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Abstract

We prove most of Lusztig’s conjectures on the canonical basis in homol-

ogy of a Springer fiber. The conjectures predict that this basis controls

numerics of representations of the Lie algebra of a semisimple algebraic

group over an algebraically closed field of positive characteristic. We check

this for almost all characteristics. To this end we construct a noncom-

mutative resolution of the nilpotent cone which is derived equivalent to

the Springer resolution. On the one hand, this noncommutative resolution

is closely related to the positive characteristic derived localization equiva-

lences obtained earlier by the present authors and Rumynin. On the other

hand, it is compatible with the t-structure arising from an equivalence

with the derived category of perverse sheaves on the affine flag variety of

the Langlands dual group. This equivalence established by Arkhipov and

the first author fits the framework of local geometric Langlands duality.

The latter compatibility allows one to apply Frobenius purity theorem to

deduce the desired properties of the basis. We expect the noncommutative

counterpart of the Springer resolution to be of independent interest from

the perspectives of algebraic geometry and geometric Langlands duality.
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0. Introduction

Let G be a reductive group over an algebraically closed field K of char-

acteristic p > h, and let g be its Lie algebra. (Here h denotes the Coxeter

number of G.) Let P be a partial flag variety, and consider the space g̃P of

pairs of a parabolic subalgebra p ∈ P and an element in it. For the full flag

variety B, we usually denote g̃B simply by g̃. We have a map µP : g̃P → g.

In [BMR08], [BMR06] we have shown that the derived category of g-mod-

ules with a fixed generalized central character is equivalent to the derived cat-

egory of coherent sheaves on g̃P set-theoretically supported on Pe = µ−1
P (e);

here the partial flag variety P and e ∈ g depend on the central character.

A numerical consequence of this equivalence is an isomorphism between the

Grothendieck groups of the abelian categories modfg(U(g)σ) and Coh(Pe),
where U(g)σ is the quotient of the enveloping algebra by a central character

σ and modfg denotes the category of finite-dimensional (equivalently, finitely

generated) modules. This implies, in particular, that the number of irre-

ducible representations with a fixed central character σ equals the rank of

the Grothendieck group of Coh(Pe), which is known to coincide with the sum

of Betti numbers of Pe.
To derive more precise information about numerical invariants of g-mod-

ules one needs a characterization of the elements in K0(Coh(Pe)) that corre-

spond to irreducible g-modules and their projective covers. Such a character-

ization is suggested by the work of Lusztig [Lus99]. In loc. cit. he describes

certain properties of a basis in the Grothendieck group of a Springer fiber and

conjectures that a basis with such properties exists and controls (in a cer-

tain precise sense) numerical invariants of irreducible U(g)σ-modules. (He also

shows that a basis with such properties is essentially unique.) The properties

of this basis are similar to those enjoyed by Kazhdan-Lusztig bases of a Hecke

algebra and canonical bases in modules over a quantum group. For this reason

we will refer to a basis satisfying Lusztig’s axioms as a canonical basis.

In the present paper we prove most of the conjectures from [Lus99]. The

first step is the construction of a noncommutative counterpart of the Springer

resolution as a lift of modular representation categories to characteristic zero.

By this we mean a certain noncommutative algebra A0 defined canonically

up to a Morita equivalence. The center of the algebra is identified with the

ring O(N ) of regular functions on the nilpotent cone N ⊂ g∗, where g is

taken over R = Z[ 1
h! ]. This noncommutative resolution is canonically derived

equivalent to the ordinary Springer resolution; i.e., it comes with a canonical

equivalence of triangulated categories Db(modfg(A0)) ∼= Db(Coh(Ñ )), where Ñ
is the cotangent bundle to the flag variety. Furthermore, for K as above and

any e ∈ N (K), the base change A0 ⊗O(N ) Ke is canonically Morita equivalent

to a central reduction of U(gK).



838 ROMAN BEZRUKAVNIKOV and IVAN MIRKOVIĆ

The above properties ofA0 imply that the numerics of nonrestricted modu-

lar representation categories is independent of (sufficiently large) characteristic

and show that A0 provides a lifting of such representation categories to charac-

teristic zero. To put things into perspective, recall that a similar construction

for representations of the algebraic group GK (this setting is very close to re-

stricted representations of the Lie algebra gK) was obtained in [AJS94]. In

that case the resulting category in characteristic zero turns out to be equiva-

lent to representations of a quantum group at a root of unity. We expect that

a similar statement holds for nonrestricted Lie algebra modules considered in

the present work; see Conjecture 1.7.1. Apart from that conjecture, we avoid

quantum groups in this paper.

Our method of construction of the noncommutative resolution A0 is based

on an action of the affine braid groupBaff on the derived categoriesDb(Coh(Ñ )),

Db(Coh(g̃B)). Here the action of the generators of Baff is described by certain

simple correspondences. The fact that the corresponding functors obey the

relations of Baff is proven in [BR12]. The algebra A0 is determined (uniquely

up to a Morita equivalence) by the t-structure on Db(Coh(Ñ )) correspond-

ing to the tautological one under the equivalence with Db(modfg(A0)). This

t-structure is characterized in terms of the action of Baff . The comparison with

modular localization and the proof of existence of a t-structure with required

properties is based on compatibility of the Baff action with intertwining (or

shuffling) functors on the derived categories of modular representations. No-

tice that the latter are closely connected with “translation through the wall”

functors; thus, translation functors play a prominent role in our argument.

The use of translation functors to establish independence of the category of

modular representations of characteristic goes back (at least) to [AJS94].

From the arguments alluded to above one can derive that the basis in

the Grothendieck group of a Springer fiber corresponding to irreducible gK-

modules satisfies all the axioms of a canonical basis except for one, the so-called

asymptotic orthogonality property. The latter is reduced to certain compati-

bility between the above t-structures and the multiplicative group action on

Slodowy slices. It says that the grading on the slice algebras, i.e., the alge-

bras “controlling” the derived category of coherent sheaves on the resolution

of a Slodowy slice, can be arranged to be positive. By this we mean that

components of negative degrees in the algebra vanish, while the degree zero

component is semisimple. An analogous reformulation of Kazhdan-Lusztig

conjectures is due to Soergel. Another feature parallel to the Kazhdan-Lusztig

theory is Koszul property of the slice algebras; see [BGS96] for the correspond-

ing facts about category O. Properties of this type are usually deduced from a

theorem of [BBD82] about weights of Frobenius acting on the stalks of l-adic

intersection cohomology sheaves. Our proof also follows this strategy.
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The l-adic sheaves are brought into the picture by the result of [AB09]

that provides an equivalence between the derived category of G-equivariant

sheaves on Ñ (over a field of characteristic zero) and a certain subcategory of

the derived category of constructible sheaves on the affine flag variety F l of

the Langlands dual group. This result is a categorical counterpart of one of the

key ingredients in the proof of the tamely ramified local Langlands conjecture.

We show that the t-structure of perverse sheaves on F l is compatible

with the t-structure coming from the equivalence with Db(modfg(A0)). This

is achieved by interpreting the Baff action on the perverse sheaves side as the

geometric counterpart of the action of elements in the standard basis of the

affine Hecke algebra on the anti-spherical module.

Thus the key step in our argument is compatibility between the two

t-structures on Db(Coh(Ñ )), one coming from modular representations via

the equivalence of [BMR08] and another from perverse sheaves on F l via the

equivalence of [AB09]. An indication of such a compatibility can be (and has

been) found by unraveling logical connections between the works of G. Lusztig.

However, we do not claim to have arrived at a conceptual explanation of this

coincidence.

A possible conceptual approach to the material presented in this paper is

via the local geometric Langlands duality formalism. Recall [FG09], [Fre07]

that the latter theory seeks to attach to a (geometric) local Langlands pa-

rameter a certain triangulated category, a categorification of a representation

of a p-adic group attached to the Langlands parameter by the classical local

Langlands conjectures. According to [FG09] this triangulated category should

arise as the derived category of an abelian category. That abelian category

can conjecturally be identified with the category of modules over an affine Lie

algebra at the critical level with a fixed central character. We propose the

category of modules over the above algebra A0 with a fixed central character

as another construction for the so-called category of Iwahori equivariant ob-

jects in a local Langlands category; see Conjecture 1.7.2 (proven in [BL12]) for

a concrete statement arising from comparing our results with that of [FG09],

[FG06].

We also hope that the t-structures on the derived categories of coherent

sheaves (in particular, those on derived categories of coherent sheaves on va-

rieties over C) constructed below are of interest from the algebro-geometric

point of view. We expect that the construction generalizes to other symplectic

resolutions of singularities (cf. [BK08], [Kal08]) and is related to Bridgeland

stability conditions; see, e.g., [ABM].

The paper is organized as follows. In Section 1 we describe the affine braid

group action on the derived categories of coherent sheaves and state existence
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and uniqueness of a t-structure characterized in terms of this action. We refer

to [BR12] for construction of the Baff actions and a proof of its properties.

Section 2 presents a proof of the facts about the t-structures. Uniqueness

is deduced directly from a categorical counterpart of the quadratic relations

satisfied by the action of a simple reflection s̃α ∈ Baff . (The action of s̃α on the

corresponding Grothendieck groups satisfies quadratic relations because this

action of Z[Baff ] factors through the affine Hecke algebra.) Existence is shown

by reduction to positive characteristic, where the statement is deduced from

localization in positive characteristic [BMR08], [BMR06].

Sections 3 and 4 present parabolic versions of the construction of t-struc-

tures. (They are not needed for the proof of Lusztig’s conjectures; Section 5

and 6 are logically independent of Sections 3 and 4).

Section 5 recalls Lusztig’s conjectures [Lus99] and reduces them to a pos-

itivity property of a grading on the slice algebras stated in detail in 5.3.2.

We finish the section by showing that positivity of the grading implies Koszul

property of the graded algebras.

Section 6 proves this compatibility by relating the t-structure to perverse

sheaves on affine flag variety of the Langlands dual group. The relation be-

tween complexes of constructible sheaves on the affine flag varieties and derived

categories of coherent sheaves comes from the result of [AB09]. Once the re-

lationship between our abelian categories and perverse sheaves is established,

the desired property of the grading follows from the purity theorem, similarly

to the proof of Kazhdan-Lusztig conjecture.

Appendix A contains a proof of a technical statement about compatibility

of the Springer representation of the Weyl group on cohomology of a Springer

fiber with a certain involution on the cohomology space. (The compatibility

also follows from a recent preprint [Kat].) This is needed in analysis of the

involution of the (equivariant) cohomology space appearing in Lusztig’s formu-

lation of his conjectures. Appendix B by Eric Sommers establishes a property

of the central element in an SL(2) subgroup of G, which also enters comparison

of our categorical picture with the formulas from [Lus99].
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0.1. Notations and conventions. Let GZ be a split reductive group over Z.

We work over the base ring R = Z[ 1
h! ], where h is the maximum of Coxeter

numbers of simple factors. So we denote by G = GR the base change of GZ to

R and its Lie algebra by g = gR.

We will use the notation K for geometric points of R, i.e., maps R → K
where K is an algebraically closed field. We will use an abbreviation FGP for

the set of geometric points of R that have finite characteristic. Let N⊆g be

the nilpotent cone, and let B be the flag variety. We denote by Ñ = T ∗B → N
the Springer resolution and by g̃→ g the Grothendieck map. For convenience,

we fix a nondegenerate invariant quadratic form on g and use it to identify g

and g∗, hence also g̃∗ and g̃.

Let H be the abstract Cartan group of G with Lie algebra h. Let Λ =

X∗(H) be the weight lattice of G, let Q ⊂ Λ be the root lattice and let W be

the Weyl group. Our choice of positive roots is such that for a Borel subalgebra

b with a Cartan subalgebra t, the isomorphism t ∼= h determined by b carries

roots in b into negative roots. Let I⊆Iaff be the vertices of the Dynkin diagram

for the Langlands dual group Ǧ and of the affine Dynkin diagram for Ǧ; we

consider them as affine-linear functionals on h∗.

Set Waff = W n Λ, WCox
aff = W n Q. Then WCox

aff is a Coxeter group

corresponding to the affine Dynkin graph of the Langlands dual group Ǧ; also,

WCox
aff ⊂ Waff is a normal subgroup with an abelian quotient Waff/W

Cox
aff
∼=

Λ/Q ∼= π1(Ǧ). Thus Waff is the extended affine Weyl group for Ǧ. Let B ⊂
BCox

aff ⊆Baff denote the braid groups attached to W , WCox
aff and Waff respectively.

Let W sc
aff⊇WCox

aff and Bsc
aff⊇BCox

aff correspond to the simply connected cover of

the derived subgroup of G.

Thus Baff contains reduced expressions ‹w for w ∈ Waff , and also a sub-

group isomorphic to Λ consisting of the elements θλ, λ ∈ Λ, such that θλ = λ̃

when λ is a dominant weight. Denote by B+
aff⊆BCox

aff the semigroup generated

by lifts s̃α of all simple reflections sα in BCox
aff .

We consider the categories Coh(X)⊆qCoh(X) of coherent and quasicoher-

ent sheaves on X. For a noetherian scheme Y , we sometimes denote RHomY
def
= RHomDb(Coh(Y )). The fiber products in this paper are taken in the category

of schemes (as opposed to fiber product of varieties with the reduced scheme

structure), unless stated otherwise; amore general derived fiber product is dis-

cussed in Section 1.2.
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For a closed subscheme Y⊆X, we denote by CohY (X) the category of

coherent sheaves on X supported set theoretically on Y . In this paper we

will consider formal neighborhood of Y in X only in the case when Y⊆X is a

base change of an affine closed embedding S′ → S for a projective morphism

X → S. In this situation, by the formal neighborhood “Y we will understand

the scheme “Y = X ×S Ŝ′, where Ŝ′ is the spectrum of the IS′-adic completion

of the ring O(S); here IS′ denotes the ideal of S′. Notice that by [Gro61,

Th. 5.4.1], “Y is the inductive limit of nilpotent thickenings of Y in X in the

category of S-schemes. Also by [Gro61, Th. 5.1.4],1 the category of coherent

sheaves on “Y is equivalent to the category of coherent sheaves on the formal

scheme completion of Y in X.

For any abelian category C, we denote its Grothendieck group by K0(C),
and in a particular case of coherent sheaves on a scheme X or finitely generated

modules over an algebra A, we denote K(X) = K0[Coh(X)] and K(A) =

K0[modfg(A)].

The pull-back or push-forward functors on sheaves are understood to be

the derived functors, and Homi(x, y) means Hom(x, y[i]).

The base changes of g̃ and Ñ with respect to a g-scheme S → g will be

denoted by S̃ = S ×g g̃ and S̃′ = S ×g Ñ . For a complex of coherent sheaves

E on g̃ (respectively, Ñ ), we let ES (respectively, E ′S) denote its pull-back to S̃

(respectively, S̃′).

1. t-structures on cotangent bundles of flag varieties:

statements and preliminaries

As stated above, our basic object is the base change G = GR of a split

reductive group GZ over Z to the base ring R = Z[ 1
h! ], where h is the maximum

of Coxeter numbers of simple factors.

Our main goal in the first two sections is to construct a certain t-structure

T ex on Db(Coh(g̃)), called the exotic t-structure. The induced t-structure on

Db(Coh(g̃K)) for a field K of positive characteristic is related to representations

of the Lie algebra gK. In this section we state the results on T ex after recalling

the key ingredients: the action of the affine braid group on Db(Coh(g̃)), tilt-

ing generators in Db(Coh(g̃)) and representation theoretic t-structures. Some

proofs are postponed to later sections.

The next three subsections are devoted to a certain action of Baff on the

derived categories of (equivariant) coherent sheaves. In 1.1 we explain a basic

formalism of convolutions on derived categories of coherent sheaves available

under certain flatness assumptions, use it to define geometric action of a group

1We thank Michael Temkin for providing this reference.
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on a derived category of coherent sheaves and state the existence of a certain

geometric action of Baff on the derived category of coherent sheaves on g̃, Ñ .

A strengthened version of this result is presented in 1.3, where existence of

a compatible collection of geometric actions of Baff on the fiber product spaces

g̃S , ÑS (under some conditions on S) is stated. In fact, such compatible

collections of actions arise naturally from a more transparent structure, which

is a direct generalization of the notion of a geometric action to the case when

the space is not necessarily flat over the base. This generalization involves

basics of the DG-schemes theory. In an attempt to make the statements more

transparent we present an informal discussion of this more general construction

in 1.2.

Thus from the formal point of view, Section 1.2 and Theorem 1.1.1 are not

needed. We have included them in an attempt to make the exposition more

transparent.

1.1. Geometric action of the affine braid group.

Definition. By a weak homomorphism from a group to a monoidal cate-

gory we will mean a homomorphism from the group to the group of isomor-

phism classes of invertible objects. A weak action of a group on a category C
is a weak homomorphism from the group to the monoidal category of endo-

functors of C.

Let X be a finite type flat scheme over a Noetherian base S. Then the

category D−(qCoh(X×SX)) is a monoidal category where the monoidal struc-

ture comes from convolution: F1 ∗F2 = pr13∗(pr∗12(F1)
L
⊗pr∗23(F2)) where pr12,

pr23, pr13 are the three projections X ×S X ×S X → X ×S X. This monoidal

category acts on D−(qCoh(X)) by F : G 7→ pr1∗(F
L
⊗ pr∗2(G)).

By a weak geometric action of a group on X over S, we will understand

a weak homomorphism from the group to D−(qCoh(X ×S X)).

We will say that the action is finite if its image is contained in the full

subcategory Db(Coh(X ×S X)) and the corresponding action on the derived

category of sheaves on X preserves Db(Coh(X)) ⊂ D−(qCoh(X)).

For a map S′ → S, we can base change the above structures in a straight-

forward way. Namely, the pull-back functor

D−(qCoh(X ×S X))→ D−(qCoh(XS′ ×S′ XS′)

is monoidal and the pull-back functor D−(qCoh(X)) → D−(qCoh(XS′)) is

compatible with the action of the monoidal categories. Thus a weak geometric

action of a group on X over S induces a weak geometric action of the same

group on the fiber product space XS′ over S′.
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1.1.1. Action of Baff on g̃, Ñ over R. The Weyl group W acts on g̃reg def
=

g̃×gg
reg. Let Γw ⊂ g̃×g g̃ be the closure of the graph of the action of w ∈ W ,

and set Γ′w = Γw ∩ Ñ 2.

Theorem. There exists a unique finite weak geometric action of Baff on

g̃ (respectively, on Ñ ) over R, such that

(i) for λ ∈ Λ, θλ corresponds to the direct image of the line bundle Og̃(λ)

(respectively, O‹N (λ)) under the diagonal embedding.

(ii) for a finite simple reflection sα ∈ W , s̃α ∈ B corresponds to the struc-

ture sheaf OΓsα (respectively, s̃α 7→ OΓ′sα
).

The proof appears in [BR12]. We denote the weak geometric action on g̃

by Baff 3 b 7→ Kb ∈ Db[Coh(g̃×Rg̃)].

Remark. By the discussion preceding the theorem, we also get geometric

actions of Baff on, say, g̃K, ÑK where k is a field mapping to R. For applications

below we need to consider more general base changes. These are dealt with in

1.3 below.

1.1.2. Remark. It is possible to deduce the theorem from the results of

[BMR08] which provide an action of Baff on the derived category of modu-

lar representations using the reduction to prime characteristic techniques of

Section 2 below. This would make the series of [BMR08], [BMR06] and the

present paper self-contained. However, this would further increase the amount

of technical details without adding new conceptual features to the picture. For

this reason we opted for a reference to a more satisfactory proof in [BR12]; see

also [Ric08] for a partial result in this direction.

1.2. Digression : convolution operation via DG-schemes. This subsection

serves the purpose of motivating the formulation in Theorem 1.3.2, which is a

strengthening of Theorem 1.1.1. It relies on some basic elements of the formal-

ism of DG-schemes. Neither that formalism nor the statements of the present

subsection will be used in the rest of the paper (except for Remark 1.5.4). See

[BR12] for details.

Let X → S again be a morphism of finite type with S Noetherian, but

let us no longer assume that it is flat. Then one can consider the derived fiber

product2 X2
S = X

L
×S X. This is a differential graded scheme whose structure

sheaf is the derived tensor product O(X)
L
⊗O(S) O(X).

2It may be more logical to denote the fiber product by
R
×, as it can be thought of as a

right derived functor in the category of schemes, corresponding to the left derived functor
L
⊗

in the category of rings, which is opposite to the category of affine schemes.
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Definitions similar to the ones presented in 1.1 work also in this con-

text providing the triangulated category DGCoh(X2
S) of coherent OX2

S
-modules

with the convolution monoidal structure. This monoidal category acts on the

category Db(Coh(X)).

The example relevant for us is when S = gR and X = g̃R or X = ÑR.

Notice that in the first case one can show that Tor
Og

>0(Og̃,Og̃) = 0, which

implies that the derived fiber product reduces to the ordinary fiber product

and DGCoh(g̃
L
×g g̃) ∼= Db(Coh(g̃×g g̃)). However, even in this case the definition

of monoidal structure cannot (to our knowledge) be given without using derived

schemes, as it involves the triple fiber product g̃
L
×g g̃

L
×g g̃ where higher Tor

vanishing does not hold.

Given a pair of morphisms X → S → U , we get a natural morphism

iSU : X2
S → X2

U . It turns out that the functor of direct image (iSU )∗ can be

equipped with a natural monoidal structure and the action of DGCoh(X2
S) on

Db(Coh(X)) factors through DGCoh(X2
U ).

For example, we can take X = g̃ or Ñ , S = g, U = R. The composed map

X → U is flat, so the construction of the monoidal structure and the action in

this case reduces to the more elementary case described in Theorem 1.1.1.

The advantage of considering the finer structure of a geometric action on

X over S rather than the weaker structure of a geometric action on X over

U (which in our example happens to be more elementary) is the possibility to

perform the base change construction for the base S.

Namely, given a morphism S′ → S, consider XS′ = S′
L
×S X and X2

S′ :=

XS′
L
×S′ XS′

∼= (X
L
×S X)

L
×S S′. Then Db[Coh(X2

S′)] is a monoidal category

acting on Db[Coh(XS′)].

The functor of pull-back under the morphism X2
S′ → X2

S turns out to

be monoidal while the pull-back and push-forward functors for the morphism

XS′ → XS are compatible with the module category structure. In particular,

a (weak) geometric action of a group Γ on X over S yields weak actions of

Γ on DGCoh(XS′) for any S′ → S. This way our action of Baff yields some

actions considered by other authors; see Remark 1.3.3.

The geometric actions of Baff on g̃, Ñ from Theorem 1.1.1 actually lift to

geometric actions over g, and this provides a rich supply of interesting base

changes of the action. Rather than spelling out the details on geometric actions

over base g, we will here record a collection of actions of Baff on the derived

categories of a class of exact base change varieties and the compatibilities they

enjoy. The exactness condition on the base change S → g guarantees that g̃S
(or ÑS) is an ordinary scheme rather than a DG-scheme. It excludes some

examples natural from representation-theoretic perspective (see Remark 1.5.4)

but is still sufficient for our present purposes.
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1.3. Baff actions on exact base changes. We say that a fiber productX1×Y
X2 is exact if

(1) TorOY>0 (OX1 ,OX2) = 0.

(We also say that the base change X1 → Y of X2 is exact.) We let BC
(respectively, BC′) denote the category of affine Noetherian g schemes S → g

such that the base change of g̃ (respectively, Ñ ) to S is exact. We set S̃ = S×gg̃

and S̃′ = S ×g Ñ .3

1.3.1. Lemma. Base changes S̃, S̃′, Γsα ×g S and Γ′sα ×g S are exact for

the following maps S → g:

(i) gR for any Noetherian R-scheme R,

(ii) the spectrum “X of a completion of OgR at any closed X⊆gR,

(iii) any normal slice S ⊂ gR to a nilpotent orbit in gR.

Proof. Parts (i) and (ii) are clear. Part (iii) follows from smoothness of the

conjugation map G×S → g, which is clear since the differential in the direction

of G produces orbital directions and the one in direction of S produces the

normal directions. �

1.3.2. Action of braid group on base changes. We will use the action of

G×Gm on g (and all related objects), where Gm acts on g by dilations.

Theorem. Let G be a group with a fixed homomorphism to G×Gm.

(a) Let S be a scheme with a G action, and let S → g be a G-equivariant affine

map. If it is in BC (respectively, in BC′), then the category Db(CohG(S̃))

(respectively, Db(CohG(S̃′))) carries a canonical weak action of Baff such

that

(i) For a finite simple reflection sα ∈ W , the generator s̃α acts by con-

volution with OΓsα×gS , respectively OΓ′sα×gS , provided that the fiber

product Γsα ×g S, respectively Γ′sα ×g S, is exact.

(ii) The generators θλ, λ ∈ Λ act by tensoring with the line bundle O(λ).

For a G-morphism S1 → S2 in BC (respectively, BC′), the pull-back and

push-forward functors are compatible with the Baff action. The change of

equivariance functors for G′ → G commute with the Baff action.

(b) Let K be an algebraically closed field of characteristic zero or p > h, and let

e ∈ g∗K be a nilpotent element. If the group G fixes e, then the induced action

of Baff on K0(CohGBK,e(g̃K)) = K0(CohGBK,e(ÑK)) = KG(BK,e) factors through

the standard action of the affine Hecke algebra [Lus99] in the following way :

3It may be possible to treat the two cases uniformly by considering also base changes with

respect to the morphism g̃→ h. We do not develop this approach here.
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(i) For a finite simple reflection sα, the action of s̃α on the K-group of

BK,e is by

(2) s̃α = (−v)−1Tsα ,

where Tsα is the action (from [Lus99]) of the Hecke algebra on the

K-group.

(ii) For λ ∈ Λ, the action of θλ ∈ Baff is compatible with the action of θλ
in the affine Hecke algebra defined in [Lus99].

In particular, under the Chern character map4 K0(CohBK,e(g̃K))→H∗(BK,e),
the action of B⊆Baff on the source factors through the Springer representa-

tion of W on the target.

Remark. Notice that the statement involving Ñ is not a particular case

of the statement about g̃ because, in particular, the fiber product N×gg̃ is not

reduced and so is not isomorphic to Ñ = (N×gg̃)red as a scheme.

1.3.3. Examples. (1) When S ⊂ gC is the slice to the subregular orbit,

then S̃′ is the minimal resolution of a Kleinian singularity. The Baff action

in this case is generated by reflections at spherical objects. (See [Bri06] or

references therein.)

(2) Let us notice a relation to an action on coherent sheaves on affine

Grassmannians.

Let S be a normal slice to a nilpotent en in sl(2n), with two equal Jordan

blocks. Then by the result of [Ann], the restriction to B⊆Baff of the above

action on S̃′ coincides with the action constructed by Cautis and Kamnitzer

[CK08] (up to a possible change of normalization).

1.3.4. Some properties of the action. Let b → Π(b) denote the composed

map Baff → Waff → Waff/Λ = W . Let i∆ : g̃ → g̃ ×g g̃ and pr : g̃ → h be the

diagonal embedding and the projection.

Lemma. (a) For F ∈ Db(Coh(h)) and b ∈ Baff , we have

Kb ∗ i∆∗ pr∗(F) ∗Kb−1
∼= i∆∗ pr∗(Π(b)∗F).

(b) For α ∈ I , K‹sα−1
∼= Ωtop

Γsα
∼= OΓsα 〈−ρ,−α+ ρ〉.

(c) ‹w(O) ∼= O for w ∈W .

Proof. (a) It suffices to construct the isomorphism for the generators of

Baff . These isomorphisms come from the fact that Kθλ and K‹sα are supported

on the preimage under the map g̃×g g̃→ h×h/W h of, respectively, the diagonal

and the graph of sα.

4Here, by homology we mean l-adic homology (l 6= char(K)) or the classical homology

with rational coefficients if K = C.
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(b) is proved in [Ric08].

(c) This reduces immediately to the case of SL2 where it follows from the

description of Γsα as the blow up of g̃ along the zero section B. �

1.4. Certain classes of t-structures on coherent sheaves.

1.4.1. Braid positive and exotic t-structures on T ∗(G/B). A t-structure

on Db(Coh(S̃)) is called braid positive if for any vertex α of the affine Dynkin

graph of the dual group, the action of s̃α ∈ Baff is right exact. It is called

exotic if it is braid positive and also the functor of direct image to S is exact

with respect to this t-structure on Db(Coh(S̃)) and the ordinary t-structure on

Db(Coh(S)).

1.4.2. Locally free t-structures. Here we isolate a class of t-structures that

admit certain simple construction. One advantage is that such t-structures

can be pulled back under reasonable base changes (say, base changes that are

affine and exact; see Lemma 2.5.2(a)).

For a map of Noetherian schemes f : X → S, we will say that a coherent

sheaf E on X is a (relative) tilting generator if the functor from Db(Coh(X))

to Db(Coh(f∗End(E)op)) given by F 7→ Rf∗RHom(E ,F) is an equivalence.

This, in particular, implies that f∗End(E) is a coherent sheaf of rings, that the

functor lands in the bounded derived category of coherent modules and that

Rf∗Hom(E , E) = f∗Hom(E , E).

If E ∈ Db(Coh(X)) is a relative tilting generator, then the tautological

t-structure on the derived category Db[Coh(f∗(End(E)op))] induces a t-struc-

ture TE on Db(Coh(X)). We call it the E t-structure. We say that a t-structure

is locally free over S if it is of the form TE where the relative tilting generator

E is a vector bundle. Then TE is given by

F ∈ D≥0 ⇐⇒ (Rf∗RHom)<0(E ,F) = 0

and

F ∈ D≤0 ⇐⇒ (Rf∗RHom)>0(E ,F) = 0.

If S is affine, we omit “relative” and say that E is a tilting generator of

Db[Coh(X)]. Then E is a projective generator for the heart of TE . In particular,

two tilting generators E , E ′ define the same t-structure if and only if they are

equidecomposable, where two objects M1,M2 of an additive category are called

equidecomposable if for k = 1, 2, we have Mk
∼=
⊕
N
⊕dik
i for some Ni and

dik > 0.

1.4.3. Weak generators and tilting generators. We say that an object X of

a triangulated category D is a weak generator if X⊥ = 0, i.e., if Hom•(X,S) =

0⇒ S = 0.

For future reference, we recall the following
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Theorem ([HVdB07, Thm 7.6]5). Assume that the scheme X is projec-

tive over an affine Noetherian scheme. Then a coherent sheaf E is a tilting

generator if and only if E is a weak generator for D(qCoh(X)) and it is a

quasi-exceptional object ; i.e., Exti(E , E) = 0 for i 6= 0.

1.5. Exotic t-structures and the noncommutative Springer resolution.

1.5.1. Theorem. Let S → g be an exact base change of g̃ (resp. of Ñ )

with affine Noetherian S.

(a) There exists a unique exotic t-structure T ex
S on the derived category of

coherent sheaves on S̃ (resp. S̃′). It is given by

D≥0,ex = {F ; R pr∗(b
−1F) ∈ D≥0(Coh(S)) ∀b ∈ B+

aff},

D≤0,ex = {F ; R pr∗(bF) ∈ D≤0(Coh(S)) ∀b ∈ B+
aff}.

(b) This t-structure is locally free over S. In fact, there exists a G×Gm-

equivariant vector bundle E on g̃ such that for any S as above, its pull-back

ES to S̃ (resp. E ′S to S̃′) is a tilting generator over S, and the corresponding

t-structure is the exotic structure T ex. In particular, the pull-back ES is a

projective generator of the heart of T ex
S .

Proof. In Proposition 2.2.1 we check that, for S as above, any exotic

t-structure satisfies the description from (a). This proves uniqueness. The

existence of a vector bundle E on g̃ whose pull-backs produce exotic t-structures

for any S as above is proved in 2.5.5. �

We denote the heart of the exotic t-structure T ex
S by Ecoh(S̃) (resp.

Ecoh(S̃′)).

1.5.2. Remark. While the definition of an exotic t-structure involves only

the nonextended affine Weyl group WCox
aff , the theorem shows that the same

property — the right exactness of the canonical lifts ‹w ∈ Baff — also holds for

all w in the extended affine Weyl group Waff . In particular, the stabilizer Ω of

the fundamental alcove in Waff acts by t-exact automorphisms of Db(Coh(S̃)).

(This is an abelian group Ω ∼= Λ/Q ∼= Waff/W
Cox
aff
∼= π1(Ǧ).)

1.5.3. Algebras A and A0. The exotic t-structures described in Theo-

rem 1.5.1 can also be recorded as follows. For any S, as in the theorem we get an

associative algebra AS
def
= End(ES)op (resp. A0

S
def
= End(E ′S)op), together with

an equivalence Db[Coh(g̃S)] ∼= Db[modfg(AS)] (respectively, Db[Coh(ÑS)] ∼=
Db[modfg(A0

S)]), sending ES to the free rank-one module. It is clear that

5In loc. cit. this statement is stated under the running assumption that the scheme is of

finite type over C. However, the same proof works in the present generality.
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the algebra together with the equivalence of derived categories determines

the t-structure, while the t-structure determines the algebra uniquely up to

a Morita equivalence.

According to the terminology of, say, [BO02], the noncommutative O(N )-

algebra A0 = End(E|‹N ) is a noncommutative resolution of singularities of the

singular affine algebraic variety N , while A = End(E) is a noncommutative

resolution of the affinization g×h/Wh of g̃. In view of its close relation to the

Springer resolution, we call A0 a noncommutative Springer resolution, while

A will be called a noncommutative Grothendieck resolution of g×h/Wh; cf.

[Bez06b].

For future reference we record some properties of the algebra A that di-

rectly follow from the theorem.

Lemma. (a) A is a vector bundle and a Frobenius algebra over g.

(b) A0 def
= End(E|‹N ) is a base change A0 ∼= A

L
⊗O(h)O0 of A = End(E) in the

direction of h.

(c) Algebras associated to base changes S → g are themselves base changes in

the direction of g: AS ∼= A⊗O(g) O(S) (resp. A0
S
∼= A0 ⊗O(g) O(S)).

Proof. (a) The sheaf of algebras A = End(E) is Frobenius for the trace

functional tr. Since g̃ and g are Calabi-Yau and have the same dimension,

Grothendieck duality implies that the sheaf A = (g̃
π−→ g)∗A is self-dual. In

particular, it is a Cohen-Macaulay sheaf, so since g is smooth, this implies

that it is a vector bundle. Moreover, since g̃ is finite and flat over the regular

locus gr⊆g, Frobenius structure tr on A induces a Frobenius structure on A|gr .
Now, since the complement is of codimension three, this extends to a Frobenius

structure on the algebra bundle A.

For (b), we have

A0 (1)
= RΓ(A|‹N )

(2)
= RΓ(A

L
⊗O(h) O0) = RΓ(A)

L
⊗O(h) O0

(3)
= A

L
⊗O(h) O0.

Here, vanishing statements (1) and (3) come from E and E|‹N being tilting

generators, while (2) follows from Ñ = g̃×h0 and flatness of g̃→ h.

(c) follows from base change isomorphisms RΓ(End(ES)) ∼= O(S)
L
⊗O(g) A

(and similarly for S′), which follow from the exactness assumption on base

change to S. Since the space in the right-hand side belongs to D≤0 while the

space in the left-hand side lies in D≥0, both in fact lie in homological degree

zero and the above isomorphisms hold.

1.5.4. Remark on the DG-version of the theorem. We have required ex-

actness of base change to avoid dealing with DG-schemes. Using some basic

elements of that formalism, one can derive the following generalization of The-

orems 1.3.2 and 1.5.1. Let S be an arbitrary affine Noetherian scheme equipped



REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS 851

with a morphism S → g. First, Baff acts naturally on the triangulated cat-

egory DGCoh(g̃
L
×g S) of differential graded coherent sheaves on the derived

fiber product DGCoh(g̃
L
×g S). Then this allows us to extend the definition of

an exotic t-structure to that context.

Finally, let E be as in the theorem and A = End(E) as above. Then we

have an equivalence of triangulated categories (the tensor product A⊗OgO(S)

does not have to be derived since A is flat over O(g) by Lemma 1.5.3):

DGCoh(g̃
L
×g S) ∼= Db(modfg[A⊗Og O(S)]).

The t-structure on DGCoh(g̃
L
×gS) corresponding to the tautological t-structure

on Db(modfg[A⊗Og O(S)]) is the unique exotic t-structure.

In particular, when S = {e} is a K point of g where K is an algebraically

closed field of characteristic p > h, then the category modfg[A ⊗Og Oe] is

identified with a regular block in the category of UK,e-modules, where the

subscript denotes reduction of UK by the corresponding maximal ideal in the

Frobenius center. The category DGCoh(g̃
L
×g e) of coherent sheaves on the DG

Springer fiber is studied in [Ric10].

1.6. Representation theoretic t-structures on derived categories of coherent

sheaves. We now record a particular case of Theorem 1.5.1 that follows from

the results of [BMR08], [BMR06]. In the next section we will deduce the

general case from this particular case.

Fix K ∈ FGP and a nilpotent e ∈ N (K).

1.6.1. The center of UgK. The description of the center of enveloping

algebra in characteristic p > h is Z(UgK) ∼= Og∗K
(1)×

h∗K/W
(1)h
∗
K/W

, where X(1)

denotes the Frobenius twist of a K-scheme X and the map h∗K → h∗K
(1) is

the Artin-Schreier map [BMR08]. When X is one of gK, hK, we can use the

canonical Fp-rational structure to identify K-scheme X(1) with X. This gives

isomorphism g∗K
(1)×h∗K/W

(1)h∗K/W
∼= g∗K×h∗K/W

h∗K/W
∼= gK×hK/WhK/W .

A compatible pair of e ∈ gK and λ ∈ hK gives a central character of UK,

which we can then impose on UK or mod(UK). We denote UλK,e=UK⊗Z(UK)Kλ,e,

while U λ̂K,ê is the completion of UK at (λ, e) and modλe (UK) is the category of

modules with generalized character (λ, e). Similarly, we get UλK or UK,e by

imposing a central character condition for one of the two central subalgebras.

This may be combined in other ways to get objects like modλ(UK,e), etc.

1.6.2. Representation theoretic t-structures. By the main result of [BMR08],

for integral regular λ, we have canonical equivalence of categories of g-modules
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and coherent sheaves6

Db(Coh(‘BK,e)) −−−−→∼= Db[modfg(Uλ̂
K,ê)]

⊆
x ⊆

x
Db(CohBK,e(g̃K)) −−−−→∼= Db[modfg,λe (UK)]

and
Db(Coh(‘BK,e′)) −−−−→∼= Db[modfg(Uλ

K,ê)]

⊆
x ⊆

x
Db(CohBK,e(ÑK)) −−−−→∼= Db[modfg

e (Uλ
K)].

(Recall that the index BK,e refers to sheaves set-theoretically supported on

BK,e.) Here, the second line is Theorem 5.4.1 in [BMR08]. The first line is

stated in the footnote on the same page.

These equivalences provide each of the derived categories of coherent

sheaves with a t-structure — the image of the tautological t-structure on the

derived category of modules. According to Lemma 6.1.2.a in [BMR08], this

t-structure depends only on the alcove to which λ+ρ
p belongs, not on λ itself.

We call the t-structure obtained from λ such that λ+ρ
p is in the fundamen-

tal alcove (e.g., λ = 0) the representation theoretic t-structure on the derived

category of coherent sheaves (RT t-structure for short).

Here, by an alcove we mean a connected component of the complement to

the affine coroot hyperplanes Hα̌,n = {λ|〈α̌, λ〉 = n}, in the dual space h∗R to

the real Cartan algebra hR, where α̌ runs over the set of coroots and n ∈ Z.

The fundamental alcove A0 is the locus of points where all positive coroots

take values between zero and one. Let Alc be the set of alcoves.

1.6.3. Theorem. For any K ∈ FGP and e ∈ N (K), the RT t-structure

on Db[CohBK,e(g̃K)], Db[CohBK,e(ÑK)] is exotic. Therefore, for λ ∈ Λ such that
λ+ρ
p ∈ A0, there are canonical equivalences of categories

modfg(U λ̂ê ) ∼= Ecoh(‘BK,e) and modfg(Uλê ) ∼= Ecoh(‘BK,e′).
The proof is based on

1.6.4. Proposition. The equivalence of Theorem 5.4.1 of [BMR08] is

compatible with the Baff action.

6 A priori such equivalences require a choice of a splitting bundle for certain Azumaya

algebra. By “canonical equivalences” we mean that we use the standard splitting bundle from

[BMR08, Rem. 5.2.2.2]. Also, we are suppressing Frobenius twistX(1) from the notation using

identifications X(1) ∼= X that are available when X is defined over the prime subfield.
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Proof. The proof follows from [Ric08, §5]. �

1.6.5. Proof of Theorem 1.6.3. In [BMR06, 2.2.1] the action of Coxeter

generators s̃α of Baff (also denoted by I∗α in loc. cit.) is defined through a

canonical distinguished triangle

M → Rα(M)→ s̃α(M), M ∈ Db(mod0,fg(UK)),

where Rα is the so-called reflection functor. Thus exactness of Rα implies

that s̃α acts by right exact functors. Also, we have a commutative diagram

[BMR06, Lemma 2.2.5]:

Db(modfg
e (U0

K) −−−−→ Db[CohBK,e(ÑK)]

T−ρ0

y yRΓ

Db(modfg
e (U−ρK )) −−−−→ Db[Cohe(NK)].

Here the horizontal arrows are localization equivalences and T−ρ0 is the trans-

lation functor. Thus exactness of T−ρ0 implies that the RT t-structure satisfies

the normalization requirement in the definition of an exotic t-structure. �

1.6.6. Equivariant version of representation theoretic t-structures. We will

also need an equivariant version of localization theorem of [BMR08] and its

relation to exotic t-structures.

Let K, e, λ be as in Theorem 1.6.3, and let C be a torus with a fixed map

to the centralizer of e in G.

Recall a traditional enhancement of mod(Uλe ). Since e vanishes on the

image of c = Lie(C) in g, the action of c on any object of mod(Uλe ) has zero

p-character. The category of restricted c-modules is semisimple with simple ob-

jects indexed by c∗(Fp) = X∗(C)/p; thus every M ∈ mod(Uλe ) carries a canon-

ical grading by X∗(C)/p. One considers the category modgr(U
λ
e ) whose object

is an Uλe -module together with a grading by X∗(C). The grading should be

compatible with the natural X∗(C) grading on Uλe , and the induced X∗(C)/p

grading should coincide with the above canonical one.

The goal of this subsection is to describe a geometric realization for

modgr(U
λ
e ). To simplify the statement of the derived equivalences we need

to enlarge the category (without changing the set of irreducible objects nor

the Grothendieck group).

Define the categories modfg(U λ̂
ê
, C), modfg(Uλ

ê
, C) as follows. An object

M of modfg(U λ̂
ê
, C) (respectively, modfg(Uλ

ê
, C)) is an object of modfg(U λ̂

ê
)

(respectively, modfg(Uλ
ê

)) together with a C action (equivalently, an X∗(C)

grading) such that

(i) The action map U → End(M) is C-equivariant.
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(ii) Consider the two actions of c on M : the derivative αC of the C action

and the composition αg of the maps c → g → End(M). We require

that the operator αg(x)− αC(x) is nilpotent for all x ∈ c.

Notice that the actions αg and αC commute; moreover, condition (i) im-

plies that the difference αg(x)− αC(x) commutes with the action of g.

Also, if M ∈ modfg(U λ̂e ), then the action αg is semisimple; thus, in this

case conditions (i) and (ii) above imply that αg = αC and M ∈ modfg
gr(U

λ̂
ê

).

This applies, in particular, when M is irreducible.

For future reference we mention also that one can consider the categories

modC,fg(U λ̂
ê

), modC,fg(Uλ
ê

) of modules equipped with a C action subject to

the condition (i) above only. A finite-dimensional module M in one of these

categories splits as a direct sum M =
⊕
η∈c∗

Mη of generalized eigenspaces of

operators αC(x)− αg(x), x ∈ c; moreover, Mη = 0 unless η ∈ c∗(Fp).
For a general M ∈ modC,fg(U λ̂

ê
), the quotient Mn of M by the n-th power

of the maximal ideal in ZFr corresponding to e is finite dimensional. It is easy

to see that the above decompositions for Mn for different n are compatible;

thus, we get a decomposition of the category

(3) modC,fg(U λ̂
ê

) =
⊕

η∈c∗(Fp)

modC,fgη (U λ̂
ê

),

and similarly for modC,fg(Uλ
ê

). Notice that modC,fg0 (U λ̂
ê

) = modfg(U λ̂
ê
, C) and

for η̃ ∈ X∗(C), twisting the C-action by η gives an equivalence modC,fgθ (U λ̂
ê

) ∼=
modC,fgθ+η(U

λ̂
ê

) where η = η̃mod p ·X∗(C).

1.6.7. Theorem. (a) There exist compatible equivalences of triangulated

categories

Db[CohC(‘BK,e)] ∼= Db[modfg(U λ̂
ê
, C)]

and

Db[CohC(‘BK,e′)] ∼= Db[modfg(Uλ
ê
, C)].

(b) Under the functor of forgetting the equivariant structure, these equivariant

equivalences are compatible with the equivalences of [BMR08] from 1.6.2.

(c) The representation theoretic t-structures that these equivalences define on

categories of coherent sheaves coincide with the exotic t-structures, so we

have induced equivalences

modfg(U λ̂ê , C) ∼= EcohC(‘BK,e) and modfg(Uλê , C) ∼= EcohC(‘BK,e′).
The equivalences will be constructed in 5.2.4. Compatibility with forget-

ting the equivariance will be clear from the construction, while compatibility

with t-structures follows from compatibility with forgetting the equivariance.
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1.6.8. Splitting vector bundles. Theorem 1.6.3 has a geometric conse-

quence. Recall that for K ∈ FGP, e ∈ NK and λ ∈ Λ, the Azumaya algebra

coming from λ-twisted differential operators splits on the formal neighborhood‘BK,e′ of the Springer fiber B′K,e in ÑK. Let Espl
e (λ) be the splitting vector bun-

dle constructed in [BMR08, Rem. 5.2.2.2]. (The unramified shift of λ that we

use is −ρ.)

Corollary. When λ+ρ
p lies in the fundamental alcove,7 the splitting vec-

tor bundle Espl
e (λ) does not depend on p up to replacing it by an equidecom-

posable bundle. More precisely, there exists a vector bundle V on g̃, defined

over R, whose base change to ‘BK,e′ is equidecomposable with Espl
e (λ) for every

K, e, λ as above.

Proof. Take E as in Theorem 1.5.1 and V = E∗. Then, in view of Propo-

sition 5.1.4, both the base change EB̂K,e and the dual of the splitting bundle

Espl
e (λ)∗ are projective generators for Ecoh(‘BK,e). Thus they are equidecom-

posable.8 �

Example. In particular, Fr∗(OBK) does not depend on p > h up to replac-

ing it by an equidecomposable bundle. The reason is that for e = 0 and λ = 0,

the splitting bundle for the restriction of DBK to ‘BK,e′ can be chosen so that

its restriction to the zero section BK is Fr∗(OBK) (cf. [BMR08]).

1.7. Quantum groups, affine Lie algebras and exotic sheaves. We finish

the subsection by stating two conjectures on other appearances of the non-

commutative Springer resolution (and therefore also of exotic sheaves) in rep-

resentation theory. Let e ∈ NC, and denote A0
e

def
= A0

C⊗O(NC)Oe.
Let UDK

ζ be the De Concini-Kac form of the quantum enveloping algebra

of gC at a root of unity ζ of odd order l > h [DCK90]. Recall that the center

of UDK
ζ contains a subalgebra Zl, the so-called l-center. The spectrum of Zl

contains the intersection of the variety of unipotent elements in GC with the big

Bruhat cell B+B−. We identify the varieties of unipotent elements in GC and

nilpotent elements in gC. Fix e ∈ N (C) such that the corresponding unipotent

element lies in the big cell.

1.7.1. Conjecture. The category modfg(A0
e) is equivalent to a regular

block in the category of UDK
ζ -modules with central character corresponding to e.

7 The result can be generalized for an arbitrary alcove; see 1.8.
8The reason that E gets dualized is a difference of conventions. For a tilting generator

E , it is standard to use RHom(E ,−) to get to modules over an algebra, while for a splitting

bundle V , one uses V
L
⊗−. The first functor produces a rank-one free module over the algebra

when applied to E and the second when applied to V ∗.
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A possible way to approach this conjecture is by combining the present

techniques with localization for quantum groups at roots of unity [BK08],

[Tan12].

The next conjecture is motivated by the conjectures and results of [FG09];

see the introduction.

1.7.2. Conjecture.9 Fix a nilpotent GC-oper O on the formal punctured

disc with residue e ∈ N (C). The category Ae of Iwahori-integrable modules

over the affine Lie algebra ĝC at the critical level with central character corre-

sponding to O is equivalent to the category of A0
e-modules

Ae ∼= mod(A0
e).

1.8. t-structures assigned to alcoves. In 1.6.2 we used representation the-

ory to attach to each alcove a collection of t-structures on formal neighborhoods

of Springer fibers in characteristic p > h. The particular case of the funda-

mental alcove yields the exotic t-structure (Theorem 1.6.3). The following

generalization of Theorem 1.5.1 shows that all these t-structures can also be

lifted to g̃R and ÑR and hence to zero characteristic.

For A1, A2 ∈ Alc, we will say that A1 lies above A2 if for any positive

coroot α̌ and n ∈ Z, such that the affine hyperplane Hα̌,n = {λ, | 〈α̌, λ〉 = n}
separates A1 and A2, alcove A1 lies above Hα,n, while A2 lies below Hα̌,n, in

the sense that for λi ∈ Ai, we have 〈α̌, λ2〉 < n < 〈α̌, λ1〉.
Recall the right action of Waff on the set of alcoves. It will be denoted by

w : A 7→ Aw.

1.8.1. Lemma. (a) There exists a unique map Alc×Alc → BCox
aff ⊆Baff ,

(A1,A2) 7→ bA1,A2 , such that

(i) bA1,A2bA2,A3 = bA1A3 for any A1,A2,A3 ∈ Alc.

(ii) bA,Aw = ‹w for w ∈WCox
aff and A ∈ Alc, provided that Aw lies above A.

(b) This map satisfies

bλ+A1,λ+A2 = bA1,A2 for λ ∈ Λ,

b
A0,λ+Aw

−1
0

= θλ‹w−1 for w ∈W, λ ∈ Q,

where λ+ A denotes the λ-shift of A.

(c) The element bA1,A2 admits the following topological description. Let h∗C,reg =

h∗C \ ∪α̌,n (Hα̌,n)C. Notice that a homotopy class of a path in h∗C,reg con-

necting two alcoves A1 and A2 in h∗R determines an element in BCox
aff =

π1(h∗C,reg/W
Cox
aff , •), because each alcove is contractible, and alcoves are

9This conjecture has been proved in [BL12].
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permuted transitively by WCox
aff , so they all give the same base point • in

h∗C,reg/W
Cox
aff .

Let λ ∈ h∗ be a regular dominant weight. Then the subspace −iλ + h∗R
does not intersect any of the affine coroot hyperplanes in h∗C. For two points

x ∈ A1, y ∈ A2, consider the path from x to y that is a composition of the

following three paths : t 7→ x − itλ (0 ≤ t ≤ 1), any path from x − iλ to

y− iλ in −iλ+ h∗R and the path t 7→ y− i(1− t)λ (0 ≤ t ≤ 1). Then bA1,A2

is represented by this path.

Proof. Uniqueness in (a) is clear since for any two alcoves there exists an

alcove that is above both of them. To check existence, define bA1,A2 as in part

(c). Then property (i) is clear. To see property (ii) it suffices to consider the

case when w = sα is a simple reflection. Then s̃α is represented by the loop

that starts at the fundamental alcove A0 and runs a half-circle (in a complex

line given by the direction α) around the hyperplane of the affine coroot α,

in the positive (counterclockwise) direction and ending at sα(A0) = Asα0 . The

element z of WCox
aff such that zA0 = A sends Asα0 to Asα while the simple affine

coroot is sent to an affine linear functional taking positive values on A and

negative values on Asα . Thus the two loops are manifestly homotopic.

(b) The first property in (b) follows from uniqueness in (a), as translation

by λ commutes with the right action of Waff and preserves the partial order on

alcoves. To check the second one, let us first consider the case when either λ = 0

or w = 1. If λ = 0, the statement follows from (ii), as A0 lies above w(A0) = Aw0
for w ∈ W . When w = 1 and λ is dominant, then θλ = λ̃ and λ + A0 lies

above A0, so the claim follows from (a)(ii). Then the case w = 1 and arbitrary

λ follows from the first property in (b). Finally, the general case follows from

(a)(i) since b
λ+A0,λ+Aw

−1
0

= b
A0,Aw

−1
0

= ‹w−1 by the first property in (b). �

Example. bA0,−A0 =b
A0,A

w0
−1

0

=›w0
−1, hence b−A0,A0 =(b

A0,A
w0
−1

0

)−1 =›w0.

1.8.2. The first part of the next theorem is a reformulation of Theo-

rem 1.5.1.

Theorem (cf. [Bez06b, 2.1.5]). (a) Let X = g̃ and S ∈ BC, or let X = Ñ
and S ∈ BC′. There is a unique map from Alc to the set of t-structures on

Db[Coh(S×gX)], A 7→ T S,XA such that

(1) (Normalization). The derived global sections functor RΓ is t-exact

with respect to the t-structure T S,XA0
corresponding to the fundamental

alcove A0.

(2) (Compatibility with the braid action). The action of the element bA1,A2

sends T S,XA1
to T S,XA2

.

(3) (Monotonicity). If A1 lies above A2, then D≥0
A1

(X) ⊇ D≥0
A2

(X).
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(b) For a fixed alcove A, the t-structures T S,XA are compatible with base change

S1 → S in the sense that the direct image functor is t-exact.

(c) For each S, the t-structure T S,XA is locally free, and one can choose the

corresponding tilting generators ESA , S ∈ BCX , as pull-backs of a G × Gm-

equivariant locally free tilting generator EA on g̃.

(d) When A = A0 is the fundamental alcove, then T S,XA0
is the exotic t-structure

of Theorem 1.5.1.

(e) If vector bundle ESA is a tilting generator for T S,XA , then the dual (ESA )∗ is a

tilting generator for T S,X−A .

The proof will be given in Section 2.6.

2. Construction of exotic t-structures

2.1. Action of simple reflections s̃α
±1 on coherent sheaves. We will need

an additional property of the action, which can be viewed as a geometric

version of the quadratic relation in the affine Hecke algebra. We start with an

elementary preliminary lemma.

2.1.1. Lemma. For any α ∈ Iaff , s̃α is conjugate in the extended affine

braid group Bsc
aff to some s̃β, β ∈ I .

Proof. Consider first the case when α ∈ Iaff is connected in the affine

Dynkin diagram to some root β ∈ I of the same length. Then u = sαsβ has

length two and usα = sαsβsα = sβsαsβ = sβu has length three, so ũs̃α = s̃βũ

in Baff . Therefore, s̃α = ũ−1
s̃β. This observation suffices in all cases but Cn.

For Cn, the affine Dynkin diagram is a line with two roots of equal length

α ∈ Iaff − I and β ∈ I at the ends. The stabilizer Ω of the fundamental alcove

in the extended affine Weyl group W sc
aff acts on the affine Dynkin diagram, and

an element ω ∈ Ω realizes the symmetry that exchanges α and β. Since the

length function vanishes on Ω, we find that sα = ωsβ in W sc
aff lifts to s̃α = ω̃ s̃β

in Bsc
aff . �

We are now ready to deduce the desired property of the action. To state it

we need some notations. As before, we denote the above weak geometric action

by Baff 3 b 7→ Kb ∈ Db[Coh(g̃×gg̃)]. For a root α ∈ Iaff , let Hα⊂h∗ be the hy-

perplane passing through 0∈h∗ and parallel to the affine-linear hyperplane of α.

2.1.2. Proposition. (a) For every simple root α ∈ Iaff , we have an exact

triangle in Db[Coh(g̃×gg̃)]:

(4) K‹sα−1
aα−−−−→ K‹sα bα−−−−→ ∆∗(Og̃×hHα),

where ∆ : g̃→ g̃2 is the diagonal embedding.
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(b) For every α ∈ Iaff and every F ∈ D = Db(Coh(g̃S)), we have a (canonical)

isomorphism in the quotient category D/〈F〉:

s̃α(F) ∼= s̃α
−1(F) mod 〈F〉.

Here 〈F〉 denotes the thick triangulated subcategory generated by F ; i.e.,

the smallest full triangulated subcategory closed under direct summands and

containing F .

Proof. (a) By Lemma 1.3.4(a), validity of the claim for a given α ∈ Iaff

implies its validity for any β ∈ Iaff such that s̃β is conjugate to s̃α in Bsc
aff .

Thus in view of Lemma 2.1.1, it suffices to prove the claim for α ∈ I. By

Lemma 1.3.4(b), we have only to check that the divisor Dα
def
= ∆(g̃×h Hα) in

Γsα satisfies

(5) OΓsα (−Dα) ∼= OΓsα 〈−ρ,−α+ ρ〉.

It is easy to see that Dα is the scheme-theoretic intersection of Γsα with

the diagonal ∆g̃ = Γe. Set Zα = g̃ ×g̃α g̃, where g̃α = g̃Pα , Pα = G/Pα for a

maximal parabolic Pα of type α. Then Γsα and ∆g̃ are irreducible components

of Zα and (5) follows from the isomorphism of line bundles on Zα: J∆g̃
∼=

OZα〈−ρ,−α+ ρ〉, where J stands for the ideal sheaf. It suffices to check that

the two line bundles have isomorphic restrictions to ∆g̃ and to a fiber of the

projection pr2 : Zα → g̃ (which is isomorphic to P1). It is easy to see that in

both cases these restrictions are isomorphic to OZα(−α), OP1(−1) respectively.

Thus (5) is verified.

The distinguished triangle in (a) implies that for F ∈ D, we have canonical

distinguished triangle s̃α
−1(F) → s̃α(F) → F ′, where F ′ = ODα ∗ F . On the

other hand, the obvious exact sequence of coherent sheaves 0 → O∆g̃

α−→
O∆g̃

→ ODα → 0 yields a distinguished triangle F → F → F ′, which shows

that F ′ ∈ 〈F〉. This implies (b). �

2.2. Uniqueness. Here we prove the following description of the exotic

t-structure.

2.2.1. Proposition. Let S → g be an exact affine base change of g̃ → g

(resp. of Ñ → g). If an exotic t-structure on S̃ (resp. S̃′) exists, then it is

unique and given by

D≥0 = {F ; RΓ(b−1(F)) ∈ D≥0(Ab) ∀b ∈ B+
aff},

D≤0 = {F ; RΓ(b(F)) ∈ D≤0(Ab) ∀b ∈ B+
aff}.

2.2.2. Let A = D≥0 ∩D≤0 be the heart of an exotic t-structure T , and

let H i
T : D → A be the corresponding cohomology functors. Recall that for

w ∈Waff , we denote its canonical lift by ‹w ∈ Baff .
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Lemma. For M ∈ A, let AM ⊂ A be the Serre subcategory generated

by M . Then for any α ∈ Iaff ,

H i
T (s̃αM), H i

T (s̃α
−1M) ∈ AM for i 6= 0

and

H0
T (s̃αM) ∼= H0

T (s̃α
−1M) mod AM .

Proof. Proposition 2.1.2(b) implies that

H i
T (s̃αM) ∼= H i

T (s̃α
−1M) mod AM

for all i. On the other hand, by the definition of braid positivity, we have

H i
T (s̃αM) = 0 for i > 0 while H i

T (s̃α
−1M) = 0 for i < 0. �

2.2.3. Corollary. Set D−1 = D, and let D0 ⊂ D be the full subcate-

gory of objects F such that RΓ(F) = 0. For i > 0, define inductively a full

triangulated subcategory Di ⊂ D by

Di = {F ∈ Di−1 ; s̃α(F) ∈ Di−1 ∀α ∈ Iaff}.

Set Ai = Di ∩ A, i ≥ 0. Then we have

(a) Ai is a Serre abelian subcategory in A.

(b) Any exotic t-structure T induces a bounded t-structure on Di, whose heart

is Ai.
(c) For i > 0 and any α ∈ Iaff , the composition of s̃α with the projection

to D/〈Ai〉 sends Ai to Ai−1/Ai ⊂ Di−1/Di; it induces an exact functor

Ai → Ai−1/Ai.

Proof. We prove the statements together by induction. Assume they are

known for i ≤ i0. Validity of statement (c) for i ≤ i0 implies that for any

α1, . . . , αi0+1, the functor

F 7→ RkΓ(s̃α1 · · ·‡sαi0+1(F))

restricted to Ai0 vanishes for k 6= 0 and induces an exact functor Ai0 → Vect

for k = 0. The subcategory Ai0+1 ⊂ Ai0 is, by definition, the intersection of

the kernels of all such functors; this shows it is a Serre abelian subcategory in

Ai0 , hence in A. Thus (a) holds for i = i0 + 1.

Moreover, we see that for F ∈ Di0 , vanishing of R•Γ(s̃α1 · · ·‡sαi0+1(F))

implies that for an exotic t-structure T , all R•Γ(s̃α1 · · ·‡sαi0+1H
k
T (F)) vanish

for k ∈ Z. Thus for F ∈ Di0+1, we have Hk
T (F) ∈ Di0+1 for all k. This shows

that the truncation functors preserves Di0+1; i.e., (b) holds for i = i0 + 1.

Finally statement (c) for i = i0 + 1 follows from Lemma 2.2.2. �
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2.2.4. Proof of Proposition 2.2.1. Let T be an exotic t-structure. Assume

that F ∈ D, F 6∈ D≤0, and let i > 0 be the largest integer such that H i
T (F) =

M 6= 0. It suffices to show that RiΓ(b(F)) 6= 0 for some b ∈ B+
aff .

Lemma 2.4.1(a) implies that
⋂
i
Ai = {0}, so M 6∈ Ad for some d; let d

be smallest integer with this property. If d = 0, then RiΓ(F) 6= 0, so we are

done. Otherwise let b = s̃α1 · · · s̃αd be an element such that b(M) 6∈ D0. Then

by Corollary 2.2.3, we have R0Γ(b(M)) 6= 0. Consider the exact triangle

τT<i(F)→ F →M [−i],

and apply b to it. Since b is T -right exact and RΓ is T -exact, we see that

RΓ(b(τ<i(F)))∈D<i(Vect). Thus we see that RiΓ(b(F))−→∼= RiΓ(b(M)[−i]) 6=0.

This proves the description of D≤0
T . The description of D>0

T is proved

similarly. �

2.3. Reflection functors Rα for coherent sheaves. Reflection functors can

be considered as a categorical counterpart of the idempotent of the sign rep-

resentation in a Levi subalgebra of a Hecke algebra (or the group algebra of

the affine Weyl group). Reflection functors on representation categories are

usually defined using translation functors, which are direct summands of the

functor of tensoring by a finite-dimensional representation. In this subsection

we define geometric reflection functors and show some favorable properties

they share with reflection functors in representation theory. In fact, using the

results of [BMR06] it is not hard to check that these functors are compatible

with the usual reflection functors for modules over the Lie algebra in positive

characteristic. We neither check this in detail nor use it in the present paper;

however, the proof of Theorem 1.6.3 above is closely related to this fact.

For α ∈ Iaff , let Ξα ∈ Db[Cohg̃×gg̃(g̃
2)] denote the pull-back of the exten-

sion K−1‹sα → K‹sα → O∆×hHα under the surjection O∆ → O∆×hHα , so we have

an extension K−1‹sα → Ξα → O∆. We define the reflection functor Rα by the

integral kernel Ξα.

2.3.1. Adjoints of reflection functors. We first consider finite simple roots

α ∈ I. Let Pα⊇B be a minimal parabolic of type α. The canonical projection

g̃ = G×Bb
πα−→ g̃α is generically a ramified two-sheet covering.

Lemma. For α ∈ I , Ξα = Og̃×g̃α g̃
and the reflection functor Rα is iso-

morphic to the functor (πα)∗(πα)∗.

Proof. We will only consider the case of sl2. The general case follows

by considering an associated bundle. Notice that g̃×g̃α g̃ has two irreducible

components ∆g̃ and Sα, which meet transversely along ∆‹N . ThenOSα(−ρ,−ρ)

is the ideal of ∆g̃ ∩ Sα inside Sα and of ∆g̃ inside ∆g̃ ∪ Sα = g̃×g̃α g̃. So, one
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has
0 −−−−→ OSα(−ρ,−ρ) −−−−→ Og̃×g̃α g̃

−−−−→ O∆g̃
−−−−→ 0y y y

0 −−−−→ OSα(−ρ,−ρ) −−−−→ OSα −−−−→ O∆
Ñ
−−−−→ 0.

The lower line is the construction of the exact triangle in Proposition 2.1.2(a),

and then the upper line says that Ξα is Og̃×g̃α g̃
. The claim for Rα follows.

Corollary. For any simple root α ∈ Iaff ,

(a) We have two canonical distinguished triangles

(6) K−1‹sα → Ξα → O∆g̃
and O∆g̃

→ Ξα → K‹sα .
(b) The left and right adjoints of Rα are both isomorphic to Rα.

(c) Rα is exact relative to an exotic t-structure.

Proof. The first triangle appears in the definition of Ξα. To get the second

one it suffices, in view of Lemma 1.3.4(b), to show that

(7) S(Ξα)[−dim g] ∼= Ξα

for all α ∈ Iaff , where S denotes Grothendieck-Serre duality. For α ∈ I,

isomorphism (7) follows from Lemma 2.3.1.

Furthermore, Lemma 1.3.4(b) implies that the conjugation action of b ∈
Baff commutes with Serre duality. Thus (7) holds in general by Lemma 2.1.1.

This proves (a). To get (b) we use the following general fact. If X is

Gorenstein and F ∈ Db[Coh(X ×X)], then it is not hard to show that the left

adjoint to the functor of (left) convolution with F is given by (left) convolution

with

(8) Fv def
= ι∗ (RHom(F ,OX2)⊗ pr∗2KX) = ι∗

Ä
SX2(F)⊗ pr∗1K

−1
X

ä
,

where ι : X2 → X2 is the involution ι(x, y) = (y, x) while KX = Ωtop
X [dimX]

is the dualizing sheaf on X.

Now isomorphism (7) implies (b) in view of (8).

Statement (c) follows from (a), since left exactness of Rα follows from

the first distinguished triangle, while right exactness follows from the second

one. �

Remark. Notice that unlike the generators for the affine braid group ac-

tion, the geometric reflection functors do not induce a functor on the derived

category of sheaves on Ñ (or varieties obtained from the latter by base change).

This is related to the fact that the restriction of Ξα to the preimage of 0 un-

der the first projection to h is not supported (scheme-theoretically) on the

preimage of 0 under the second projection.
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2.4. Weak generators for the derived category arising from reflection func-

tors. The notion of a weak generator was recalled in Section 1.4.3. In the

present subsection we construct weak generators for D[qCoh(g̃)], which will

turn out to be locally free sheaves satisfying the requirements of Theorem 1.5.1.

For a finite sequence J = (α1, α2, . . . , αk) of elements of Iaff , we set

ΞJ
def
= Rα1 · · ·Rαk(Og̃).

For a finite collection J of finite sequences, let ΞJ
def
=

⊕
J∈J

ΞJ . Notice that

these are G×Gm equivariant by construction.

2.4.1. Lemma. (a) There exists a finite collection of elements bi ∈ B+
aff

such that each of the two objects ⊕bi(Og̃) and ⊕b−1
i (Og̃) is a weak generator

for D[qCoh(g̃)].

(b) There exists a finite collection J of finite sequences of Iaff such that ΞJ is

a weak generator for D[qCoh(g̃)].

Proof. Pick a very ample line bundle O(λ) on g̃ with λ ∈ Λ; thus there

exists a locally closed embedding g̃
i
↪→ PN such that O(λ) ∼= OPN (1)

∣∣∣
g̃
. It

is well known (and follows from [Bei78]) that the object
N⊕
i=0
O(i) generates

Db[Coh(Pn)] as a Karoubian triangulated category. Then its O(−N) twist
N⊕
i=0
O(−i) also does so.

If G ∈ Db[Coh(Pn)] generates Db[Coh(Pn)] as a Karoubian triangulated

category, we claim that i∗G is a weak generator for D(qCoh(g̃)). To see this,

let F ∈ D(qCoh(g̃)) be a complex such that Ext•(i∗(G),F) = 0. Since the

Karoubian triangulated subcategory of Db[qCoh(g̃)] generated by the restric-

tion i∗G contains all i∗OPn(k), k ∈ Z, we have Ext•(i∗OPn(k),F) = 0. As-

suming that F 6= 0, we can find d such that the d-th cohomology sheaf of

F does not vanish. There exists a coherent subsheaf G in the kernel of the

differential ∂d : Fd → Fd+1 that is not contained in the image of ∂d+1. The

sheaf G(k) is generated by global sections for k � 0; thus we get a nonzero

map i∗OPn(−k)[−d]→ F contradicting the above.

Thus the collection of multiples of λ, bi = i·λ ∈ Λ+ ⊂ B+
aff , 0 ≤ i ≤ N ,

satisfies the requirement in (a). To deduce (b) from (a) it suffices to show

that for every b ∈ Baff , there exists a finite collection of finite sequences Ji
in Iaff such that b(Og̃) lies in the triangulated subcategory generated by ΞJi .

Let us express b as a product b = s̃α1
±1· · ·s̃αd

±1 with αj ∈ Iaff . The exact

triangles (6) imply that b(Og̃) lies in the triangulated category generated by

all ΞJ where J runs over subsequences of (α1, . . . , αk). �
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2.5. Existence. This subsection contains a construction of exotic t-struc-

tures. For an object E ∈ Db[Coh(g̃)] and (R → K) ∈ FGP, we denote by E 0̂
K

the pull-back of EK to the formal neighborhood ”BK of the zero section in g̃K.

For S ∈ BC or S ∈ BC′ (see Section 1.3 for the notation), we will say that

a tilting generator E ∈ Coh(g̃S) (respectively, E ∈ Coh(ÑS)) is exotic if the

t-structure TE (notation of 1.4.2) is braid positive.

Theorem. Let E be any weak generator E = ΞJ from Lemma 2.4 with

J 3 ∅. Let ES (respectively, E ′S) be the sheaf on g̃S (respectively, ÑS) obtained

from E by pull-back.

Then for any S ∈ BC (respectively, S ∈ BC′), ES (respectively, E ′S) is a

locally free exotic tilting generator.

2.5.1. Reduction to the formal neighborhood of zero section in finite char-

acteristic. The proof of the theorem in Section 2.5.5 will proceed by reduction

to the case of positive characteristic. This case is treated by invoking the

representation theoretic picture. The reduction is achieved in the following

proposition.

Proposition. Let E be an object of Db(Coh(g̃)) containing O as a direct

summand.

(a) If E is an exotic locally free tilting generator, then for any S ∈ BC (respec-

tively, S ∈ BC′), the sheaf ES on g̃S (respectively, E ′S on ÑS) obtained by

pull-back from E is a locally free exotic tilting generator.

(b) Assume that E is Gm equivariant and E 0̂
K is an exotic locally free tilting

generator for any (R → K) ∈ FGP. Then E itself is an exotic locally free

tilting generator.

2.5.2. Lemma. (a) If E ∈ Db[CohGm(g̃)] is such that for any (R → K) ∈
FGP the object E 0̂

K is a locally free sheaf, then E is a locally free sheaf.

(b) If E ,F ∈ Db[CohGm(g̃)] are such that Ext>0

Coh(B̂K)
(E 0̂

K,F 0̂
K) = 0 for any

(R→ K) ∈ FGP, then Ext>0
Coh(g̃)(E ,F) = 0.

Proof. (a) Let U be the maximal open subset such that H0(E)
∣∣∣
U

is a

locally free sheaf and H i(E)
∣∣∣
U

= 0 for i 6= 0. Then U is Gm-invariant, and the

condition on E shows that this set contains all closed points of the zero fiber.

Hence U = g̃.

Statement (b) is obtained by applying similar considerations to the object

π∗(RHom(E ,F)) where π is the Grothendieck-Springer map. Here we use the

formal function theorem, which shows that Exti(E 0̂
K,F 0̂

K) is the space of sections

of the pull-back of Riπ∗RHom(EK,FK) to the formal neighborhood of zero. �
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2.5.3. Lemma. Let E be a tilting generator for Db(Coh(X)) where X = S̃

or X = S̃′ for some S in BC or in BC′. Then the E t-structure on Db(Coh(X))

is exotic if and only if Homi(E , s̃α(E)) = 0 for i > 0 and E contains O as a

direct summand.

Proof. Assume that the E t-structure is exotic. Since O represents the

functor RΓ, which is exact with respect to this t-structure, it is a direct

summand of any projective generator of the heart; in particular, of E . (A

tilting generator is a projective generator of the heart of the corresponding

t-structure.) Also, right exactness of s̃α and projectivity of E show that

Homi(E , s̃α(E)) = 0 for i > 0. Conversely, if O is a direct summand of E , then

the derived global sections functor is t-exact. Also, if Hom>0(E , s̃α(E)) = 0,

then s̃α(E) lies in D≤0 with respect to this t-structure, which implies that s̃α
sends D≤0 to itself. �

2.5.4. Proof of Proposition 2.5.1. (a) It is obvious that the pull-back func-

tor sends a locally free sheaf containing O as a direct summand to a locally

free sheaf containing O as a direct summand, while pull-back under an affine

morphism sends a weak generator of D(qCoh) to a weak generator of D(qCoh).

In view of the characterization of tilting generators quoted in Theorem 1.4.3

and criterion for a t-structure to be exotic from Lemma 2.5.3, it remains to see

that Exti(ES , ES) = 0, Exti(ES , s̃α(ES)) = 0 for i > 0 (or the similar equalities

for ES′). The required equalities follow by the base change theorem, which is

applicable due to the Tor vanishing condition. This proves part (a).

Assume now that E satisfies the conditions of (b). Then E is locally free

by Lemma 2.5.2(a). By Lemma 2.5.2(b), it satisfies the above Ext vanishing

conditions. Thus E is a tilting generator by Theorem 1.4.3, and it is an exotic

tilting generator in view of Lemma 2.5.3. �

2.5.5. Proof of Theorem 2.5. Let J be a finite collection of finite sequences

in Iaff such that ΞJ is a weak generator for Db(Coh(g̃)) and J 3 ∅. We have

to check that E = ΞJ satisfies the properties from Theorem 2.5. We will first

reduce the verification to formal neighborhoods of zero sections over closed

geometric points of positive characteristic; then the claim will follow from

translation to g-modules.

Recall from 2.4 that E is G×Gm-equivariant by construction and O is a

direct summand of E since ∅ ∈ J . Therefore, by Proposition 2.5.1 it suffices

to check that for any R → K in FGP, the restriction E 0̂
K of E to the formal

neighborhood of the zero section in g̃K or ÑK is a locally free tilting generator

for an exotic t-structure.

This will follow once we show that E 0̂
K is a projective generator for the

heart of the RT t-structure. Indeed, then E 0̂
K is locally free because another
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projective generator for the same heart, namely any splitting vector bundle for

the Azumaya algebra of differential operators on BK, is locally free. Also the

t-structure given by E 0̂
K is the RT t-structure, but we know that it is exotic

from Theorem 1.6.3.

To check that E 0̂
K is a projective generator for the heart of the RT t-

structure it is enough to check that it is (1) a projective object of the heart,

and (2) it is a weak generator.

Statement (2) is clear since E is a weak generator for Db(qCoh(g̃)). To

check (1) it is enough to treat the case of g̃. The case of Ñ follows because

the direct image under closed embeddings Ñ ↪→ g̃ is exact relative to the RT

t-structures. This is clear since it corresponds to the full embedding of the

categories of modular representations mod(Uλ)→ mod(U λ̂). We now consider

the case of g̃.

The pull-back functor under an exact base change preserves convolutions,

so each summand of E 0̂ = Ξ0̂
J is of the form Rα1,K · · ·Rαp,K “OK, where “OK is

the structure sheaf of the formal neighborhood of the zero section in g̃K and

the functor Rα,K is the convolution with the base change of Ξα under gK → g.

The structure sheaf “OK is projective for the RT structure because the RT

structure is exotic by Theorem 1.6.3, so the functor RHom(“OK,−) is exact.

(It can be identified with the direct image to g.) Thus we will be done if we

show that functors Rα,K preserve the subcategory of projective objects in the

RT heart.

The latter property is equivalent to the existence of a right adjoint toRα,K,

which is exact relative to the RT t-structure. According to Lemma 2.3.1, the

right adjoint of Rα is isomorphic to Rα itself and Rα can be written as an

extension of the identity functor with either the action of s̃α or s̃α
−1. The

same then holds for Rα,K. On g-modules, s̃α is right exact and s̃α
−1 is left

exact. According to 1.6.4 the equivalence of categories of representations and

of coherent sheaves intertwines the two actions of Baff . Hence we see that Rα,K
is both left and right exact for the RT t-structure. �

2.5.6. Example. For G = SL2, the vector bundle E , and therefore also the

algebra A, can be described explicitly. E is a sum of positive multiples ofOg̃ and

Og̃(1)
def
= (g̃→ B)∗OP1(1). We know that Og̃ is a summand of E , and since ρsα

fixes the fundamental alcove according to Remark 1.5.2, (ρsα)∼ Og̃ = Og̃(1)

is also a summand. To see that these are all indecomposable summands, it

suffices to see that Og̃ and Og̃(1) are weak generators of DbCoh(g̃). This is

true since OP1 ,OP1(1) are weak generators of DbCoh(P1) and g̃↪→P1×g. For

further explicit computations of this sort (over algebraically closed fields) we

refer to [BMR08], for the (sub)regular case and the case e = 0 for SL3, and to

[Ann] for the case when e ∈ sl(2n) has two Jordan blocks of equal size.
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2.6. Proof of Theorem 1.8.2. In (a), the compatibility with the affine braid

group action (axiom (2)) says that the choice of a t-structure T S,XA0
determines

the t-structures T S,XA = bA0,A(T S,XA0
) for all A. We need to check that this

collection of t-structures satisfies the monotonicity property (3) if and only if

the t-structure T S,XA0
is exotic.

Notice that for a simple reflection, we have bA0,sαA0 = s̃±1
α where the

power is +1 exactly when sαA0 is above A0, i.e., when α is not in the finite

root system. So, braid positivity of T S,XA0
is implied by monotonicity — it

amounts to monotonicity applied to pairs of alcoves A0, sαA0 where sα runs

over all simple reflections. On the other hand, assume T S,XA0
is braid positive.

To check property (3) for the collection T S,XA = bA0,A(T S,XA0
), it suffices to

consider a pair of neighboring alcoves A2 = Asα1 . Then the automorphism

b−1
A0,A1

sends the pair of t-structures (T S,XA1
, T S,XA2

) to the pair (T S,XA0
, s̃α(T S,XA0

)).

Thus the desired relation between T S,XA1
and T S,XA2

follows from braid positivity.

Thus part (a) — and at the same time part (d) — of the theorem follows

from existence and uniqueness of the exotic t-structure (Theorem 1.5.1).

Part (b) follows from compatibility of the affine braid group action with

base change (Theorem 1.3.2).

For (c) notice that for any S,X, a projective generator for the heart

of T S,XA can be obtained by pull-back from a projective generator for the

heart of T g,g̃
A that is of the form bA,A0(ΞJ ). So we just need to check that

EA
def
= bA0,A(ΞJ ) ∈ Db(Coh(g̃)) is a locally free sheaf.

As in the above arguments, it suffices to check that for any K ∈ FGP, the

pull-back of bA0,A(ΞJ) to the formal neighborhood of BK in g̃K is locally free.

This property of the pull-back follows from compatibility with localization for

gK-modules at a Harish-Chandra central character λ such that λ+ρ
p lies in the

alcove A, as explained in Section 1.6.

(e) It remains to check that E∗A is a tilting generator for T gR,g̃
−A . We will

prove the equivalent claim that b−A,A0(E∗A) is a tilting generator for the exotic

t-structure.

We will check that (i) (ESA )∗ is a tilting generator for T S,g̃−A where S is the

formal neighborhood of the zero section BK in g̃K for K ∈ FGP, and also that

(ii) O is a direct summand in b−A,A0(E∗A). Then Proposition 2.5.1(b) implies

the desired statement.

Statement (i) is immediate from the standard isomorphism (DLX)op ∼=
DL
−1⊗ΩX

X , where X is a smooth algebraic variety over a field, L is a line bundle,

ΩX is the line bundle of top degree forms and DLX is the sheaf of L-twisted

differential operators (cf. [BMR08]). In particular, we get (DλB)op ∼= D−2ρ−λ
B ,

which shows that the dual of a splitting vector bundle for DλB on the formal

neighborhood of the zero section is a splitting vector bundle for D−2ρ−λ
B . It is
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easy to see that the choice of the splitting vector bundle for DλB as in [BMR08,

Rem. 5.2.2.2] leads to dual vector bundles for λ and −2ρ− λ.

To check the claim that O is a direct summand in b−A,A0(E∗A) recall that

for w ∈ W , λ ∈ Q such that A = λ + w−1A0, one has bA0,A = θλ‹w−1

(Lemma 1.8(iii)). Since −A = −λ + w−1w0A0 = −λ + (w0w)−1A0, this also

implies that bA0,−A = θ−λfiw0w
−1 and so b−A,A0 = fiw0wθλ.

Since O is a summand in EA0 , the sheaf EA = bA0,AEA0 = θλ‹w−1EA0 has a

summand θλ‹w−1O ∼= O(λ) (recall that ‹wO ∼= O for w ∈W by Lemma 1.3.4(c))

and θλ(O)∼=O(λ). Therefore, O(−λ) is a direct summand in E∗A and b−A,A0(E∗A)

= fiw0wθλ(E∗A) has a summand fiw0wθλ O(−λ) ∼= fiw0w O ∼= O. �

3. t-structures on g̃P corresponding to alcoves on the wall

Let P be a partial flag variety, and consider the space g̃P of pairs of a

parabolic subalgebra p ∈ P and an element in it. We have a map πP : g̃→ g̃P .

Recall that we consider the partition of ΛR = Λ⊗Z R into alcoves, which

are connected components of the complement to the hyperplanes Hα̌,n :=

{λ ; 〈λ, α̌〉 = n} parametrized by all α ∈ ∆ and n ∈ Z. The fundamental

alcove A0⊆ΛR is given by 0 < 〈λ, α̌〉 < 1 for all positive coroots α̌.

The P-wall WP⊆ΛR is given by 〈λ, α̌〉 = 0 for roots α in the Levi root

subsystem defined by P. By a P-alcove we will mean a connected component of

the complement inWP to those affine coroot hyperplanes that do not contain it.

Let S → g be an affine exact base change of X → g where X = g̃P . (In

particular, X can be g̃ = g̃B.) An example would be a (Slodowy) slice. (The

proof for g̃ in Lemma 1.3.1 works also for g̃P .) The base change of πP to S is

a map πSP : g̃S → g̃P,S .

3.0.1. Lemma. Let $ : X → Y be a proper morphism of finite Tor di-

mension, and assume that R$∗OX ∼= O⊕NY for some N . Let TX , TY be the

t-structure on Db(Coh(X)), Db(Coh(Y )) respectively.

(a) If $∗ is t-exact, then TY is given by

F ∈ D<0
TY ⇐⇒ $∗F ∈ D<0

TX , F ∈ D>0
TY ⇐⇒ $∗F ∈ D>0

TX .

In particular, TY is then uniquely determined by TX . The same applies

with $∗ replaced by $!.

(b) If E is a projective generator for the heart of TX and $! is t-exact, then

$∗(E) is a projective generator for the heart of TY .

(c) Assume that TX corresponds to a tilting generator EX and that TY
corresponds to a tilting generator EY . Then the functor $! is t-exact if

and only if EY is equidecomposable with $∗(EX).

The functor $∗ is t-exact if and only if $∗(EY ) is a direct summand

in E⊕NX for some N .
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Proof. The “⇒” implication in (a) is immediate from the t-exactness as-

sumption. We check the converse for D<0; the argument for D>0 is similar. If

F 6∈ D<0, then we have a nonzero morphism φ : F → G, G ∈ D≥0
TY . The projec-

tion formula shows that $∗ ◦$∗ ∼= Id⊕N ; thus the map $∗(φ) : $∗F → $∗G
is not zero. Since $∗(G) ∈ D≥0

TX , this implies that $∗(F) 6∈ D<0
TX . This

proves the statement about $∗. The proof for $! is parallel, using the fact

that $∗ ◦ $! ∼= Id⊕N . (This isomorphism follows from the one for $∗$
∗ by

Grothendieck-Serre duality.)

To prove (b) recall that a functor between abelian categories sends pro-

jective objects to projective ones provided that its right adjoint is exact. Thus

$∗ sends projective objects in the heart of TX to projective ones in the heart

of TY if $! is t-exact. Also it sends weak generators of D(qCoh(X)) to weak

generators of D(qCoh(Y )) since $! is conservative (kills no objects), which is

clear from $∗ ◦$! ∼= Id⊕N .

The “only if” direction in the first statement in (c) follows from (b), while

the “if” part is clear from the definition of the t-structure corresponding to a

tilting generator and adjointness between $∗ and $!. The second statement

is clear from the fact that a functor between abelian categories is exact if

and only if its left adjoint sends a projective generator to a projective object

(equivalently, to a summand of a some power of a projective generator). �

Recall from 1.8 that there is a collection of locally free t-structures T SA on

S̃ indexed by alcoves A, and one can choose the corresponding tilting generator

ESA as a pull-back of a G×Gm-equivariant locally free tilting generator EA on g̃.

3.0.2. Theorem. (a) There exists a unique map AP 7→ T SAP from the set

of P-alcoves AP to the set of t-structures on Db(Coh(g̃P,S)) such that

If AP is a P-alcove in the closure of an alcove A, then both of

the functors (πSP)∗ and (πSP)∗ ∼= (πSP)!, between Db(Coh(g̃S)) and

Db(Coh(g̃P,S)), are exact for t-structures T SA and T SAP .

(b) Each T SAP is bounded and locally free. Moreover, for A, AP as above, any

projective generator ESA for T SA produces a locally free projective generator

ESAP = R(πSP)∗(ESA ) for T SAP .

(c) If S lies over a geometric point K of R, then (πSP)∗ sends any irreducible

object in the heart of T SA either to zero or to an irreducible object in the

heart of T SAP . This gives a bijection of T SA -irreducibles with nonzero images

and T SAP -irreducibles.

Proof. The isomorphism (πSP)∗ ∼= (πSP)! follows from the fact that g̃, g̃P
are smooth over R of the same dimension.
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The direct image (g̃→ g)∗Og̃ is Og×h/W h, and this is a free module of rank

|W | over Og since the same is true for O(h) as a module for O(h/W ). Thus

Lemma 3.0.1 applies.

Uniqueness of a t-structure T SAP for which (πSP)∗ is t-exact follows from

Lemma 3.0.1(a). The remaining part of statements (a) and (b) is equivalent,

in view of Lemma 3.0.1(c), to the following statement:

(•S) R(πSP)∗(ESA ) is a locally free tilting generator. Moreover, (πSP)∗R(πSP)∗(ESA )

is a direct summand in (ESA )⊕N for some N .

In the special case when S is the formal neighborhood 0̂K of zero in gK, K ∈
FGP, statements (a) and (b) and hence (•S) follow from results of [BMR06].

More precisely, the t-structure arising from the singular localization theorem

and the compatible splitting bundle satisfies the exactness properties because

direct and inverse image functors correspond to translation functors to/from

the wall [BMR06, Lemma 2.2.5], which are well known to be exact. A projective

generator for the heart of the t-structure can in this case be chosen to be a

splitting bundle on 0̂K for an Azumaya algebra ‹D on g̃
(1)
P [BMR06, Rem. 1.3.5].

This projective generator (and hence any) is clearly locally free.

The general case of (•S) follows from the above special case by the reason-

ing of Section 2. First, R(πSP)∗(ESA ) is a weak generator because ESA is a weak

generator and the right adjoint functor (πSP)! is conservative.

Now (b) would follow once we verify that

(i) R(πSP)∗(ESA ) is locally free and satisfies the Ext vanishing condition;

(ii) Hom(ESA , (πSP)∗R(πSP)∗(ESA )) is projective as a module over End(ESA ).

(Notice that vanishing of Exti(ESA , (πSP)∗R(πSP)∗(ESA )) for i 6= 0 follows from

the tilting property of R(πSP)∗(ESA )).) It suffices to do it in the “absolute”

case S = g. Then local freeness and Ext vanishing follow from the above

special case in view of Lemma 2.5.2. Similarly, projectivity holds since it holds

after base change to any algebraically closed field of positive characteristic and

completing by the grading topology.

Finally (c) follows from the next proposition. �

We keep the notations of the theorem, fix (and drop from notations)

the alcove A, and set S = g. Set A = End(E)op, AP = End(EP)op, M =

Hom(E , π∗P(EP)). Thus M is an A−AP bimodule.

3.0.3. Proposition. (a) Under the above equivalences Db(Coh(g̃)) ∼=
Db(modfg(A)), Db(Coh(g̃P)) ∼= Db(modfg(AP)), the functor Rπ∗ is iden-

tified with the functor N 7→ M
L
⊗A N .

(b) The natural map O(h∗)⊗O(h∗)WL A
op
P −→ EndA(M) is an isomorphism.

Proof. (a) is obvious from the definitions. It suffices to prove that (b)

becomes true after base change to the formal neighborhood of zero in g∗K,
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K ∈ FGP. It is clear that validity of the statement is independent on the choice

of tilting generators E , EP for the hearts of a given t-structure. An appropriate

choice of E , EP yields A = Γ(‹D), AP = Γ(‹DP), whileM is the space of sections

of the bimodule Bµλ providing the equivalence between the Azumaya algebras‹Dλ̂, ‹Dµ̂ on FN(Ñ )g̃ [BMR06, Rem. 1.3.5]. Then the statement follows from

EndA(M) = Γ(EndD̃λ̂(Bµλ)) = Γ(‹Dµ̂)op

∼= Γ(π∗P(‹Dµ̂P)op) = O(h∗)⊗O(h∗/WL) Γ((‹Dµ̂P)op) = O(h∗)⊗O(h∗/WL) AP .

4. t-structures on T ∗(G/P ) corresponding to alcoves on the wall

Let P ⊂ G be a parabolic, and let P = G/P , L⊆P be a Levi subgroup.

The projection B → P yields the maps T ∗(P)
pr1←−− T ∗(P)×P B

i
↪→ T ∗B.

Let ΛP ⊂ Λ be the sublattice of weights orthogonal to coroots in L. We

have embeddings of finite index ΛP ⊂ Pic(P), Λ ⊂ Pic(B) compatible with the

pull-back under projection map B → P. (If G is simply connected, then both

embeddings are isomorphisms.)

4.1. t-structures in positive characteristic. In the next proposition we work

over a field K = K̄ of characteristic p > h. As in [BMR06, 1.10], Dλ
P denotes

the sheaf of crystalline differential operators on P with a twist λ ∈ ΛP .

Proposition. For a weight λ ∈ ΛP such that the element “(λ+ρ) mod p”

of h∗ is regular, consider the functor

π? : Db(Coh(T ∗P))→ Db(Coh(T ∗B)), π?F = i∗pr∗1(F)⊗O(ρ)

and its left adjoint π?G = (pr1)∗i
∗[G(−ρ)].

(a) If R>0Γ(Dλ
P) = 0, then there exists a unique t-structure on Db(Coh(T ∗P))

such that the functor π? is t-exact, where the target is equipped with the

t-structure TA corresponding to the alcove A containing λ. This t-structure

is locally free, and a Gm-equivariant projective generator of its heart is

given by EP
def
= π?EA for any Gm-equivariant projective generator EA of

the heart of TA.

(b) If the map Ug → Γ(Dλ
P ) is surjective, then the t-exact functor π? sends

irreducible objects to irreducible ones, and it is injective on isomorphism

classes of irreducibles.

Proof. The functor π?F = i∗pr∗1(F) ⊗ O(ρ) is conservative; thus its left

adjoint π? sends a generator to a generator. Therefore, for a t-structure on

Db(Coh(T ∗P)), the functor π? is t-exact if and only if EP = π?[EA] is a projec-

tive generator of its heart. This shows uniqueness in (a) and reduces the rest

of statement (a) to showing that EP is a tilting vector bundle.

As above, it suffices to check that the restriction of EP to the formal

neighborhood of the zero section of T ∗P is a tilting vector bundle. Reversing
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the argument of the previous paragraph, we see that it suffices to show the

existence of a locally free t-structure on Db(CohP(T ∗P)) such that π? is t-exact.

It is shown in [BMR06, 1.10] that under the assumptions of (a), the derived

global sections functor RΓ : Db[modfg(Dλ
P)]→ Db[modfg(Γ(Dλ

P))] is an equiva-

lence. Furthermore, Dλ
P is an Azumaya algebra over T ∗P(1) that is split on the

formal neighborhood of the fibers of the moment map µP : T ∗P(1) → (g∗)(1);

in particular, on the formal neighborhood of the zero fiber. Thus we get an

equivalence between Db[CohP(T ∗P)] and the derived category of modules over

a certain algebra [BMR06, Cor. 1.0.4]. In view of [BMR06, Prop. 1.10.7], we see

that the resulting t-structure on Db[CohP(T ∗P)] satisfies the desired exactness

property; thus (a) is proved.

The same proposition also implies claim (b), since it shows that the functor

between the abelian hearts induced by the functor Db(Cohµ−1
P (e)(T

∗P))
π?−→

Db(Cohπ−1(e)(T
∗B)) can be identified with the pull-back functor between the

categories of modules (with a fixed generalized central character) corresponding

to the ring homomorphism Uλ(g) → Γ(Dλ
P). If this ring homomorphism is

surjective, then the pull-back functor sends irreducible modules to irreducible

ones and distinguishes the isomorphism classes of irreducibles. �

4.2. Lifting to characteristic zero. We now return to considerations over

an arbitrary base. Let S → g be a base change exact for both T ∗(B)→ g and

T ∗(P) → g. Again, any Slodowy slice is an example of such an S. Making

base change to S we get maps iS , pr1,S and the functor π?S : Db[Coh(S̃P)] →
Db[Coh(S̃)], where S̃P = S×gT

∗P.

Theorem. There exists an integer N > 0 (depending on the type of G

only) such that the following is true provided that N is invertible on S.

(a) Fix an alcove A. Assume that there exists a weight λ ∈ ΛP such that
λ+ρ
p ∈ A. Then there exists a unique t-structure T S̃PA on Db(Coh(S̃P ))

such that the functor π?S : Db[Coh(S̃P)]→ Db[Coh(S̃)] is t-exact, where

the target is equipped with the t-structure T SA corresponding to A. The

t-structure T S̃PA is locally free over S. A projective generator of its

heart is given by ESP = pr1,S∗i
∗
S [EA(−ρ)] for any projective generator EA

of the heart of T SA .

(b) Let K be a geometric point of R such that the pull-back map O(gK)→
Γ(O(T ∗(PK))) is surjective. Then the t-exact functor π?S sends ir-

reducible objects to irreducible ones and is injective on isomorphism

classes of irreducibles.

Proof. It is well known [Bro94] that for fields K of characteristic zero,

hence also for K of a sufficiently large positive characteristic, H>0(T ∗PK,O)

= 0. It follows that the cohomology vanishing condition of Proposition 4.1(a)
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holds over such a field. Thus Proposition 4.1 shows that statement (a) is

true when S = g∗K, where K is an algebraically closed field of sufficiently

large positive characteristic. Then the general case follows, as in the proof of

Theorem 1.5.1, by Proposition 2.5.1. This proves part (a).

The general case of statement (b) follows by a standard argument from

the case when K has (large) positive characteristic. (Notice that if the map

O(gK)→ O(T ∗PK) is surjective for K of characteristic zero, then it is surjective

for K of large positive characteristic.) In the latter case the statement follows

from Proposition 4.1(b), since surjectivity of the map O(gK) → O(T ∗PK)

implies surjectivity of the map U(gK)→ Γ(Dλ
PK

). �

4.2.1. Remark. (a) It is well known that the conditions of part (b) hold

when G is of type An and K is of characteristic zero.

(b) The twist by ρ appearing in the last theorem is caused by normaliza-

tions in the definition of the braid group action. Removing this twist would

produce a twist in the preceding theorem.

(c) Notice that control on the set of primes for which the result is valid

is weaker here than in other similar results of [BMR06] and Sections 1 and 3.

The only reason for this is that higher cohomology vanishing for the sheaf

O(T ∗P) has not been established in general (to our knowledge) in positive

characteristic p except for indefinitely large p.

4.2.2. Remark. It can be deduced from the results of [Ric10] that the

construction of the present subsection is related to that of the preceding one

by Koszul duality. (See loc. cit. for details.)

The matching of combinatorial parameters is explained in the next sub-

section.

4.3. Shifting the alcoves. The set of t-structures constructed in this sub-

section is indexed by the set of alcoves A such that λ+ρ
p ∈ A for some integral

λ ∈ ΛP . Let us denote this set by AlcP .

4.3.1. Lemma. The set AlcP is in a canonical bijection with the set of

P-alcoves. The bijection sends A ∈ AlcP to the interior of Ā ∩ WP .

Proof. By a P-chamber we will mean a connected component of the com-

plement in the P-wall WP , of intersections with coroot hyperplanes not con-

taining the wall. The P-chambers are in bijection with parabolic subalgebras

in the Langlands dual10 algebra ǧ with a Levi ľ⊆ǧ whose semisimple part is

given by coroots orthogonal to λ.

10 Of course, these are also in bijection with parabolic subalgebras in g with the fixed

Levi. However, the argument uses coroots rather than roots, hence the appearance of Ǧ.
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A Weyl chamber is a connected component of the complement to coroot

hyperplanes in h∗R. We will say that a Weyl chamber is near the P wall if it

contains a P-chamber in its closure. The set of Weyl chambers is in bijection

with the set of Borel subalgebras with a fixed Cartan. So, a Weyl chamber is

near the P-wall if and only if the corresponding Borel subalgebra b̌ is contained

in a parabolic subalgebra with Levi ľ; in other words, if the subspace ľ+ b̌ ⊂ ǧ

is a subalgebra.

It suffices to show that for every weight λ ∈ ΛP such that λ+ρ is regular,

λ+ρ lies in a Weyl chamber that is near the P wall. This amounts to showing

that if α̌, β̌ and α̌ + β̌ are coroots and 〈α̌, λ + ρ〉 > 0, 〈β̌, λ〉 = 0, then either

〈α̌+ β̌, λ+ ρ〉 > 0 or 〈α̌+ β̌, λ〉 = 0.

It is enough to check that 〈α̌+β̌, λ+ρ〉 > 0 assuming β̌ is a simple negative

coroot in ľ. For such β̌, we have 〈β̌, λ+ρ〉 = 〈β̌, ρ〉 = −1, so 〈α̌+ β̌, λ+ρ〉 ≥ 0.

However, since we have assumed that λ + ρ is regular and α̌ + β̌ is a coroot,

this implies that 〈α̌+ β̌, λ+ ρ〉 6= 0. �

5. Applications to representation theory

The results of Section 2 imply independence of the numerics of gK-modules

on the characteristic p of the base field K for p � 0. This is spelled out in

Section 5.1.

In 5.3 and 5.4 we briefly recall Lusztig’s conjectural description of the nu-

merical structure of the theory and reduce its verification to a certain positivity

property of a grading on the category of representations.

Given the results of Sections 1 and 2 it is easy to construct a family

of gradings on the category. However, showing that this family contains a

grading that satisfies the positivity property is more subtle. This is established

in Section 6 by making use of the results of [AB09]. This reduction relies

on G-equivariant versions of some of the above constructions. This technical

variation is presented in 5.2.

To simplify notations we only treat the case of a regular block and a

nilpotent Frobenius central character. Generalization to any block and an

arbitrary p-central character is straightforward.

5.1. Generic independence of p. In this section E is a vector bundle on g̃

that satisfies Theorem 1.5.1(b) (so it is unique, up to replacing it by an equide-

composable bundle and, furthermore, has the form ΞJ from Theorem 2.5),

while A is the R-algebra End(E)op.

5.1.1. Theorem. The algebra A satisfies the following. For any K ∈ FGP

and any e ∈ NK, there are canonical Morita equivalences compatible with the

action of Og×h/W h:

U 0̂
K,ê ∼ A0̂

K,ê and U0
K,ê ∼ A0

K,ê.
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Here, U 0̂
K,ê, A

0̂
K,ê are completions of UK and AK = A⊗RK, at the central ideals

corresponding to e and to 0 ∈ h. (Respectively, A0
K,ê, U

0
K,ê are completions of

U0
K and A0

K = AK⊗O(h)K0 at the central ideals corresponding to e.)

Proof. Recall thatA0 def
= A⊗O(h)O0 is the algebra End(E|‹N )op (see Lemma

1.5.3) and that there are canonical equivalences

modfg(U 0̂
ê ) ∼= Ecoh(‘BK,e),

modfg(A) ∼= Ecoh(g̃),

modfg(U0
ê ) ∼= Ecoh(‘BK,e′),

modfg(A0) ∼= Ecoh(Ñ ),

compatible with the pull-back functors. Both times, the first equivalence is

from Theorem 1.6.3, and the second one is the fact that E (resp. E|‹N ) is a

tilting generator and that the locally free t-structure it produces is the exotic

t-structure. The following induced equivalences of categories give the desired

Morita equivalences of algebras:

modfg(U 0̂
ê ) ∼= Ecoh(‘BK,e) ∼= modfg(A0̂

K,ê)

and

modfg(U0
ê ) ∼= Ecoh(‘BK,e′) ∼= modfg(A0

K,ê).

We can define an action of O(g×h/W h/W )K on the leftmost terms using

the center of UK. Recall that it is isomorphic to OgK×hK/W hK/W , where map

hK → hK is the Artin-Schreier map (see 1.6.1). However, for a regular λ ∈ Λ

(say λ = 0) and any e ∈ NK, the completion of this center at the point (e,Wλ)

is canonically isomorphic to the completion of OgK×hK/W hK (where this time

hK → hK/W is just the quotient map) at the point (e, λ). �

5.1.2. Remarks. (1) Let e ∈ N (R). Since Morita invariance is inherited

by central reductions, we also get R-algebras A0
e, A

0̂
e, A

0
ê whose base change

to any K ∈ FGP is Morita equivalent to the corresponding central reduc-

tions U0
K,e, U

0̂
K,e, U

0
K,ê of the enveloping algebra. Here U 0̂

K,e is the most popular

version — its category of modules is the principal block of the category of

UK,e-modules.

(2) A similar result for representations of algebraic groups (rather than

Lie algebras) has been established by Andersen, Jantzen and Soergel [AJS94].

This is equivalent to the case e = 0 of the theorem.

5.1.3. Cartan matrices. Recall that the set of nilpotent conjugacy classes

in gK does not depend on the algebraically closed field K provided its charac-

teristic is a good prime.
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Corollary. There exists a finite set of primes Π such that for any

K,K′ ∈ FGP with characteristics outside Π, the following holds. If the conju-

gacy classes of e ∈ NK, e′ ∈ NK′ correspond to each other, then the Cartan

matrices11 of U 0̂
e , U 0̂

e′ coincide. The same applies to U0
e , U0

e′ .

Proof. For a finite rank R-algebra A, independence of the Cartan matrix

ofAK on K, for an algebraically closed field K of sufficiently large characteristic,

is well known (cf. also Lemma 5.1.5 below). Thus the claim follows from part

(1) of the previous remark. �

5.1.4. Lifting irreducible and projective objects. In the remainder of the

subsection we will enhance the last corollary to a geometric statement.

A quasifinite domain over a commutative ring R is a commutative ring R
over R for which there exists R′⊇R such that R′ is a finite domain over R and

R is a finite localization of R′.

Proposition. For any e ∈ N (R), there exists a quasifinite domain R
over R such that there exist

• a finite set Ie,

• a collection Ei, i ∈ Ie, of locally free sheaves on ’BR,e, and

• a collection of complexes of coherent sheaves Li ∈ Db[Coh(’BR,e′)], i ∈ Ie
with the following properties.

Let λ ∈ Λ be such that λ+ρ
p is in the fundamental alcove. Then for every

characteristic p geometric point K of R, the set of isomorphism classes of

irreducible UλK,e-modules is canonically parametrized by Ie. We denote this as

Ie 3 i 7→ LK,i ∈ Irr(UλK,e). This parametrization is such that the equivalence of

[BMR08] sends

(I) irreducible LK,i to (Li)K
def
= Li

L
⊗RK ∈ Db[Coh(‘BK,e′)],

(P1) the projective cover of LK,i over U λ̂K,ê to (Ei)K
def
= Ei⊗RK∈Db[Coh(‘BK,e)],

(P2) the projective cover of LK,i over UλK,ê to (Ei)K
∣∣∣
B′K,e
∈ Db[Coh(‘BK,e′)],

(P3) the projective cover of LK,i over U λ̂K,e to Ei
L
⊗OgKe ∈ Db[Coh(‘BK,e)].

Proof. The first three claims are immediate from Theorem 5.1.1, together

with the next general lemma. Part (P3) follows from part (P1) because the

localization equivalence is compatible with derived tensor product over the

center, while the enveloping algebra U is flat over its Frobenius center. �

11By this we mean the matrix whose entries are multiplicities of irreducible modules in

indecomposable projective ones.
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5.1.5. Lemma. (a) Let R be a quasifinite domain over Z, and let A be a

finite rank flat algebra over R. Then there exist a quasifinite domain R′

over R and collections Li, Pi of AR′-modules indexed by I = Irr(AQ) such

that for any geometric point K of R′, the corresponding AK-modules (Li)K,

(Pi)K, i ∈ I , provide complete nonrepeating lists of irreducible AK-modules

and their projective covers.

(b) The same holds for topological algebras of the form lim←−Ai, where Ai are

as in (a) and Ai → Ai+1 is a square zero extension; i.e., a surjective

homomorphism with zero multiplication on the kernel.

Sketch of proof. Part (b) follows from (a) since irreducibles for (Ai)K do

not depend on i, and any projective module admits a lifting to a projective

module over a square zero extension.

(a) Let Loi , i ∈ I, be the complete list of irreducible modules for AQ, and

let P oi be the indecomposable projective cover of Loi . These modules lift to

some finite extension R1 of R; i.e., there are AR1-modules Pi, Li such that

(Pi)Q
∼= P oi , (Li)Q

∼= Loi . (For that, choose a presentation for a module as

a cokernel of a map between finitely generated free modules and multiply the

matrix of the map by an element in R to make its entries integral over Z. Then

R1 is obtained by adjoining the new entries to R.)

After a finite localization R2 of R1 we can also achieve that each Pi is

projective. The reason is that for some di > 0, the sum ⊕I (Pi)
⊕di
Q is a free

AQ-modules, so ⊕I P⊕dii becomes a free module after a finite localization R2.

After further replacing R2 by a finite localization R3 we can achieve that

(Pi)K are pairwise nonisomorphic indecomposable modules. For this consider

two AR2-modules M,N and a commutative R2 algebra R. The existence of

an isomorphism MR
∼= NR and a nontrivial idempotent in End(MR) amounts

to existence of an R point of a certain affine algebraic variety over R2. Such

an algebraic variety has a Q point if and only if it has a K point for all finite

geometric points K of Spec(R2) of almost any prime characteristic. Here, R3

is obtained from R2 by inverting finitely many primes.

Finally, Hom(Pi, Lj) is a finite R3-module such that Hom(Pi, Lj) ⊗ Q ∼=
Qδij . Thus after a finite localization R′ we can assume that Hom(Pi, Lj) ∼=
(R′)δij . �

5.1.6. Remark. Our proof of Lusztig conjectures about numerics of mod-

ular representations gives the result for p � 0 only, because we rely on the

(very general) Lemma 5.1.5, which is not constructive in the sense that it pro-

vides no information on the set of primes one needs to invert in R to get R′

with needed properties. The same problem appears in [AJS94], which contains

results that are essentially equivalent to the case e = 0 of our results. Notice
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that Fiebig has found an explicit (and very large) bound M and showed that

the argument of [AJS94] works for p > M [Fie11].

5.1.7. Remark. The following is just the extra information one finds in

the proofs of Theorem 5.1.1 and Proposition 5.1.4.

Corollary. Let E be a vector bundle on g̃ as in 1.5.1. Then the algebra

A in Theorem 5.1.1 can be chosen as A = End(E)op. For any e ∈ N (R), the

collection Ei in Proposition 5.1.4 can be chosen as representatives of isomor-

phism classes of indecomposable constituents of the restriction of E to ’BR,e.
Ie is the set of isomorphism classes of irreducible modules of A|ê ⊗RC

(i.e., of Ae⊗RC for Ae = A⊗O(g)Oe).

5.1.8. Numerical consequences. For K ∈ FGP and e ∈ N (K), recall the

isomorphisms of Grothendieck groups

K(U0
K,e)
∼= K(BK,e),(9)

K(BK,e)Q ∼= K(BQ,e)Q,

K(BQ,e) ∼= K((AQ)0
e).

The first isomorphism is [BMR08, Cor. 5.4.3]. The second one follows from

[BMR08, Lemma 7.2.1 and Prop. 7.1.7], and the last one is immediate from

Theorem 1.5.1 above. By “homotopy invariance of the Grothendieck group”

we have K0[modfg(U0
K,e)] = K0[modfg(U 0̂

K,e)] = K0[modfg(U0
K,ê)]; the same

applies for U replaced by A.

Corollary. (a) For almost all characteristics p, the composed isomor-

phism

K[modfg(U0
K,e)]Q

∼= K[modfg((AQ)0
e)]Q

sends classes of irreducibles to classes of irreducibles and classes of inde-

composable projectives to classes of indecomposable projectives ; the same

applies to U 0̂
K,e and U0

K,ê.

(b) For all p > h, the composition sends the class of the dual of baby Verma

UK-module of “highest” weight zero to the class of a structure sheaf of a

point.12

(c) Multiplicities of irreducible modules in baby Verma modules are independent

of p for large p.

5.2. Equivariant versions and Slodowy slices. From now on we denote by

G a copy of the group G×Gm, supplied with a map G → G×Gm by (g, t) 7→

12 A baby Verma module for U0
K,e involves the data of a Borel subalgebra b ∈ BK,e. Notice

that it is easy to see that the class [Ob] ∈ K(BK,e) is independent of the choice of b.
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(g, t2). Since G×Gm acts on g by (g, t) : x 7→ t·gx, the group G acts on g by

(g, t) : x 7→ t2 gx.

5.2.1. Equivariant tilting t-structures.

Proposition. Let R′ be a Noetherian R-algebra. Let S → gR′ be a map

of affine schemes over R′ that satisfies the Tor vanishing condition from 1.3

relative to g̃R′ .

Let H be a flat affine algebraic group over R′ endowed with a morphism

φ : H → GR′ . We assume that H acts on S and that the map S → gR′

(respectively S → NR′) is H-equivariant. Then we have a natural equivalence

Db(CohH(S̃)) ∼= Db(modH,fg(AS)),

respectively

Db(CohH(S̃′)) ∼= Db(modH,fg(A0
S)).

Proof. We construct the first equivalence; the second one works the same.

The tilting bundle E constructed in Section 2 is manifestly G × Gm equivari-

ant. Thus the vector bundle ES and the algebra AS carry natural H-equi-

variant structures. Therefore, for F ∈ CohH(S̃) and M ∈ modH,fg(AS), the

AS-modules Hom(ES ,F) and M
L
⊗AS ES ∈ CohH(S̃) carry natural H-equi-

variant structures. Passing to the derived functors we get two adjoint functors

CH , IH between Db(CohH(S̃)) and Db(modH,fg(AS)). A standard argument

shows that these functors are compatible with the pair of adjoint functors C, I
between Db(Coh(S̃)) and Db(modfg(AS)), which are given by the same formu-

las. Moreover, this compatibility extends to the adjunction morphisms between

the identity functors and compositions IHCH , CHIH and IC, CI. Since the ad-

junction morphisms are isomorphisms in the nonequivariant setting, they are

also isomorphisms in the equivariant one. �

5.2.2. Slodowy slices. Let K be a geometric point of R. Fix a nilpotent e ∈
N (K) such that there is a homomorphism ϕ : SL(2)→ G with dϕ ( 0 1

0 0 ) = e.13

The corresponding sl2 triple e, h, f defines a Slodowy slice SK,e
def
= e+ ZgK(f)

transversal to the conjugacy class of e.

Let C be a maximal torus in the centralizer of the image of ϕ. It is also a

maximal torus in the centralizer Ge of e. Let φ : Gm → G by φ(t)
def
= ϕ

Ä
t 0
0 t−1

ä
.

We denote by Gm a copy of the group Gm, and by ‹C, we denote the group

C×Gm supplied with a morphism i : ‹C → G by i(c, t)
def
= (cφ(t), t−1). The

action of ‹C on g is by (c, t) x = t−2 cφ(t)x; it preserves the Slodowy slice SK,e,

and the action of t ∈ Gm contracts it to e for t→∞.

13 This is always possible if p > 3h− 3 [Hum95].
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Now we use the fact that C contains φ(−1)z for some z ∈ Z(G); see

Appendix B. Notice that the element m = (φ(−1)z,−1) ∈ ‹C is sent to

(φ(−1)zφ(−1),−1) = (z,−1) ∈ G. So, the action of ‹C on g factors through

the quotient by the subgroup generated by m.

5.2.3. Equivariant lifts of irreducibles and indecomposable projectives. Let

K be a geometric point of R, and let e ∈ N (K). Let H be a torus endowed

with a map into the stabilizer of e in GK. We say that for an object F in the

derived category of coherent sheaves, its equivariant lifting is an object in the

equivariant derived category whose image under forgetting the equivariance

functor is isomorphic to F .

Proposition. Let H be a K-torus mapping to GK and fixing e, h, f so

that, in particular, it preserves SK,e.

(a) Every irreducible exotic sheaf L on either of the spaces fiSK,e, fiSK,e′, ‘BK,e,‘BK,e′, g̃K, ÑK, whose (set-theoretic) support is contained in BK,e, admits

an H-equivariant lift L̃. Any other lift is isomorphic to a twist of L̃ by a

character of H .

(b) Every projective exotic sheaf W on either of the spaces fiSK,e, fiSK,e′, ‘BK,e,‘BK,e′ admits an H-equivariant lifting W̃ . If W is indecomposable, then

every equivariant lifting of W is isomorphic to a twist of W̃ by a character

of H .

(c) Assume that char(K) = 0. Then there exists a quasifinite R-domain R′

such that the following hold :

(i) The nilpotent e, torus H and the homomorphism H → G are defined

over R′.

(ii) For each L ∈ Db(CohBK,e(
fiSK,e′)), W ∈ Coh(fiSK,e′) and equivariant

lifts L̃, W̃ as above, there exist LR′ , WR′ ∈ Db(CohHR′ (S̃′R′,e)) and

their equivariant lifts L̃R′ , W̃R′ such that their base change to K is

isomorphic to L,W, L̃, W̃ .

(iii) For every geometric point K′ of R′, the base change to K′ of LR′ ,
WR′ and L̃R′ , W̃R′ are, respectively, irreducible and indecomposable

projective equivariant exotic sheaves. Every equivariant irreducible

or indecomposable projective exotic sheaf on S̃K′,e, S̃
′
K′,e,

’Bk′,e, ’Bk′,e′
arises in this way.

Proof. It is clear that the direct image of an irreducible exotic sheaf

L ∈ Db(CohB′K,e(
fiSK,e′)) under each of the closed embeddings fiSK,e′ ↪→ ÑK,fiSK,e′ ↪→fiSK,e ↪→ g̃K is again an irreducible exotic sheaf supported on B′K,e. All

irreducible exotic sheaves on these spaces supported on BK,e are obtained this

way. The resulting sheaves on g̃K, ÑK can be also thought of as sheaves on
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Applying Proposition 5.2.1, we get an equivalence Db(CohH(fiSK,e′)) ∼=
Db(modH,fg(A0

SK,e
)). Thus, statement (a) reduces to showing that every irre-

ducible A0
S-module with central character e admits an H equivariant structure.

The torus H acts trivially on the finite set of irreducible A0
S-modules with cen-

tral character e. It follows that H acts projectively on such a representation.

Since every cocharacter of PGL(n)K admits a lifting to GL(n)K, we see that

the representation admits an H equivariant structure. This proves (a).

Similarly, in order to check (b) it suffices to equip indecomposable projec-

tive modules over the respective algebras with an H equivariant structure. By

a standard argument, projective cover of an irreducible module in the category

of graded (equivalently, H-equivariant) modules is also a projective cover in

the category of nongraded modules, which yields (b).

To check (c), it suffices to consider equivariant projective modules on fiSK,e′.
(Then the rest follows as in 5.1.4.) Equivariant indecomposable projectives over

K are direct summands of E
S̃K,e

′ . We can find a quasifinite R-domain R′ such

that the corresponding idempotents are defined and orthogonal over R′. �

5.2.4. Equivariant localization. In this subsection we link C-equivariant

exotic sheaves to representations graded by weights of C by proving Theo-

rem 1.6.6. In this argument it will be important to distinguish between a

variety and its Frobenius twist, so we bring the twist back into the notations.

We concentrate on the first equivalence; the second one is similar.

The torus C(1) acts on ‘BK,e(1). Composing this action with the Frobenius

morphism C → C(1), we get an action of C on ‘BK,e(1). Consider the cate-

gory of equivariant coherent sheaves CohC(‘BK,e(1)). The finite group scheme

C1 = Ker(C
Fr−→ C(1)) maps to automorphisms of the identity functor in this

category; since the category of C1-modules is semisimple with simple objects

indexed by c∗(Fp) = X∗(C)/p, the category splits into a direct sum

(10) CohC(‘BK,e(1)) =
⊕

η∈X∗(C)/p

CohCη ,

where CohCη consists of such equivariant sheaves that C1 acts on each fiber

by the character η. Notice that CohC0 (‘BK,e(1)) ∼= CohC
(1)

(‘BK,e(1)) canonically,

and for every η̃ ∈ X∗(C), the functor of twisting by η̃ provides an equivalence

CohCθ (‘BK,e(1)) ∼= CohCθ+η(
‘BK,e(1)), where η = η̃mod pX∗(C).

The sheaf of algebras ‹D is equivariant with respect to the G action, hence‹D|B̂K,e(1) is equivariant with respect to the action of C on ‘BK,e(1). Consider the
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category modC,fg(‹D|B̂K,e(1)) of C-equivariant coherent sheaves of modules over

this C-equivariant sheaf of algebras; here “coherent” refers to coherence as a

sheaf of O-modules over the scheme ‘BK,e(1). A sheaf F ∈ modC,fg(‹D|B̂K,e(1))

carries two commuting actions of c, αC and αg (see 1.6.6) whose difference

commutes with the action of ‹D.

It is easy to see (cf. 1.6.6) that every F ∈ modC,fg(‹D|B̂K,e(1)) splits as a di-

rect sum F =
⊕

η∈c∗(Fp)
Fη where αg(x)−αC(x)−〈x, η〉Id induces a pro-nilpotent

endomorphism of Fη. Here, by a pro-nilpotent endomorphism we mean one

that becomes nilpotent when restricted to any finite nilpotent neighborhood

of Be(1).

Thus we get a decomposition of the category

(11) modC,fg(‹D|B̂K,e(1)) =
⊕

η∈c∗(Fp)

modC,fgη (‹D|B̂K,e(1)).

Let E be a splitting bundle for the Azumaya algebra ‹D on ‘BK,e(1). We

claim that E admits a C-equivariant structure compatible with the equivariant

structure on ‹D|B̂K,e(1) = End(E). For λ, µ ∈ h∗(Fp), the bimodule providing

Morita equivalence between the restrictions of ‹D to the formal neighborhoods

of the preimages of λ and µ under the projections from the spectrum of the

center of ‹D to h∗ (see [BMR08, 2.3]) is manifestly G-equivariant; thus it suffices

to consider the case λ = −ρ. Then ‹D|B̂K,e(1) is identified with the pull-back of

a C-equivariant Azumaya algebra on the formal neighborhood of e ∈ g∗(1). We

now construct compatible C-equivariant splitting bundles on the n-th infini-

tesimal neighborhood of e for all n by induction in n. The base of induction

follows from the fact that every extension of C by Gm splits, while the in-

duction step follows from splitting of an extension of C by an additive group.

Thus existence of a C-equivariant splitting bundle is established.

We fix such a C-equivariant structure on E ; we can and will assume that

the restriction of the resulting equivariant ‹D-module to a finite order neighbor-

hood of BK,e belongs to modC,fg(‹D|B̂K,e(1)). (Since this restriction is an inde-

composable sheaf of ‹D-modules, this can be achieved by twisting an arbitrar-

ily chosen C-equivariant lift of E by a character of C.) Then we get a functor

F 7→ F⊗OE from CohC
(1)

(‘BK,e(1)) to the category modC,fg(‹D|B̂K,e(1)) of C-equi-

variant sheaves of modules over a C-equivariant sheaf of algebras. We will

compose this functor with the global sections functor Db[modC,fg(‹D|B̂K,e(1))]→

Db[modC,fg(U λ̂
ê

)]. We claim that the composition lands in the full subcategory

Db[modfg(U λ̂
ê
, C)] and provides the desired equivalence. This follows from the

next lemma.
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5.2.5. Lemma. (a) The derived global sections functor provides an equiv-

alence

RΓ : Db[modC,fg(‹D|B̂K,e(1))]→ Db[modC,fg(U λ̂
ê

)].

(b) The functor F 7→ F ⊗ E provides an equivalence

CohC(‘BK,e(1))→ modC,fg(‹D|B̂K,e(1)).

(c) Both of these equivalences are compatible with the canonical c∗(Fp)-decom-

positions of categories. In particular, for 0 ∈ c∗(Fp), we get equivalences

modfg(U λ̂
ê
, C) ∼= EcohC

(1)
(‘BK,e(1)).

Proof. (a) follows by the argument of Proposition 5.2.1. (The two adjoint

functors commute with forgetting the equivariance.)

(b) is just the observation that once E is equivariant, the standard equiv-

alence between coherent sheaves on g̃ and modules over the sheaf of algebras

A = End(E) extends to the equivariant setting.

(c) follows from the definition of the decompositions. �

5.3. Gradings and bases in K-theory. In this subsection we work over a

geometric point K of R. We reduce the conjectures of [Lus99] that motivated

this project to a certain property (?) of exotic sheaves. All substantial proofs

of claims in this subsection are postponed to Section 5.4. In Section 6 we

will see that property (?) (thus a proof of Lusztig’s conjectures) follows (for

large p) from the results of [AB09].

5.3.1. Construction of gradings. On the formal neighborhood ‘BK,e of a

Springer fiber BK,e in g̃K there is a canonical (up to an isomorphism) vector

bundle ⊕i∈Ie Ei that is a minimal projective generator for the heart Ecoh(‘BK,e)
of the exotic t-structure. We just take Ei’s to be representatives for isomor-

phism classes of indecomposable summands in the pull-back E|B̂K,e of any vector

bundle E from Theorem 1.5.1.

By Proposition 5.2.3, vector bundles Ei admit a Gm equivariant struc-

ture. We temporarily fix such a structure in an arbitrary way and let Ẽi ∈
CohGm(‘BK,e) denote the resulting equivariant bundle. In view of Lemma 5.2.3,

any other choice yields an equivariant vector bundle isomorphic to a twist Ẽi(d)

by some character d ∈ Z of Gm.

Consider the restriction of Ẽi to the formal neighborhood of BK,e in fiSK,e′.
Since Gm ⊂ ‹C acts on fiSK,e′ contracting it to the projective variety BK,e, there

exists a unique (up to a unique isomorphism) Gm equivariant vector bundle onfiSK,e′ whose pull-back to the formal neighborhood of BK,e is identified with Ẽi|.
We denote this vector bundle by ẼSi ∈ CohGm(fiSK,e′).
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To summarize, ẼSi is a set of representatives for equivalence classes of

indecomposable projective Gm-equivariant exotic sheaves on fiSK,e′ modulo Gm-

shifts.

5.3.2. Property (?). The following statement will be the key to the proof

of Lusztig’s conjectures:

(?)



There exists a choice of Gm-equivariant lifts Ẽi, i ∈ Ie, that is

invariant under the action of the centralizer of e, h in G and

such that

(i?) Hom
CohGm (S̃K,e

′
)
(ẼSi , ẼSj (d)) = 0 for d > 0,

(ii?) Hom
CohGm (S̃K,e

′
)
(ẼSi , ẼSj ) = Kδij .

Such a choice is unique up to twisting all Ẽi by the same

character of Gm.

In other words, Hom
Coh(S̃K,e

′
)
(ẼSi , ẼSj ) has no negative Gm weights and the zero

weight spaces are spanned by the identity maps.

5.3.3. Normalizations. Assuming that (?) holds for K and e, we will re-

serve the notation Ẽi for Gm-equivariant vector bundles on ‘BK,e satisfying the

above conditions. Recall that the vector bundle that is a tilting generator

for the exotic t-structure has O as a direct summand. This implies that

Ei0 ∼= OB̂K,e
′ for some i0 ∈ Ie. We will assume that Ẽi0 = OB̂K,e(2 dimBe);

since the collection Ẽi is unique up to a simultaneous twist by some character

of Gm, this fixes the set of isomorphism classes of Ẽi uniquely.

According to Proposition 5.2.2 we can equip the vector bundle Ẽi with

some ‹C equivariant structure compatible with the Gm equivariant structure

fixed above. Let Ẽi,0 denote the resulting ‹C-equivariant vector bundle, and set

Ẽi,λ = Ẽi,0(λ) for λ ∈ X∗(C). As above, from Ẽi,λ we obtain a ‹C-equivariant

vector bundle ẼSi,λ on fiSK,e′. As we vary i ∈ Ie and λ ∈ X∗(C), vector

bundles Ẽi,λ on ‘BK,e (resp., ẼSi,λ on fiSK,e′) form a complete list of representa-

tives modulo Gm-shifts of indecomposable exotic projectives in Db[CohC̃(‘BK,e)]
(resp. Db[CohC̃(fiSK,e′)]). Also, we define irreducible exotic objects L̃i,λ of

Db(CohC̃(‘BK,e)) (respectively, L̃i of Db(CohGm(‘BK,e))) such that

Ext•
DbCohC̃(B̂K,e)

(Ẽi,λ, L̃j,µ) = Kδijδ
λ
µ , Ext•

DbCohGm (B̂K,e)
(Ẽi, L̃j) = Kδij .
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5.3.4. Uniformity of K-groups. Although not strictly necessary for the the

proof of conjectures, the following result allows a neater formulation of the next

theorem and clarifies the picture

Fix two geometric points of Spec(R): K0 of characteristic zero and K of

characteristic p > h. Recall that for a flat Noetherian scheme X over R, one

has specialization map SpX : K(XK0)→ K(XK).

Proposition. The maps SpBe , Sp‹Se , Sp‹Se′ are isomorphisms.

Proof. Tensoring the maps with Q, we get isomorphisms because the mod-

ified Chern character map identifies K(Be)⊗ Q̄l with the dual of l-adic coho-

mology. In [BMR08] it was shown in Lemmas 7.4.2 and 7.4.1 that the map is

injective; however, the dimensions are the same by Theorem 7.1.1 and Lemma

7.4.3. The independence of l-adic cohomology on the base field was established

by Lusztig ([Lus86, §24; in particular, Th. 24.8 and §24.10]).

On the other hand, using the above equivalences of categories we see that

over the field K the classes of irreducible (respectively, projective) objects form

bases in respective Grothendieck groups. In particular, each of the K-groups

is a free abelian group of finite rank, and the Ext pairing between K(BK,e)
and K(fiSK,e) is perfect. The corresponding statements for K0 were proved by

Lusztig. It is clear that the specialization map is compatible with this pairing.

Thus the pair of maps SpBe , Sp‹Se is an example of the following situation. We

are given free abelian groups A, A′, B, B′, all of the same finite rank, maps

F : A → B, F ′ : A′ → B′ and perfect pairings A × A′ → Z, B × B′ → Z
such that 〈F (x), F ′(y)〉 = 〈x, y〉 for all x ∈ A, y ∈ A′. It is clear that in this

situation F , F ′ have to be isomorphisms. �

5.3.5. Reduction of Lusztig ’s conjectures to (?). Lusztig’s conjectures from

[Lus99] will be recalled in detail in Sections 5.3.6, 5.3.7 and 5.4.1. In 5.3.6 we

will state our precise results, and then we will see in 5.3.7 that they imply the

following theorem.

Theorem. (1) If (?) holds for some geometric point K of R′, then Con-

jectures 5.12 and 5.16 of [Lus99] hold (existence of certain signed bases

of K-groups of complex schemes BC,e and fiSC,e′). The two bases discussed

in Conjecture 5.12 are given by the classes of L̃Ki,λ(−2 dimBe), ẼKi,λ, i ∈
Ie, λ ∈ X∗(C), and the two bases discussed in Conjecture 5.16 are given

by the classes of L̃Ki , ẼKi .14

14 Super index K means that we use the sheaves defined over K. A priori these define

elements of K-groups for K-schemes. However, by Proposition 5.3.4 these K-groups are

canonically identified for all K.
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(2) If (?) holds for some K ∈ FGP, then Conjecture 17.2 of loc. cit. (relation

to modular representations over K; omit the last paragraph in 17.2 on the

quantum version15) holds for K.

5.3.6. A reformulation of Lusztig ’s conjectures. Here we formulate a list

of properties that naturally appear from the present point of view. Then in

5.3.7 we will recall Lusztig’s conjectures and show that they follow from these

properties. We will omit [Lus99, Conj. 5.16], since it is similar to loc. cit.,

Conjecture 5.12; the only difference is that 5.12 deals with coherent sheaves

equivariant with respect to the torus ‹C, while 5.16 is about sheaves equivariant

with respect to a one-parameter subgroup Gm ⊂ ‹C. So the existence of bases

with properties from 5.12 implies the same for 5.16, and Lusztig’s uniqueness

argument (recalled in footnote (18)) applies equally to both conjectures.

The K-group of a torus T is the group algebra of its character lattice

RT
def
= Z[X∗(T )]; it contains a subsemiring R+

T = Z+[X∗(T )]. We denote the

fraction field of RT by RT . Denote by ∂ : R
C̃
→ RGm the constant coefficient

map
∑
ν∈X∗(C) pν [ν] 7→ p0 ([Lus99, 5.9]).

Recall from [Lus99, Th. 1.14.c] that the direct image map gives an embed-

ding KC̃(BK,e)↪→KC̃(fiSK,e′). Lusztig’s conjectures involve certain involutions

βe on KC̃(BK,e) and βS on KC̃(fiSK,e′) (denoted β̃, β in [Lus99]), a certain

pairing ( ‖ ) on K(fiSK,e′) with values in the fraction field K
C̃

, and a certain

element ∇e of K
C̃

. We denote by P 7→ P v the involution of K
C̃

corresponding

to inversion on ‹C.

The following proposition will be verified in 5.4.4.

Proposition. Let K be a geometric point of R such that (?) holds for K.

Define ẼSi , ẼSi,λ, L̃i, and L̃i,λ as in 5.3.3.

(A) The following subsets are bases over the ring RGm = Z[v±1] (we will

often omit the super index K):

BK
S

def
= {[ẼSi,λ], i ∈ Ie, λ ∈ X∗(C)} ⊆ KC̃(fiSK,e′),

BK
e

def
= {v−2 dimBe [L̃i,λ], i ∈ Ie, λ ∈ X∗(C)} ⊆ KC̃(BK,e).

Elements of BS are fixed by βS and elements of Be by βe:

βe(v
−2 dimBe [L̃i,λ]) = v−2 dimBe [L̃i,λ],(12)

βS([ẼSi,λ]) = [ẼSi,λ].(13)

15The quantum version is closely related to Conjecture 1.7.1 above.
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Both bases satisfy the condition of asymptotic orthonormality:16

(14) (b1‖b2) ∈
®

v−1RC [[v−1]] if b2 6∈ X∗(C)b1,

1 + v−1RC [[v−1]] if b2 = b1.

(B) The two bases are dual for the pairing ( ‖ ).

(C) (BS‖BS)⊆ 1
∇eR

+
C [v−1] ∩R+

C [[v−1]] and (Be‖Be)⊆ RC [v−1].17

(D) For b1, b2∈BS , each of the coefficient polynomials cνb1,b2 ∈ Z+[v
−1

], ν ∈
X∗(C), in the expansion ∇e(b1‖b2) =

∑
ν∈X∗(C) cνb1,b2 [ν] ∈ R+

C [v−1], is either

even or odd.

(E) Basis BS is the unique RGm basis of KC̃(fiSK,e′), which is pointwise

fixed by βS , satisfies asymptotic orthonormality, a normalization property BS 3
v2 dim(Be)[O

S̃K,e
′ ] and either of positivity properties (BS‖BS) ∈ R+

C [[v−1]] or

(BS‖BS) ∈ 1
∇eR

+
C [v−1].

(F) If p = char(K) > 0, then there is a canonical isomorphisms KC(BK,e)
ιe−→∼= K0[modfg(U 0̂

K,e, C)] that sends Be to classes of irreducible modules and

∇v
eBS to classes of indecomposable projective modules.

(G) If p = char(K) > 0, then for bi ∈ BS , the evaluation of the polyno-

mial ∂[∇e(b1‖b2)] at 1 ∈ Gm is equal to the corresponding entry of the Cartan

matrix of modfg(U 0̂
K,e, C), i.e., the dimension of the Hom space between the cor-

responding indecomposable projective objects. The dimension of the Hom space

in category modfg(U 0̂
K,e) is given by the evaluation of the polynomial ∇e(b1‖b2)

at the point (1, 1) ∈ C×Gm.

5.3.7. Proof of Theorem 5.3.5 modulo Proposition 5.3.6. Regarding

K-groups, Lusztig considers the case K = C and defines B±Be⊆K
C̃(BK,e)βe

and B±Λe⊆K
C̃(fiSK,e′)βS by the condition of asymptotic norm one: (b‖b) ∈

1 + v−1Z[[v−1]]. Conjectures [Lus99, 5.12] (a) and (b) assert that these are

signed RGm-bases. Parts (c) and (d) of Conjecture 5.12 say that signed bases

B±Be ,B
±
Λe

are asymptotically orthonormal, and parts (e) and (f) of the conjec-

ture say that the two bases are dual.

Since the identifications of K-groups in Proposition 5.3.4 are easily shown

to be compatible with involutions βe, βS and pairing ( ‖ ), we see that if we

define B±Be ,B
±
Λe

in the same way for all K, what we get will be independent

of K and the same will hold for validity of conjectures (a)–(f). However, if

(?) is known for some K, then conjectures (a)–(f) follow from (A) and (B).

16 To make sense of it we use the embedding R
C̃
⊂ RC((v−1)) and the induced embedding

of fraction fields.
17 For basis Be, the corresponding positivity statement (Be‖Be)⊆ R+

C [v−1] follows from

the result of Section 5.5 below.
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The point is that (A) implies that for this K one has B±Be = BK
e t −BK

e and

B±Λe = BK
S t −BK

S , so these are indeed signed bases.18

Part (g) of the conjecture says that ∂(∇eb1‖b2) ∈ ±Z≥0[(−v)−1] for b1, b2 ∈
B±Λe , i.e., for b1, b2 ∈ BK

S . Using the X∗(C)-action on BK
S we see that this is

equivalent to the claim that for bi ∈ BK
S , all coefficient polynomials cνb1,b2 , ν ∈

X∗(C) of ∇e(b1‖b2) (see (D) for notation) are in ±Z≥0[(−v)−1]. This follows

from the first claim in (C) and the “parity vanishing” statement (D).

Part (h) of the conjecture says that BK
S satisfies the normalization property

from (E).

Thus part (1) of the theorem is established. For part (2), recall that

Conjecture 17.2 claims that if a subcategory M⊆modC,fg(UK,e) is a generic

block, then there exists a bijection Irr(M)−→∼= B±Λe/{±1} that is compatible with

the action of X∗(C) and identifies the Cartan matrix of modC,fg(UK,e) with

the matrix |∂[∇e(b1‖b2)(1,−1)]|, b1, b2 ∈ B±Λe , of absolute values of evaluations

at (1,−1) ∈ C×Gm = ‹C.

We know that the subcategory M = modC,fg(U 0̂
K,e) is a generic block (see

[BG01]). Also, Proposition 5.3.6 together with the established part (1) of

the theorem yields bijections B±Λe/{±1} ∼= BS
∼= Irr(M). Now the difference

between Lusztig’s formulation and the second sentence in (G) is that the former

uses evaluation at −1 ∈ Gm and absolute value, while the latter uses evaluation

at 1 ∈ Gm. This is accounted for by the parity vanishing property (D). �

5.3.8. Pairing (−‖−) and Poincaré series of sheaves on fiSK,e′. The next

lemma explains the categorical meaning of the pairing (−‖−). To present it

we need another notation.

Let Rep+(‹C) be the category of representations U of ‹C with finite multi-

plicities and with Gm-isotypic components Ud, d ∈ Z, vanishing for d� 0. We

denote by [U ] its image in the K-group K0[Rep+(‹C)] ∼= RC((v)), where v is

the image of the standard representation of Gm in the K-group. This extends

to a map U 7→ [U ] from Db[Rep+(‹C)] to K0[Rep+(‹C)].

Now, for F ∈ DbCohC̃(fiSK,e′), we have RΓ(F) ∈ Db[Rep+(‹C)], and it is

easy to show (see also [Lus99]) that [RΓ(F)] ∈ RC((v)) is Laurent series of a ra-

tional function; i.e., it lies in K
C̃
⊂ RC((v)). Of course, if G ∈ DbCohGm(fiSK,e′),

then the same applies to RHom(F ,G) = RΓ[RHom(F ,G)].

18 This is a standard argument. Let ξ ∈ KC̃(S̃K,e
′
) with (ξ‖ξ) ∈ 1 + v−1Z[[v−1]]. Write

ξ as
∑

b∈BS , n∈Z cnb v
n b. If N is the highest power of v that appears, then

∑
b (cNb )2 ≥ 1

and asymptotic orthonormality of the basis implies that
∑

b (cNb )2 = 1 and N = 0. If also

βSξ = ξ, then c−nb = cnb since βS(vx) = v−1βSx. Therefore, cnb 6= 0 implies n = 0 and such b

is unique.
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Recall that P 7→ P v denotes the involution of K
C̃

corresponding to inver-

sion on ‹C.

5.3.9. Lemma. Let F ,G ∈ Db(CohC̃(fiSK,e′)).
(a) If G is set theoretically supported on B′K,e and the class [G] is invariant

under βe, then (F‖G) = [RHom(G,F)].

(b) If [G] is invariant under βS , then (F‖G) = [RHom(F ,G)]v.

(c) Let F,G ∈ DbCohC̃(‘BK,e) be such that the restrictions of F (respectively, G)

to the formal neighborhood of B′K,e in fiSK,e′ is isomorphic to the restriction

of F (respectively, G).

If [G] is invariant under βS , then

∇e(F‖G) = [RHom(F,G)
L
⊗O(ê) Ke]

v.

The lemma will be proven in Section 5.4.2.

5.4. Proofs for Section 5.3. In 5.4.1 we recall βe, βS , ( ‖ ), and in 5.4.2

we check formulas for (b‖c) when c is fixed by βe or βS . Then we prove in 5.4.3

that βe fixes the K-class of (a shift of) L̃i,λ and βS fixes the class of Ẽi,λ. This

is all the preparation we need for the proof of Proposition 5.3.6 in 5.4.4.

5.4.1. Involutions βe, βS and Υ. Involutions βS on KC̃(fiSK,e′) and βe on

KC̃(BK,e) = KC̃(B′K,e) are defined in [Lus99, §5.11, p. 304] by

βS
def
= (−v)−dimB+2 dimBeΥT−1

w0
D and βe

def
= (−v)− dimBΥ◦T−1

w0
◦D.

Here Υ is a certain involution, Tw0 is an element of a standard basis for the

affine Hecke algebra corresponding to the long element w0 ∈ W and D is the

Grothendieck duality functor. Since the direct image for the closed embedding

i : B′K,e → fiSK,e′ intertwines Grothendieck duality functors, we have i∗βe =

v−2 dimBeβSi∗. Since i∗ is an embedding, we write this as βS = v2 dimBeβe.

Actually, (−v)− dimBT−1
w0

is the effect on the K-group of the action of›w0 ∈ B on Db(CohC̃(fiSK,e′)) (see Theorem 1.3.2(b)). Therefore, βe = Υ›w0D.

The only information about Υ (defined in [Lus99, 5.7]) that we will use is

as follows:

Υ=
l∑

s=1

asg
∗
s , with gs∈A(‹C,K·e), ord(gs)<∞ and as∈Q,

∑
s

as=1,(15)

Υ = Tw0 ◦ D.(16)

Here A(‹C,K·e) is the group of automorphisms of G normalizing the line

K · e and ‹C; the bar denotes the induced action on the Grothendieck group

K0(CohC(fiSK,e′)), and Tw0 is the action of w0 ∈W on K(fiSK,e′) from [Lus99].
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Claim (15) is immediate from the definition of Υ in [Lus99], and (16) will

be shown in the Appendix A.

Lusztig defines pairing ( : ) on KC̃(fiSK,e′) by ([F ] : [G])
def
= [RΓ(F

L
⊗ G)]

(see [Lus99, 2.6]) and uses it to define the pairing ( ‖ ) by

([F ] ‖ [G])
def
= (−v)dimB−2 dimBe([F ] : Tw0Υ[G]) = v−2 dimBe([F ] :›w0

−1Υ[G])

(see [Lus99, 5.8]). Since βe = βe
−1 = D›w0

−1Υ gives Dβe = ›w0
−1Υ, we have

([F ]‖[G]) = v−2 dimBe([F ] : Dβe[G]) = ([F ] : DβS [G]).

These pairings on KC̃(fiSK,e′) descend to pairings on KC(fiSK,e′), which we

denote the same way. We will denote ([F ] ‖ [G]) simply by (F‖G).

Remark. The involutions βe, βS are K-group avatars of dualities that would

fix irreducibles (resp. projectives) corresponding to the fundamental alcove A0.

The point is that (if one neglects Gm-equivariance) the duality RHom(−,O)

takes projectives for A0 to projectives for −A0, and then ›w0 returns them

to projectives for A0.19 This composition creates a permutation of indecom-

posable projectives or irreducibles for A0. In order to undo this permutation,

Lusztig uses the centralizer action to describe a Z[v, v−1] linear involution Υ on

the K-group that induces the same permutation. This is a generalization of the

relation of the Chevalley involution to duality for irreducible representations

of a reductive group.

5.4.2. Proof of Lemma 5.3.8. (a) βe-invariance of [G] gives

(F‖G) = ([F ] : (v)−2 dimBeDβe[G]) = ([F ] : (v)−2 dimBeD[G]).

However,

D[G] = [RHom(G,Ω
S̃K,e

′)[dim fiSK,e′] ] = v2 dimBe [RHom(G,O
S̃K,e

′)].

For the second equality, recall that for the standard symplectic form ω on Ñ ,

restriction ω|
S̃K,e

′ is again symplectic, so its top wedge power ωdim(Be)|
S̃K,e

′ is a

nonvanishing section of the canonical line bundle Ω
S̃K,e

′ . Now the claim follows

since ω is invariant under the action of G and transforms by the tautological

character under the action of Gm by dilations, while Gm acts by a combination

of G and the square of dilations.

Thus we see that

(F‖G) = (F : RHom(G,O)) = [RΓ(F
L
⊗ RHom(G,O))] = [RHom(G,F)].

19 Notice that because of the difference between dimensions of supports, the analogous

procedure for irreducibles would use RHom(−,O)[2 dimBe] instead of RHom(−,O).
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(b) βS-invariance of [G] gives

(F‖G) = ([F ] : DβS [G]) = ([F ] : D[G])

= [RΓ(F
L
⊗ DG)] = [RΓ(DRHom(F ,G))].

It is easy to show that if ‹C acts linearly on a vector space V and Gm contracts

it to the origin for Gm 3 t → ∞, then for any K ∈ Db[CohC̃(V )], one has

[RΓ(DK)] = [RΓ(K)]v. Applying this to the sheaf

K = (fiSK,e′ → SK,e)∗RHom(G,F)

on the space SK,e ∼= Zg(f), we get the result.

(c) For a finite-dimensional ‹C-module V , Lusztig denotes by V
def
= [∧•V ]

∈ R
C̃

the image of the super-module ∧•V in KC̃ . So, for K ∈ Db[CohC̃(V )]

and i : 0↪→V , a use of Koszul complex gives

[i∗i
∗K] = [K

L
⊗O(V ) O(V )⊗K ∧•V ∗] = V ∗ [K] = V

v
[K].

By definition, ∇e
def
= Zg(f) h

−1
([Lus99, 3.1]) where ‹C acts on h by (c, t)h =

c−2h.

As in 5.3.1, there is a unique
o
G ∈ Db[CohC̃(fiSK,e)] that agrees with G onfiSK,e ∩‘BK,e. Notice that because the restrictions to fiSK,e′ ∩‘BK,e agree for

o
G, G

and G, we also have
o
G|
S̃K,e

′ ∼= G. Now, in order to calculate the K-class of

RHom(F,G) ⊗O(ê) Ke
∼= RHom(F,G ⊗O(ê) Ke), observe that by the definition

of
o
G we have G

L
⊗O(ê) O(SK,e ∩ ê) ∼=

o
G

L
⊗O(SK,e) O(SK,e ∩ ê), and this gives

G
L
⊗O(ê) Ke

∼=
o
G

L
⊗O(SK,e) Ke. Similarly, F gives

o
F with analogous properties.

Therefore in KC̃ = R
C̃

, we have

[RHomB̂K,e
(F,G)

L
⊗O(ê) Ke] = [RHomB̂K,e

(F,
o
G

L
⊗O(SK,e) Ke)]

= [RHomB̂K,e∩S̃K,e
(F|

S̃K,e
,
o
G

L
⊗O(SK,e) Ke)].

When we replace F|
S̃K,e

with
o
F|B̂K,e , we can view this as

[RHom
S̃K,e

(
o
F,

o
G

L
⊗O(SK,e) Ke)] = Zg(f)∗ [RHom

S̃K,e
(
o
F,

o
G)]

=
Zg(f)∗

h∗
[RHom

S̃K,e
(
o
F,

o
G

L
⊗O(h) K0).
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Now,
o
G

L
⊗O(h) K0

∼=
o
G|
S̃K,e

′ ∼= G. The same observation for
o
F and adjunction

give

= ∇v
e [RHom

S̃K,e
(
o
F,G)] = ∇v

e [RHom
S̃K,e

′(F ,G)].

So, the claim follows from (b).

5.4.3. Proof of invariance of the bases under the involutions. (ℵ) Proof

of (13).

(ℵ.i) Reduction to βS preserves ⊕i,λ Q[ẼSi,λ]. According to [Lus99],

the restriction of equivariance map induces an isomorphism

KC̃(fiSK,e′)/(v − 1)−→∼= KC(fiSK,e′).
The Q-vector subspace ⊕i,λ Q[ẼSi,λ] in KC̃(fiSK,e′)Q maps isomorphically to

KC(fiSK,e′)Q. In view of (16), the action of βS on KC(fiSK,e′)Q is trivial, so

it suffices to see that the vector subspace ⊕i,λ Q[ẼSi,λ] is invariant under βS .

We will factor βS into ΥD, a functor DF def
= ›w0

Ä
RHom(F ,O)

ä
(4 dimBe)

and Υ that is only defined on the K-group. Indeed, βS = v2 dimBeβe =

v2 dimBeΥ›w0D and Ω
S̃K,e

′ = O
S̃K,e

′(2 dimBe) (see the beginning of 5.4.2), so

that DF = RHom(F ,O
S̃K,e

′)(2 dimBe)[2 dimBe]. We will actually show that

⊕i,λ Q[ẼSi,λ] is invariant under both Υ and D.

(ℵ.ii) Invariance under Υ. By (15), it suffices to show that for any

finite order element g in A(‹C,K·e), the pull-back g∗ permutes [ẼSi,λ]’s. Since g

is an automorphism commuting with the multiplicative group Gm and fixing

the line of e, we see that {g∗(Ẽi)} is a set of Gm-equivariant vector bundles on‘BK,e satisfying the properties of Ẽi from (?). Thus, the uniqueness part of (?)

implies that for each i, there exists some ig such that g∗(Ẽi) ∼= Ẽig(dg), where

the integer dg does not depend on i. Obviously dgn = ndg, and therefore dg = 0

since g is assumed to have finite order. The isomorphism g∗(Ẽi) ∼= Ẽig implies

g∗(ẼSi ) ∼= ẼSig for the corresponding Gm-equivariant bundles on fiSK,e′. Since g

fixes SK,e, g
∗ fixes Gm-equivariant vector bundle Ẽi0 = O

S̃K,e
′(2 dimBe), and

by uniqueness in 5.3.3 this implies that g∗ permutes the collection of ẼSi ’s and

then also the collection of all ẼSi,λ’s.

Also note that Υ fixes the K-class of Ẽi0,0 = O
S̃K,e

′(2 dimBe) since this is

true for all relevant g∗, and in (15) we have
∑
s as = 1.

(ℵ.iii) D permutes [ẼSi,λ]’s. D factors to Db[Coh(‘BK,e′)] as D =›w0RHom(−,O). Part (e) of Theorem 1.8.2 shows that the dual vector bundles

E∗i are exactly all indecomposable projectives in the heart of the t-structure
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T B̂K,e
′
,‹NK

−A0
on Db(Coh(‘BK,e′)). Since b−A0,A0 =›w0 by Example 1.8.1, part (a)(2)

of Theorem 1.8.2 now shows that the sheaves DẼi = ›w0(E∗i ) are all indecom-

posable projectives in the heart of T B̂K,e
′
,‹NK

A0
. Thus we have DẼi = ›w0(E∗i ) ∼= Eǐ

for some permutation i 7→ ǐ of the indexing set.20

Let us now add Gm-equivariance. Since a Gm-equivariant structure on

Ẽi is unique up to a twist (Lemma 5.2.3(b), we have DẼi ∼= Ẽǐ(di) for some

integers di. The uniqueness statement in (?) implies that di = dj for all i, j.

On the other hand, it follows from [Lus99, 5.14] that βS sends the class of

ẼSi0 ∼= OS̃K,e
′(2 dimBe) to itself. Since we have already checked that Υ fixes

O
S̃K,e

′(2 dimBe) (the last remark in (ℵ.ii)), we find the same is true for D.

Therefore di = 0 for i = i0, and then the same holds for all i’s.

We can transport D[Ẽi] = [Ẽǐ] to fiSK,e′ to get D[ẼSi ] = [ẼS
ǐ

]. Similarly,

uniqueness of a torus equivariant structure (up to a twist) gives D[ẼSi,λ] ∼=
[ẼS
ǐ,ν(i,λ)

] for some ν(i, λ) ∈ Λ. We will write this as D[ẼSi,λ] ∼= [ẼS(i,λ)v ].

(ℵℵ) Proof of (12). Recall from (ℵ.i) that

βe = v−2 dimBeβS = Υv−2 dimBeD.

In particular, βe acts on KC(fiSK,e′) the same as βS ; i.e., trivially. Therefore,

as in the proof of (13) we only need that ⊕i,λ v−2 dimBeQ[L̃i,λ] ⊆KC̃(‘BK,e)
be invariant under βe, and this will follow from more detailed information:

v−2 dimBe [L̃i,λ] are permuted by (i) finite order elements of A(‹C,Ke) and (ii)

v−2 dimBeD =›w0D.

Since we have checked that finite order elements of A(‹C,Ke) permute

Ẽi,λ’s, it follows that they also permute L̃i,λ’s, hence also v−2 dimBe [L̃i,λ]. On

the other hand,

RHom(DL̃i,λ, Ẽj,µ) ∼= RHom(DẼj,µ, L̃i,λ) ∼= Kδ
(i,λ)

(j,µ)v

gives

Kδ
(i,λ)v

(j,µ) ∼= RHom(DL̃i,λ, Ẽj,µ)∗ ∼= RHom(Ẽj,µ,DL̃i,λ ⊗ Ω
S̃K,e

′ [2 dimBe]),

and hence D(L̃i,λ) = L̃(i,λ)v ⊗ Ω−1

S̃′e
[−2 dimBe]. Thus

(v−2 dimBeD)
Ä
v−2 dimBe [L̃i,λ]) = D[L̃i,λ] = v−2 dimBe [L̃(i,λ)v ].

20 This could also be deduced from [BMR06, Cor. 3.0.11].
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5.4.4. Proof of Proposition 5.3.6. (A) We know that BS and Be are sets of

representatives — modulo Gm shifts — of isomorphism classes of respectively,

indecomposable projective objects in EcohC̃(fiSK,e′) and of irreducible objects in

EcohC̃(‘BK,e′). Since the exotic t-structure is bounded, they form bases in the

respective Grothendieck groups KC̃(fiSK,e′) and KC̃(‘BK,e′) over the ring RGm .

Pointwise invariance of BS and Be under the involutions βS and βe has been

proved previously in Section 5.4.3.

Lemma 5.3.8(b) implies that for bi∈BS , one has (b1‖b2) = [RHom(b1, b2)]v

(because βS fixes b2). Since bi are projective objects, this is really [Hom(b1, b2)]v,

so it lies in R+
C [v±1]. Now, property (?) says that the algebra

A = End
Coh(S̃K,e

′
)

(⊕
i

ẼSi
)

equipped with the grading coming from the Gm equivariant structure on ẼSi
has no components of negative degree and the component of degree zero is

spanned by identity endomorphisms of ẼSi ’s. This is the same as saying

that if X∗(C)b1 6= X∗(C)b2, then [RHom(b1, b2)] ∈ vR+
C [[v]] and if b1 = b2,

then [RHom(b1, b2)] ∈ 1 + R+
C [[v]]. So, for the basis BS , we have estab-

lished the asymptotic orthonormality property and also a positivity property

(BS ||BS)⊆R+
C [[v−1]].

Similarly, Lemma 5.3.8(a) implies that for bi ∈ Be, one has (b1‖b2) =

[RHom(b1, b2)], because βe fixes b2. The properties of the Gm-grading of A
imply that the Gm-grading on Ext•A[

⊕
i
L̃Si ,

⊕
i
L̃Si )] has no positive Gm-degrees

and the component of degree zero is spanned by identity maps. This is the same

as as saying that if X∗(C)b1 6= X∗(C)b2, then [RHom(b1, b2)] ∈ v−1RC [[v−1]]

and if b1 = b2, then [RHom(b1, b2)] ∈ 1 + v−1RC [[v−1]].

(B) Since βS fixes ẼSj,µ, Lemma 5.3.8(b) and Calabi-Yau property of g̃ give

(L̃i,λ‖ẼSj,µ) = [RHom(L̃i,λ, ẼSj,µ)]

=

ï
RHomK

Å
RHom(ẼSj,µ, L̃i,λ⊗Ω

S̃K,e
′ [dim fiSK,e′]),Kãò

=
Ä
v2 dimBe [RHom(ẼSj,µ, L̃i,λ)]

äv
= v−2 dimBe [Kδijδ

λ
µ ] = δijδ

λ
µ v
−2 dimBe .

(C) In (A) we have already checked that (BS‖BS) ⊆R+
C [[v−1]]. Recall

that ẼSi,λ was constructed so that on fiSK,e′ ∩‘BK,e it coincides with a certain

projective exotic object Ẽi,λ ∈ EcohC̃(‘BK,e) (see 5.3.3). So, because βS fixes

ẼSj,µ, Lemma 5.3.8(c) gives

∇e(ẼSi,λ‖ẼSj,µ) = [RHom(Ẽi,λ, Ẽj,µ)
L
⊗O(ê)Ke] = [RHom(Ẽi,λ, Ẽj,µ

L
⊗O(ê)Ke)].
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Here, Ẽj,µ
L
⊗O(ê)Ke is exotic; i.e., under the equivalence

Db(Coh(g̃)) ∼= Db(modfg(A))

(restricted to ‘BK,e), the object Ẽj,µ
L
⊗O(ê) Ke corresponds to a module rather

than a complex of modules. The reason is that the algebra A is flat over O(g)

(see Lemma 1.5.3); hence the same is true for its projective modules. Therefore,

the result is just [Hom(Ẽi,λ, Ẽj,µ
L
⊗O(ê)Ke)], which lies in R+

C [v±1]. However, as

∇e ∈ 1+v−1RC [v−1] ([Lus99, Lemma 3.2]), from (BS‖BS) ⊆R+
C [[v−1]] we now

get ∇e(BS‖BS) ⊆R+
C [v−1].

The second claim follows from asymptotic orthonormality from (A) and

the fact that (KC̃(B′K,e)‖KC̃(B′K,e)) ⊆RC̃ , which is checked in [Lus99].

(D) Recall from 5.2.2 that for a certain z ∈ Z(G), the element m =

(φ(−1)z,−1) of ‹C acts trivially on g̃. This implies that it acts on any Ẽi,λ
by a scalar εi,λ.21 For ν ∈ X∗(C) and d ∈ Z, the coefficient of vd in cνb1,b2 ∈

Z[v±1] is the dimension of Hom
C̃

[Ẽi,λ, Ẽj,µ+ν(d)
L
⊗O(g)Ke]. If this is not zero,

then (−1)d = εj,µ+νε
−1
i,λ since m ∈ ‹C acts on Hom[Ei,λ, Ẽj,µ+ν(d)

L
⊗O(g)Ke] by

(−1)dεj,µ+νε
−1
i,λ .

(E) The normalization property is a part of the definition of BS in 5.3.3,

and we have already checked that BS satisfies all other properties. Any

RGm-basis B of KC̃(fiSK,e′) that is pointwise fixed by βS and satisfies asymp-

totic orthonormality is of the form εbb, b ∈ BS for some ε ∈ {±1}; see footnote

18 on page 888. If B satisfies normalization property, then εi0 = 1. Now ei-

ther of positivity properties for the pairing ( ‖ ) implies ε = 1. The reason is

that the equivalence relation ∼ on BS generated by b1 ∼ b2 if (b1‖b2) 6= 0 is

transitive since (ẼSi,λ‖ẼSj,µ) 6= 0 is equivalent to Hom
Db[CohC̃(S̃K,e

′
)]

(ẼSi,λ‖ẼSj,µ) 6= 0

and the category EcohC(fiSK,e′) is indecomposable (because DbCoh(X) is inde-

composable for a connected variety X and DbCoh(fiSK,e′) ∼= Db[modfg(AS)] ∼=
Db[EcohC(fiSK,e′)]). Notice also that the last claim is equivalent to indecompos-

ability of EcohC(‘BK,e), and then the corresponding statement in representation

theory is well known (see [BG01]).

21 If G coincides with its adjoint quotient G, then m2 = 1, so since Ẽi,λ is indecomposable,

the claim is true and εi,λ = ±1. By definitions in 5.3.1–5.3.3, if G is replaced by its adjoint

quotient G, the collections Ei, Ẽi, i ∈ Ie, do not change, and if C is the image of C in G,

then BG
def
= {Ẽi,λ; i ∈ Ie, λ ∈ X∗(C)} and the corresponding object for G are related by

BG ∼= BG×X∗(C)X
∗(C). This implies the general case. We also see that εi,λ = εi,0 〈λ,m〉.
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(F) The equivalence EcohC(‘BK,e) ιe−→modfg(U 0̂
K,ê, C) from Theorem 1.6.7(c)

provides compatible bijections (of isomorphism classes) of irreducibles and in-

decomposable projectives and an isomorphismKC(‘BK,e) ιe−→∼= K0[modfg(U 0̂
ê , C)],

which we can view as KC(BK,e)
ιe−→∼= K0[modfg(U 0̂

e , C)]. The list of irreducibles

and their projective covers in EcohC(‘BK,e) is given by images Li,λ, Ei,λ of the

corresponding objects L̃i,λ, Ẽi,λ of EcohC̃(‘BK,e), and we denote by Li,λ, Ei,λ

their images in modfg(U 0̂
K,ê, C). The projective cover of Li,λ in modfg(U 0̂

K,e, C)

is the restriction Ei,λ
L
⊗O(ê)Ke. So, it remains to notice that the K-class of the

restriction Ẽi,λ⊗O(ê)Ke is ∇v
e[ẼSi,λ]. We repeat this calculation from part (c)

of 5.4.2. We use an intermediate object (Ẽi,λ)o ∈ Ecoh(fiSK,e), by its definition

Ẽi,λ|SK,e = (Ẽi,λ)o|B̂K,e , so one gets Ẽi,λ|e = (Ẽi,λ)o|e; hence [Ẽi,λ|e ]=[(Ẽi,λ)o|e ]=

Zg(f)∗ [(Ẽi,λ)o]. Also, ẼSi,λ = (Ẽi,λ)o⊗O(h)K0 gives [ẼSi,λ] = h∗ [(Ẽi,λ)o]; hence

[Ẽi,λ|e ] = Zg(f)∗ h∗ −1[ẼSi,λ] = ∇v
e[ẼSi,λ].

(G) In order to avoid the dg-setting,22 we will pass here from exotic sheaves

to A-modules by means of the equivalence

Db[CohT (‘BK,e)] A−−−−→∼= Db[modT,fg(AK,ê)], A
def
= RHom(E|B̂K,e ,−),

where T could be {1}, C or ‹C.

Let us start with the nonequivariant statement, i.e., Hom in U 0̂
K,ê-modules.

We are interested in the composition of equivalences

modfg(U 0̂
K,ê)
∼= Ecoh(‘BK,e) F−→∼= modfg(AK,ê).

Due to compatibility with the action of O(g×h/Wh), it restricts to an equiva-

lence modfg(U 0̂
K,e)
∼= modfg(AK,e).

We will start as in (C), so Ẽj,µ
L
⊗O(g)Ke is an exotic sheaf and

∇e(ẼSi,λ‖ẼSj,µ) = [RHomB̂K,e
(Ẽi,λ, Ẽj,µ

L
⊗O(g)Ke)]

= [RHomAK,ê(FẼi,λ,FẼj,µ
L
⊗O(g)Ke)].

By adjunction in sheaves of A-modules,

∇e(ẼSi,λ‖ẼSj,µ) = RHomAK,e(FẼi,λ
L
⊗O(g)Ke,FẼj,µ

L
⊗O(g)Ke)].

22 The above localization of A0
K,ê-modules to coherent sheaves on ‘BK,e

′
specializes to a

localization of the category of A0
K,e-modules on the Springer fiber. However, one is forced to

use the dg-version of the Springer fiber B′K,e [Ric10].
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So, the evaluation ∇e(ẼSi,λ‖ẼSj,µ)(1C , 1Gm) is the image of

HomAK,e(FẼi,λ
L
⊗O(g)Ke,FẼj,µ

L
⊗O(g)Ke)

in K0(modfg(K)), i.e., the dimension of this vector space.

It remains to notice that FẼi,λ⊗O(g)Ke is a projective cover of FL̃i,λ in

modfg(AK,e). Since FẼi,λ is a projective cover of FL̃i,λ in modfgAK,ê, it is

projective over K; hence,

F(Ẽi,λ
L
⊗O(g)Ke) ∼= FẼi,λ

L
⊗O(g)Ke

∼= FẼi,λ⊗O(g)Ke.

Since AL̃i,λ is irreducible in mod(A|ê), it is supported scheme theoretically

on e. Therefore we find by adjunction that FẼi,λ⊗O(g)Ke is a projective cover

of FL̃i,λ in modfgAK,e.

If one is interested in maps in modfg(U 0̂
e , C) only, one uses equivariant

equivalences modfg(U 0̂
K,ê, C) ∼= EcohC(‘BK,e) F−→∼= modC,fg(AK,ê) and one also

needs to take C-invariants in the above calculation. This has the effect of

applying ∂ to ∇e(ẼSi,λ‖ẼSj,µ). �

5.5. The Koszul property. This subsection is not used in the rest of the

text. Set Ae = End(⊕ESi ), where the vector bundles ESi on fiSK,e′ are as above.

The Gm-equivariant structure ẼSi on ESi introduced in 5.3.3 equips Ae with a

grading.

Proposition. Properties (i?) and (ii?) of 5.3.2 imply that the graded

algebra Ae is a Koszul quadratic algebra.

Proof.23 For two graded modulesM , N overAe, let Extij(M,N) denote the

component of inner degree j in ExtiAe(M,N). Then (i?) and (ii?) imply that

Extij(L̃1, L̃2) = 0 for j < i, where L̃1, L̃2 are irreducible graded Ae-modules

concentrated in graded degree zero.

The canonical line bundle of S̃′e admits a trivialization that transforms

under the action of Gm by the 2de-th power of the tautological character. So,

Serre duality shows that for finite-dimensional graded Ae-modules, we have

Extij(M,N) = Ext2de−i
2de−j(N,M)∗.

Thus we see that Extij(L̃1, L̃2) = 0 for j 6= i, which is one of characterizations

of Koszul algebras. �

23The proof is due to Dmitry Kaledin.
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5.5.1. Remark. For e = 0, the work of S. Riche [Ric10] provides a repre-

sentation theoretic interpretation of the algebra κ(Ae) which is Koszul dual to

Ae. It would be interesting to generalize this to nonzero nilpotents.

When e is of principal Levi type, the relation between the parabolic semi-

infinite module over the affine Hecke algebra and K(CohC̃(S̃′e)) (see [Lus99,

§§9, 10]) suggests that the category of κ(Ae)-modules can be identified with

the category of perverse sheaves on the parabolic semi-infinite flag variety of

the Langlands dual group. For e = 0, this follows from the result of [ABB+05]

compared with [Ric10].

6. Grading that satisfies property (?)

In Section 6.1 we reduce verification of property (?) (see 5.3.2) to the case

of a characteristic zero base field. From then on until the end of the section

we work over the field K = Q̄l of characteristic zero.

Our goal is to construct a Gm-equivariant structure on projective exotic

sheaves that satisfies property (?). For this we use a derived equivalence be-

tween the category of G-equivariant coherent sheaves on Ñ and of certain per-

verse constructible sheaves on the affine flag variety F l . In the new setting the

Gm-structure is related to Frobenius (Weil) structure on l-adic sheaves, which

we choose to be pure of weight zero. In 6.2 we compare the exotic t-structure on

coherent sheaves to the standard t-structure on perverse constructible sheaves

on F l . This involves the notion of perversely exotic G-equivariant coherent

sheaves. In 6.3 we reduce (?) to a property (???), which is stated in terms of

G-equivariant sheaves. Finally, in 6.4 we verify (???).

6.1. Lusztig ’s conjectures for p� 0.

6.1.1. Proposition. If (?) holds in characteristic zero, it holds for almost

all positive characteristics.

Proof. By Proposition 5.2.3(c) the choice of a graded lift of indecompos-

able projectives and irreducibles in characteristic zero defines such a choice

in almost all prime characteristics. We claim that the required properties are

inherited from characteristic zero to almost all prime characteristics. Indeed,

the fact that the given choice of graded lifts satisfies the positivity requirement

amounts to vanishing of the components of negative degree in the Hom space

between indecomposable projective modules. Since the sum of these compo-

nents is easily seen to be a finite R′-module (here we use the fact that this

Hom space is a finite module over the center O(S̃e
′
R′)), it vanishes after a finite

localization provided that its base change to a characteristic zero field vanishes.

Invariance of the graded lifts under the action of the centralizer clearly holds in

large positive characteristic if it holds in characteristic zero. (Notice that the
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centralizer acts on the set of isomorphism classes of (graded) modules through

its group of components, which is the same in almost all characteristics.)

Uniqueness of the graded lifts with required properties amounts to non-

vanishing of components of degree minus one in Ext1 between certain pairs of

irreducibles. (See the proof of 6.2.1 below.) After possibly replacing R′ with

its localization, we can assume that Ext1 between the “extended irreducible”

modules over R′ are flat over R′. Thus dimensions of each graded component

in Ext1 between the corresponding irreducibles over every geometric point of

R′ is the same. �

6.1.2. The final form of the results. Since (?) for K = C will be established

in the remainder of this section, the proposition implies that there exists a

quasifinite R-domain R′ such that for all geometric points K of R′, property

(?) holds and therefore so do all claims (A)–(G) from Proposition 5.3.6. In

particular, this establishes the following version of Lusztig’s conjectures.

Theorem. (1) Conjectures 5.12 and 5.16 of [Lus99] (existence of certain

signed bases of K-groups of complex schemes BC,e and fiSC,e′) hold.

(2) The part of Conjecture 17.2 of loc. cit. concerning modular representations

holds for all finite characteristic geometric points K of R′.

6.2. Perverse t-structures on A0-modules. Recall that the triangulated

category Db[CohG(N )] carries a certain t-structure called the perverse coherent

t-structure of middle perversity [Bez03]. (See also [AB10] for the general the-

ory of such t-structures.) As above, let A0 be End(E|‹N ) for the vector bundle

E from Theorem 1.5.1. This is an O(N )-algebra equipped with a G × Gm-

action. This allows us to define a perverse coherent t-structure T G
pc (A0) of

middle perversity on Db[modG,fg(A0)], where G is one of the groups G,G×Gm

or G. These are characterized by the requirement that the forgetful functor to

Db[CohG(N )] is t-exact when the target category is equipped with the perverse

coherent t-structure of middle perversity.

Recall the equivalence of derived categories of coherent and constructible

sheaves,

(17) Φ : Db(CohG(Ñ ))−→∼= Db(PervF l ),

constructed in [AB09], where Db(PervF l ) is the derived category of anti-

spherical perverse sheaves on the affine flag variety of the dual group.

6.2.1. Theorem. The composed equivalence ΦA0

ΦA0
def
= [ Db(modG,fg(A0))−→∼= Db(CohG(Ñ ))

Φ−−−−→∼= Db(PervF l ) ]
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sends the perverse coherent t-structure of middle perversity T Gpc(A0) to the

tautological t-structure on Db(PervF l ).

Proof. In Lemma 6.2.4 we show that the t-structure on Db(CohG(Ñ )) that

comes from Db(PervF l ) satisfies a certain property, and in Lemma 6.2.3 we

show that the only t-structure on Db(CohG(Ñ )) that could satisfy this property

is the one coming from the t-structure T Gpc(A0) on Db[modG,g(A0)]. �

6.2.2. Perversely exotic t-structures. We will say that a t-structure on a

triangulated category C is compatible with a thick triangulated subcategory C′
if there exist t-structures on C′, C/C′ such that the embedding and projection

functors are t-exact (cf. [BBD82]). Inductively, one extends this definition to

the definition of a t-structure compatible with a filtration by thick triangulated

subcategories.

By a support filtration on Db(CohG(Ñ )) we will mean the filtration by

full subcategories of complexes supported (set theoretically) on the preimage

of the closure of a given G orbit in N . (We fix a complete order on the set of

orbits compatible with the adjunction partial order.)

Finally, we say that a t-structure on Db(CohG(Ñ )) is perversely exotic if

it is

(1) compatible with the support filtration,

(2) braid positive (see 1.4.1),

(3) such that the functor π∗ is t-exact when the target category Db(CohG(N ))

is equipped with perverse coherent t-structure of middle perversity.

Uniqueness of such at-structure follows from

6.2.3. Lemma. A perversely exotic t-structure T on Db(CohG(Ñ )) corre-

sponds under the equivalence Db(CohG(Ñ )) ∼= Db[modG,fg(A0)] to T Gpc(A0), the

perverse coherent t-structure of middle perversity.

Proof. It is a standard fact that for a triangulated category C, a thick

subcategory C′ and t-structures T ′ on C′, T ′′ on C/C′, a t-structure T on C
compatible with T ′, T ′′ is unique if it exists. Thus uniqueness of an exotic

t-structure implies uniqueness of a perversely exotic t-structure.

On the other hand, the t-structure corresponding to T Gpc(A0), is perversely

exotic, as is clear from the fact that the t-structure corresponding to the tau-

tological one on Db(modG,fg(A)) is exotic. (The last fact is the definition of A

as the endomorphism of the exotic tilting generator E .) �

6.2.4. Lemma. The t-structure on Db(CohG(Ñ )), which under the equiv-

alence [AB09] corresponds to the perverse t-structure on Db(PervF l ) is per-

versely exotic.
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Proof. Properties (1) and (3) are satisfied by [AB09, Th. 4(a) and Th. 2

respectively]. We now deduce property (2) from the results of [Bez06a]. In loc.

cit. it is shown that the t-structure corresponding to the one of PervF l can be

characterized as follows:

D≥0 = 〈∆λ[−d]〉d≥0, λ∈Λ and D≤0 = 〈∇λ[d]〉d≥0, λ∈Λ,

where 〈 , 〉 denotes the full subcategory generated under extensions and ∆λ,

∇λ, λ ∈ Λ, are certain explicitly defined objects in Db(CohG(Ñ )).

Furthermore, we claim that

(18) ∇λ = ‹wλ(O), ∆λ = (fiw−1
λ )−1(O),

where wλ is any representative of the coset λW ⊂ Waff and ‹w denotes the

canonical representative in Baff of w ∈ Waff . For λ dominant, we have ∇λ ∼=
O(λ), ∆−λ ∼= O(−λ), so in this case (18) is clear from the description of the

action of θλ in Theorem 1.3.2(a)(ii). The general case follows from [Bez06a,

Prop. 7(b)]. In loc. cit. one finds a distinguished triangle

∇λ → ∇sα(λ) → F ′α(∇sα(λ))

for a certain functor F ′α, where we assume that sα(λ) � λ. The functor F ′α is

readily identified as convolution with Fα[1], where Fα = Ker(OΓ′sα
→ O‹N ) ∈

Coh
LG(Ñ 2) (notations of 1.1.1); here the arrow is the restriction to diagonal

map. The arrow ∇sα(λ) → F ′α(∇sα(λ)) appearing in [Bez06a, Prop. 7] coin-

cides with the one coming from the map O‹N → Fα[1] of the distiguished

triangle Fα→OΓ′sα
→O‹N → Fα[1]. This shows that s̃α(∇sα(λ))∼=∇λ, which

implies (18).

Now Proposition 2.1.2(a) yields exact triangles available for any F ∈
Db(CohG(Ñ )):

s̃α
−1F → s̃αF → F ⊕F [1].

Thus if `(sαwλ) < `(wλ) (where ` is the length function on Waff), then s̃α
−1∇λ

= ∇sα(λ), so we have an exact triangle

∇sα(λ) → s̃α∇λ → ∇λ ⊕∇λ[1],

which shows that s̃α∇λ ∈ D≤0. Also, if `(sαwλ) > `(wλ), then s̃α∇λ ∼= ∇sα(λ).

Thus s̃α : D≤0 → D≤0, which implies braid positivity property (2). �

6.2.5. Remark. A more conceptual proof of braid positivity property (2) in

the last lemma follows from the preprint [Bez]. (See also the announcement in

[Bez06b].) It permits us to relate the Baff action described above to a standard

action on the category of constructible sheaves on the affine flag space F l . In

the latter case the generator s̃α acts by convolution with a constructible sheaf

jsα∗ (in the notations of, say, [AB09]); i.e., the ∗ extension of the constant

sheaf shifted by 1 on the Iwahori orbit corresponding to sα. It is well known

that convolution with such a sheaf is right exact with respect to the perverse

t-structure (see, e.g., [BB83]).
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In fact, these considerations have led us to the notion of a braid positive

t-structure, which was introduced as a way to relate modular representations

to perverse sheaves on the affine flag space. We have chosen to present the

above ad hoc argument in an attempt to keep the present paper self contained.

6.3. Reduction to a Ge-equivariant setting. We consider the algebra A0
e

def
=

A0 ⊗Og Ke. It is graded by means of the action of Gm⊆‹C as above.

6.3.1. Reduction to a property of A0
e-modules.

Lemma. Property (?) follows from

(??) there exists a Ge-invariant choice of a graded lifting L̃ for every irre-

ducible representation L of A0
e such that

(1) Components of nonnegative weight in Ext1
mod(A0

e)
(L̃1, L̃2) vanish for

Li ∈ Irr(A0
e).

(2) Consider the preorder on the quotient of the set of irreducible rep-

resentations of A0
e by the action of Ge, generated by α1 ≤ α2 if

for some representatives Li of αi, the component of degree −1 in

Ext1
mod(A0

e)
(L̃1, L̃2) does not vanish. This preorder is actually a

transitive equivalence relation ; i.e., α1 ≤ α2 for all αi ∈ Irr(A0
e)/Ge.

Proof. (i) Existence. Set A0
S = A0 ⊗Og O(SK,e). Then we have

Db[modfg(A0
S)] ∼= Db(Coh(fiSK,e)),

and the same holds with equivariance under Gm or ‹C. Recall that (?) (see

5.3.2) involves a Ge,h-invariant choice of graded liftings ẼSi of exotic sheaves

ESi ; i.e., a Ge,h-invariant choice of graded liftings of indecomposable projective

A0
S-modules. This is equivalent to a Ge,h-invariant choice of graded liftings L̃i

of irreducible modules Li supported at e.

Since (??) provides a choice with stronger equivariance, it remains to

check that the choice of L̃i satisfying the vanishing property (1) of (??)

yields a choice of ẼSi satisfying the vanishing requirements of (?); that is,

⊕i,j Hom
Coh(S̃K,e

′
)
(ẼSi , ẼSj ) has no negative Gm weights and zero weights are

spanned by identity maps. By a standard argument this property from (?) is

equivalent to saying that

Ext1
A0
Se

(L̃i, L̃j(d)) = 0 for d ≥ 0.

If Li 6∼= Lj , then any A0
S-module that is an extension of Li by Lj is actually

an A0
e-module, because the action of a regular function on SK,e vanishing at e

on such an extension factors through a map Li → Lj ; such amap is necessarily

zero. On the other hand, if Li ∼= Lj and an extension 0→ Lj →M → Li → 0

is such that M does not factor through A0
e, then some function as above induces
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a nonzero map Li → Lj . Since Gm acts on the ideal in O(SK,e) by positive

weights, we see that the class of the extension has negative weight.

(ii) Uniqueness. Finally, we will see that the uniqueness statement in (?)

follows from property (2). Any graded lifting of Li’s is of the form L̃i(di)

for some integers di. If it satisfies the requirements, then di is clearly mono-

tone with respect to our preorder. Thus property (2) implies that di = dj for

all i, j. �

6.3.2. Category modGe,fg(A0
e) of Ge-equivariant A0

e-modules. Notice that

modGe,fg(A0
e)
∼= modG,fg(A0|Oe), where Oe is the G-orbit of e and the category

in the right-hand side is the category of equivariant quasicoherent sheaves

of modules over the sheaf of algebras A0|Oe . This category has a graded

version modG,fg(A0|Oe), compatible with the graded version modG,fg(A0) ∼=
Db[CohG(Ñ )] considered above. In terms of the stabilizer Ge of e in G, this is

modGe,fg(A0
e).

The tensor category Rep(Ge) clearly acts on the category modGe,fg(A0
e)

where for V ∈ Rep(Ge) and M ∈ modGe,fg(A0
e), one equips the tensor product

V ⊗M with the diagonal action of Ge. We will now see that a tensor subcat-

egory Repss(Ge) of semisimple representations of Ge acts on modGe,fg(A0
e).

We use morphisms SL2
ϕ−→ G and Gm

i−→ G, i(t) = (φ(t), t−1), chosen

in 5.2.2. Notice that (g, t) ∈ G = G×Gm lies in Ge if and only if e = t2·ge =
gφ(t)e; i.e., gφ(t) ∈ Ge. So, Ge contains Ge·i(Gm), and this is equality since

g̃ = gφ(t) ∈ Ge implies that (g, t) = (g̃, 1)·i(t−1). We have the exact sequence

0→ Gm⊆Ge
p−→ Ge → 0 for p(g, t) = gφ(t), and maximal reductive subgroups

of Ge and Ge can be chosen as the stabilizer Gϕ = ZG(Im(ϕ)) of ϕ in G and

Gϕ·i(Gm). Now Gϕ·i(Gm)
p−→ Gϕ gives a tensor functor

Repss(Ge) ∼= Rep(Gϕ)
p∗−−→ Rep[Gϕ·i(Gm)]

∼=←−− Repss(Ge).

Lemma. (a) For any M ∈ IrrGe(A0
e), restriction to A0

e is a multiple of a

sum over some Ge-orbit OM in Irr(A0
e).

(b) For M1,M2 ∈ IrrGe(A0
e), the space HomA0

e
(M1,M2) is a semisimple

Ge-module.

Proof. (a) For an irreducible A0
e-module L, denote by Ge,L ⊂ Ge the

stabilizer of the isomorphism class of L. Then Ge,L is a finite index subgroup

in Ge, and L can be equipped with a compatible projective action of Ge,L ; i.e.,

an action of a central extension 0→ AL → Ge,L → Ge,L → 0 by a finite abelian

group AL.24

24 V. Ostrik has informed us that he can prove that, in fact, this extension can be assumed

to be trivial provided G is simply connected. (An equivalent statement is that the set of
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The subgroup AL acts on L by a character χL. For any irreducible repre-

sentation ρ of Ge,L, with AL acting by χ−1
L , we get an irreducible object ρ⊗L

in modGe,L(A0
e).

Then IndGeGe,L(ρ ⊗ L) is an irreducible object of modGe(A0
e), and all irre-

ducible objects M arise this way.

Now for M = IndGeGe,L(ρ⊗ L), we have

M |A0
e

=
⊕

g∈Ge/Ge,L

gρ⊗ gL|A0
e
∼= K⊕ dim(ρ)⊗

⊕
K∈Ge·L

K.

To check (b) observe that HomA0
e
(M1,M2) = 0 if OM1 6= OM2 . Thus assume

that OM1 = OM2 is the orbit of L ∈ Irr(A0
e)). Then we get⊕

g,h∈Ge/Ge,L

HomK[gρ,h ρ]⊗HomA0
e
(gL,h L)

=
⊕

g∈Ge/Ge,L

HomK[ρ, ρ] = IndGeGe,LEndK[ρ].

Since ρ is a semisimple Ge,L-module, EndK(ρ) is a semisimple Ge,L-module. As

Ge,L has finite index in Ge, it follows that IndGeGe,L EndK[ρ] is also semisimple.

�

6.3.3. Reduction to a property of Ge-equivariant A0
e-modules.

Lemma. (??) follows from the following.

(???) There exists a choice of a graded lifting L̃ ∈ modGe(A0
e) for every

irreducible object L of modGe(A0
e) such that

(0???) For L ∈ IrrGe(A0
e) and any irreducible representation V of Ge, we

have V ⊗ L̃ ∼=
∑
L̃i for some Li ∈ IrrGe(A0

e).

(1???) Components of nonnegative weight in Ext1
A0
e
(L̃1, L̃2) vanish for L1, L2

∈ IrrGe(A0
e).

(2???) Consider the preorder ≤ on the set of irreducible objects in modGe(A0
e)

generated by L1 ≤ L2 if a component of degree (−1) in Ext1
A0
e
(L̃1, L̃2)

does not vanish. This partial preorder is actually a transitive equiva-

lence relation ; i.e., L1 ≤ L2 for all (L1, L2).

Proof. Property (0???) is equivalent to saying that for Li ∈ IrrGe(A0
e),

the multiplicative group Gm acts trivially on HomA0
e
(L̃1, L̃2). Indeed, if (0???)

holds, then Gm acts trivially on HomA0
e
(L̃1, L̃2) because for any σ ∈ Irr(Ge),

HomGe [σ,HomA0
e
(L1, L2)] = HommodGe (A0

e)
(σ ⊗ L1, L2) and σ⊗L̃1 is a sum

of L̃’s.

“centrally extended points” appearing in [BO04] is actually a plain finite set with a Ge
action.) We neither prove nor use this fact here.
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Consequently, a choice of graded lifts of Ge-equivariant irreducibles unique-

ly defines a choice of graded lifts of irreducible A0
e-modules such that the for-

getful functor sends the graded lift of an equivariant irreducible M̃ to a sum

of graded lifts of nonequivariant irreducibles L̃i. It is clear that Ge permutes

the isomorphism classes of those L̃i.

Suppose that Ext1(L̃1, L̃2(d)) 6= 0 for some L1, L2, d > 0. Fix M1,M2 such

that L1, L2 are direct summands in M1, M2 considered as A0
e-modules. Then

Ext1
A0
e
(M1,M2(d)) 6= 0. The space Ext1

A0
e
(M1,M2) carries a (not necessarily

semisimple) Ge action, and for an irreducible representation ρ of Ge, we have

an embedding of graded spaces Hom(ρ,Ext1
A0
e
(M1,M2)) → Ext1

modGe (A0
e)

(ρ ⊗
M1,M2). The latter embedding can be obtained as follows. Given an element

in the source space, we get an extension of A0
e-modules 0 → M2 → M →

ρ ⊗ M1 → 0. Twisting this module by z ∈ Ge, we obtain an isomorphic

extension; since HomA0
e
(M1,M2) = 0, we actually get a unique isomorphism

M z ∼= M compatible with the given equivariant structures on ρ ⊗M1, M2.

Thus we get a Ge-equivariant structure on M .

Since Gm acts on the Lie algebra of the unipotent radical of Ge by pos-

itive weights, the Ge submodules generated by the degree d components in

Ext1
A0
e
(M1,M2) is concentrated in positive degrees. This subspace has an ir-

reducible subrepresentation ρ, which produces a nonzero Ext1(ρ ⊗ M1,M2)

of positive degree contradicting properties (0???) and (1???). To prove prop-

erty (2???) it is enough to show that if M1, M2 are irreducible objects in

modGe(A0
e) such that HomA0

e
(M1,M2) = 0, and Ext1

modG(A0
e)

(M̃1, M̃2(1)) 6= 0,

then Ext1
modGm (A0

e)
(M̃1, M̃2(1)) 6= 0. It suffices to check that applying the for-

getful functor modGe(A0
e) → mod(A0

e) to a nontrivial extension 0 → M2 →
M → M1 → 0, we get a nontrivial extension. However, if there exists an A0

e

invariant splitting M1 →M , then its image has to be invariant under Ge, since

HomA0
e
(M1,M2) = 0 and the isomorphism class of the A0

e-module M1 is Ge
invariant. Thus existence of a nonequivariant splitting implies the existence of

an equivariant splitting. �

6.4. End of the proof. Here we prove (???). The proof is based on the

equivalence Φ : Db[CohG(Ñ )]−→∼= Db(PervF l )) from [AB09], which we use in the

form ΦA0 : Db[modG,fg(A0)]−→∼= Db(PervF l ) (see Theorem 6.2.1).

6.4.1. The choice of grading. The equivalence ΦA0 makes the category

modGe,fg(A0
e) = CohG(A0|Oe) a full subcategory in a Serre quotient category of

PervF l . We will now show that property (???) holds when the graded lifting

L̃ of irreducibles L in modGe(A0
e) is chosen so that it corresponds to pure Weil

structure of weight zero. What is meant by this is the following.
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First, it is shown in [AB09] that the Frobenius functor corresponding to

a finite field Fq on the perverse sheaves category corresponds to the functor

G 7→ q∗(G) on coherent sheaves, where q : Ñ → Ñ by q(b, x) = (b, qx). The

same then applies to F ∈ Db[modG,fg(A0)] with q : N → N by q(x) = q·x.

Thus, for a perverse coherent sheaf F of A0-modules, a Weil structure

on the perverse sheaf ΦA0F is the same as an isomorphism F−→∼= q∗(F). In

particular, this shows that any Gm-equivariant structure on F defines a Weil

structure on ΦA0F . Notice that the resulting functor from Db(CohG×Gm(Ñ ))

to Weil complexes on F l sends the twist by the tautological Gm character

M 7→M(1) to the square root of Weil twist F 7→ F (1
2) acting on Weil sheaves.

Here M(1) stands for the graded module M(1)i = M i+1. This functor

is compatible with the functor F 7→ F(1
2) on Weil perverse sheaves under the

equivalence (17).

It is shown in [Bez06a] that when ΦA0F is an irreducible perverse sheaf,

any Gm-equivariant structure on F induces a pure Weil structure on ΦA0F and

there is a unique Gm-equivariant structure on F such that the corresponding

Weil structure on ΦA0F is pure of weight zero.25 It is also proven in loc. cit.

that for F ,G ∈ Db(CohG×Gm(Ñ )), the isomorphism

Hom
Db(CohG(‹N ))

(F ,G) ∼= HomDb(PervF l )
(Φ(F),Φ(G))

takes the grading induced by the Gm-equivariant structure into the grading by

Frobenius weights.

6.4.2. Property (1???) and the Purity Theorem. The Purity Theorem of

[BBD82] implies that Ext1 between two pure weight zero Weil sheaves in PervF l
has weights < 0. Thus for the above graded lifts L̃ of irreducible equivariant

perverse coherent sheaves of A0-modules, Ext1 between two such objects has

weights < 0. It is not hard to check that this property is inherited by a quotient

category; thus property (1???) follows.

6.4.3. Property (2???) and definition of cells. Property (2???) says that

for any L, L′ in IrrGe(A0
e), there exists a sequence of irreducible objects L0 = L,

L1, . . . , Ln=L′ such that the component of degree−1 in Ext1
modGe (A0

e)
(Li−1, Li)

is nontrivial.

Recall that by [AB09, Th. 4(a)], the support filtration on Db(CohG(Ñ ))

is identified with the (left) cell filtration on Db(PervF l ). In particular, the

irreducible objects in the subquotient piece of the filtration corresponding to a

given nilpotent orbit Oe are in bijection with elements in a canonical left cell in

the two-sided cell in Waff attached to Oe. Furthermore, the definition of a left

25 [Bez06a] provides also a more direct way to describe the resulting G×Gm equivariant

sheaves.
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cell implies the following. For any two irreducible objects L, L′ in the same

left cell, there exists a sequence of irreducible objects L0 = L,L1, . . . , Ln = L′

such that for any step M = Li−1 and N = Li in the chain, there is a simple

affine root α such that N is a direct summand in the perverse sheaf π∗π∗M [1],

where π stands for the projection F l → F lα to the partial flag variety of the

corresponding type.

This implies that π∗M is a semisimple perverse sheaf on F lα and that the

relation of α to M is such that we have a canonical extension of Weil perverse

sheaves

(19) 0→ π∗π∗M [1]

Å
1

2

ã
→ F →M → 0.

Here F = J∗sα ? M , where ? denotes the convolution of constructible sheaves

on F l and J∗sα is the ∗ extension of the (pure weight zero perverse) constant

sheaf on the Schubert cell corresponding to sα.

So, it suffices to see that in each of the above steps the component of

degree −1 in Ext1
PerveF l

(M,N) is nontrivial, where PerveF l
def
= PervF l/Perv<eF l

for the Serre subcategory Perv<eF l generated by irreducible objects belonging to

smaller cells. The exact sequence (19) gives

HomPerveF l
[F , N ]→ HomPerveF l

[π∗π∗M [1](
1

2
), N ]→ Ext1

PerveF l
[M,N ].

The middle term is nonzero since N is a summand of π∗π∗M [1]. It has

weight −1 because M and N are pure of weight zero; hence π∗π∗M [1] and

HomPerveF l
[π∗π∗M [1], N ] are also pure of weight zero. So it suffices to see that

(20) HomPerveF l
(F , N) = 0.

To check (20) notice that a nonzero element of the Hom space corresponds

to a quotient F ′ of F in PervF l such that the only irreducible constituent of

F ′ that does not belong to Perv<e(F l) is N . Since M is not in Perv<e(F l),

the exact sequence (19) shows that such aquotient F ′ is necessarily of the form

π∗F ′′[1] for some semisimple perverse sheaf F ′′ on the partial affine flag variety

F lα. We have

Hom(F , π∗F ′′[1]) = Hom(F , π!F ′′[−1]) = Hom(π∗F ,F ′′[−1])

= Hom(π∗M [1],F ′′[−1]),

where we used the identity π∗(J
∗
sα ?G) = π∗G[1] for G = M . Finally, since π∗M

and F ′ are perverse sheaves, Hom(π∗M [1],F ′′[−1]) = Ext−2(π∗M,F ′′) = 0.
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6.4.4. Property (0???) and Gabber ’s theorem. Property (0???) claims that

the class of semisimple objects of modGe,fg(A0
e) whose irreducible constituents

are the particular lifts L̃ (chosen in 6.4.1) of irreducibles L in modGe(A0
e) is

invariant under the action of Repss(Ge).

It is explained in [AB09] that under the equivalence

Φ : Db(CohG(Ñ ))−→∼= Db(PervF l ),

the action G 7→ V⊗G of V ∈ Rep(G) on the source corresponds on the target

to the action of a central functor ZV described in [Gai01]. This is then also

true for the equivalence ΦA0 : Db(modG,fg(A0))−→∼= Db(PervF l ). Since the cen-

tral functors are defined by means of a nearby cycles functor, they carry the

canonical monodromy automorphism M.

To any M ∈ modGe,fg(A0
e) one associates a G-equivariant vector bundleM

on the nilpotent orbit Oe and its intersection cohomology extension IC(M),

which lies in the heart of the perverse t-structure of middle perversity on

Db(modG,fg(A0)) and has support Oe (see [AB10]). We will denote IC(M) just

by IC(M). Then M 7→ IC(M) is a bijection of irreducibles in modGe,fg(A0
e) and

those irreducibles in the heart of the perverse t-structure that have support Oe
(ibid.).

For V ∈ Rep(G), we have V ⊗ IC(M) = IC(V |Ge⊗M). Moreover, for any

semisimple subquotient ρ of V |Ge , the tensor product ρ⊗M is semisimple, so

IC(ρ⊗M) is semisimple. It is also a subquotient of V ⊗ IC(M) (ibid.).

The Ge-module V |Ge carries a nilpotent endomorphism given by the action

of e, and we denote by F i(V ) the corresponding Jacobson-Morozov-Deligne

filtration, and gri(V ) = F i(V )/F i+1(V ). By definition of this filtration the

graded pieces gri(V ) are semisimple Ge-modules; thus IC(gri(V )⊗M) is a

semisimple subquotient of V ⊗ IC(M).

The same formalism applies to Gm equivariant objects: starting with M̃ ∈
modGe,fg(A0

e), with the underlying object M in modGe,fg(A0
e), we get a graded

lift IC(M̃) of IC(M) that lies in the perverse heart of Db(modG×Gm,fg(A0)).

As was explained in 6.4.1, the Gm-equivariant structure M̃ induces a Weil

structure on the perverse sheaf ΦA0

Ä
IC(M)

ä
; we will denote the corresponding

Weil sheaf by ΦA0

Ä
IC(M̃)

ä
. We will combine this with the action of semisimple

representations ρ of Ge on modGe,fg(A0
e) in order to produce Weil sheaves

ΦA0

Ä
IC(ρ⊗ M̃)

ä
. Now property (0???) is part (b) of the following lemma.

Lemma. Let M̃ ∈ modGe,fg(A0
e) be such that the Weil structure on the

perverse sheaf ΦA0

Ä
IC(M̃)

ä
is pure of weight zero.

(a) For any V ∈ Rep(G), the Weil structure on ΦA0

Ä
IC(gri(V )⊗ M̃)

ä
is pure

of weight i.
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(b) For any semisimple representation ρ of Ge, the Weil structure on the per-

verse sheaf ΦA0

Ä
IC(ρ⊗ M̃)

ä
is pure of weight zero.

Proof. (a) We consider the nilpotent endomorphism e of the Ge-module

V |Ge ⊗ M given by the action of e on V |Ge . It induces a nilpotent endo-

morphism of V⊗IC(M) = IC(V⊗M), which can be used to define a Deligne-

Jacobson-Morozov filtration on V⊗IC(M). The induced filtration on the fiber

V ⊗ IC(M)|e ∼= V |Ge ⊗M is just the Deligne-Jacobson-Morozov filtration for e

because formation of Deligne-Jacobson-Morozov filtration commutes with ex-

act functors and restriction to e ∈ Oe is exact on perverse sheaves supported in

Oe. Thus the semisimple subquotient IC(gri(V )⊗ M̃) of V⊗IC(M̃) is actually

a subquotient of gri(V⊗IC(M̃)).

According to [AB09], e induces on

ΦA0

Ä
IC(V |Ge ⊗M)

ä
= ΦA0

Ä
V⊗IC(M)

ä
= ZV

Ä
ΦA0 IC(M)

ä
the endomorphism given by the action of the logarithm of monodromy logM

on the functor ZV . Now the lemma follows from Gabber’s Theorem asserting

that the monodromy filtration (i.e., the Deligne-Jacobson-Morozov filtration

for the logarithm of monodromy) coincides with the weight filtration on the

nearby cycles of a pure weight zero sheaf; cf. [BB93].

(b) Any irreducible representation ρ of Ge is a subquotient of V |Ge for

some V ∈ Rep(G), hence a subquotient of some gri(V |Ge). The definition

of Deligne-Jacobson-Morozov filtration implies that the natural Gm action on

gri(V |Ge) is by the character t 7→ ti, so part (a) implies that the Weil sheaf

IC(ρ⊗ M̃)(i) is a subquotient in gri(V⊗IC(M̃)). Thus ΦA0

Ä
IC(ρ⊗ M̃)(i)

ä
has weight i and then ΦA0

Ä
IC(ρ⊗ M̃)

ä
has weight zero. �

Appendix A. Involutions on homology of Springer fibers

Our goal here is to prove equality (16) from 5.4.1. The result can be viewed

as a generalization of the fact that a Chevalley involution (i.e., an involution

that sends every element of some Cartan subgroup to its inverse) sends every

irreducible representation of an algebraic group to its dual.

A.1. Cohomology of a Springer fiber as a module for the extended central-

izer. All cohomology spaces in this subsection are taken with coefficients in C
in the classical topology or coefficients in Q̄l in the l-adic setting.

Let ι be an involution of G that induces conjugation with w0 on the

abstract Weyl group (e.g., a Chevalley involution). Let
•
G denote the semi-

direct product {1, ι} n G. It is well known that ι as above is unique up to

composition with an inner automorphism; thus the group
•
G is defined uniquely

(up to an isomorphism).
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Fix a nilpotent e ∈ g, and set de = dim(Be). Let Ge be the centralizer of

e in G, and let
•
Ge be the stabilizer of e in

•
G. Set Γ = π0(Ge) and

•
Γ = π0(

•
Ge).

It is easy to see that
•
Ge intersects the nonidentity component of

•
G; thus

•
Γ/Γ ∼= Z2. Let ε be the nontrivial character of

•
Γ/Γ.

The group
•
Ge acts on the Springer fiber BK,e; thus

•
Γ acts on its coho-

mology. We denote this action by η. We consider also another action of
•
Γ on

H∗(BK,e): the two actions coincide on the subgroup Γ⊆
•
Γ, while on elements

of
•
Γ \ Γ they differ by the action of w0 ∈ W (where W acts via the Springer

representation). We denote this new action of
•
Γ on H•(BK,e) by ψ.

Notice that unlike the original action, ψ commutes with the action of W

in all cases.

Proposition. Let ρ be an irreducible constituent of the
•
Γ-module

(H2i(BK,e), ψ).

Then ρ⊗ εde−i is a constituent of (H2de(BK,e), ψ).

Remarks. (1) Validity of the proposition for the groups such that w0 is

central in W is equivalent to the result of [Spa85]. The method of [Spa85] is

based on Shoji’s orthogonality formula for Green functions and is quite different

from the present one.

(2) After this paper was submitted we learned of a recent preprint [Kat]

where it is shown that homology of a Springer fiber is generated by its top

degree component as a module over cohomology of the flag variety. This result

yields an alternative proof of Proposition A.1.

Proof. It is well known that any irreducible representation of Γ that occurs

in H i(BK,e) for some i occurs also in Hde(BK,e). Thus the proposition follows

from the following

Lemma. The extension
•
Γ acts on (H2i ⊗H2j)Γ by the character ε⊗ i+j .

Proof. We will deduce the lemma from some known properties of equivari-

ant Borel-Moore homology of the Steinberg variety of triples St
def
= Ñ ×g Ñ .

Let H•BM denote Borel-Moore homology; i.e., derived global sections of the

Verdier dualizing sheaf. (For convenience, we use cohomological grading de-

spite the term “homology”.)26

26 Since the Verdier dualizing sheaf admits a canonical lifting to the equivariant derived

category, equivariant Borel-Moore homology is also defined. (Cf. [Lus88, 1.1] for a slightly

more elementary definition.)
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It is well known (see, e.g., [Lus88, Cor. 6.4] for a much stronger result)

that

H2i,G
BM (St) ∼= C[W ]⊗ Symi+d(h∗),

where d = 2 dimB and odd degree homology vanishes.

On the right-hand side of the last isomorphism we have a natural action of

W (by conjugation on the first factor and by the reflection representation on h∗)

and of the group of outer automorphisms of G. Standard considerations show

that the automorphism ι◦w0 acts trivially on C[W ] and by (−1)i on Symi(h∗).

Let $ : St→ N be the projection. Let O be the G-orbit of e. We reduce

the equivariance of Borel-Moore homology from G to Ge,

HG,i
BM($−1O) = H

Ge,i+2(d−2de)
BM (BK,e2),

and then to the maximal torus C in the identity component G0
e of Ge,

HGe,j
BM (BK,e2) = H

G0
e,j

BM (BK,e2)Γ and H
G0
e,j

BM (BK,e2) = HC,j
BM(BK,e2)W (G0

e).

Here W (G0
e) is the Weyl group of G0

e. Also, H2k+1
BM (BK,e2) = 0 and

H∗(BK,e2) = H∗C(BK,e2)⊗H•C(pt) H
0(pt).

The last two isomorphisms follow from the existence of a C-invariant stratifi-

cation of BK,e where each stratum Xi is a C equivariant vector bundle over a

space Zi such that C acts trivially on Zi and H2k+1(Zi) = 0 [DCLP88].

In particular, odd degree components in HG
BM($−1O) vanish. This argu-

ment applies to other orbits. Thus we see that the Cousin spectral sequence

for HG
BM(St) corresponding to the stratification by the preimages of G-orbits

under $ degenerates. Thus we get a canonical filtration on HG
BM(St) whose

associated graded pieces are equivariant Borel-Moore homology spaces of the

preimages of G-orbits under $.

In particular, one of the pieces is HG
BM($−1O). The above isomorphisms

show that HBM(BK,e2)Γ = [HBM(BK,e)⊗2]Γ is naturally a quotient of equivari-

ant Borel-Moore homology HG
BM($−1O). Thus [HBM(BK,e)⊗2]Γ is a subquo-

tient of HG
BM(St).

For s ∈
•
Ge \Ge, the action of ψ(s) on HBM(BK,e2)Γ is clearly compatible

with the action of w0 ◦ ι on HG
BM(St). Thus the restriction of this action to

[H2i
BM(BK,e)⊗H2j

BM(BK,e)]Γ equals (−1)i+j+d−2de+d = (−1)i+j .

However, since BK,e is compact, Borel-Moore homology coincides with the

homology

H−kBM(BK,e) = Hk(BK,e) = Hk(BK,e)∗,
which yields

(21) ψ(γ)|[H2i(BK,e)⊗H2j(BK,e)]Γ = ε⊗i+j(γ) · Id for γ ∈
•
Γ

and thereby finishes the proof. �
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A.2. The proof of (16) for distinguished nilpotents. In this subsection we

assume that e is distinguished. In this case the torus C is trivial; thus we are

dealing with the group K0(Coh(BK,e)). The result of [DCLP88] implies that it

is a free abelian group and the Chern character map induces an isomorphism

ch : K0(Coh(BK,e))⊗ C−→∼= H•BM(BK,e).

A.2.1. Lemma. (a) The Chern character map intertwines Grothendieck-

Serre duality D on K0(Coh(BK,e)) and the involution σ on H•BM(BK,e) such

that σ = (−1)i on H2i
BM,

ch ◦ D = σ ◦ ch.

(b) The action of B ⊂ Baff on K0(Coh(BK,e)) = K0(CohBK,e(Ñ )) induced by

the action of Baff on the category Db[CohBK,e(Ñ )] factors through W and

corresponds under ch to the Springer action.

Proof. (a) follows from triviality of the canonical class. (b) is clear from

Theorem 1.3.2(b) above. �

A.2.2. Recall that Υ =
∑l
s=1 asg

∗
s with gs ∈ A(‹C,K·e), ord(gs) < ∞

and as ∈ Q (15). It is immediate from the definition of Υ in [Lus99] that the

automorphisms gs of G lie in the outer class of the Chevalley involution. Thus

gs can be considered as an element in
•
Ge \Ge.

Let gs ∈
•
Γ \ Γ denote the image of gs in

•
Γ, and set υ =

∑
asgs ∈ Q[

•
Γ].

It is clear from the definitions that the Chern character map ch intertwines Υ

with η(υ), the natural action of υ on H∗(BK,e).
The definition of the modified action ψ and the fact that gs ∈

•
Γ \ Γ

show that ψ(υ) = w0 · η(υ), where w0 acts via the Springer action. By

Lemma A.2.1(b) the endomorphism ψ(υ) is compatible with T−1
w0
· Υ under

the Chern character map. Thus, in view of Lemma A.2.1(a), we will be done

if we check that

(22) ψ(υ) = (−1)i on H2i(BK,e).

Notice that Proposition A.1 shows that (22) holds for all i provided that

it holds for i = de. This latter fact has almost been checked by Lusztig. More

precisely, [Lus99] implies that

ψ(υ)|H2de (BK,e) = ±1.

When e is not of type E8(b6), then this is clear from Proposition 5.2 and the

definition of Υ in 5.7. If e is of type E8(b6), then this follows from part IV of

the proof of Proposition 5.2 and the definition in 5.7. (All references are to

[Lus99].) Thus it remains to show that the sign in the last displayed equality

equals (−1)de .
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To see this, observe that the homomorphism (BK,e
i→ B)∗ : H2de(B) →

H2de(BK,e) is nonzero because the cohomology class of an algebraic cycle is

nonzero. The map i∗ is obviously equivariant with respect to the action of au-

tomorphisms preserving e, and it is well known that this map is W -equivariant.

Thus it intertwines ψ(υ) with w0 ·
∑
asgs, where w0 acts via the canonical

(Springer) action of W on H∗(B) and the action of gs comes from its action

of B. So we will be done if we show that this endomorphism coincides with

(−1)i on H2i(B).

Since G is connected, each gs acts, in fact, by the identity map. Also it is

well known that w0 acts by (−1)i on H2i. So, we are done because we find in

(15) that
∑
s
as = 1.

A.3. The general case. Now let e ∈ g be an arbitrary nilpotent. We fix an

sl(2) triple (e, h, f) containing e and let ϕ : SL(2) → G be a homomorphism

such that the image of dϕ is spanned by (e, h, f). We can and will assume that

Im(ϕ) commutes with C. There exists an element σ in the image of ϕ such

that Ad(σ) : e 7→ −e.
Recall that KC(BK,e) is a free module over K0(Rep(C)) = Z[X∗(C)]

and K(BK,e) ∼= KC(BK,e) ⊗K0(Rep(C)) K
0(Vect). So, an involution of a free

Z[X∗(C)]-module M that induces identity on the quotient M ⊗Z[X∗(C)] Z is

itself equal to identity. Thus it is enough to check that an analogue of (16)

holds in the nonequivariant K-group.

Furthermore, it suffices to check that this identity holds when the base

field K is of positive characteristic p > h. In this case the equivalence of

[BMR08] provides an isomorphism K(BK,e) ∼= K0(mod0,fg
e (U)).

We will identify the two groups by means of this isomorphism. By the

result of [BMR06, §3], the involution Tw0 ◦D on the left-hand side corresponds

to the map [M ] 7→ σ∗[M∗] on the right-hand side, where for M ∈ mod0,fg
e (U),

we let M∗ denote the dual g-module (which happens to lie in mod0,fg
−e (U)).

Thus we are reduced to showing the equality in K0(mod0,fg
e (U)):

(23) [σ∗(M∗)] = Υ[M ],

where we set Υ[M ] =
∑
as[g

∗
s(M)], with as, gs being as in (15).

We will actually show an equality stronger than (23). Namely, consider

the category modC,0,fge (U) of modules equipped with a compatible grading by

the weights of C. We will show that for M in this category, equality (23) holds

in K0(modC,0,fge (U)).

We have the Levi subalgebra l = z(C) ⊂ g such that e ∈ l is distinguished.

By the previous subsection we can assume that the equality is known for (e, l).

We claim that the restriction functor from modC,0,fge (U) to modC.0,fge (U(l))

induces an injective map on K-groups. This follows from the well-known fact
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that an irreducible module in modC,0,fge (U(g)) is uniquely determined by its

highest weight component, which is an irreducible object in modC,0e (U(l)).

(We use an ordering on weights corresponding to a choice of a parabolic with

Levi L.)

It is clear that this restriction functor is compatible with the duality func-

tor. It is also immediate from the definition in [Lus99, 5.7] that it is compatible

with the involution Υ. Thus (16) for e ∈ g follows from (16) for e ∈ l. �

Appendix B. A result on component groups, by Eric Sommers

Here, G is a reductive algebraic group over the algebraically closed field k
and g its Lie algebra. As in Section 5.2.2, we are given a homomorphism

ϕ : SL2(k)→ G,

and the characteristic of k is at least 3h− 3.

Let
s = ϕ

Ä
−1 0
0 −1

ä
and

e = dϕ ( 0 1
0 0 ) .

It is clear that s ∈ Ge and e ∈ gs.

Recall that φ : Gm → G is defined as φ(t) = ϕ
Ä
t 0
0 t−1

ä
.

B.0.1. Proposition. If G is semisimple and adjoint, then s belongs to

the identity component of Ge.

B.0.2. Remark. After this appendix was written and made available in a

preprint form, we learned that the result was also proved by A. Premet [Pre07,

Lemma 2.1]

Proof. Let x ∈ G be an arbitrary semisimple element commuting with e.

The conjugacy class of the image of x in Ge/(Ge)
0 is determined by the G-

orbit of the pair (e, l′′) where l′′ is any Levi subalgebra of gx such that e ∈ l′′ is

distinguished. More precisely, two semisimple elements commuting with e have

conjugate image in Ge/(Ge)
0 if and only if the corresponding pairs as above

are G-conjugate. This result is true in any good characteristic by [MS03] and

[Pre03]. In the case where x = 1, the G-orbit of such pairs includes (e, l) where

l is a Levi subalgebra of g such that e ∈ l is distinguished. Hence, an arbitrary

x as above lies in the identity component of Ge if and only if e is distinguished

in l′′ ⊂ gx where l′′ is a Levi subalgebra of g (and not only of gx).

Now as in Section 5.2.2, let C be a maximal torus in the centralizer of

the image of ϕ in G. Then with the assumption on the characteristic of k, C

is a maximal torus of Ge, and thus e is distinguished in the Levi subalgebra

l = Zg(C) of g (see [Car85]). We then also have that the orbit of e in l is an

even nilpotent orbit. In other words, if we pick a maximal torus of L = ZG(C)
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containing the image of φ, then each root of L paired with the co-character φ

is an even integer. Thus s = φ(−1) acts trivially on l, and hence l ⊂ l′ := gs.

On the other hand, since C ⊂ Gs, we have that Zl′(C) is a Levi subalgebra

of l′. But by the previous paragraph, l = Zg(C) ⊂ l′, so l = Zl′(C). Therefore

l is a Levi subalgebra of both gs and g, and we can conclude by the first

paragraph that s lies in the identity component of Ge. �

B.0.3. Remark. A similar result holds in all good characteristics for s =

φ(−1), where φ is an associated co-character of a nilpotent element e. In this

case, C is defined to be the maximal torus in the simultaneous centralizer in

G of e and the image of φ. Then e is distinguished in Zg(C) as before, and

by [Pre03] or [Jan04], φ corresponds to a weighted Dynkin diagram arising

in characteristic zero for a distinguished element for the corresponding Levi

subalgebra. Therefore, it remains true that s acts trivially on Zg(C) and the

proof goes through.

B.0.4. Corollary. For reductive G, sz ∈ C for some z ∈ Z(G), where

C is as above.

Proof. As G/Z(G) is semisimple and adjoint, it amounts to showing that

s ∈ C when G is semisimple and adjoint. Assume the latter. We know that s

centralizes C by definition. Then since s is in the identity component of Ge by

the proposition, we know that s belongs to the centralizer of C in the identity

component of Ge. That centralizer is equal to C itself, being the centralizer of

a maximal torus in a connected group. Hence s ∈ C. �

I thank David Vogan, Jr. for helpful conversations.
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Paris, 1994. MR 1272539. Zbl 0802.17009.

[Ann] R. Anno, Affine tangles and irreducible exotic sheaves. arXiv 0802.1070.

[ABM] R. Anno, R. Bezrukavnikov, and I. Mirković, A thin stringy moduli

space for Slodowy slices, submitted. arXiv 1108.1563.

[AB10] D. Arinkin and R. Bezrukavnikov, Perverse coherent sheaves,

Mosc. Math. J. 10 (2010), 3–29, 271. MR 2668828. Zbl 1205.

18010. Available at http://www.ams.org/distribution/mmj/vol10-1-2010/

arinkin-bezrukavnikov.pdf.

[ABB+05] S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and
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