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Cantor systems, piecewise translations
and simple amenable groups

By Kate Juschenko and Nicolas Monod

Abstract

We provide the first examples of finitely generated simple groups that are

amenable (and infinite). To this end, we prove that topological full groups

of minimal systems are amenable. This follows from a general existence

result on invariant states for piecewise-translations of the integers. The

states are obtained by constructing a suitable family of densities on the

classical Bernoulli space.

1. Introduction

A Cantor system (T,C) is a homeomorphism T of the Cantor space C; it

is called minimal if T admits no proper invariant closed subset. The topological

full group [[T ]] of a Cantor system is the group of all homeomorphisms of C

that are given piecewise by powers of T , each piece being open in C. This

countable group is a complete invariant of flip-conjugacy for (T,C) by a result

of Giordano–Putnam–Skau [GPS99, Cor. 4.4].

It turns out that this construction yields very interesting groups [[T ]].

Indeed, Matui proved that the commutator subgroup of [[T ]] is simple for any

minimal Cantor system, see Theorem 4.9 in [Mat06] and the remark preceding

it (or [BM08, Thm. 3.4]). Moreover, he showed that this simple (infinite)

group is finitely generated if and only if (T,C) is (conjugated to) a minimal

subshift. This yielded a new uncountable family of nonisomorphic finitely

generated simple groups since subshifts can be distinguished by their entropy;

see [Mat06, p. 246] or Theorem 5.13 in [BM08].

Until now, no example of a finitely generated simple group that is amenable

(and infinite) was known. Grigorchuk–Medynets [GM] have proved that the
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topological full group [[T ]] of a minimal Cantor system (T,C) is locally ap-

proximable by finite groups in the Chabauty topology. They conjectured that

[[T ]] is amenable; our first result confirms this conjecture.

Theorem A. The topological full group of any minimal Cantor system is

amenable.

Surprisingly, this statement fails as soon as one allows two commuting

homeomorphisms. Indeed, it is shown in [EM] that the topological full group

of a minimal Cantor Z2-system can contain non-abelian free subgroups.

Combining Theorem A with the above-mentioned results from [GPS99],

[Mat06], we deduce

Corollary B. There exist finitely generated simple groups that are infi-

nite amenable. In fact, there are 2ℵ0 nonisomorphic such groups. �

The next problem would be to find finitely presented examples. (The

groups considered above are never finitely presented [Mat06, Thm. 5.7].)

In order to prove Theorem A, we reformulate the problem in terms of the

group W (Z) of piecewise-translations of the integers. More precisely, we denote

by W (Z) the group of all those permutations g of Z for which the quantity

|g|w := sup
¶
|g(j)− j| : j ∈ Z

©
is finite. The topological full group of any minimal Cantor system (T,C) can

be embedded into W (Z) by identifying a T -orbit with Z. However, W (Z) also

contains many other groups, including non-abelian free groups; see [van90].

We shall introduce a model for random finite subsets of Z that has the

following two properties:

(i) the model is almost-invariant under shifts by piecewise-translations;

(ii) a random finite set contains 0 with overwhelming probability.

More precisely, Theorem A is proved using a general result about W (Z), which

has the following equivalent reformulation.

Theorem C. The W (Z)-action on the collection of finite sets of inte-

gers admits an invariant mean that gives full weight to the collection of sets

containing 0.

Notice that for any given finite set E ⊆ Z, a mean as in Theorem C

will give full weight to the collection of sets containing E. In a subsequent

paper [JdlS], Theorem C will be extended to a wider setting.
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2. Semi-densities on the Bernoulli shift

The technical core of our construction is a family of L2-functions fn on

the classical Bernoulli space {0, 1}Z. The relevance of these functions will be

explained in Section 3.

For any n ∈ N, we define

fn : {0, 1}Z −→ (0, 1], fn(x) = exp

(
− n

∑
j∈Z

xje
−|j|/n

)
,

where x = {xj}j∈Z ∈ {0, 1}Z. We consider fn as an element of the Hilbert

space L2({0, 1}Z), where {0, 1}Z is endowed with the symmetric Bernoulli mea-

sure. The interest of the family fn is that it satisfies the following two proper-

ties, each of which would be elementary to obtain separately.

Theorem 2.1. For any g ∈ W (Z), we have 〈g(fn), fn〉/‖fn‖2 → 1 as

n→∞. Moreover, ‖fn|x0=0‖/‖fn‖ → 1.

The notation fn|x0=0 represents the function fn multiplied by the charac-

teristic function of the cylinder set describing the elementary event x0 = 0.

In preparation for the proof, we write

an,j = exp(−ne−|j|/n) for j ∈ Z.

Often we shall implicitly use the estimates

0 < an,j ≤ 1 and 0 <
a2n,j

1 + a2n,j
≤ a2n,j ≤ an,j .

Since fn is a product of the independent random variables exp
Ä
−nxje−|j|/n

ä
,

we have

‖fn‖2 =
∏
j∈Z

Å
1

2
+

1

2
a2n,j

ã
.

Notice that exp
Ä
− nxje

−|j|/n
ä

ranges in (0, 1] and that the above product

converges unconditionally in the sense that the series of log
Ä
1
2 + 1

2a
2
n,j

ä
con-

verges absolutely (by a straightforward estimate). We can regroup factors and

compute the ratio
‖fn|x0=0‖2

‖fn‖2
=

1

1 + a2n,0
,

which thus converges to 1 as desired for the second statement of Theorem 2.1.
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The proof of the first statement will be divided into two propositions.

Define the function Fn : W (Z)→ R by the absolutely convergent series:

Fn(g) =
∑
j∈Z

a2n,j
1 + a2n,j

e−|j|/n
(
|g(j)| − |j|

)
.

We begin with a conditional convergence.

Proposition 2.2. For any g ∈W (Z), we have 〈g(fn), fn〉/‖fn‖2 → 1 as

n→∞, provided Fn(g)→ 0.

The condition Fn(g) → 0 is about a signed series for which the series of

sums of absolute values does not converge to zero; it will be addressed by the

following statement.

Proposition 2.3. We have limn→∞ Fn(g) = 0 for every g ∈W (Z).

We now undertake the proof of Proposition 2.2. Using again the product

form of fn, one obtains

〈g−1(fn), fn〉
‖fn‖2

=
〈g(fn), fn〉
‖fn‖2

=
∏
j∈Z

1 + an,jan,g(j)

1 + a2n,j
.

Thus 〈g(fn), fn〉/‖fn‖2 → 1 if and only if

(2.i) lim
n→∞

∑
j∈Z

log
1 + an,jan,g(j)

1 + a2n,j
= 0.

Next, we point out the elementary fact that there is an absolute constant C > 0

(namely C = 4 log 2− 2) such that

(2.ii) z − Cz2 ≤ log(1 + z) ≤ z ∀ z ≥ −1

2
.

We can apply this inequality to each summand of the series in (2.i) by writing

z :=
1 + an,jan,g(j)

1 + a2n,j
− 1 =

a2n,j
1 + a2n,j

Ç
an,g(j)
an,j

− 1

å
because 0 < an,j ≤ 1 for all n and j implies that we have

a2n,j
1 + a2n,j

Ç
an,g(j)
an,j

− 1

å
≥ −

a2n,j
1 + a2n,j

≥ −1

2
.

Therefore, summing up the inequalities given by (2.ii), we conclude that Propo-

sition 2.2 will follow once we prove the following two facts:

∑
j∈Z

(
a2n,j

1 + a2n,j

)2Ç
an,g(j)
an,j

− 1

å2

→ 0 ∀ g ∈W (Z),(2.iii)
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∑
j∈Z

a2n,j
1 + a2n,j

Ç
an,g(j)
an,j

− 1

å
→ 0 ∀ g ∈W (Z) provided Fn(g)→ 0.(2.iv)

Here is our first lemma.

Lemma 2.4. For all n, we have∑
j∈Z

an,je
−|j|/n ≤ 3 and

∑
j∈Z

a2n,je
−2|j|/n ≤ 1

n
.

It is based on the following elementary comparison argument.

Lemma 2.5. Let t0 ≥ 0, and let ϕ : R≥0 → R≥0 be a function that is

increasing on [0, t0] and decreasing on [t0,∞). Then∑
j≥0

ϕ(j) ≤ ϕ(t0) +

∫ ∞
0

ϕ(t) dt. �

Proof of Lemma 2.4. For the first series, we consider the function ϕ de-

fined by ϕ(t) = exp(−ne−t/n)e−t/n. One verifies that it satisfies the condition

of Lemma 2.5 for t0 = n log n. Therefore we can estimate∑
j∈Z

an,je
−|j|/n < 2

∑
j≥0

ϕ(j) ≤ 2e−1/n+ 2

∫ ∞
0

exp(−ne−t/n)e−t/n dt.

The change of variable s = e−t/n shows that the integral is
∫ 1
0 ne

−ns ds =

1−e−n and thus, in particular, the series is bounded by 2(e−1+1) < 3. For the

second series, consider ϕ(t) = exp(−2ne−t/n)e−2t/n, again with t0 = n log n.

Lemma 2.5 yields∑
j∈Z

a2n,je
−2|j|/n < 2

∑
j≥0

ϕ(j) ≤ 2(ne)−2 + 2

∫ ∞
0

exp(−2ne−t/n)e−2t/n dt.

The change of variable s = e−t/n shows that the integral is∫ 1

0
ne−2nss ds =

1− (1 + 2n)e−2n

4n
<

1

4n

and thus, in particular, the series is bounded by 2(ne)−2 + 1/(2n) < 1/n. �

Lemma 2.6. For any g ∈ W (Z), there are constants Cg , C
′
g and C ′′g that

depend only on |g|w such that for all n and j, we have

(2.v)
an,g(j)
an,j

= exp
(
e−
|j|
n (|g(j)|−|j|+η(g, j, n))

)
, where |η(g, j, n)| ≤ Cg/n,

(2.vi)
an,g(j)
an,j

− 1 = e−
|j|
n (|g(j)| − |j|) + η(g, n, j)e−

|j|
n + ϑ(g, n, j),

where |ϑ(g, n, j)| ≤ C ′ge−2
|j|
n ,
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(2.vii)

∣∣∣∣∣an,g(j)an,j
− 1

∣∣∣∣∣ ≤ C ′′g e− |j|n .
Proof. Note that the conclusion (2.vii) is an easy consequence of (2.v)

and (2.vi). From the definition of an,j , we have

an,g(j)
an,j

= exp

Å
e−
|j|
n n

Å
1− e

|j|−|g(j)|
n

ãã
.

Then using the Taylor series, we have

n

Å
1− e

|j|−|g(j)|
n

ã
= |g(j)| − |j|+ η(g, j, n),

wherein

η(g, j, n) := −
∑
k≥2

(|j| − |g(j)|)k

k!nk−1
.

Now

|η(g, j, n)| ≤ 1

n

∑
k≥2

|g|kw
k!
≤ e|g|w

n
,

which proves (2.v). Continuing to expand (2.v), we have

an,g(j)
an,j

− 1 = exp
(
e−
|j|
n (|g(j)| − |j|+ η(g, j, n))

)
− 1

= e−
|j|
n (|g(j)| − |j|) + e−

|j|
n η(g, j, n) + ϑ(g, j, n),

wherein

ϑ(g, j, n) :=
∑
k≥2

1

k!
e−

k|j|
n

Ä
|g(j)| − |j|+ η(g, j, n)

äk
.

Thus, we have

|ϑ(g, j, n)| ≤ e−
2|j|
n

∑
k≥2

1

k!

∣∣∣∣|g(j)| − |j|+ η(g, j, n)

∣∣∣∣k
≤ e−

2|j|
n exp

(
|g|w +

Cg
n

)
≤ e−

2|j|
n C ′g,

as required for (2.vi). �

End of the proof of Proposition 2.2. Recall that we have reduced the

proof to showing (2.iii) and (2.iv). By Lemma 2.6(2.vii) and Lemma 2.4, we

have ∑
j∈Z

(
a2n,j

1 + a2n,j

)2Ç
an,g(j)
an,j

− 1

å2

≤ C ′′2g
∑
j∈Z

a4n,je
−2 |j|

n

≤ C ′′2g
∑
j∈Z

a2n,je
−2 |j|

n ≤ C ′′2g /n,
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which implies the convergence (2.iii). For (2.iv), keep the notation of Lemma

2.6. By point (2.vi) of that lemma, we have

∑
j∈Z

a2n,j
1 + a2n,j

Ç
an,g(j)
an,j

− 1

å
=
∑
j∈Z

a2n,j
1 + a2n,j

e−
|j|
n

(
|g(j)| − |j|

)

+
∑
j∈Z

a2n,j
1 + a2n,j

e−
|j|
n η(g, j, n)

+
∑
j∈Z

a2n,j
1 + a2n,j

ϑ(g, j, n),

and we recall that the first of the three terms is Fn(g), which is assumed to go

to zero. For the second term, since |η(g, j, n)| ≤ Cg/n, Lemma 2.4 gives∣∣∣∣∣∣∑j∈Z
a2n,j

1 + a2n,j
e−
|j|
n η(g, j, n)

∣∣∣∣∣∣ ≤ Cg
n

∑
j∈Z

an,je
− |j|

n ≤ 3Cg
n
.

For the last term, since |ϑ(g, j, n)| ≤ C ′ge−2
|j|
n , Lemma 2.4 implies∣∣∣∣∣∣∑j∈Z

a2n,j
1 + a2n,j

ϑ(g, j, n)

∣∣∣∣∣∣ ≤ C ′g∑j∈Z a2n,je−2
|j|
n ≤

C ′g
n
.

This completes the proof of (2.iv) and therefore of the proposition. �

In order to apply Proposition 2.2, we need to control Fn as stated in

Proposition 2.3. Thus let g ∈W (Z) be given; writing b0 = |g(0)| and

bj =
Ä
|g(j)| − |j|

ä
+
Ä
|g(−j)| − | − j|

ä
for j > 0,

we have

Fn(g) =
∞∑
j=0

a2n,j
1 + a2n,j

e−j/nbj

since an,j = an,−j . Define functions B and ψ on R≥0 by

B(t) =
∑

0≤j≤t
bj , ψ(t) =

exp(−2ne−t/n)

1 + exp(−2ne−t/n)
e−t/n.

Then the Abel summation formula gives

(2.viii)
N∑
j=0

ψ(j)bj = ψ(N)B(N)−
∫ N

0
B(t) dψ(t) (∀N ∈ N).

Lemma 2.7. We have
∣∣∣B(u)

∣∣∣ ≤ 4|g|2w for all u ≥ 0.
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Proof. We claim that −2|g|2w ≤ B(u) ≤ 4|g|2w holds for all u > |g|w. For

simplicity, write c := |g|w and Ju := {j : |j| ≤ u}. Thus B(u) =
∑
j∈g(Ju) |j| −∑

j∈Ju |j|. Since Ju−c ⊆ g(Ju), we have

(2.ix) B(u) =
∑

j∈g(Ju)
|j| −

∑
j∈Ju
|j| =

∑
j∈g(Ju)\Ju−c

|j| −
∑

j∈Ju\Ju−c

|j|.

Now note first that since Ju−c ⊆ g(Ju), the number of elements in the set

g(Ju) \Ju−c is equal to the number of elements in Ju \Ju−c, which is 2c. Also,

for any j ∈ g(Ju) \Ju−c, we have u− c < |j| ≤ u+ c, and for any j ∈ Ju \Ju−c,
we have u− c < |j| ≤ u. Hence (2.ix) implies

−2c2 = 2c(u− c)− 2cu ≤ B(u) ≤ 2c(u+ c)− 2c(u− c) = 4c2,

as claimed.

It remains to show
∣∣∣B(u)

∣∣∣ ≤ 4c2 for u ≤ c, and we can assume c ≥ 1 since

otherwise g is trivial and B = 0. Now∣∣∣B(u)
∣∣∣ ≤ ∑

−u≤j≤u

∣∣∣g(j)− j
∣∣∣ ≤ (2c+ 1)c ≤ 3c2,

finishing the proof. �

End of the proof of Proposition 2.3. Since B(N) is bounded by Lemma 2.7

and since limN→∞ ψ(N) vanishes, the equality (2.viii) gives

Fn(g) = −
∫ ∞
0

B(t) dψ(t).

After explicitly computing the derivative ψ′, this rewrites as

Fn(g) =
1

n

∫ ∞
0

B(t)ψ(t)dt−
∫ ∞
0

B(t)
2 exp(−2ne−t/n)e−2t/n

(1 + exp(−2ne−t/n))2
dt.

Using Lemma 2.7 and 0 < ψ(t) ≤ exp(−ne−t/n)e−t/n, the first integral is

bounded by∣∣∣∣ 1n
∫ ∞
0

B(t)ψ(t)dt

∣∣∣∣ ≤ 1

n
4|g|2w

∫ ∞
0

exp(−ne−t/n)e−t/ndt =
1

n
4|g|2w(1− e−n),

which goes to zero. Similarly, the second integral is bounded by∣∣∣∣∣
∫ ∞
0

B(t)
2 exp(−2ne−t/n)

(1 + exp(−2ne−t/n))2
e−2t/ndt

∣∣∣∣∣
≤ 8|g|2w

∫ ∞
0

exp(−2ne−t/n)e−2t/ndt <
2|g|2w
n

,

the last inequality having already been observed in the proof of Lemma 2.4. �

Taken together, Propositions 2.3 and 2.2 finish the proof of Theorem 2.1

since we already observed ‖fn|x0=0‖/‖fn‖ → 1.
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3. Actions on sets of finite subsets

Let G be a group acting on a set X. The collection Pf(X) of finite

subsets of X is an abelian G-group for the operation4 of symmetric difference.

The resulting semidirect product Pf(X) oG, which can be thought of as the

“lamplighter” restricted wreath product associated to the G-action on X, has

itself a natural “affine” action on Pf(X), where the latter set can be considered

as the coset space (Pf(X) oG)/G.

It will be convenient to identify the Pontryagin dual of the (discrete)

group Pf(X) with the generalised BernoulliG-shift {0, 1}X , the duality pairing

being given for E ∈ Pf(X) and ω = {ωx}x∈X ∈ {0, 1}X by the character

exp(iπ
∑
x∈E ωx) ∈ {±1} ⊆ C∗. The normalised Haar measure corresponds to

the symmetric Bernoulli measure on {0, 1}X .

Lemma 3.1. Assume that G acts transitively on X , and choose x0 ∈ X .

The following assertions are equivalent :

(i) There is a net {fn} of G-almost invariant vectors in L2({0, 1}X) such

that the ratio ‖fn|ωx0=0‖/‖fn‖ converges to 1.

(ii) The Pf(X) oG-action on Pf(X) admits an invariant mean.

(iii) The G-action on Pf(X) admits an invariant mean giving weight 1/2 to

the collection of sets containing x0.

(iv) The G-action on Pf(X) admits an invariant mean giving full weight to

the collection of sets containing x0.

Again, fn|ωx0=0 denotes the function fn multiplied by the characteristic

function of the cylinder set describing the elementary event ωx0 = 0. The

net {fn} can of course be chosen to be a sequence when G (and hence X) is

countable.

Proof of Lemma 3.1. Recall the well-known Reiter criterion: a group ac-

tion on a set S admits an invariant mean if and only if the corresponding

representation `p(S) almost has invariant vectors for some or equivalently for

all 1 ≤ p < ∞. We shall use the fact (based on Mazur’s lemma) that almost

invariant probability measures on S are obtained as convex combinations of a

net approximating an invariant mean on S in the weak-* topology given by

duality with `∞(S). All this is classical and can be found, e.g., in [Pat88].

(i)=⇒(ii). The Fourier transform f̂n provides G-almost invariant vectors

in `2(Pf(X)). Moreover, ‖fn|ωx0=0‖ is the norm of the image of f̂n projected to

the subspace of vectors in `2(Pf(X)) that are invariant under {x0} viewed as

group element in Pf(X). Thus f̂n is {x0}-almost invariant. Since the G-action

is transitive, it follows that f̂n is Pf(X)-almost invariant as n→∞.

(ii)=⇒(iii). Given a mean as in (ii), the condition on x0 follows from the

invariance under the element {x0} of Pf(X).
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(iii)=⇒(iv). It suffices to show that for each k ∈ N, there are G-almost-

invariant probability measures on Pf(X) such that the collection of sets con-

taining x0 has probability at least 1−2−k. By (iii), we have G-almost-invariant

probability measures such that the collection of sets containing x0 has prob-

ability 1/2. Indeed, these probability measures arise as convex combinations

of a net approximating an invariant mean in the weak-* topology, and our

restriction about x0 is preserved under convex combinations. If we take the

union of k independently chosen such finite sets, we obtain a distribution as

required.

(iv)=⇒(i). The assumption implies that there are G-almost-invariant

probability measures µ on Pf(X) such that the collection of sets contain-

ing x0 has probability 1, using the same convexity argument as in (iii)⇒(iv).

We can assume that each µ is supported on a collection of sets of fixed cardinal

n(µ) ∈ N. We define a function fµ on {0, 1}X as follows. Given E ∈ Pf(X),

consider the cylinder set CE ⊆ {0, 1}X consisting of all ω such that ωx = 0

for all x ∈ E. We set fµ = 2n(µ)
∑
E∈Pf(X) µ({E})1CE

, where 1CE
is the char-

acteristic function of CE . Then fµ is supported on {ωx0 = 0}, has L1-norm

one and satisfies ‖gfµ − fµ‖1 ≤ ‖gµ − µ‖1 for all g ∈ G. Therefore, the

function f
1/2
µ is as required by (i) as µ becomes increasingly invariant since

‖gf1/2µ − f1/2µ ‖ ≤ ‖gfµ − fµ‖1/21 . �

Proof of Theorem C. The sequence {fn} constructed in Section 2 satis-

fies the criterion (i) of Lemma 3.1 in view of Theorem 2.1. Therefore, the

criterion (iv) provides the desired conclusion. �

The following is well known.

Lemma 3.2. Let H be a group acting on a set Y with an invariant mean.

If the stabiliser in H of every y ∈ Y is an amenable group, then H is amenable.

Proof. The amenability of stabilisers implies that there is an H-map Y →
M (H) to the (convex compact) space M (H) of means on H (by choosing

for each H-orbit in Y the orbital map associated to a mean fixed by the cor-

responding stabiliser). The push-forward of an invariant mean on Y is an

invariant mean on M (H). Its barycenter is an invariant mean on H. (An

alternative argument giving explicit Følner sets can be found in the proof of

Lemma 4.5 in [GM07].) �

The next proposition will leverage the fact that N4g(N) is finite for all

g ∈W (Z).

Proposition 3.3. Let G < W (Z) be a subgroup such that the stabiliser

in G of E4N is amenable whenever E ∈Pf(Z). Then G is amenable.
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Proof. As noted in the proof of Theorem C, the W (Z)-action on Z satisfies

the equivalent conditions of Lemma 3.1, thanks to Theorem 2.1. In particular,

there is a Pf(Z)oG-invariant mean on Pf(Z). Thus, in view of Lemma 3.2, it

suffices to find an embedding ι : G→Pf(Z)oG in such a way that the stabiliser

in ι(G) of any finite set E is the stabiliser in G of E4N. The homomorphism

defined by ι(g) =
Ä
N4g(N), g

ä
has the required properties. �

4. From Cantor systems to piecewise translations

It is known that the stabiliser of a forward orbit in the topological full

group of a minimal Cantor system is locally finite. This follows from the

(much more detailed) description of this stabilizer given in Section 5 of [Put89],

where this group is realized as subquotient of unitaries of an AF-algebra. (In

the notation of [Put89], the stabiliser of the forward orbit of a point y is Γ{y}.)

In the following two lemmas, we shall give an elementary proof (without

C *-algebras) of the corresponding fact in the setting of the group W (Z). A

forward orbit then corresponds to N ⊆ Z, and the case of finite set differences

E4N is a minor extension.

A subgroup G of W (Z) has the ubiquitous pattern property if for every

finite set F ⊆ G and every n ∈ N, there exists a constant k = k(n, F ) such

that for every j ∈ Z, there exists t ∈ Z such that [t− n, t+ n] ⊆ [j − k, j + k]

and such that for every i ∈ [−n, n] and every g ∈ F , we have g(i+ t) = g(i)+ t.

Informally, the partial action of F on [−n, n] can be found, suitably trans-

lated, within any interval of length 2k + 1.

Lemma 4.1. Let G < W (Z) be a subgroup with the ubiquitous pattern

property. Then the stabiliser of E4N in G is locally finite for every E ∈
Pf(Z).

Proof. Let E ∈Pf(Z), and let F be a finite set of elements of the stabiliser

of E4N in G. In order to prove that the set F generates a finite group it is

sufficient to show that Z is a disjoint union of finite sets Bi of uniformly

bounded cardinality such that each of this sets is invariant under the action

of F , since this will realize the group generated by F as a subgroup of a power

of a finite group. We will achieve this by taking the Bi to be the ubiquitous

translated copies of the “phase transition” region of E4N, suitably identifying

the “top part” of E4N with the “bottom part” of the complement of the next

translated copy.

Let c = max{|e| : e ∈ E} (with c = 0 if E = ∅), and let m = max{|g|w :

g ∈ F}. Let k = k(c + m + 1, F ) be the constant from the definition of the

ubiquitous pattern property. Denote E0 = E4N ∩ [−c −m − 1, c + m + 1].

Decompose Z as disjoint union of consecutive intervals Ii (i ∈ Z) of length

2k+ 1 such that [−c−m− 1, c+m+ 1] ⊆ I0. Then, by the ubiquitous pattern
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property, for each interval Ii, there exists a set Ei ⊆ Ii (a translate of E0) such

that the action of F on Ei corresponds to the action of F on E0. Let

Bi =
(
Ei ∪ [max(Ei) + 1,max(Ei+1)]

)
\ Ei+1.

By construction, we have Z =
⊔
Bi. The choice of m ensures that each Bi is

F -invariant because F preserves E4N. Finally, since Bi ⊆ Ii ∪ Ii+1, we have

|Bi| ≤ 4k + 2 for all i. �

Let T be a homeomorphism of a Cantor space C and choose a point p ∈ C.

If T has no finite orbits, then we can define a map

πp : [[T ]] −→W (Z)

by the requirement

g(T jp) = T πp(g)(j)p, (g ∈ [[T ]], j ∈ Z).

The map πp is a group homomorphism and is injective if the orbit of p is dense.

Lemma 4.2. If T is minimal, then the image πp([[T ]]) of the injective

homomorphism πp has the ubiquitous pattern property.

Proof. Let F ⊂ [[T ]] be a finite set, and let n ∈ N. By definition of [[T ]],

there is a finite clopen partition D of C such that each g ∈ F is a power of

T when restricted to any element of D . Thus there is an open neighborhood

V of p such that for all i ∈ [−n, n], the set T iV is contained in some D ∈ D .

By minimality of T , the nonempty open T -invariant set
⋃
q≥1

⋃
|r|≤q

T rV is C. By

compactness, there is q ∈ N such that C =
⋃
|r|≤q

T rV .

Set k = k(n, F ) = q + n. For all j ∈ Z, we have C = T−jC = T−(j+q)V ∪
· · · ∪ T−(j−q)V , and hence there is an integer t ∈ [j − q, j + q] such that

p ∈ T−tV . In particular, [t − n, t + n] ⊆ [j − k, j + k] . Now T tp ∈ V , and

thus both T ip and T i+tp are in T iV for all i. Therefore, when i ∈ [−n, n],

every g ∈ F acts on T ip and on T i+tp as the same power of T . This is exactly

the ubiquitous pattern property under the πp-equivariant identification of the

T -orbit of p with Z. �

Proof of Theorem A. By Lemma 4.2, the (injective image of the) topolog-

ical full group [[T ]] has the ubiquitous pattern property. Therefore, Lemma 4.1

shows that the stabiliser of E4N in G is amenable for every E ∈Pf(Z). Now

Proposition 3.3 implies that [[T ]] is amenable. �
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