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A problem on completeness of exponentials

By A. Poltoratski

Abstract

Let µ be a finite positive measure on the real line. For a > 0, denote by

Ea the family of exponential functions

Ea = {eist| s ∈ [0, a]}.

The exponential type of µ is the infimum of all numbers a such that the

finite linear combinations of the exponentials from Ea are dense in L2(µ).

If the set of such a is empty, the exponential type of µ is defined as infinity.

The well-known type problem asks to find the exponential type of µ in

terms of µ. In this note we present a solution to the type problem and

discuss its relations with known results.

1. Introduction

1.1. Completeness of exponentials. Let µ be a finite positive Borel mea-

sure on R. Let us consider the family EΛ of exponential functions exp(iλt) on

R whose frequencies λ belong to a certain set Λ ⊂ C:

EΛ = {exp(iλt)| λ ∈ Λ}.

One of the classical problems of Harmonic analysis is to find conditions on µ

and Λ that ensure completeness, i.e., density of finite linear combinations, of

functions from EΛ in L2(µ).

Versions of this problem were considered by many prominent analysts.

The case when Λ is a sequence and µ is Lebesgue measure on an interval was

solved by Beurling and Malliavin in the early sixties [4], [5]. The so-called

Beurling-Malliavin theory, created to treat that problem, is considered to be

one of the deepest parts of the 20th century Harmonic Analysis.

Other cases of the problem and its multiple reformulations were studied

by Wiener, Levinson, Kolmogorov, Krein and many others. Such an extensive

interest is largely due to the fact that it is naturally related to other fields of

classical analysis, such as stationary Gaussian processes and prediction the-

ory, spectral problems for differential operators, approximation theory, signal
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processing, etc. Despite considerable efforts by the analytic community, many

important cases of the problem remain open.

1.2. The type problem. Perhaps the most studied among such open cases

is the so-called type problem. Consider a family Ea = E[0,a] of exponential

functions whose frequencies belong to the interval from 0 to a. If µ is a finite

positive measure on R we denote by G2
µ its exponential type that is defined as

(1.1) G2
µ = inf{a > 0 | Ea is complete in L2(µ)}

if the set of such a is nonempty and as infinity otherwise. The type problem

asks one to calculate G2
µ in terms of µ.

This question first appears in the work of Wiener, Kolmogorov and Krein

in the context of stationary Gaussian processes. (See [17], [19] or the book by

Dym and McKean [10].) If µ is a spectral measure of a stationary Gaussian

process, completeness of Ea in L2(µ) is equivalent to the property that the

process at any time is determined by the data for the time period from 0 to a.

Hence the type of the measure is the minimal length of the period of observation

necessary to predict the rest of the process. Since any even measure is a spectral

measure of a stationary Gaussian process, and vice versa, this reformulation is

practically equivalent.

The type problem can also be restated in terms of the Bernstein weighted

approximation; see, for instance, the book by Koosis [14], [15]. Important

connections with spectral theory of second order differential operators were

studied by Gelfand and Levitan [11] and Krein [19], [18].

Closely related to spectral problems for differential operators is Krein-

de Branges’ theory of Hilbert spaces of entire functions; see [7]. One of the

deep results of the theory says that for any positive finite (or, more generally,

Poisson-finite) measure µ on R, there is a unique nested regular chain of de

Branges’ spaces of entire functions isometrically embedded in L2(µ). An impor-

tant characteristic of such a chain is the supremum Sµ of the exponential type

taken over all entire functions contained in the embedded spaces. For instance,

if such a chain corresponds to a regular Schrödinger operator on an interval,

i.e., if µ is the spectral measure of such an operator, then Sµ is equal to the

length of the interval and all spaces of the chain can be parametrized by their

exponential type. It is well known, and not difficult to show, that the problem

of finding the value of Sµ is equivalent to the type problem, i.e., Sµ = G2
µ.

For more on the history and connections of the type problem see, for

instance, a note by Dym [9] or a recent paper by Borichev and Sodin [6].

1.3. The general case p 6= 2. The family Ea is incomplete in L2(µ) if and

only if there exists a function f ∈ L2(µ) orthogonal to all elements of Ea.
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Expanding to other 1 6 p 6∞, we define

(1.2) Gp
µ = sup{a | ∃ f ∈ Lp(µ),

∫
f(x)eiλxdµ(x) = 0,∀ λ ∈ [0, a]}.

We put Gp
µ = 0 if the set in (1.2) is empty. By duality, for 1 < p 6∞,

Gp
µ can still be defined as the infimum of a such that Ea is complete in Lq(µ),

1
p + 1

q = 1. The cases p 6= 2 were considered in several papers; see, for instance,

articles by Koosis [16] or Levin [20] for the case p =∞ or [27] for p = 1.

Since µ is a finite measure, we have

(1.3) Gp
µ 6 Gq

µ for p > q.

Apart from this obvious observation, the problems of finding Gp
µ for different

p were generally considered nonequivalent. One of the consequences of Theo-

rem 2, Section 3.1, is that, in some sense, there are only two significantly differ-

ent cases, p = 1 (the gap problem) and 1 < p 6∞ (the general type problem).

In this paper we restrict our attention to the class of finite measures. The

formal reason for this is the fact that µ has to be finite for exponentials to

belong to L2(µ). This obstacle can be easily overcome if instead of Ea, one

considers Ea, the set of Fourier transforms of smooth functions supported on

[0, a]. All elements of Ea decay fast at infinity, and one one can ask about the

density of Ea in Lp(µ) for wider sets of µ; see, for instance, [6]. One of such

traditional sets is the class of Poisson-finite measures satisfying∫
d|µ|(x)

1 + x2
<∞.

However, due to reasons similar to Lemma 1 below (note that if µ is Poisson-

finite, then µ/(1 + x2) is finite and vice versa), considering such a wider set

of measures will not change the problem and all of the statements will remain

the same or analogous.

1.4. The gap problem. One of the important cases is the so-called gap

problem, p = 1. Here one can reformulate the question as follows.

Let X be a closed subset of the real line. Denote

GX = sup{a | ∃ µ 6= 0, suppµ ⊂ X, µ̂ = 0 on [0, a]}.

Here and in the rest of the paper µ̂ denotes the (inverse) Fourier transform of

a finite measure µ on R:

µ̂(z) =

∫
R
eiztdµ(t).

As was shown in [27], for any finite measure µ on R, G1
µ, as defined in the

previous section, depends only on its support:

G1
µ = GX , X = suppµ.

This property separates the gap problem from all the cases p > 1.
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For a long time both the gap problem and the type problem were consid-

ered by experts to be “transcendental,” i.e., not having a closed form solution.

Following an approach developed in [22] and [23], a solution to the gap problem

was recently suggested in [27]; see Section 2.3. Some of definitions and results

from [27] are used in the present paper.

1.5. Known examples. We say that a function f on R is Poisson-summable

if it is summable with respect to the Poisson measure Π,

dΠ = dx/(1 + x2).

We say that a sequence of real numbers A = {an} is discrete if it does not

have finite accumulation points. We always assume that a discrete sequence is

enumerated in the natural increasing order: an > an−1. Since the sequences

considered here have ±∞ as their density points, the indices run over Z. In

most of our statements and definitions, the sequences do not have multiple

points. We call a discrete sequence {an} ⊂ R separated if |an − ak| > c for

some c > 0 and any n 6= k.

A classical result by Krein [17] says that if dµ = w(x)dx and logw is

Poisson-summable, then Gp
µ = ∞ for all p, 1 6 p 6 ∞. A partial inverse,

proved by Levinson and McKean, holds for even monotone w; see Section 4.5.

A theorem by Duffin and Schaeffer [8] implies that if µ is a measure such

that for any x ∈ R,

µ([x− L, x+ L]) > d

for some L, d > 0, then G2
µ > 2π/L; see Section 4.7.

For discrete measures, in the case suppµ = Z, a deep result by Koosis

shows an analogue of Krein’s result: if µ =
∑
w(n)δn, where∑ logw(n)

1 + n2
> −∞,

then Gp
µ = 2π for all p, 1 6 p 6∞ [16]. Not much was known about supports

other than Z besides a recent result from [24], which implies that if

µ =
∑ δan

1 + a2
n

for a separated sequence A = {an} ⊂ R, then Gp
µ = 2πD∗(A), where D∗ is the

interior Beurling-Malliavin density of A; see Section 2.3 for the definition. We

generalize these results in Section 3.2.

In addition to these few examples, classical theorems by Levinson-McKean,

Beurling and de Branges show that if a measure has long gaps in its support or

decays too fast, then Gp
µ = 0; see Section 4. Examples of measures of positive

type can be constructed using the results by Benedicks [2]; see Section 4.8.

The most significant recent development, which allows one to modify existing
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examples, is the result by Borichev and Sodin [6], which says that “exponen-

tially small” changes in weight or support do not change the type of a measure;

see Section 4.6.

1.6. Approach and goals. The problems discussed above belong to the

area often called the Uncertainty Principle in Harmonic Analysis [12]. A new

approach developed by N. Makarov and the author in [22], [23] allows one to

study this area with modern tools of analytic function theory and singular

integrals. Together with traditional methods, such as de Branges’ theory of

Hilbert spaces of entire functions or the Beurling-Malliavin theorems, these

techniques have produced some new ideas and developments. Among them

is an extension of the Beurling-Malliavin theory [23], a solution to the Pólya-

Levinson problem on sampling sets for entire functions of zero type [24] and a

solution to the gap problem [27]. In the present paper we continue to apply

the same approach.

We focus on the type problem, the problem of finding G2
µ in terms of µ.

Our main results are Theorem 2 and its corollaries contained in Section 3. In

most of our statements, treating p > 1, p 6= 2 did not require any additional

efforts, and hence they were formulated for general p > 1. The case p = 1,

studied in [27], provided us with some useful definitions and statements; see

Section 2.3.

Acknowledgements. I am grateful to Nikolai Makarov whose deep math-

ematical insight and intuition led to the development of the methods used in

this paper. I would also like to thank Misha Sodin for getting me interested

in the gap and type problems and for numerous invaluable discussions.

1.7. Contents. The paper is organized as follows:

• Section 2 contains preliminary material, including the basics of the so-

called Clark theory, definitions of Beurling-Malliavin densities and a short

discussion of the gap problem.

• In Section 3 we state the main results of the paper.

• Section 4 discusses connections of our results with classical theorems by

Beurling, de Branges, Duffin and Schaeffer, Krein, Levinson and McKean

as well as more recent results by Benedicks, Borichev and Sodin.

• Section 5 contains several lemmas needed for the main proofs.

• In Section 6 we give the proofs of the main results.

2. Preliminaries

2.1. Clark theory. By H2 we denote the Hardy space in the upper half-

plane C+. We say that an inner function θ(z) in C+ is meromorphic if it

allows a meromorphic extension to the whole complex plane. The meromorphic
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extension to the lower half-plane C− is given by

θ(z) =
1

θ#(z)
,

where θ#(z) = θ̄(z̄).

Each inner function θ(z) determines a model subspace

Kθ = H2 	 θH2

of the Hardy space H2(C+). These subspaces play an important role in com-

plex and harmonic analysis, as well as in operator theory; see [25].

For each inner function θ(z), one can consider a positive harmonic function

<1 + θ(z)

1− θ(z)
and, by the Herglotz representation, a positive measure µ such that

(2.1) <1 + θ(z)

1− θ(z)
= py +

1

π

∫
ydµ(t)

(x− t)2 + y2
, z = x+ iy

for some p > 0. The number p can be viewed as a point mass at infinity. The

measure µ is Poisson-finite, singular and supported on the set where nontan-

gential limits of θ are equal to 1. The measure µ+pδ∞ on R̂ is called the Clark

measure for θ(z).

Following standard notation, we will sometimes denote the Clark measure

defined in (2.1) by µ1. More generally, if α ∈ C, |α| = 1, then µα is the measure

defined by (2.1) with θ replaced by ᾱθ.

Conversely, for every positive singular Poisson-finite measure µ and a num-

ber p > 0, there exists an inner function θ(z) satisfying (2.1).

Every function f ∈ Kθ can be represented by the formula

(2.2) f(z) =
p

2πi
(1− θ(z))

∫
f(t)(1− θ(t))dt+

1− θ(z)
2πi

∫
f(t)

t− z
dµ(t).

If the Clark measure does not have a point mass at infinity, the formula is

simplified to

f(z) =
1

2πi
(1− θ(z))Kfµ,

where Kfµ stands for the Cauchy integral

Kfµ(z) =

∫
f(t)

t− z
dµ(t).

This gives an isometry of L2(µ) onto Kθ. Similar formulas can be written

for any µα corresponding to θ. For any α, |α| = 1 and any f ∈ Kθ, f has

nontangential boundary values µα-a.e. on R. Those boundary values can be

used in the last two formulas to recover f .
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In the case of meromorphic θ(z), every function f ∈ Kθ also has a mero-

morphic extension in C, and it is given by the formula (2.2). The corresponding

Clark measure is discrete with atoms at the points of {θ = 1} given by

µ({x}) =
2π

|θ′(x)|
.

If Λ ⊂ R is a given discrete sequence, one can easily construct a meromorphic

inner function θ satisfying {θ = 1} = Λ by considering a positive Poisson-finite

measure concentrated on Λ and then choosing θ to satisfy (2.1). One can

prescribe the derivatives of θ at Λ with a proper choice of point masses.

For more details on Clark measures and further references, the reader may

consult [28].

2.2. Interior and exterior densities. A sequence of disjoint intervals {In}
on the real line is called long (in the sense of Beurling and Malliavin) if

(2.3)
∑
n

|In|2

1 + dist2(0, In)
=∞,

where |In| stands for the length of In. If the sum is finite, we call {In} short.

One of the obvious properties of short sequences is that |In| = o(dist(0, In))

as n→∞. In particular, dist(0, In) can be replaced with any xn ∈ In in (2.3).

Following [5] we say that a discrete sequence Λ ⊂ R is a-regular if for

every ε > 0, any sequence of disjoint intervals {In} that satisfies∣∣∣∣∣#(Λ ∩ In)

|In|
− a

∣∣∣∣∣ > ε
for all n is short.

A slightly different a-regularity can be defined in the following way, which

is more convenient in some settings. For a discrete sequence Λ ⊂ R we denote

by nΛ(x) its counting function, i.e., the step function on R, which is constant

between any two points of Λ, jumps up by 1 at each point of Λ and is equal to

0 at 0. We say that Λ is strongly a-regular if∫ |nΛ(x)− ax|
1 + x2

<∞.

Conditions like this can be found in many related results; see, for instance,

[7] or [14], [15]. Even though a-regularity is not equivalent to strong a-regu-

larity, in the following definitions of densities changing “a-regular” to “strongly

a-regular” will lead to equivalent definitions.

The interior BM (Beurling-Malliavin) density of a sequence Λ is defined

as

(2.4) D∗(Λ) := sup{a | ∃ a-regular subsequence Λ′ ⊂ Λ}.
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If the set is empty, we put D∗(Λ) = 0. Similarly, the exterior BM density is

defined as

(2.5) D∗(Λ) := inf{a | ∃ a-regular supsequence Λ′ ⊃ Λ}.

If no such sequence exists, then D∗(Λ) =∞.

It is interesting to observe that after the two densities were simultane-

ously introduced over fifty years ago, the exterior density immediately became

one of the staples of harmonic analysis and spectral theory, mostly due to its

appearance in the celebrated Beurling-Malliavin theorem; see [5], [12] or [14],

[15]. Meanwhile, the interior density remained largely forgotten until its recent

comeback in [24] and [27]. It will continue to play an important role in our

discussions below.

2.3. The gap problem and d-uniform sequences. Let Λ = {λ1, . . . , λn} be

a finite set of distinct points on R. Define

(2.6) E(Λ) =
∑

λk,λj∈Λ, k 6=j
log |λk − λj |.

According to the 2D Coulomb law, the quantity E(Λ) can be interpreted as

potential energy of the system of “flat electrons” placed at Λ; see [27]. That

observation motivates the term we use for the condition (2.9) below.

The following example is included to illustrate our next definition.

Key example. Let I ⊂ R be an interval, and let Λ = d−1Z ∩ I for some

d > 0. Then

∆ = #Λ = d|I|+O(1)

and

(2.7) E = E(Λ) =
∑

16m6∆

log
î
d−∆+1(m− 1)!(∆−m)!

ó
= ∆2 log |I|+O(|I|2)

as follows from Stirling’s formula. Here the notation O(·) corresponds to the

direction |I| → ∞.

Remark 1. The uniform distribution of points on the interval does not

maximize the energy E(Λ) but comes within O(|I|2) from the maximum, which

is negligible for our purposes; see the main definition and its discussion below.

It is interesting to observe that the maximal energy for k points is achieved

when the points are placed at the endpoints of I and the zeros of the Jacobi

(1, 1)-polynomial of degree k − 2; see, for example, [13].

Let

· · · < a−2 < a−1 < a0 = 0 < a1 < a2 < · · ·
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be a discrete sequence of real points. We say that the intervals In = (an, an+1]

form a short partition of R if |In| → ∞ as n→ ±∞ and the sequence {In} is

short.

Main Definition. Let Λ = {λn} be a discrete sequence of real points. We

say that Λ is d-uniform if there exists a short partition {In} such that

(2.8) ∆n = d|In|+ o(|In|) for all n (density condition)

as n→ ±∞ and

(2.9)
∑
n

∆2
n log |In| − En

1 + dist2(0, In)
<∞ (energy condition),

where ∆n and En are defined as

∆n = #(Λ ∩ In) and En = E(Λ ∩ In) =
∑

λk,λl∈In, λk 6=λl

log |λk − λl|.

Remark 2. Note that the series in the energy condition is positive: every

term in the sum defining En is at most log |In|, and there are less than ∆2
n

terms.

As follows from the example above, the first term in the numerator of

(2.9) is approximately equal to the energy of ∆n electrons spread uniformly

over In. The second term is the energy of electrons placed at Λ ∩ In. Thus

the energy condition is a requirement that the placement of the points of Λ

is close to uniform in the sense that the work needed to spread the points of

Λ uniformly on each interval is summable with respect to the Poisson weight.

For a more detailed discussion of this definition, see [27].

In [27], d-uniform sequences were used to solve the gap problem mentioned

in the introduction. Recall that with any closed X ⊂ R one can associate its

(spectral) gap characteristic GX defined as in Section 1.4. The main result of

[27] is the following statement.

Theorem 1. [27] Let X be a closed set on R. Then

GX = 2π sup{d | X contains a d− uniform sequence }.

Recall that, as was proved in [27], GX = G1
µ for any µ such that suppµ = X.

The following simple observations will also be useful to us in the future.

Remark 3. • If Λ is a d-uniform sequence, then D∗(Λ) = d, as follows

easily from the density condition (2.8).

• Among other things, the energy condition ensures that the points of Λ are

not too close to each other. In particular, if Λ is d-uniform for some d > 0

and Λ′ = {λnk} is a subsequence such that for all k,

λnk+1 − λnk 6 e
−c|λnk |

for some c > 0, then D∗(Λ
′) = 0.
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• An exponentially small perturbation of a d-uniform sequence contains a

d-uniform subsequence. More precisely, if c > 0 and Λ is a d-uniform

sequence, then any sequence A = {αn} such that |λn − αn| 6 e−c|λn|

contains a d-uniform subsequence A′ consisting of all αnk such that

λnk+1 − λnk > e
−(c−ε)|λnk |.

• As discussed in [27], the energy condition always holds for separated se-

quences. If Λ is separated, then it is d-uniform if and only if D∗(Λ) = d.

2.4. Polynomial decay. In this section we prove a version of the well-

known property that adding or removing polynomial decay cannot change the

type of a measure.

Lemma 1. Let µ be a finite positive measure on R, and let α > 0. Con-

sider the measure ν satisfying

dν(x) =
dµ(x)

1 + |x|α
.

Then for any 1 6 p 6∞,
Gp
µ = Gp

ν .

Proof. Since dν/dµ 6 1, one only needs to show that Gp
µ 6 Gp

ν . Suppose

that f ∈ Lp(µ) is such that f̄µ annihilates all eiaz, a ∈ (0, d). This is equivalent

to the property that the Cauchy integral Kfµ is divisible by eidz in C+; i.e.,

it decays like eidz along the positive imaginary axis iR+. See, for instance,

Lemma 2 in [24].

Let N > α be an integer. It is enough to prove the statement for N = 1;

the general case will follow by induction.

First let us assume that Kfµ has at least one zero a in C \ R. It is well

known, and not difficult to verify, that then the measure f
x−aµ satisfies

K

Å
f

x− a
µ

ã
=
Kfµ

z − a
.

Hence the Cauchy integral in the left-hand side still decays like eidz along iR+,

and therefore the measure still annihilates eiaz, a ∈ (0, d). It is left to notice

that

f(x)
1 + |x|α

x− a
∈ Lp(ν).

If Kfµ does not have any zeros outside of R, note that the Cauchy integral

of the measure η = e−iεxfµ satisfies

Kη = e−iεzKfµ

(see, for instance, Theorems 3.3 and 3.4 in [26]), and therefore

K(fµ− cη) = K(1− ce−iεx)fµ

has infinitely many zeros in C \ R for any c, |c| 6= 1, while still decaying like

ei(d−ε)z along iR+. �
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Let µ be a finite measure on a separated sequence X, with point masses

decaying polynomially. Lemma 1, together with elementary estimates, im-

plies that then G2
µ = G1

µ. Hence in this case Theorem 2 below becomes the

statement from [24] mentioned above:

G2
µ = 2πD∗(X).

3. Main results

3.1. Main Theorem. Let τ be a finite positive measure on the real line.

We say that a function W > 1 on R is a τ -weight if W is lower semi-continuous,

tends to ∞ at ±∞ and W ∈ L1(τ).

Theorem 2. Let µ be a finite positive measure on the line. Let 1 < p 6∞
and a > 0 be constants. Then Gp

µ > 2πa if and only if for any µ-weight W

and any 0 < d < a, there exists a d-uniform sequence Λ = {λn} ⊂ suppµ such

that

(3.1)
∑ logW (λn)

1 + λ2
n

<∞.

We postpone the proof until Section 6.

One of the immediate corollaries of the above statement is that the p-type

of a measure, Gp
µ for 1 < p 6 ∞, does not depend on p, which may come as

a surprise to some of the experts. Further corollaries of Theorem 2 and its

connections with classical results are discussed in the following sections.

3.2. The discrete case. The conditions of Theorem 2 are simplified for

many specific classes of measures. In particular, if the measure is discrete,

or absolutely continuous with regular enough density, the weight W may be

eliminated from the statement. Here we treat the discrete case, which is im-

portant in spectral theory of differential operators and other adjacent areas.

Our results in this section may be viewed as extensions of the result by Koosis

mentioned in the introduction.

The following statement gives a simplified formula for the type of a mea-

sure supported on a discrete sequence, excluding pathological cases when the

counting function of the sequence grows exponentially.

Theorem 3. Let B = {bn} be a discrete sequence of real points. Let

µ =
∑

w(n)δbn

be a finite positive measure supported on B. Define

D = sup{d | ∃ d-uniform B′ ⊂ B,
∑
λn∈B′

logw(n)

1 + n2
> −∞}.
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Then for any 1 < p 6∞,

Gp
µ > 2πD.

If the counting function of B satisfies log(|nB|+ 1) ∈ L1
Π, then

Gp
µ = 2πD.

The proof is given in Section 6. The condition log(|nB| + 1) ∈ L1
Π in the

second part of the statement is sharp. The corresponding examples can be

easily constructed using Theorem 2 or the result by Borichev and Sodin [6];

see Theorem 11 below.

In the case when the sequence is separated, the condition can be simplified

even further. Note that for p = 1, G1
µ = 2πD∗(Λ) for any separated sequence

Λ and any measure µ, suppµ = Λ, by Theorem 1. For p > 1, we have

Theorem 4. Let Λ = {λn} be a separated sequence, and let

µ =
∑

w(n)δλn

be a finite positive measure supported on Λ. Define

D = supD∗(Λ
′),

where the supremum is taken over all subsequences Λ′ ⊂ Λ satisfying

(3.2)
∑
λn∈Λ′

logw(n)

1 + n2
> −∞.

Then

Gp
µ = 2πD

for all 1 < p 6∞.

Proof. Suppose that Gpµ>2πD for some D>0, p>1. Define the µ-weight

W as W (λn) = (µ({λn})(1 + λ2
n))−1. Then by Theorem 3 there exists a

subsequence Λ′ ⊂ Λ such that D∗(B
′) > D and (3.2) is satisfied.

In the opposite direction, the statement follows directly from Theorem 3

and Remark 3. �

3.3. A general sufficient condition. As a corollary of Theorem 3 we obtain

the following sufficient condition for general measures. The condition seems to

be reasonably sharp, as it is satisfied by all examples of measures with positive

type existing in the literature.

Theorem 5. Let µ be a finite positive measure on R. Let A = {an} be a

d-uniform sequence of real numbers such that

(3.3)
∑ logµ((an − εn, an + εn))

1 + n2
> −∞,
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where

εn =
1

3
min ((an+1 − an), (an − an−1)) .

Then G∞µ > 2πd.

Proof. For each τ ∈ [0, 1], let us define a discrete measure ντ as follows.

The measure ντ has exactly one pointmass of the size

µ((an − εn, an + εn))

in each interval

(an − εn, an + εn)

at the point xτn chosen as

xτn = inf{a | µ((an − εn, a)) > τµ((an − εn, an + εn))}.

Notice that {xτn} is a d-uniform sequence. In view of (3.3) and Theorem 3, ντ
satisfies

G∞ντ > 2πd.

Then

ν =

∫ 1

0
ντdτ

satisfies dν/dµ 6 1, and therefore

G∞µ > G∞ν > 2πd. �

4. Classical results and further corollaries

The goal of this section is to give examples of applications of Theorem 2

and discuss its connections with classical results on the type problem. Due to

this reason, we prefer to deduce each statement directly from the results of the

last section, rather than obtaining them from each other, even when the latter

approach may slightly shorten the proof.

In our estimates we write a(n) . b(n) if a(n) < Cb(n) for some positive

constant C, not depending on n, and large enough |n|. Similarly, we write

a(n) � b(n) if ca(n) < b(n) < Ca(n) for some C > c > 0. Some formulas will

have other parameters in place of n or no parameters at all.

4.1. Beurling ’s Gap Theorem.

Theorem 6 (Beurling [3]). If µ is a finite measure supported on a set

with long gaps and the Fourier transform of µ vanishes on an interval, then

µ ≡ 0.

Proof. If suppµ has long gaps, then for every short partition of R, infin-

itely many intervals of the partition must be contained in the gaps of suppµ.

Therefore suppµ does not contain a sequence satisfying the density condi-

tion (2.8); i.e., it does not contain a d-uniform sequence for any d > 0. �
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4.2. Levinson’s Gap Theorem.

Theorem 7 (Levinson [21]). Let µ be a finite measure on R whose Fourier

transform vanishes on an interval. Denote

M(x) = |µ|((x,∞)).

If logM is not Poisson-summable on R+, then µ ≡ 0.

Proof. Suppose that logM is not Poisson-summable on R+. Without loss

of generality, M(0) = 1. Let 0 = a0 6 a1 6 a2 6 · · · be the sequence of points

such that

an = inf{a | M(a) 6 3−n}.

Define a |µ|-weight W as 2n on each (an−1, an], an−1 < an.

Since µ̂ vanishes on an interval, by Theorem 2 there exists a sequence

Λ ⊂ suppµ satisfying the density condition (2.8) with some a > 0 on a short

partition In = (bn, bn+1] such that (3.1) holds. Without loss of generality,

b0 = 0. Notice that logW is an increasing step function on R+ satisfying

logW & − logM . Also, since {In} is short, cbn+1 6 bn for some 0 < c < 1 and

all n > 0. Hence,

∑
n

logW (λn)

1 + λ2
n

&
∞∑
n=1

logW (bn)|In|
1 + b2n

&
∞∑
n=1

logW (cbn+1)|In|
1 + b2n

&
∫ ∞

0

− logM(cx)dx

1 + x2
=∞. �

Levinson’s result above was later improved by Beurling [3], who showed

that instead of vanishing on an interval, µ̂ may vanish on a set of positive

Lebesgue measure with the same conclusion. Note that an analogous improve-

ment cannot be made in Beurling’s own gap theorem above, as illustrated by

Kargaev’s counterexample; see [14, vol. 1, p. 305].

4.3. A hybrid theorem. Beurling’s and Levinson’s Gap Theorems compli-

ment each other by treating measures with sparse supports and fast decay

correspondingly. In this section we suggest a hybrid theorem that combines

the features of both statements. In comparison with Beurling’s result it shows

that the measure does not have to be zero on a long sequence of intervals, it

just has to be small on it. In regard to Levinson’s theorem, our statement says

that the measure does not have to decay fast along the whole axis, just along

a large enough set. One can show that the statement is sharp in both scales.

Theorem 8. Let µ be a finite measure on R whose Fourier transform van-

ishes on an interval. Suppose that there exists a sequence of disjoint intervals
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{In} such that

(4.1)
∑ |In|min

(
|In|, log 1

|µ|(In)

)
1 + dist2(In, 0)

=∞.

Then µ ≡ 0.

Proof. We can assume that |In| → ∞ because any subsequence of intervals

with uniformly bounded lengths can be deleted from {In} without affecting

(4.1). Define the |µ|-weight W as

W =
î
|µ|(In)(1 + dist2(In, 0))

ó−1

on each In. If µ̂ vanishes on an interval, then for some d > 0, there exists a

d-uniform sequence Λ ⊂ suppµ satisfying (3.1). Let

N =

®
n | #(Λ ∩ In) >

d

2
|In|
´
.

Note that the sequence {In}n6∈N cannot be long because otherwise Λ will not

satisfy the density condition (2.8) on any short partition. Therefore the part

of the sum in (4.1) corresponding to n 6∈ N is finite and

∑
n∈Z

logW (λn)

1 + λ2
n

>
∑

λn∈∪k∈N Ik

logW (λn)

1 + λ2
n

&
∑
n∈N

|In| log 1
|µ|(In)

1 + λ2
n

=∞. �

4.4. De Branges’ Gap Theorem.

Theorem 9 (de Branges, Th. 63 [7]). Let K(x) be a continuous func-

tion on R such that K(x) > 1, logK is uniformly continuous and Poisson-

unsummable. Then there is no nonzero finite measure µ on R such that

(4.2)

∫ ∞
−∞

Kd|µ| <∞

and µ̂ vanishes on an interval.

Proof. Suppose that µ satisfies (4.2) and its Fourier spectrum has a gap.

Since K is a µ-weight, there must exist a d > 0 and a d-uniform sequence

Λ ⊂ suppµ satisfying (3.1) with K in place of W . Since Λ has positive interior

density and logK is uniformly continuous, (3.1) implies that logK is Poisson-

summable. �

4.5. A theorem by Krein, Levinson and McKean. Our next statement

combines results by Krein (part I in the statement below, case p = 2) and

by Levinson and McKean (part II, p = 2).

Theorem 10 (Krein [17], Levinson-McKean [10]). Let µ be a finite mea-

sure on R, µ = w(x)dx, where w(x) > 0. Then
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(I) If logw is Poisson-summable, then for any 1 6 p 6∞, Gp
µ =∞.

(II) If logw is monotone and Poisson-unsummable on a half-axis (−∞, x) or

(x,∞) for some x ∈ R, then for any 1 < p 6∞, Gp
µ = 0.

Proof. If logw is Poisson-summable, denote by H(z) the outer function in

C+ satisfying |H| = w on R. Then for any a > 0, the measure η = e−iaxH̄(x)dx

annihilates all exponentials with frequencies from [0, a). (Here we use the fact

that the integral over R for any function from H1(C+) is 0.) Since |η| = µ, it

follows that Gp
µ =∞ for any 1 6 p 6∞.

In the opposite direction, suppose that logw is Poisson-unsummable and

monotone on R+. Consider a µ-weight W (x) = (w(x)(1 + x2))−1. If Gp
µ >

2πd > 0, there exists a d-uniform sequence Λ satisfying (3.1). Suppose that Λ

satisfies (2.8) on a short partition In = (bn, bn+1], b0 = 0. Then, as in the proof

of Theorem 7, for some 0 < c < 1, cbn+1 < bn. Together with monotonicity of

logw = − logW − log(1 + x2), we obtain

∑ logW (λn)

1 + λ2
n

&
∞∑
n=0

logW (bn)|In|
1 + b2n

+ const &
∞∑
n=0

logW (cbn+1)|In|
1 + b2n

+ const

&
∫ ∞

0

− logw(cx)dx

1 + x2
+ const =∞. �

4.6. A result by Borichev and Sodin on stability of type. If I ⊂ R is an

interval and D > 0 is a constant, we denote by DI the interval concentric with

I of length D|I|. Following [6], for δ > 0 and x ∈ R, we denote

Ix,δ = [x− e−δ|x|, x+ e−δ|x|].

If µ and ν are two finite positive measures on R, we write µ 4 ν if there exist

constants δ > 0, C > 0 and l > 0 such that, for all x ∈ R,

µ(Ix,δ) 6 C(1 + |x|)l
Ä
ν(2Ix,δ) + e−2δ|x|

ä
.

Instead of finite measures, [6] deals with a wider class of polynomially

growing measures and uses the corresponding definition of type. As was men-

tioned in the introduction, in view of statements like Lemma 1 above, such

differences are not essential for the type problem and the corresponding re-

sults are equivalent.

Theorem 11. [6] If µ 4 ν, then G2
µ 6 G2

ν .

Proof. Let {an}n∈Z be a strictly increasing discrete sequence of real points

satisfying a−n = −an and

an+1 − an = 2e−δbn , bn =
an+1 + an

2
for all n ∈ N,
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where δ > 0 is the constant from the definition of the relation µ 4 ν. Denote

In = (an, an+1]. Let W be a ν-weight. Then the step-function W ∗ defined as

W ∗(x) = 1 + (1 + |bn|)−l
ñ

1

ν(2In) + e−2δbn

∫
2In

Wdν

ô
on each In

is a µ-weight, as follows from the condition µ 4 ν. Assume that G2
µ = 2πd > 0.

Then there exists an (d− ε)-uniform sequence Λ ∈ suppµ, which satisfies (3.1)

with W ∗. Our goal is to modify Λ into an (d− ε)-uniform sequence in supp ν

satisfying (3.1) with W .

Notice that without loss of generality, we can assume that each interval 2In
contains at most one point of Λ; see Remark 3. Choose kn so that λn ∈ 2Ikn .

Now for each λn ∈ 2Ikn , choose a point αn ∈ 2Ikn ∩ supp ν such that

W (αn) 6
1

ν(2In)

∫
2In

Wdν.

Without loss of generality, ∫
2In

Wdν > e−
3
2
δbn

for all n; otherwise we can increase the weight W to satisfy this condition and

it will still remain ν-summable. If W is such a weight, then the interior density

of the subsequence of Λ that falls in the intervals In satisfying ν(2In) 6 e−2δbn

must be zero; otherwise the sum (3.1) for Λ and W ∗ would diverge. We can

assume that Λ does not have such points. Then

logW (αn) 6 logW ∗(λn) + 2l log(1 + |λn|),
and therefore A = {αn} satisfies (3.1) with W . By Remark 3, A has a (d− ε)-
uniform subsequence. Hence G2

ν > G2
µ − 2πε. �

Notice that our proof is p-independent; i.e., G2 can be replaced with Gp

for any 1 < p 6∞ in the Borichev-Sodin result.

4.7. A sufficient condition by Duffin and Schaeffer. Our next statement is

formulated in [8], [6] for Poisson-finite measures. Here we present an equivalent

finite version.

Theorem 12. Let µ be a finite positive measure on R such that for any

x ∈ R,

µ([x− L, x+ L]) > c(1 + x2)−1

for some L, c > 0. Then G2
µ > π/L.

Proof. If ε > 0, consider an = n(2L+ ε). Then in every interval (an − L,

an + L) there exists a subinterval In of the length ε satisfying

µ(In) >
dε

L(1 + a2
n)
.

It is left to apply Theorem 5 to the sequence of centers of In. �
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4.8. Benedicks’ result on unions of intervals. The following result con-

tained in [2] provides nontrivial examples of measures with positive type. Until

now, only a few examples of this kind existed in the literature.

Theorem 13. [2] Let · · · < a−1 < a0 = 0 < a1 < a2 < · · · be a discrete

sequence of points, and let In = (an, an+1] be the corresponding partition of R.

Suppose that there exist positive constants C1, C2, C3 such that

(1) if C−1
1 a2n+1 < a2k+1 < C1a2n+1 for some n, k, then

C−1
2 |I2n+1| < |I2k+1| < C2|I2n+1|;

(2) for all n, C−1
1 |a2n+1| < |a2n−1| < C1|a2n+1|;

(3) for all n, |I2n+1| > C3 max(|I2n|, 1);

(4)
∑ |I2n+1|2

1 + a2
2n+1

ñ
log+

|I2n+1|
|I2n|

+ 1

ô
<∞.

Then for any real number A > 0 and 1 6 p < ∞, there exists a nonzero

function

f ∈ L1(R) ∩ Lp(R) ∩ C∞(R), supp f ⊂ ∪I2n

such that f̂ = 0 on [0, A].

Here we will not concern ourselves with the condition f ∈ C∞. The rest of

the statement, i.e., the existence of f ∈ L1(R)∩Lp(R), follows from Theorem 2.

Moreover, conditions (1) and (2) prove to be redundant.

Proof. Let {bn}n∈Z be a sequence of positive integers, monotonically in-

creasing to ∞ as n → ∞ and as n → −∞, such that if one replaces |I2n+1|
in (4) with bn|I2n+1|, the series still converges. Consider the sup-partition of

{In} defined in the following way. Let

n0 = 0, nk+1 − nk = bnk

for k > 0 and

nk+1 − nk = bnk+1

for n < 0. Define Jk = (a2nk , a2nk+1
]. By (3), the new partition satisfies the

property |Jn| → ∞ and, because of monotonicity of bn,

(4.3)
∑ |Jn|2

1 + dist2(0, Jn)

ñ
log+

|Jn|
|Jn ∩ (∪I2k) |

+ 1

ô
<∞.

In particular, {Jn} is short.

Let C be a large positive number. By [·] we will denote the integer part

of a real number. Define a sequence Λ as follows. On each Jk = (a2nk , a2nk+1
],

place N = [C|Jk|] points of Λ inside Jk ∩ (∪I2n) so that

λmk < λmk+1
< · · · < λmk+N
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and

| (∪I2n) ∩ (a2nk , λmk ]| = | (∪I2n) ∩ (λmk+N , a2nk+1
]| = | (∪I2n) ∩ (λl, λl+1]|

for all l,mk 6 l < mk +N − 1.

Then conditions (3) and (4) of the theorem imply that Λ satisfies the

energy condition (2.9) on Jn and that D∗(Λ) = C. Also the measure

ν = χ∪I2nΠ

and Λ satisfy the conditions of Theorem 5. Therefore Gp
ν > 2πC for any

1 6 p 6 ∞, which implies the existence of the desired function f satisfying

f̂ = 0 on (0, 2πC). �

Notice that our proof actually produces f ∈ L∞. If, in addition to the

conditions of the theorem, |I2n| > const > 0, then the remaining property f ∈
C∞ can be added with little effort. One would need to construct f supported

on ∪1
2I2n and then consider a convolution f ∗ φ with a C∞-function φ with

small support. In the general case, f can be “smoothed out” using functions

with exponentially decreasing size of support and involving arguments like

Theorem 11.

5. Proofs: Auxiliary statements

This section contains the results that will be needed to prove Theorems 2

and 3.

5.1. A measure with positive type. The following lemma is essentially proved

but not explicitly stated in [27].

Lemma 2. Let A = {an} be a discrete sequence of distinct real numbers

that has bounded gaps, i.e., an+1 − an < C for some 0 < C < ∞. Denote by

bn the middle of the interval (an, an+1), bn = (an + an+1)/2. Suppose that the

sequence A is d-uniform for some d > 0. Then there exists a finite positive

measure supported on B = {bn},
µ =

∑
βnδbn ,

satisfying

(5.1) 0 < βn 6
√
an+1 − an
1 + a2

n

such that G∞µ > 2πd.

Proof. Let θ be the meromorphic inner function constructed for the se-

quenceA as in Lemma 5 from [27]. By construction, the Clark measure ν = µ−1

corresponding to θ is supported on B and satisfies

(5.2) ν({bn}) . an+1 − an;

see the estimate (7.3) in [27].
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Let c = d − ε. As was proved in [27], if θ satisfies the conditions of [27,

Lemma 5] and if A is d-uniform, then there exists f ∈ Kθ that is divisible by

eicz in C+. (This is one of the main steps in the proof of [27, Th. 4.7]. See the

part from the fourth line before Claim 6.1 to the end of part I of the proof.)

Then, by the Clark representation, 2πif = (1 + θ)Kfν. Since 1 + θ is

outer, Kfν is divisible by eicz in C+. Because ε is arbitrary, by Lemma 1, the

measure µ = |f |ν/(1 +x2) satisfies G∞µ > 2πd. Since f ∈ L2(ν) and ν satisfies

(5.2), considering a constant multiple of µ if necessary, we obtain (5.1). �

5.2. Construction of an auxiliary sequence. To apply our previous lemma

in the main proofs we will need the following.

Lemma 3. Let B = {bn} be a d-uniform sequence satisfying (2.8) and

(2.9) on a short partition {In}. Let w(n) be a positive bounded function on Z
such that

(5.3)
∑ logw(n)

1 + n2
> −∞.

Then for any ε > 0, there exists a discrete sequence A = {an} satisfying

(1) an+1 − an < 1/ε.

(2) Define the sequence C = {ck} as ck =
ak+1+ak

2 . Then the sequence B′ =

B ∩ C satisfies

#
(
B′ ∩ In

)
> (d− e)|In|

for large enough |n|.
(3) If bn = ck, i.e., bn is the middle of (ak, ak+1), then ak+1 − ak 6 w(n).

(4) A is 2d-uniform

(5) D∗(C \B) 6 d+ ε.

Proof. Denote

ln = min(bn+1 − bn, bn − bn−1, w(n)).

Consider the sequence P = {pn} defined as

p2n = bn −
1

3
ln, p2n+1 = bn +

1

3
ln.

Choose a large L� 1/ε. Define the sequenceQ as follows: if p2n+2−p2n+1 > L,

insert M = [(p2n+2 − p2n+1)/L] points of Q into the interval (p2n+1, p2n+2)

uniformly, i.e., at the points

p2n+1 + k
p2n+1 − p2n+2

M + 1
, k = 1, 2, . . . ,M.

Now put A = P ∪Q. By our construction the sequence A satisfies

2#(B ∩ In)− 2 6 #(A ∩ In) 6 2#(B ∩ In) + ε|In|.
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To make A satisfy the more precise density condition (2.8) with 2d, we may

need to delete some points of B on each interval In and consider a smaller

sequence B′ in place of B in the above construction. Note that we would have

to delete at most ε|In| points from B on each In and that B′ will satisfy the

energy condition (2.9) as a subsequence of B. After such an adjustment, A

will satisfy (1), (2), (3) and the density condition (2.8) with 2d.

Note that A satisfies the energy condition on {In}. Indeed, let us denote

∆n = #(P ∩ In) and Γn = #(Q ∩ In). Then

#(A ∩ In)2 log|In| −
∑

an,ak∈A∩In
log |an − ak|

=

Ñ
∆2
n log |In| −

∑
an,ak∈P∩In

log |an − ak|

é
+

Ñ
Γ2
n log |In| −

∑
an,ak∈Q∩In

log |an − ak|

é
+ 2

Ñ
∆nΓn log |In| −

∑
an∈P∩In,ak∈Q∩In

log |an − ak|

é
= I + II + III.

To estimate I notice that for any p2k ∈ P ∩ In,

− log(p2k+1 − p2k) 6 − logw(k)

by our choice of points p2k, p2k+1. The rest of the terms in I can be estimated

by the similar terms for B′, i.e.,

I .

Ñ
#(B′ ∩ In)2 log |In| −

∑
bn,bk∈B′∩In

log |bn − bk|

é
−

∑
p2k∈P∩In

logw(k) +O(|In|2).

Since B′ satisfies the energy condition and because of (5.3) and shortness of

the partition, I will give finite contribution to the energy sum in (2.9).

To estimate II notice that points in Q are at a distance at least L/2 from

each other. Therefore

II .

Ñ
Γ2
n log |In| −

∑
06n,k6Γn

log |n− k|

é
+O(Γ2

n) = Γ2
n log

|In|
Γn

+O(Γ2
n)

after estimating the sum via Stirling’s formula. Notice that since Γn < |In| and

log
|In|
Γn

<
|In|
Γn

,

the last quantity will also give finite contribution to (2.9).
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Finally, III can be estimated similarly to II. Just notice that any point

aj in P is at a distance at least L/2 from Q and therefore

Γn log |In| −
∑

ak∈Q∩In
log |aj − ak| . Γn log

|In|
Γn

+O(|In|2).

Summing over all aj ∈ P ∩ In and recalling that #(P ∩ In) = ∆n . |In|, we

again get a finite quantity in (2.9).

To prove (5), let us split C into two subsequences:

C1 = {(an + an+1)/2 | an, an+1 ∈ P} and C2 = C \ C1.

Notice that C1 \ B′ has at most one point between each two points of B′.

Therefore,

D∗(C1 \B) 6 D∗(B) 6 d+ ε.

Also, if 2/L � ε, then D∗(C2) < ε, because any two points of C2 are at a

distance at least L/2 from each other. �

5.3. Existence of extremal measure with a spectral gap. The lemma in this

section can be viewed as a version of de Branges’ Theorem 66 from [7]. The

last section of [27] contains a discussion of that theorem and its equivalent

reformulations.

Here and throughout the rest of the paper we will use the standard nota-

tion S(z) = eiz for the exponential inner function in the upper half-plane. In

general, Sa(z) = eiaz is inner in C+ if a > 0 and inner in C− if a < 0.

Lemma 4. Let µ be a finite complex measure such that µ̂ ≡ 0 on [0, a].

Let W be a |µ|-weight. Then there exists a finite measure ν =
∑
αnδλn con-

centrated on a discrete sequence Λ = {λn} such that

(1) Λ ⊂ suppµ;

(2) W is a |ν|-weight ;

(3) ν̂ ≡ 0 on [0, a];

(4) The Cauchy integral Kν has no zeros in C, Kν/Sa is outer in C+ and Kν

is outer in C−.

Proof. It will be more convenient for us to assume that µ̂ ≡ 0 on a sym-

metric interval [−a, a]. Then µ̄ has the same property. Hence we can assume

that the measure is real. (Otherwise, consider µ± µ̂.)

Consider the following set of measures on suppµ:

MW = {ν |
∫
Wd|ν| 6 1, ν̂ = 0 on [−a, a], supp ν ⊂ suppµ, ν = ν̄}.

Notice that the set is nonempty, because µ ∈ MW , and convex. It is also

∗-weakly closed in the space of all finite measures on suppµ. Therefore by the
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Krein-Milman theorem it has an extreme point. Let ν be such a point. We

claim that it is the desired measure.

First, let us note that ν̂ ≡ 0 on [−a, a]. It is well known that this property

is equivalent to the property that ν annihilates the Payley-Wiener class PWa,

i.e., that for any bounded f ∈ PWa,∫
fdν = 0;

see for instance the last section of [27].

Next, let us show that the set of real L∞(|ν|)-functions h, such that”hν ≡ 0

on [−a, a], is one-dimensional and therefore h = c ∈ R. (This is equivalent to

the statement that the closure of PWa in L1(|ν|) has deficiency 1, i.e., the

space of its annihilators is one dimensional.)

Let there be a bounded real h such that ”hν ≡ 0 on [−a, a]. Without loss

of generality, h > 0, since one can add constants, and
∫
W |h|d|ν| = 1. Choose

0 < α < 1 so that 0 6 αh < 1. Consider the measures ν1 = hν and ν2 =

(1−α)−1(ν−αν1). Then both of them belong to MW and ν = αν1 +(1−α)ν2,

which contradicts the extremality of ν.

Now let us show that ν is discrete. Let g be a continuous compactly

supported real function on R such that
∫
gd|ν| = 0. By the previous part, there

exists a sequence fn ∈ PWa, fn → g in L1(|ν|). Indeed, otherwise there would

exist a function h ∈ L∞(|ν|) annihilating all f ∈ PWa ∩ L1(|ν|) and such that∫
hgd|ν| = 1. Since

∫
gd|ν| = 0, h 6= const and we would obtain a contradiction

with the property that the space of annihilators is one-dimensional.

Since ν annihilates PWa and (fn(z) − fn(w))/(z − w) ∈ PWa for every

fixed w ∈ C \ R,

0 =

∫
fn(z)− fn(w)

z − w
dν(z) = Kfnν(w)− fn(w)Kν(w),

and therefore

fn(w) =
Kfnν

Kν
(w).

Taking the limit,

f = lim fn = lim
Kfnν

Kν
=
Kgν

Kν
.

Since all of fn are entire, one can show that the limit function f is also

entire. Indeed, first notice that there exists a positive function V ∈ L1(|ν|)
such that fnk/V → g/V in L∞(|ν|) for some subsequence {fnk}. To find such

a V , first choose fnk so that ||fnk − g||L1(|ν|) < 3−k and then put

V = 1 +
∑

2k|fnk − g|.

Denote Fk = fnk/V and η = V |ν|. Then Fk converge in L2(η) and by the

Clark theorem (1− I)KFkη converge in H2(C+), where I is the inner function
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whose Clark measure is η. Notice that

fnk =
Kfnkν

Kν
=
KFkη

Kν
=

(1− I)KFkη

(1− I)Kν
.

Now let T be a large circle in C such that |(1 − I)Kν| > const > 0 on T .

Denote T± = T ∩ C±, and let mT be the Lebesgue measure on T . Since

(1− I)KFkη converge in H2(C+), fnk converge in L1(T+,mT ). Similarly, fnk
converge in L1(T−,mT ). By the Cauchy formula it follows that fnk converge

normally inside T , and therefore f is analytic inside T . Since such a circle T

can be chosen to surround any bounded subset of C, f is entire.

Since the numerator in the representation

f =
Kgν

Kν

is analytic outside the compact support of g, the measure in the denomina-

tor must be singular outside of that support: Cauchy integrals of nonsingular

measures have jumps at the real line on the support of the absolutely continu-

ous part, which would contradict the property that f is entire. Choosing two

different functions g with disjoint supports, we conclude that ν is singular.

Moreover, since f is entire, the zero set of f has to be discrete. Since ν

is singular, Kν tends to ∞ nontangentially in C+ at ν-a.e. point and f = 0

at ν-a.e. point outside of the support of g. Again, by choosing two different g

with disjoint supports, we can see that ν is concentrated on a discrete set.

It remains to verify (4). Since we chose to deal with the symmetric interval

[−a, a], we need to show that Kν/S±a are outer in C± correspondingly.

Let J be the inner function corresponding to |ν|. (Here |ν| is the Clark

measure for J .) Denote

G =
1

2πi
(1− J)Kν ∈ KJ .

As was mentioned in Section 2.1, G has nontangential boundary values |ν|-a.e.

and

ν = G|ν|.
Since Kν is divisible by Sa in C+, G is divisible by Sa in C+. Suppose that

G = SaUH for some inner U . Since the measure ν is real, Ḡ = G, |ν|-a.e.

Let F ∈ KJ be the function such that J̄G = F̄ . Since J = 1, |ν|-a.e.,

F = Ḡ = G, |ν|-a.e. Since functions in KJ are uniquely determined by their

traces on the support of the Clark measure |ν|, F = G = SaUH. Notice that

the function h = Sa(1 + U)2H also belongs to KJ :

J̄h = J̄Sa(1 + U)2H = (J̄G)Ū(1 + U)2 = ḠŪ(1 + U)2

= Sa(1 + U)2H = h ∈ H2(C+)
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because Ū(1 + U)2 is real almost everywhere on R. Denote by γ the measure

from the Clark representation of h; i.e.,

γ = h|ν|, h =
1

2πi
(1− J)Kγ.

Then

γ = h|ν| = Ū(1 + U)2G|ν| = Ū(1 + U)2ν.

The Cauchy integral of γ is divisible by Sa in C+ because h is divisible by

Sa in C+. Since Ū(1 + U)2 is real, a constant multiple of γ belongs to MW .

Since U is nonconstant and |ν| is the Clark measure for J , γ is not a constant

multiple of ν. Again we obtain a contradiction with the property that the

space of annihilators is one-dimensional.

Thus G/Sa ∈ KJ is outer in C+. Since JḠ = Ḡ, the pseudocontinuation

of G does not have an inner factor except S−a in C− as well. Hence Kν/S±a

is outer in C±.

If G has a zero at x = a ∈ R outside of supp ν, then

G

x− a
∈ KJ ,

and the measure

γ =
G

x− a
|ν|

leads to a similar contradiction with the property that the space of annihilators

is one-dimensional, since (x − a)−1 is bounded and real on the support of ν.

Since G = 1
2πi(1− J)Kν, Kν does not have any zeros on R. �

Remark 4. A statement similar to Lemma 9 from [27], where Sa was

replaced with an arbitrary inner function, can also be formulated in the case

of Lemma 4.

5.4. Estimates of log |θ| for a meromorphic inner function.

Lemma 5. Consider a short partition {In} of R. Consider the set of

circles Tn = {z | |z − ξn| = 2|In|} where ξn ∈ In. Let θ be a meromorphic

inner function such that

(5.4)
∑
n

# ({θ = 1} ∩ 10In) |In|
1 + dist2(0, In)

<∞.

Then the integrals

pn =

∫
Tn

|log |θ(z)|| d|z|

satisfy

(5.5)
∑
n

pn

1 + dist2(0, In)
<∞.
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Proof. Suppose that θ = SaB for some a > 0 and some Blaschke product

B, {B = 0} = {an} ⊂ C+. Then

log |θ| = log |Sa|+ log |B|.

The integrals of | log |Sa|| are summable because

| log |Sa|| . |In|

on Tn and the sequence {In} is short. To estimate the integral of | log |B||,
notice that

| log |B(z)|| =
∑

ak∈Dn

∣∣∣∣∣log
|z − ak|
|z − āk|

∣∣∣∣∣+ ∑
ak 6∈Dn

∣∣∣∣∣log
|z − ak|
|z − āk|

∣∣∣∣∣ ,
where Dn is the disk, Dn = {z | |z − ξn| 6 3|In|}. Elementary estimates show

that for any an ∈ Dn, ∫
Tn

∣∣∣∣∣log
|z − ak|
|z − āk|

∣∣∣∣∣ d|z| . |In|.
Also, since for each ak ∈ Dn the argument of z−ak

z−āk increases by at least π on

the diameter of Dn, which is contained in 10In, the number of points ak ∈ Dn

is . # ({θ = 1} ∩ 10In). Hence, because of (5.4), such integrals will give a

finite contribution to the sum in (5.5).

For each ak 6∈ Dn, one can show that∫
Tn

∣∣∣∣∣log
|z − ak|
|z − āk|

∣∣∣∣∣ d|z| .
∫
In

|In|=akdx
(<ak − x)2 + (=ak)2

.

Notice that∑
k

∫
In

=akdx
(<ak − x)2 + (=ak)2

=

∫
In

(argB)′ 6 2π ·# ({θ = 1} ∩ In}) + const.

Again, because of (5.4), the integrals for ak 6∈ Dn will give a finite contribution

in (5.5) �

5.5. A version of the first BM theorem. The following lemma is essentially

a version of the so-called first Beurling-Malliavin theorem; see also [23].

Lemma 6. Let {In} be a long sequence of intervals, and let c be a positive

constant. Denote by I ′n and I ′′n the intervals of the length c|In| adjacent to In
from the left and from the right correspondingly. Let u be a real function on R
such that

∆n = sup
I′′n

u− inf
I′n
u > d|In|

for all n and for some d > 0. Then u is not a harmonic conjugate of a

Poisson-summable function.
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Proof. Note that if ũ ∈ L1
Π, then f = e−iu+ũ is an outer function in the

Smirnov class in C+. Moreover, f belongs to the kernel N+[eiu] of the Toeplitz

operator with the symbol eiu in the Smirnov class. This contradicts a Toeplitz

version of the first BM theorem; see Section 4.4 of [23]. �

5.6. An estimate for an extremal discrete measure of positive type. In this

section we show that that a discrete measure of positive type, like in the

statement of Lemma 4, must have log-summable pointmasses. We start with

the following elementary statement, which can be easily verified.

Lemma 7. Let {In} be a short sequence of intervals, and let C > 1.

Denote

ln =
∑

Im∩CIk 6=∅
|Im|.

Then ∑ ln|In|
1 + dist2(0, In)

<∞.

Our main statement in this section is

Lemma 8. Let ν be a finite measure

ν =
∑

αnδλn

on a discrete sequence Λ = {λn} such that αn 6= 0, ν̂ ≡ 0 on [0, 2πd], Kν does

not have any zeros in C, Kν/Sd is outer in C+ and Kν is outer in C−. Then

for any ε > 0, Λ contains a (d− ε)-uniform subsequence and

(5.6)
∑ log |αn|

1 + n2
> −∞.

Proof. The statement that Λ contains a (d− ε)-uniform subsequence fol-

lows from the property that GΛ > 2πd and Theorem 1.

To establish (5.6), let us first show that there exists a short partition {Ik}
of R such that Λ satisfies (2.8) with d on that partition.

Let J be the inner function whose Clark measure is |ν|. Then by the Clark

theorem, the function

Q(z) = (1− J)Kν

belongs to KJ . It follows from the properties of Kν that Q = SdO in C+

for some outer O and J̄Q = Ō. Therefore the argument of O satisfies u =

2 argO = arg J − dx. Notice that arg J is a growing function that is equal, up

to a bounded term, to the counting function of Λ. Also, since O ∈ H2, ũ ∈ L1
Π.

If the desired short partition {Ik} (where Λ satisfies (2.8)) does not exist, then

there exists a long sequence of intervals {Jk} such that

(5.7) |#(Λ ∪ Jk)− d|Jk|| > c1|Jk|
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for each k and for some c1 > 0. First, let us assume that the difference in the

left-hand side is positive for a long subsequence of {Jk}. Let J ′k, J
′′
k denote the

intervals of the length c2|Jk|, 0 < c2 � c1, adjacent to Jk from the left and

from the right correspondingly. Since u′ is bounded from below, we get that

∆k = inf
J ′′
k

u− sup
J ′
k

u > c3|Jk|

for some c3 > 0 on a long subsequence of {Jk} if c2 is small enough. By

Lemma 6, this contradicts the property that ũ ∈ L1
Π. If the difference in (5.7)

is negative for a long subsequence of {Jk}, then Lemma 6 can be applied to

−u and the intervals J ′k, J
′′
k chosen so that J ′k, J

′′
k ⊂ Jk, |J ′k| = |J ′′k | = c2|Jk|,

J ′k shares its left endpoint with Jk and J ′′k shares its right endpoint with Jk,

to arrive at the same contradiction. Hence a short partition where Λ satisfies

(2.8) with d does exist.

Let {Ik} be such a partition. Let λnk ∈ Ik be such that

log− αnk = max
λn∈Ik

log− αn.

Suppose that (5.6) is not satisfied. Then

(5.8)
∑
k

#(Λ ∩ Ik)
log− αnk
1 + n2

k

�
∑
k

|Ik|
log− αnk
1 + n2

k

=∞.

Consider µ =
∑
n δλn the counting measure of Λ. Since Λ satisfies (2.8), µ

is Poisson-finite. Let θ be the inner function such that µ is its Clark measure.

Since ν is finite, it can be represented as ν = fµ with f ∈ L2(µ). Hence, by

Clark theory,

F =
1

2πi
(1− θ)Kν ∈ Kθ

with F (λn) = f(λn) = αn.

For each k, consider the disk

Dk = {z | |z − λnk | < 2|Ik|}

and its boundary circle Tk = ∂Dk. Notice that for each k, F does not have

zeros in Dk. It does have poles at the points ān ∈ C−, where A = {an} are the

zeros of θ in C+. Hence in Dk the function F admits factorization F = Hk/Bk,

where Bk is the finite Blaschke product in Dk (|Bk| = 1 on Tk) with zeros at

Ā ∩Dk, and Hk is analytic without zeros in Dk.

Notice that

(5.9)

−
∫
Tk

log− |F (z)|d|z| 6
∫
Tk

log |F (z)|d|z| =
∫
Tk

log |Hk(z)|d|z| . |Ik| logαnk

by Jensen’s inequality, because F has only poles and no zeros in Dk. At the

same time, since F ∈ Kθ, it belongs to H2(C+) and is equal to θḠ,G ∈ H2(C+)
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in C−. Denote by T±k the upper and lower halves of Tk. Since the absolute

value of an H2 function is bounded by

const + const |y|−1/2

inside the half-plane, we have∫
Tk

log+ |F (z)|d|z| 6
∫
T+
k

log+ |F (z)|d|z|+
∫
T−
k

log+ |G(z)|d|z|(5.10)

+

∫
T−
k

log+ |θ(z)|d|z| . |Ik|+ vk,

where
∑
vk/(1 + a2

nk
) <∞ by Lemma 5, because

#({θ = 1} ∩ 10Ik) .
∑

Im∩10Ik 6=∅
|Im|

and (5.4) is satisfied by Lemma 7.

Since Hk 6= 0 in Dk, log |H| is harmonic in Dk. Hence its values on Ik can

be recovered from the values of log |Hk| = log |F | on Tk via the Poisson formula.

By (5.10), the Poisson integral of log+ |F | will deliver a small contribution, i.e.,

on each Ik, it will be equal to a function h+
k such that∑∫

Ik

h+
k (x)dΠ(x) <∞.

On the other hand, the Poisson integral of log− |F | in Dk, restricted to Ik, will

be equal to h−k , where h−k (x) � logαnk for all x ∈ Ik by (5.9). Hence by (5.8),

∑ ∫
Ik

log |Hk|dx
1 + dist2(0, Ik)

= −∞.

Furthermore, as in the proof of Lemma 5,

degBk . #({θ = 1} ∩ 5Ik) .
∑

Im∩5Ik 6=∅
|Im|.

Therefore by Lemma 7, ∑
k

|Ik| degBk

1 + dist2(0, Ik)
<∞.

Thus ∫
R

log |F (x)|dΠ �
∑
k

∫
Ik

(log |Bk(x)|+ log |Hk(x)|) dx
1 + dist2(0, Ik)

.
∑
k

|Ik|degBk +
∫
Ik

log |Hk(x)|dx
1 + dist2(0, Ik)

= −∞

and we obtain a contradiction. �
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Remark 5. Using results of [27] one can prove a slightly stronger statement

that Λ itself is d-uniform.

5.7. Equivalence of completeness in Lp and CW . The theorem we discuss

in this section relates the type problem to Bernstein’s study of weighted uni-

form approximation; see [14], [15] or [6].

Consider a weightW , i.e., a lower semicontinuous functionW : R→ [1,∞)

that tends to ∞ as x→ ±∞. We define CW to be the space of all continuous

functions on R satisfying

lim
x→±∞

f(x)

W (x)
= 0.

We define the norm in CW as

||f || = ||fW−1||∞.

The following is a well-known result by A. Bakan. For the reader’s con-

venience, we supply a short proof; see also [6].

Theorem 14 ([1]). Let µ be a finite positive measure on R. Then the

system of exponentials Ed is complete in Lp(µ) for some 1 6 p 6∞ if and only

if there exists a weight W ∈ Lp(µ) such that Ed is complete in CW .

Proof. If Ed is complete in CW for some weight W ∈ Lp(µ), then for

any bounded continuous function f , there exists a sequence {Sn} of finite

linear combinations of exponentials from Ed such that Sn/W converges to f/W

uniformly. Then Sn converges to f in Lp(µ). Hence Ed is complete in Lp(µ).

Suppose that Ed is complete in Lp(µ). Let {fn}n∈N be a set of bounded

continuous functions on R that is dense in CW for any weight W . (One can,

for instance, choose a countable set of compactly supported functions, dense

in any space of continuous functions on a finite interval.) Let {Sn,k}n,k∈N be a

family of finite linear combinations of exponentials from Ed such that

||fn − Sn,k||Lp(µ) < 4−(n+k).

Denote

W = 1 +
∑
n,k∈N

2n+k|fn − Sn,k|.

Notice that then W ∈ Lp(µ) and Sn,k/W → fn/W uniformly as k →∞. Since

{fn} is dense in CW , Ed is complete in CW . �

6. Proofs of main results

6.1. Proof of Theorem 3. To prove that Gp
µ > 2πD, without loss of gen-

erality, we can assume that B itself is a d-uniform sequence for some d > 0

and that w satisfies (3.2).
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Fix a small ε > 0. Let C = {cn} be the sequence provided by Lemma 3.

Then by Lemma 2 (applied to C and w2), there exists a finite positive measure

ν =
∑
σnδcn concentrated on C satisfying

0 < σn < w(k) for cn = bk and G∞ν > 2π(2d).

Let θ be the Clark inner function corresponding to ν. Then there exists a

function in Kθ divisible by S2π(2d−ε) in the upper half-plane; i.e., S2π(2d−ε)h ∈
Kθ for some h ∈ H2. If ”φν = 0 on [0, 2π(2d− ε)] for some φ ∈ L∞(ν), put

h =
1

2πi
(1− θ)Kφν.

By Lemma 3, D∗(C \ B) < d + ε. Let J be an inner function such that

{J = 1} = C \ B. By a version of the Beurling-Malliavin theorem (see [22,

§4.6]), the kernel of the Toeplitz operator with the symbol S2π(−d−ε)J in H∞

is nonempty; i.e., there exists a function g ∈ H∞(C+) such that

S2π(−d−ε)Jg ∈ H̄∞.

Since

θ̄S2π(−d−ε)JgS2π(2d−ε)h = θ̄S2π(d−2ε)Jgh ∈ H̄2,

we have

S2π(d−2ε)Jgh ∈ Kθ.

Since Kθ is closed under division by inner components, S2π(d−2ε)gh ∈ Kθ.

Therefore

p = S2π(d−2ε)Jgh− S2π(d−2ε)gh = S2π(d−2ε)(J − 1)gh ∈ Kθ.

By the Clark representation formula, p = 1
2πi(1− θ)Kpν, and since 1− θ

is outer, Kpν is divisible by S2π(d−2ε) in C+. Notice that p = (1 − J)gh = 0

on C \B = {J = 1} and p ∈ L∞(ν) on B ∩C. Therefore, if η is the restriction

of ν on B ∩ C, the existence of such p implies

G∞η > 2π(d− 2ε).

For any ε > 0, the measure η constructed as above will have a bounded density

with respect to µ. Hence G∞µ > 2πd.

To prove the second part of the statement suppose that log(|nB|+1) ∈ L1
Π

but Gp
µ > 2πA > 2πD for some A > D. Without loss of generality, assume

that the counting function nB is nonzero outside of [−1, 1] and define

W (bk) =


1

2nnB(2n)w(k) + 1 if bk ∈ (2n−1, 2n] for some n ∈ N,
− 1

2nnB(−2n)w(k) + 1 if bk ∈ (−2n,−2n−1] for some n ∈ N,
1 if bk ∈ (−1, 1].

Then W is a µ-weight, and by Lemmas 4 and 8, there exists a measure ν =∑
αkδbnk supported on B′ = {bnk} ⊂ B such that W is a ν-weight, B′ is
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an A-uniform sequence and αk satisfy (5.6). Since W is a ν-weight, |αk| ≤
C/W (bnk). Since αk satisfy (5.6), the definition of W implies that∑

k

logw(nk)

1 + nk2
> −∞.

Hence D > A and we obtain a contradiction. �

6.2. Proof of Theorem 2. (I) First, suppose that Gp
µ > 2πa for some

1 < p 6∞. Then for any 0 < d < a, there exists f ∈ Lp(µ) such that ”fµ = 0

on [0, 2πd]. Let W be a µ-weight. Denote V = W 1/q where 1
p + 1

q = 1. Then∫
V |f |dµ <∞.

Therefore, by Lemma 4, there exists a discrete measure ν =
∑
αnδλn , Λ =

{λn} ⊂ suppµ such that ν̂ = 0 on [0, 2πd], V is a |ν|-weight and ν satisfies the

rest of the conditions of Lemma 8. Then by Lemma 8, Λ contains a d-uniform

subsequence Λ′ and αn satisfy (5.6). Since V is a ν-weight, V (λn) < C/|αn|
for all n. It is left to notice that logW (λn) = q log V (λn) and therefore∑

λn∈Λ′

logW (λn)

1 + λ2
n

<∞.

(II) Now suppose that Gp
µ < 2πd < 2πa for some 1 < p 6 ∞. Since

Gp
µ < 2πd, by Theorem 14 there exists a weight W ∈ Lp(µ) such that finite

linear combinations of exponentials from E2πd−ε are dense in CW for some

ε > 0. Suppose that there exists a d-uniform sequence Λ = {λn} ⊂ suppµ,

satisfying (3.1). Then by Theorem 3 there exists a measure ν =
∑
αnδλn such

that |αn| 6 W−1(λn)/(1 + λ2
n) and ν̂ = 0 on [0, 2πd − ε]. Then the finite

measure Wν annihilates all functions eict/W, c ∈ [0, 2πd−ε]. This contradicts

completeness of E2πd−ε in CW . �
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