null, the set SX(Γ) is

countable.

As the proof of Proposition 2.1 in the general S-adic case is highly tech-

nical, we will first give it in the real case. The general case is dealt with in the

appendix. First, let us prove two elementary facts whose proofs are the same

both in the real and S-adic cases and which will be of use below.

One is the following lemma which, in case H is discrete, follows from [4,

Lemma 5.16].

Lemma 2.2. Let G be a second countable S-adic Lie group, H be a closed

subgroup of G, Γ be a closed subgroup of G such that AdΓ
Z

is semisimple and

L be the centralizer of Γ in G. When S 6= {∞}, we assume that the group Γ is

compactly generated. Then the set of fixed points of Γ in G/H is a countable

union of L-orbits.

Note that the semisimplicity assumption is crucial for this countability

statement. Indeed, when G = SL(2,R) and H = Γ is the subgroup of upper

triangular unipotent matrices, the group L is equal to Γ and Γ has uncountably

many fixed points in G/H.

Proof of Lemma 2.2. Set X = G/H, and let XΓ be the set of fixed points

of Γ in X. We shall prove that the orbits of L in XΓ are open; that is, for any

x in XΓ, Lx contains a neighborhood of x in XΓ. We may assume x is the

base point of X = G/H. In particular, Γ is contained in H.

Let l be the Lie algebra of L. If S = {∞}, l is necessarily the centralizer

of Γ in g. If not, this is still the case by [4, Lemma 5.2], since we then assumed

Γ to be compactly generated. As the linear span of AdΓ in the space of

endomorphisms of g is finite dimensional, there exists g1, . . . , gr in Γ such that

l = {v ∈ g | ∀1 ≤ i ≤ r , giv = v}.

Let h be the Lie algebra of H. As AdΓ
Z

is semisimple, h admits a

Γ-invariant complementary subspace v. Now, there exists a standard open

subset Ω of G (see [4, §5] or Section A.2 below), with exponential map expΩ :
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O → Ω, such that the map (O ∩ v) → X; v 7→ expΩ(v)x is a diffeomorphism

onto its image. We can assume expΩ(O ∩ l) ⊂ L and, by [4, Lemma 5.2], for

any v in O and 1 ≤ i ≤ r, if giv ∈ O, then expΩ(giv) = gi expΩ(v)g−1
i .

Set U = O ∩ ⋂ri=1 g
−1
i O ∩ v. Then expΩ(U)x is a neighborhood of x and

we shall prove that expΩ(U)x∩XΓ ⊂ Lx, which finishes the proof. Indeed, for

y = expΩ(v)x in XΓ with v in U , we have, for any 1 ≤ i ≤ r,

expΩ(giv)x = gi expΩ(v)g−1
i x = gi expΩ(v)x = giy = y = expΩ(v)x;

hence, as both v and giv belong to O ∩ v, giv = v. This gives v ∈ l and

y = expΩ(v)x ∈ Lx, what should be proved. �

We let QS denote the locally compact algebra
∏
p∈S Qp. By definition, a

finite dimensional QS-module is a product V =
∏
p∈S Vp where, for any p in S,

Vp is a finite dimensional Qp-vector space. We then let GL(V ) =
∏
p∈S GL(Vp)

be the linear group of V and Gr(V ) =
∏
p∈S Gr(Vp) be its Grassmann variety.

One ingredient of the proof of Proposition 2.1 is the following more or less

classical

Lemma 2.3. Let V be a finitely generated QS-module and Γ be a subgroup

of GL(V ). Assume that the Zariski closure Γ
Z

is semisimple and equal to Γ
Z,nc

.

Then every Γ-invariant probability measure η on Gr(V ) is concentrated on the

set of fixed points of Γ in Gr(V ).

Proof. By taking projections and replacing subspaces by exterior powers,

it suffices to prove Lemma 2.3 when V = Vp for some p in S, Γ acts irreducibly

on V and η is a Γ-invariant probability measure on P (V ). We will prove that

the action of Γ on V is then trivial.

We first check that for any subspace W ( V , one has η(P(W )) = 0.

Indeed, let W be the set of subspaces W of V such that η(P (W )) > 0 and the

dimension of W is minimal among the subspaces satisfying this property. For

any W 6= W ′ in W, we have

η(P (W ) ∪ P
(
W ′
)
) = η(P (W )) + η(P

(
W ′
)
).

Hence, W contains only finitely many elements W1, . . . ,Wr such that

η(P (W1)) = · · · = η(P (Wr)) = max
W∈W

η(P (W )).

Now, as η is Γ-invariant, the set {W1, . . . ,Wr} is Γ-invariant. As Γ is Zariski

connected and acts irreducibly on V , we get W1 = · · · = Wr = V andW = {V }
as required.

Assume Γ acts nontrivially on V . By assumption, Γ is a nonrelatively

compact subgroup of SL(V ); hence the closure of QpΓ in the space of en-

domorphisms of V contains a nonzero singular map f . We have just shown

η(P(ker f)) = η(P(im f)) = 0. We claim that η(P(im f)) = 1. Indeed write f =
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lim
n→∞

λnγn with λn in Qp and γn in Γ, and note that, for all x in P(V )rP(ker f),

the sequence γnx accumulates towards P(im f). Then, as η is Γ-invariant and

as η(P(ker f)) = 0, for every continuous function ϕ with compact support on

P(V )r P(im f), one has∫
ϕ(x) dη(x) = lim

n→∞

∫
ϕ(γnx) dη(x) = 0.

This proves that η(P(V ) r P(im f)) = 0; hence η(P(im f)) = 1. This contra-

diction proves that Γ acts trivially on V . �

2.2. Proof of countability in the real case. Let G be a real Lie group, and

let ∆ ⊂ Σ be discrete subgroups of G.

Definition 2.4. We let T (G,∆,Σ) denote the set of closed subgroups H

of G such that

(i) Σ is contained in H and Σ is a lattice in H;

(ii) one has ∆ = Σ ∩H◦, where H◦ is the connected component of H;

(iii) there exists a subgroup Γ of H such that Ad Γ
Z

is semisimple with no

compact factor and Γ acts ergodically on the H-invariant measure of H/Σ.

The core of the proof of Proposition 2.1 in the real case is the following

Lemma 2.5. Let G be a second countable real Lie group and ∆ ⊂ Σ be

finitely generated discrete subgroups of G. The set T (G,∆,Σ) is countable.

Note that this countability statement would not be true without the er-

godicity condition (iii). Indeed, when G = SL(2,R), ∆ = Σ = {e}, G contains

uncountably many compact subgroups H.

We shall need several preparatory lemmas. The semisimplicity assumption

plays an essential role in the following

Lemma 2.6. Let G be a real Lie group and ∆ ⊂ Σ be discrete subgroups

of G. Let H1 and H2 belong to T (G,∆,Σ). Then H1 normalizes H◦2 .

A similar phenomenon appears in the proof of [24, Prop. 1.7].

Proof. It suffices to prove that H1 normalizes the Lie algebra h2 of H2.

Now, as Σ is contained in H2, the map

H1 → Gr(g);h1 7→ Adh1(h2)

factors as a map H1/Σ → Gr(g). Let η be the image of the H1-invariant

measure of H1/Σ under this map. Let Γ be a subgroup of H1 such that Ad Γ
Z

is semisimple with no compact factor and that Γ acts ergodically on H1/Σ. As

η is Γ-ergodic, by Lemma 2.3, ν is a Dirac mass on a fixed point of Γ; that is,

h2 is normalized by H1, what should be proved. �
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We shall also need the two following elementary facts.

Lemma 2.7. Let G be a second countable real Lie group. Then the set of

normal compact subgroups of G is countable.

Proof. Let K be a normal compact subgroup of G. The Lie algebra k of

K may be decomposed in a unique way as a direct sum k = s ⊕ a, where s
is semisimple and a is abelian. As k is a G-invariant ideal of g, so are s and

a. As the Lie algebra g of G contains only finitely many semisimple ideals, we

may assume that s is fixed. As the connected analytic subgroup S of G with

Lie algebra s is compact and normal in G, after replacing G by G/S, we may

assume s = {0}.
In other terms, we have to prove that G contains countably many compact

normal subgroups K whose Lie algebra k is abelian. Since such a K is compact,

k admits a K-invariant complementary subspace v in g. As v is K-invariant

and k is an ideal of g, k is central in g; hence K◦ is a central subgroup of G◦.

Now, the connected component of the center of G◦ is isomorphic to a product

Rp × Tq and Tq admits countably many closed subgroups. Hence we may

assume that K◦ is fixed. Thus, after replacing G by the group G/K◦, we

may assume that K is finite. Since K is normal, it then centralizes G◦ and

Lemma 2.7 follows from Lemma 2.8 below. �

Lemma 2.8. Let G be a second countable real Lie group. Then the set of

compact subgroups of G which centralize G◦ is countable.

Proof. By replacing G by the centralizer of G◦, we may assume G◦ is cen-

tral in G, and we have to prove that G contains countably many compact sub-

groups. Now, as above, G◦ being an abelian connected group, it admits count-

ably many compact subgroups; hence we may fix the intersection of our com-

pact subgroups with G◦. As this intersection is central, up to replacing G by a

quotient, we may assume it is trivial, and we therefore only have to prove thatG

contains countably many finite subgroups F such that F ∩G◦ = {e}. For such

a subgroup F , the group FG◦ is isomorphic to the product F ×G◦ and there-

fore contains only finitely many finite subgroups F ′ such that F ′ ∩G◦={e}
and F ′G◦ = FG◦. As G/G◦ is countable, the result follows. �

We can now give the

Proof of Lemma 2.5. We can assume the set
⋃
H∈T (G,∆,Σ)H spans a dense

subgroup of G. Set L =
⋂
H∈T (G,∆,Σ)H

◦. By Lemma 2.6, L is a normal

subgroup of G. Since L ∩ Σ = ∆ is a lattice in L, the image of Σ in G/L

is still discrete, so that, after replacing G by G/L, we may assume L = {e}.
In particular, this gives ∆ = {e} and thus, for any H in T (G,∆,Σ), H◦ is

compact. As, still by Lemma 2.6, H◦ is normal in G, and, by Lemma 2.7,
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the set of normal compact subgroups of G is countable, we can suppose H◦ is

fixed. Thus after replacing G by G/H◦, we can assume H is discrete.

In other terms, we only have to prove that, setting V(G,Σ) to be the set

of discrete subgroups H of G that contain Σ as a finite index subgroup and

that admit a subgroup Γ such that AdΓ
Z

is semisimple with no compact factor

and H = ΓΣ, then V(G,Σ) is countable. Now, if H belongs to V(G,Σ), H

normalizes a finite index subgroup Θ of Σ. As Σ is finitely generated, the set

of finite index subgroups of Σ is countable, and we can assume Θ is fixed. We

set G′ to be the closure of the subgroup of G spanned by all the H’s in V(G,Σ)

that normalize Θ and replace G by G′/Θ. Now, we just have to prove that, if

Σ is finite, V(G,Σ) is countable. In this case, if H belongs to V(G,Σ), then

H is finite and, if Γ is a subgroup of H such that AdΓ
Z

is semisimple with

no compact factor and H = ΓΣ, then Γ is finite. Therefore Ad Γ is finite and

hence trivial. In other terms, Γ is a finite subgroup of G that centralizes G◦.

By Lemma 2.8, the set of such subgroups is countable and we are done. �

We can now conclude the

Proof of Proposition 2.1 in the real case. Let Y be in SX(Γ), and recall

that GY denotes the stabilizer of Y in G. We pick g in G such that gΛ belongs

to Y , and we set H = g−1(ΓG◦Y )g. As H and H◦ are open in g−1GY g and

gΛg−1 ∩ GY is a lattice in GY , Λ ∩H is a lattice in H and Λ ∩H◦ is lattice

in H◦. In particular, by [22, 6.18], Λ ∩ H◦ is finitely generated. Since Γ is

compactly generated, the real Lie group H is also compactly generated and its

lattice Λ ∩H is also finitely generated. In particular, as Λ admits countably

many finitely generated subgroups, we can assume the groups

∆ := Λ ∩H◦ and Σ := Λ ∩H

are fixed. Now, the group H belongs to T (G,∆,Σ) so that, by Lemma 2.5, we

can also assume it to be fixed. The point gH ∈ G/H is Γ-invariant. Hence, by

Lemma 2.2, we can assume that the L-orbit LgH is fixed.

Now, if g1 is an element of G such that Lg1H = LgH, one can write

g1 = `gh with ` in L and h in H. Hence one gets g1HΛ = `Y and the result

follows. �

2.3. Proof of equidistribution in law. We will need the following elemen-

tary lemma, which asserts that any two distinct elements in SX(Γ) that are

open in X are disjoint.

Lemma 2.9. Let G be a second countable locally compact topological group,

Λ be a discrete subgroup of G, X = G/Λ and Γ be a closed sub-semigroup of G.

Any two distinct elements Y 6= Y ′ of SX(Γ) that are open in X are disjoint.

In particular, the set Sop(Γ) := {Y ∈ SX(Γ) , Y open in X} is countable.
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Proof. Assume the intersection Y ′′ = Y ∩Y ′ is not empty. Then, as Y ′′ is

open in Y , one has νY (Y ′′) > 0 and, as Y ′′ is Γ-invariant and Y is Γ-ergodic,

one has νY (Y ′′) = 1. Since Y ′′ is closed, we get Y = Y ′′. In the same way,

Y ′ = Y ′′. �

Using Proposition 2.1 and the results of [4] and [3], we get the

Proof of Theorem 1.4(a) and 1.4(b). We proceed by induction on the di-

mension of G. If this dimension equals 0, then the space G/Λ is finite and the

result is evident.

Assume G has positive dimension, and fix x in X. If there exists a nonopen

Y in SX(Γ) such that x belongs to Y , we get the result by induction. Thus,

we can assume this is not the case, and we will prove that there exists a

unique Yx in Sop(Γ) containing x and that the sequence of probability measures

νn = 1
n

∑n−1
k=0 µ

∗k ∗δx on X converges toward νYx . Now, let ν be a limit point of

νn as n goes to ∞, so that ν is µ-stationary. By [3, Th. 7.2], ν is a probability

measure.

By [4, Th. 2.5], ν being µ-stationary, it is Γ-invariant and every µ-ergodic

component of ν is equal to some νY for Y in SX(Γ). Let L be the centralizer

of Γ in G. By [4, Prop. 6.24 and Cor. 6.25], for every nonopen Y in SX(Γ)

and every compact subset KL of L, one has ν(KLY ) = 0, hence ν(LY ) = 0.

Since, by Proposition 2.1, SX(Γ) is a countable union of L-orbits, almost every

ergodic component of ν is equal to some νY with Y in Sop(Γ).

Since by Lemma 2.9, Sop(Γ) is countable, there exists Yx in Sop(Γ) such

that ν(Yx) > 0. But then, the point x belongs to Yx, so that, by Lemma 2.9, Yx
is the unique element of Sop(Γ) containing x. By construction, ν does not give

mass to any other element of Sop(Γ). Therefore, ν = νYx and we are done. �

3. Markov operators

We will now develop abstract probabilistic tools for proving the almost

sure statement in Theorem 1.4. An important ingredient in our method comes

from the proof of Breiman’s law of large numbers for Markov chains [7], which,

in the context of group actions, states as follows:

Let G be a locally compact group, X a compact metrizable G-space, and

let µ be a Borel probability measure on G such that there exists a unique

µ-stationary Borel probability measure ν on X . Let g1, . . . , gn, . . . be a sequence

of random elements of G that are independent and identically distributed with

law µ. Then, for any x in X , almost surely, one has

1

n

n−1∑
k=0

δgk···g1x −−−→n→∞
ν.
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In our situation, we have to update the strategy of [7] since X is not

compact and there may be several µ-stationary probability measures on X.

To do this, we shall need abstract general information on Markov chains.

3.1. Markov measures and the law of large numbers. Let (X,X ) be a stan-

dard Borel space. By a Markov operator on X, we mean a Borel map x 7→ Px
from X to the space of Borel probability measures on X. Given such an oper-

ator, for any bounded Borel function ϕ on X and any x in X, we set

Pϕ(x) =

∫
X
ϕdPx.

Let us recall the construction of the Markov measures associated to P

on the space of trajectories. We set W = XN, and we equip it with the

product σ-algebra X⊗N. An element w in W will be written as a sequence

w = (w0, w1, w2, . . .). For any x in X, there exists a unique Borel probability

measure ωx on W such that, for any bounded Borel functions ϕ0, . . . , ϕn on

X, one has∫
W
ϕ0(w0) · · ·ϕn(wn) dωx(w) = (ϕ0P (· · · (ϕn−1P (ϕn)) · · · ))(x).

In other terms, ωx is implicitly defined by ωx = δx ⊗ (
∫
X ωy dPx(y)). We say

ωx is the Markov measure associated to P and x.

Example 3.1. Let a locally compact topological group G act measurably

on X. Fix a Borel probability measure µ on G and set, for any x in X,

Px = µ ∗ δx. This defines a Markov operator P on X that represents formally

the notion of a random walk on X with law µ. For any x in X, the associated

Markov measure ωx on W is the image of the measure µ⊗N on GN under the

map (gk)k∈N 7→ (gk−1 · · · g0x)k∈N.

Lemma 3.2. (Breiman [7]) Let (X,X ) be a standard Borel space, P be a

Markov operator and ϕ be a bounded Borel function on X . For every x in X ,

for ωx-almost every w in W , one has

1

n

n−1∑
k=0

ϕ(wk)−
1

n

n−1∑
k=0

Pϕ(wk) −−−→
n→∞

0.

Proof. We first recall the following version of the classical law of large

numbers:

Let (Y,Y, η) be a probability space and (ζn) be a bounded sequence of

elements of L2(Y,Y, η) with, for any n, E(ζn|ζn−1, . . . , ζ1) = 0. Then
1
n

∑n
k=1 ζk −−−→n→∞

0 almost everywhere.

For any integer n ≥ 1 set, for w in W ,

ζn(w) = ϕ(wn)− Pϕ(wn−1).
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This sequence of functions on W is bounded by 2 supX |ϕ| and, as ζn only

depends on wn, . . . , w0, one has, for any n ≥ 1,

Eωx(ζn|ζn−1, . . . , ζ1) = Eωx(Eωx(ζn|wn−1, . . . , w0)|ζn−1, . . . , ζ1).

By construction, one has

Eωx(ζn|wn−1, . . . , w0) = 0,

hence

Eωx(ζn|ζn−1, . . . , ζ1) = 0.

Therefore, we have, ωx-almost everywhere, 1
n

∑n
k=1 ζk −−−→n→∞

0. The result

follows since ϕ is bounded. �

We say a Borel measure ν on X is P -invariant if, for any nonnegative

Borel function ϕ on X, one has
∫
X Pϕdν =

∫
X ϕdν.

Recall that if X is a compact space, a Markov-Feller operator on X is a

nonnegative operator P on the space of continuous functions on X such that

P1 = 1. In other terms, a Markov-Feller operator is a Markov operator on X

such that the map x 7→ Px is continuous, when the space of Borel probability

measures of X is equipped with the weak-∗ topology.

From Lemma 3.2, we get

Corollary 3.3. Let X be a compact metrizable topological space and P

be a Markov-Feller operator on X . Then, for any x in X , for ωx-almost any

w in W , any weak-∗ limit ν∞ of νn := 1
n

∑n−1
k=0 δwk is P -invariant.

In particular, using the weak-∗-compactness of the space of probability

measures on X, we retrieve Breiman’s law of large numbers in [7]:

If, moreover, there exists a unique P -invariant probability measure ν

on X , then for any x in X , for ωx-almost any w in W , one has
1
n

∑n−1
k=0 δwk −−−→n→∞

ν.

Proof of Corollary 3.3. Let νnk be a subsequence converging to ν∞. For

all continuous function ϕ on X, one has∫
X
ϕdν∞ = lim

k→∞

∫
X
ϕdνnk .

Since P is Feller, the function Pϕ is also continuous and one also has∫
X
Pϕdν∞ = lim

k→∞

∫
X
Pϕdνnk .

Hence by Lemma 3.2, one has
∫
X ϕdν∞ =

∫
X Pϕdν∞, and ν∞ is P -invariant.

�
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3.2. Recurrent subsets. We need to understand weak limits as in Corol-

lary 3.3 when the space X is not compact and, in particular, to get a manage-

able criterion for them to have total mass 1. To this aim, we study recurrent

subsets.

If Y ⊂ X is a Borel subset, we say Y is P -recurrent if, for any x in Y ,

one has ωx({w ∈ W | ∃k ≥ 1 wk ∈ Y }) = 1; that is if, almost surely, the

trajectories issued from Y turn back to Y . For any w in W , we let

τY (w) = min{k ≥ 1 | wk ∈ Y } ∈ [1,∞]

denote the first return time in Y . In the same way, for any w in W with

]{k ∈ N | wk ∈ Y } =∞, we set τ1
Y (w) = τY (w) and, for any p ≥ 2,

τpY (w) = min{k > τp−1
Y (w) | wk ∈ Y }.

If w0 ∈ Y , we also write τ0
Y (w) = 0. These are the successive return times of

w in Y .

Assume Y is P -recurrent and let, for any x in Y , Qy denote the probability

measure on Y that is the image of ωx under the map w 7→ wτY (w), which is

defined ωx-almost everywhere on W . We say Q is the Markov operator induced

by P on Y . One easily checks that, for any x in Y , the Markov measure

associated to Q and x is the image of ωx under the map

W → Y N, w 7→ (wτpY (w))p∈N.

We say a P -invariant Borel measure ν on X is ergodic if, for any Borel

function ϕ on X with Pϕ = ϕ, ϕ is constant ν-almost everywhere.

Lemma 3.4. Let (X,X ) be a standard Borel space, P be a Markov operator

on X , Y be a P -recurrent Borel subset of X and Q be the Markov operator

induced by P on Y . Let ν be a P -invariant Borel measure on X . Then ν|Y is

Q-invariant. Moreover, if ν is P -ergodic, then ν|Y is Q-ergodic.

Proof. Let ϕ be a nonnegative Borel function on X, and let us prove∫
Y Qϕdν =

∫
Y ϕdν. We introduce the function ψ : X → [0,∞) given by

ψ(x) = ϕ(x) if x ∈ Y and ψ(x) =
∫
W 1{τY (w)<∞}ϕ(wτY (w)) dωx(w) otherwise.

By construction, one has

ψ = ϕ1Y + ψ1Y c ,(3.1)

Pψ = (Qϕ)1Y + ψ1Y c ;

hence ∫
X ψ dν =

∫
Y ϕdν +

∫
Y c ψ dν,∫

X Pψ dν =
∫
Y Qϕdν +

∫
Y c ψ dν.
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Since ν is P -invariant, this gives
∫
Y Qϕdν =

∫
Y ϕdν. Now, assume that ν is

P -ergodic and Qϕ = ϕ, and let ψ still be as above. From (3.1), we get Pψ = ψ;

hence ψ is constant ν-almost everywhere and so is ϕ. �

3.3. Exponentially recurrent subsets. Assuming the return times enjoy

strong uniform moment properties, we will now get almost sure estimates on

the asymptotic behaviour as p goes to ∞ of the p-th return time of a given

trajectory.

Let still Y be P -recurrent. As in [4, §6], we say that Y is exponentially

P -recurrent if there exists 0 < a < 1 with

sup
x∈Y

∫
W
a−τY dωx <∞.

The following lemma asserts that return times in exponentially recurrent sub-

sets satisfy a large deviation principle.

Lemma 3.5. Let (X,X ) be a standard Borel space, P be a Markov operator

on X and Y be an exponentially recurrent subset of X . We set

θ := sup
x∈Y

∫
W
τY dωx <∞.

Then, for any ε > 0, there exists α > 0 such that, for any x in Y and p in N,

we have

ωx({w ∈W | τpY (w) ≥ p(θ + ε)}) ≤ e−pα.
In particular, for ωx-almost any w in W , one has

lim sup
p→∞

1

p
τpY (w) ≤ θ.

Proof. Let β0 > 0 be such that

sup
x∈Y

∫
W
eβ0τY dωx <∞.

For any 0 < β ≤ β0, for any x in Y , we get

ωx({w ∈W | τpY (w) ≥ p(θ + ε)}) ≤ e−pβ(θ+ε)
∫
W
eβτ

p
Y (w) dωx(w).

Now, by the Markov property for the operator induced by P on Y , we have∫
W
eβτ

p
Y dωx ≤

Ç
sup
y∈Y

∫
W
eβτY dωy

åp
.

Since for every t ≥ 0 one has et ≤ 1 + t + t2et, there exists C > 0 such that,

for 0 < β ≤ β0, one has

sup
y∈Y

∫
W
eβτY dωy ≤ 1 + βθ + Cβ2.
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Thus, if β is small enough, we get

e−α := e−β(θ+ε) sup
y∈Y

∫
W
eβτY dωy < 1

and the first part of the lemma is proved. The second part follows by the

Borel-Cantelli lemma. �

Lemma 3.5 yields the following corollary, which we shall not use but which

is of independent interest.

Corollary 3.6. Let (X,X ) be a standard Borel space, Y ⊃ Z be Borel

subsets of X and P be a Markov operator on X . Assume Y is P -recurrent

and let Q be the Markov operator induced by P on Y . If Y is exponen-

tially P -recurrent and Z is exponentially Q-recurrent, then Z is exponentially

P -recurrent.

Proof. By Lemma 3.5, there exists γ ≥ 1 and α > 0 such that, for any x

in Y and p in N, one has

ωx({w ∈W | τpY (w) > γp}) ≤ e−αp.

As Z is exponentially Q-recurrent, there exists β > 0 such that, for p large

enough, for any x in Z, one has

ωx({w ∈W | τZ(w) > τpY (w)}) ≤ e−βp.

We get

ωx({w ∈W | τZ(w) > γp}) ≤ e−αp + e−βp,

and the result follows. �

We now aim at proving that, on a given trajectory that starts from an

exponentially recurrent subset Y , most of the time is spent at a close temporal

distance from Y .

To be more precise, we introduce some notation. Let Y ⊂ X still be a

Borel subset. If w ∈ W is such that w0 ∈ Y and ]{k ∈ N | wk ∈ Y } = ∞, we

set, for any natural integers p, T ,

σpY (w) := τp+1
Y (w)− τpY (w),

which are the successive excursion times of w out of Y , and

σpY,T (w) := σpY (w)1{σpY (w)≥T} and τpY,T (w) :=
∑

0≤q<p
σpY,T (w),

which is the total duration among the p first excursions outside Y of those of

length ≥ T .
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Lemma 3.7. Let (X,X ) be a standard Borel space, P be a Markov operator

on X and Y be an exponentially P -recurrent subset of X . For any ε > 0, there

exists T in N such that, for any x in Y , for ωx-almost any w in W , one has

lim sup
p→∞

1

p
τpY,T (w) ≤ ε.

Proof. Since Y is exponentially P -recurrent, there exists α0 > 0 such that

supx∈Y
∫
W eα0τY dωx <∞. Hence, for T large enough, we have

sup
x∈Y

∫
W
τ1
Y,T dωx ≤ ε.

We can now conclude as in the proof of Lemma 3.5, using the fact that

supx∈Y
∫
W eα0τ1

Y,T dωx <∞. �

3.4. Excursions of trajectories. Let u : X → [0,∞] be a Borel function

such that there exist 0 ≤ a < 1 and C ≥ 0 with Pu ≤ au+C. In [4, Prop. 6.3],

we proved, if M > 0 is large enough, the set XM = u−1([0,M ]) is exponentially

recurrent. In Proposition 3.9 below, we will see that, on the set {u < ∞},
almost surely, the trajectories spend most of the time in subsets of the form

XM with M large. This is a key step for proving Theorem 1.4(c).

We start with a much weaker result, whose conclusion serves as a motiva-

tion for the exact formulation of Proposition 3.9 and which will also be of use

in the proof of Theorem 1.5.

Lemma 3.8. Let (X,X ) be a standard Borel space, P be a Markov operator

on X and u : X → [0,∞] be a Borel function such that there exist 0 ≤
a < 1 and C ≥ 0 with Pu ≤ au + C . Let ν be a P -invariant P -ergodic

Borel probability measure on X such that ν({u < ∞}) > 0. Then one has∫
X u dν ≤ C

1−a .

Proof. According to the Chacon-Ornstein ergodic theorem, for ν-almost

every x in X, one has

1

n

n−1∑
k=0

P ku(x) −−−→
n→∞

∫
X
udν.

Since ν({u < ∞}) > 0, we can choose such a x with u(x) < ∞. Now, by

assumption, for every k ≥ 0, one has

P ku(x) ≤ aku(x) +
C

1− a
;

hence,

1

n

n−1∑
k=0

P ku(x) ≤ u(x)

(1− a)n
+

C

1− a
.

Letting n go to infinity, we get
∫
X udν ≤ C

1−a . �
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The main result of this section now states

Proposition 3.9. Let (X,X ) be a standard Borel space, P be a Markov

operator on X and u : X → [0,∞] be a Borel function such that there exist

0 ≤ a < 1 and C ≥ 0 with Pu ≤ au+C . Then, for any x in X with u(x) <∞,

for ωx-almost any w in W , for any M > 0, one has

lim sup
n→∞

1

n
]{0 ≤ k < n | u(wk) > M} ≤ C

(1− a)M
.

Note, if ν is a P -invariant Borel probability measure, by the Birkhoff

theorem and Lemma 3.8 above, the conclusion of Proposition 3.9 holds for

ν-almost any x with u(x) <∞.

As a first step toward the proof, we establish a weaker result that would

be sufficient for our purpose.

Lemma 3.10. Let (X,X ) be a standard Borel space, P be a Markov op-

erator on X and u : X → [0,∞] be a Borel function such that there exist

0 ≤ a < 1 and C ≥ 0 with Pu ≤ au+C . Then, for any x in X with u(x) <∞
and ε > 0, there exists M > 0 such that, for ωx-almost any w in W , one has

lim sup
n→∞

1

n
]{0 ≤ k < n | u(wk) > M} ≤ ε.

Proof. Choose M0 > 0, and set Y = u−1([0,M0]). By [4, Prop. 6.3], if

M0 is large enough, the set Y is exponentially P -recurrent. More precisely,

pick a0 in (a, 1] and assume a0 − a−C/M0 > 0. Reusing ideas of the proof of

[4, Prop. 6.3], let us prove the following uniform bound for weighted Birkhoff

sums of u up to the return time in Y : for any x in X,∫
W

τY (w)∑
k=1

a−k0 u(wk) dωx(w) ≤ au(x) + C

a0 − a− C/M0
.(3.2)

In order to prove this bound we set, for x in X and n ≥ 1,

Un(x) :=

∫
W

min(τY (w),n)∑
k=1

a−k0 u(wk) dωx(w),

which can be rewritten as

Un(x) =
n∑
k=1

a−k0

∫
{τY (w)≥k}

u(wk) dωx(w).

In particular, one has Un(x) ≤ ∑n
k=1 a

−k
0 P ku(x) < ∞. Besides, the function

1{τY ≥k} being a function of w1, . . . , wk−1, by the Markov property, one gets

Un(x) =
n∑
k=1

a−k0

∫
{τY (w)≥k}

(Pu)(wk−1) dωx(w)
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≤
n∑
k=1

a−k0

∫
{τY (w)≥k}

(a u(wk−1) + C) dωx(w)

≤ au(x) + C

a0
+

n∑
k=2

a−k0

∫
{τY (w)≥k}

(a+ C/M0)u(wk−1) dωx(w)

≤ au(x) + C

a0
+
a+ C/M0

a0
Un(x);

that is, since a0 − a− C/M0 > 0,

Un(x) ≤ au(x) + C

a0 − a− C/M0
.

Letting n go to ∞, we get (3.2).

For any x in Y and p in N, we set, for ωx-almost any w in W ,

vp(w) = max
τpY (w)≤k<τp+1

Y (w)
log+ u(wk).

According to (3.2) with a0 = 1, one has

sup
x∈Y

∫
W
ev0(w) dωx <∞.

Set ρ = supx∈Y
∫
W v0(w) dωx. Reasoning again as in the proof of Lemma 3.5

yields, for any x in Y , for ωx-almost any w in W ,

lim sup
n→∞

1

n

n−1∑
p=0

vp(w) ≤ ρ.

Now, by Lemma 3.7, there exists T in N such that, for any x in Y , for

ωx-almost any w in W , one has

lim sup
n→∞

1

n
τnY,T (w) ≤ ε

2
.

Since, for any n in N, τnY ≥ n, we get, for any M > 1,

]{0 ≤ k < n | u(wk) > M} ≤
n−1∑
p=0

σpY (w) 1{vp(w)>logM}

≤ τnY,T (w) + T]{0 ≤ p < n | vp(w) > logM}

≤ τnY,T (w) +
T

logM

n−1∑
p=0

vp(w),

thus, for ωx-almost any w in W ,

lim sup
n→∞

1

n
]{0 ≤ k < n | u(wk) > M} ≤ ε

2
+

Tρ

logM
.

The result follows, since M is arbitrarily large. �
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Proof of Proposition 3.9. For any M > 0, set XM = u−1([0,M ]). Fix

ε > 0 and M > 0. By Lemma 3.10, there exists M ′ > 0 such that, for

ωx-almost any w in W , for n large enough, one has

1

n

n−1∑
k=0

1Xc
M′

(wk) ≤ ε.

Pick m ≥ 1 such that amM ′

M ≤ ε. By Lemma 3.2, for ωx-almost any w in W ,

for n large enough, we have

1

n

n−1∑
k=0

1Xc
M

(wk) ≤
1

n

n−1∑
k=0

Pm1Xc
M

(wk) + ε

≤ 1

n

n−1∑
k=0

1XM′ (wk) P
m1Xc

M
(wk) + 2ε ≤ C

(1− a)M
+ 3ε

since, for any y in XM ′ , one has

Pm1Xc
M

(y) ≤ 1

M
Pmu(y) ≤ 1

M

Å
amu(y) +

C

1− a

ã
≤ ε+

C

(1− a)M
.

The proposition follows. �

4. Equidistribution through Markov chains

In this section, we apply the results on Markov chains established in Sec-

tion 3 to the proof of Theorems 1.4(c), 1.5 and 1.7.

The key geometric input we will need from [4] and [3] is the following

Lemma 4.1. Let G, Λ, X , Γ and µ be as in Theorem 1.4 and L be the cen-

tralizer of Γ in G. We denote by P the Markov operator on X with transition

probabilities Px = µ ∗ δx, x ∈ X .

Let K be a compact subset of X . There exist a lower semicontinuous

function u : X → [0,∞] that is bounded on K and 0 ≤ a < 1 and C > 0 with

Pu ≤ au+C , such that, for any M > 0, the set XM = u−1([0,M ]) is compact.

If XM is P -recurrent, we let PM denote the Markov operator induced by

P on XM .

Let Y be a closed Γ-invariant homogeneous subspace of X and KL be a

compact subset of L. If M is large enough, the set XM is P -recurrent and

there exist a lower semicontinuous function vM : XM → [0,∞], a compact

neighborhood K ′L of KL in L and 0 ≤ aM < 1 and CM > 0 with

PMvM ≤ aMvM + CM ,

vM <∞ on (K ′LY )c ∩XM ,

vM =∞ on KLY ∩XM .
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Proof. The existence of u follows from [3, Prop. 7.4]; the one of vM follows

from the proof of [4, Prop. 6.24]. Note that, by Proposition 3.9, the set XM is

P -recurrent as soon as C
(1−a)M < 1. �

4.1. Almost sure equidistribution of trajectories.

Proof of Theorem 1.4(c). We setX = G/Λ and P for the Markov operator

on X with transition probabilities Px = µ ∗ δx, x ∈ X. Fix x in X. As in the

first part of the proof of Theorem 1.4, we can assume x does not belong to any

nonopen Y in SX(Γ).

By Lemma 4.1, there exist a lower semicontinuous function u : X → [0,∞]

and 0 ≤ a < 1 and C > 0 with Pu ≤ au+C, u(x) <∞ and such that, for any

M > 0, the set XM = u−1([0,M ]) is compact. Therefore, by Proposition 3.9,

for ωx-almost any w in W , any weak limit point ν of 1
n

∑n−1
k=0 δwk is a probability

measure. By Lemma 3.2, such a limit point is µ-stationary. By [4, Th. 2.5], ν is

an average of probability measures νY with Y in SX(Γ). By Proposition 2.1 and

Lemma 2.9, it suffices to prove that, for any nonopen Y in SX(Γ) and any com-

pact subset KL of L, one has ν(KLY ) = 0 (where L is the centralizer of Γ in G).

Fix 0 < ε < 1 and M > 0 large enough, so that C
(1−a)M ≤ ε. By

Proposition 3.9, the set XM = u−1([0,M ]) is P -recurrent. We let PM be

the Markov operator induced by P on XM and τpM , p ∈ N, be the succes-

sive return times in XM . By Lemma 4.1, if M is large enough, there exist

a lower semicontinuous function vM : XM → [0,∞] and 0 ≤ aM < 1 and

CM > 0 with PMvM ≤ aMvM + CM , vM (x) < ∞ and such that vM = ∞ on

KLY ∩ XM . Therefore, by Proposition 3.9, applied to the Markov operator

PM , for ωx-almost any w in W , any weak limit point of the sequence of prob-

ability measures 1
p

∑p−1
q=0 δwτq

M
(w)

gives mass 0 to KLY ∩XM . Hence, applying

Proposition 3.9 to the operator P , we get ν(KLY ∩ XM ) ≤ ε. The result

follows since ε is arbitrarily small and M arbitrarily large. �

4.2. Equidistribution of invariant homogeneous subsets. The proof of The-

orem 1.5 essentially relies on the following

Lemma 4.2. Let G, Λ, X and Γ be as in Theorem 1.4 and L be the

centralizer of Γ in G. Fix a compact subset K of X , and let (Yn) ⊂ SK(Γ) and

ν∞ be a cluster point of νYn as n→∞.

(a) The measure ν∞ has total mass 1.

(b) If Y ∈ SX(Γ) is such that, for any compact subset KL of L, for all but

finitely many n, one has Yn 6⊂ KLY , then one has ν∞(LY ) = 0.

Proof. The proof follows the same line as Theorem 1.4(c). For any n, we

set νn = νYn . By replacing K by a compact neighborhood, we may assume

one has νn(K) > 0.
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Let µ be a compactly supported Borel probability measure on Γ whose

supports spans Γ, and let P be the Markov operator on X with transition

probabilities Px = µ ∗ δx, x ∈ X. By Lemma 4.1, there exist a lower semicon-

tinuous function u : X → [0,∞] that is bounded on K and 0 ≤ a < 1 and

C > 0 with Pu ≤ au+C, such that, for any M > 0, the set XM = u−1([0,M ])

is compact. Since for any n, νn is Γ-invariant, it is P -invariant. Hence, as

νn(K) > 0, by Lemma 3.8, one has
∫
X udνn ≤ C

1−a and therefore

(4.1) νn(Xc
M ) ≤ C

(1− a)M
.

We get ν∞(Xc
M ) ≤ C

(1−a)M and ν∞ is a probability measure; that is, (a) is

proved.

Let Y be as in (b) and let us prove ν∞(LY ) = 0. Fix 0 < ε < 1 and

M > 0 large enough, so that C
(1−a)M ≤ ε. By Proposition 3.9, the set XM

is P -recurrent. We let PM be the induced Markov operator on XM . Now, if

M is large enough, the second part of Lemma 4.1 holds: there exist a lower

semicontinuous function vM : XM → [0,∞], a compact neighborhood K ′L of

KL in L and 0 ≤ aM < 1 and CM > 0 with PMvM ≤ aMvM + CM such that

vM <∞ on (K ′LY )c ∩XM and vM =∞ on KLY ∩XM .

For any M ′ > 0, we set XM,M ′ = v−1
M ([0,M ′]). Let us dominate the

measure νn(XM r XM,M ′). By Lemma 3.4, for all n, the restriction of νn to

XM is PM -invariant and PM -ergodic. By assumption, for all but finitely many

n, we have νn(K ′LY ) = 0. Hence, by Lemma 3.8, we get∫
XM

vM dνn ≤ νn(XM )
CM

(1− aM )
≤ CM

(1− aM )
,

and νn(XM rXM,M ′) ≤ CM
(1−aM )M ′ .

Since XM,M ′ is compact, using (4.1) and letting n go to ∞, this gives

ν∞(XM,M ′) ≥ 1−ε− CM
(1−aM )M ′ thus, since M ′ is arbitrary, ν∞(KLY ∩XM ) ≤ ε.

Since ε is arbitrarily small and M arbitrarily large, this proves ν∞(LY ) = 0

as required. �

Proof of Theorem 1.5. Since (b) directly follows from Lemma 4.2, we only

have to prove (a). Note that (b) implies SK(Γ) is closed.

Let (Yn) be a sequence in SK(Γ), and let us construct a converging subse-

quence. First, we can assume the sequence (νYn) converges to a measure ν∞.

By Lemma 4.2(a), ν∞ is a probability measure. Since ν∞ is Γ-invariant, by

[4, Th. 2.5], every Γ-ergodic component of ν∞ is equal to νY for some Y in

SX(Γ); hence, as by Proposition 2.1, SX(Γ) is a countable union of L-orbits,

there exists Y∞ in SX(Γ) such that ν∞(LY∞) > 0. By Lemma 4.2.(b), there

exists a compact subset KL of L such that, for large n, one has Yn ⊂ KLY∞.



STATIONARY MEASURES 1041

Assume the dimension of Y∞ is minimal, and let us prove ν∞ = ν`Y∞ for some

` in KL.

Indeed, for n large, since Yn is Γ-ergodic, there exists `n in KL such that

Yn ⊂ `nY∞. After again extracting and replacing Y∞ by a translate, we can

assume `n −−−→
n→∞

e. Since νYn − ν`−1
n Yn

−−−→
n→∞

0, we can assume, for all n,

one has `n = e; that is, Yn ⊂ Y∞. Now, still by [4, Th. 2.5], every Γ-ergodic

component of ν∞ is equal to νY for some Y in SX(Γ), Y ⊂ Y∞. But, by

assumption and by Lemma 4.2.(b), if Y  Y∞, one has ν∞(LY ) = 0. Hence,

again by Proposition 2.1, we have ν∞ = νY∞ , what should be proved. �

4.3. Closed invariant subsets.

Proof of Theorem 1.7(a) and (b). Note that (b) follows directly from The-

orem 1.5.(b) and the fact that L is now assumed to be discrete.

Let us prove (a); that is, the set SX(Γ) is compact. By Theorem 1.5(a), it

suffices to construct a compact subset K of X such that, for every x in X, one

has Γx∩K 6= ∅. Now, fix a compactly supported Borel probability measure µ

on Γ whose support spans Γ. By [3, Th. 7.2.(b)] (see also [10] and [3, Th. 1.4]

in the real case), there exists a compact subset K of X such that, for any x in

X, for n large enough, one has µ∗n ∗ δx(K) ≥ 1/2 and we are done. �

To prove Theorem 1.7(c), we need the following complement to Lemma 2.9.

Lemma 4.3. Let G, Λ, X and Γ be as in Theorem 1.4. If the centralizer

of Γ in G is discrete, then the set Sop(Γ) is a cover of X by finitely many

disjoint open sets.

Proof. We only have to check that the set Sop(Γ) is finite and that one has

X =
⋃
Y ∈Sop(Γ) Y . Assume there exists a sequence (Yn) of distinct elements

of Sop(Γ). Since, by Theorem 1.7(a), SX(Γ) is compact, we can assume (Yn)

converges to some Y in SX(Γ). Now, by Theorem 1.7.(b), we get, for large

n, Yn ⊂ Y . Hence, since Yn is open and Y is Γ-ergodic, Yn = Y , which is a

contradiction. Therefore, Sop(Γ) is finite.

In particular, the set X r⋃Y ∈Sop(Γ) Y is open in X. By Theorem 1.4, we

have X =
⋃
Y ∈SX(Γ) Y . Since, by Proposition 2.1, the set SX(Γ) is countable,

we have

νX(
⋃
Y /∈Sop(Γ) Y ) = 0.

Thus, the set X r⋃Y ∈Sop(Γ) Y is empty. �

Proof of Theorem 1.7(c). Let F be a closed Γ-invariant subset of X, and

let us prove F is a finite union of elements of SX(Γ). Using Lemma 4.3, we

can assume X is Γ-ergodic. We proceed by induction on the dimension of X.

If it is zero, there is nothing to prove. Assume it is positive.
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If there exists Y1, . . . , Yr in SX(Γ)r{X} such that F ⊂ Y1∪ · · ·∪Yr, then

we are done by induction since, for 1 ≤ i ≤ r, F ∩ Yi is a closed Γ-invariant

subset of Yi.

Assume this is not the case, and let us prove F = X. Let (Yn)n≥1 be

the elements of SX(Γ)r {X}, which is countable by Proposition 2.1. For any

n ≥ 1, pick xn ∈ F r (Y1 ∪ · · · ∪ Yn), and set Zn = Γxn. By Theorem 1.4, we

have Zn ∈ SX(Γ). Since, by (a), SX(Γ) is compact, (Zn) admits a limit point

Z∞ in SX(Γ). Now, by construction, for any Y 6= X in SX(Γ), for all but

finitely many n, one has Zn 6⊂ Y ; hence, by (b), Z∞ 6⊂ Y . We get Z∞ = X,

hence F = X, what should be proved. �

Example 4.4. If L is not discrete, there may exist closed Γ-invariant sub-

sets in X that are not finite unions of sets of the form KLY , where KL is

a compact subset of L and Y is in SX(Γ). Here are two examples. We

set G = SL(3,R), Λ = SL(3,Z) and Γ ' GL(2,Z) to be the stabilizer of

the decomposition Z3 = Z2 × Z. Let x0 = Z3 be the base point of X and

H ' SL(2,R) be the semisimple part of the stabilizer of R2 × {0} in G,

L = {`t = diag(t, t, t−2) | t 6= 0}. We set Y∞ = Hx0, (Yn) to be the sequence

of all finite Γ-orbits in Y∞ and (tn) ⊂ (1,∞) a sequence converging toward

t∞ = 1. Then F1 = LY∞ and F2 = Y∞ ∪
⋃
n `tnYn are closed Γ-invariant

subsets.

Appendix A. Lattices in S-adic Lie groups

We now aim at proving Proposition 2.1 for general weakly regular S-adic

Lie groups. In order to adapt the strategy we followed in the real case, we will

use the notions introduced in [24] and [4, §5].

We will first study lattices in S-adic Lie groups and, in particular, give

conditions for them to be finitely generated. The main results of this appendix

are Proposition A.1 and Lemma A.9.

A.1. Finite generation of lattices. One of the main difficulties for extend-

ing the proof of Proposition 2.1 is the fact that some of the lattices we may

encounter are not finitely generated. For example, if p is a prime number, the

group Z[1
p ] is not finitely generated, although it embeds as a lattice in R×Qp.

In this section, we precisely describe which S-adic Lie groups have finitely

generated lattices.

Proposition A.1. Let G be a compactly generated S-adic Lie group. Any

lattice in G is finitely generated.

In case G is S-algebraic and the lattice is arithmetic, this result is due to

Kneser [14]. We follow the same strategy.
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Note that, if a locally compact group admits a finitely generated lattice,

it is compactly generated. Conversely, any cocompact lattice in a compactly

generated locally compact group is finitely generated (see [15, IX.3] or [4,

Prop. 5.22]), but this is not true for noncocompact lattices. Indeed, for any

prime number power q, the group Λ = SL(2,Fq[T−1]) embeds as a lattice in

the compactly generated locally compact group G = SL(2,Fq((T ))), but Λ is

not finitely generated.

Proof. We will show how to deduce this statement from the well-known

case where G is a real Lie group. Let G◦ be the connected component of G.

The closure Ω of the image of Λ in G/G◦ has finite covolume. Since G/G◦ is

a compactly generated non-archimedean S-adic Lie group, by [5, Lemma 5.2],

Ω is cocompact in G/G◦, Hence it is compactly generated. (See, for instance,

[4, Prop. 5.22].) We may thus assume that the group ΛG◦ is dense in G. We

conclude thanks to Lemma A.2 below. �

Lemma A.2. Let G be a compactly generated locally compact group, G◦

its connected component and Λ be a lattice in G such that the group ΛG◦ is

dense in G. Then the group Λ is finitely generated.

Proof. By Montgomery-Zippin theorem in [18], there exist an open sub-

group H of G and a compact normal subgroup K of H such that H/K is a

connected real Lie group. (Note that if G is an S-adic Lie group, the existence

of H and K does not rely on [18].) The group Λ ∩ H/Λ ∩ K is a lattice in

H/K. Hence, by [15, IX.3], Λ ∩H is finitely generated.

Recall that if G′ is a topological group, U ′ an open subset of G′ that spans

G′ and Λ′ a dense subgroup of G′, then Λ′ is spanned by Λ′ ∩ U ′; indeed, the

group spanned by Λ′ ∩ U ′ is dense in Λ′ for the induced topology.

Now, since the group G′ := G/G◦ is compactly generated and since the

imageH ′ ofH inG′ is open, there exists a finite set F ′ inG′ such that F ′H ′ gen-

erates G′. Since the image Λ′ of Λ in the group G′ is a dense subgroup, we may

assume F ′ is contained in Λ′. Then, Λ′ is generated by F ′ and Λ′ ∩H ′. There-

fore, Λ′ is finitely generated and so is Λ, since Λ∩G◦ is contained in Λ∩H. �

A.2. Structure results, after Ratner. We recall a few definitions and re-

sults from [24].

Let G be a weakly regular S-adic Lie group and g =
⊕
p∈S gp be the

Lie algebra of G. We let G∞ denote the connected component of G, which

is also the analytic Lie subgroup of G whose Lie algebra is the archimedean

part of g. We also let Gu denote the closure of the subgroup of G spanned

by Ad-unipotent one-parameter subgroups of G and Gu,f denote the closure

of the subgroup of G spanned by Ad-unipotent one-parameter subgroups of G

with derivative in gf =
⊕
p 6=∞ gp. The groups G∞, Gu and Gu,f are normal

in G.
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A difficulty in the study of S-adic Lie groups is that there is, in general,

no normal open subgroup that plays the role of the connected component of

real Lie groups. We may, however, define a weak analogue notion. A standard

open subset Ω is a product of a small open neighborhood Ω∞ of e in G∞ and

of a standard compact subgroup Ωf of G with Lie algebra gf (See [4, §5.1]

and note that the archimedean factor. Ω∞ will play no role in the sequel.)

For any closed subgroup H of G, we define the Ω-semiconnected component

of H as its open subgroup HΩ := (H ∩ Ω)Hu,fH∞. The group H is said to

be Ω-semiconnected if H = HΩ. The group H is said to be semiconnected if

there exists a standard open subset Ω such that H is Ω-semiconnected. Note

that semiconnected components are not necessarily normal subgroups as, for

instance, if G = Zpn (⊕n≥1ZZ/p
nZ), where p is a prime number and the group

Zp of p-adic integers acts by translations on each Z/pnZ.

Let us now focus on a particular class of S-adic Lie groups. For p in S,

a p-adic Lie group N is said to be algebraic unipotent if it is isomorphic to

the group of Qp-points of a unipotent Qp-group. These groups are extensively

studied in [24, Sect.2] (where they are called quasiconnected).

If p = ∞, N is algebraic unipotent if and only if it is connected, sim-

ply connected and nilpotent. Then, the exponential map is a diffeomorphism

n→ N , whose inverse is denoted by log.

If p < ∞, by [24, Prop. 2.1], N is algebraic unipotent if and only if it

is weakly regular, spanned by Ad-unipotent one-parameter subgroups and has

nilpotent Lie algebra. Then, for any g in N , the morphism Z → N ;n 7→ gn

extends as a continuous morphism Zp → N , whose derivative is denoted by

log(g). The map log : N → n is an analytic homeomorphism whose inverse is

denoted by exp.

In any case, exp and log are Aut(N)-equivariant and the map n× n→ n;

(X,Y ) 7→ log(expX expY ) is polynomial (and is therefore given by the Baker-

Campbell-Hausdorff formula). In particular, if N ′ is a closed normal subgroup

of N that is spanned by one-parameter subgroups, then N/N ′ is also an alge-

braic unipotent group.

An S-adic Lie group is said to be algebraic unipotent if it is a product of

algebraic unipotent p-adic Lie groups, p ∈ S.

Let G be any weakly regular S-adic Lie group. Then, the group Gu,f
admits a Levi decomposition. Indeed this group Gu,f is also Ad-regular, i.e.,

its center is equal to the Kernel of the adjoint representation, and Ratner has

proven in [24, Cor. 2.1] that such a group always has a Levi decomposition.

More precisely, let the solvable radical Ru,f of Gu,f be the closure of the sub-

group of Gu,f spanned by the Ad-unipotent one-parameter subgroups tangent

to the solvable radical ru,f of gu,f . We define a Levi subgroup Su,f of Gu,f
as being the closure of the subgroup of Gu,f spanned by the Ad-unipotent
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one-parameter subgroups tangent to a given Levi subalgebra (i.e., a maximal

semisimple Lie subalgebra) su,f of gu,f . By [21] and [24, Cor. 2.1], the group

Su,f has Lie algebra su,f , the center of Su,f is finite, the group Ru,f has Lie

algebra ru,f , is algebraic unipotent and one has

Gu,f = Su,fRu,f .

In particular, one has Su,f∩Ru,f = {e} and the product map Su,f×Ru,f → Gu,f
is a homeomorphism. It follows that every ad-nilpotent element in gu,f is

tangent to an Ad-unipotent one-parameter subgroup in Gu,f .

A.3. Unstable subgroups. We will now give conditions for some weakly

regular S-adic Lie groups to be compactly generated.

Let still G be a weakly regular S-adic Lie group with Lie algebra g, and

let Γ be a closed subgroup of G. An element v of g is said to be Γ-unstable if

0 belongs to the closure of the orbit Ad Γ(v). A one-parameter subgroup of G

is said to be Γ-unstable if its derivative is a Γ-unstable vector. (Such a one-

parameter subgroup is necessarily Ad-unipotent.) Let H be a closed subgroup

of G with Lie algebra h that is normalized by Γ. We will make repeated use

of the following fact from [4, Lemma 5.12]:

if Ad Γ
Z

is semisimple, any Γ-unstable vector in h is tangent to(A.1)
a Γ-unstable one-parameter subgroup of H .

Lemma A.3. Let G be a weakly regular S-adic Lie group, Γ be a closed

subgroup of G such that Ad Γ
Z

is semisimple and H be a closed subgroup of G

that is normalized by Γ. The following are equivalent :

(i) The group Hu,f is topologically spanned by Γ-unstable one-parameter

subgroups.

(ii) The Lie algebra hu,f of Hu,f is spanned by Γ-unstable vectors.

Definition A.4. If either of the two properties of Lemma A.3 holds, we

shall say H is Γ-unstable.

Note that if G is a quotient of the real Lie group „�SL(2,R) × T by a

discrete central subgroup whose projection on T is dense, then G is spanned

topologically by G-unstable one-parameter subgroups, but its Lie algebra is

not spanned by G-unstable vectors.

Proof of Lemma A.3. (ii)⇒(i) If hu,f is spanned by Γ-unstable vectors,

by (A.1), the closure H ′ of the subgroup of Hu,f spanned by Γ-unstable one-

parameter subgroups has Lie algebra hu,f . By [24, Cor. 2.1] (note that the

S-adic group H ′ is also Ad-regular), every ad-nilpotent vector in hu,f is tangent

to some Ad-unipotent one-parameter subgroup in H ′; that is, H ′ = Hu,f .
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(i)⇒(ii) Conversely, assume Hu,f is topologically spanned by Γ-unstable

one-parameter subgroups. Let ru,f be the radical of hu,f and set j = hu,f/ru,f .

We will first prove that the Lie algebra j is spanned by Γ-unstable vectors.

Let l be the subalgebra of those v in j such that Γv is a bounded subset of

j and j1 be the subalgebra of j spanned by Γ-unstable vectors, so that, since

Ad Γ
Z

is semisimple, we get j = l + j1. As [l, j1] ⊂ j1, the subalgebra j1 is an

ideal of j. By construction, Γ has no unstable vector in j/j1, hence, Hu,f being

topologically spanned by Γ-unstable one-parameter subgroups, the adjoint map

Hu,f → Aut(j/j1) is trivial. Since j/j1 is semisimple, we get j1 = j; that is, j is

spanned as a Lie algebra by Γ-unstable vectors.

Now, as Ad Γ
Z

is semisimple, the Lie algebra hu,f admits a Levi factor

su,f that is Γ-invariant and, since su,f is Γ-isomorphic to j, it is spanned by

Γ-unstable vectors. Let h′ be the subalgebra of hu,f spanned by Γ-unstable

vectors and r′ = h′ ∩ ru,f . Since su,f ⊂ h′, we get [su,f , r′] ⊂ r′. Let

Hu,f = Su,fRu,f be the Levi decomposition of Hu,f associated to the Levi

decomposition hu,f = su,f ⊕ ru,f and R′ = exp(r′) be the unique algebraic

unipotent subgroup of Ru,f with Lie algebra r′. Then Su,f normalizes R′

and hence Su,fR
′ is a closed subgroup in Hu,f . Now, by construction, every

Γ-unstable one-parameter subgroup in Hu,f is contained in Su,fR
′; that is,

Hu,f = Su,fR
′, hence hu,f = h′, what should be proved. �

We now get a criterion to ensure some of the groups we will encounter

have finitely generated lattices.

Lemma A.5. Let G be a weakly regular S-adic Lie group and Γ be a closed

compactly generated subgroup of G such that Ad Γ
Z

is semisimple. Assume G

admits a normal Γ-unstable semiconnected subgroup H such that G = ΓH .

Then G is compactly generated. In particular, any lattice in G is finitely gen-

erated.

Proof. Let vi, 1 ≤ i ≤ `, be Γ-unstable vectors that span the Lie algebra

hu,f . By (A.1), the lines they generate are tangent to one-parameter subgroups

Vi of Hu,f . The group H ′ spanned by V1∪ · · ·∪V`. is open and hence closed in

Hu,f . By [24, Cor. 2.1] (note that the S-adic group H ′ is also Ad-regular), every

ad-nilpotent vector in hu,f is tangent to some Ad-unipotent one-parameter

subgroup in H ′, that is H ′ = Hu,f . By construction, the group generated by Γ

and V1, . . . , V` is compactly generated. Since this group is equal to ΓHu,f , since

H is a compact extension of Hu,fH∞, and since H∞ is compactly generated,

the group G = ΓH is compactly generated. The property on lattices follows

by Proposition A.1. �

A.4. Cosolvable radicals. We will construct large compactly generated

subgroups in weakly regular semiconnected S-adic Lie groups.
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Let g be a Lie algebra. We shall say an ideal h of g is cosolvable if the

algebra g/h is solvable. As the intersection of any family of cosolvable ideals

of g still is a cosolvable ideal, g admits a smallest cosolvable ideal c. We say c
is the cosolvable radical of g.

Lemma A.6. Let g be a Lie algebra and s be a Levi subalgebra of g. Then

the cosolvable radical of g is the subalgebra of g spanned by [s, g].

Proof. Let c be the cosolvable radical of g, c′ be the subalgebra spanned

by [s, g] and l be the centralizer of s. Since s ⊂ c, we have c′ ⊂ c. Now, as s is

semisimple, we have g = l⊕[s, g]. As l normalizes [s, g], it normalizes c′, so that

c′ is an ideal. As s ⊂ c′, c′ is cosolvable, that is c ⊂ c′, and we are done. �

For a weakly regular S-adic Lie group G, we define the cosolvable radical

Cu of Gu as the closure of the subgroup of Gu spanned by the Ad-unipotent

one-parameter subgroups tangent to the cosolvable radical cu of gu.

Lemma A.7. Let G be a weakly regular S-adic Lie group with Lie alge-

bra g, Ω be a standard open subset of G, cu be the cosolvable radical of gu and

Cu be the cosolvable radical of Gu.

(a) The group Cu,f has Lie algebra cu,f , and the group Nu := Gu,f/Cu,f is

algebraic unipotent.

(b) The group CuG∞ is compactly generated ; it is the largest compactly

generated closed subgroup H of G with H = HuH∞.

(c) The group ΩCuG∞ is the largest compactly generated Ω-semiconnected

subgroup of G.

Proof. (a) Let ru,f be the solvable radical of gu,f , Ru,f be the solvable

radical of Gu,f , su,f be a Levi subalgebra of gu,f and Su,f be the associated

Levi subgroup of Gu,f . By construction, the Lie algebra su,f has no anisotropic

factor and the group Ad(Su,f ) has finite index in the connected algebraic sub-

group of GL(gu,f ) with Lie algebra su,f , so that [su,f , gu,f ] is exactly the sub-

space spanned by Su,f -unstable vectors in gu,f and, by Lemma A.6, cu,f is the

subalgebra spanned by Su,f -unstable vectors in gu,f .

By (A.1), every such vector is tangent to a Su,f -unstable one-parameter

subgroup. Hence, by Lemma A.3, the group Cu,f has Lie algebra cu,f . In other

terms, if r1 = cu,f ∩ ru,f , we have Cu,f = Su,fR1, where R1 = exp r1 is the

unique algebraic unipotent subgroup of Ru,f with Lie algebra r1. In particular,

Nu is algebraic unipotent since it is isomorphic to Ru,f/R1, and (a) is proved.

(b) There exists v1, . . . , vr in cu,f that span cu,f as a Lie algebra and are

eigenvectors associated to eigenvalues with modulus < 1 of some γ1, . . . , γr in

Su,f . Therefore, if Γ denotes the closure of the subgroup of Su,f spanned by

γ1, . . . , γr, the group Cu,f is Γ-unstable. By enlarging Γ, we can assume Ad(Γ)
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to be Zariski dense in Ad(Su,f ). Thus, by Lemma A.5, Cu,fG∞ = CuG∞ is

compactly generated.

Conversely, let H be a compactly generated closed subgroup of G with

H = HuH∞, so that H is contained in GuG∞. Since the closure of HCuG∞
is still compactly generated, we may assume CuG∞ ⊂ H.

We recall that in a non-archimedean algebraic unipotent group, every

compactly generated subgroup is compact and every one-parameter subgroup

has closed noncompact image (see [24, Prop. 2.1]). Now, since the quotient

group GuG∞/CuG∞ is isomorphic to Nu, the image of H in Nu is trivial as

required. We have proved (b).

(c) follows easily from (b). �

We can now characterize the compactly generated weakly regular semi-

connected S-adic Lie groups.

Corollary A.8. Let G be weakly regular semiconnected S-adic Lie group

and gu,f be the Lie algebra of the group Gu,f . The group G is compactly

generated if and only if gu,f = [gu,f , gu,f ].

Proof. By Lemma A.7, one has the following equivalences: G is compactly

generated ⇐⇒ Gu,f equals its cosolvable radical ⇐⇒ the Lie algebra gu,f has

no nonzero solvable quotient ⇐⇒ gu,f = [gu,f , gu,f ]. �

A.5. Finitely generated subgroups of lattices. The proof of Proposition 2.1

for an S-adic Lie group G will rely on studying sets of subgroups of G that play

the same role as the sets T (G,∆,Σ) in the real case. Thanks to Lemma A.5,

we will know that the relevant subgroups Σ will be finitely generated and hence

will vary in a countable set. But the groups ∆ will be lattices in semiconnected

groups and might not be finitely generated.

In this section we develop tools for overcoming this difficulty. Indeed,

given ∆, we will exhibit a subgroup ∆′ of ∆ that is finitely generated and such

that the group ∆ is spanned by all the conjugates of ∆′ under the elements of

Σ. This subgroup ∆′ will be constructed as the intersection of ∆ with some

large semiconnected compactly generated open subgroup as in Lemma A.7.

Lemma A.9. Let H be a weakly regular S-adic Lie group, Ω be a standard

open subset of H and Γ be a compactly generated subgroup of H such that Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

. Let Σ be a lattice in H such that Γ acts er-

godically on H/Σ. Assume the Ω-semiconnected component HΩ of H is a nor-

mal Γ-unstable subgroup and H = ΓHΩ. Set H ′ to be the largest compactly gen-

erated Ω-semiconnected subgroup of H , ∆ = Σ∩HΩ and ∆′ = ∆∩H ′. Then ∆′

is finitely generated and ∆ is the smallest normal subgroup of Σ containing ∆′.

The reader can keep in mind the example whereH = ΓnHΩ and Σ = Γn∆

with Γ = SL(d,Z[1
p ]) acting diagonally on the group HΩ = Qdp ×Rd and on its
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lattice ∆ = Z[1
p ]d (for a prime number p). In this case, one can set H ′ = Zdp×Rd

and ∆′ = Zd.
A key step for the proof is the following

Lemma A.10. Let G be a weakly regular S-adic Lie group and Cu be the

cosolvable radical of Gu. Then, if Λ is a finite covolume subgroup of G, the

group CuG∞Λ contains Gu.

Proof. By [4, Lemma 5.27] and [5, Lemma 5.2], this statement is true

when the group Gu is nilpotent. We will reduce the general case to this one.

Indeed, after replacing G by a semiconnected component, we may assume

G is semiconnected. By Lemma A.7, the group Nu := Gu,f/Cu,f is algebraic

unipotent. Since the quotient N := G/CuG∞ is a compact extension of Nu, by

[24, Prop. 1.2] every one-parameter subgroup of N is contained in Nu; hence

N is weakly regular. After replacing G by N , we may assume Gu is algebraic

unipotent and apply [4, Lemma 5.27]. �

Lemma A.10 yields the following extension of [4, Lemma 5.28].

Corollary A.11. Let G be a weakly regular S-adic Lie group and Ω be

a standard open subset of G. Assume G is Ω-semiconnected, and let G′ be the

largest compactly generated Ω-semiconnected subgroup of G. Then, if Λ is a

lattice in G, one has G = G′Λ.

Proof. Let Cu be the cosolvable radical of Gu. By Lemma A.7, one has

G′ = ΩCuG∞. As G′ is open, the set G′Λ is closed. As it contains CuG∞Λ,

by Lemma A.10, it contains Gu. The result follows since G = G′Gu. �

We will also need the following

Lemma A.12. Let M be a closed subgroup of an algebraic unipotent p-adic

Lie group N with p <∞. Then the group M/Mu is compact.

Proof. Replacing N with the quotient of the normalizer of Mu by Mu, we

can assume that Mu = {e}, i.e., that M contains no one-parameter subgroups.

We want to prove then that M is compact. This follows from the fact that the

exponential map is an analytic isomorphism between n and N ([24, Prop. 2.1]).

�

We can now give the

Proof of Lemma A.9. Let Cu be the cosolvable radical of Hu. By Lem-

ma A.7, one has H ′ = ΩCuH∞. Since H ′ is compactly generated, by Proposi-

tion A.1, its lattice ∆′ is finitely generated.

Let ∆′′ be a subgroup of ∆ that contains ∆′ and is normal in Σ: we have

to prove ∆′′ = ∆. To do this, we will prove one has Hu ⊂ CuH∞∆′′, as in
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Lemma A.10, and infer, as in Corollary A.11, that this gives HΩ = H ′∆′′,

which in turn yields ∆′′ = ∆.

Let us therefore study the group CuH∞∆′′. By Lemma A.7, the quotient

group Nu := HuH∞/CuH∞ is algebraic unipotent. We denote by M the image

of CuH∞∆′′ ∩HuH∞ in Nu. We want to prove M = Nu.

First note that, by Lemma A.10, the group CuH∞∆ contains Hu. Thus,

since H ′ is open in H and contains CuH∞, the group CuH∞∆′ contains H ′∩Hu

and the group M is open in Nu. Let mu and nu respectively be the Lie algebras

of Mu and Nu. As M is normalized by Σ, the map

H → Gr(nu);h 7→ Adh(mu)

factors as an H-equivariant continuous map H/Σ → Gr(nu). As H/Σ is

Γ-ergodic, by Lemma 2.3, this map is constant; that is, mu is an H-invariant

ideal of nu and Mu is an H-invariant subgroup of Nu.

Since the S-adic Lie groupNu is algebraic unipotent and non-archimedean,

by [24, Prop. 2.1], its closed subgroup M is a compact extension of Mu. Hence

P = log(M/Mu) is a ΣH∞-invariant compact open subset of nu/mu. Now,

ΣH∞/H∞ is a finite covolume subgroup in the non-archimedean S-adic Lie

group H/H∞; hence by [5, Prop. 5.1], the space H/ΣH∞ is compact and the

set Q =
⋃
h∈H hP is a compact open H-invariant subset of nu/mu. As Q is

Γ-invariant, nu/mu contains no Γ-unstable vector. On the other hand, since

HΩ is Γ-unstable, the Lie algebra nu is spanned by Γ-unstable vectors and so

is nu/mu. This proves mu = nu; hence M = Nu as required.

Since H ′ is open in H, this gives Hu ⊂ H ′∆′′; hence HΩ = H ′∆′′. As

∆′′ ⊂ ∆ and (∆ ∩H ′) ⊂ ∆′′, we get ∆ = ∆′′. �

Appendix B. Countability of invariant subspaces in the S-adic case

We now start the proof of Proposition 2.1. We will first prove an analogue

of Lemma 2.5.

B.1. Well-shaped compact open subgroups. One of the difficulties we en-

counter is to extend Lemma 2.6. Indeed, if G is a weakly regular S-adic Lie

group and H1 and H2 are subgroups of G, if H1 normalizes the Lie algebra

of H2, there is no reason for H1 to normalize a semiconnected component of

H2, as, for instance, when G = H1 = SL(d,Qp) and H2 = SL(d,Zp). In this

section, we explain how to chose semiconnected components carefully in order

to ensure properties of this kind to hold.

Let Γ be a subgroup of G such that Ad Γ
Z

is semisimple and equal to

Ad Γ
Z,nc

, and let l be the centralizer of Γ in g. Let Ω be a standard open

subset of G with exponential map expΩ : O → Ω.
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As in [4, §5], we will say Ω is Γ-good if, for every v in O and γ in Γ with

Ad γ(v) in O, one has

expΩ(Ad γ(v)) = γ expΩ(v)γ−1.

We will say Ω is Γ-well shaped if it is Γ-good and if, for every Lie subalgebra

h in g that is normalized by Γ, setting HΓ,u to be the closure of the subgroup

of G spanned by Γ-unstable one-parameter subgroups in h, one has

expΩ(h ∩O) ⊂ expΩ(h ∩ l ∩O)HΓ,uH∞.

Example B.1. There may exist Γ-good standard open subsets that are not

Γ-well shaped. For instance, fix a prime number p, and set

G = Γ = Zp × SL(2,Qp),

Ω = {(t, g) ∈ Zp × SL(2,Zp) | g ≡
Ç

1 tp

0 1

å
mod p2}.

One easily checks Ω is not contained in expΩ(l ∩O)GΓ,u = (pZp)× SL(2,Qp).

Lemma B.2. Let G be a weakly regular S-adic Lie group and Γ be a com-

pactly generated subgroup of G such that Ad Γ
Z

is semisimple and equal to

Ad Γ
Z,nc

. Then G admits arbitrarily small Γ-well shaped standard open subsets.

Proof. It suffices to deal with the case where S = {p} for some p < ∞.

By [4, Prop. 5.11], there exists a Γ-good standard open subset Ω. Let l be the

centralizer of Γ in g and v be the Γ-invariant complement of l. As the set of

Γ-invariant subspaces of v is compact, as each of these subspaces is spanned by

Γ-unstable vectors and as two nearby such v’s are Γ-isomorphic, there exists

an open subset O′ ⊂ O such that, for every Γ-invariant subspace w of v, the

sub-Zp-module spanned by the Γ-unstable vectors in w∩O contains w∩O′. By

shrinking O′, we can assume it is arbitrarily small, it is a Lie sub-Zp-algebra

and one has O′ = (l∩O′)⊕ (v∩O′). We set Ω′ = expΩ(O′). Let us prove that

Ω′ is a Γ-well shaped standard open subset of G.

Let h be a Γ-invariant subalgebra of g, and set w = h ∩ v. We have

h ∩O′ = (h ∩ l ∩O′)⊕ (w ∩O′); hence, if O′ is small enough,

expΩ(h ∩O′) = expΩ(h ∩ l ∩O′) expΩ(w ∩O′),

so that we just have to prove

expΩ(w ∩O′) ⊂ HΓ,u,

where HΓ,u is defined as above. Indeed, let P = exp−1
Ω (HΓ,u ∩ Ω). Then P

is a sub-Zp-module of O and, since Ω is Γ-good, by (A.1), P contains every

Γ-unstable element in w ∩ Ω. Hence, P contains w ∩ O′, what should be

proved. �
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B.2. Subgroups with a given lattice. Let us now introduce the set of sub-

groups of G that will play the same role in the general case as the one played

by the set T (G,∆,Σ) in the real case.

Let ∆ ⊂ Σ be discrete subgroups of G and Ω be a standard open subset

of G with exponential map expΩ : O → Ω.

Definition B.3. We let TΩ(G,∆,Σ) denote the set of closed subgroups H

of G satisfying the following properties:

(i) Σ is contained in H and Σ is a lattice in H;

(ii) the group expΩ(h∩O) is equal to H ∩Ω, the Ω-semiconnected compo-

nent HΩ is a normal subgroup of H and one has ∆ = Σ ∩HΩ;

(iii) there exists a compactly generated subgroup Γ of H that acts ergodi-

cally on H/Σ, such that Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

, Ω

is Γ-well shaped, HΩ is Γ-unstable and H = ΓHΩ.

Lemma 2.5 admits the following weak analogue in the S-adic case.

Lemma B.4. Let G be a second countable weakly regular S-adic Lie group,

Ω be a standard open subset of G and ∆ ⊂ Σ be discrete subgroups of G. Then,

there exists a countable set UΩ(G,∆,Σ) of closed subgroups of G such that, for

any H in TΩ(G,∆,Σ), there exists J in UΩ(G,∆,Σ) with H∞ ⊂ J ⊂ H such

that H/J is compact and H virtually normalizes J .

We say H virtually normalizes J if some finite index subgroup of H nor-

malizes J .

The set TΩ(G,∆,Σ) might not be countable as, for instance when G =

Ω = Z2
p and ∆ = Σ = {e} since, in this case, H can be any subgroup of the

form G ∩D, where D is a line in Q2
p.

We shall again need several preparatory lemmas. Thanks to our intricate

definition, we have the following analogue of Lemma 2.6.

Lemma B.5. Let G be a weakly regular S-adic Lie group, Ω be a standard

open subset of G and ∆ ⊂ Σ be discrete subgroups of G. Then, if H1 and H2

are in TΩ(G,∆,Σ), the group H1 normalizes H2,Ω.

Proof. We will first prove that H1,Ω normalizes H2,Ω. As Σ normalizes h2,

we get an H1-equivariant continuous map

H1/Σ→ Gr(g); h1Σ 7→ Adh1(h2).

By Lemma 2.3, this map is constant; that is, H1 normalizes h2, hence H1

normalizes H2,∞. In the same way, H1 normalizes h2,u, hence it normalizes

H2,u. Set O = log Ω. The normalizer H ′1 of the group

H2,Ω = expΩ(h2 ∩O)H2,uH2,∞
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in H1 contains the groups expΩ(h1 ∩ O), H1,∞ and Σ. In particular, H ′1 is

open in H1 and, since Σ is a lattice in H1, H ′1 is a finite index subgroup of

H1. Therefore, since for any p in S, Qp does not admit any proper finite index

open subgroup, H ′1 contains H1,u and the group

H1,Ω = expΩ(h1 ∩O)H1,uH1,∞

normalizes H2,Ω.

To conclude, let Γ be, as in the definition, a compactly generated subgroup

of H1 such that Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

, that Ω is Γ-well

shaped and that H1 = H1,ΩΓ, so that we only have to prove that Γ normalizes

H2,Ω. Since H ′1 has finite index in H1, the group H2,Ω is normalized by a finite

index subgroup of Γ. Hence, setting l to be the centralizer of Γ in g and v to

be the Γ-invariant complementary subspace of l ∩ h2 in h2, by (A.1), we have

v ⊂ h2,u. Thus, since Ω is Γ-well shaped, we have

expΩ(h2 ∩O) ⊂ expΩ(h2 ∩ l ∩O)H2,uH2,∞.

But then, since Γ commutes with expΩ(h2 ∩ l ∩O) and normalizes H2,uH2,∞,

it also normalizes H2,Ω, what should be proved. �

The proof of Lemma B.4 also uses an analogue of Lemma 2.7. Note that

a second countable S-adic Lie group G may have uncountably many compact

normal subgroups as, for instance, G = Z2
p.

Lemma B.6. Let G be a second countable S-adic Lie group. Then the set

of connected normal compact subgroups of G is countable.

Proof. The proof mimics the real case. Let K be a connected normal

compact subgroup of G, k be the Lie algebra of K and K∞ be the immersed

real Lie subgroup of G with Lie algebra k∞. Since the group Adk∞(K∞) has

compact closure (equal to Adk∞(K)), the Lie algebra k∞ may be decomposed

in a unique way as a direct sum of ideals k∞ = s ⊕ a, where s is compact

semisimple and a is abelian. As k∞ is a G-invariant ideal of g, so are s and a.

As the Lie algebra g∞ contains only finitely many semisimple ideals, we may

assume s is fixed. As the connected real Lie subgroup S of G with Lie algebra

s is compact and normal in G, after replacing G by G/S, we may assume

s = {0}.
Now, we have to prove G contains countably many abelian connected com-

pact normal subgroups K. Since such a K is compact, k∞ admits a K-invariant

complementary subspace v in g∞. As v is K-invariant and k∞ is an ideal of

g∞, k∞ is contained in the center z∞ of g∞. Note that if a and a′ are vec-

tor subspaces of z∞ and exp a and exp a′ have compact closures in G, so has

exp(a+ a′). Hence, if t∞ is the subspace of z∞ spanned by all such subspaces,

then exp t∞ has compact closure T in G. Hence we may assume that G = T
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is a solenoid; i.e., G is isomorphic to a quotient of Rd∞ × Ωf by a cocompact

lattice whose projection on Ωf is dense, where Ωf =
∏

p∈S
p<∞

Zdpp . Such a group

admits only countably many closed subgroups. The result follows. �

We will need the following information on the normalizer of a totally

discontinuous compact group.

Lemma B.7. Let G be an S-adic Lie group, H be a compact subgroup of

G with H∞ = {e} and Γ be a subgroup of G normalizing H such that Ad Γ
Z

is

semisimple and equal to Ad Γ
Z,nc

. Then Γ centralizes the Lie algebra h of H .

Note that the analogue of this lemma is not true for real Lie groups as,

for instance, when G = ΓnH with Γ = SL(2,Z) acting on H = T2.

Proof. Assume by contradiction the action of Γ on h is not trivial. In

this case, by assumption, h contains nonzero Γ-unstable vectors. Hence by

(A.1), there exists a nontrivial one-parameter subgroup ϕ : Qp → H. Since

H∞ = {e}, by [24, Prop. 1.2], ϕ is proper, which contradicts the fact that H

is compact. The result follows. �

Finally, we shall also need

Lemma B.8. Let G be an S-adic Lie group, and let K be a set of normal

compact subgroups of G.

(i) Assume G∞ = {e} and the set
⋃
K∈KK spans a dense subgroup of G.

Then, the Lie algebra of G is the linear span of the Lie algebras of the

elements of K.

(ii) Assume, for any K in K, one has AdK = AdG and the intersection

of the Lie algebras of the elements of K is zero. Then the Lie algebra

g of G is abelian.

Proof. (i) Let K be a compact normal subgroup of G that is generated by

finitely many elements of K and whose Lie algebra is maximal. After having

replaced G by G/K, we can assume the elements of K are finite, and we have

to show that G is discrete.

Since G∞ = {e}, there exists an open neighborhood U of e in G such that

U does not contain any nontrivial torsion element. Then G contains a dense

subgroup that meets U only at e; hence G is discrete.

(ii) Let z be the center of g. By assumption, for any K in K with Lie

algebra k, one has g = k+z, so that g/k is abelian. Pick K1, . . . ,Kr in K whose

Lie algebras have zero intersection. Then, the natural map g → ⊕r
i=1 g/ki is

injective. Hence g is abelian. �

Another difficulty in the S-adic case is that the quotient G/H of a weakly

regular p-adic Lie group G by a closed normal subgroup might not be weakly
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regular as, for instance, when G = Q2
p and H = Zp × {0}. This difficulty will

weigh the following

Proof of Lemma B.4. We can assume that the set
⋃
H∈TΩ(G,∆,Σ)H spans

a dense subgroup of G. Then, in particular, by Lemma B.5, the group

H0 =
⋂

H∈TΩ(G,∆,Σ)

HΩ

is normal in G. We set

G′ = G/H0.

By [5, Lemmas 3.1 and 3.2], for any H in TΩ(G,∆,Σ), ∆ is a lattice in both HΩ

and H0. Hence the image H ′Ω of HΩ in G′ is a compact normal subgroup. Now

since, by Lemma B.6, the set of connected normal compact subgroups of G′ is

countable, we can fix such a compact subgroup K and restrict our attention

to the set T KΩ (G,∆,Σ) of those H in TΩ(G,∆,Σ) such that (H ′Ω)∞ = K. We

set

K ′ =
⋂

H∈T KΩ (G,∆,Σ)

H ′Ω

and

G′′ = G′/K ′.

For any H in T KΩ (G,∆,Σ), we let H ′′ be the image of H in G′′ and H ′′Ω and

Σ′′ be the ones of HΩ and Σ. As Σ is a lattice in H and ∆ is a lattice in H0,

Σ′′ is a lattice in H ′′. Let M be the closure of the subgroup of G′′ spanned

by the normal compact totally discontinuous subgroups H ′′Ω as H varies in

T KΩ (G,∆,Σ).

We claim the Lie algebra m of M is abelian. Indeed, first note that,

since M is non-archimedean, by Lemma B.8(i), m is the linear span of the Lie

algebras of the normal compact subgroups H ′′Ω, H ∈ T KΩ (G,∆,Σ). Moreover,

if O = log Ω, since, for any H ∈ T KΩ (G,∆,Σ), one has expΩ(h ∩ O) ⊂ HΩ,

the Lie algebras of the H ′′Ω, H ∈ T KΩ (G,∆,Σ), have trivial intersection. Fix H

in T KΩ (G,∆,Σ), and let Γ be a compactly generated subgroup of H such that

Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

, the action of Γ on H/Σ is ergodic

and H = ΓHΩ. By Lemmas B.5 and B.7 applied to all the H ′′Ω’s, one has

Adm Γ = {e},

and therefore AdmH = AdmHΩ. Besides, since the action of Γ on H/Σ is

ergodic, there exists h in H such that H = hΓh−1Σ, so that AdmH = Adm Σ

and hence AdmH ′′Ω = AdmM . By Lemma B.8(ii), the Lie algebra m is thus

abelian.

Now, let us prove that for any H in T KΩ (G,∆,Σ), H ′′ virtually normalizes

a finite index subgroup of Σ′′. Indeed, let Γ be as above. Since the adjoint

action of Γ on the Lie algebra of H ′′ is trivial, there exists an open subgroup
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U of H ′′Ω such that Γ centralizes U . As the Lie algebra of H ′′ is abelian, we

can assume U to be abelian. Since H ′′ = Γ′′H ′′Ω and H ′′Ω is compact, Γ′′U has

finite index in H ′′. Hence, the centralizer of U in H ′′ has finite index in H ′′

and the centralizer Σ′′U of U in Σ′′ has finite index in Σ′′. The group Σ′′U being

a lattice in H ′′, the group H ′′U := Σ′′UU has finite index in H ′′ and normalizes

Σ′′U as required.

Since, by Lemma A.5, Σ is finitely generated, the set of finite index sub-

groups of Σ is countable. Hence we can fix a finite index subgroup Θ of Σ

and restrict our attention to the set of those H in T KΩ (G,∆,Σ) such that some

finite index open subgroup of H normalizes the image Θ′′ of Θ in G′′, and we

set J to be the inverse image of Θ′′ in G.

For such an H, this group J is included in H and contains Θ. Hence by

[5, Lemma 3.1], the group J has finite covolume in H. Moreover J contains

H∞, hence by [5, Lem 5.2], the group J is cocompact in H. By construction,

the group J is normalized by an open finite index subgroup in H. The result

follows. �

B.3. Proof of countability in the S-adic case.

Proof of Proposition 2.1 in the general case. We fix once for all a stan-

dard open subset Ω0 in G, we set O0 = log Ω0 and we let l denote the Lie

algebra of L. Let Y be in SX(Γ), fix g in G such that x = gΛ belongs to Y

and Γx = Y and let h denote the Lie algebra of g−1GY g. By Lemma B.2,

the group g−1Γg admits a well-shaped standard open set Ω = expΩ0
(O) ⊂ Ω0

such that expΩ(h ∩ O) ⊂ gGY g
−1. As the compact group O0,f admits only

countably many open subgroups, we can suppose Ω to be fixed.

We first construct an open compactly generated subgroup H of g−1GY g

that contains g−1Γg. We let H∞ denote the analytic subgroup of G with

Lie algebra h∞, Hu denote the closed group spanned by the g−1Γg-unstable

one-parameter subgroups in g−1GY g, lg := Ad g−1l and

H := g−1Γg expΩ(lg ∩ h ∩O)HuH∞.

This subgroup H of g−1GY g is open hence closed and, since Ω is g−1Γg-well

shaped, the Ω-semiconnected component HΩ of H satisfies

HΩ = expΩ(lg ∩ h ∩O)HuH∞ = expΩ(h ∩O)HuH∞.

By construction, the subgroup HΩ is normal in H and is g−1Γg-unstable.

By Lemma A.5, H is compactly generated; hence the lattice Σ := Λ ∩ H is

finitely generated. Since the countable group Λ admits countably many finitely

generated subgroups, we can assume Σ to be fixed.

The subgroup ∆ := Λ ∩HΩ is a lattice in HΩ that might not be finitely

generated. Therefore, let us introduce the largest Ω-semiconnected compactly

generated subgroup H ′ of H, as in Lemma A.7. By Lemma A.9, the group
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∆′ := ∆ ∩ H ′ is finitely generated and the group ∆ is the smallest normal

subgroup of Σ containing ∆′. Hence we can assume ∆ is fixed.

By construction, H belongs to TΩ(G,∆,Σ). Let UΩ(G,∆,Σ) be as in

Lemma B.4. Then, there exists some J in UΩ(G,∆,Σ) such that H contains J ,

H virtually normalizes J and H/J is compact. As UΩ(G,∆,Σ) is countable, we

can assume J to be fixed. Now, let Y1 be another element of SX(Γ). Proceed

to the same construction, so that we get x1 = g1Λ ∈ Y1 with Γx1 = Y1

and a subgroup H1 ⊃ J , virtually normalizing J , with H1/J compact and

Γ ⊂ g1H1g
−1
1 ⊂ GY1 . By Lemma B.9 below, we can assume there exists ` in L

with g1J = `gJ . Thus, we have `x ∈ Y1; hence `Y = Γ`x ⊂ Y1. In the same

way, since `−1x1 belongs to Y , we get `−1Y1 ⊂ Y ; hence Y1 = `Y . The result

follows. �

As the conclusion of Lemma B.4 is weaker than the one of Lemma 2.5,

in the S-adic case we needed the following result, which is stronger than

Lemma 2.2.

Lemma B.9. Let G be a second countable S-adic Lie group, J be a closed

subgroup of G, Γ be a closed compactly generated subgroup of G such that Ad Γ
Z

is semisimple and equal to Ad Γ
Z,nc

and L be the centralizer of Γ in G. Then

the set

Y = {y=gJ ∈G/J | Γ virtually normalizes gJg−1 and Γy is compact}

is a countable union of L-orbits.

Proof. Let N be the normalizer of J in G and, for y = gJ in G/J , set Jy =

gJg−1 and Ny = gNg−1. By assumption, for y in Y , the group Γy = Γ∩Ny is

an open finite index subgroup of Γ. Since Γ is compactly generated, the set of

such subgroups is countable, and since Γ and Γy have the same centralizer l in

g, the centralizer of Γ in G is open in the centralizer of Γy in G. Thus, after

having replaced Γ by Γy, it suffices to prove that the set of y in G/J such that

Γ ⊂ Ny and Γy is compact is a countable union of L-orbits.

For such a y, as the image of Γ in the group Ny/Jy is relatively compact

and Ad Γ
Z

= Ad Γ
Z,nc

, the adjoint action of Γ on the Lie algebra ny/jy of

Ny/Jy is trivial. As Ad Γ
Z

is semisimple, the action of Γ on ny is semisimple,

and one has

ny = (ny ∩ l) + jy.

In other terms, since Γ is compactly generated, (L∩Ny)Jy is an open subgroup

of Ny. Hence Nyy is contained in a countable union of L-orbits in G/J . The

result follows since, by Lemma 2.2, the set of fixed points of Γ in G/N is a

countable union of L-orbits. �
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CNRS – Université Paris-Sud, Orsay, France

E-mail : yves.benoist@math.u-psud.fr
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