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The survival probability and r-point
functions in high dimensions

By Remco van der Hofstad and Mark Holmes

Abstract

In this paper we investigate the survival probability, θn, in high-dimen-

sional statistical physical models, where θn denotes the probability that the

model survives up to time n. We prove that if the r-point functions scale

to those of the canonical measure of super-Brownian motion, and if certain

self-repellence and total-population tail-bound conditions are satisfied, then

nθn → 2/(AV ), where A is the asymptotic expected number of particles

alive at time n, and V is the vertex factor of the model. Our results apply to

spread-out lattice trees above 8 dimensions, spread-out oriented percolation

above 4 + 1 dimensions, and the spread-out contact process above 4 + 1

dimensions. In the case of oriented percolation, this reproves a result by

the first author, den Hollander, and Slade (which was proved using heavy

lace expansion arguments), at the cost of losing explicit error estimates.

We further derive several consequences of our result involving the scaling

limit of the number of particles alive at time proportional to n. Our proofs

are based on simple weak convergence arguments.

1. Introduction and results

A celebrated result by Kolmogorov [39] states that the probability θn that

a Galton-Watson branching process with offspring distribution having mean

1 and variance γ, starting from a single initial particle, survives until time n

satisfies nθn → 2/γ as n → ∞ (see also [48, Th. II.1.1]). A related classical

result by Yaglom [52] states that the population size Nn at time n is such that,

conditional on survival up to time n, the random variable n−1Nn converges

weakly to a random variable Y having an exponential distribution with mean

γ/2. Thus, the probability of survival up to time n decays like 1/n, while on

the event of survival, the number of particles alive grows proportional to n.

In this paper, we study extensions of this result, and their ramifications, to

general spatial statistical mechanical models in sufficiently high dimensions.
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We next define the scaling limit of the particle numbers for critical Galton-

Watson trees. The probability of the population surviving is rather small, and

in the literature, two constructions have been investigated to resolve this prob-

lem. The first construction to deal with the vanishing survival probability is

to start with a large number of particles; i.e., take N0 = dnxe, where x > 0.

In this case, at any time t > 0, the number of particles at time 0 whose lineage

survives until time t has an approximate Poisson distribution with parame-

ter 2x/γ. Then, the process (Ntn/n)t≥0 converges in distribution to Feller ’s

branching diffusion [18], which is the unique solution to a stochastic differen-

tial equation describing a continuous-state branching process. (See also [42] for

related results.) The second construction to deal with the vanishing survival

probability is to multiply the measure by a factor of n, making sure that the

measure of the event of survival to time proportional to n converges to a finite

and positive limit. Then, the process (Ntn/n)t≥0 converges in distribution,

where the notion of convergence in distribution is defined in terms of conver-

gence of integrals of bounded continuous functions having support on paths

that survive up to time ε > 0. The resulting measure is a σ-finite measure

rather than a probability measure, and it is called the canonical measure of

the branching process in reference to canonical measures appearing in infinitely

divisible processes (see, e.g., [38]). We can retrieve a probability measure by

‘conditioning’ the measure on surviving up to time 1.

While the two constructions are quite different, they are closely related.

Indeed, in the first construction (conditionally upon survival to time 1) take

any of the Poisson 2x/γ initial particles whose lineage survives until time 1.

Then the distribution of its rescaled numbers of descendants is identical to

that in the canonical measure conditioned to survive up to time 1.

The models we consider will be spatial. Embedding the branching process

into Zd, with the initial particle located at the origin, 0 ∈ Zd, and where the

offspring of any given particle are independently located at neighbors of that

particle in Zd, we obtain a branching random walk. Since multiple occupancy

can occur, the state of this process at time n is best described by a (random)

measure, where the measure of any subset of Rd is the number of particles of

generation n located in that set. With appropriate rescaling of space, time,

mass (associated to each particle), and of the underlying law, we obtain a

sequence of finite (no longer probability) measures µn. It is well known that the

measures µn converge weakly to a measure N0 on the space of measure valued

paths (Xt)t≥0 that survive for positive time, i.e., S ≡ inf{t > 0: Xt(1) = 0} > 0

(where Xt(f) ≡
∫
fdXt). Although we have not found an explicit statement

and proof of this result, it is implicit in Watanabe [51], and it is explicit

in, e.g., [48] in the case of branching Brownian-motions. The measure N0 is

called the canonical measure of super-Brownian motion and is σ-finite, with
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N0(S > ε) = 2/ε for every ε > 0. The notion of weak convergence is defined

with respect to the finite measures Nε0(·) ≡ N0(·, S > ε) (see, e.g., [37]) and, in

particular, nθbntc → γ−1N0(S > t) = 2/(γt). See [12], [48] for detailed surveys

of super-processes and convergence towards them, and see [16], [17], [44] for

introductions to super-processes and continuous-state branching processes.

In this paper, we study extensions of these results in the context of gen-

eral spatial statistical mechanical models in sufficiently high dimensions that

converge (or are conjectured to converge) to super-Brownian motion (SBM) in

the sense of convergence of r-point functions. Convergence of r-point functions

means that the (rescaled) joint moments of particle numbers and locations con-

verge (to those of SBM). The use of r-point functions has a long history and

tradition in statistical physics. The main result of this paper is that conver-

gence of r-point functions, subject to two conditions that are valid in all our

examples, implies that the classical results by Kolmogorov, Yaglom and (to

some extent) Feller hold as well. As such, our result confirms that convergence

of r-point functions is a relevant and important notion (see also [37]).

Let us introduce the general setting that we investigate. Let P denote

the probability measure describing the law of our model. In contrast to the

branching random walk setting, all our models are of single-occupancy type and

have a notion of intrinsic distance, in which x
n−→ y means that the shortest

path between x and y has length n. Let Z+ = {0, 1, 2, . . . } and R+ = [0,∞).

Then for ~x ∈ Zd(r−1) and ~n ∈ Zr−1+ (or ~n ∈ Rr−1+ for models where time is

continuous), we let

(1.1) t(r)~n (~x) = P(0
ni−→ xi ∀i = 1, . . . , r − 1)

denote the r-point function in the model. Further, for ~k = (k1, . . . , kr−1) ∈
([−π, π]d)r−1, we let

(1.2) t̂(r)~n (~k) =
∑

~x∈Zd(r−1)

ei
~k·~xt(r)~n (~x)

denote its Fourier transform and

(1.3) θn = P(∃x ∈ Zd : 0
n−→ x)

the survival probability.

Let An = {x : 0
n−→ x}, Nn = #{x : 0

n−→ x} = #An, and Sn = {Nn >

0} = {An 6= ∅}, so that θn = P(Sn). Here #A denotes the number of elements

in A. When the underlying model is defined in discrete time, we define n~t to

be the vector (bnt1c, . . . , bntrc).
In this paper, we investigate the asymptotics of the survival probability,

assuming the asymptotic behavior of the r-point functions. These results apply

to branching random walk in all dimensions, as well as to (a) lattice trees;
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(b) oriented percolation; and (c) the contact process, all above their (model-

dependent) upper critical dimension, where the general philosophy in statistical

physics suggests that these models behave like branching random walk. In

particular, when the allowed connections are sufficiently spread out, e.g., where

all vertices within distance L � 1 of a vertex are considered to be neighbors

of that vertex, the following condition holds as a theorem for each of these

models, above their respective upper critical dimensions.

Condition 1.1 (Convergence of the r-point functions). (a) There exist

constants A, V > 0 both depending on L such that for each r ≥ 2 and ~t ∈
R(r−1)
+ ,

1

A(V A2n)r−2
t̂(r)
n~t

(0)→ M̂ (r−1)

~t
(0), as n→∞,(1.4)

where the quantities M̂ (r−1)

~t
(0) are the joint moments of the total mass at

times t1, . . . , tr−1 of the canonical measure of SBM. In particular, M̂ (r−1)

t~1r−1
(~0) =

tr−22−(r−2)(r − 1)!.

(b) There exist constants A, V, v > 0 all depending on L such that for each

r ≥ 2, ~t ∈ R(r−1)
+ , and ~k ∈ Rd(r−1),

1

A(V A2n)r−2
t̂(r)
n~t

(
~k√
vn

)
→ M̂ (r−1)

~t
(~k), as n→∞,(1.5)

where the quantities M̂ (r−1)

~t
(~k) are the Fourier transforms of the moment mea-

sures of the canonical measure of SBM.

Condition 1.1(a) is the weaker of the above conditions, and it can be

rephrased as

(1.6) nE
ñ r−1∏
i=1

Ä
Ntin/n

äô
→ A(V A2)r−2M̂ (r−1)

~t
(0),

where M̂ (r−1)

~t
(0) are the limits of the joint moments of population sizes of

critical branching processes with variance one offspring distributions. Note

that the convergence in (1.6) makes no assumption on the spatial locations

of the particles involved, however the evolution of Nn is affected by spatial

interaction present in our models. Condition 1.1(b), which contains (a), can

be rephrased as

(1.7) Eµn

ñ r−1∏
j=1

X(n)

tj (φkj )

ô
→ EN0

ñ r−1∏
j=1

Xtj (φkj )

ô
,



THE SURVIVAL PROBABILITY IN HIGH DIMENSIONS 669

where φkj (x) = eikj ·x for kj ∈ Rd and x ∈ Zd and where

(1.8) X(n)

t (f) =
1

V A2n

∑
x∈Ant

f(x/
√
vn) and µn(·) = nV AP(·).

Thus, Condition 1.1(b) states that certain moment measures of the rescaled

processes under the measure µn converge to those of the canonical measure of

SBM. Condition 1.1(b) is the condition that is typically proved in the literature.

Before stating our main result, let us formulate two further conditions.

Recall the definitions of An and Nn following (1.3). Let |N | denote the total

population size, i.e.,

(1.9) |N | =
∫ ∞
0

Ntdt,

which is equivalent to |N | = ∑
n≥0Nn for discrete-time models. We make two

central assumptions on our high-dimensional models.

Condition 1.2 (Cluster tail bound). There exists a constant CN such

that

(1.10) P(|N | ≥ k) ≤ CN/
√
k.

Condition 1.3 (Self-repellent survival property). Let Fm be the σ-field

generated by the vertices at distance at most m from 0, i.e., by {(x, n) : 0
n−→

x, n ≤ m}. Then there exists a constant Cθ such that, almost surely for every

stopping time M ≤ n,

(1.11) P(AM −→ n | FM ) ≤ CθNMθn−M .

The cluster tail condition (1.10) follows from the literature for all models

under consideration (as we will show in more detail below). In the case of

branching random walk with critical geometric branching, (1.10) reduces to

the return time tail for simple random walk (by Harris’s identity for branching

processes; see, for example, [25].)

The self-repellent survival property in (1.11) is elementary for branching

random walk for which it holds by the strong Markov property, due to the

independence of the offspring of particles alive at time M , which implies that

(1.12) P(AM −→ n | FM ) = 1− (1− θn−M )NM ≤ NMθn−M .

It is not much harder to verify for our models (again, see below). The first of

our main results is the following theorem.

Theorem 1.4. When Conditions 1.1(a), 1.2, and 1.3 hold, as n→∞,

(1.13) nθn → 2/(AV ),
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and consequently for each t > 0,

(1.14) µn(X(n)

t (1) > 0)→ N0(Xt(1) > 0) = 2/t.

Moreover, as n → ∞, the rescaled total mass process (X(n)
s (1))s≥0 under µn

converges (in the sense of finite-dimensional distributions) to the total mass

(Xs(1))s≥0 of CSBM, both unconditionally and conditional on survival up to

time t (for any t > 0).

Note that conditional on survival up to time t the total mass process

(Xs(1))s≥t under N0 is Feller’s branching diffusion started from an exponential

random variable with mean t/2, so this says that conditionally on Ntn > 0,

{Nsn/n}s≥t converges in the sense of finite-dimensional distributions to Feller’s

branching diffusion started from an exponential random variable with mean

A2V t/2.

For oriented percolation, Theorem 1.4 contains the result from [29], [30]

(but without the error estimates). See also [40], [41], [50] for related results

on survival probabilities. Our setup is rather general, so that in the future, it

might be applicable to other models, such as percolation, the voter model, and

lattice animals above their respective upper critical dimensions as well.

Theorem 1.4 is particularly important, since the combination of the con-

vergence of the r-point functions (as formulated in Condition 1.1(b)) and The-

orem 1.4 imply that {µn}n≥1 converge in the sense of finite-dimensional dis-

tributions to N0 (see [37]). This is the second of our main results.

Theorem 1.5. When Conditions 1.1(b), 1.2, and 1.3 hold, the finite-

dimensional distributions of the process (X(n)
s )s≥0 under µn converge to those

of (Xs)s≥0 under the measure N0. The same is true under the measures con-

ditioned on survival up to time t for each t > 0.

We now present our three main examples, which all involve a function

D : Zd → [0, 1], with
∑
x∈Zd D(x) = 1. In order to apply our main result to

these examples, we make the additional assumption, under which Condition 1.1

is verified in the literature (see below for precise references), that

D(x) =
h(x/L)∑

x∈Zd h(x/L)
,(1.15)

where L is large and h is a nonnegative bounded function on Rd that is

piecewise continuous, symmetric under the Zd-symmetries of reflection in co-

ordinate hyperplanes and rotation by π/2, supported in [−1, 1]d, and nor-

malised (
∫
[−1,1]d h(x)ddx = 1). A basic example of where this holds is D(x) =

((2L + 1)d − 1)−11{0<‖x‖∞≤L}; i.e., D is the uniform distribution on a box of

radius L excluding the origin.
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Spread-out lattice trees above 8 dimensions. A lattice tree is a finite con-

nected set of lattice bonds (and their associated end vertices) containing no

cycles. For fixed z > 0, every such tree T 3 0 with bond set B is assigned a

weight Wz(T ) = z|B|
∏

(x,y)∈BD(y − x), and we define ρz(x) =
∑
T30,xWz(T ).

The radius of convergence zc of
∑
x∈Zd ρz(x) is finite. Let W (·) = Wzc(·) and

ρ = ρzc(0). We define a probability measure on the (countable) set of lattice

trees containing the origin by P(T ) = W (T )/ρ. Given a lattice tree T 3 0, we

define An(T ) = {a1, . . . , aNn} to be the (ordered) set of vertices in T of tree

distance n ∈ Z+ from the origin under some arbitrary but fixed ordering of Zd.
Condition 1.1 is the main result in [36]. Condition 1.2 follows from the

detailed asymptotics for P(|T | = n) ∼ cn−3/2 proved in [13], [14], where |T |
denotes the number of vertices in the lattice tree T . We next check Condi-

tion 1.3, for which it is enough to show that the result holds almost surely

for every deterministic time m ≤ n. Letting Tm denote the tree up to tree

distance m from the root, we have that P(Am −→ n | Tm = τm) is equal to

W (τm)∑
T : Tm=τmW (T )

∑
R13a1

· · ·
∑

RNm3aNm

×
Nm∏
i=1

W (Ri)1{Ri avoid each other and τm}1{∪j{Rj survives at least until n−m}},

where
∑
R3a is a sum over lattice trees R rooted at a ∈ Zd (with survival mea-

sured in terms of tree distance from a), and we recall that Am = {a1, . . . , aNm}.
The final indicator function is bounded above by

∑
j 1{SRj≥n−m}

, where

SR is the survival time of R. By taking the sum over j outside and dropping

the restriction that Rj avoids other Ri and τm, this is bounded above by

Nm∑
j=1

∑
Rj3aj

W (Rj)1{SRj≥n−m}

[
W (τm)∑

T : Tm=τmW (T )

∑
R13a1

· · ·
∑

Rj−13aj−1

(1.16)

×
∑

Rj+13aj+1

· · ·
∑

RNm3aNm

∏
i 6=j

W (Ri)1{Ri,i 6=j avoid each other and τm}

]

≤
Nm∑
j=1

∑
Rj3aj

W (Rj)1{SRj≥n−m}
= Nmρθn−m,

where we have used the fact that the interaction term makes the graph τm∪i 6=j
Ri a lattice tree T with Tm = τm, and weight W (T ) = W (τm)

∏
i 6=jW (Ri),

so the numerator in brackets is no more than the denominator. Since ρ =

ρzc(0) <∞ [22], this verifies Condition 1.3.

Spread-out contact process above 4 + 1 dimensions. We define the spread-

out contact process as follows. Let Cn ⊂ Zd be the set of infected individuals
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at time n ∈ R+, and let C0 = {0}. An infected site x recovers in a small time

interval [n, n + ε] with probability ε + o(ε) independently of n, where o(ε) is

a function that satisfies limε→0 o(ε)/ε = 0. In other words, x ∈ Cn recovers at

rate 1. A healthy site x gets infected, depending on the status of its neighbors,

at rate λ
∑
y∈Cn D(x− y), where λ ≥ 0 is the infection rate. We denote by Pλ

the associated probability measure.

By [20], which extends the results in [3] to the spread-out contact process,

there exists a unique critical value λc ∈ (0,∞) such that

θ(λ) ≡ lim
n→∞

Pλ(Cn 6= ∅)

= 0 if λ ≤ λc,
> 0 if λ > λc,

(1.17)

and we define

(1.18) θn = θn(λc) = Pλc(Cn 6= ∅).

Condition 1.1 is proved in [32], [33]. Condition 1.2 holds by [2], [32],

[33], [49], while Condition 1.3 morally follows from a union bound and the

strong Markov property. To be precise, let the infected particles at time M

be written as AM = {x1, . . . , xNM } (according to some fixed but arbitrary

ordering). Relabel the infection at each x ∈ AM to be 1x, so that there are

now NM different infections {1x1 , . . . , 1xNM } at time M . (These labels are fixed

thereafter.) Let this modified process evolve as before, except that a site may

carry more than one of the M distinct infections. When one particle infects

another, it passes all of its infections onto that particle, and whenever a particle

recovers (rate 1), it recovers from all its infections simultaneously. Then,

P(AM −→ n | FM ) = P(∪x∈AM {infection 1x survives until time n} | FM )

≤
∑
x∈AM

P({infection 1x survives until time n} | FM ).

However, any one of the infections {1x1 , . . . , 1xNM } spreads according to the

ordinary contact process dynamics, so the latter probability is θn−M ; i.e.,

P(AM −→ n | FM ) ≤
∑
x∈AM

θn−M = NMθn−M .

Convergence of the spread-out contact process to super-Brownian motion is

proved in [15] in the setting where the range of the contact grows with the

time until which the contact process is being considered.

Spread-out oriented percolation above 4 + 1 dimensions. The spread-out

oriented bond percolation model is defined as follows. Consider the graph with

vertices Zd × Z+ and with directed bonds ((x, n), (y, n + 1)) for n ∈ Z+ and

x, y ∈ Zd. Let p ∈ [0, ‖D‖−1∞ ], where ‖·‖∞ denotes the supremum norm, so that

pD(x) ≤ 1 for all x ∈ Zd. We associate to each directed bond ((x, n), (y, n+1))
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an independent random variable taking the value 1 with probability pD(y−x)

and the value 0 with probability 1−pD(y−x). We say that a bond is occupied

when the corresponding random variable is 1 and vacant when it is 0. The

joint probability distribution of the bond variables will be denoted by Pp and

the corresponding expectation by E p.

We say that (x, n) is connected to (y,m), and we write (x, n) −→ (y,m),

if there is an oriented path from (x, n) to (y,m) consisting of occupied bonds.

Note that this is only possible when m ≥ n. By convention, (x, n) is connected

to itself. We write (x, n) −→ m if m ≥ n and there is a y ∈ Zd such that

(x, n) −→ (y,m). The event {(0, 0) −→ ∞} is the event that {(0, 0) −→ n}
occurs for all n. There is a critical threshold pc > 0 such that the event

{(0, 0) −→∞} has probability zero for p < pc and has positive probability for

p > pc. The survival probability at time n is defined by

(1.19) θn(p) = Pp((0, 0) −→ n),

and we let θn = θn(pc). General results of [3], [20] imply that limn→∞ θn = 0.

Then, for P = Ppc , Condition 1.1 is proved in [35]. Condition 1.2 holds

by [1], [35], [46], [47], while Condition 1.3 follows from a union bound and the

strong Markov property, via the same argument as for the contact process.

Our main results can be restated in terms of the above models as follows.

Theorem 1.6. Let L � 1, let d > 4 for oriented percolation and the

contact process, and let d > 8 for lattice trees. Then, with A, V, v > 0 all

depending on L such that for each ~t ∈ R(r−1)
+ and ~k ∈ R(r−1),

(1.20)
1

A(V A2n)r−2
t̂(r)
n~t

(
~k/
√
vn
)
→ M̂ (r−1)

~t
(~k), as n→∞,

the asymptotics

(1.21)

nθn → 2/(AV ) and µn(X(n)

t (1) > 0)→ N0(Xt(1) > 0) = 2/t, as n→∞

hold. As a consequence, the finite-dimensional distributions of the process

(X(n)
s )s>0 under µn converge to those of (Xs)s>0 under the measure N0, and

similarly for the measures conditioned on survival up to time t for any t > 0.

In work in progress [31] and jointly with Ed Perkins, we prove a tightness

result for spread-out lattice trees in dimensions d > 8. Together with Theo-

rem 1.5 and under the same conditions, this proves weak convergence of lattice

trees to super-Brownian in the sense of measure-valued processes.

We close this section with some possible extensions to our results.

Long-range models. In all our models, we assume that D has finite range

(in some cases this can be weakened to finite spatial variance), so that SBM can

arise as the scaling limit. In the literature, long-range models have attracted
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considerable attention. See [7], [8], [9] for results on long-range oriented per-

colation, [26] for long-range self-avoiding walk, and [27] for percolation, self-

avoiding walk and the Ising model. In long-range models, the random walk

step distribution D has infinite variance. The simplest example arises when

(1.22) D(x) =
(1 + |x|/L)−(d+α)∑
y∈Zd(1 + |y|/L)−(d+α)

, x ∈ Zd,

where α ∈ (0, 2) and |x| denotes the Euclidean norm of x ∈ Zd. The results

in [7], [8], [9] suggest that the upper critical dimension of oriented percolation

equals 2α, while [27] indicates that it is 3α for percolation, and 2α for self-

avoiding walk and the Ising model.

We believe that Condition 1.1(a) holds for these models above their re-

spective upper critical dimensions. Once this is proved, Theorem 1.4 then

implies convergence of the survival probability in each case. However, ran-

dom walk with step distribution D converges to α-stable motion rather than

Brownian motion, a fact that is proved to hold for self-avoiding walk above

2α dimensions in [26]. Therefore, Condition 1.1(b) does not hold and should

be replaced with convergence towards the canonical measure of super-stable

motion.

By considering branching random walks, where the population size process

is independent of the random walk step-distribution, it is easy to see that the

law of the total mass process under the canonical measure of super-stable

motion is the same as under N0. Thus by [37, Th. 2.6], in the long-range

setting, convergence of the r-point functions and the survival probability still

implies convergence in the sense of finite-dimensional distributions. Therefore

to prove a version of Theorem 1.5 in the long-range setting, it is sufficient to

prove the convergence of the r-point functions in Condition 1.1(b).

Voter model. In this model we start at time 0 with a single site (the

origin) having opinion 1 and all other sites having opinion 0. Each site has a

(standard) Poisson clock, and when the clock rings the site adopts the opinion

of a random neighbour.

The voter model and its connections to super-Brownian motion have re-

ceived substantial attention in the literature. The survival probability asymp-

totics are known in all dimensions, with (1.13) holding in dimensions d ≥ 3

[6]. See [45] for a general introduction to particle systems including the voter

model, and see [5], [10], [11] for convergence of rescaled voter models to super-

Brownian motion.

Our proof might simplify the analysis of the survival probability for this

model, although we have not found a statement of Condition 1.2 in the liter-

ature. As for the contact process, it is easy to verify Condition 1.3 for this

model. Let AM = {x1, . . . , xNM } denote the particles with opinion 1 at time
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M , and relabel the opinion at each x ∈ AM to be 1x, so that there are now

NM + 1 different opinions {0, 1x1 , . . . , 1xNM } at time M . Letting the process

evolve as a voter model with NM + 1 different opinions (each particle having

exactly one opinion), we again have

P(AM −→ n | FM ) ≤
∑
x∈AM

P({opinion 1x survives until time n} | FM )

=
∑
x∈AM

θn−M = NMθn−M

since the dynamics of a single type of opinion are those of the ordinary voter

model. Thus, Condition 1.3 follows. While Condition 1.1 is unknown, closely

related estimates have been obtained in [43] via the duality between the voter

model and coalescing random walks.

Spread-out percolation above 6 dimensions. For a general introduction to

percolation, we refer to [19]. We now introduce the model that we consider.

Let p ∈ [0, ‖D‖−1∞ ] be a parameter. We declare a bond {u, v} to be occupied

with probability pD(v − u) and vacant with probability 1 − pD(v − u). The

occupation status of all bonds are independent random variables. The law

of the configuration of occupied bonds (at the critical percolation threshold)

is denoted by Ppc with corresponding expectation denoted by Epc . Given a

configuration, we say that x is connected to y, and we write x
n−→ y if there is

a path of occupied bonds from x to y and the path with the minimal number

of bonds connecting x and y has precisely n edges.

For percolation, Condition 1.1 is not known. Condition 1.2 follows from

[21] together with [1]; see also [23], [24]. A form of Condition 1.3 can be

established in a similar way as for lattice trees above. Evaluating the cluster

up to generation m, we have observed a set of open edges Tm in our cluster

of generation ≤ m, as well as a corresponding set of closed edges incident to

those edges. Let Tm be the union of these edges. Then

P(Am → n|Fm) = P
Ä
∪

x∈Am
{x survives at least n−m in T

c
m} | Fm

ä
since Am ⊂ Tm contains all ancestors of generation m of all vertices of genera-

tion n. It is tempting to now conclude Condition 1.3 from a union bound and by

dropping the restriction that the connections occur outside Tm. Unfortunately,

the function θn is not monotone in the graph on which we perform percolation.

Indeed, for a set of edges B, it is not true that P(0 survives at least n in Bc) ≤
θn. This was cleverly resolved by Kozma and Nachmias [40] by instead studying

θn = supB P(0 survives at least n in Bc), for which the proof of Theorem 2.1

does apply. Since θn ≤ θn, this does imply the fact that nθn is bounded. It

is straightforward to check that this strategy can also be applied to the proof

of Theorem 1.4 below. As a result, for percolation, our results hold as soon
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as Condition 1.1 is proved, even though this proof is substantially more subtle

than the proof for lattice trees, the contact process, and oriented percolation.

The above discussion suggests the following research program to identify

the right constants in arm-probabilities in high-dimensional percolation, both

in the intrinsic as well as in the Euclidean or extrinsic distance: (1) prove the

convergence of the r-point functions in Condition 1.1(b) (from which the right

constant in the survival probability or intrinsic one-arm probability would fol-

low, improving upon the results in [40]); (2) prove tightness for convergence

towards SBM; (3) identify the right constant for the extrinsic one-arm prob-

ability, improving upon the result in [41]. For the last step, an important

ingredient showing that it is unlikely that a short path exists to the boundary

of a Euclidean ball is proved in [34, Th. 1.5].

The remainder of this paper is organized as follows. In Section 2, we

prove an upper bound on θn that is of the correct order, but with the wrong

constant. In Section 3, we use weak-convergence arguments to identify the

correct constant and prove the consequences of convergence of the survival

probability.

2. Weak upper bound on the survival probability

The following theorem gives a weak upper bound on the survival proba-

bility.

Theorem 2.1. When Conditions 1.2 and 1.3 hold, there exists a constant

c+ such that

(2.1) θn ≤ c+/n.

Proof. We follow [40], where a similar bound was proved for the intrinsic

one-arm in percolation. We split θ4n into two parts,

θ4n = P(Nm ≥ εn ∀m ∈ [n, 3n], 0 −→ 4n)(2.2)

+ P(∃m ∈ [n, 3n] : Nm < εn, 0 −→ 4n).

We can bound the first probability using (1.10) since |N | ≥ 2εn2 if Nm ≥ εn

for all m ∈ [n, 3n]. Therefore,

(2.3) P(Nm ≥ εn ∀m ∈ [n, 3n], 0 −→ 4n) ≤ P(|N | ≥ 2εn2) ≤ CN

n
√

2ε
.

In the second probability in (2.2), we let J ≥ n be the first m ∈ [n, 3n] such

that 0 < Nm < εn, and we condition on FJ = σ((Am)m≤J). Then, by (1.11),

(2.4) P(AJ −→ 4n | FJ) ≤ NJCθθn ≤ εnCθθn.
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As a result,

P(∃m ∈ [n, 3n] : Nm < εn, 0 −→ 4n)

= E[1{n≤J≤3n}P(AJ −→ 4n | FJ)] ≤ εCθnθ2n,

where we use the fact that n ≤ J implies that 0 −→ n. Thus, we end up with

the inequality

(2.5) θ4n ≤
CN

n
√

2ε
+ εCθnθ

2
n.

Take ε = c
−4/3
2 , and take c2 > 1 so large that

(2.6) 2−
1
2CNc

2/3
2 + Cθc

2/3
2 ≤ c2/4.

Then, it is easy to prove by induction that θ4k ≤ c24
−k for every k ≥ 1. By

monotonicity of n 7→ θn, this immediately implies that θn ≤ (4c2)/n. This

completes the proof of Theorem 2.1. �

3. Identifying the constant: Proof of Theorem 1.4

In this section, we make use of general weak convergence arguments to

prove that nθn → 2/(AV ). We rely on a result that is essentially a special case

of [37, Prop. 2.3], which requires the introduction of some more notation. Let

MF (Rd) (resp. M1(Rd)) denote the space of finite (resp. probability) measures

on Rd equipped with the topology of weak convergence. Let DG denote the

set of discontinuities of a function G, and let D(E) denote the space of càdlàg

E-valued functions with the Skorohod topology. When we say that µ is a

measure on (a topological space) E, this means that it is a measure with

respect to the Borel σ-algebra on E.

Lemma 3.1. Suppose that Condition 1.1(a) holds. Then for every s, t,

η > 0 and every bounded Borel measurable H : R → R such that N0(Xt(1) ∈
DH) = 0,

(3.1)

Eµn
[
1{X(n)

s (1)>η}H(X(n)

t (1))
]
→ EN0

î
1{Xs(1)>η}H(Xt(1))

ó
, as n→∞.

Proof. We follow the proof of [37, Prop. 2.3]. For convenience, we drop the

superscripts (n). By Condition 1.1(a), {µn}n≥1 is a sequence of finite measures

on D(MF (Rd)) such that for every r ≥ 1 and ~t ∈ [0,∞)r, (1.7) holds when

φkj = 1 for each j.

Fix s, t, η > 0. Let Ys = Xs(1), and define Pn = Pn,s,t ∈ M1(R2) and

P = Ps,t ∈M1(R2) by

Pn(A) =
Eµn [Ys1{(Ys,Yt)∈A}]

Eµn [Ys]
and P (A) =

EN0 [Ys1{(Ys,Yt)∈A}]

EN0 [Ys]
,
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where these measures are well defined since

Eµn [Ys]→ EN0 [Ys] ∈ (0,∞).

On each of these spaces, let (W,Z) be the canonical random vector; that is,

(W,Z)(ω1, ω2) = (ω1, ω2). Then, for every m1,m2 ≥ 0,

(3.2)

EPn [Wm1Zm2 ] =
Eµn

[
Y m1+1
s Y m2

t

]
Eµn [Ys]

→ EN0

[
Y m1+1
s Y m2

t

]
EN0 [Ys]

= EP [Wm1Zm2 ] ;

i.e., the moments of (W,Z) under Pn converge to those under P .

Furthermore (see, e.g., [37, Lemma 4.1]) there exists δ > 0 such that

(3.3) EP
î
eδ(W+Z)

ó
=

EN0

î
Ys eδ(Ys+Yt)

ó
EN0 [Ys]

<∞;

i.e., the moment generating function of (W,Z) under P is finite in a neighbor-

hood of (0, 0). It then follows (see, e.g., [4, Ths. 30.1, 30.2 and Problems 30.5,

30.6]) that Pn converges weakly to P , and therefore for G : R2 → R bounded

and such that P ((W,Z) ∈ DG) = 0,

EPn [G(W,Z)]→ EP [G(W,Z)].

In other words, for each bounded G : R2 7→ R such that N0((Ys, Yt) ∈ DG) = 0,

Eµn [YsG(Ys, Yt)]→ EN0 [YsG(Ys, Yt)] .

Let H be as in the statement of the lemma, and define

GH(x, y) =


H(y)
x if x > η,

0 otherwise.

Then GH is bounded, and DGH = {(x, y) : y ∈ DH or x = η}, whence

N0((Xs, Xt) ∈ DGH ) = 0.

The claim follows since YsGH(Ys, Yt) = 1{Ys>η}H(Yt). �

Proof of Theorem 1.4. By Theorem 2.1, we have that nθn is bounded. In

order to investigate the limit of nθn, we split, for each fixed ε > 0,

nθn = nP(Nn > εn) + nP(0 < Nn ≤ εn).(3.4)

The first term is equal to (AV )−1µn(X(n)

1 > cε), with c = (V A2)−1. From

Lemma 3.1 with s = 1, η = cε, and with the continuous function H ≡ 1

(and Condition 1.1(a)), we have that the first term on the right converges

to (AV )−1N0(X1(1) > cε), and this converges to (AV )−1N0(X1(1) > 0) =

2/(AV ) as ε→ 0. Since nP(0 < Nn ≤ εn) ≥ 0, this immediately proves that

(3.5) lim inf
n→∞

nθn ≥ 2/(AV ).
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In order to identify the limit, we adapt [28, §5.3, proof of Th. 1.5]. Let δ ∈
(0, 1), and let {nk} = {nk(δ)} be any subsequence of N such that nkθnk → b,

where b = lim supn nθn, and (1 − δ)nkθ(1−δ)nk → bδ for some bδ ≥ 2/AV .

Similarly to (3.4), for δ, ε, ε′ ∈ (0, 1), we write

nkθnk = nkP(N(1−δ)nk > εnk, Nnk > ε′nk)(3.6)

+ nkP(N(1−δ)nk > εnk, 0 < Nnk

≤ ε′nk) + nkP(0 < N(1−δ)nk ≤ εnk, Nnk > 0)

= Ak,δ,ε,ε′ +Bk,δ,ε,ε′ +Dk,δ,ε.

Since the above is true for each δ, ε, ε′, it follows that also

b ≤ lim sup
δ,ε,ε′↓0

lim sup
k→∞

Ak,δ,ε,ε′ + lim sup
δ,ε,ε′↓0

lim sup
k→∞

Bk,δ,ε,ε′ + lim sup
δ,ε↓0

lim sup
k→∞

Dk,δ,ε,

(3.7)

where the limits are taken in the order k →∞, ε′ ↓ 0, ε ↓ 0, δ ↓ 0.

The term Ak,δ,ε,ε′ can be rewritten as

1

AV
µnk(X

(nk)
1−δ (1) > cε,X

(nk)
1 (1) > cε′)

→ 1

AV
N0(X1−δ(1) > cε,X1(1) > cε′), as k →∞,

by Lemma 3.1. Letting ε′ ↓ 0 and then ε ↓ 0, this converges to

1

AV
N0(X1−δ(1) > 0, X1(1) > 0) =

1

AV
N0(X1(1) > 0) = 2/AV,

where we use that {X1(1) > 0} ⊂ {X1−δ(1) > 0} and which, in particular,

does not depend on δ. Further, using Condition 1.3, the term Dk,δ,ε satisfies

Dk,δ,ε = nkE
î
1{0<N(1−δ)nk≤εnk}

P(Nnk > 0|F(1−δ)nk)
ó

≤ Cθεnkθδnknkθ(1−δ)nk ≤
Cε

δ(1− δ)
,

uniformly in k, since nθn is bounded above uniformly in k. Letting ε ↓ 0, this

converges to 0.

We are left to investigate Bk,δ,ε,ε′ , for which we define, for each m, the

measure Qm = P(· | Nm > 0). Then, we can rewrite

Bk,δ,ε,ε′ = nkθ(1−δ)nkQ(1−δ)nk(N(1−δ)nk > εnk, 0 < Nnk ≤ ε
′nk).

Thus, since nkθ(1−δ)nk is bounded above by C
1−δ ≤ 2C for δ < 1

2 (where C is

independent of δ), proving that lim supδ,ε,ε′↓0 lim supk→∞Bk,δ,ε,ε′ = 0 is equiv-

alent to proving that

(3.8) lim sup
δ,ε,ε′↓0

lim sup
k→∞

Q(1−δ)nk(N(1−δ)nk > εnk, 0 < Nnk ≤ ε
′nk) = 0.
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To prove (3.8), we note that, for any integers `1, `2≥0 such that `1+`2≥1,

EQ(1−δ)nk

[(
N(1−δ)nk/nk

)`1(
Nnk/nk

)`2]
(3.9)

=
1

θ(1−δ)nk
E
[(
N(1−δ)nk/nk

)`1(
Nnk/nk

)`2]
=

1

nkθ(1−δ)nk
n
−(`1+`2−1)
k E[N `1

(1−δ)nkN
`2
nk

]

=
1

nkθ(1−δ)nk
n
−(`1+`2−1)
k t̂

(`1+`2+1)

~nk
(0),

where we use that N(1−δ)nk > 0 when Nnk > 0 and where ~nk denotes a vector

with precisely `1 coordinates equal to (1 − δ)nk and `2 coordinates equal to

nk. By Condition 1.1(a),

n
−(`1+`2−1)
k t̂

(`1+`2+1)

~nk
(0)→ A(V A2)`1+`2−1EN0

î
X1−δ(1)`1X1(1)`2

ó(3.10)

=
2

AV (1− δ)
EN0

ï(
V A2X1−δ(1)

)`1(
V A2X1(1)

)`2 ∣∣∣∣X1−δ(1) > 0

ò
,

where the last equality follows from the fact that N0(X1−δ(1) > 0) = 2/(1−δ).
Therefore, also using that (1− δ)nkθ(1−δ)nk → bδ,

EQ(1−δ)nk

[(
N(1−δ)nk/nk

)`1(
Nnk/nk

)`2]
(3.11)

→ 2

AV bδ
EN0

ï(
V A2X1−δ(1)

)`1(
V A2X1(1)

)`2∣∣∣∣X1−δ(1) > 0

ò
.

We recognize the above joint moments as the joint moments of (X,Y ) with

distribution (1−αδ)δ(0,0)+αδνδ, where δ(0,0) is the point measure on the vector

(0, 0) and νδ is the law of (A2V X1−δ(1), A2V X1(1)) under N0(·|X1−δ(1) > 0),

and with αδ = 2/(AV bδ) ∈ [0, 1] (due to the lower bound (3.5)). For any

t > 1− δ,

(3.12) N0(Xt(1) = 0|X1−δ(1) > 0) = 1− (1− δ)/t,

so that

(3.13) νδ(X1(1) = 0) = 1− (1− δ) = δ.

Let (Xn, Yn) be a two-dimensional distribution. Again by [4, Ths. 30.1, 30.2

and Problems 30.5, 30.6], convergence of the joint moments of (Xn, Yn) to

those of (X,Y ) implies convergence in distribution when the moment gener-

ating functions of both X and Y are finite in a neighborhood of 0. Under

the conditional law N0(·|X1−δ(1) > 0), the distribution of A2V X1−δ(1) is ex-

ponential with mean (1 − δ)A2V/2 (see, e.g., [28, Th. 1.4]), and by (3.13),

A2V X1(1) is 0 with probability δ and an exponential with mean A2V/2 with
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probability 1 − δ. As a result, the distribution of both limits X and Y are

mixtures of point masses at 0 with probabilities 1− αδ and 1− αδ + αδδ and

exponentials with positive means λX and λY . Therefore, their moment gener-

ating functions are finite in a neighborhood of zero, so that under Q(1−δ)nk ,Ä
N(1−δ)nk/nk, Nnk/nk

ä
converges in distribution to (X,Y ) having distribution

(1− αδ)δ(0,0) + αδνδ.

Thus, as k →∞,

Q(1−δ)nk(N(1−δ)nk > εnk, Nnk ≤ ε
′nk)

→ αδνδ(A
2V X1−δ(1) > ε,A2V X1(1) ≤ ε′).

When ε′ ↓ 0,

νδ(A
2V X1−δ(1) > ε,A2V X1(1) ≤ ε′)→ νδ(X1−δ(1) > εc,X1(1) = 0)(3.14)

≤ νδ(X1(1) = 0) = δ,

where we use (3.13). Letting δ ↓ 0, we obtain (3.8). We conclude that

lim supn→∞ nθn = b̄ ≤ 2/(AV ), which, together with (3.5) and as required,

shows that limn→∞ nθn = 2/(AV ).

The fact that, conditionally on X(n)

t (1) > 0, the finite-dimensional distri-

butions of (X(n)
s (1))s≥0 converge to those of the total mass of CSBM condi-

tionally on Xt(1) > 0 can be obtained as follows. Again by [4, Ths. 30.1, 30.2

and Problems 30.5, 30.6], for the convergence under the conditional measures

it is enough to show that for ` ≥ 0, ~s ∈ [0,∞)` and t > 0,

(3.15) Eµn

[∏̀
i=1

Xsi(1)

∣∣∣∣S > t

]
→ EN0

[∏̀
i=1

Xsi(1)

∣∣∣∣S > t

]
.

Since we have already shown convergence of the survival probabilities, it is

sufficient to show that

(3.16)
∣∣∣Eµn [Y~s1{S>t}]− EN0 [Y~s1{S>t}]

∣∣∣→ 0,

where Y~s =
∏`
i=1Xsi(1) and ` > 0, and trivially this implies the unconditional

version of the statement as well. Finally, (3.16) can be proved exactly as in

[37, proof of Prop. 2.4] �
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