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Counting local systems with principal
unipotent local monodromy

By Pierre Deligne and Yuval Z. Flicker

Abstract

Let X1 be a curve of genus g, projective and smooth over Fq. Let

S1 ⊂ X1 be a reduced divisor consisting of N1 closed points of X1. Let

(X,S) be obtained from (X1, S1) by extension of scalars to an algebraic

closure F of Fq. Fix a prime l not dividing q. The pullback by the Frobenius

endomorphism Fr of X induces a permutation Fr∗ of the set of isomorphism

classes of rank n irreducible Ql-local systems on X − S. It maps to itself

the subset of those classes for which the local monodromy at each s ∈ S is

unipotent, with a single Jordan block. Let T (X1, S1, n,m) be the number

of fixed points of Fr∗m acting on this subset. Under the assumption that

N1 ≥ 2, we show that T (X1, S1, n,m) is given by a formula reminiscent

of a Lefschetz fixed point formula: the function m 7→ T (X1, S1, n,m) is

of the form
∑

niγ
m
i for suitable integers ni and “eigenvalues” γi. We

use Lafforgue to reduce the computation of T (X1, S1, n,m) to counting

automorphic representations of GL(n), and the assumption N1 ≥ 2 to move

the counting to the multiplicative group of a division algebra, where the

trace formula is easier to use.
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Introduction

We keep the notation of the abstract. It is elaborated upon in 0.1. What

“Ql-local systems” are is explained in 1.1. A better terminology, which we will

use from now on, is “Ql-smooth sheaf.” Actions of Frobenius are explained in

1.2.

The present work is motivated by Drinfeld’s 1981 paper [Dri81]. In it,

Drinfeld considers irreducible Ql-smooth sheaves of rank two on X and com-

putes the number of fixed points of Fr∗m on the set of their isomorphism classes.

He uses the trace formula for GL(2) and the then not yet wholly available

correspondence between irreducible Ql-smooth sheaves of rank two over X1

and everywhere unramified cuspidal automorphic representations of GL(2,A),

where A is the adèle ring of the function field F1 of X1. He shows in particular

that, as a function of m, the number of fixed points is of the form
∑
niγ

m
i . Our

result is a simple yet higher dimensional analogue of Drinfeld’s deep and beau-

tiful analysis. We hope similar counting formulas of Lefschetz type hold for

any number of ramification points and any imposed local monodromy at those

points; see 6.29 and 6.30. The case of tame local monodromy, given at each

point by n characters of the residue field, has been considered by Arinkin (un-

published) under a “generic position” assumption for the characters involved.

We now describe what is done in each section. In Section 1, we review

relations between Ql-smooth sheaves on X1 − S1, l-adic representations of

Gal(F 1/F1), and automorphic representations of GL(n) and of the multiplica-

tive groups of some division algebras.

Our proof relies on the relation between automorphic representations for

GL(n) and for multiplicative groups of division algebras. More precisely, our

results use Statement 1.13. How to extract this statement from the literature

is explained in the appendix. As computations of numbers of various kinds of

automorphic representations for multiplicative groups of some division alge-

bras, our results are independent of 1.13. It is the interpretation of our results

as computations of numbers of fixed points that makes our results interesting.

In Section 2, we state a first form (2.3) of our result. This form is the one

to which an application of the trace formula (compact quotient case) leads. It

does not make clear that, as a function of m, the number T (X1, S1, n,m) of

fixed points of Fr∗m has the form m 7→∑
niγ

m
i .

After a discussion of division algebras and Tamagawa numbers in Sec-

tion 3, the proof of 2.3 is given in Section 4 and Section 5. It applies the trace

formula in the compact quotient case of multiplicative groups of division alge-

bras. A categorical approach to the proof of the trace formula in the compact

quotient case we need is presented in Section 4, and the building of SL(n) is

used in the computations of Section 5.
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The reader is invited, at first reading, to jump from Section 2 to Section 6.

In Section 6, 2.3 is massaged into a form that cries for a geometric explanation

and makes clear that, as a function of m, T (X1, S1, n,m) has the form

(1) m 7−→
∑

niγ
m
i ,

where the ni are nonzero integers and the γi are distinct q-Weil numbers: for

each γi, there exists an integer w, its weight, such that all complex conjugates

of γi have absolute value qw/2.

For g = 0 and deg(S1) = 2, as well as for g = 0, n = 2 and deg(S1) = 3,

the sum (1) is empty: T (X1, S1, n,m) is identically zero. After excluding these

cases, we find the γi with the largest complex absolute value. It occurs with

multiplicity one and is an integral power of q. We also show that each γi is q

times an algebraic integer.

Next, we consider how T (X1, S1, n,m) varies with (X1, S1), and in 6.3.1

we ask for a topological understanding.

We do not understand the meaning of the change of summations from

ΣaΣb in the expression (6.5.2) for T (X1, S1, n, 1) to ΣbΣa in the expression

(6.6.4). It leads to a decomposition of T (X1, S1, n,m) as a sum over the divisors

b of n, each term of which has the form (1).

In Section 7, we look at one of the simplest examples: the case where X is

of genus 0 and where S consists of four points. An amusing trick allows us in

this case to remove the assumption N1 ≥ 2. The same trick implies a symmetry

property of some automorphic representations, of which we do not know of a

proof not using [Laf02].

0. Notation

0.1. We fix a finite field Fq with q elements and its algebraic closure F.

The characteristic is p, and Fqm is the degree m extension of Fq in F.

0.2. We fix a projective and smooth curve X1 over Fq, absolutely ir-

reducible of genus g, and a reduced divisor S1 ⊂ X1 consisting of N1 closed

points. As Fq is a perfect field, it is automatically étale over Spec(Fq). The

field of rational functions on X1 will be denoted by F1. It is a global field of

characteristic p, with field of constants Fq. Closed points of X1 correspond one

to one to places of F1; we identify the two. If s is a closed point, we denote

the local ring of X1 at s by O(s). It is a discrete valuation ring. We denote

its completion by Os. This is contrary to the usual usage. The residue field at

s we denote by k(s). The completion of F1 at the place s we denote by F1s.

They are, respectively, the quotient of the complete valuation ring Os by its

maximal ideal ms and the fraction field of Os.

0.3. Suppressing the index 1 indicates an extension of scalars from Fq to

F, and replacing it by m an extension of scalars to Fqm . For instance, N is the
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number of points of X = X1 ⊗Fq F in the inverse image S of S1. We write A
for the ring of F1-adèles.

Exception: from Section 3 on, we do not use the function field F = F1⊗FqF
of X. To simplify notation we will write simply F for F1 and D for a division

algebra with center F1 (renamed F ).

0.4. We fix a prime l 6= p and an algebraic closure Ql of Ql.

0.5. The element σ : F→ F, x 7→ xq, of Gal(F/Fq) is called the Frobenius

substitution. Its inverse, denoted Frob, is the geometric Frobenius.

0.6. For any scheme Y over Fq, let ΦY be the endomorphism of Y that

is the identity on the underlying set, and for which Φ∗Y (f) = f q. For any étale

sheaf F on Y , the pullback Φ∗Y F is canonically isomorphic to F. If one pictures

F as an (algebraic) space over Y , this expresses the functoriality of Φ, which

gives rise to a commutative diagram

(0.6.1)

F
ΦF−−−−→ Fy y

Y
ΦY−−−−→ Y.

Special case: ΦX1 is an endomorphism of the Fq-scheme X1. Extending

scalars to F, one obtains the Frobenius endomorphism Fr of X.

0.7. The multiplicative group of an algebra A is denoted by A∗.

1. Dictionaries

The reader familiar with Ql-smooth sheaves and actions of Frobenius is

invited to jump to 1.4.

1.1. Warning: Ql-smooth sheaves, called “Ql-local systems” in the ab-

stract, are not defined to be locally constant for the étale topology. Rather,

the category of Ql-smooth sheaves is defined by limiting processes from cat-

egories of local systems with finite fibers, which are locally constant for the

étale topology. One proceeds in three steps:

(a) Let Eλ be a finite extension of Ql in Ql, Oλ its valuation ring, and mλ the

maximal ideal of Oλ. The category of Oλ-smooth sheaves on a scheme Y

is the category of projective systems (Fk)k≥ 1 of locally constant sheaves

of Oλ/m
k
λ-modules of finite type, with

Fk/m
k′
λ Fk

∼→Fk′ for k′ ≤ k.
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(b) (Assuming Y to be normal) The category of Eλ-smooth sheaves on Y is ob-

tained from it by tensoring over Oλ by Eλ: same objects, and Hom(F,G) =

HomOλ(F,G)⊗Oλ Eλ.

When Y is not assumed to be normal, a more complicated definition is

required if one wants categories of Eλ-smooth sheaves to form a stack for

the étale topology. We will not need this more general setting.

(c) The set of finite extensions Eλ of Ql contained in Ql, ordered by inclusion, is

filtering. The category of Ql-smooth sheaves is the 2-inductive limit, along

this set, of the categories of Eλ-smooth sheaves. Those categories do not

form an inductive system in the category of categories, only a 2-inductive

system in the 2-category of categories, hence the appearance of 2-inductive

limits.

Suppose the normal scheme Y is connected. If o is a geometric point

of Y , the functor “fiber at o” is an equivalence of categories from the category

of Ql-smooth sheaves to the category Rep(π1(Y, o),Ql) of continuous linear

representations of the profinite fundamental group of Y :

π1(Y, o)→ GL(V )

for V a finite dimensional vector space over Ql. In this statement, the topology

used on GL(n,Ql) is any such that the GL(n,Eλ) are closed subgroups, and

the induced topology on GL(n,Eλ) is the l-adic topology. A Baire category

argument shows that a continuous homomorphism from π1(Y, o) to GL(n,Ql)

factors through a GL(n,Eλ).

1.2. The Galois group Gal(F/Fq) acts on F, hence on the scheme X−S =

(X1−S1)⊗FqF and, by transport of structures, on the set of isomorphism classes

of Ql-smooth sheaves on X−S. Transport of structures (Bourbaki Ens Ch. IV)

is the principle that any isomorphism Y1 → Y2 extends to objects constructed

from Y1 and Y2. When Y1 = Y2: symmetries extend. The construction has to

be canonical: not involving choices.

Example. If τ : K1 → K2 is an isomorphism between fields, the cor-

responding isomorphism [τ ] : Spec(K1) → Spec(K2) is such that [τ ]∗(a) =

τ−1(a) for a in K2. If τ is an automorphism of K, the action by trans-

port of structures of τ on Spec(K) is [τ ] : Spec(K) → Spec(K) such that

[τ ]∗(a) = τ−1(a).

Lemma 1.3. The action, by transport of structures, of the geometric Frobe-

nius Frob in Gal(F/Fq) (0.5) on the set of isomorphism classes of Ql-smooth

sheaves on X − S coincides with the pullback by the Frobenius endomorphism

Fr: X − S → X − S.
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More precisely, if F is Ql-smooth sheaf on X − S, one has a canoni-

cal isomorphism between Fr∗F, and the Ql-smooth sheaf obtained from F by

transport of structures using Frob. This is deduced from a similar result for

étale sheaves, which we now explain, following SGA 5 XIV, §1.2.

Proof. The endomorphism ΦX−S (0.6) of X − S = (X1 − S1) ×Spec(Fq)
Spec(F) is the composite of the endomorphisms induced by ΦX1−S1 and by

ΦSpec(F). The first is Fr : X − S → X − S. By the example in 1.2, ΦSpec(F) =

[Frob]. By (0.6.1), the pullback functor Φ∗X−S is isomorphic to the identity.

It is the composite of Fr∗ and of (X1 − S1) ×Spec(F1) [Frob]∗. The latter is

the inverse of the action of Frob by transport of structures, and the claim

follows. �

1.4. We now explain how the action 1.3 is expressed in the languages of

representations of Galois groups or of fundamental groups.

The function field F1 of X1 is a global field of characteristic p, with field

of constants Fq. The function field F of X is F1⊗Fq F. Fix a separable closure

F of F . The Galois group Gal(F/F1) is an extension

(1.4.1) 1→ Gal(F/F )→ Gal(F/F1)→ Gal(F/F1)→ 1

and

(1.4.2) Gal(F/F1) ∼→Gal(F/Fq).

We recall the identification 0.2 of closed points and places. If s is a closed

point of X, with image s1 in X1, the choice of a place s̄ of F above s defines

a decomposition (= inertia) group Is ⊂ Gal(F/F ) as well as a decomposition

group Ds1
⊂ Gal(F/F1), and Is is the inertia subgroup of Ds1 . If the closed

point s1 is of degree d over Fq, the residue field k(s1), naturally embedded

in k(s) ∼← F, is Fqd . We have a comparison morphism relating (1.4.1) (with

(1.4.2) used to replace Gal(F/F1) by Gal(F/Fq)) and its local analogue:

1 // Is //
� _

��

Ds1
//

� _

��

Gal(F/Fqd) // //
� _

��

1

1 // Gal(F/F ) // Gal(F/F1) // Gal(F/Fq) // 1.

(1.4.3)

On the right, Gal(F/Fq) is Ẑ, generated by Frob, Gal(F/Fqd) is Ẑ, generated

by its dth power, and the vertical map is d : Ẑ→ Ẑ.

The geometric point Spec(F ) → X − S of X − S, as well as its image

Spec(F ) → X1 − S1 in X1 − S1, will be denoted by o. Let F
S

be the max-

imal extension of F in F that is unramified outside of S. The fundamental

group π1(X−S, o) (resp. π1(X1−S1, o)) is the Galois group Gal(FS/F ) (resp.
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Gal(FS/F1)), and the homotopy sequence of fundamental groups for the fibra-

tion X1 − S1 → Spec(Fq) is the quotient of the second line of (1.4.3) obtained

by replacing F by F
S

:

(1.4.4) 1→ π1(X − S, o)→ π1(X1 − S1, o)→ Gal(F/Fq)→ 1.

As explained in 1.1, the functor “fiber at o” is an equivalence of categories

from the category of Ql-smooth sheaves on X−S to the category of continuous

representations of π1(X−S, o) on finite dimensional Ql-vector spaces. To com-

pute in this language the action by transport of structures of τ in Gal(F/Fq),
one should first lift τ to an automorphism of the geometric point o, i.e., of F .

The induced automorphism τ̃ of F
S

is an element of π1(X1−S1, o). It acts on

π1(X1 − S1, o) by the corresponding inner automorphism. The induced action

on π1(X − S, o) gives the action on representations: ρ 7→ (g 7→ ρ(τ̃−1gτ̃)). As

was clear a priori, the action obtained on isomorphism classes of representa-

tions (i.e., Ql-smooth sheaves) does not depend on the lifting chosen. This will

be used for τ = Frob.

1.5. To state the relation between Frobenius fixed points and automor-

phic representations, it is convenient to replace Galois groups by Weil groups.

Let W (X1−S1, o) be the inverse image in π1(X1−S1, o) of the subgroup Z of

Gal(F/Fq) = Ẑ. One gives it the topology for which π1(X − S, o) is an open

subgroup.

Locally, with the notation s, s1, s̄, Is, Ds1 and d of 1.4, let Ws1 be the

inverse image in Ds1 of the subgroup Z of Gal(F/Fqd) = Ẑ, with the topology

for which Is is an open subgroup. From (1.4.3), we get

(1.5.1)

1 −−−−→ Is −−−−→ Ws1 −−−−→ Z −−−−→ 1y y y
1 −−−−→ π1(X − S, o) −−−−→ W (X1 − S1, o) −−−−→ Z −−−−→ 1.

The left vertical map is trivial when s /∈ S, in which case we get from (1.5.1)

a map Z→W (X1 − S1, o). The image of 1 is called a Frobenius at s1.

From the computation 1.4 of the Frobenius action, we get

Lemma 1.6. Let F be a Ql-smooth sheaf on X − S. Its isomorphism

class is fixed by Frob ∈ Gal(F/Fq) (cf. 1.3) if and only if the corresponding

representation of π1(X − S, o) can be extended to W (X1 − S1, o).

1.7. In the case of function fields, the notion of cuspidal automorphic

representation is purely algebraic. One can use as field of coefficients any al-

gebraically closed field k of characteristic zero, for instance Ql. Let A be the

adèle ring of F1. In the case of GL(n), the multiplicity one theorem allows

us not to make a distinction between cuspidal automorphic representations
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π of GL(n,A), viewed as subrepresentations of the space of k-valued locally

constant cuspidal functions on GL(n, F1)\GL(n,A), on which GL(n,A) acts

by right translations, or viewed as isomorphism classes of irreducible repre-

sentations of GL(n,A) occurring in that space. As representations, they are

restricted tensor products of representations πs of the local groups GL(n, F1s),

s a place of F1. We will say that π is unramified at s if πs admits a nonzero

vector fixed by the maximal compact subgroup GL(n,Os) of GL(n, F1s).

By Lafforgue [Laf02], the isomorphism classes of n-dimensional irreducible

Ql-linear continuous representations of W (X1−S1, o) are in a natural bijective

correspondence with the Ql-cuspidal automorphic representations of GL(n,A)

that are unramified outside of S1 (global Langlands correspondence). If ρ

corresponds to π, the restriction (1.5.1) of ρ to Ws1 corresponds to πs1 by the

local Langlands correspondence.

A surprising consequence: an algebraic isomorphism Ql
∼→Ql′ induces a

bijection between isomorphism classes of irreducible Ql-linear continuous rep-

resentations of W (X1 − S1, o), and the same for Ql′ , in spite of the fact that

we are considering continuous representations for the l- or l′-adic topologies.

Representations correspond if the characteristic polynomials of Frobeniuses do.

Caveat : If one wants to use the so-called unitary correspondence between

representations of W (X1 − S1, o) and automorphic representations, one needs

to choose a square root of q in Ql.

1.8. Let F be a Ql-smooth sheaf on X − S. Let V := Fo be the corre-

sponding representation of π1(X − S, o). Suppose that the isomorphism class

of F is fixed by the Frobenius, and choose an extension of the representation

V to a representations V1 of W (X1 − S1, o) (1.6). In general, irreducibility

of V1 does not imply irreducibility of V (equivalently: of F). The 1981 work

of Drinfeld [Dri81], in which S = ∅, suggests that it is the irreducibility of F

we should be concerned with. We are interested in the case when S 6= ∅ and

when the local monodromy at each s in S is principal unipotent. This case is

simpler.

As in 1.4, let Is be an inertia group at s. The largest pro-l quotient of Is
is isomorphic to Zl. “Principal unipotent local monodromy at s” means that

the action of Is factors through this Zl, with an element of Is with image a in

Zl acting as exp(aN), where N is nilpotent with one Jordan block.

Lemma 1.9. (i) If at one s ∈ S the local monodromy is principal unipo-

tent, then V is irreducible as soon as V1 is.

(ii) If V is irreducible, then any extension V ′1 of V to a representation of

W (X1 − S1, o) is of the form V1 ⊗ χ, for χ : Z → Q∗l a character of the

quotient Z of W (X1 − S1, o), and the V1 ⊗ χ are all nonisomorphic.
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Proof of (i). Any subrepresentation V ′ of V , being stable by the exp(aN)

(a ∈ Zl), and hence by N , will be of the form NkV . It will hence be the

only subrepresentation of V of its dimension. As π1(X − S, a) is an invari-

ant subgroup of W (X1 − S1, 0), any element of W (X1 − S1, o) will map V ′

to a subrepresentation of V , of the same dimension, hence to itself: V ′ is a

subrepresentation of V1.

Proof of (ii). By assumption, V1 and V ′1 are identical as representations

of π1(X, o). By Schur’s lemma,

Homπ1(X−S,o)(V1, V
′

1)

is reduced to the line Ql of multiplication by scalars. It is a representation of

the quotient Z of W (X1 − S1, o) and is given by a character χ of Z. That

V1 ⊗Homπ1(X−S,o)(V1, V
′

1) ∼→V ′1

gives that V ′1 is V1⊗χ. Conversely, if we take V ′1 = V1⊗ η, the character χ we

obtain is η, so that twists by distinct characters are nonisomorphic.

1.10. The divisor of an idèle a = (as) is
∑

valuation(as) · s. The sum is

over all closed points of X1. The degree of a is
∑

valuation(as) · deg(s), the

degree of its divisor. Equivalently, the degree map, from the idèle class group

F ∗1 \A∗ to Z, is characterized by

(1.10.1) ‖a‖ = q− deg(a).

Let χ : Z → Q∗l be a character of Z, where Z is viewed as the quotient

deg ◦ det : GL(n,A)→ Z of GL(n,A) (resp. as the quotient Z ofW (X1−S1, o)).

The twist by χ, denoted π χ (resp, V1χ), of a representation π of GL(n,A) (resp.

V1 of W (X1−S1, o)) is π⊗χ (resp. V1⊗χ). Such twists we name Fq-twists. If

F1 is a Ql-smooth sheaf on X1−S1, if V1 is the restriction of the corresponding

representation of π1(X1−S1, o) to W (X1−S1, o), and if χ is with values in the

units of Q∗l , hence extends to Ẑ, then V1χ is obtained from the tensor product

of F1 with the pullback to X1 − S1 of a rank one Ql-sheaf on Spec(Fq). This

is what motivates the terminology.

If π is automorphic, hence is a space of functions on GL(n, F1)\GL(n,A),

then so is π χ: it is the space of functions f · χ(deg ◦det) for f in π. With

the notation of 1.7, if an irreducible representation V1 of W (X1 − S1, o) corre-

sponds by the global Langlands correspondence to the cuspidal automorphic

representation π of GL(n,A), then V1χ corresponds to π χ.

By the local Langlands correspondence, the condition that F has principal

unipotent local monodromy at s ∈ S, with image s1 in S1, corresponds to the

condition on the automorphic representation π that the local component πs1
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be of the form

(1.10.2) Steinberg representation ⊗ χ(det)

for χ an unramified character F ∗1s1 → Q∗l .
Applying 1.9 we conclude

Scholium 1.11. Assume that S is not empty.

(i) There is a bijective correspondence between

(A) isomorphism classes of rank n irreducible Ql-smooth sheaves on X−S,

fixed by the Frobenius, and with principal unipotent monodromy at

each s ∈ S, and

(B) classes modulo Fq-twisting of cuspidal automorphic Ql-representations

π of GL(n,A), unramified outside of S1, such that for each s ∈ S1,

the representation πs is of the form (1.10.2).

(ii) For π as in (B), the Fq-twists are all distinct.

1.12. Suppose that D is a rank n division algebra over F1, unramified

outside a subset 0S1 of the set of places S1, and for which at each s ∈ 0S1 the

completion Ds is a division algebra over F1s. Such a division algebra exists if

and only if |S1|≥ 2.

By abuse of notation, we denote by D∗ the algebraic group over F such

that for any commutative F -algebra R, the group D∗(R) of R-points of D∗ is

the multiplicative group (D ⊗F R)∗ of D ⊗F R. The group of F -points of D∗

is simply the multiplicative group of D.

The reduced norm defines a homomorphism det of algebraic groups from

D∗ to the multiplicative group Gm, and Fq-twists of automorphic representa-

tions of D∗(A) are defined as for GL(n) (1.10).

Our results depend on the following statement. How to extract this state-

ment from the literature is explained in the appendix.

Statement 1.13. Suppose that n≥ 2. There is then a bijective correspon-

dence, compatible with Fq-twists, between

(A) cuspidal automorphic representations π of GL(n,A), whose local compo-

nents at each s ∈ 0S1 is of the form (1.10.2), and

(B) automorphic representations π′ of D∗(A), other than one-dimensional,

whose local components at each s ∈ 0S1 is one-dimensional and of the

form χ(det) for χ an unramified character of F ∗1s.

The representation π (resp. π′) occurs with multiplicity one in the cuspidal

spectrum of GL(n,A) (resp. D∗(A)). If π corresponds to π′, at each v /∈ 0S1

(so that D∗s ' GL(n, F1s)), πs is isomorphic to π′s.

The number of classes 1.11(A), or (B), is hence also the number of classes

modulo Fq-twisting of automorphic representations π′ of D∗(A) other than
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one-dimensional, with local components at each s ∈ 0S1 as in 1.13(B), with

local components at each s ∈ S1 − 0S1 of the form (1.10.2), and unramified

outside of S1. Further, for π′ as in (B), the Fq-twists π′ χ are all distinct.

So far, we have considered Ql-automorphic representations. The theory

being algebraic, nothing changes if one considers instead the usual C-auto-

morphic representations.

2. Statement of the theorem: First form

2.1. Let T(n)(X,S), or simply T(n), be the set of isomorphism classes of

rank n irreducible Ql-smooth sheaves on X−S, with principal unipotent local

monodromy at each s ∈ S (see 1.8).

The geometric Frobenius Frob ∈ Gal(F/Fq) acts on T(n) by transport of

structures. This action coincides with the pullback by the Frobenius endo-

morphism Fr: X − S → X − S (see 1.3). Our aim is to compute the number

T (X1, S1, n) of its fixed points. For each m≥ 1, the Frobenius endomorphism

for (Xm − Sm)/Fqm is Frm. The number T (X1, S1, n,m) of fixed points of the

mth iterate of Frobenius is hence given by

(2.1.1) T (X1, S1, n,m) = T (Xm, Sm, n).

Before stating the result, we introduce some notation.

2.2. The zeta function of X1 is a function of a complex variable usually

called s. We will call it z to avoid confusion with points of X1. Rather than

this variable, we will systematically use the variable t = q−z. The function

Z(X1, t) is defined by

(2.2.1) Z(X1, t) = ζ(X1, z)

when t = q−z. It depends not only on the scheme X1, but also on q such that

X1 is a Fq-scheme. It has the cohomological description

Z(X1, t) =
∏

det(1− Frob · t,H i(X))(−1)i+1
(2.2.2)

=
det(1− Frob · t,H1(X))

(1− t)(1− qt)
,

where Frob stands for the geometric Frobenius Frob ∈ Gal(F/Fq), acting on

the l-adic cohomology groups H∗(X) by transport of structures (1.2). Put

f(t) := det(1− Frob · t,H1(X)).

It is a polynomial of degree 2g with integral coefficients. We will write α for a

quantity running over the inverse roots of f(t), counted with their multiplici-

ties. One has

(2.2.3) f(t) =
∏

(1− α t).
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When X1/Fq is replaced by Xm/Fqm , the corresponding polynomial fm is

(2.2.4) fm(t) =
∏

(1− αmt).

In (2.2.4), the relation between the variables t and z is t = q−mz. The value

of fm at t = 1 is the number hm of Fqm-points of the jacobian Pic0(X1) of X1:

(2.2.5) fm(1) =
∏

(1− αm) = hm := |Pic0(X1)(Fqm)|.

We define

(n/S1) := the largest divisor of n that is prime(2.2.6)

to all deg(s) for s in S1,

nT1 := f(1) · 1

qn − 1
·
n−1∏
j=1

(1− qj)−2 · f(qj) ·
∏
s∈S1

(1− qj deg s)

 ,(2.2.7)

nTm := nT1 for (Xm, Sm) over Fqm ,(2.2.8)

cm := #{x ∈ F∗qm | x generates Fqm over Fq}.(2.2.9)

If m is prime to the degree of a closed point s1 of X1, then Fqm ⊗Fq k(s1)

is a field and

[Fqm ⊗Fq k(s1) : Fqm ] = [k(s1) : Fq].

In geometric terms, there is a unique point sm of Xm above s1, and its degree,

as a closed point of Xm/Fqm , coincides with deg(s1). It follows that, when

m | (n/S1), the étale divisor Sm maps bijectively to S1 and if sm ∈ Sm has

image s1 ∈ S1, the degree [k(sm) : Fqm ] of the closed point sm of Xm is equal

to the degree [k(s1) : Fq] of the closed point s1 of X1: Nm = N1, and nTm is

given by formula (2.2.7) with f replaced by fm and q by qm.

Theorem 2.3. Suppose that n and N1 are ≥ 2. One then has

(2.3.1) f(1) + (−1)N1(n−1)T (X1, S1, n) =
∑

m|(n/S1)

cm ·mN1−2 ·n/m Tm.

In Section 4 (resp. 5), we will prove (2.3.1) under the assumption that n

is odd or N1 even (resp. that N1 ≥ 3 and that n or N1 is odd).

3. Division algebras and Tamagawa numbers

We will no more use the field F1⊗Fq F previously noted F . To lighten the

notation we will simply write F for F1. We fix a finite set S of places of F .
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3.1. The central simple algebras D over F of dimension n2 are classified

by their local invariants inv(Dv) ∈ (Q/Z)n, whereDv is the completionD⊗FFv
of D at the place v of F . The only constraints on the local invariants are that

almost all are zero and that their sum is zero. The completion Dv is a matrix

algebra (resp. a division algebra) if and only if inv(Dv) = 0 (resp. inv(Dv) is

of exact order n).

Proposition 3.2. Assume that |S|≥ 2. Then, except in the case where

n is even and |S| is odd, there exists a D as in 3.1, such that Dv is a matrix

algebra for v /∈ S, and a division algebra for v ∈ S.

Proof. For D as in 3.1, define av = n inv(Dv) ∈ Z/n. The problem is to

find a family of av, for v ∈ S, of exact order n and sum zero. If |S| is even,

take half of the av to be 1, and the other half to be −1. If |S|≥ 3 is odd and n

is also odd, take two av’s to be (n−1)/2, one to be 1, and the others in (1,−1)

pairs. �

3.3. If γ inD∗ is of finite order, it generates over Fq ⊂ F a finite extension,

isomorphic to Fqm for some m: γ is in the image of a morphism of Fq-algebras:

Fqm → D. Such morphisms correspond one-to-one to morphisms of F -algebras:

Fm = Fqm⊗F → D. By a special case of the Skolem-Noether theorem, a proof

of which is recalled at the end of the proof of 3.5, any two such morphisms are

conjugate by some d in the multiplicative group D∗ of D. With the notation

(n/S) of (2.2.6), one has

Proposition 3.4. Let D be as in 3.2. There exists a morphism of F -alge-

bras : Fm → D if and only if m divides (n/S).

Before giving the proof of 3.4, we observe that 3.3 and 3.4 imply that there

exists a morphism of F -algebras ϕ : F(n/S) → D, inducing ϕ0 : Fq(n/S) → D,

that any conjugacy class of elements of finite order of D∗ meets ϕ0(F∗
q(n/S)),

and that two elements of F∗
q(n/S) have images in the same conjugacy class if

and only if they are Gal(Fq(n/S)/Fq)-conjugate.

We will deduce 3.4 from the following well-known lemma.

Lemma 3.5. Let F be a field, D a division algebra with center F of di-

mension n2 over F , and Fm a field extension of degree m of F . The central

simple algebra Dm := Fm ⊗F D over Fm is isomorphic to a matrix algebra

Mk(C) over a division algebra C with center Fm. One has k | m, and the

following conditions are equivalent :

(i) Fm can be embedded, as an F -algebra, in D;

(ii) k = m.

The proof will repeat that of the Skolem-Noether theorem.
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Proof. Conjugacy classes of F -algebra embeddings Fm → D correspond

one-to-one to isomorphism classes of (Fm, D)-bimodules, of dimension one over

D. By “bimodule” we mean a bimodule for which the two induced F -module

structures are equal; this is the same as a right Dm-module. Indeed, if M is a

(Fm, D)-bimodule, of dimension one over D, each e 6= 0 in M is a basis of M

over D. For x in Fm, define e−1xe in D by xe = e(e−1xe). The map x 7→ e−1xe

is an embedding, and the x 7→ e−1xe for e 6= 0 in M form a conjugacy class

of embeddings Fm → D. If ϕ belong to that conjugacy class, corresponding

to e ∈ M , M is isomorphic to D, with D acting by right multiplication and

x ∈ Fm acting by left multiplication by ϕ(x). The isomorphism is given by

1 7→ e. The same construction shows that any embedding ϕ is obtained from

some (M, e): take M = D, e = 1, and actions of Fm and D as above.

If the division algebra C is of dimension c2 over Fm, one has n = kc, and

simple rightDm-modules are of dimension kc2 over Fm, hencemkc2 over F , and

mkc2/n2 = m/k over D. It follows that k divides m and that the dimensions

over D of (Fm, D)-bimodules are the multiples of m/k. The dimension one

is possible if and only if k = m. If k = m, the (Fm, D)-bimodules of di-

mension one over D are the simple Dm-modules, they are all isomorphic, and

this proves that the embeddings Fm → D are all conjugate (Skolem-Noether

theorem). �

Proof of 3.4. In our case, 3.5 shows that Fm embeds in D if and only if m

divides n and the local invariants of Dm are of order dividing n/m. If the place

v of Fm is above the place s of F , by extension of scalars the local invariant gets

multiplied by [Fm,v : Fs]. This degree is divisible by m if and only if s is inert

in Fm. This is the case if and only if Fqm ⊗Fq Fs, or equivalently Fqm ⊗Fq k(s),

is a field, i.e., when m is prime to the degree of k(s) over Fq. We need this to

be the case at each s in S. �

3.6. We fix D as in 3.2. By an “order of D” we will mean an order

containing the maximal order of F . Orders cannot be defined, as in the number

field case, as suitable subalgebras. Such a description is available only on each

affine chart of the projective curve X1. The constant sheaf D on X1 is a quasi-

coherent sheaf of algebras. An order of D (over X1) is a coherent subsheaf of

algebras whose fiber at the generic point is D. Being contained in the constant

sheaf D, an order OD is torsion free, hence locally free as a sheaf of O-modules.

It is of rank n2, and over some open subset ofX1 is a sheaf of Azumaya algebras.

Similarly, modules over an order OD are sheaves of OD-modules, quasi-

coherent as sheaves of O-modules. We will denote by Mod(−OD) the cat-

egory of right OD-modules that are coherent as sheaves of O-modules, and

Mod∗(−OD) the subcategory of those that are invertible; that is, locally free of

rank one over OD. In parallel to the notation O(s), O
∧
(s), Fs of (0.2), we denote
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by OD,(s) the stalk of OD at the closed point s of X1, OD,s = OD,(s)⊗O(s)
Os its

completion, and Ds = OD,s ⊗Os Fs the completion of D at s. Any other order

O′D coincides with OD outside of a finite set of closed points, call it T , and is

determined by the O′D,t ⊂ Dt for t in T . The O′D,t are arbitrary orders of the

Dt : Ot-subalgebras, generated as Ot-modules by a basis of Dt over Ft.

If v /∈ S, then Dv is isomorphic to End(V ) for V a vector space of dimen-

sion n over Fv. The maximal orders of End(V ) are the EndOv(V
0) for V 0 a

lattice in V : an Ov-submodule generated over Ov by a basis of V over Fv. If

OD,v is a maximal order of Dv, then OD is Azumaya at v.

If v ∈ S, the division algebra Dv admits a valuation and its unique maxi-

mal order is its valuation ring. The order OD is maximal if and only if, at each

closed point v of X1, OD,v is a maximal order in Dv.

3.7. As in 1.12, we denote by D∗ the obvious affine algebraic group over

F with group of rational points the multiplicative group of D. For any order

OD of D, the adelic group D∗(A) (A the ring of adèles of F ) is the restricted

product of the D∗v , relative to the compact open subgroups O∗D,v. Its center is

the group A∗ of idèles of F .

3.8. We will use that the Tamagawa number τ(D∗) is 1. As D∗ is not

semisimple, we use Ono’s definition of Tamagawa numbers for reductive groups

[Ono66]. We need to explain how Ono’s definition extends to the function field

case.

Let G be a unimodular connected smooth linear algebraic group over F .

A translation invariant differential form of maximal degree on G, or equiva-

lently, ω ∈
max
∧ Lie(G)∨, defines at each place v of F a measure ‖ωv‖ on G(Fv).

One would like to define the Tamagawa measure on G(A) to be the product

measure ‖ω‖ =
∏
v ‖ωv‖, independent of ω 6= 0 by the product formula, times

q(1−g) dim G. When G is semisimple, this product of measures makes sense:

it converges absolutely. When G is reductive and does not admit the multi-

plicative group Gm as a quotient, the product is conditionally convergent in

the following sense: if K =
∏
Kv is a compact open subgroup of G(A), the

product of the
∫
Kv
‖ωv‖ converges if one first groups together the factors for

which v has a given degree: the product over j

∏
j

Ç ∏
deg(v)=j

∫
Kv

‖ωv‖
å

is absolutely convergent.

When G admits Gm as a quotient, the same product vanishes, essentially

because
∏

(1 − q− deg v) does. As it is the only case we will need, we will

explain what is to be done under the additional assumption that G is given
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with d : G → Gm, an epimorphism whose kernel is the derived group of G.

This applies to GL(n) and to D∗, with d = det.

For |t| < 1/q, the rational function Z(X1, t) (see 2.2) is the product over

all places of the local factors Zv(t) = (1− tdeg v)−1. At the simple poles t = 1,

1/q, a regularized value Z? is defined to be the negative of the residue of

Z(X1, t)
dt
t .

Under our assumptions, Ono’s Tamagawa measure on G(A) is

(3.8.1) µ := Z?(X1, 1/q)
−1 · q(1−g) dim G ·

∏
v

Zv(1/q) · ‖ωv‖.

Let G(A)0 be the kernel of the homomorphism

deg ◦ d : G(A)→ Z.

Let kZ be its image. If G(A)(i) is the inverse image of i, the G(F )\G(A)(i)

for i ∈ kZ have all the same volume. It follows that µ(G(F )\G(A)) is infinite.

This is a counterpart to the divergence of Z(X1, t) at t = 1/q, which forced us

to put Z?(X1, 1/q) rather than Z(X1, 1/q) in (3.8.1). Under our assumptions,

Ono’s Tamagawa number τ(G) of G is

(3.8.2) τ(G) := µ(G(F )\G(A)0)/k.

For G = GL(n) or D∗, deg ◦ d is onto and we have simply

τ(G) := µ(G(F )\G(A)0).

Ono’s general results imply that

(3.8.3) τ(GL(n)) = 1 and τ(D∗) = 1.

3.9. Remark. Ono considers the number field case. He uses the complex

variable s (which we call z; see 2.2), and the morphism log ‖d‖ : G(A)→ R to

define τ(G). His proofs work in the function field case as well. One should,

however, be aware of two differences between his definition of τ(G) and the

one we explained. They cancel each other.

(a) Ono uses as the regularized value ζ?(X1, 1) the value at z = 1 of

(z − 1)ζ(X1, z), equal to the residue at 1 of ζ(X1, z)dz. As dt/t = − log q dz,

one has

Z?(X1, 1/q) = log q · ζ?(X1, 1).

In the case we are considering, the measure µO used by Ono in [Ono66] is

hence log q times the measure µ defined by (3.8.1).

(b) The right side of (3.8.2) should be viewed as the volume modulo G(F )

of the “complex” G(A) → Z for the measure µ on G(A) and the counting

measure on Z. Ono uses the “complex” log ‖d‖ : G(A)→ R, µO on G(A) and

dx on R. In the number field case, this amounts to using the measure µO/dx

on G(A)0.
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In the function field case, the two constructions are possible. They are

related by the commutative diagram

G(A) // Z� _

− log q

��
G(A) // R.

When one uses the measure µ on G(A), the counting measure on Z, and the

measure dx on R, the volume modulo G(F ) of the second line is equal to the

volume modulo G(F ) of the first line divided by log q =
∫
R/ log q·Z dx.

The following is well known.

Proposition 3.10. For G=GL(n), the Tamagawa volume of
∏

GL(n,Ov)

is

(−Z?(1)Z(q) · · ·Z(qn−1))−1.

Sketch of proof. For the additive group Ga, and ω = dx, the volume of Ov
for ‖ωv‖, and the volume of

∏
Ov for ‖ω‖, are 1. The intersection F ∩

∏
Ov is

Fq, F\A/
∏

Ov is H1(O), and the volume of F\A = Ga(F )\Ga(A) for ‖ω‖ is

hence qg−1. This, and the wished for multiplicativity in G, are the reasons for

the factor q(1−g) dim G in the definition of the Tamagawa measure: it ensures

that τ(Ga) = 1.

Let us temporarily forget that
∏

(1 − q− deg v) diverges. The Tamagawa

measure of
∏

GL(n,Ov) would then be the measure of
∏

GL(n,Ov), viewed

as a subspace of
∏
Mn(Ov). The case of the additive group tells us that the

Tamagawa volume of
∏
Mn(Ov) is q(1−g)n2

. For
∏

GL(n,Ov), the Tamagawa

volume is then

q(1−g)n2 ·
∏ |GL(n, k(v))|
|Mn(k(v))|

= q(1−g)n2 ·
∏
v

((1− q−1
v ) · · · (1− q−nv ))

= q(1−g)n2 · (Z(q−1) · · ·Z(q−n))−1.

The required regularization replaces Z(q−1) by Z?(q−1).

One then uses the functional equation

Z(t) = (qt2)g−1Z(1/qt).

As t 7→ 1/qt maps dt
t to −dtt , the same holds up to sign for the regularized

values at t = 1, 1/q. We get

Z?(q−1)Z(q−2) · · ·Z(q−n) = −(q−1 · · · q−(2n−1))g−1Z?(1)Z(q) · · ·Z(qn−1)

= −q(1−g)n2
Z?(1)Z(q) · · ·Z(qn−1)

and the proposition. �



938 PIERRE DELIGNE and YUVAL Z. FLICKER

One has Z(t) = f(t)/(1− t)(1−qt), and Z?(1) is the value of f(t)/(1−qt)
at 1. One can hence rewrite 3.10 as

(3.10.1) µ
Ä∏

GL(n,Ov)
ä

=

f(1) · 1

qn − 1
·
n−1∏
j=1

f(qj)/(1− qj)2

−1

.

The analogous question for D∗ is reduced to 3.10 by a standard argument.

Proposition 3.11. Let OD be a maximal order of D as in 3.2. Define

qv = |k(v)| = qdeg(v). Then, for G = D∗, the Tamagawa volume of
∏

O∗D,v is

(3.11.1) µ
Ä∏

O∗D,v
ä

=
∏
v∈S

δv · µ
Ç∏

v

GL(n,Ov)

å
with

(3.11.2) δv =
î
(qv − 1) · · · (qn−1

v − 1)
ó−1

.

Plugging (3.10.1) in (3.11.1) and using that (n − 1)|S| is even, one can

rewrite (3.11.1) as

(3.11.3)

µ
Ä∏

O∗D,v
ä

=

f(1) · 1

q2 − 1
·
n−1∏
j=1

{
(1− qj)−2 · f(qj)

∏
s∈S

(1− qj deg(s))

}−1

.

For S = S1, (3.11.3) is the inverse of nT1 (2.2.7).

Sketch of proof. The algebra D over F is obtained from the n× n matrix

algebra Mn by twisting by a PGL(n)-torsor. The algebraic group D∗ as well

as
max
∧ Lie(D∗)∨ are similarly obtained from GL(n) and

max
∧ Lie(GL(n))∨. As

PGL(n) acts trivially on
max
∧ Lie GL(n)∨,

max
∧ Lie(D∗)∨ is canonically isomor-

phic to
max
∧ Lie(GL(n))∨. This isomorphism is compatible with extensions of

scalars. It induces a correspondence between the Haar measures on GL(n, Fv)

and D∗v . Taking products, it induces also a correspondence between the Haar

measures of GL(n,A) and D∗(A). The Tamagawa measures µ correspond to

each other. If the µv are corresponding Haar measures for the local groups,

this gives

(3.11.4) µ
Ä∏

O∗D,v
ä
/µ
Ä∏

GL(n,Ov)
ä

=
∏

µv(O
∗
D,v)/µv(GL(n,Ov)).

It suffices to extend the product on the right only over the set S of places

where Dv is not isomorphic to Mn(Fv).

For v ∈ S, O∗D,v is an Iwahori subgroup of D∗v . Let Tv be the subalgebra of

Mn(Ov) consisting of the matrices whose reduction in Mn(k(v)) is upper trian-

gular. The multiplicative group Iv := T ∗v is an Iwahori subgroup of GL(n, Fv).

As multiplicative groups of Ov-algebras that as Ov-modules are free of finite
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type, O∗D,v and Iv are the groups of Ov-points of group schemes smooth over

Spec(Ov).

Suppose that G is a reductive group over Fv, F
′
v is an unramified extension

of Fv, and O′v is its valuation ring. By Bruhat-Tits, an Iwahori subgroup of G,

that is of G(Fv), is in a natural way the group of Ov-points of a smooth group

scheme I over Spec(Ov), with generic fiber G. Further, I(O′v) is an Iwahori

subgroup of G′ := G⊗Fv F ′v and I⊗Ov O
′
v is the corresponding smooth group

scheme over Spec(O′v). We use here that, as the residue fields are finite, we

are in the residually split case. This is in fact how Iwahori subgroups are

constructed: one finds an Iwahori subgroup I ′ of G′ fixed by Gal(F ′v/Fv), and

one constructs I from I′ by étale descent.

In our case, choose F ′v such that Dv and Mn become isomorphic after

extension of scalars to F ′v. For GL(n), an Iwahori subgroup I ′ determines the

corresponding order T ′ of Mn, of which it is the multiplicative group. Let I ′

be an Iwahori subgroup of (Dv ⊗ F ′v)
∗ ' GL(n, F ′v) and T ′ be the order of

Dv ⊗ F ′v of which I ′ is the multiplicative group. If I ′ is stable by Gal(F ′v/Fv),

T ′ descends to an order T of Dv. As T ∗ is the Iwahori subgroup of D∗v , T must

be OD,v.

We conclude that OD,v ⊗ F ′v ⊂ Dv ⊗ F ′v ' Mn(F ′v) is conjugate to Tv (we

will also check this directly in 3.12) and that the Haar measures µv on D∗v and

GL(n, Fv) defined by generators of
max
∧ Lie(O∗D,v) and

max
∧ Lie(T ∗v ) correspond

to each other.

On O∗D,v, µv is induced by the Haar measure on Dv for which OD,v has

volume one. On GL(n,Ov), µv is determined by the Haar measure on Mn(Fv)

for which Tv has volume one. Using that OD,v is a valuation ring with residue

field Fqnv , we get

µv(O
∗
D,v) = 1− 1

qnv
.

The µv-volume of GL(n,Ov) is

|image of GL(n,Ov) in Mn(k(v))|/|image of Tv in Mn(k(v))|

= qn
2

v

(
1− 1

qv

)
· · ·
(
1− 1

qnv

)
/qn(n+1)/2
v

= (qv − 1) · · · (qn−1
v − 1)

(
1− 1

qnv

)
.

This gives

µv(O
∗
D,v)/µv(GL(n,Ov)) =

î
(qv − 1) · · · (qn−1

v − 1)
ó−1

,

and (3.11.1) follows from (3.11.4). �
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3.12. Let k be the residue field of Fv, and choose an isomorphism of Fv
with k((t)). Let k′ be a degree n extension of k, and let F ′v := k′((t)). For some

generator τ of Gal(F ′v/Fv) ' Gal(k′/k) ' Z/n, the division algebra Dv admits

the following model as a crossed product: one adds to F ′v an element π such

that πn = t and πf = τ(f)π for f in F ′v.

The elements of Dv can be written as Laurent series
∑
anπ

n, with an in

k′, and the product is such that π a = τ(a)π for a in F ′v: Dv is a twisted

Laurent formal power series field k′((π))τ . It admits the valuation∑
anπ

n 7−→ inf{n | an 6= 0}.

The valuation ring is the twisted formal power series ring k′[[π]]τ .

The tensor product F ′v ⊗Fv F ′v is a product of copies of F ′v, indexed by

Gal(F ′v/Fv). The coordinates of the isomorphism are the

prα : F ′v ⊗Fv F ′v → F ′v : x⊗ y 7−→ α(x)y.

They are permuted by τ , acting on the first factor F ′v:

prα(τ(x)⊗ y) = ατ(x)⊗ y = prατ (x⊗ y).

The algebra D′v := Dv ⊗Fv F ′v is obtained by adding to this product of copies

of F ′v an element π such that πn = t and π(xα) = (xατ )π.

Let us identify Gal(k′v/kv) with Z/n by using τ as a generator. One then

defines an isomorphism of D′v with Mn(F ′v) by mapping F ′v ⊗Fv F ′v = F ′v
Z/n to

the diagonal matrices, and π to the matrix 1 just above the diagonal, t on the

lower left corner, and 0 elsewhere. With Tv as in 3.11, by this isomorphism,

OD,v ⊗ k′[[t]] maps to Tv ⊗ k′[[t]].

4. Proof of 2.3: Masses of categories

In this section, we prove 2.3 under the assumption that there exists a

division algebra D with center F of dimension n2 over F , such that Dv is a

division algebra for v ∈ S1, and a matrix algebra over Fv for v /∈ S1. As

explained in 3.2, this amounts to assuming that n is odd, or that N1 (assumed

to be ≥ 2) is even. In both cases, N1(n − 1) is even and the sign (−1)N1(n−1)

in (2.3.1) is +1.

4.1. As we recalled in 1.11 and 1.13, the number T (X1, S1, n) we want

to compute is also the number of classes modulo Fq-twists of automorphic

representations π of D∗(A) such that

(i) π is unramified outside of S1;

(ii) for v in S1, the local component πv is of the form χ(det) for χ an

unramified character of F ∗v ;

(iii) π is not one-dimensional.
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To count these representations up to Fq-twists, we will proceed in two steps.

Let a be an idèle of F of positive degree: deg(a) > 0. Identifying A∗ with the

center of D∗(A), one has

deg ◦ det(a) = deg(an) = n deg(a).

It follows that for χ a character of the quotient Z of D∗(A),

ωπχ(a) = ωπ(a)χ(n deg a)

and any π has an Fq-twist π′ such that ωπ′(a) = 1. This π′ is not unique:

one remains free to twist it by a character of Z/n deg(a). We conclude that

T (X1, S1, n) is the number of automorphic representations of D∗(A) obeying

(i), (ii), (iii), and

(iv) ωπ(a) = 1,

taken modulo Fq-twists by a character of Z/ndeg a. These twists being dis-

tinct, we have

Lemma 4.2. The number T (X1, S1, n) is 1/ndeg(a) times the number of

automorphic representations of D∗(A) obeying (i), (ii), (iii), (iv) of 4.1.

In the rest of this section, we take a to be of degree one.

4.3. Let us fix a maximal order OD of D (3.6). The space of locally

constant functions on D∗\D∗(A)/aZ is the direct sum of the automorphic rep-

resentations π for which ωπ(a) = 1. This direct sum decomposition, being

D∗(A)-equivariant, is compatible with taking the invariants by
∏

O∗D,v. The

π for which (i) and (ii) hold are those for which the subspace of vectors fixed

by
∏

O∗D,v is nontrivial. This subspace is then of dimension one. It follows

that the number of automorphic representations of D∗(A) for which (i) and

(ii) hold is the dimension of the space of functions on D∗\D∗A/
∏

O∗D,v · aZ.

Lemma 4.4. The number of automorphic representations of D∗(A) for

which (i), (ii), and (iv) hold is the number of elements of the finite set

(4.4.1) D∗\D∗(A)/
∏

O∗D,v · aZ.

Lemma 4.5. There are nh1 one-dimensional automorphic representations

of D∗(A) for which (i), (ii), and (iv) hold.

Proof. The map det maps D∗(A) (resp. D∗, resp. O∗D,v) onto A∗ (resp.

F ∗, resp. O∗v). The representations considered may hence be identified with

the unramified characters χ of the idèle class group such that χ(an) = 1.

As F ∗\A∗/∏O∗v · anZ is an extension of Z/n by Pic0(X1)(Fq), the lemma

follows. �

From 4.4 and 4.5, we get
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Lemma 4.6. We have T (X1, S1, n) + h1 = 1
n |D

∗\D∗(A)/
∏

O∗vD · aZ|.

Let D∗(A)(i) be the coset of D∗(A)0 (notation of 3.8) on which deg det = i.

One has ∐
0≤ i<n

D∗\D∗(A)(i)/
∏

O∗D,v
∼→D∗\D∗(A)/

∏
O∗D,v · aZ.

We will not need the following variant of 4.6.

Proposition 4.7. The D∗\D∗(A)(i)/
∏

O∗D,v have all the same number

of elements. As a consequence,

T (X1, S1, n) + h1 = |D∗\D∗(A)0/
∏

O∗D,v|.

Proof. The group (Z/n)∨ of characters χ of Z/n acts on the space L of

functions on D∗\D∗(A)/
∏

O∗D,v · aZ by multiplication by χ(deg ◦ det). The

space L is a direct sum of lines, indexed by the automorphic representations

obeying (i), (ii), and (iv), and (Z/n)∨ acts freely on this set of lines: L is a

multiple of the regular representation of (Z/n)∨, and each character of (Z/n)∨

occurs in it with the same multiplicity. One concludes by observing that the

multiplicity of the character χ 7→ χ(i) is |D∗\D∗(A)(i)/
∏

O∗D,v|. �

4.8. Let ϕ0 be the Haar measure with mass one of
∏

O∗D,v, extended

by zero to a measure on D∗(A). Convolution with ϕ0 is an idempotent

projection from locally constant functions on D∗\D∗(A)/aZ to functions on

D∗\D∗(A)/
∏

O∗D,v · aZ. Its trace is |D∗\D∗(A)/
∏

O∗D,v · aZ|. The trace for-

mula (compact quotient case) expresses it as a sum over the conjugacy classes

of γ in D∗ contained in a D∗(A)-conjugate of
∏

O∗D,v · aZ.

Lemma 4.9. Any γ in D∗ contained in a D∗(A)-conjugate of
∏

O∗D,v · aZ
is of finite order.

Proof. As deg ◦det(γ) = 0, γ will be in a D∗(A)-conjugate of
∏

O∗D,v. For

any d in D∗(A), the intersection D∗ ∩d ·∏O∗D,v · d−1 is discrete and compact,

hence finite. �

With essentially no change in content, the trace formula computation can

be expressed using masses of suitable categories (cf. 4.18). The direct use of

the trace formula has the advantages of being more directly applicable in the

number field case and of clearly separating local and global questions. The use

of masses is more geometric. As the equivalence between the two approaches

seems interesting to us, we will use masses. We first review their formalism.

4.10. The mass of a category C is the sum, over the isomorphism classes

of objects,

(4.10.1) mass(C) :=
∑

1/|Aut(X)|.
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Let Cis be the subcategory of C with the same objects and for which the

morphisms are the isomorphisms in C. The category Cis is a groupoid. It has

the same mass as C. A category and its opposite have the same mass. Two

equivalent categories have the same mass. If C is a finite sum (resp. product)

of categories Ci, one has

mass
Ä∐

Ci
ä

=
∑

mass(Ci),(4.10.2)

mass
Ä∏

Ci
ä

=
∏

mass(Ci).(4.10.3)

More generally, suppose each object X of C is given a weight w(X) and

that isomorphic objects have the same weight. The weighted mass of (C, w) is

the sum, over isomorphism classes of objects,

(4.10.4) mass(C, w) =
∑

w(X)/|Aut(X)|.

In our applications, the groups of automorphisms Aut(X) will all be finite.

Suppose T : C→ D is a functor. The fiber CY of C/D at the object Y of

D is the category of objects X of C, given with an isomorphism α : T (X)→ Y .

A morphism from (X ′, α′) to (X ′′, α′′) is u : X ′ → X ′′ such that α′′T (u) = α′.

Maybe this should be called “homotopy fiber.” The naive definition of a fiber,

(T−1(Y ), T−1(IdY )), is no good as it is not compatible with equivalences. If,

however, C is fibered over D, the two definitions give equivalent categories. If

Y and Y ′ are isomorphic, the fibers CY and CY ′ are equivalent and hence have

the same mass.

Lemma 4.11. Let T : C→ D be a functor. The mass of C is the weighted

mass of D, weighted by the mass of the fibers. Special case: if all fibers have

the same mass, one has

(4.11.1) mass(C) = mass(D) ·mass(any fiber).

Proof. One reduces to the case where all morphisms in C and D are iso-

morphisms. Using (4.10.2) and its analogue for weighted masses, one may

assume that C and D have only one isomorphism class of objects. Replacing

C, D by equivalent categories, one may assume that C (resp. D) has only one

object X (resp. Y ). The functor T is then given by a morphism of groups T

from G = Aut(X) to H = Aut(Y ).

An object of the fiber CY is the data of h ∈ H: T (X) = Y → Y . A

morphism from (X,h′) to (X,h′′) is g in G such that h′′T (g) = h′. This

identifies the set of isomorphism classes in CY with H/T (G) and the group of

automorphisms of any object with Ker(T ). Then (4.11.1) reduces to

1/|G| = 1/|H| · (|H/T (G)|/|Ker(T )|). �

The same proof shows that if C is given with a weight, its weighted mass

is the weighted mass of D for the weighted masses of the fibers.
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4.12. Suppose a group Γ acts on a set E. The category [Γ\E] is defined

as follows: the set of objects is E, a morphism from x to y is γ in Γ such

that y = γx, and the composition of morphisms is the product in Γ. Variant:

suppose given a (left) action of Γ1, and a right action of Γ2, that is an action

of the opposite group Γ0
2. If the actions commute, Γ1×Γ0

2 acts and one defines

[Γ1\E/Γ2] = [Γ1 × Γ0
2\E]. If Γ2 acts freely, the natural functor [Γ1\E/Γ2] →

[Γ1\(E/Γ2)] is an equivalence. More generally, if the normal subgroup Γ0 of Γ

acts freely on E, then [Γ\E]→ [(Γ/Γ0)\(Γ0\E)] is an equivalence.

The mass of [Γ\E] is the sum, over representatives of the orbits of Γ,

(4.12.1) mass([Γ\E]) =
∑

orbits

1/| Stabilizer(e)|.

Lemma 4.13. If Γ′ is a subgroup of finite index of Γ, then

(4.13.1) mass([Γ′\E]) = |Γ/Γ′| · mass([Γ\E]).

Proof. We apply (4.11.1) to the natural functor [Γ′\E] → [Γ\E]. An

object of the fiber at e is (e′, γ) with γ e′ = e. It is determined by γ, has no

nontrivial automorphism, and (γ−1e, γ) is isomorphic to (δ−1e, δ) if and only

if γ and δ have the same image in Γ′\Γ. All fibers hence have mass |Γ/Γ′|. �

Example 4.14. If E and Γ are finite, then

(4.14.1) mass([Γ\E]) = |E|/|Γ|.

Indeed, take Γ′ in 4.13 to be trivial.

Example 4.15. Let a finite group Γ act on itself by conjugation. For this

action, the stabilizer of γ in Γ is the centralizer Z(γ) of γ. Applying (4.12.1)

and (4.14.1), we get that the sum over representatives of conjugacy classes

(4.15.1)
∑

1/|Z(γ)| = 1 (sum over conjugacy classes).

The same holds for twisted conjugacy and twisted centralizer: if Γ1 is an

extension of Z by the finite group Γ, one applies (4.14.1) to the conjugation

action of Γ on the inverse image of 1.

For C a category, let C? be the category of objects X of C, given with

an automorphism α. A morphism from (X ′, α′) to (X ′′, α′′) is a morphism

f : X ′ → X ′′ such that α′′f = fα′.

Proposition 4.16. If the groups of automorphisms of objects of C are

finite, the mass of the category C? is the number of isomorphism classes of C.

Proof. As (C?)is = (Cis)
?, we may and shall assume that C = Cis. We

apply 4.11 to the forgetful functor (X,α) 7→ X from C? to C. The fiber at X is

equivalent to the discrete category with set of objects Aut(X). The mass of C?
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is the weighted mass of C for the weight |AutX|: the sum over isomorphism

classes in C ∑
|Aut(X)|/|Aut(X))| =

∑
1.

If we take for C a category with one object whose group of automorphisms

is Γ and compute the mass of C? by (4.10.1), we recover (4.15.1). �

Example 4.17. For E and Γ as in 4.12, the objects of [Γ\E]? are the pairs

(e, γ) with e fixed by γ: e ∈ Eγ . The objects isomorphic to (e, γ) are the

(δe, δγδ−1). This shows that the conjugacy class of γ depends only on the

isomorphism class of (e, γ) and that if we fix a set R of representatives of the

conjugacy classes, any object of [Γ\E]? is isomorphic to a (e, γ) with γ in R.

A morphism from (e, γ) to (e′, γ) is δ in Γ such that δe = e′ and γδ = δγ. The

category [Γ\E]? is hence equivalent to the disjoint sum, over representatives γ

of the conjugacy classes, of the categories [Z(γ)\Eγ ]. We get

(4.17.1) |Γ\E| =4.16 mass([Γ\E]?) =
∑

mass([Z(γ)\Eγ ]),

the sum being over a set of representatives of the conjugacy classes of Γ. It

suffices to consider those for which Eγ is not empty.

Example 4.18. Let G be a totally disconnected locally compact group, K

an open compact subgroup, Γ a cocompact discrete subgroup, and consider

the action of Γ on E = G/K. Formula (4.17.1) expresses the number of double

cosets of Γ, K in G as a sum over conjugacy classes in Γ. For γ in Γ, Eγ is

the set of g−1K such that γg−1K = g−1K; that is, γ ∈ g−1Kg. Let ZΓ(γ)

(resp. ZG(γ)) be the centralizer of γ in Γ (resp. G). Let us check that the

term mass([ZΓ(γ)\Eγ ]) in (4.17.1) is an orbital integral. Recall that orbital

integrals associate a function on the set of conjugacy classes to a density. The

density taken here is the Haar measure of K giving it volume 1, extended by 0,

that is 1Kdg, for 1K the characteristic function of K and dg the Haar measure

of G giving K the volume 1:

(4.18.1) mass([ZΓ(γ)\Eγ ]) =

∫
G/ZΓ(γ)

1K(gγg−1)dg.

Indeed, the double coset ZΓ(γ)g−1K (resp. KgZΓ(γ)) contributes to the mass

(resp. integral) if and only if gγg−1 ∈ K, in which case the contribution is

1/|gZΓ(γ)g−1 ∩K|.
Formula (4.17.1) hence gives

(4.18.2) |Γ\G/K| =
∑∫

G/ZΓ(γ)
1K(gγg−1)dg

(sum over conjugacy classes in Γ). The trace formula (compact quotient case),

after telling the same, introduces a Haar measure dz on the centralizer ZG(γ)
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of γ in G and rewrites each term as∫
ZG(γ)/ZΓ(γ)

dz ·
∫
G/ZG(γ)

1K(gγg−1)dg/dz.

4.19. The number of double cosets |D∗\D∗(A)/
∏

O∗D,v · aZ| appearing

in 4.6 will now be computed using these methods. By 4.9, only the conjugacy

classes of elements of finite order of D∗ need to be considered. We recall that

(n/S1) is the largest divisor of n prime to the degrees deg(v) for v in S1. It

will be convenient to choose an Fq-algebra embedding of Fq(n/S1) in D (see 3.4),

and to choose the maximal order OD to contain this Fq(n/S1) . This is possible:

as Fq(n/S1) is finite, it is contained in a maximal compact subgroup of D∗(A),

and these are the
∏

O∗D,v for OD a maximal order.

Fix γ in Fq(n/S1) . Let m be the degree [Fq(γ) : Fq]. The element γ is in the

image of Fqm and generates it over Fq. The contribution of γ to the number

of double cosets is

(4.19.1) mass([Z(γ)\(D∗(A)/
∏

O∗D,v · aZ)γ ],

where Z(γ) is the centralizer of γ in D∗ and ( · · · )γ is the set of fixed points of

γ. The centralizer Z(γ) is the multiplicative group of Dγ , the subalgebra of D

consisting of the elements that commute with γ or, what amounts to the same,

with each element of Fq(γ) ⊂ Fq(n/S1) ⊂ D. As we used in the proof of 4.9,

(D∗(A)/
∏

O∗D,v ·aZ)γ = (D∗(A)/
∏

O∗D,v)
γ/aZ, and (D∗(A)/

∏
O∗D,v)

γ consists

of the cosets of d in D∗(A) such that γ or, what amounts to the same, F∗qm , is

contained in d ·∏O∗D,v · d−1. Such a coset is fixed, not only by γ, but by all

elements of F∗qm . It follows that (4.19.1) depends only on m. As the orbits of

Gal(Fq(n/S1)/Fq) acting on F∗
q(n/S1) map bijectively onto the conjugacy classes

of elements of finite order of D∗ (3.4), the number of double cosets is

(4.19.2)

|D∗\D∗(A)/
∏

O∗D,v · aZ| =
∑

m|(n/S1)

cm
m

(mass(4.19.1) for Fq(γ) = Fqm)

(for cm, see (2.2.8)).

The category C = [D∗\D∗(A)/
∏

O∗D,v], the disjoint summand

[Dγ∗\(D∗(A)/
∏

O∗D,v)
γ ]

of C?, and their analogues when one divides also by aZ, have a concrete inter-

pretation, which we now explain (4.20)–(4.23). Our proof of 2.3 will not rely

on this interpretation.

Construction 4.20.The category [D∗\D∗(A)/
∏

O∗D,v] is naturally equiv-

alent to the category Mod∗is(−OD).

For the notation Mod∗is, see 3.6 and 4.10.
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Construction. To x = (xv) in D∗(A) one attaches the coherent sub-OD-

module of D whose completion at v is xvOv,D ⊂ Dv. Call it xOD. It depends

only on the coset x ·∏O∗D,v. For any invertible right OD-module E, a trivializa-

tion of E at the generic point defines an isomorphism of it with some xOD. An

OD-module isomorphism from xOD to yOD has the form f 7→ df , where d in

D∗ is such that dx
∏

O∗D,v = y
∏

O∗D,v. This defines the announced equivalence

to Mod∗is(−OD). �

Define Mod(Fqm −OD) to be the category of (Fqm ,OD)-bimodules, where

the two implied Fq-module structures are assumed to agree. A decoration ∗

means that we consider only those that are invertible as OD-modules.

Construction 4.21. The category [Dγ∗\(D∗(A)/
∏

O∗D,v)
γ ] is naturally

equivalent to the category Mod∗is(Fqm − OD).

Construction. The coset x
∏

O∗D,v is fixed by γ if and only if xOD ⊂ D

is a left Fqm-module. If the cosets of x and y are fixed by γ, an OD-module

isomorphism, defined as in 4.20 by d in D∗, respects the Fqm-module structure

if and only if d is in Dγ∗. This defines the functor and proves it is fully faithful.

To see that it is essentially surjective, one uses that an Fqm-module structure

on xOD is given by an embedding Fqm → D and that two such embeddings

are D∗-conjugate. �

Variants 4.22. (i) Define A to be the divisor of the idèle a. The OD-

module xaOD is naturally isomorphic to xOD(−A) = xOD ⊗O O(−A), and

the xOD(kA) for k ∈ Z are nonisomorphic: their degrees are distinct. It

follows that [D∗\D∗(A)/
∏

O∗D,v · aZ] is naturally equivalent to the category

Mod∗is(−OD)/a of invertible right OD-modules E, taken up to E 7→ E(kA).

In this category, E′ and E′′ are isomorphic if and only if for some k′, k′′ the

modules E′(k′A) and E′(k′′A) are isomorphic. In this case, (k′, k′′) is unique

up to (k′, k′′) 7→ (k′ + c, k′′ + c) and Hom/a(E′,E′′) is any of the

Isom(E′((k′ + c)A),E′′((k′′ + c)A))

between which one has a transitive system of bijections.

(ii) Similarly, [Z(γ)\(D∗(A)/
∏

O∗D,v · aZ)γ ] is naturally equivalent to the

category Mod∗is(Fqm −OD)/a of bimodules E in Mod∗is(Fqm −OD), taken up to

E 7→ E(kA).

Remark 4.23. The decomposition 4.17,

[D∗\D∗(A)/
∏

O∗D,v]
? =

∐
[Z(γ)\(D∗(A)/

∏
O∗D,v)

γ ],

becomes — via 4.20 and 4.21 — the fact that the algebra of endomorphisms

of an invertible left OD-module E is a finite field, and that the category of the

(E, α), α an automorphism of E that generates an extension of degree m of Fq
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and has a specified minimal polynomial over Fq, is equivalent to the category

Mod∗is(Fqm − OD) of (Fqm ,OD)-bimodules.

4.24. The tensor product Fqm ⊗Fq Fqm is the product of copies of Fqm ,

indexed by Gal(Fqm/Fq). The projections are the

x⊗ y 7−→ τ(x)y : Fqm ⊗ Fqm → Fqm .

An Fqm ⊗Fq Fqm-module structure on M hence gives a decomposition of M

in submodules Mτ , which we will view as a grading, with group of degrees

Gal(Fqm/Fq) ' Z/m.

We can apply this to D, as well as to OD, on which Fqm acts by left and

right multiplications. On the τ -component, λd = dτ(λ) for λ in Fqm . The

degree zero component of D (resp. OD) is the commutant Dγ (resp. OγD) of

Fqm . The embedding of Fqm in D (resp. OD) extends to an embedding of

Fm = F ⊗Fq Fqm (resp. Om = O ⊗Fq Fqm), and Dγ (resp. O
γ
D) is also the

commutant of Fm (resp. Om). The division algebra Dγ is of degree (n/m)2

over its center Fm.

So far, we have viewed Om and O
γ
D as sheaves over X1. The sheaf Om

is the direct image, from Xm to X1, of the structural sheaf of Xm. As Xm

is finite over X1, the direct image functor is an equivalence from coherent

sheaves on Xm to coherent sheaves of Om-modules on X1. We will tacitly use

this equivalence to view O
γ
D as an order, over Xm, of the central simple algebra

Dγ over Fm. The completion O
γ
D,v is the product, over the places v(i) of Xm

above v, of the completions O
γ
D,v(i) of OγD, viewed as an order over Xm. The

proofs of 4.25 and 4.26 will show that the O
γ
D,v(i) are maximal orders of the

Dγ
v(i): O

γ
D is a maximal order of Dγ over Xm.

To compute the category (4.19.1), we will first consider the fixed point set

of γ acting on D∗(A)/
∏

O∗D,v. It is the restricted product of the fixed points

of γ acting on the D∗v/O
∗
D,v.

Proposition 4.25. If v /∈ S1, then O
γ∗
D,v is a maximal compact subgroup

in Dγ∗
v and

Dγ∗
v /O

γ∗
D,v

∼→ (D∗v/O
∗
D,v)

γ .

Proof. Let V be a vector space of dimension n over Fv. As v /∈ S1, there

exists an isomorphism Dv
∼→End(V ). We choose one and identify Dv with

End(V ). The maximal order OD,v ⊂ Dv is End(E0) for E0 a lattice in V : a free

Ov-module such that Fv ⊗Ov E0
∼→V . The completion Fm,v = Fv ⊗Fq Fqm is a

product of local fields F (i): the product of the completions of Fm at the points

of Xm above v. The completion Om,v = Ov ⊗Fq Fqm is the product of their

valuation rings O(i). By assumption, Fm,v embeds in End(V ), turning V into
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an Fm,v-module, i.e., into a product of vector spaces V (i) over the F (i), while

Om,v embeds into End(E0), turning E0 into a product of lattices E
(i)
0 in V (i).

The map d 7→ dE0 induces a bijection from D∗v/O
∗
D,v to the set of lat-

tices in V . Indeed, any lattice E1, being a free Ov-module, is the image of E0

by some element of GL(V ). The fixed points by γ are the lattices that are

Om,v-modules; that is, they are a product of lattices E
(i)
1 in V (i). They are

the images of E0 by some d in
∏

GLF (i)(V (i)) = Dγ∗
v , with d unique up to∏

GLO(i)(E
(i)
0 ) = O

γ∗
D,v. The claim follows. �

4.26. For v in S1, Dv is a division algebra with center Fv and OD,v is its

valuation ring. The map det : D∗v → F ∗v is onto and induces a bijection from

D∗v/O
∗
D,v, the group of the valuation of Dv, to the group Z of the valuation

of Fv. The action of d in D∗ is by “adding the valuation of d at v.” Special

case: γ, being of finite order, acts trivially.

Recall that m is prime to deg(v) and that the field (Fm)v = Fv ⊗Fq Fqm is

contained in Dv, with commutant Dγ
v . The reduced norms for Dγ

v , with center

Fm,v, and for Dv, with center Fv, are related by the commutative diagram

Dγ∗
v

//
� _

��

F ∗m,v

Norm

��
Dv

// Fv.

(4.26.1)

Identifying the groups of the valuations of Dγ
v and Dv with Z, a quotient of

(4.26.1) is

Dγ∗
v /O

γ∗
D,v

∼ //
� _

��

Z

m

��
D∗v/O

∗
D,v

∼ // Z.

We conclude that

(4.26.2) (D∗v/O
∗
D,v)

γ = D∗v/O
∗
D,v =

1

m
(Dγ∗

v /O
γ∗
D,v).

4.27. From (4.26.2) we get a decomposition of the category

[Dγ∗\(D∗(A)/
∏
v

O∗D,v)
γ ]

as the disjoint sum of mN1 subcategories, indexed by (Z/m)S1 . By 4.25, the

subcategory with index 0 is

[Dγ∗\Dγ∗(A)/
∏

O
γ∗
D,v].

The others are equivalent to it: if πv is of valuation one in Dv (v ∈ S1), the

equivalences are given by right multiplication by the
∏

πavv , 0≤ av < m.



950 PIERRE DELIGNE and YUVAL Z. FLICKER

Similarly,

[Dγ∗\(D∗(A)/
∏

O∗D,v)
γ/aZ]

is the disjoint sum of mN1 subcategories equivalent to

(4.27.1) [Dγ∗\Dγ∗(A)/
∏

O
γ∗
D,v · a

Z].

In (4.27.1), Dγ is a central simple division algebra of dimension (n/m)2

over Fm. The adelization Dγ(A) = Dγ ⊗F A (A adèles of F ) can be viewed

also as the adelization of Dγ , viewed as an Fm-algebra, that is Dγ ⊗Fm Am
for Am the adèles of Fm, while

∏
v O

γ
D,v can be viewed as the product of the

completions of a maximal order of Dγ over Xm. As an adèle of Fm, a is still

of degree one, and the corresponding divisor on Xm/Fqm is of degree one. One

has Sm
∼→S1, Dγ is a division algebra at each v in Sm, and a matrix algebra

elsewhere. Thus Dγ satisfies the same assumptions as those that D, with which

we started, satisfies, but over Xm, and its dimension is (n/m)2.

4.28. We now work over Xm. The mass of the category (4.27.1) is the

volume of the double coset Dγ∗\Dγ∗(A)/aZ for the Haar measure on Dγ∗(A)

that gives
∏

O
γ∗
D,v the volume one. The product is over the places of Xm, and

by 4.25 and 4.26, OγD is a maximal order in Dγ . Let Dγ∗(A)0 be the subgroup

of d in Dγ∗(A) on which the degree of det(d) is zero, and let Dγ∗(A)(i) the

coset on which it is i. The Dγ∗\Dγ∗(A)(i) have all the same volume, and

their disjoint sum, for 0≤ i < n/m, maps bijectively onto Dγ∗\Dγ∗(A)/aZ.

If µ is the Tamagawa measure on Dγ∗(A), the Tamagawa number τ(Dγ∗) =

µ(Dγ∗\Dγ∗(A)0) is 1 and we conclude that

(4.28.1) mass(4.27.1) =
n

m
· µ
(∏

O
γ∗
D,v

)−1
.

Lemma 4.6 and (4.19.2) give

Lemma 4.29. We have

T (X1, S1, n) + h1 =
∑

m|(n/S1)

cm
m
· mN1 · 1

m
· µ
Ä∏
v

O
γ∗
D,v

ä−1
,

where γ is such that Fq(γ) = Fqm , µ is the Tamagawa measure for Dγ∗, viewed

as a reductive group over Fm, and the product is over the places v of Fm.

Proof of 2.3 when N1(n− 1) is even and N1 ≥ 2. As O
γ
D is a maximal or-

der of Dγ over Xm, the Tamagawa volumes in 4.29 have been computed in

(3.11.1). Applying (3.11.3) to the (Xm, Sm, D
γ ,OγD), one obtains 2.3. �

5. Proof of 2.3: Using the building

In this section, we prove 2.3 under the assumption that for some w in S1,

there exists a division algebra D with center F of dimension n2 over F such
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that Dv is a division algebra for v ∈ Sw1 := S1−{w} and a matrix algebra over

Fv for v /∈ Sw1 . As explained in 3.2, this amounts to assuming that N1 ≥ 3 and

that n or N1 is odd; the place w can then be chosen freely in S1. The integers

N1(n− 1) and n− 1 have the same parity, and the sign (−1)N1(n−1) in (2.3.1)

is (−1)n−1.

The constructions made in Section 4 apply to D and Sw1 . With the nota-

tion of 2.2, one has that (n/S1) divides (n/Sw1 ), which divides n. As in 4.19,

we choose an Fq-algebra embedding of F
q
(n/Sw

1
) in D and a maximal order OD

of D containing this F
q
(n/Sw

1
) .

5.1. As recalled in 1.11 and 1.13, the number T (X1, S1, n) we want to

compute is equal to the number of classes modulo Fq-twists of automorphic

representations π of D∗(A) such that

(i) π is unramified outside of S1;

(ii) for v in Sw1 , the local component πv is of the form χ(det) for χ an

unramified character of F ∗v ;

(iii) the local component of π at w is of the form

Steinberg representation ⊗ χ(det)

for χ an unramified character of F ∗v .

Let a be an idèle of degree > 0. Let (iv) be the condition

(iv) The central character ωπ of π is trivial on a.

The same proof as in 4.2 gives

Lemma 5.2. The number T (X1, S1, n) is 1/n deg(a) times the number of

automorphic representations of D∗(A) for which (i), (ii), (iii), and (iv) hold.

5.3. Let (iii)′ be the condition

(iii)′ the local component of π at w is of the form χ(det), for χ an unramified

character of F ∗w.

The algebraic subgroup SD∗ := Ker(det : D∗ → Gm) of D∗, being a form

of SL(n), is simply connected. By the strong approximation theorem applied

to SD∗, an automorphic representation π of D∗(A) for which (iii)′ holds factors

through det : D∗(A)→ A∗. Indeed, for any automorphic function f in π, and

any d in D∗(A), f is constant on SD∗(F ) ·d ·SD∗(Fw) = SD∗(F ) ·SD∗(Fw) ·d,

which is dense in SD∗(A)d. As in 4.5, if π satisfies (i), (ii), (iii)′, and (iv), it

is of the form χ(det), for χ an unramified character of the idèle class group of

F , trivial on an. There are n deg(a)h1 such characters.

5.4. The space of locally constant functions on D∗\D∗(A)/aZ is the

direct sum of the automorphic representations π of D∗(A) for which (iv)

holds. Those for which (i), (ii) hold are those whose local component πv
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have, for v 6= w, a nontrivial subspace of vectors fixed by O∗D,v, and this sub-

space is then of dimension one. The space L of locally constant functions on

D∗\D∗(A)/
∏
v 6=w O∗D,v · aZ is hence isomorphic, as a representation of D∗w, to

the direct sum of the components πw of the automorphic representations of

D∗(A) for which (i), (ii), and (iv) hold. We get

Lemma 5.5. The number of automorphic representations of D∗(A) for

which (i), (ii), (iii), and (iv) hold is the sum, over the unramified characters χ

of F ∗w for which χn(a) = 1,

(5.5.1) T (X1, S1, n) =
1

n deg(a)

∑
χ

[L : Steinberg⊗ χ(det)].

5.6. Let E be a nonarchimedian local field, val : E∗ → Z its valuation,

O its valuation ring, and t a uniformizing parameter. The case we need is

E = Fw. Define GL(n,E)0 by the short exact sequence

(5.6.1) 1→ GL(n,E)0 → GL(n,E)
val ◦ det−−−−−→ Z→ 1.

Define GL(n,E)(i) to be the coset of GL(n,E)0 on which val(det) is i. Dividing

by the center E∗ of GL(n,E), its intersection O∗ with GL(n,E)0 and its image

nZ in Z, we obtain from (5.6.1) an exact sequence

(5.6.2) 1→ PGL(n,E)0 → PGL(n,E)
val ◦ det−−−−−→ Z/n→ 1.

The group GL(n,E) acts by conjugation on SL(n,E) and hence on its building.

This action factors through PGL(n,E). The vertices of the building B of

SL(n,E) are the lattices (= O-submodules, free of rank n) Λ in En, taken up

to dilations Λ 7→ tiΛ. If e1, . . . , en is a basis of Λ, the valuation of e1∧ · · · ∧en ∈
n
∧En ' E depends only on Λ. Its class in Z/n is the same for Λ and tiΛ.

We call it the type of the corresponding vertex. The group SL(n,E) acts

transitively on the vertices of each type. The group GL(n,E) permutes the

types: g in GL(n,E) maps the vertex {tiΛ} to the vertex {tigΛ}, and the type

of the latter is the type of {tiΛ} plus val(det g).

The types of vertices (of the building) are the vertices of the affine Dynkin

diagram of SL(n,E). The subgroup PGL(n,E)0 of PGL(n,E) is the subgroup

acting trivially on this Dynkin diagram. By [BT72, 1.2.13–1.2.17], applied

to the natural homomorphism ϕ : SL(n,E) → PGL(n,E)0 or to SL(n,E) →
GL(n,E)0, the building of SL(n,E) is also the building of a Tits system of

PGL(n,E)0 as well as of GL(n,E)0.

A chamber of the building is spanned by vertices represented by lattices

Λi (0≤ i≤n− 1) forming a cyclic chain of distinct lattices

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn−1 ⊂ t
−1Λ0.
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If (ei)1≤ i≤n is the standard basis of En, the fundamental chamber C is the

chamber obtained when Λi is spanned by t−1e1, . . . , t
−1ei, ei+1, . . . , en.

The type of a face (= simplex) of B is the set of types of its vertices. By

the properties of Tits systems, any face of B is GL(n,E)0-conjugate to the

unique face of C of the same type, and the stabilizer in GL(n,E)0 of a face

(a parahoric subgroup) fixes it. We will orient each face by the ordering of its

vertices induced by the ordering 0 < 1 < · · · < n − 1 of the types of vertices.

If σ is the face of type S ⊂ Z/n of C and Kσ ⊂ GL(n,E)0 its stabilizer, the set

of (oriented) faces of B of type S is the orbit GL(n,E)0/Kσ.

For any i, one still has a bijection

(5.6.3)
∐
σ

GL(n,E)(i)/Kσ
∼−→ set of faces of B,

compatible with the action of GL(n,E)0. This time, if σ is the face of C of

type S ⊂ Z/n, GL(n,E)(i)/Kσ is the set of faces of type S + i.

The component Cd(B) of the chain complex C∗(B) of oriented chains,

computing the homology of B, is

(5.6.4) Cd(B) =
⊕

dim σ=d
C(GL(n,E)0/Kσ).

The group GL(n,E)0 acts on this complex. As B is contractible, it is a reso-

lution of the trivial representation 1. We will not use the fact that GL(n,E)

acts too. Its action introduces signs, because GL(n,E) permutes types and

does not respect the orientations of faces that we used.

5.7. By representation we will always mean C∞ representation: the sta-

bilizers of vectors are open. The cohomology used below is the analogue, in

that setting, of continuous cohomology, as in Casselman [Cas81]. To apply 5.5,

we need to detect, in a unitary representation of GL(n,E), the occurrences of

the representations Steinberg⊗χ(det) for χ a unitary unramified character of

E∗. The following lemma is a corollary of [Cas81]. (We write unitary for

unitarizable.)

Lemma 5.8. Put H∗(π) for H∗(GL(n,E)0, π). The irreducible unitary

representations π of GL(n,E) with H∗(π) 6= 0 are the representations

Steinberg⊗χ(det) and χ(det) for χ a unitary unramified character of E∗. The

nonzero H i are a one-dimensional Hn−1 in the Steinberg case and a one-

dimensional H0 in the other.

Proof. If the cohomology is not zero, the center O∗ of GL(n,E)0 must act

trivially. Twisting by a χ(det), which is trivial on GL(n,E)0, has no effect

on the cohomology. Replacing π by a twist, we are reduced to considering

only representations with trivial central character, i.e. of PGL(n,E). As O∗ is
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compact,

H∗(PGL(n,E)0, π) ∼→H∗(GL(n,E)0, π).

On the left, we have the cohomology of π, restricted to PGL(n,E)0. As

PGL(n,E)0 is of finite index in PGL(n,E), it is the same as the cohomology

of PGL(n,E), with coefficient in the induced (= coinduced) of this restriction

to PGL(n,E). This is the direct sum of the twists π ⊗ χ(val(det)) for χ a

character of Z/n. By Casselman, H∗ 6= 0 is nonzero if and only if one of these

twists is Steinberg or trivial, and such a twist contributes respectively to a

one-dimensional Hn−1 or H0. As the twists are nonisomorphic, the lemma

follows. �

5.9. For L a representation of GL(n,E), to compute

H∗(GL(n,E)0, L) = Ext∗GL(n,E)0(1, L)

one can use the resolution (5.6.4) of the trivial representation 1 of GL(n,K)0.

It gives us a complex C∗(L) computing the cohomology, with components the

(5.9.1) Cd(L) =
⊕

dim σ=d
LKσ

(sum over faces σ of the fundamental chamber C).

In particular, if the LKσ are finite dimensional, we have∑
(−1)i dim H i(GL(n,E)0, L) =

∑
(−1)dim σ dim LKσ .

Moreover, if L is the direct sum of irreducible unitary representations of

GL(n,E), one has

(5.9.2)∑
σ

(−1)dim σ dim LKσ =
∑
χ

[L : χ(det)] + (−1)n−1
∑
χ

[L : Steinberg ⊗ χ]

with χ running over the unitary unramified characters of E∗.

5.10. We now take E = Fw, choose an isomorphism of Dw with the

matrix algebra Mn(Fw), and identify D∗w with GL(n, Fw). For L the repre-

sentation 5.4 of D∗w, LKσ can be identified with the space of functions on the

finite set D∗\D∗(A)/
∏
v 6=w O∗D,v ·Kσ · aZ.

By 5.3 and 5.4, the sum of the one-dimensional subrepresentations of L

that are isomorphic to a χ(det) with χ unramified is of dimension n deg(a)h1.

By (5.5.1) and (5.9.2), one has

Lemma 5.11. With the notation of 5.10, we have

(5.11.1)

h1+(−1)n−1T (X1, S1, n)=
1

n deg(a)

∑
σ

(−1)dim σ|D∗\D∗(A)/
∏
v 6=w

O∗D,v ·Kσa
Z|,
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the sum being over the faces of the fundamental chamber of the building of

SL(n, Fv).

The trace formula (compact quotient case) expresses the right side of

(5.11.1) in terms of alternating sums (
∑

(−1)dim σ · · · ) of orbital integrals

(cf. 4.18). Similar sums appear in Kottwitz [Kot88], and we might have quoted

the computations of [Kot88], except that they are written for the characteris-

tic zero case and mainly for semisimple simply connected groups. We prefer

to use the methods of [Kot88], restricted to the case we need, couched in the

language of masses.

5.12. We use the arguments of 4.16–4.18 to express the numbers of dou-

ble cosets appearing in (5.11.1) as sums of masses of categories. Each sum is

over conjugacy classes in D∗. As in 4.19, only the conjugacy classes of elements

of finite order need to be considered. They have representatives in our cho-

sen F
q
(n/Sw

1
) ⊂ D, and this representative is unique up to the Gal(F

q
(n/Sw

1
)/Fq)

action. Fix γ in F∗
q
(n/Sw

1
) . Define m := [Fq(γ) : Fq]. As in 4.19 and 4.24, the

commutant Dγ of γ in D is also the commutant of Fqm ⊂ F
q
(n/Sw

1
) , as well as of

Fm. The contribution of the conjugation class of γ to the right side of (5.11.1) is

(5.12.1)
1

n deg(a)

∑
σ

(−1)dim σmass([Dγ∗\(D∗(A)/
∏
v 6=w

O∗D,v ·Kσ · aZ)γ ]).

It depends only on m, not on the chosen γ. Indeed, Kσ is the multiplicative

group of an order in OD,w, and one argues as in 4.19. The right side of (5.11.1)

becomes

(5.12.2)
∑

m|(n/Sw1 )

cm
m
{(5.12.1) for γ such that Fq(γ) = Fqm}.

It will be convenient to choose a = (av) such that av = 1 for v 6= w and

that aw is a uniformizing parameter of Fw. The degree of a is deg(w). By

abuse of notation, aw will also be denoted a. The fixed point sets occuring in

(5.12.1) are the restricted products over v of

– for v in Sw1 : 1
m(Dγ

v/O
γ∗
D,v), as in (4.26.2);

– for v not in S1: Dγ∗
v /O

γ∗
D,v, as in 4.25;

– for v = w: (D∗w/Kσ · aZ)γ .

The corresponding categories decompose into the disjoint sum of m|S
w
1 |

subcategories, each equivalent to the one obtained by replacing 1
m Dγ∗

v /O
γ∗
D,v

by Dγ∗
v /O

γ∗
D,v. The proof is as in 4.24. Denoting restricted direct product by∏∐

, we conclude
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Lemma 5.13. The contribution (5.12.1) of the conjugacy class of γ to the

right side of (5.11.1) is

(5.13.1)
1

n deg(a)
mN1−1

∑
σ

(−1)dim σmass[Dγ∗\
∏∐
v 6=w

Dγ∗
v /O

γ∗
D,v × (D∗w/Kσ · aZ)γ ],

where the sum is over the faces σ of the fundamental chamber of SL(n, Fw).

5.14. Let D∗(A)0 (resp. D∗0v ) be the kernel of deg ◦ det : D∗(A) → Z
(resp. val ◦ det : D∗v → Z), and let Dγ∗(A)0 (resp. Dγ∗0

v ) be its intersection

with Dγ∗(A) (resp. Dγ∗
v ). As in 4.27 and 4.28, Dγ is a division algebra with

center Fm, and Dγ∗(A) can be identified with its adelic multiplicative group,

over Fm. The diagram

Dγ∗(A) −−−−→ idèles of Fm
deg−−−−→ Z

∩y yNorm

ym
D∗(A) −−−−→ idèles of F −−−−→ Z

is commutative. The notation Dγ∗(A)0 above hence agrees with that (“over

Fm”) of 4.28.

If δ in D∗γ fixes xv in Dγ∗
v /O

γ∗
D,v, its image in Dγ∗

v is in the conjugate

xvO
γ∗
D,vx

−1
v of Oγ∗D,v. Hence it is inD∗0v . By the product formula, deg(det(δ))=0.

It follows that if δ fixes x in
∏
v 6=wD

γ∗
v /O

γ∗
D,v, then its image in Dγ∗

w is in Dγ∗0
w .

As Dγ is a division algebra, Dγ∗ is cocompact in Dγ∗(A)0: it acts with finitely

many orbits in
∏
v 6=wD

γ∗
v /O

γ∗
v , and for each x in

∏
v 6=wD

γ∗
v /O

γ∗
v , the stabilizer

Γx of x in Dγ∗ is cocompact in Dγ∗0
w . The group Γx admits torsion free sub-

groups of finite index (Serre [Ser71, Th. 4(b)]). For any place v 6= w, the kernel

of the reduction mod v, from Γx to (xvO
γ
D,vx

−1
v ⊗Ov/mv)

∗, is such a subgroup.

5.15. Recall that we have chosen an isomorphism of Dw with Mn(Fw),

that D
∗(i)
w is the coset of D∗0w ⊂ D∗w on which the valuation of det is i, and

that for each i, the D
∗(i)
w /Kσ = GL(n, Fw)(i)/Kσ are the facets of one copy

B(i) of the building of SL(n, Fv) (5.6.4). Because γ is in GL(n, Fw)0, the fixed

locus B(i)γ of γ on B(i) is a union of facets. Because γ is of finite order, this

fixed locus is not empty, hence is contractible. As in [Kot88, p. 635], all the

conditions of [Ser71, 3.3] are satisfied by the action of Dγ∗0
w on B(i)γ .

If Γ′x is a torsion free subgroup of finite index of Γx, its action on B(i) is

free, its cohomology is that of Γ′x\B(i), and its Euler-Poincaré characteristic is

χ(Γ′x) =
∑

(−1)dim Γ · |Γ′x\(D∗(i)w /Kσ)γ |.
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Dividing both sides by [Γx : Γ′x], one obtains that the virtual Euler-Poincaré

characteristic of Γx is

(5.15.1) χ(Γx) =
∑
σ

(−1)dim σ ·mass[Γx\(D∗(i)w /Kσ)γ ].

Let µw,EP be the invariant measure on Dγ∗
w whose restriction to Dγ∗0

w is

the Euler-Poincaré measure of Dγ∗0
w . By the definition of µw,EP,∑

(−1)dim σmass[Γx\(D∗(i)w /Kσ)γ ] = µw,EP(Γx\Dγ0
w ).

As (D∗w/Kσa
Z)γ is the disjoint sum of the (D

∗(i)
w /Kσ)γ for 0≤ i < n, we also

have ∑
(−1)dim σmass[Γx\(D∗w/Kσa

Z)γ ] = nµw,EP(Γx\Dγ0
w ).

Hence ∑
σ

(−1)dim σmass([Dγ∗\
∏∐
v 6=w

(Dγ∗
v /O

γ∗
D,v)× (D∗w/Kσa

Z)γ ])(5.15.2)

= n
∑
x

µw,EP(Γx\Dγ0
w ),

where the sum extends over a set of representatives for the orbits of Dγ∗ acting

on
∏∐
v 6=wD

γ∗
v /O

γ∗
D,v.

5.16. Let c be the greatest common divisor of m and deg(w), and suppose

that c > 1. There are c places of Xm above w, and (Fm)w = Fw⊗Fq Fqm is the

product of the completions of Fm at these places. The completion (Fm)w is

hence the product of c > 1 fields, and Dγ
w is a product of matrix algebras over

these fields. The multiplicative group Dγ∗
w admits a quotient Zc, and Dγ∗0

w a

quotient Zc−1. As c > 1, its Euler-Poincaré measure is 0. If m = [Fq(γ) : Fq]
is not prime to deg(w), (5.15.2) implies that∑

σ

(−1)dim σmass([Dγ∗\
∏∐
v 6=w

(Dγ∗
v /O

∗
v)× (D∗w/Kσa

Z)γ ]) = 0

and γ does not contribute to the right side of (5.11.1).

Suppose now that m is prime to deg(w), that is that m | (n/S1). In this

case, (Fm)w is the local field of Xm at the unique place above w, and Dγ∗
w is

a matrix algebra Mn/m(Fm,w). Define µEP to be the measure on Dγ∗(A) that

is the product of the Haar measures on the Dγ∗
v giving volume one to O

γ∗
D,v,

for v 6= w, and of µw,EP on Dγ∗
w . As Dγ∗0

w is of index n
m in Dγ∗

w /a
Z, (5.15.2) is

equal to

(5.16.1) m
∑

µw,EP(Γx\Dγ
w/a

Z) = mµw,EP(Dγ∗\Dγ∗(A)/aZ);

the sum is over representatives of orbits, as in (5.15.2). As Dγ is central simple

of dimension n
m over Fm, and deg(a) is the same, whether a is viewed as an
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idèle of F/Fq, or of Fm/Fqm , when we plug (5.15.2) and (5.16.1) in 5.13, we

get that (5.13.1) equals

(5.16.2)
1

n deg(a)
mN1µEP (Dγ∗\Dγ∗(A)/aZ)

=
1

n deg(a)
mN1

n

m
deg(a)µEP (Dγ∗\Dγ∗(A)0).

By (5.12.2), (5.11.1) becomes

(5.16.3)

h1 + (−1)n−1T (X1, S1, n) =
∑

m|(n/S1)

cm
m
· mN1 · 1

m
µEP (Dγ∗\Dγ∗(A)0).

If µ is the Tamagawa measure on Dγ∗ and µw is the measure on Dγ∗
w giving

O
γ∗
D,w the volume one, the Tamagawa number τ(Dγ∗) = µ(Dγ∗\Dγ∗(A)0) is 1

and the term of index m in the sum (5.16.3) can be rewritten as

(5.16.4)
{cm
m
· mN1 · 1

m
· µ
(∏

O∗D,v

)−1}
· µw,EP/µw.

The factor in curly brackets appeared in 4.29. As there, it is n/mTn for (X1, Sw).

The subgroups SL(n/m,Fm,w) of GL(n/m,Fm,w)0 and SL(n/m,Om,w) of

GL(n/m,Om,w) are both of the same finite index q∗w − 1. It follows that the

restriction of µw,EP to SL(n/m,Fm,w) is (qmw −1) times its Euler-Poincaré mea-

sure and that the ratio of measures in (5.16.4) is the Euler-Poincaré volume of

the subgroup SL(n/m,Om,w) of SL(n/m,Fm,w). By [Ser71, Th. 7], it is

n/m−1∏
i=1

(1− qmiw )

and 2.3 follows. �

6. Lefschetz type form of the theorem

We keep the notation of Section 2.

6.1. Formula (2.3.1), applied to (Xm, Sm), gives the number

T (X1, S1, n,m) = T (Xm, Sm, n)

of fixed points of Fr∗m acting on the set T(n) of 2.1. In the form given, it is not

helpful to understand how this number varies with m. One of the difficulties

is that when (X1, S1) over Fq is replaced by (Xm, Sm) over Fqm , the divisor

(n/S1) of n can change. The cardinality N1 of S1 changes too (it becomes Nm),

as well as the degrees of the elements of S1. Our first aim in this section is to

give the right side of (2.3.1) a more convenient form. In this rewriting, until

6.6 we do not assume that n≥ 2. We do assume that n≥ 1 and that N1 ≥ 2.
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6.2. Let B′ be the sum of the multisets (a) and (bs) for s in S1 described

below.

(a) The multiset of the eigenvalues of Frob acting on H1(X), counted with

their multiplicity. The polynomial f(t) := det(1−Frob · t,H1(X)) has

integral coefficients. It is the product, over the multiset (a), of the

(1− αt). The complex absolute value of each α is q1/2.

(bs) The set of deg(s)th roots of unity.

The multiset (a) and the sets (bs) are viewed as multisets in a fixed alge-

braically closed extension Q. It does not matter which.

The number 1 appears once in each (bs). It hence appears N1 times in

B′. We define

(6.2.1) B := B′ minus twice {1}.

The sum of the sets (bs) is the multiset of the eigenvalues of the Frob

acting on QS . Indeed, S is the disjoint union of the fibers of the projection

S → S1. The fiber at s ∈ S1 has deg(s) elements, permuted cyclically by the

Frobenius. The exact sequence

(6.2.2) 0→ Ql → QS
l → H1

c (X − S)→ H1(X)→ 0

shows that B is the multiset of eigenvalues of Frob acting on H1
c (X−S), minus

{1}. It has 2g +N − 2 elements.

Fix a divisor m of n. We will write
∏
ζm=1 (resp.

∏′
ζm=1) or simply

∏
and

∏′, for the product over the mth roots of unity (resp. mth roots of unity

other than 1). We define

(6.2.3) T ′m =
∏
β∈B

∏ ′(1− ζβ) ·
n/m−1∏
j=1

∏
(1− ζβqj)

 .
Proposition 6.3. (i) If the divisor m of n does not divide (n/S1), then

T ′m = 0.

(ii) If m divides (n/S1), one has

(6.3.1) mN1−2 ·n/m Tm = f(1) · 1

qn − 1
· T ′m.

Proof of (i). Suppose m - (n/S1). For some s in S1, m is not prime to

deg(s): there is a deg(s)th-root of unity β 6= 1 that is an mth root of unity,

and the mth-root of unity ζ := β−1 contributes a factor 1− ζβ = 0 to T ′m.
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Proof of (ii). Suppose that m divides (n/S1). As observed at the end of

2.2, n/mTm is then the product of

fm(1) =
∏
α

(1− αm) =
∏
α

∏
(1− ζα) = f(1) ·

∏
α

∏ ′(1− ζα),

1

(qm)n/m − 1
=

1

qn − 1
,

and for each j, 1≤ j < n/m,

(1− qmj)−2fm(qmj)
∏
s∈S1

(1− qmj deg(s)) =
∏
β∈B

(1− βmqmj)

=
∏
β∈B

∏
(1− ζβqj).

The right side of (6.3.1) is the product of these same factors and of

(6.3.2)∏
β

∏ ′(1− ζβ) for β in the multiset sum of the sets (bs), minus twice {1}.

For each s in S1, ζ 7→ ζdeg(s) is a permutation of the mth roots of unity other

than 1. This allows the rewriting of (6.3.2) as∏ ′(1− ζ)−2 ·
∏
s∈S1

∏
ηdeg(s)=1

∏ ′(1− ζη)

=
∏ ′(1− ζ)−2 ·

∏
s∈S1

∏ ′(1− ζdeg(s)) =
∏ ′(1− ζ)N1−2.

One has ∏ ′(1− ζ) =
1− tm

1− t t=1
= m,

and (6.3.2) is equal to the factor mN1−2 on the left of (6.3.1). �

Corollary 6.4. The right side of (2.3.1) is equal to

(6.4.1) f(1) · 1

qn − 1
·
∑
m|n

cmT
′
m.

We recall that the Möbius function µ(a) is (−1)d when a is the product

of d distinct primes and it is 0 otherwise.

Lemma 6.5. One has

(6.5.1) cm =
∑
a|m

µ(a)(qm/a − 1).

Proof. Any element of F∗qm is, for some divisor a of m, a generator of Fqa
over Fq: for each m,

qm − 1 =
∑
a|m

ca.

Formula 6.5.1 follows by Möbius inversion. �
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Substituting (6.5.1) in the last factor of (6.4.1), we get

(6.5.2)
∑
m|n

cmT
′
m =

∑
ab|n

µ(a)(qb − 1)T ′ab

(the sum on the right is over all integers a, b≥ 1 with ab|n) which, plugged in

(6.4.1), gives

Proposition 6.6. The right side of (2.3.1) is equal to

(6.6.1) f(1)
∑
ab|n

µ(a)
qb − 1

qn − 1
T ′ab

(sum over (a, b) such that ab divides n).

Let us, in the second factor of (6.6.1), “consider q and the β in B as inde-

terminates.” We introduce an indeterminate Q and 2g+N − 2 indeterminates

Xi, and we define for m|n (resp. b|n) polynomials with integral coefficients,

symmetric in the Xi:

T ′m(Q; (Xi)) :=
∏
i

{∏ ′

ζm=1

(1− ζXi)
∏

1≤ j<n/m

∏
ζm=1

(1− ζXiQ
j)
}
,(6.6.2)

Snb (Q; (Xi)) :=
∑
ab|n

µ(a)T ′ab(Q; (Xi)) (sum over a).(6.6.3)

The second factor of (6.6.1) is obtained by evaluating Q at q, and the Xi

at the β in B, in the sum over a, b given by

(6.6.4)
∑
ab|n

µ(a)
Qb − 1

Qn − 1
T ′ab(Q; (Xi)) =

∑
b|n

Qb − 1

Qn − 1
Snb (Q; (Xi)).

Proposition 6.7. For each divisor b of n, the rational function

Qb − 1

Qn − 1
Snb (Q; (Xi))

lies in Z[Q, (Xi)].

Proof for b = 1. We have to show that the polynomial with integral co-

efficients Sn1 (Q; (Xi)) is divisible by the polynomial (Qn − 1)/(Q− 1). This is

equivalent to the vanishing of the polynomial in the Xi,

Sn1 (u; (Xi)) =
∑
a|n

µ(a)
∏
i

∏ ′

ζa=1

(1− ζXi)

n/a−1∏
j=1

∏
ζa=1

(1− ζXiu
j),

whenever u is an nth root of unity other than 1. It suffices to prove this

vanishing for the product of Sn1 (u; (Xi)) with
∏

(1−Xi). This product is

(6.7.1)
∑
a|n

µ(a)
∏
i

∏
ζa=1

∏
0≤ j<n/a

(1− ζXiu
j).
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We will show that the terms in the sum over a cancel two-by-two. More

precisely, let r be a prime that divides the order m of u. We will show that the

coefficients of µ(a), for a = a0 prime to r, and for a = a0r, are equal. (Recall

that µ(a) is zero unless a is a product of distinct primes.) This means the

equality, for these two values of a, of the multisets

(6.7.2) {the ζuj for ζa = 1 and 0≤ j < n/a}.

The multiset (6.7.2) is the inverse image, by z 7→ za, of the multiset of the

uaj (0≤ j < n/a). The root of unity ua has order m/(m, a). As the order of

ua divides n/a, the multiset of the uaj is a multiple of the set of roots of unity

of order dividing m/(m, a). Its inverse image by z 7→ za is the same multiple

of the set of roots of unity of order dividing am/(a,m), the lowest common

multiple of a and m. As r | m, this lowest common multiple is the same for a0

and for a0r. The multiplicity will be the same as well, as both multisets have

the same number n of elements.

Proof of 6.7 (general case). For each divisor b of n, we have∏
ζab=1

(1− ζXiQ
j) = 1−Xab

i Q
abj =

∏
ζa=1

(1− ζXb
iQ

bj),

∏ ′

ζab=1

(1− ζXi) = (1−Xab
i )/(1−Xi) =

1−Xb
i

1−Xi
· 1−Xab

i

1−Xb
i

=
1−Xb

i

1−Xi

∏ ′

ζa=1

(1− ζXb
i ).

It follows that

Qb − 1

Qn − 1
Snb (Q; (Xi)) =

∏
i

(1−Xb
i )

1−Xi
· Qb − 1

(Qb)n/b − 1
· Sn/b1 (Qb; (Xb

i )).

This identity reduces 6.7 to the case b = 1, n being replaced by n/b. �

Corollary 6.8. When (X1, S1)/Fq is replaced by (Xm, Sm)/Fqm , the

second factor of (6.6.1), as a function of m, has the form

(6.8.1)
∑
j

njγ
m
j .

In (6.8.1), the nj are integers, and each γj is the product of a root of unity

and of a monomial in q and the eigenvalues of Frob acting on H1(X).

The expression (6.8.1) is not unique. It becomes unique if one imposes

that the γj be distinct and the nj 6= 0. We then call γj the eigenvalues occuring

with nonzero multiplicity; we call nj the multiplicity of γj . The motivation for

this terminology is 6.25.
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Proof. The polynomial (6.6.4) depends only on n and the number of Xi.

One obtains a description (6.8.1) of the right side of (6.6.1), for (Xm, Sm), by

decomposing it as a linear combination of monomials. Indeed, when passing

from (X1, S1)/Fq to (Xm, Sm)/Fqm , q is replaced by qm, and the β in B by

their mth powers: B is the multiset of eigenvalues of Frob acting on H1
c (X−S),

minus {1}, and Frob gets replaced by Frobm. By definition, the β in B are

roots of unity or eigenvalues of Frobenius acting on H1(X). �

Corollary 6.9. The same property holds for (6.6.1), the right side of

(2.3.1).

Proof. The product of two functions of m of the form (6.8.1) is again of

this form, and the first factor f(1) of (6.6.1) is∏
(1− α)

for α the eigenvalues of Frob acting on H1(X). Again, when one goes from

X1/Fq to Xm/Fqm , Frob is replaced by Frobm. �

6.10. We define polynomials Rk in the variables Xi by∑
k
QkRk(Xi) :=

∑
b|n

Qb − 1

Qn − 1
Snb (Q; (Xi))(6.10.1)

=
∑
ab|n

µ(a)
Qb − 1

Qn − 1
T ′ab(Q; (Xi)).

Each Rk is a symmetric polynomial with integer coefficients.

Example 6.11. If n = 2, one has

R0 = 1,(6.11.1)

Rk = (−1)k+1
∑
j>k

σj (for k ≥ 1),(6.11.2)

where the σj are the elementary symmetric polynomials.

Proof. When n is prime, the sum (6.10.1) over (a, b) has only the three

terms for (a, b) = (1, 1), (n, 1), or (1, n). When ab = 1, the factor
∏ ′ in

T ′ab(Q; (Xi)) is one. When ab = n, the product over j in T ′ab(Q; (Xi)) is one.

For n prime, (6.10.1) hence reduces to

(6.11.3)
Q− 1

Qn − 1

[∏
i

∏
1≤ j<n

(1−XiQ
j)−

∏
i

∏ ′

ζn=1

(1−ζXi)
]
+
∏
i

∏ ′

ζn=1

(1−ζXi).

For n = 2, this reduces to

(6.11.4)
1

Q+ 1

[∏
i

(1−XiQ)−
∏
i

(1 +Xi)
]

+
∏
i

(1 +Xi),
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which we rewrite as

−1

1− (−Q)

∑
j

(1− (−Q)j)σj +
∑

σj(6.11.5)

= −
∑
j

σj
∑
k<j

(−Q)k +
∑

σj

=
∑
k≥ 0

(−1)k+1Qk
∑
j>k

σj +
∑

σj

= 1 +
∑
k≥ 1

(−1)k+1Qk
∑
j>k

σj . �

Example 6.12. If n = 1, or if B is empty (which occurs only for g = 0 and

N = 2), then (6.10.1) reduces to 1.

Proof. If n = 1, only the term (a, b) = (1, 1) occurs in (6.10.1), and all its

factors are 1.

If B is empty, the polynomials T ′m are 1, and (6.10.1) reduces to∑
ab|n

µ(a)
Qb − 1

Qn − 1
=
∑
b|n

Qb − 1

Qn − 1

∑
a|(n/b)

µ(a).

The sum over a vanishes, except when n = b, and the claim follows. �

Proposition 6.13. R0 = 1.

Proof. The polynomial R0 is obtained by taking Q = 0 in (6.10.1). At

Q = 0, the quotient (Qb − 1)/(Qn − 1) is one, and (6.10.1) reduces to∑
m|n

T ′m(Q; (Xi)) ·
∑
a|m

µ(a).

Except for m = 1, the sum over a vanishes, and at Q = 0, T ′1(Q, (Xi)) is

one. �

Proposition 6.14. (i) In the following two cases, (6.10.1) is reduced

to 1 :

|B| = 0 (that is, g = 0, N = 2);

|B| = 1 (that is, g = 0, N = 3) and n = 2.

(ii) Let d be the largest of the integers k such that Rk 6= 0. Excluding the

cases (i), one has

d = |B| n(n− 1)

2
+ 1− n,(6.14.1)

Rd = (−1)N(n−1)
(∏

Xi

)n−1
.(6.14.2)

(iii) Each Rk is a linear combination of monomials dividing
(∏

Xi

)n−1
.
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Proof. The cases (i) are covered by 6.11 and 6.12. To compute d and Rd,

we will expand (6.10.1) around Q = ∞. This means embedding the ring of

polynomials in Q and the Xi in the ring of Laurent formal power series in

Q−1, with coefficients polynomials in the Xi (that is in Z[(Xi)][[Q
−1]][Q]), and

computing there, using that

Qb − 1

Qn − 1
= Qb−n

1−Q−b

1−Q−n
= Qb−n(1−Q−b)

∑
r≥ 0

Q−nr.

This expansion shows that to prove (iii), it suffices to prove that for each

divisor m of n, when one expands the product (6.6.2) defining T ′m(Q; (Xi)),

the monomials occuring are of the form

(power of Q)·
(
monomial dividing

(∏
Xi

)n−1)
.

The largest power of Xi occuring is indeed

(m− 1) +m

Å
n

m
− 1

ã
= n− 1.

Expanding (6.6.2), one sees that the highest power with which Q occurs

in T ′m(Q; (Xi)) is

|B| ·m ·
∑

1≤ j< n
m

j = |B| ·m · n
m
·
( n
m
− 1

)
/2 = |B| · n ·

( n
m
− 1

)
/2.

In µ(a)Q
b−1

Qn−1 T
′
m(Q; (Xi)), it is the same plus b − n, which at a given m is

maximum for b = m. This maximum is

|B| · n
( n
m
− 1

)
/2 +m− n =

(
|B| n

2

2
· 1

m
+m

)
−
(
|B| n

2
+ n

)
.

Define A := |B|n2

2 . For x≥ 0, the function A
x + x decreases from x = 0 to its

minimum at x =
√
A =

(
|B|
2

)1/2
· n. If |B|≥ 2, the divisor m of n at which

A
m + m takes its largest value is hence m = 1, while for |B| = 1, it is 1 or n.

For |B| = 1, the values of A
m +m for m = 1 and n are

n2

2
+ 1 and

3

2
n.

When |B| = 1, we assumed that n≥ 3, and the value at m = 1 is again the

largest.

We conclude that in (6.10.1) only one term contributes the largest power

of Q: the term (a, b) = (1, 1), and 6.14 is now easily checked. �

The product of the β in B is the determinant of Frob acting on H1
c (X−S).

By (6.2.2), this determinant is the product of the following two factors: ε(S),
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the determinant of Frob acting on ZS (that is, the signature of the permutation

Frob of S) and the determinant of Frob acting on H1(X), equal to qg:∏
β∈B

β = ε(S)qg.

Corollary 6.15. If we exclude the cases 6.14(i), in the decomposition

(6.8.1) of the second factor of (6.6.1) for (Xm, Sm)/Fqm , the eigenvalue

ε(S)n−1qD
′/2, with D′ = (2g − 2)(n2 − 1) +N(n2 − n),

occurs with multiplicity (−1)N(n−1). The other eigenvalues occuring with non-

zero multiplicity have strictly smaller complex absolute values.

Proof. One applies the description of the eigenvalues given in the proof

of 6.8, applied to (6.10.1). The β in B have complex absolute value 1 or q1/2,

and by 6.14, the top eigenvalue is(∏
βi
)n−1

qd,

occuring with multiplicity (−1)N(n−1). By (6.14.5), it equals

ε(S)n−1qg(n−1)+d,

and

g(n− 1)+d = [(g − 1)(n− 1)+(n− 1)]+[(2g − 2+N)
n(n− 1)

2
− (n− 1)]

= (g − 1)((n− 1)+n(n− 1))+N
n(n− 1)

2

=
1

2
[(2g − 2)(n2 − 1)+N(n2 − n)]. �

From now on, we again assume that n≥ 2.

6.16. Over C, let us consider a compact Riemann surface
∑

of genus g, a

set S of N points of Σ, the inclusion j of Σ−S in Σ and, on Σ−S, irreducible

complex local systems of rank n, with trivial determinant and — at each s in

S — with local monodromy that is unipotent with one Jordan block (principal

unipotent). Let M be the moduli space of these local systems. In the cases

6.14(i) it is empty. We exclude these cases.

The deformation theory of local systems V as above is controlled by

H∗(Σ, j∗End
0(V )), where End0(V ) is the local system of trace zero endomor-

phisms of V . The local system End0(V ) is self dual for the pairing Tr(uv). From

this pairing we get a perfect pairing between H0 and the H2 of j∗End
0(V ), and

a symplectic form on the H1. By Schur’s lemma, the H0 vanishes. By duality,

so does H2: the deformation theory is unobstructed, and M is smooth. Its
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tangent space at V is H1(Σ, j∗End
0(V )), and the autoduality of this H1 turns

M into a complex symplectic manifold of dimension

dim M = dim H1(Σ, j∗End
0(V )) = −χ(j∗End

0(V )).

The local system End0(V ) on Σ − S is of rank n2 − 1, and the fiber of

j∗End
0(V ) at each s ∈ S is of rank n − 1. (It is the centralizer of the local

monodromy in a nearby fiber of End(V )0.) By additivity of Euler-Poincaré,

this gives

χ(j∗End
0V ) = χ(Σ− S) · (n2 − 1) +N(n− 1)

= χ(Σ)(n2 − 1) = N(n2 − n) = −(2g − 2)(n2 − 1)−N(n2 − n),

showing that the complex dimension of M is D′. We do not understand why

q at the power half the dimension of M appears in 6.15.

6.17. Let us write Rk(B) for the value of the polynomial Rk at a point

(xi) where the xi run over the multiset B. By (2.3.1), (6.6.1), and the definition

6.10 of the Rk, one has

(6.17.1) T (X1, S1, n) = (−1)N1(n−1)[−f(1) + f(1)
∑
k

qkRk(B)].

By 6.13, the k = 0 term in the sum cancels −f(1). If a permutation σ of N

letters has N1 cycles, its signature is (−1)N−N1 . Plugging this in (6.17.1), we

get

Theorem 6.18 (second form of Theorem 2.3). One has

(6.18.1) T (X1, S1, n) = (−1)N(n−1)ε(S)n−1f(1)
∑
k≥ 1

qkRk(B).

In the exceptional cases 6.14(i), the right side vanishes. Otherwise, the

sum over k ranges from 1 to d (6.14.1), and d≥ 1.

Going from (X1, S1)/Fq to (Xm, Sm)/Fqm , the sign ε(S) = det(Frob,ZS) is

replaced by its mth power. As a function of m, all factors ε(S), f(1) =
∏

(1−α),∑
k≥ 1

qkRk(B) of (6.18.1), and hence T (Xm, Sm, n), have the form (6.8.1): a

sum
∑
njγ

m
j , reminiscent of a Lefschetz trace formula. If we exclude the cases

6.14(i), the top eigenvalue for m 7→ T (Xm, Sm, n) is the product of that for

m 7→ fm(1), that is qg, of ε(S)n−1, and of the top eigenvalue computed in

6.15, that is ε(S)n−1qD
′/2. Its multiplicity is (−1)N(n−1) times the multiplicity

(−1)N(n−1) of 6.15: it is one.

Corollary 6.19. (i) As a function of m, the number T (X1, S1, n,m) =

T (Xm, Sm, n) of fixed points of Frm∗ has the form explained in (6.8.1):∑
niγ

m
i .
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The γi are products of a strictly positive power of q, of a root of unity, and

of eigenvalues of Frob acting on H1(X).

(ii) If g = 0, N = 2 or if g = 0, N = 3, n = 2, then T (X1, S1, n,m) = 0.

Otherwise, the eigenvalue qD/2, with

D = D′ + 2g=(2g − 2)(n2 − 1) +N(n2 − n) + 2g,

occurs in (6.19.1) with multiplicity one, and the other eigenvalues occuring

with nonzero multiplicity have strictly smaller complex absolute values.

6.20. In parallel to 6.6, and excluding the cases 6.14(i), D is the di-

mension of the space of irreducible complex local systems of dimension n and

principal unipotent local monodromy at each point of S.

A similar phenomenon occurs for n = 2 in the case of no ramification,

studied by Drinfeld [Dri81], and in cases of fixed and “generic” tame local

ramifications, studied by Arinkin.

Corollary 6.21. The number T (X1, S1, n) is divisible by q.

6.22. Somewhat abusively, we will write “virtual object of A” to mean

“element of the Grothendieck group of the abelian category A.” The polyno-

mial Rk, being symmetric and with integral coefficients, is the character of a

virtual polynomial representation of GL(2g + N − 2), evaluated at the diag-

onal matrix with diagonal entries the Xi. We write Rk also for this virtual

representation. It is a difference of two representations, say R+
k and R−k .

Example 6.23. The elementary symmetric polynomial σj is the character

of
j
∧ V , for V the defining representation of the linear group. For n = 2 and

k ≥ 1, 6.11 tells that the virtual representation Rk is

(6.23.1) Rk = (−1)k+1
∑

j ≥ k+1

j
∧ V (for n = 2, k ≥ 1).

6.24. Representations of the linear group GL(M) can be identified (equiv-

alence of categories) with functors from the category of vector spaces of di-

mension M , with isomorphisms as morphisms, to the category of vector spaces

and linear maps. For instance, to the representation
j
∧ V , for V the defining

representation of GL(M), corresponds the functor j-th exterior power. The

equivalence is (functor T )7→(representation T (V )). Such a functor T can be

applied to smooth l-adic sheaves of rank M .

6.25. Define Hc := H1
c (X−S). Let Hc−1 be the quotient of Hc by a line

fixed by Frob. The assumption N1 ≥ 2 ensures there is one. The eigenvalues of
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Frob acting on Hc − 1 are the β in B. It follows that Rk(B) of 6.17 is

Rk(B) = Tr(Frob, Rk(Hc − 1))(6.25.1)

:= Tr(Frob, R+
k (Hc − 1))− Tr(Frob, R−k (Hc − 1)).

The other pieces in (6.18.1) have a similar interpretation: q is the eigen-

value of Frob acting on Ql(−1) = H1(Gm), ε(S) is the eigenvalue of Frob

acting on the top exterior power of QS
l , and

f(1) =
∑

i
(−1)iTr(Frob,

i
∧H1(X)).

Let us write W (−k) for W ⊗Ql(−1)⊗k and εl(S) for the top exterior power of

QS
l . We get

T (X1, S1, n) =Tr

(
Frob, (−1)N(n−1)εl(S)⊗(n−1)(6.25.2)

⊗
∑

i
(−1)i

i
∧H1(X)⊗

d∑
k=1

Rk(Hc − 1)(−k)

)
.

Example 6.26. If n = 2, then (6.23.1) gives

Rk(B) = (−1)k+1Tr

Ñ
Frob,

∑
j ≥ k+1

j
∧(Hc − 1)

é
(for k ≥ 1).

As
j+1
∧ Hc is an extension of

j+1
∧ (Hc − 1) by

j
∧(Hc − 1), one also has

(6.26.1) Rk(B) = (−1)k+1Tr

Ñ
Frob,

∑
j ≥ 1

k+2j
∧ Hc

é
(for n = 2, k ≥ 1),

from which it follows that, under our standing assumption N1 ≥ 2,

(6.26.2) T (X1, S1, 2) = Tr

Ç
Frob, (−1)Nεl(S)⊗

∑
i
(−1)i

i
∧H1(X)

⊗
∑
k≥ 1

(−1)k+1
∑
j ≥ 1

(k+2j
∧ Hc

)
(−k)

å
.

6.27. Let Mg,[N ] be the moduli stack, over Spec(Z), of curves of genus

g given with a set S of N distinct points. More precisely, a morphism Y →
Mg,[N ], or equivalently an object of Mg,[N ] over the scheme Y , is a proper and

smooth morphism a : X → Y whose geometric fibers are irreducible curves of

genus g, given with a relative divisor S ⊂ X, finite étale of degree N over Y .

The moduli stack Mg,N of curves of genus g given with an ordered set of N

distinct points is a Galois covering of Mg,[N ], with Galois group the symmetric

group SN . More precisely, it is an SN -torsor over Mg,[N ].



970 PIERRE DELIGNE and YUVAL Z. FLICKER

Fix a decomposition N = N ′ + N ′′, with N ′, N ′′ ≥ 1. Corresponding to

the subgroup SN ′ × SN ′′ of SN , we have between Mg,N and Mg,[N ] the moduli

stack Mg,[N ′,N ′′] of curves of genus g given with disjoint sets of N ′ and N ′′

distinct points. An object of Mg,[N ′,N ′′] over Y is a : X → Y as above, given

with disjoint relative divisors S′, S′′, finite étale of degrees N ′, N ′′ over Y . We

put S := S′ ∪S′′.

For each such stack M, we denote by M[1/l] the open substack where l is

invertible.

A Ql-smooth sheaf on a stack M is the data, for each Y → M, of a

Ql-smooth sheaf whose formation is compatible with pullbacks by maps Y ′→Y .

Here are examples of Ql-smooth sheaves on Mg,[N ][1/l], defined by giving their

value on a : (X,S) → Y , object of the stack over Y . By pullback, they give

similar smooth sheaves on Mg,[N ′,N ′′][1/l]:

• H : R1(a : X → Y )∗Ql. It is of rank 2g.

• S : a(S → Y )∗Ql. It is of rank N .

• εl(S) :=
N
∧ S, of rank one.

• Hc : R1(a : X − S → Y )!Ql. It is of rank 2g + N − 1 and sits in an

exact sequence whose geometric fibers are given by (6.2.2):

0→ Ql → S→ Hc → H→ 0.

On Mg,[N ′,N ′′][1/l], Hc contains a copy of the constant sheaf Ql. Indeed,

S decomposes into the sum of S′ : (a : S′ → Y )∗Ql and S′′ : (a : S′′ → Y )∗Ql,

the map Ql → a∗a
∗Ql embeds Ql into both S′ and S′′, and (6.27.1) embeds

Ql ' Ql ⊕ Ql/(diagonal Ql) into Hc. On Mg,[N ′,N ′′][1/l], we define Hc/Ql to

be the quotient of Hc by this copy of Ql.

If W is a Ql-smooth sheaf, or more generally a Ql-sheaf, on a stack M,

if x : Spec(Fq) → M is an Fq-point of M and x̄ : Spec(F) → Spec(Fq) →
M is a corresponding geometric point, then the geometric Frobenius Frob ∈
Gal(F/Fq) acts on the fiber of W at x̄. One defines

Tr(Frobx,W) := Tr(Frob,Wx̄).

This definition extends by additivity to the case of virtual smooth sheaves,

that is of elements of the Grothendieck group of the category of Ql-smooth

sheaves.

Formula (6.25.2) can now be translated as follows.

Proposition 6.28. Let x be an Fq-point of Mg,[N ′,N ′′][1/l], that is (X1,

S′1, S
′′
1 ) over Fq , and let S1 := S′1 ∪S

′′
1 . Then T (X1, S1, n) is the trace of Frobx
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on the virtual smooth sheaf

(6.28.1) (−1)N(n−1)εl(S)⊗(n−1) ⊗
∑

i
(−1)i

i
∧H ⊗

d∑
k=1

Rk(Hc/Ql)(−k).

Conjecture 6.29. Let us drop our standing assumption N1 ≥ 2. We

conjecture that for any g ≥ 0, N ≥ 0 and n≥ 2, there exists a virtual Ql-smooth

sheaf W(n) on Mg,[N ][1/l] such that for x an Fq-point of Mg,[N ][1/l], that is

(X1, S1) over Fq , one has

T (X1, S1, n) = Tr(Frobx,W
(n)).

This implies a dependence on m of the form (6.8.1) for T (Xm, Sm, n). An

optimistic version of the conjecture would be that for some virtual polynomial

representations R
(n)
k of GL(2g +N − 1), W(n) is of the form

W(n) = εl(S)⊗(n−1) ⊗
∑

i
(−1)i

i
∧H ⊗

∑
k
R

(n)
k (Hc)(−k).

If N > 0, one might also hope that the sum over k is over positive k’s.

For n = 2 and N = 0, the conjecture (in its optimistic form) is a corollary

of what Drinfeld proves in [Dri81].

For n = 2 and N ≥ 1, one of us (Y.F.) has checked, using the trace formula

in its full gory, that (6.26.2) continues to hold for N1 = 1. From this the

optimistic version of the conjecture (for n = 2 and N ≥ 1) readily follows.

For N ≥ 2, and N = N ′ + N ′′ with N ′, N ′′ ≥ 1, the conjectural W(n) on

Mg,[N ] would have (6.28.1) as inverse image on Mg,[N ′,N ′′]. For n = 2, this

made (6.26.2) a plausible guess. One should, however, beware that there

are virtual Ql-smooth sheaves on Mg,[N ] all of whose inverse images to the

Mg,[N ′,N ′′] (N = N ′ + N ′′, N ′, N ′′ ≥ 1) are zero. Examples are
∑

(−1)i
i
∧Hc

and
∑

(−1)i
i
∧(S/Ql). The latter boils down to the following fact. Given a

finite group H, with representation ring R(H), and a family of subgroups Hj ,

if ∪Hj does not meet all conjugacy classes in H, then the restriction map

R(H)→
∏

R(Hj)

is not injective. In the case of SN , the family of subgroups SN ′ × SN ′′ (N =

N ′ +N ′′, N ′, N ′′ ≥ 1) misses the conjugacy class of cycles of length N . If V is

the representation CN/(diagonal C) of SN , its restriction to SN ′×SN ′′ contains

a copy of the trivial representation 1, and as

j
∧(W + 1) =

j
∧ W ⊕

j−1
∧ W

(with
−1
∧ W := 0), the restriction of

∑
(−1)j

j
∧ V to each SN ′ × SN ′′ vanishes.

The character of
∑

(−1)j
j
∧ V vanishes outside of the conjugacy class of cycles

of length N , where its value is N .
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6.30. Conjecture 6.29 should not be specific to the case of principal

unipotent local monodromy. It should hold, with other virtual Ql-smooth

sheaves W, when one imposes the local monodromy at each s in S. When

the local monodromy imposed is tame (and makes sense in characteristic not

dividing P ), the relevant moduli stack M will be over Z[1/lP ]. It is the mod-

uli stack of curves of genus g given with a set of N points decorated by the

imposed monodromy. When the local monodromy imposed is not tame, one

might have to stay in a specific characteristic and consider points decorated

by a local parameter given up to some order.

Question 6.31. The virtual Ql-smooth sheaf (6.28.1) is the formal differ-

ence of local systems built out of the local systems of cohomology of X, S′ and

S′′. We used l-adic cohomology, but (6.28.1) would make sense for any of the

standard cohomology theories. It is “motivic.” Over C, the same construction

gives a virtual variation of Hodge structures on Mg,[N ′,N ′′](C).

Over C, to each curve X of genus g given with a set S = S′ ∪S′′ of

N = N ′+N ′′ points, one can attach the moduli space TX,S of rank n irreducible

complex local systems on X − S, with principal unipotent local monodromy

at each s in S.

These spaces are the fibers of a morphism a : T → Mg,[N ′,N ′′]. Can one

relate the virtual variation (6.28.1) and this family of spaces? From the com-

plex analytic point of view, this family is locally constant, because it can be

interpreted in terms of representations of the fundamental group of X − S,

itself locally constant. This should be related to the fact that T (X1, S1, n) is

controlled by a virtual Ql-smooth sheaf, rather than a virtual Ql-sheaf.

The analogue of 6.19(ii) is that the top weight part of the variation (6.28.1)

is a Q(−D/2), of Hodge type (D/2, D/2), where D is the (complex) dimension

of the TX,S .

7. Example: g = 0, N = 4, n = 2

The case of rank two local systems over the projective line minus an étale

divisor of degree four is among the simplest nontrivial cases. It has been

investigated numerically by Kontsevich (cf. [Kon09, 0.1]). It might be a useful

testing ground for tentative answers to Question 6.31.

In this section, we do not assume N1 ≥ 2: X1 is a projective line over Fq
and the degree four reduced divisor S1 is allowed to consist of one closed point

of degree four.

Proposition 7.1. With the above notation, one has

T (X1, S1, 2) = q.

As g = 0, one has f(1) = 1. When N1 ≥ 2,

D = D′ = (2g − 2)(n2 − 1) +N(n2 − n) = 2
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and the dominant term q computed in 6.19(ii) is the only term by 6.19(i). This

leaves out the case where S1 consists of a single point of degree 4. We will

explain in 7.8 how this case can be reduced to the case N1 ≥ 2.

7.2. Let E be a set with four elements. We denote by VE the Vierer-

gruppe of E, that is the subgroup of the symmetric group of E consisting of

the identity and of the three (2, 2) permutations of E. The action of VE on E

is simply transitive: when viewed as a right action, it turns E to a VE-torsor.

When we need to emphasize this, we write t(E) for E. The abelian group VE
being killed by 2, t(E) is its own opposite: the torsor sum t(E) + t(E) is the

trivial VE-torsor VE . As VE acts on E, the twist Et(E) of E by t(E) is defined.

It is just t(E) + t(E) = VE . It has a canonical point 0.

7.3. Let P be a projective line over a field k. If (s1, s2, s3, s4) and

(s′1, s
′
2, s
′
3, s
′
4) are two quadruples of distinct k-points of P with the same cross

ratio, there is a unique automorphism of P over k mapping the first quadruple

to the second.

Special case: The cross ratio being invariant by a permutation of a quadru-

ple of points that belongs to the Vierergruppe, if S ⊂ P (k) consists of four

points, the action of VS on S extends (uniquely) to an action on P . A twist

P t(S) of P by the torsor t(S) is hence defined. It contains the twist St(S) = VS
of S by t(S).

Concrete description: One takes four copies P [s] of P indexed by S; one

has a transitive system of isomorphisms between the P [s]: as isomorphism from

P [s] to P [t], one takes the action of the unique element of VS mapping s to t; the

twist P t(S) is the “common value” (projective limit) of the P [s]. In other words,

P t(S) = (P × S)/VS

(diagonal action). The canonical point 0 ∈ VS = St(S) ⊂ P t(S) is the image of

the diagonal S of S × S ⊂ P × S.

By étale descent, this construction continues to make sense for P a pro-

jective and smooth curve of genus 0 over k and for S a divisor of degree 4,

étale over k. The group VS is now a group scheme étale over k. It acts on S,

on P , on P t(S) = (P × S)/VS , and 0 ∈ VS = St(S) ⊂ P t(S) is again the image

of the diagonal of S × S.

7.4. We now suppose that k = C. Let T((P, S)/C) denote the set of

isomorphism classes of irreducible rank two complex local systems on P − S,

with principal unipotent local monodromy at each s in S (6.16). The group

VS acts on this set by transport of structures.

Proposition 7.5. The action of VS on T((P, S)/C) is trivial.
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(7.6.1)

Figure 1.

Fix an involution σ in VS , and label S by Z/4, in such a way that σ is

si 7→ si+2. Proposition 7.5 results from the more general

Proposition 7.6. Let V be an irreducible rank two complex local system

on P −S. Assume that the local monodromy transformations are in SL(2) and

that for each s ∈ S, the local monodromies around s and σ(s) are conjugate.

Then, V is isomorphic to σ∗V.

Proof. All involutions in Aut(P ) are conjugate: we may and shall choose

a coordinate z such that the automorphism σ of P is z 7→ −z. The claim

is invariant under deformation of S. We may assume that S consists of the

points ±1± i, labelled by Z/4 in Figure 1.

Take the fixed point z = 0 of σ as base point. The fundamental group

π1(P −S,0) is generated by the loops γi (i ∈ Z/4) pictured in (7.6.1), with

γ1γ2γ3γ4 = 1 as the only relation, and σ maps γi to γi+2.

To give a local system V on P −S amounts to giving its fiber V0 at 0 and

the action of π1(P − S, 0) on it. Let Ai be the image of γi. For our V, if we

choose an isomorphism of V0 with C2, the representation of π1 is given by four

Ai in SL2(C), obeying

(7.6.2) A1A2A3A4 = 1.

Our assumptions are that the representation is irreducible and that Ai is

conjugate to Ai+2. Our claim is that the quadruples (A1, A2, A3, A4) and

(A3, A4, A1, A2) are conjugate; in other words. that the corresponding repre-

sentations of π1 are isomorphic. For this, it suffices (by irreducibility) to check

that they have the same character: that for any word
∏
A
ε(k)
i(k) in the A±i ,

(7.6.3) Tr
∏

A
ε(k)
i(k) = Tr

∏
A
ε(k)
i(k)+2.

We are in rank n = 2. By Procesi [Pro76, Th. 3.4(a), p. 316], applied

to the Ai and their inverses, it suffices to check (7.6.3) for words of length

≤ 2n − 1 = 3. Words can be viewed as circular words. By the identities

A−1
i = Tr(Ai)−Ai and A2

i = Tr(Ai)Ai− 1, it suffices to consider words in the
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Ai, for which consecutive Ai have distinct indices. For circular words of length

≤ 3, this means all indices distinct. We now check (7.6.3) for these words. We

will use that in SL(2), Tr(A) = Tr(A−1).

We assumed Tr(Ai) = Tr(Ai+2). That Tr(AiAi+2) = Tr(Ai+2Ai) is clear.

By (7.6.2), one has

Tr(A3A4) = Tr((A1A2)−1) = Tr(A1A2)

and similarly for AiAi+1. The case of A1A2A3 is reduced to that of A4 by

Tr(A1A2A3) = Tr(A−1
4 ) = Tr(A4).

The case of Tr(A1A3A2) follows, thanks to the identity

Tr(ABC)+Tr(ACB)− Tr(A)Tr(BC)− Tr(B)Tr(CA)(7.6.4)

− Tr(C)Tr(AB) + Tr(A)Tr(B)Tr(C) = 0,

which follows from the vanishing of the antisymmetrization operator a =∑
ε(τ)τ of (C2)⊗3: one expands

Tr(A⊗B ⊗ C ◦ a) = 0;

similarly for (1, 2, 3) replaced by (i, i + 1, i + 2). This concludes the required

check. �

Suppose now that k is any algebraically closed field, and consider Ql-

smooth sheaves in the étale sense of 1.1.

Corollary 7.7. For (P, S)/k as above, 7.6 remains valid provided the

local monodromy is tame. As a consequence, 7.5 remains valid.

Tameness is already needed to make sense of “conjugate local monodromy.”

Proof for k = C. The proof of 7.6 is algebraic. Hence it holds also for

local systems of Ql-vector spaces on P (C)− S. It remains to observe that the

functor

(Ql-smooth sheaves on P − S)

→ (local systems of Ql-vector spaces on P (C)− S)

is fully faithful. Indeed, both categories are 2-inductive limits of similar cate-

gories, with Ql replaced by a finite extension Eλ of Ql in Ql. This reduces us to

the Eλ case. Let Oλ be the valuation ring of Eλ, and fix a base point 0. Local

systems on P (C) − S are representations of π1(P (C) − S, 0) on an Eλ-vector

space of finite dimension. The Eλ-smooth sheaves on P −S are those represen-

tations V that extend to continuous representations of the profinite completion

of π1, that is for which V contains a lattice V 0 (a free Oλ-submodule of V that

generates V over Eλ) stable by the action. Morphisms are the same.
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Proof in characteristic zero. This case follows from the case k = C, by

invariance of the algebraic π1 upon extension of scalars from one algebraically

closed field of characteristic zero to another one.

Proof in characteristic p. Grothendieck proved that the tame π1 is a quo-

tient of the characteristic 0 group π1. We will show that his proof reduces the

characteristic p case to the characteristic zero case. Let W (k) be the ring of

Witt vectors over k. Let K be an algebraic closure of the field of fractions K

of W (k). Consider a lifting (PW , SW ) of (P, S) to W (k). The action of VS
lifts. A Ql-local system on PS that is tamely ramified along S lifts uniquely to

PW − SW and pulls back to (PW , SW )⊗W K. By Grothendieck, the resulting

functor from tame local systems on P −S to local systems on PK −SK is fully

faithful, reducing us to the characteristic zero case.

7.8. End of Proof of 7.1. Define (X ′1, S
′
1) to be the twist of (X1, S1) by

t(S1). Over F, we have a natural system of four isomorphisms between (X,S)

and (X ′, S′), exchanged by the Vierergruppe. By 7.5, they all induce the

same bijection from T(2)(X,S) to T(2)(X ′, S′). By transport of structure, this

bijection is compatible with the action of Frob. It follows that

T (X1, S1, 2) = T (X ′1, S
′
1, 2).

The divisor S′1 contains a rational point. For (X ′1, S
′
1), one hence has N1 ≥ 2,

and (7.1.1) for (X1, S1) results from (7.1.1) for (X ′1, S
′
1). �

Translating the generalization 7.7 of 7.5 using the global Langlands corre-

spondence [Laf02], one obtains the following result, of which we do not know

a proof not using [Laf02].

Proposition 7.9. Let S1 be an étale divisor of degree four of P1/Fq , and

let σ be an involutive automorphism of (P1, S1) that acts on S by an element

of VS . Suppose that the automorphic representation π of GL(2,A) is cuspidal,

unramified outside of S1 and that its local component at each s in S1 is of the

form

Steinberg ⊗ χ(det)

with χ unramified.

Under these assumptions, σ(π) is an Fq-twist of π: there exists a sign

ε = ±1 such that σ(π) is the twist of π by the character a 7→ εdeg(a) of the

idèle class group. As a consequence, for any closed point x /∈ S1, the Hecke

eigenvalue of π at x is εdeg(a) times the Hecke eigenvalue of π at σ(x).

The pair (P1, S1) admits an involution σ as in 7.9 as soon as S1 does;

that is, except in the case where S1 contains a rational point and a point of

degree three.
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Proof. Let F1 be the smooth l-adic sheaf on (P1−S1)/Fq attached to π. As

π is cuspidal, F1 is irreducible. Its local monodromy at each s ∈ S1 is principal

unipotent. By 1.9(i), its inverse image F on (P1 − S)/F is still irreducible. By

7.7, σ∗F is isomorphic to F. By 1.9(ii), σ∗F1 is an Fq-twist of F1. It follows

that σ(π) is an Fq-twist of π: for some character χ of the quotient Z of the idèle

class group, σ(π) = πχ. Applying σ, we get that π = σ(π)χ, and π = πχ2. By

1.9(ii), χ2 = 1: χ is of the form εdeg(a) for some sign ε. �

Appendix A. Transfer of special automorphic representations

by Yuval Z. Flicker

In this appendix we extract Statement 1.13 from the literature.

The correspondence, relating discrete spectrum automorphic representa-

tions π′ of any inner form G′ of G = GL(n) (multiplicative group of a simple

algebra of dimension n2) with discrete spectrum representations of G, is known

unconditionally when the base field is a number field F , by Arthur’s work on

the trace formula. The case where π and π′ have a cuspidal ([BZ76]) component

at a place v where G′v is GL(n, Fv) has been proven in [FK88] (after previous

work of [BDKV84] and [Fli87, III] on π, π′ with two such components), using

the simple trace formula of [FK88]. The latter method applies also when the

base field F is a function field, but it does not cover the case that we need,

which concerns automorphic representations π′ of D∗(A), where D is a central

division algebra over F , such that no component π′v of π′ corresponds to a

cuspidal representation πv of Gv = GL(n, Fv) by the local correspondence.

To establish the correspondence in the case stated in 1.13 we shall use

the trace formula for GL(n) over a function field F as developed by Lafforgue

[Laf97], where the formula is proven for any inner form of GL(n). The case

we need is where at two places v = v1, v2 (denoted 0 and ∞ in [Laf97]) the

test function f = ⊗fv (denoted h in [Laf97]) has a discrete component fv.

A test (compactly supported locally constant) function fv is called discrete if

for every proper standard parabolic subgroup P = MN of G = GL(n), with

unipotent radical N and standard Levi subgroup M , it satisfies the identity∫
Kv

∫
Nv

fv(k
−1
v mvnvkv)dnvdkv = 0

for every mv ∈ Mv. A discrete pseudo coefficient of the Steinberg represen-

tation is constructed in [Lau96, Th. (5.1.3), p. 133], after previous work by

Kottwitz. Replacing fv by g 7→
∫
Kv
fv(k

−1
v gkv)dkv, Kv = GL(n,Ov), we may

assume fv satisfies fv(k
−1
v gkv) = fv(g) (kv ∈ Kv, g ∈ Gv). For f with a

discrete component fv, the truncation ([Laf97, pp. 225–227]) is trivial.
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Theorem 10, p. 241, V.2.d, of [Laf97] implies that for f with two discrete

components, the geometric side of the trace formula reduces to

∫
G(F )\G(A)/aZ

∑
γ

f(g−1γg)dg =
∑
{γ}

∫
ZG(γ)(F )\G(A)/aZ

∑
γ

f(g−1γg)dg,

where the sum on the left ranges over the elements γ in G(F ) whose character-

istic polynomial is a power of an irreducible polynomial, while the sum on the

right ranges over a set of representatives for the conjugacy classes of such γ in

G(F ), and ZG(γ) denotes the centralizer of γ in G. To simplify things we may

choose f with a component fv3 that vanishes on the singular set (the set of γ

with at least two equal eigenvalues). As will be explained in the last paragraph

below, this does not reduce the applicability of our techniques. Then the γ in

the sum are elliptic regular (regular: distinct eigenvalues): F [γ] is a separable

field extension of F of degree n.

This sum is equal to the analogous sum for the inner form G′, recorded

in (2), p. 191, of [FK88], for matching test functions f = ⊗fv on G(A) and

f ′ = ⊗f ′v on G′(A). In particular, fv = f ′v at the v where Gv ' G′v, and fv,

f ′v have matching orbital integrals (at all regular elements γ′ in G′v and the

γ in Gv with the same characteristic polynomials; the orbital integral of fv
at the regular elements that do not come from G′v in this sense are zero, for

all v). Note that the usage of Theorem 10, p. 241, V.2.d, of [Laf97] is made

for convenience. The method of “n-admissible spherical functions” of [FK88,

p. 192] could be used too.

For a test function f with a cuspidal component (thus at some place v, for

every proper parabolic subgroup Pv = MvNv of Gv we have
∫
Nv
fv(xny)dn = 0

for all x, y ∈ Gv), the convolution operator r(f) splits through the projection

to the cuspidal spectrum. The spectral side of the trace formula becomes the

sum
∑
πm(π) trπ(f), where π ranges over the equivalence classes of the irre-

ducible representations in the cuspidal spectrum of G(A), and m(π) denotes

the multiplicity of π in the cuspidal spectrum; m(π) is known to be 1 for

G = GL(n). For a general test function f , which may not have a cuspidal

component, one needs to use the spectral decomposition of the space of au-

tomorphic forms and compute the spectral side of the trace formula. This is

done in [Laf97, Th. 12, p. 309, VI.2.f] in the case we need, namely GL(n) over

a function field F .

In the number field case Arthur has shown (“a splitting property”) that

for a test function f = ⊗fv with two discrete components, the spectral side

reduces to a discrete sum
∑
πm(π) trπ(f), where π ranges over the equivalence

classes of the irreducible representations π in the discrete spectrum of G(A),

and m(π) is the multiplicity of π in the discrete spectrum. In the function field
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case this has not yet been done, so we proceed differently (and, in fact, deduce

this result).

Fix a new place u (6= v1, v2) of F . Let the component fu be spherical

(Ku-biinvariant). Denote by f∨u the Satake transform of fu. Then the spectral

side, described by Theorem 12, p. 309, VI.2.f, of [Laf97], has the form∑
i

cif
∨
u (ti) +

∑
j

∫
T̃j

cj(t)f
∨
u (t)djt,

where the ci are complex numbers, the ti lie in the compact Hausdorff space

T̃ defined in the first lines of [FK88, proof of Th. 2, p. 197], the T̃j are

compact submanifolds of T̃ (all irreducible components of a T̃j have the same

dimension j (1 ≤ j < n)), the cj(t) are complex valued functions on T̃j that are

measurable with respect to a bounded measure djt on T̃j that has the property

that vol(T̃ε(t))/ε is bounded uniformly in ε (see [FK88, first paragraph in the

proof of the proposition, p. 198]), and∑
i

|ci|+
∑
j

supt∈T̃j |cj(t)|+
∑
j

∫
T̃j

|cj(t)||djt|

is finite.

Now the trace formula asserts that the spectral side equals the geometric

side of the trace formula. As we saw above, the geometric side is a sum of

orbital integrals (for f with discrete fv1 , fv2). For matching test functions f

and f ′, the geometric sides of the trace formulae for f on G(A) = GL(n,A)

and for f ′ on G′(A) = D∗(A) are equal. Hence the spectral sides are equal.

As is well known (see, e.g., [FK88, proposition, p. 191]), the spectral side in

the anisotropic case (of G′ = D∗) is discrete; it has the form
∑
i c
′
if
′
u
∨(t′i). We

combine this last sum with the sum
∑
i cif

∨
u (ti) for new ci’s. The proposition

on p. 198 of [FK88], prepared precisely for a situation as the present one,

implies that all (new) ci are zero (namely c′i = ci and t′i = ti).

We conclude that for a test function f = ⊗fv with two discrete compo-

nents, the spectral side, as described in Theorem 12, p. 309, VI.2.f, of [Laf97],

reduces to a discrete sum. Then for matching test functions f = ⊗fv on

G(A) = GL(n,A) and f ′ = ⊗f ′v on G′(A) = D∗(A), we have the identity∑
π

m(π) trπ(f) =
∑
π′
m(π′) trπ′(f ′),

where the sum on the left (resp. right) ranges over the equivalence classes of

the irreducible representations π (resp. π′) in the discrete spectrum of G(A)

(resp. G′(A)), and m(π) (resp. m(π′)) signifies the multiplicity of π (resp. π′)

in the discrete spectrum.

A standard argument of “generalized linear independence of characters”

implies that on fixing a representation πS0 = ⊗v/∈Sπ0v of G(AS) = G′(AS),
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where S is the set of places of F such that G′v ' Gv for all v /∈ S, the sums

over π and π′ can be taken to range over the subsets of π with πv = π0v and

π′ with π′v = π0v for all v /∈ S. The rigidity theorem (“strong multiplicity

one theorem”) implies that the sum over π reduces to at most one term (with

m(π) = 1, by multiplicity one theorem for GL(n)).

Since in our case D is a division algebra, a result of Godement-Jacquet

can be used as in [Fli90] to show that the sum over π′ is finite. As explained

in [Fli90], using matching functions fv on Gv and f ′v on G′v for v ∈ S that

are supported only on the regular set (in particular, we may use fv3 as above),

linear independence of characters implies character relations between πv and

π′v for all v ∈ S. The character determines πv and π′v uniquely since it is

locally integrable. (A function field analogue of this result of Harish-Chandra

in the characteristic 0 case was proven by Lemaire [Lem96].) This implies the

correspondence that we need: if π is a cuspidal representation of G(A) whose

components at v ∈ S are Steinberg twisted by an unramified character, there

is precisely one (thus m(π′) = 1) cuspidal representation π′ of G′(A) with

π′v ' πv for all v /∈ S. Then π′v corresponds to πv by the local correspondence,

thus π′v is one dimensional unramified character, for all v ∈ S. Conversely,

given cuspidal π′ with dimπ′ > 1, there exists a unique corresponding π.

Acknowledgement. The second author acknowledges support by the Hum-

boldt Stiftung at Berlin’s HU, MPIM-Bonn, SFB at Bielefeld, the Hebrew Uni-

versity, Newton Institute at Cambridge, and IHES, during the preparation of

this work.

References for Appendix

[BDKV84] J. N. Bernstein, P. Deligne, D. Kazhdan, and M.-F. Vigneras

(eds.), Représentations des Groups Réductifs sur un Corps Local, Travaux
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Birkhäuser, Boston, MA, 2009, pp. 213–247. MR 2641191. Zbl 05778256.

http://dx.doi.org/10.1007/978-0-8176-4747-6 7.

[Kot88] R. E. Kottwitz, Tamagawa numbers, Ann. of Math. 127 (1988), 629–646.

MR 0942522. Zbl 0678.22012. http://dx.doi.org/10.2307/2007007.

[Laf02] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, In-

vent. Math. 147 (2002), 1–241. MR 1875184. Zbl 1038.11075. http://dx.

doi.org/10.1007/s002220100174.

[Ono66] T. Ono, On Tamagawa numbers, in Algebraic Groups and Discontinuous

Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Proc. Sym-

pos. Pure Math. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 122–132.

MR 0209290. Zbl 0223.20050. http://dx.doi.org/10.1090/pspum/009.

[Pro76] C. Procesi, The invariant theory of n× n matrices, Advances in Math. 19

(1976), 306–381. MR 0419491. Zbl 0331.15021. http://dx.doi.org/10.1016/

0001-8708(76)90027-X.

[Ser71] J-P. Serre, Cohomologie des groupes discrets, in Prospects in Mathe-

matics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), Ann. of

Math. Studies 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169.

MR 0385006. Zbl 0235.22020.

http://www.ams.org/mathscinet-getitem?mr=1600006
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0899.11026
http://smf4.emath.fr/Publications/Asterisque/1997/243/html/smf_ast_243.html
http://smf4.emath.fr/Publications/Asterisque/1997/243/html/smf_ast_243.html
http://www.ams.org/mathscinet-getitem?mr=1381898
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0837.14018
http://www.ams.org/mathscinet-getitem?mr=1377408
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0856.22024
http://www.numdam.org/item?id=CM_1996__100_1_41_0
http://www.ams.org/mathscinet-getitem?mr=0327923
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0254.14017
http://dx.doi.org/10.1007/BF02715544
http://www.ams.org/mathscinet-getitem?mr=0656064
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0519.22011
http://www.ams.org/mathscinet-getitem?mr=0639205
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0479.14017
http://dx.doi.org/10.1007/BF01106161
http://www.ams.org/mathscinet-getitem?mr=2641191
http://www.zentralblatt-math.org/zmath/en/search/?q=an:05778256
http://dx.doi.org/10.1007/978-0-8176-4747-6_7
http://www.ams.org/mathscinet-getitem?mr=0942522
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0678.22012
http://dx.doi.org/10.2307/2007007
http://www.ams.org/mathscinet-getitem?mr=1875184
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1038.11075
http://dx.doi.org/10.1007/s002220100174
http://dx.doi.org/10.1007/s002220100174
http://www.ams.org/mathscinet-getitem?mr=0209290
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0223.20050
http://dx.doi.org/10.1090/pspum/009
http://www.ams.org/mathscinet-getitem?mr=0419491
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0331.15021
http://dx.doi.org/10.1016/0001-8708(76)90027-X
http://dx.doi.org/10.1016/0001-8708(76)90027-X
http://www.ams.org/mathscinet-getitem?mr=0385006
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0235.22020


982 PIERRE DELIGNE and YUVAL Z. FLICKER

(Received: March 28, 2011)

(Revised: July 30, 2012)

Institute for Advanced Study, Princeton, NJ

E-mail : deligne@ias.edu

The Ohio State University, Columbus, OH and

Ariel University, Ariel, Israel

E-mail : yzflicker@gmail.com

mailto:deligne@ias.edu
mailto:yzflicker@gmail.com

	Introduction
	0. Notation
	1. Dictionaries
	2. Statement of the theorem: First form
	3. Division algebras and Tamagawa numbers
	4. Proof of 2.3: Masses of categories
	5. Proof of 2.3: Using the building
	6. Lefschetz type form of the theorem
	7. Example: g=0, N=4, n=2
	Appendix A. Transfer of special automorphic representations by Yuval Z. Flicker
	References for Appendix
	References

