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On irreducible representations of
compact p-adic analytic groups

By Konstantin Ardakov and Simon Wadsley

Abstract

We prove that the canonical dimension of a coadmissible representation

of a semisimple p-adic Lie group in a p-adic Banach space is either zero

or at least half the dimension of a nonzero coadjoint orbit. To do this we

establish analogues for p-adically completed enveloping algebras of Bern-

stein’s inequality for modules over Weyl algebras, the Beilinson-Bernstein

localisation theorem and Quillen’s Lemma about the endomorphism ring

of a simple module over an enveloping algebra.
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1. Introduction

1.1. Coadmissible KG-modules. Let p be an odd prime, let G be a com-

pact p-adic analytic group, and let K be a finite extension of Qp. Continuous
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representations of G in K-Banach spaces are of interest in many parts of mod-

ern arithmetic geometry and the Langlands programme. Following Schneider

and Teitelbaum [70], we only consider the coadmissible representations of G,

which by definition are finitely generated modules over the completed group

ring KG of G with coefficients in K, defined in Section 10.12. These group

rings, under the name of Iwasawa algebras, play a central role in noncommu-

tative Iwasawa theory; see, for example, [22] for more details.

The categoryM of coadmissible KG-modules is abelian, and each M ∈M
has a canonical dimension d(M), which gives rise to a natural dimension fil-

tration

M =Md ⊃Md−1 ⊃ · · · ⊃ M1 ⊃M0

by Serre subcategories, where d = dimG is the dimension of the p-adic analytic

group G and M ∈ Mi if and only if d(M) 6 i. For example, d(M) < d if and

only if M is a torsion KG-module, and d(M) = 0 if and only if M is finite-

dimensional as a K-vector space. So in this precise sense, d(M) measures the

‘size’ of the underlying vector space of the representation M .

1.2. Semisimple groups. The structure of these module categories is the

most intricate when the Lie algebra of the group G is semisimple, so we focus

on this case. Here is our main result.

Theorem A. Let G be a compact p-adic analytic group whose Lie algebra

is split semisimple. Let p be an odd very good prime for G, and let GC be a

complex semisimple algebraic group with the same root system as G. Let r

be half the smallest possible dimension of a nonzero coadjoint GC-orbit. Then

any coadmissible KG-module M that is infinite-dimensional over K satisfies

d(M) > r.

The invariant r depends only on the root system of G and is well known

in representation theory; we recall the exact values that it takes in Section 9.9.

Thus, coadmissible KG-modules are either finite-dimensional over K or rather

‘large.’ It is easy to see that in type A the lower bound is attained by a

module induced from a closed subgroup. We do not know if the bound is the

best possible in general.

Theorem A was inspired by an analogous result [74] of S. P. Smith for the

universal enveloping algebra of a complex semisimple Lie algebra. His proof

does not adapt to our context because it depends on the fact that the canon-

ical dimension function for enveloping algebras is just the Gelfand-Kirillov

dimension and is therefore particularly well behaved. More precisely, if M is

a finitely generated module over the enveloping algebra of such a Lie algebra

g and N ⊆ M is a finitely generated module over the enveloping algebra of

a subalgebra h of g, then d(N) 6 d(M). The Gelfand-Kirillov dimension is



REPRESENTATIONS OF COMPACT p-ADIC ANALYTIC GROUPS 455

not available for modules over Iwasawa algebras and, in fact, the analogous

property for the canonical dimension function fails for both Iwasawa algebras

and the completed enveloping algebras of the next section.

1.3. Completed enveloping algebras. One way to understand the finer struc-

ture of modules over KG is to study the connection between Iwasawa algebras

and certain completed enveloping algebras, which are much closer in spirit to

objects found in traditional representation theory. This connection was orig-

inally discovered by Lazard in his seminal 1965 paper [53]; we will explain it

by means of an example.

Let R be the ring of integers of K, and suppose that K/Qp is unramified

for simplicity. Take G = ker(SL2(Zp) → SL2(Fp)) to be the first congruence

kernel of SL2(Zp); then the Iwasawa algebra RG can be identified with a non-

commutative formal power series ring R[[F,H,E]] in three variables and KG

is just RG⊗RK. Now let g be the R-Lie algebra sl2(R) = Rf ⊕Rh⊕Re, and

consider the p-adic completion

ÛK := lim
←−

Ç
U(g)

paU(g)

å
⊗R K

of the usual enveloping algebra U(gK) of gK = sl2(K). Lazard observed that it

is possible to obtain ÛK as a completion of KG with respect to an intrinsically

defined norm; see Section 10 for more details. The immediate advantage of

replacing KG by this completion is that ÛK is a much more accessible object:

its topological generators satisfy standard relations such as [e, f ] = h, whereas

the commutation relations between E and F are more intricate.

1.4. Distribution algebras. Let G be a uniform pro-p group. Lazard de-

fined a Zp-Lie algebra LG associated to G; this turns out to be free of rank

d = dimG over Zp and satisfies [LG, LG] 6 pLG. Letting g = 1
pLG ⊗Zp R,

the completed enveloping algebra ÛK of g is defined in the same way, and we

show in Theorem 10.4 that it can also be obtained as a particular algebraic

microlocalisation of the Iwasawa algebra RG. General theorems now imply

that the natural map KG → ÛK is flat. The main problem with passing to

this microlocalisation of KG however is that the map is not faithfully flat:

there are nonzero KG-modules M with ÛK ⊗KGM = 0.

In a series of papers including [68], [69], [70], [71], Schneider and Teitel-

baum study a class of rings that they call the distribution algebras D(G,K)

of a p-adic analytic group G. From an algebraic viewpoint, these rings can

be defined as the projective limit of a sequence of Noetherian algebras Dw =

D w
√

1/p
(G,K); here w can be any real number > 1 and Dw is the completion

of KG with respect to the degree function degw, which is characterised by the
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property that its value on p is w and its value on each of the standard topolog-

ical generators of RG is 1. Schneider and Teitelbaum prove in [70, Th. 4.11]

that the natural map KG→ D(G,K) is faithfully flat, so D(G,K) is in some

sense better than ÛK = D1. Unfortunately, D(G,K) is almost never Noether-

ian; we finesse this difficulty by never passing to the projective limit D(G,K).

As we explain in Theorem 10.11, the essence of the proof of [70, Th. 4.11] is

that for any given nonzero finitely generated KG-module M , the base-changed

Dw-module Dw ⊗KGM is nonzero for sufficiently large w.

1.5. Fréchet-Stein algebras. We focus on the algebras Dw, where the pa-

rameter w is an integral power of p, w = pn, say. The advantage of doing so is

that Dpn is more understandable algebraically. It is closely related to a certain

crossed product ’Un,K ∗G/Gpn ,
where ’Un,K is the subalgebra of ÛK obtained by completing the Iwasawa alge-

bra KGp
n

of the open subgroup Gp
n

of G with respect to its intrinsic norm; see

Proposition 10.6 and also [32] for more details. We suspect that, in fact, Dpn

is isomorphic to this crossed product, but we will not need to prove this; our

Corollary 10.11 essentially implies that to prove Theorem A above it is enough

to prove the corresponding result (Theorem 9.10) for each of the algebras ’Un,K .

In a recent preprint [67] Schmidt has studied the projective limit of our’Un,K , the so-called Arens-Michael envelope of the enveloping algebra U(gK).

Both the distribution algebras D(G,K) and the Arens-Michael envelopes stud-

ied by Schmidt are examples of what Schneider and Teitelbaum call Fréchet-

Stein algebras. Our work on the structure of completed enveloping algebras in

this paper may be viewed as an in-depth study of local data for these Fréchet-

Stein structures.

1.6. Noncommutative affinoid algebras. It turns out that as a K-vector

space, ÛK is the set of restricted power series in a free generating set for g.

Suppose that u1, . . . , ud is free generating set for g as an R-module; then

ÛK =

®∑
α∈Nd

λαuα : λα ∈ K and λα −→ 0 as |α| → ∞
´
,

where uα denotes the product uα1
1 · · ·u

αd
d . In this way ÛK can be identified as a

K-Banach space with the Tate algebra K〈u1, . . . ud〉 in d commuting variables.

Tate algebras form the basis of rigid, or non-archimedean, analysis; one views

this particular Tate algebra as the algebra of rigid analytic functions on the

unit ball g∗ = HomR(g, R) of the K-vector space g∗K = HomK(gK ,K). Thus

we view ÛK as a rigid analytic quantization of g∗, analogous to the usual way

of viewing U(gK) as an algebraic quantization of g∗K .
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The subalgebras ’Un,K of ÛK mentioned above have the following form:’Un,K =

®∑
α∈Nd

λαuα : λα ∈ K and p−n|α|λα −→ 0 as |α| → ∞
´
.

They can therefore be identified with the Tate algebras K〈pnu1, . . . , p
nud〉 as

K-Banach spaces. We may therefore view them as rigid analytic quantizations

of larger and larger closed balls g∗ ⊂ p−1g∗ ⊂ p−2g∗ ⊂ · · · in g∗K with respect

to the p-adic topology. Thus the collection {’Un,K : n ∈ N} together forms a

quantization of the rigid analytification (g∗K)an of the K-variety g∗K .

The gluing of these closed balls should correspond algebraically to taking

the projective limit of the affinoid algebras, and thus we recover the Arens-

Michael envelopes of U(gK) studied by Schmidt.

1.7. Tate-Weyl algebras. It is well known in noncommutative algebra that

the Weyl algebras C[x1, . . . , xm, ∂1, . . . , ∂m] are more tractable objects than

universal enveloping algebras U(gC) and frequently influence their structure.

In our setting we can form the standard p-adic completion‘AK =

® ∑
α,β∈Nm

λαβx
α∂β : λαβ ∈ K and λαβ −→ 0 as |α|+ |β| → ∞

´
of the Weyl algebra K[x1, . . . , xm, ∂1, . . . , ∂m] with coefficients in K, and con-

sider analogous subalgebras’An,K =

® ∑
α,β∈Nm

λαβx
α∂β ∈‘AK : p−n|β|λαβ −→ 0 as |α|+ |β| → ∞

´
enjoying certain stronger convergence properties. We tentatively call these the

Tate-Weyl algebras and view ’An,K as a quantization of the rational domain

Yn :=
¶

(ξ1, . . . , ξm, ζ1, . . . , ζm) ∈ K2m : |ξi| 6 1 and |ζi| 6 pn for all i
©
.

More generally, let X be a smooth R-scheme locally of finite type with generic

fibre XK , and let X0 ⊆ Xan
K be the unit ball inside the rigid analytification

Xan
K of XK . Let (T ∗X)0 ⊆ (T ∗XK)an be the corresponding cotangent bundles

and consider the rigid analytic variety

Yn := X0 ×Xan
K
p−n(T ∗X)0.

By patching together appropriate microlocalisations of Tate-Weyl algebras, we

obtain a completed deformation ’Dn,K of the sheaf D of crystalline differential

operators on X; this is a sheaf on X that is now only supported on the special

fibre Xk. Just as in Section 1.6 above we view ’Dn,K as a quantization of the

rigid analytic variety Yn and then the collection {’Dn,K : n ∈ N} together forms

a quantization of Y := X0 ×Xan
K

(T ∗XK)an = ∪Yn; see Section 3.5 for more

details. This is broadly analogous to the usual way of viewing the sheaf of

differential operators DK on XK as an algebraic quantization of T ∗XK .



458 KONSTANTIN ARDAKOV and SIMON WADSLEY

1.8. Characteristic varieties. It is possible to associate to each coherent

sheaf M of ’Dn,K-modules a characteristic variety Ch(M). Because of the

nature of these rigid analytic quantizations we have to be a little careful in the

definition of Ch(M); since any reasonable filtration of ’Dn,K has an associated

graded ring in characteristic p, Ch(M) is effectively forced to be an algebraic

subset of the special fibre T ∗Xk of the cotangent bundle although ideally it

should be a subset of Y . This causes us a number of problems. For example,

Gabber’s Theorem on the integrability of the characteristic variety [33] can be

used to give another proof of Smith’s original theorem, but we cannot use this

result because it is heavily dependent on characteristic zero methods and does

not directly apply to our completed enveloping algebras.

1.9. Arithmetic D-modules. The sheaf ’D0,K , and in particular the Tate-

Weyl algebra ‘AK , was studied before from a slightly different viewpoint by

Berthelot in [12]. In fact, ’D0,K is essentially Berthelot’s sheaf “D (0)
X ,Q of arith-

metic differential operators of level zero on the formal neighbourhood X of the

special fibre Xk in X; the only difference between our approaches is that we

view ’Dn,K as a sheaf on X supported on Xk for simplicity and do not mention

formal neighbourhoods. Our second main result is a p-adic analogue of the

classical Bernstein Inequality for algebraic D-modules.

Theorem B. Let ’An,K be as in Section 1.7, and suppose that M is a

finitely generated nonzero ’An,K-module. Then

dim Ch(M) > m.

Berthelot has proved a version of the Bernstein Inequality for F −D†X ,Q-

modules in [13, Th. 5.3.4]; our Theorem B can be viewed as a generalization

of his result in the case when X = AmR . We do not consider the arithmetic

differential operators of higher level “D (`)
X ,Q in this paper; our sheaves ’Dn,K

should be viewed as a deformation of the level zero arithmetic differential

operators “D (0)
X ,Q.

Close to the end of the preparation of this paper we discovered than Caro

has removed the Frobenius condition from Berthelot’s result in [21]. His proof is

rather different from ours. Like Berthelot, Caro does not consider our algebras’An,K for n > 0.

1.10. Beilinson-Bernstein localisation. Let G be a split semisimple alge-

braic group over R with R-Lie algebra g and let X be its flag-scheme G/B.

We show in Section 6 that the analogue of the Beilinson-Bernstein Localisation

theorem [8] holds in our setting.

Theorem C. Suppose that λ is a dominant regular weight. There is an

equivalence of abelian categories between finitely generated ’Un,K-modules with
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central character corresponding to λ, and coherent sheaves of modules over

the sheaf ’Dλn,K of completed deformed twisted crystalline differential operators

on X .

Part of this result is essentially due to Noot-Huyghe in [61]; she estab-

lished the equivalence of categories between coherent sheaves of ’Dλ0,K-modules

and finitely generated modules for the ring of global sections of ’Dλ0,K . In many

places our proof of this part of Theorem C follows hers, although the presen-

tation is sometimes a little different. However she does not explicitly compute

the ring of global sections in her paper. We do so following the ideas in [14].

We also prove that the rigid analytic quantization construction sketched

above in Section 1.7 is compatible with Beilinson-Bernstein localisation; this

means that just as in the classical case of complex enveloping algebras one can

pull back the characteristic variety of a ’Un,K-module from g∗k to T ∗Xk along the

Grothendieck-Springer map and study the corresponding ’Dλn,K-module instead.

After Theorem B, this effectively reduces the proof of Theorem A to the

following analogue of Quillen’s Lemma [65] for classical enveloping algebras.

Theorem D. Let M be a simple ’Un,K-module, let Z be the centre of ’Un,K ,

and suppose that n > 0. Then M is Z-locally finite.

Theorems B and D and the computation of global sections in Theorem C

may be viewed as the main technical contributions of this paper. We do not

believe that the restriction on n in Theorem D is really necessary.

1.11. Future directions of research. This work raises a number of possi-

bilities for future avenues of study. First it suggests that further study of

the representation theory of the completed enveloping algebras ’Un,K might be

fruitful for better understanding the representation theory of Iwasawa algebras.

Although current knowledge suggests that there are very few prime ideals in

the Iwasawa algebras KG, there are plenty in ’Un,K , and a classification of

primitive ideals in these latter algebras looks to be possible and may well in-

fluence the structure of coadmissible KG-modules. Similarly, attempting to

define a version of the BGG category O for completed enveloping algebras is

likely to have important consequences if successful.

Although we have only used our techniques to study the canonical dimen-

sion function, it seems plausible that they might also be useful in attempting

to better understand other invariants such as the Euler characteristic of [23].

It also seems worth further pursuing the study of D-modules on rigid

analytic spaces. In this paper we only really deal with spaces that are locally

polydiscs; it would be interesting to attempt to develop a more general theory.
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1.12. Structure of this paper. In Sections 2 and 3 we recall some standard

results from noncommutative algebra and define almost commutative affinoid

K-algebras. In Section 4 we develop the theory of crystalline differential oper-

ators on a homogeneous space defined over an arbitrary commutative ring; we

suspect this is well known to experts but we could not find a good single refer-

ence in this generality so we include it for the sake of those from another field.

In Sections 5 and 6 we set up the language for and then prove Theorem C. We

also explain here how the characteristic variety of a module over a completed

enveloping algebra behaves under localisation. In Section 7 we prove Theo-

rem B, and in Section 8 we prove Theorem D. In Section 9 we apply all that

has gone before along with a study of the fibres of the Grothendieck-Springer

resolution to give a lower bound on the canonical dimension of ’Un,K-modules

that are infinite-dimensional over K. In Section 10 we explain the relation-

ship between the Iwasawa algebras KG and the completed enveloping alge-

bras culminating in the proof of Theorem A. Finally in Section 11 we study

KG-modules that are finite-dimensional over K; we essentially give a com-

plete classification of them. See Prasad’s appendix in [68] for parallel results

for distribution algebras.
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2. Background

Our convention regarding left and right modules is as follows. The term

module means left module, unless explicitly specified otherwise. Noetherian
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rings are left and right Noetherian, and other ring-theoretic adjectives such as

Artinian are used in a similar way.

2.1. Filtered rings and modules. Let Λ be either Z or R. A Λ-filtration

F•A on a ring A is a set {FλA|λ ∈ Λ} of additive subgroups of A such that

• 1 ∈ F0A;

• FλA ⊂ FµA whenever λ < µ;

• FλA · FµA ⊂ Fλ+µA for all λ, µ ∈ Λ.

The filtration on A is said to be separated if
⋂
λ∈Λ FλA = {0}, and it is said to

be exhaustive if
⋃
λ∈Λ FλA = A. Our filtrations will always be exhaustive. Note

also that the second condition says that our filtrations are always increasing.

Given a filtration F•A of A we may make A into a topological ring by

letting the FλA be a fundamental system of neighbourhoods of 0. When Λ = Z,

we say the filtration is complete if any Cauchy sequence in A converges to a

unique limit.

In a similar way, given a Λ-filtered ring F•A and an A-module M , a

filtration of M is a set {FλM |λ ∈ Λ} of additive subgroups of M such that

• FλM ⊂ FµM whenever λ < µ;

• FλA · FµM ⊂ Fλ+µM for all λ, µ ∈ Λ.

Again, the filtration of M is said to be separated if
⋂
λ∈Λ FλM = {0} and the

filtration of M is said to be exhaustive if
⋃
λ∈Λ FλM = M .

2.2. Degree functions. An exhaustive Λ-filtration can arise from a degree

function. This is a function v : A→ Λ ∪ {∞} such that

• v(1) = 0,

• v(0) =∞,

• v(x+ y) > min(v(x), v(y)),

• v(xy) > v(x) + v(y)

for all x, y ∈ A. If F•A is a Λ-filtration on A, then

deg(x) := sup{λ ∈ Λ : x ∈ F−λA}

is a degree function, and conversely, if v : A → Λ ∪ {∞} is a degree function,

then

FλA := {x ∈ A | v(x) > −λ}
defines an exhaustive Λ-filtration on A. When Λ = Z, these formulas give a

natural bijection between degree functions and filtrations.

Typically when we are dealing with a positive Λ-filtration (one where FλA

= 0 for all λ < 0), we will use the language of filtrations, and when we are

dealing with a negative Λ-filtration (one where FλA = A for all λ > 0), we

will use the language of degree functions. This explains the minus signs in the

above definitions.
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2.3. Associated graded rings and modules. Let A be a Λ-filtered ring whose

filtration arises from a degree function. Define

Fλ−A :=
⋃
µ<λ

FµA,

and note that if Λ = Z, then Fn−A = Fn−1A for all n ∈ Z. We can now form

two related Λ-graded rings: the associated graded ring

grA =
⊕
λ∈Λ

FλA/Fλ−A

and the Rees ring ‹A =
⊕
λ∈Λ

FλA tλ ⊆ A[Λ],

which we view as a subring of the group ring A[Λ] of the abelian group Λ;

here A[Λ] is the free A-module on the set of symbols {tλ : λ ∈ Λ}, which is

a set-theoretic copy of Λ. We denote the λ-th homogeneous piece of grA by

grλA. For a ∈ A but not in
⋂
λ FλA, we will also write gr a for the principal

symbol of a in grA.

Given a filtered F•A module F•M , we similarly define

Fλ−M :=
⋃
µ<λ

FµM,

and then the associated graded module grM of M is

grM =
⊕
λ∈Λ

FλM/Fλ−M.

Clearly grM is naturally a graded grA-module.

We say that a Z-filtration on a ring A is Zariskian if the Rees ring ‹A is

Noetherian and F−1A is contained in the Jacobson radical of F0A. In particu-

lar, a Z-filtration is Zariskian whenever the filtration on A is complete and the

associated graded ring grA is Noetherian; this follows from [56, Prop. II.2.2.1].

2.4. Microlocalisation. We recall some basic results in the theory of alge-

braic microlocalisation.

Suppose that A is a Zariskian filtered ring, T is an Ore set in grA con-

sisting of homogeneous elements and M is a finitely generated A-module with

a good filtration.

Lemma. Let S := {s ∈ A | gr s ∈ T}. Then

(a) S is an Ore set in A.

(b) There is a natural Zariskian filtration on AS such that grAS ∼= (grA)T .

(c) There is a good filtration on MS as an AS-module such that grMS
∼=

(grM)T .
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Proof. (a) follows from [55, Cor. 2.2]. (b) follows from [55, Props. 2.8

and 2.3]. (c) follows from [55, Cor. 2.5(1,2) and Prop. 2.6(1)] �

Definition.Given the notation above we define the microlocalisation

QT (A) of A at T to be the completion of the induced Zariskian filtration

on AS . Similarly, we define the microlocalisation QT (M) of M at T to be the

completion of the induced good filtration on MS .

Corollary. With the notation above, QT (A) is a flat A-module and

QT (A)⊗AM ∼= QT (M). Moreover QT (M) = 0 if and only if if MS = 0.

Proof. The flatness follows from [55, Cors. 2.4 and 2.7(1)]. The isomor-

phism QT (A)⊗AM ∼= QT (M) is [55, Cor. 2.7(2)]. The last part follows from

[55, Cor. 2.5(3)] �

2.5. Auslander-Gorenstein rings and dimension functions.

Definition. Let A be a Noetherian ring.

(a) We say that a finitely generated (left or right) A-module M satisfies Aus-

lander ’s condition if for every i > 0 and every submodule N of ExtiA(M,A),

we have ExtjA(N,A) = 0 for all j < i.

(b) We say that A is Auslander-Gorenstein if the left and right self-injective

dimension of A is finite and every finitely generated (left or right) A-module

satisfies Auslander’s condition.

(c) We say that A is Auslander regular if it is Auslander-Gorenstein and has

finite (left and right) global dimension.

Definition. If A is an Auslander-Gorenstein ring and M is a finitely

generated A-module, then the grade of M is given by

jA(M) := inf{j | ExtjA(M,A) 6= 0}

and the canonical dimension of M is given by

dA(M) := inj.dimAA− jA(M).

We say an A-module M is pure if every finitely generated nonzero submodule

of M has the same canonical dimension. We say a finitely generated A-module

M is critical if every proper quotient of M has strictly smaller canonical di-

mension.

Definition. Let A be a Noetherian ring. An exact dimension function

is an assignment, to each finitely generated A-module M , a value δ(M) ∈
Z ∪ {−∞} satisfying the following conditions:

(i) δ(0) = −∞,

(ii) δ(M) = max{δ(M ′), δ(M ′′)} whenever 0 → M ′ → M → M ′′ → 0 is a

short exact sequence of finitely generated A-modules, and
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(iii) δ(M) < δ(A/P ) whenever P is a prime ideal of A and M is a torsion

A/P -module.

We say that δ is finitely partitive if, in addition, δ satisfies the following con-

dition:

(iv) for any finitely generated A-module M , there is an integer n such that

whenever M = M0 ⊇ M1 ⊇ M2 ⊇ · · · is a descending chain of A-

submodules of M , we have δ(Mi/Mi+1) < δ(M) for all i > n.

Proposition. Let A be a ring.

(a) If A is Auslander-Gorenstein, then dA is a finitely partitive exact dimen-

sion function.

(b) If A has a Zariskian filtration such that the associated graded ring grA is

Auslander-Gorenstein, then A is Auslander-Gorenstein. Moreover if grA

is Auslander regular, then A is Auslander regular.

Proof. (a) is [54, Prop. 4.5], and (b) is [15, Th. 3.9]. �

2.6. Base change. Suppose that K is a field and K ′ is a finite algebraic

field extension of K.

Lemma. If A is an Auslander-Gorenstein K-algebra, then A′ := K ′⊗K A
is Auslander-Gorenstein. Moreover if M is a finitely generated A-module then

dA(M) = dA′(K
′ ⊗K M).

Similarly, if N is a finitely generated A′-module, then N is a finitely generated

A-module by restriction and dA(N) = dA′(N).

Proof. First, [4, §5.4] gives that faithfully flat Frobenius extensions of

Auslander-Gorenstein rings are Auslander-Gorenstein with the same self-in-

jective dimension. Next, [11, Example C] gives that if K ′ is a simple algebraic

extension of K, then A′ is a id-Frobenius extension of A. Also, [11, Prop. 1.3]

gives that an id-Frobenius extension of an id-Frobenius extension is an id-

Frobenius extension, and so the first part follows.

Now, if M is a finitely generated A-module, we have isomorphisms

ExtjA′(K
′ ⊗K M,A′) ∼= K ′ ⊗K ExtjA(M,A)

for each j > 0. This implies that jA(M) = jA′(K
′ ⊗K M), because K ′ is

faithfully flat over K. Thus we obtain the second part.

Finally, if N is a finitely generated A′-module, we have isomorphisms

ExtjA(N,A) ∼= ExtjA′(N,A
′)

for each j > 0, and the result follows. �
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Proposition. Suppose that A and B are Auslander-Gorenstein rings

such that inj.dimAA = inj.dimBB and B is a flat A-module. If M is a

finitely generated A-module and Ext
jA(M)
A (M,A) ⊗A B 6= 0, then dA(M) =

dB(B ⊗AM).

In particular, if B is a faithfully flat A-module, then dA(M) = dB(B⊗AM)

for every finitely generated A-module M .

Proof. It suffices to prove that jA(M) = jB(B ⊗AM) under these condi-

tions. But ExtiB(B ⊗AM,B) ∼= ExtiA(M,A)⊗A B for all i > 0 since B is flat

over A. Thus jA(M) = jB(B⊗AM) is equivalent to Ext
jA(M)
A (M,A)⊗AB 6= 0

and the first part follows.

The second part is a trivial consequence of the first. �

2.7. Lattices. We will several times require the following very useful result.

Lemma. Let A be a Noetherian ring, and let π ∈ A be a central element.

Suppose A is π-adically complete. Let M be a finitely generated A-module such

that M/πM has finite length. Let M0 ⊇M1 ⊇M2 ⊇ · · · be a descending chain

of A-submodules of M such that Mn * πM for all n. Then
⋂
Mn * πM .

Proof. First, note that the π-adic filtration on M and on each M/Mn is

complete and separated by [12, §3.2.3(v)], so each Mn is closed in the topology

defined by the π-adic filtration. Let a > 1 be an integer; then M/πaM is a

finite extension of quotients of the finite length module M/πM and so has finite

length. It follows that M is pseudo-compact in the sense of [34, §IV.3]. Now

we may apply [34, Prop. IV.3.11] to deduce that πM+
⋂
Mn =

⋂
n(πM+Mn).

But M/πM has finite length, so there exists r such that πM+Mn = πM+Mr

for all n > r. Hence πM+
⋂
Mn = πM+Mr > πM , and the result follows. �

Let R be a discrete valuation ring with uniformizer π, residue field k and

field of fractions K.

Definition. Let V be a K-vector space. We say that an R-submodule

L of V is a R-lattice if V = K · L and
⋂∞
a=0 π

aL = 0.

Equivalently, the π-adic filtration on V given by FiV = π−iL is exhaustive

and separated. We call the k-vector space gr0 V = L/πL the slice of V . Since

our vector spaces will frequently be infinite-dimensional over K, in general the

lattice L will not be finitely generated as an R-module.

Proposition. Suppose that the discrete valuation ring R is complete.

Then every R-lattice N in a finite-dimensional K-vector space V is finitely

generated over R.

Proof. Let M be the R-submodule of V generated by a basis of V . Then

M is finitely generated over R and M/πM has finite length since R/πR = k is
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a field. Consider the descending chain of R-submodules Mi = M ∩ πiN of M

for i > 0. Since N is an R-lattice in V ,
⋂
Mi = 0, and so Mt ⊆ πM for some

t > 0 by the lemma. Thus N ∩ π−iM ⊆ N ∩ π−i+1M for all i > t, whence

inductively N∩π−iM ⊆ N∩π−t+1M for all i > t. Since M is an R-lattice in V ,

N =
⋃
i>t

N ∩ π−iM ⊆ π−t+1M,

and so N is finitely generated R-module because π−t+1M is a Noetherian

R-module. �

3. Almost commutative affinoid algebras

We develop the basic theory of almost commutative affinoid algebras in

this section. Unless explicitly stated otherwise, R will denote a complete dis-

crete valuation ring with uniformizer π, residue field k and field of fractions K.

We do not make any assumptions on the characteristics of k or K.

3.1. Doubly filtered rings.

Definition. Let A be a K-algebra. We say that A is doubly filtered if it

has an R-subalgebra F0A that is an R-lattice in A and if the slice gr0A of A

is a Z-filtered ring. We say that A is a complete doubly filtered K-algebra if

F0A is complete with respect to its π-adic filtration and the filtration on gr0A

is also complete. A morphism of doubly filtered K-algebras is a K-linear ring

homomorphism ϕ : A → B that preserves the lattices in A and B and that

induces a filtered k-linear homomorphism gr0 ϕ : gr0A → gr0B between the

slices.

Lemma. Let A be a doubly filtered K-algebra. Then the associated graded

ring of A with respect to its π-adic filtration is isomorphic to the Laurent

polynomial ring in one variable over the slice gr0A of A:

grA ∼= (gr0A)[s, s−1].

We will always denote the associated graded ring of the slice of A by

GrA := gr(gr0A).

Note that A 7→ Gr(A) is a functor from the category of doubly filtered K-alge-

bras to the category of graded k-algebras.

3.2. Good double filtrations. Let A be a doubly filtered K-algebra, and let

M be an A-module. A double filtration on M consists of an R-lattice F0M in

M that is an F0A-submodule, and a Z-filtration F• gr0M on gr0M compatible

with the filtration on gr0A. We call

Gr(M) := gr(gr0M)
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the associated graded module of M with respect to this double filtration. The

double filtration on M is said to be good if

• the filtration on gr0M is separated, and

• Gr(M) is a finitely generated Gr(A)-module.

When A is a complete doubly filtered K-algebra such that Gr(A) is Noetherian,

it follows from [56, Th. I.5.7] that this is equivalent to the filtration on gr0M

being good in the sense of [56, §I.5.1]: the Rees module of gr0M is finitely

generated over the Rees ring of gr0A. The following elementary result will be

very useful in the future.

Lemma. Let A be complete doubly filtered K-algebra, and let M be a doubly

filtered A-module.

(a) If the double filtration on M is good, then M is a finitely generated

A-module.

(b) If Gr(A) is Noetherian, then so are A and F0A.

Proof. (a) The π-adic filtration FiM := π−iF0M on M is separated be-

cause F0M is a lattice in M , and the given filtration F• gr0M on gr0M is

separated by assumption. In view of Lemma 3.1, the result now follows by

applying [56, Th. I.5.7] twice.

(b) It is enough to show that A is left Noetherian. Let I be a left ideal

of A. The double filtration on A induces a double filtration on I; in this way,

gr0 I is a left ideal in gr0A, the filtration on gr0 I is separated and Gr(I) is

a left ideal of Gr(A). Hence the double filtration on I is good so I is finitely

generated. A similar argument shows that F0A is also Noetherian. �

Whenever L is an R-module, LK will denote the K-vector space K ⊗R L.

Proposition. Let A be a complete doubly filtered K-algebra such that

Gr(A) is Noetherian.

(a) Every finitely generated π-torsion-free F0A-module L is an R-lattice in LK .

(b) Every finitely generated A-module M has at least one good double filtration.

Proof. Note that Gr(A) Noetherian implies that F0A is Noetherian, by

part (b) of the lemma.

(a) N :=
⋂∞
j=0 π

jL is a finitely generated F0A-submodule of L since F0A

is Noetherian. Moreover N = πN . Because F0A is π-adically complete, π is in

the Jacobson radical of F0A, and hence N = 0 by Nakayama’s Lemma. Since

L is π-torsion-free, we can identify it with its image inside LK , and hence L is

an R-lattice in LK .

(b) Letm1, . . . ,m` be anA-generating set forM . Let F0M=
∑`
i=1F0A.mi.

Then F0M is an R-lattice in M by (a) and gr0M = F0M/πF0M is generated

as a gr0A module by the images mi of the mi. Now setting Fj gr0M :=
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∑`
i=1 Fj gr0A.m̄i defines a filtration F• gr0M on gr0M such that gr(gr0M) is

finitely generated over Gr(A). The filtration on gr0A is complete and Gr(A)

is Noetherian by assumption, so F• gr0M is separated by [56, Prop. II.2.2.1

and Theorem I.4.14]. �

3.3. Characteristic varieties.

Definition. Let A be a complete doubly filtered K-algebra such that

Gr(A) is commutative and Noetherian, and let M be a finitely generated

A-module. Choose a good double filtration (F0M,F• gr0M) on M . The char-

acteristic variety of M is the Zariski closed subset

Ch(M) := Supp(Gr(M)) ⊆ Spec(Gr(A))

of the prime spectrum of the commutative Noetherian k-algebra Gr(A).

Of course the dimension of Ch(M) will always be equal to the Krull di-

mension of the Gr(A)-module Gr(M).

Proposition. The characteristic variety Ch(M) does not depend on the

choice of good double filtration on M . Moreover if 0→ L→M → N → 0 is a

short exact sequence of A-modules, then Ch(M) = Ch(L) ∪ Ch(N).

Proof. Let us first fix the lattice F0M in M . Then it is well known [56,

Ch. III, Lemma 4.1.9] that the characteristic support Supp(gr gr0M) does not

depend on the choice of good filtration on gr0M and also that Supp(gr gr0M)

only depends on the class of gr0M in the Grothendieck semigroup of gr0A-

modules [43, Lemma D.3.3]. On the other hand this class does not depend on

the choice of lattice F0M inside M by [36, Prop. 1.1.2], for example.

Now given a short exact sequence as in the statement, it is straightforward

to find F0A lattices F0L and F0N in L and N respectively so that there is a

short exact sequence 0 → F0L → F0M → F0N → 0. Reducing this mod π

gives a short exact sequence 0 → gr0 L → gr0M → gr0N → 0 since F0N is

flat over R.

Now giving gr0 L and gr0N the subspace and quotient filtrations from

some good filtration on gr0M defines good double filtrations on L and N such

that 0 → Gr(L) → Gr(M) → Gr(N) → 0 is exact, and then the result is

clear. �

Theorem. Suppose that A is a complete doubly filtered K-algebra such

that Gr(A) is commutative and regular; then A is Auslander regular. If, in

addition, every simple Gr(A)-module N has dGr(A)(N) = 0, then

dim Ch(M) + jA(M) = dim Gr(A)

for all finitely generated A-modules M .
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Moreover if M is a pure A-module, then every irreducible component of

Ch(M) has the same dimension.

Proof. The first part follows by applying Proposition 2.5(b) twice. Now

dim Ch(M) + jGr(A)(Gr(M)) = dim Gr(A)

by [77, Th. 1.3] and jGr(A)(Gr(M)) = jA(M) by [56, Th. III.2.5.2].

Finally if M is pure, then by applying [15, Th. 3.8] twice we may find a

good double filtration of M such that Gr(M) is pure, and the result follows. �

Notice, in particular, that the second part of the theorem applies whenever

Gr(A) is a polynomial ring over k.

3.4. Almost commutative algebras. We now generalise the more-or-less

standard theory of almost commutative algebras over a field; see [59, §8.4].

Let R be a commutative Noetherian base ring.

Definition. Let A be a positively Z-filtered R-algebra with F0A an

R-subalgebra of A. We say that A is almost commutative if grA is a finitely

generated commutativeR-algebra. A morphism of almost commutativeR-alge-

bras is an R-linear filtered ring homomorphism.

It follows from [56, Prop. II.2.2.1] that almost commutative R-algebras

are always Noetherian. Moreover every factor ring of an almost commutative

ring is again almost commutative.

Examples. (a) Let X be an affine R-scheme of finite type. Then there ex-

ists a presentation R[X1, . . . , Xm]� O(X) that endows O(X) with a posi-

tive filtration induced from the natural degree filtration on R[X1, . . . , Xm].

This gives O(X) the structure of an almost commutative R-algebra.

(b) Let X be a smooth affine R-scheme of finite type. Then the ring of crys-

talline differential operators D(X) is generated by O(X) and T (X); see

Section 4.2 for a precise definition. The associated graded ring with respect

to the filtration by order of differential operators

grD(X) ∼= SymO(X) T (X) ∼= O(T ∗(X))

is commutative, and T (X) is a finitely generated O(X)-module. Therefore

D(X) is an almost commutative R-algebra.

(c) If g is an R-Lie algebra that is free of finite rank as an R-module, then

the universal enveloping algebra U(g) is an almost commutative R-algebra

with respect to the usual Poincaré-Birkhoff-Witt filtration.

(d) Let V be a free R-module of finite rank equipped with an alternating

R-bilinear form ω : V × V → R. The enveloping algebra Rω[V ] of (V, ω) is
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the quotient of the tensor R-algebra
⊕∞
i=0 V

⊗i on V by the relations

vw − wv = ω(v, w) for all v, w ∈ V.

Consider the Lie algebra hω := V ⊕ Rz with Lie bracket determined by

the rules [v, w] = ω(v, w)z and [v, z] = 0 for all v, w ∈ hω. Then Rω[V ]

is isomorphic to the factor ring of U(hω) by the ideal generated by z − 1.

Since grU(hω) is isomorphic to the polynomial algebra SymR(V )[z] by the

Poincaré-Birkhoff-Witt Theorem, we see that grRω[V ] ∼= SymR(V ) when

we equip Rω[V ] with the natural positive filtration with R in degree 0 and

V in degree 1. Thus Rω[V ] is an almost commutative R-algebra.

3.5. Deformations. We now return to assuming that R is a complete dis-

crete valuation ring with field of fractions K and uniformizer π.

Definition.LetA be a positively Z-filteredR-algebra with F0A anR-sub-

algebra of A. We call A a deformable R-algebra if grA is a flat R-module. A

morphism of deformable R-algebras is an R-linear filtered ring homomorphism.

All the almost commutative R-algebras appearing in the above examples,

with the possible exception of (a), are deformable.

Definition. Let A be a deformable R-algebra, and let n be a nonnegative

integer. The n-th deformation of A is the following R-submodule of A:

An :=
∑
i>0

πinFiA.

There is a unique ring homomorphism A[t] → AK that extends the in-

clusion A ↪→ AK and sends t to πn. Since An is the image of the Rees ring‹A =
⊕∞

m=0 t
mFmA under this homomorphism, An is actually an R-subalgebra

of A. It can in fact be shown that An is isomorphic to the factor ring ‹A/〈t−πn〉.
This definition is clearly functorial, and in this way we obtain an end-

ofunctor A 7→ An of the category of deformable R-algebras. Of course the

deformation An does not depend on the choice of uniformizer π.

Lemma. Let A be a deformable R-algebra. Then An is also a deformable

R-algebra for all n > 0 and there is a natural isomorphism grA→ grAn.

Proof. It is clear that An is an R-lattice in AK . Give An the subspace

filtration FmAn := FmA ∩An. Because grA is flat over R, we have

FmAn =
m∑
i=0

πinFiA.

Define an R-linear map FmA/Fm−1A→ FmAn/Fm−1An by the formula

x+ Fm−1A 7→ πmnx+ Fm−1An.
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Since grA is flat over R, this map is an injection. It is straightforward to

verify that it is actually a bijection and that it extends to a ring isomorphism

between grA and grAn.

Finally if f : A→ B is a morphism of deformable R-algebras, the diagram

grA

gr f
��

∼= // grAn

gr fn
��

grB
∼= // grBn

commutes. �

3.6. Deformations and tensor products. Equipping the polynomial alge-

bra R[x1, . . . , x`] with the natural degree filtration gives a first example of a

deformable R-algebra. It is easy to see that its n-th deformation is simply

R[πnx1, . . . , π
nx`].

Proposition. Let A be a deformable R-algebra. Then A⊗RR[x1, . . . , x`]

is a deformable R-algebra when equipped with the tensor filtration. Moreover,

(A⊗R R[x1, . . . , x`])n = An ⊗R (R[x1, . . . , x`])n.

Proof. By induction on the number of variables, it suffices to consider the

case ` = 1 and x1 = x. We may then identify A⊗R R[x] with A[x].

Now gr(A[x]) ∼= (grA)[x] where x has degree one in the right-hand side.

Thus gr(A[x]) is flat over R and so deformable.

By functoriality of (−)n, the natural inclusions A→ A[x] and R[x]→ A[x]

of deformable R-algebras induce inclusions An → A[x]n and R[x]n → A[x]n.

Thus the universal property of the tensor product yields a map from An ⊗R
R[x]n to A[x]n. By considering the identification A⊗R R[x] with A[x], we see

that this map is an inclusion, and so it suffices to see that that it is surjective.

But if ai ∈ FiA, then πinai ⊗ πjnxj is an element of An ⊗R R[x]n and the

images of these elements span A[x]n. �

Peter Schneider has sent us a proof that the functors A 7→ An preserve

finite coproducts — that is tensor products over R — in the category of de-

formable R-algebras. However, we will not need the full strength of this result

in this work.

3.7. π-adic completions. We will now exhibit a functorial way of produc-

ing complete doubly filtered K-algebras.

Definition. Let A be a deformable R-algebra. The π-adic completion of

A is “A = lim
←−

A/πaA.

This is an R-lattice in the K-algebra

ÂK := “A⊗R K.
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Lemma. Let A be a deformable R-algebra. Then ÂK is a complete doubly

filtered K-algebra and is a natural isomorphism

Gr(ÂK) = gr(“A/π“A) ∼= grA/π grA.

Proof. We see that “A is an R-lattice in ÂK and that gr0 ÂK
∼= A/πA.

The filtration on A induces a filtration on A/πA and

Gr(ÂK) = gr gr0 ÂK
∼= gr(A/πA) ∼= grA/π grA

since π is a central regular element in A of degree zero. The filtration on A/πA

is complete because the filtration on A is positive by assumption. �

Thus we have a countable family of functors A 7→’An,K from deformable

R-algebras to complete doubly filtered K-algebras.

Corollary. For each n > 0, there is a natural isomorphism

Gr(’An,K)→ grA/π grA.

Proof. Apply Lemmas 3.5 and 3.7. �

3.8. Almost commutative affinoid algebras.

Definition. Let A be a complete doubly filtered K-algebra. We say

that A is an almost commutative affinoid K-algebra if its slice is an almost

commutative k-algebra.

Almost commutative affinoid K-algebras are always Noetherian by [56,

Prop. II.2.2.1].

Proposition. Let A be an almost commutative deformable R-algebra.

Then ’An,K is an almost commutative affinoid K-algebra for all n > 0.

Proof. ’An,K is a complete doubly filtered K-algebra by Lemma 3.7, and

the filtration on its slice gr0
’An,K is positive by construction. Since Gr(’An,K) ∼=

grA/π grA by Corollary 3.7, Gr(’An,K) is a finitely generated commutative k-

algebra, and hence gr0A is an almost commutative k-algebra. �

We thus obtain a family of almost commutative affinoid K-algebras ’An,K
whenever we have an almost commutative deformable R-algebra A; see Sec-

tion 3.4 for a list of examples. Note that in Example 3.4(a), the completionŸ�O(X)n,K of the commutative R-algebra O(X) is an affinoid K-algebra in the

sense of [19], and it can be viewed as the ring of rigid analytic functions on an

affinoid variety Xn,K . This justifies our terminology.
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We note in passing that Soibelman’s quantum affinoid algebras K{T}q,r
appearing in [76] and [75] are examples of almost commutative affinoid K-alge-

bras not of the form ’An,K for some almost commutative R-algebra A, provided

that |q − 1| < 1.

3.9. Base change. Let v be the normalised discrete valuation on K, and

let K ′ be a field extension of K that is complete with respect to a normalised

discrete valuation v′. Recall that K ′/K is said to be finitely ramified if v′|K =

ev for some integer e > 0; in this case e := v′(π) is called the ramification

index of K ′/K. Let R′ be the valuation ring of v′, and let π′ be a uniformizer

of R′. Then the ideal πR′ is generated by π′e.

Lemma. Let A be a deformable R-algebra, and let K ′ be a complete finitely

ramified field extension of K .

(a) There is a natural filtration on A′ := R′⊗RA such that A′ is a deformable

R′-algebra.

(b) R′ ⊗R An = (A′)en.

(c) If [K ′ : K] < ∞, then K ′ ⊗K ’An,K is isomorphic to ◊�A′en,K′ as a complete

doubly filtered K ′-algebra.

Proof. (a) We define FiA
′ = R′⊗R FiA for all i. Then grA′ is isomorphic

to R′ ⊗R grA and is therefore a flat R′-module.

(b) Since πR′ = π′eR′, we have

R′ ⊗R An =
∑
i>0

πinR′ ⊗R FiA =
∑
i>0

π′ienFiA
′ = (A′)en.

(c) Because R′ is a finitely generated R-module, R′ ⊗R ”An is isomorphic

to ⁄�R′ ⊗R An. Therefore,

K ′ ⊗K ’An,K = K ′ ⊗R′ (R′ ⊗R ”An) ∼= K ′ ⊗R′ ÷(A′)en = Ÿ�(A′)en,K′

by part (b). �

Note that if K ′ is an infinite extension of K, then K ′⊗K ’An,K will not be

π′-adically complete, in general.

Proposition. Suppose A is an almost commutative affinoid K-algebra,

M is a finitely generated A-module and K ′ is a complete, finitely ramified field

extension of K . If A′ is the almost commutative affinoid K ′-algebra obtained

by completing K ′ ⊗K A, then

dim Ch(A′ ⊗AM) = dim Ch(M).
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Proof. Let M ′ = A′ ⊗A M , and let k′ be the residue field of k. Then

R′ ⊗R F0M is an R′-lattice in M ′ such that

gr0M
′ = k′ ⊗R′ (R′ ⊗R F0M) ∼= k′ ⊗R F0M ∼= k′ ⊗k gr0M.

This isomorphism induces a good double filtration on M ′ from the good double

filtration on M , and then Gr(M ′) ∼= k′ ⊗k Gr(M). The result follows. �

4. Crystalline differential operators on homogeneous spaces

4.1. Notation. In this section, R will denote a fixed commutative Noe-

therian ground ring. Unadorned tensor products and scheme products will be

assumed to be taken over R and over Spec(R), respectively. If V is a free

A-module over a commutative ring A, then SymA V denotes the symmetric

algebra of V over A. All the results in this section are well known when R is a

field; we spell them out in this more general context for the sake of the reader

because we cannot find a suitable single reference.

Throughout Section 4, X will denote a scheme over Spec(R) that is

smooth, separated and locally of finite type. We write T for the sheaf of

sections of the tangent bundle TX.

4.2. Crystalline differential operators.

Definition. The sheaf of crystalline differential operators on X is defined

to be the enveloping algebra D of the tangent Lie algebroid T .

Thus D is a sheaf of rings, generated by the structure sheaf O and the

O-module T subject to only the relations

• f∂ = f · ∂ and ∂f − f∂ = ∂(f) for each f ∈ O and ∂ ∈ T ;

• ∂∂′ − ∂′∂ = [∂, ∂′] for ∂, ∂′ ∈ T .

Being a quotient of a universal enveloping algebra, the sheaf D comes equipped

with a natural Poincaré-Birkhoff-Witt filtration

0 ⊂ F0D ⊂ F1D ⊂ F2D ⊂ · · ·

consisting of coherent O-submodules, such that

F0D = O, F1D = O ⊕ T , and FmD = F1D · Fm−1D for m > 1.

Since X is smooth, the tangent sheaf T is locally free and the associated graded

algebra of D is isomorphic to the symmetric algebra of T :

grD :=
∞⊕
m=0

FmD
Fm−1D

∼= SymO T .

If q : T ∗X → X is the cotangent bundle of X defined by the locally free sheaf

T , then we can also identify grD with q∗OT ∗X .
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4.3. H-torsors. Let H be a flat affine algebraic group over R of finite type.

Let ‹X be a scheme equipped with an action H× ‹X → ‹X of H on ‹X. We say

that a morphism ξ : ‹X → X is an H-torsor if ξ is faithfully flat and locally of

finite type, the action of H respects ξ, and the map‹X ×H→ ‹X ×X X̃

that sends (x, h) 7→ (x, hx) is an isomorphism. An open subscheme U of X is

said to trivialise the torsor ξ if there exists an H-invariant isomorphism

U ×H
∼=−→ ξ−1(U),

where H acts on U×H by left translation on the second factor. Let SX denote

the set of open subschemes U of X such that

• U is affine,

• U trivialises ξ,

• O(U) is a finitely generated R-algebra.

Since X is separated, it is easy to see that SX is stable under intersections.

Moreover, if U ∈ SX and W is an open affine subscheme of U , then W ∈ SX .

We say that ξ is locally trivial for the Zariski topology if X can be covered by

opens in SX . Thus SX is a base for X whenever ξ is locally trivial.

Lemma. If ξ : ‹X → X is a locally trivial H-torsor, then ξ] : OX →
(ξ∗OX̃)H is an isomorphism.

Proof. This is a local problem on X, so we may assume that X is affine

and ξ : ‹X = X ×H→ X is the projection onto the first factor. Since O(X) is

a flat R-module, it is a direct limit of free R-modules. Now

(ξ∗OX̃)H(X) = O(X ×H)H = (O(X)⊗O(H))H = O(X)

since rational cohomology commutes with direct limits by [49, Lemma I.4.17].

�

4.4. The enhanced cotangent bundle. Let ξ : ‹X → X be an H-torsor. The

action of H on ‹X induces a rational action of H on O(V ) for any H-stable

open subscheme V ⊆ ‹X and therefore induces an action of H on T
X̃

as follows:

(h · ∂)(f) = h · ∂(h−1 · f)

whenever ∂ ∈ T
X̃
, f ∈ O and h ∈ H. In this way we obtain the sheaf of

enhanced vector fields on X: ‹T := (ξ∗TX̃)H.

We can differentiate the H-action on ‹X to obtain an R-linear Lie homomor-

phism

j : h→ T
X̃
,
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where h is the Lie algebra of H. Now suppose that ξ is locally trivial, and

let τ ∈ ‹T (U) for some open subscheme U ⊆ X. Then τ is an H-invariant

vector field on ξ−1(U) so, in particular, it is an H-linear endomorphism of

O(ξ−1(U)). Hence it preserves O(ξ−1(U))H and by Lemma 4.3 it induces a

vector field σ(τ) ∈ T (U). This defines a map of O-modules

σ : ‹T −→ T ,
which is also known as the anchor map of the Lie algebroid ‹T . It is easy to

see that the anchor map fits into a complex of O-modules

(1) 0→ h⊗O j⊗1−→ ‹T σ−→ T → 0,

which is functorial in ‹X.

Lemma. The restriction of (1) to any U ∈ SX is split exact. If ξ is locally

trivial, then (1) is exact and ‹T is locally free.

Proof. We have T (U × H) = (T (U)⊗O(H)) ⊕ (O(U)⊗ T (H)) . Since

T (U) is a locally free O(U)-module and O(U) is a flat R-module, T (U) is a

flat R-module and hence a direct limit of free R-modules. Therefore,

(T (U)⊗O(H))H = T (U)⊗O(H)H = T (U)

again by [49, Lemma I.4.17]. Now T (H)H = j(h) so

T (U ×H)H = T (U)⊕ (O(U)⊗ j(h)) .

Let U ×H
∼=−→ ξ−1(U) be an H-invariant isomorphism. Then‹T (U) = T (ξ−1(U))H ∼= T (U ×H)H = T (U)⊕ (O(U)⊗ j(h))

and the first part follows because U is affine and every term in (1) is a quasi-

coherentO-module. The second part follows from the first and the functoriality

of (1). �

We call the vector bundle τ : flT ∗X → X associated to the locally free

sheaf ‹T the enhanced cotangent bundle of X. It can in fact be shown that

the enhanced cotangent bundle flT ∗X is isomorphic to the quotient scheme

(T ∗ ‹X)/H.

4.5. Lemma. The natural map U(h) −→ Γ(H,D)H is an isomorphism.

Proof. Since H is affine and Noetherian, we can find isomorphisms

gr Γ(H,D) ∼= Γ(H, grD) ∼= Γ(H, SymO T ) ∼= SymO(H) T (H) ∼= O(H)⊗ S(h)

of commutative graded R-algebras. Since S(h) is a flat R-module, taking

H-invariants and applying [49, Lemma I.4.17] shows that the natural map

S(h)→ (gr Γ(H,D))H is an isomorphism. This map factors as follows:

S(h) = grU(h)→ gr(Γ(H,D)H) ↪→ (gr Γ(H,D))H,
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where the second arrow is injective since taking H-invariants is always left

exact. It follows that both arrows are isomorphisms, and U(h)→ Γ(H,D)H is

an isomorphism as claimed. �

4.6. Relative enveloping algebras. Given an H-torsor ξ : ‹X → X, ξ∗DX̃ is

a sheaf of algebras on X with an H-action. Following [18, p. 180], we define

the relative enveloping algebra of the torsor to be the sheaf of H-invariants of

ξ∗DX̃ : ‹D := (ξ∗DX̃)H.

This sheaf carries a natural filtration

Fm‹D := (ξ∗FmDX̃)H

induced by the filtration on D
X̃

by order of differential operators.

Proposition. There is an isomorphism of sheaves of filtered R-algebras

D|U ⊗ U(h)
∼=−→ ‹D|U

for any U ∈ SX . If ξ is locally trivial, then there is an isomorphism

τ∗OfiT ∗X = SymO
‹T ∼=−→ gr ‹D

of sheaves of graded R-algebras.

Proof. Let U ∈ SX , and let U × H
∼=−→ ξ−1(U) be a trivialisation of ξ

over U . Using Lemma 4.5, we obtain isomorphisms of filtered R-algebras

D(U)⊗ U(h)
∼=−→ (D(U)⊗D(H))H

∼=−→ D(U ×H)H
∼=−→ ‹D(U),

which are compatible with restrictions to Zariski open subschemes V contained

in U . Thus we obtain an isomorphism of sheaves of filtered R-algebras

η : D|U ⊗ U(h)
∼=−→ ‹D|U .

Now the natural inclusion T
X̃
→ F1DX̃ induces an O-linear morphism ‹T →

F1
‹D/F0

‹D and therefore a morphism of graded O-algebras

α : SymO
‹T → gr ‹D.

On the other hand, Lemma 4.4 gives us an isomorphism of O|U -modules

θ : T|U ⊕ O|U ⊗ h
∼=−→ ‹T|U ,
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and these maps fit together into the commutative diagram

Γ(U,SymO
‹T )

α(U)
// Γ(U, gr ‹D)

SymO(U)
‹T (U)

OO

gr ‹D(U)

OO

SymO(U)(T (U)⊕O(U)⊗ h)

Sym θ(U)

OO

gr(D(U)⊗ U(h))

gr η(U)

OO

SymO(U) T (U) ⊗ S(h) //

OO

grD(U) ⊗ grU(h).

OO

The top two vertical maps are isomorphisms because U is affine and Noether-

ian, and the bottom horizontal map is an isomorphism since grD ∼= SymO T .

The remaining vertical maps are isomorphisms by functoriality, and therefore

α(U) is an isomorphism for any U ∈ SX . Since ξ is locally trivial, it follows

that α is an isomorphism.

The equality τ∗OfiT ∗X = SymO
‹T follows from the definition of the en-

hanced cotangent bundle τ : flT ∗X → X. �

Note that even if ξ is locally trivial, the sheaf ‹D will in general not be

isomorphic to D⊗U(h) since the torsor ξ will not in general be globally trivial.

Corollary. Let U ∈ SX . Then

(a) gr ‹D(U) ∼= SymO(U)
‹T (U), and

(b) ‹D(U) is an almost commutative R-algebra.

Proof. (a) This follows from the proof of the proposition.

(b) Since H is of finite type, its Lie algebra h has finite rank over R, so‹T (U) is a finitely generated projective O(U)-module by Lemma 4.4. Hence

gr ‹D(U) is a finitely generated commutative O(U)-algebra. By definition of

SX , O(U) is a finitely generated R-algebra, and it now follows from part (a)

that gr ‹D(U) is a finitely generated commutative R-algebra. �

4.7. Algebraic groups and homogeneous spaces. Let G be a connected,

split reductive, affine algebraic group scheme over R. It is known that G is

flat over R [49, §II.1.1]. Let B be a closed and flat Borel R-subgroup scheme,

let N be its unipotent radical, and let H := B/N be the abstract Cartan group.

Let B̃ denote the homogeneous space G/N. Because [B,B] is contained

in N,

bN · gN := gbN, b ∈ B, g ∈ G
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defines an action of H on B̃, which commutes with the natural action of G

on B̃.

Lemma. (a) B̃ and B := G/B are smooth separated schemes over R.

(b) The action of H on B̃ induces an isomorphism B̃/H ∼= B.

(c) The natural projection ξ : B̃ → B is a locally trivial H-torsor.

Proof. Because G, B and N can be defined over Z, we may assume that

R = Z.

(a) It follows from [49, §I.5.6(9)] that B and B̃ are schemes; since they

are homogeneous spaces under the action of G, it follows that they must be

smooth.

(b) This is clear, when viewed on the level of the functor of points.

(c) By [49, §II.1.10(2)], we may cover B by open subschemes Ui each

isomorphic to AdimB (the Weyl translates of the big Bruhat cell) and find

morphisms σi : Ui → G splitting the projection map G → B. Composing

these with the projection map G → B̃ gives maps σi : Ui → B̃ such that

ξ ◦σi = idUi . Now (u, bN) 7→ σi(u)bN is the required H-invariant isomorphism

Ui ×H
∼=−→ ξ−1(Ui) and we may apply [60, Prop. III.4.1]. �

We call the homogeneous spaces B = G/B and B̃ = G/N the flag variety

of G and the basic affine space of G, respectively. We will write ‹D for the

relative enveloping algebra of the H-torsor ξ : B̃ → B, and we will also write

τ : fiT ∗B → B for the structure map of the enhanced cotangent bundle of the

flag variety.

4.8. The enhanced moment map. Let g, b, n and h be the Lie algebras of

G, B, N and H, respectively. We can differentiate the natural G-action on B̃
to obtain an R-linear Lie homomorphism

ϕ : g→ TB̃.

Since the G-action commutes with the H-action on B̃, this map descends to

an R-linear Lie homomorphism ϕ : g→ ‹TB and an OB-linear morphism

ϕ : OB ⊗ g −→ ‹TB
of locally free sheaves on B, which dualizes to give a morphism of vector bundles

over B from the enhanced cotangent bundle to the trivial vector bundle of rank

dim g: fiT ∗B −→ B × g∗.

Here g∗ := Spec (SymR g) is being thought of as an R-scheme. Composing this

morphism with the projection map onto the second factor gives the enhanced

moment map

β : fiT ∗B → g∗
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of R-schemes. This morphism is also sometimes known as the Grothendieck-

Springer resolution of g∗.

Proposition. (a) The morphism ϕ : OB ⊗ g −→ ‹TB is surjective.

(b) The enhanced moment map is a projective morphism.

Proof. Since the space B̃ is homogeneous, the geometric fibres of ϕ are

surjective by [16, Prop. II.6.7]. Part (a) follows because OB ⊗ g and ‹TB are

locally free.

The dual map fiT ∗B −→ B× g∗ is a closed immersion by part (a). Part (b)

now follows because B is a projective scheme by [49, §II.1.8]. �

4.9. Quantizing the moment map. The Lie homomorphism ϕ : g → ‹T
extends to a graded R-algebra homomorphism

Sym(ϕ) : SymR g→ SymO
‹T ,

which can be viewed as the pull-back map on functions

β] : O(g∗)→ τ∗OT̃ ∗B

associated to the enhanced moment map β : fiT ∗B → g∗. It also extends to a

filtered R-algebra homomorphism

U(ϕ) : U(g)→ ‹D
encoding the action of g on B̃ by H-invariant vector fields.

Lemma. The representation U(ϕ) : U(g) → ‹D quantizes the enhanced

moment map in the sense that grU(ϕ) = Sym(ϕ).

Proof. Using Proposition 4.6 and Lemma 4.7(c), we can naturally identify

gr ‹D with SymO
‹T . The restriction of grU(ϕ) to g is the representation ϕ by

definition, so grU(ϕ) and Sym(ϕ) agree on the generators g of SymR g. The

result follows. �

In fact, U(ϕ) quantizes β in a stronger sense. There are natural Poisson

structures on both g∗ and on fiT ∗B that are induced by the noncommutative

algebras U(g) and ‹D, and the morphism Sym(ϕ) is compatible with these

structures.

4.10. The Harish-Chandra homomorphism. Since our group G is split by

assumption, we can find a Cartan subgroup T of G complementary to N in B.

Let i : T
∼=−→ H denote the natural isomorphism, and let i : t

∼=−→ h be the

induced isomorphism between the corresponding Lie algebras. The adjoint

action of T on g induces a root space decomposition

g = n⊕ t⊕ n+,
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and we will regard n, the Lie algebra of N, as being spanned by negative roots.

This decomposition induces an isomorphism of R-modules

U(g) ∼= U(n)⊗ U(t)⊗ U(n+)

and a direct sum decomposition

U(g) = U(t)⊕
Ä
nU(g) + U(g)n+

ä
.

Now the adjoint action of the group G induces a rational action of G on U(g) by

algebra automorphisms, so we may consider the subring U(g)G of G-invariants.

We call the composite of the natural inclusion of U(g)G ↪→ U(g) with the

projection U(g)� U(t) onto the first factor defined by this decomposition the

Harish-Chandra homomorphism:

φ : U(g)G −→ U(t).

Recall from Section 4.4 that the infinitesimal action of H on B̃ is denoted by

j : h→ ‹TB
and that it extends to an R-algebra homomorphism j : U(h)→ ‹D. Since H is

commutative, Proposition 4.6 shows that j is a central embedding.

Lemma. Suppose that R is an integral domain. Then there exists a com-

mutative diagram

U(g)G

��

φ // U(t)

j◦i
��

U(g)
U(ϕ)

// ‹D
of filtered rings : the restriction of U(ϕ) to U(g)G is equal to j ◦ i ◦ φ.

Proof. Since the objects in this diagram have noR-torsion by the Poincaré-

Birkhoff-Witt Theorem, we may replace R by an algebraic closure its field of

fractions. But in this case this result is well known; this was first observed

in [35, §9] for the case when the characteristic of R is zero. See [14, Lemma

3.1.5(b)] for the general case. �

5. Completions, deformations and characteristic varieties

We refer the reader to [38, §0.5.3.1] for the definition of coherent A-modules

over a sheaf A of not necessarily commutative rings over a topological space,

and we denote the abelian category of coherent A-modules by coh(A). Recall

that the sheaf A is said to be coherent if A is itself a coherent A-module.

We begin by establishing some generalities on coherent modules and I-adic

completions, following [12, §3].
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5.1. Coherently D-affine spaces. Let X be a topological space, and let D
be a coherent sheaf of rings on X.

Definition. We say that X is coherently D-acyclic if every coherent

D-moduleM is Γ(X,−)-acyclic and has the property thatM(X) is a coherent

D(X)-module.

We say that X is coherently D-affine if X is coherently D-acyclic and

every coherent D-module is generated by its global sections as a D-module.

If S is a base for X, we say that S is coherently D-acyclic, respectively

coherently D-affine, if for all U ∈ S, U is coherently D|U -acyclic, respectively

coherently D|U -affine.

A classic example of a space that is coherently D-affine is obtained by

taking X to be a smooth affine complex algebraic variety and D to be the

sheaf of differential operators on X.

The main reason for these definitions comes from the following

Proposition. Let X be coherently D-acyclic. Then ker Γ(X,−) is a

Serre subcategory of coh(D), and Γ(X,−) and D ⊗D(X) − induce mutually

inverse equivalences of abelian categories between coh(D)/ ker Γ(X,−) and the

category coh(D(X)) of coherent D(X)-modules. Moreover if X is coherently

D-affine, then ker Γ(X,−) = 0.

Proof. Let Γ := Γ(X,−), D := D(X) and Loc := D ⊗D −. Since X is

coherently D-acyclic, Γ is exact on coh(D), which implies that ker Γ is closed

under subquotients and extensions.

Now (Loc,Γ) is an adjunction between the category of all D-modules and

the category of all sheaves of D-modules. Since Loc is right exact and D
is coherent, Loc sends coh(D) to coh(D). Since X is coherently D-acyclic,

(Loc,Γ) restricts to an adjunction between coh(D) and coh(D) and Γ is exact.

By [10, Lemma 2.4] it thus suffices for the second part to prove that the counit

M
ηM−→ Γ(Loc(M)) is an isomorphism for M ∈ coh(D).

Since Loc is right exact and Γ is exact on coh(D), the composite Γ ◦ Loc

is also right exact. Since M is coherent, it has a finite presentation; because

ηD is an isomorphism by definition, the Five Lemma now implies that ηM is

also an isomorphism, as required.

The final part is immediate; if M is generated by global sections, then

Γ(M) = 0 if and only if M = 0. �

5.2. Completions. Recall from [42, §II.9] that inverse limits exist in the

category of sheaves of abelian groups over any topological space.

Definition. Suppose that D contains a constant central subsheaf Z,

which contains an ideal I. We define “D := lim
←−

D/InD to be the I-adic com-

pletion of D .
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This is a sheaf of Z-algebras on X and Γ(U, “D) = lim
←−

Γ(U,D/InD) for any

open subset U of X. We will use the following elementary result repeatedly.

Lemma. Suppose that Γ(X,−) is exact on coh(D). Then for any coherent

D-module M and any ideal J in Z such that J · D(X) is finitely generated,

there is a natural isomorphism of D(X)-modules

(M/JM)(X) ∼=M(X)/JM(X).

Proof. Choose z1, . . . , zm ∈ J that generate J · D(X). Since Γ(X,−) is

exact on coh(D) by assumption and Z is central in D , the exact sequence

Mm
(z1,...,zm)

−−−−→ M→M/JM→ 0

in coh(D) gives rise to the exact sequence

M(X)m
(z1,...,zm)

−−−−→ M(X)→ (M/JM)(X)→ 0,

and the result follows. �

If D(X) is left Noetherian, then In · D(X) is finitely generated for all

n > 1. Lemma 5.2 now implies that “D(X) is just the I-adic completion of

D(X): “D(X) = lim
←−

(D/InD)(X) ∼= lim
←−

D(X)/InD(X).

Definition. If S is a base for X, we say that D is Noetherian on S if

D(U) is left Noetherian for all U ∈ S.

5.3. The functor M 7→M∆. Throughout Sections 5.3–5.4 we fix a base S
for X such that X ∈ S, and we assume that

• D is Noetherian on S,

• S is coherently D-acyclic, and

• “D is coherent.

Let D := D(X). We define a functor M 7→ M∆ from “D := ÷D(X)-modules to

sheaves of “D-modules by the formula

M∆ := lim
←−

D ⊗DM/InM.

Since we are assuming that X ∈ S, the algebra D is left Noetherian so

coh(D) is simply the category of all finitely generated D-modules.

Proposition. (a) The functor M 7→M∆ is exact on coh(D).

(b) “D∆ = “D .

(c) M∆ is a coherent “D-module whenever M is a finitely presented “D-module.

(d) If u : “Dr → “Ds is a map of “D-modules, then coker(u) ∼= M∆ for some

finitely presented “D-module M .
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Proof. (a) Let 0 → A → B → C → 0 be an exact sequence of coherent

D-modules. Since X is coherently D-affine, D ⊗D − is exact on coh(D) by

Proposition 5.1. Therefore the sequence of towers of D-modules

0→
ï
D ⊗D

A+ InB

InB

ò
n
→
ï
D ⊗D

B

InB

ò
n
→
ï
D ⊗D

C

InC

ò
n
→ 0

is exact. The maps in the left-most nonzero tower are surjective, so it trivially

satisfies the Mittag-Leffler condition. Taking inverse limits gives a short exact

sequence

0→ lim
←−

D ⊗D
A+ InB

InB
→ B∆ → C∆ → 0.

Since D is left Noetherian, by the Artin-Rees Lemma [12, §3.2.3(i)] we can

find an integer n0 such that InA ⊆ A ∩ InB ⊆ In−n0A for all n > n0, so the

natural map

A∆ = lim
←−

D ⊗D
A

InA
−→ lim

←−
D ⊗D

A+ InB

InB

is an isomorphism, and the result follows.

(b) “D∆ = lim
←−

D ⊗D D̂

InD̂
= lim
←−

D ⊗D D
InD
∼= lim
←−

D/InD = “D .

(c) Since M∆ is a “D-module, there is a natural map “D ⊗
D̂
M −→M∆ of“D-modules, which is an isomorphism when M = “Dr by part (b). Since M is

finitely presented, using parts (a) and (b) together with the Five Lemma shows

that “D ⊗
D̂
M is in fact naturally isomorphic to M∆. Since “D is coherent by

assumption, it also follows that M∆ is coherent.

(d) Let M be the cokernel of the map Γ(X,u) : Γ(X, “Dr) → Γ(X, “Ds).

Then “Dr Γ(X,u)−→ “Ds → M → 0 is exact. Applying the exact functor (−)∆ to

this presentation of M produces the exact sequence “Dr u−→ “Ds → M∆ → 0,

so coker(u) ∼= M∆, as required. �

5.4. Lemma. Let M be a coherent “D-module. Then the natural map

M→ lim
←−
M/InM is an isomorphism.

Proof. Since M is coherent, by shrinking X if necessary we may assume

that M is finitely presented: M = coker(u) for some morphism u : “Dr → “Ds

of “D-modules. We may then assume thatM = M∆ for some finitely presented“D := “D(X)-module M by Proposition 5.3(d). Let z1, . . . , zm generate In so

that we have the exact sequence of finitely generated “D-modules

Mm
(z1,...,zm)

−−−−→ M →M/InM → 0.

By Proposition 5.3(a), the sequence

(M∆)m
(z1,...,zm)

−−−−→ M∆ → (M/InM)∆ → 0
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is exact, so

M/InM = M∆/InM∆ ∼= (M/InM)∆ ∼= D ⊗D
M

InM

for any n > 1. Hence M = M∆ = lim
←−

D ⊗DM/InM ∼= lim
←−
M/InM. �

5.5. Theorem. Suppose D is Noetherian on S , S is coherently D-acyclic

and “D is coherent. Then S is also coherently “D-acyclic. If moreover S is

coherently D-affine, then it is also coherently “D-affine.

Proof. For the first part, it suffices to show that if X ∈ S, then X is

coherently “D-acyclic.

LetM be a coherent “D-module. For each n > 1, letMn := Γ(X,M/InM)

and Dn := Γ(X,D/InD). Define M := Γ(X,M), D := Γ(X,D), and note that

Dn
∼= D/InD by Lemma 5.2.

By Lemma 5.4, M is isomorphic to lim
←−
M/InM. Each M/InM is a

coherent “D-module killed by In and is therefore a coherent D-module. So

H i(X,M/InM) = 0 for all n > 1 and all i > 0, and Mn is a finitely generated

D-module for all n > 1, because X is coherently D-acyclic. Next, the short

exact sequence

0→ InM/In+1M→M/In+1M→M/InM→ 0

consists of coherent D-modules; since H1(X, InM/In+1M) = 0, each map in

the tower · · · → Mn+1 → Mn → · · · → M1 is surjective. Hence this tower

satisfies the Mittag-Leffler condition, and it follows from [40, Prop. 0.13.3.1]

that H i(X,M) = 0 for all i > 0. Thus M is Γ-acyclic.

Now, the algebra “D := “D(X) is isomorphic to the I-adic completion

of D. Since D is left Noetherian by assumption, “D is also left Noetherian by

[12, §3.2.3(vi)]. Thus, to show that M is a coherent “D-module, it is enough

to prove that M is finitely generated. Since Γ(X,−) is exact on coh(D) by

assumption and since

M/InM
In−1 · (M/InM)

∼=
M

In−1M
,

Lemma 5.2 implies that

Mn/I
n−1Mn

∼= Mn−1

for all n > 1. Since M1 is a finitely generated D1-module, M = M(X) =

lim
←−

Mn is a finitely generated “D := “D(X)-module by [12, Lemma 3.2.2]. Thus

S is coherently “D-acyclic.

For the last part, it suffices to show that M is generated by global sec-

tions. By Proposition 5.1, M/InM ∼= D ⊗D Mn, and Mn
∼= M/InM by
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[12, Lemma 3.2.2]. So Lemma 5.4 implies that

M∼= lim
←−
M/InM∼= lim

←−
D ⊗DM/InM = M∆.

Choose a presentation F1 → F0 →M → 0 of M consisting of finitely generated

free “D-modules. It induces an exact sequence F∆
1 → F∆

0 → M∆ → 0 of

coherent “D-modules by Proposition 5.3(a) and a commutative diagram“D ⊗
D̂
F1

//

��

“D ⊗
D̂
F0

//

��

“D ⊗
D̂
M //

��

0

F∆
1

// F∆
0

// M∆ // 0

with exact rows. Proposition 5.3(b) implies that the two vertical arrows on

the left are isomorphisms, so the map“D ⊗
D̂
M

∼=−→M∆

is an isomorphism by the Five Lemma andM is generated by global sections.

�

5.6. Notation. Now we return to the setting and notation of Section 4.1,

and we make the additional hypothesis that R is a complete discrete valuation

ring with uniformizer π, residue field k and field of fractions K. We will

denote the special and generic fibres of X by Xk := X × Spec(k) and XK :=

X × Spec(K) respectively. We also suppose that we are given a locally trivial

H-torsor ξ : ‹X → X over X for some flat affine algebraic group H of finite type

over R, as in Section 4.3. Let S := SX be the base for X consisting of open

affine subschemes U of X of finite type that trivialise ξ. We fix a deformation

parameter n > 0.

5.7. The sheaf ‹Dn. Recall the category of deformable R-algebras from

Section 3.5, and let ‹D denote the relative enveloping algebra of the H-torsor ξ.

Lemma. (a) The category of deformable R-algebras has all limits, and the

forgetful functor to R-algebras preserves limits.

(b) ‹D is a sheaf of deformable R-algebras.

Proof. (a) Let (Ai)i∈I be an inverse system of deformable R-algebras with

connecting homomorphisms fji : Aj → Ai for j > i, and let

A := lim
←−

Ai = {(ai) ∈
∏
i∈I

Ai | fji(aj) = ai for all j > i}

be the inverse limit. Equip
∏
i∈I

Ai with the product filtration and A ⊆ ∏
i∈I

Ai

with the subspace filtration. Then A is a positively filtered R-algebra, and
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grA is an R-submodule of the direct product of the grAi. Since R is a discrete

valuation ring, it follows that grA is flat over R.

(b) Certainly ‹D is a sheaf of filtered R-algebras. Let U ∈ S; then gr(‹D(U))

is a locally free O(U)-module by Corollary 4.6 and hence is a flat R-algebra.

Thus ‹D(U) is a deformable R-algebra for any U ∈ S. Now S is a base for X,

so ‹D(U) is a deformable R-algebra for any open U ⊆ X by part (a). �

Definition. Let ‹Dn be the sheafification of the presheaf obtained by

postcomposing ‹D with the deformation functor A→ An from Section 3.5.

Note that the lemma implies that ‹Dn is, in fact, a sheaf of deformable

R-algebras. It can be shown that the deformation functors do not commute

with arbitrary finite inverse limits; this explains the need to sheafify. However

it is still possible to compute local sections of ‹Dn over U ∈ S as follows.

Proposition. (a) ‹Dn(U) ∼= ‹D(U)n for all U ∈ S .

(b) ‹Dn(U) is almost commutative for all U ∈ S .

(c) There is an isomorphism of sheaves τ∗OfiT ∗X = SymO
‹T ∼=−→ gr ‹Dn.

(d) The sheaf ‹Dn is coherent.

Proof. (a) By [38, §0.3.2.2], it is enough to show that the sequence

0→ ‹D(U)n →
m⊕
i=1

‹D(Ui)n −→
⊕
i<j

‹D(Ui ∩ Uj)n

of deformable R-algebras is exact whenever U = U1 ∪ · · · ∪ Um is a cover of

U by some other Ui ∈ S. By Lemma 3.5 and Proposition 4.6, the associated

graded of this sequence is isomorphic to

0→ SymO(U)
‹T (U)→

m⊕
i=1

SymO(Ui)
‹T (Ui) −→

⊕
i<j

SymO(Ui∩Uj)
‹T (Ui ∩ Uj),

and this is exact since SymO
‹T is a sheaf on X. Hence the first sequence is

exact.

(b) This follows from part (a), Lemma 3.5 and Corollary 4.6.

(c) By Lemma 3.5, for every open subscheme U of X, there is an iso-

morphism of graded R-algebras gr(‹D(U)) → gr(‹D(U)n) that is natural in U .

After applying sheafification, this induces a morphism of sheaves of graded

R-algebras

γ : gr ‹D → gr ‹Dn.
The sections of this morphism over U ∈ S can be identified with gr(‹D(U))→
gr(‹D(U)n) because U is affine and because ‹Dn(U) = ‹D(U)n by part (a). Thus

γ(U) is an isomorphism for all U ∈ S, so γ is an isomorphism since S is a base
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for X. Now precompose γ with the isomorphism α : SymO
‹T ∼=−→ gr ‹D given

by Proposition 4.6.

(d) Let V ⊆ U in S; by [12, Prop. 3.1.1] it will be enough to show that‹Dn(U) is Noetherian and that the restriction morphism ‹Dn(U) → ‹Dn(V ) is

flat. The first part follows from (a) and (b), and for the second, it is enough

to show that the morphism gr ‹Dn(U) → gr ‹Dn(V ) is flat by [70, Prop. 1.2].

But by part (c), this morphism is just the restriction map of regular functions

O(flT ∗U)→ O(flT ∗V ) corresponding to the Zariski open immersionflT ∗V →flT ∗U
and is therefore flat. �

5.8. Good filtrations. LetM be a coherent ‹Dn-module. A filtration F•M
ofM is a sequence 0 ⊆ F0M⊆ F1M⊆ · · · of subsheaves of abelian groups of

M such that Fi‹Dn · FjM⊆ Fi+jM for all i, j > 0. We say that this filtration

is good if the associated graded sheaf grM :=
⊕

i>0 FiM/Fi−1M is a coherent

gr ‹Dn-module.

Lemma. Let M be a coherent ‹Dn-module.

(a) M is quasi-coherent as an O-module.

(b) There exists an O-coherent submodule F of M such that M = ‹Dn · F .

(c) There exists at least one good filtration F•M on M.

(d) If F•M is a good filtration on M, then each FiM is a coherent O-module.

Proof. (a) By Proposition 5.7(c), each graded piece gri
‹Dn of ‹Dn is a co-

herent O-module. Since coherent O-modules are closed under extensions by

[42, Prop. II.5.7], each filtered part Fi‹Dn is a coherent O-module. Now ‹Dn is

the direct limit of the Fi‹Dn and therefore a quasi-coherent O-module. SinceM
is a coherent ‹Dn-module,M is locally finitely generated over ‹Dn and therefore

quasi-coherent as an O-module.

(b) By [38, Cor. I.9.4.9], M is the direct limit of its O-coherent submod-

ules. SinceM is coherent as a ‹Dn-module, we can find a coherent O-submodule

F of M such that M = ‹Dn · F .

(c) Setting FiM := Fi‹Dn · F defines a good filtration on M.

(d) This is a local statement, so we may assume that grM is finitely gen-

erated over gr ‹Dn. But then each griM is a quotient of a direct sum of finitely

many copies of gri
‹Dn, which is a coherent O-module by Proposition 5.7(c), so

each griM is coherent over O. The result follows since coherent O-modules

are stable under extensions. �

5.9. The π-adic completion
”‹Dn. We now apply the theory from Sections 5.1–

5.5 by taking D to be the sheaf ‹Dn constructed in Section 5.7 and taking I to

be the ideal generated by π.

Definition. Let
”‹Dn := lim

←−
‹Dn/πa‹Dn be the π-adic completion of ‹Dn.
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This is a sheaf of R-algebras on X and Γ(U,
”‹Dn) = lim

←−
Γ(U, ‹Dn/πa‹Dn) for

any open subscheme U of X. The restriction of
”‹Dn to the generic fibre XK is

clearly zero, so
”‹Dn is only supported on the special fibre Xk of X. Because Xk

is closed in X, without further mention we identify sheaves on X supported

only on Xk with their sheaf-theoretic pullbacks to the special fibre in what

follows.

Proposition. Let U ∈ S .

(a) (‹Dn/πa‹Dn)(U) ∼= ‹Dn(U)/πa‹Dn(U) for all a > 1.

(b)
”‹Dn(U) ∼= ◊�‹Dn(U) is Noetherian.

(c) The sheaf
”‹Dn is coherent.

Proof. (a) ‹Dn is a quasi-coherent O-module by Proposition 5.7(d) and

Lemma 5.8(a). Since U is affine and Noetherian, H1(U, ‹Dn) = 0, and the

result follows.

(b) Part (a) gives that
”‹Dn(U) ∼= ◊�‹Dn(U). But ‹Dn(U) = ‹D(U)n is Noether-

ian by Proposition 5.7(a) and (b), so
◊�‹Dn(U) is Noetherian by [12, §3.2.3(vi)].

(c) Let V ⊆ U be in S; by part (b) and [12, Prop. 3.1.1] it will be enough

to show that the restriction morphism
”‹Dn(U) → ”‹Dn(V ) is flat. By applying

[70, Prop. 1.2] twice, it is enough to show that

gr
Ä‹D(U)n/π‹D(U)n

ä
→ gr

Ä‹D(V )n/π‹D(V )n
ä

is flat. By Lemma 3.7 and Proposition 4.6, this morphism can be identified

with O(flT ∗U)⊗R k −→ O(flT ∗V )⊗R k, which is flat because it is the pull-back

of functions along the Zariski open immersion flT ∗V ×X Xk →flT ∗U ×X Xk. �

Corollary. S is coherently
”‹Dn-affine.

Proof. It is enough to show that X is coherently
”‹Dn-affine whenever X∈S,

so let us assume that this is the case.

Since ‹Dn is Noetherian on S and coherent by Proposition 5.7, and
”‹Dn is

coherent by part (c) of the proposition, by Theorem 5.5 it suffices to show that

X is coherently ‹Dn-affine, so let M be a coherent ‹Dn-module.

Since X is affine and Noetherian, andM is quasi-coherent as an O-module

by Lemma 5.8(a), H i(X,M) = 0 for all i > 0.

Next, choose a good filtration onM using Lemma 5.8(c). Then Γ(X,grM)

is a finitely generated Γ(X, gr ‹Dn)-module by [42, Th. II.5.4]. Since gr Γ(X,M)

is a Γ(X,grM)-submodule and Γ(X, gr ‹Dn) is Noetherian by Proposition 5.7(c),

it follows that M(X) is a finitely generated ‹Dn(X)-module.
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Finally, since M is a quasi-coherent O-module and X is affine, M is

generated by global sections as an O-module and therefore as a ‹Dn-module. �

5.10. The sheaf
’‹Dn,K . Recall the category of complete doubly filtered

K-algebras from Section 3.1.

Lemma. The category of complete doubly filtered K-algebras with posi-

tively filtered slices has finite limits, and the forgetful functor to K-algebras

preserves finite limits.

Proof. By [58, Th. V.2.1] it suffices to show that this category has fi-

nite products and equalisers. Let A1, . . . , An be complete doubly filtered K-

algebras, and let A :=
∏
Ai be their product as K-algebras. It is easy to

check that F0A :=
∏
F0Ai is a π-adically complete R-lattice in A and that

gr0A =
∏

gr0Ai in the category of k-algebras. By giving gr0A the product fil-

tration induced from the gr0Ai, we can make A into a complete doubly filtered

K-algebra that satisfies the universal property for products.

Now let A and B be complete doubly filtered K-algebras with positively

filtered slices, and let f, g : A→ B be two morphisms. Let C = {a ∈ A | f(a) =

g(a)} be their equaliser in the category of K-algebras; then F0C := C ∩F0A is

a lattice in C and it is π-adically complete being a closed R-submodule of F0A.

Since B is π-torsion-free, we may identify gr0C with a k-subalgebra of gr0A.

When we equip gr0C with the subspace filtration from gr0A, C becomes a

complete doubly filtered K-algebra with positive slice since the filtration on

gr0A is positive by assumption. It is straightforward to verify that C satisfies

the universal property for equalisers. �

Definition. The sheaf of completed, deformed, crystalline differential op-

erators of the torsor ξ : ‹X → X is’‹Dn,K :=
”‹Dn ⊗R K.

Since K is a flat R-module, for any open subset U of X, we have

Γ(U,
’‹Dn,K) = Γ(U,

”‹Dn)⊗R K.

Proposition. (a) If U ∈ S , then
’‹Dn,K(U) is an almost commutative

affinoid K-algebra and Gr(
’‹Dn,K(U)) ∼= O(flT ∗Uk).

(b)
’‹Dn,K is a sheaf of complete doubly filtered K-algebras whenever X is quasi-

compact.

(c) The sheaf
’‹Dn,K is coherent.

(d)
”‹Dn/π”‹Dn is isomorphic to ‹Dn/π‹Dn.
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Proof. (a) Since U ∈ S, ‹Dn(U) is an almost commutative R-algebra by

Proposition 5.7(b), and we saw in Section 5.7 that ‹Dn(U) is a deformable

R-algebra. Hence,’‹Dn,K(U) =
”‹Dn(U)⊗R K ∼=

◊�‹Dn(U)⊗R K =
◊�‹D(U)n ⊗R K

by Propositions 5.9(b) and 5.7(a), and this is an almost commutative affinoid

K-algebra by Proposition 3.8. The second statement follows from Corollar-

ies 3.7 and 4.6(a).

(b) Since X is quasi-compact and locally Noetherian by assumption, every

open subset U of X is the finite union U = U1∪· · ·∪Um of some Ui ∈ S. Since’‹Dn,K is a sheaf,
’‹Dn,K(U) is the inverse limit of the

’‹Dn,K(Ui) that are almost

commutative affinoid K-algebras by part (a). Now apply the lemma.

(c) This follows from Proposition 5.9(c).

(d) The natural map ‹Dn−→”‹Dn induces a diagram of sheaves of R-algebras

0 // ‹Dn π //

��

‹Dn //

��

‹Dn/π‹Dn //

��

0

0 // ”‹Dn π
// ”‹Dn // ”‹Dn/π”‹Dn // 0

with exact rows. By Proposition 5.9(a) and Corollary 5.9, the rows of the

diagram

0 // ‹Dn(U)
π //

��

‹Dn(U) //

��

(‹Dn/π‹Dn)(U) //

��

0

0 // ”‹Dn(U) π
// ”‹Dn(U)

//
(
”‹Dn/π”‹Dn)(U)

// 0

are still exact for any U ∈ S. Since
”‹Dn(U) is the π-adic completion of ‹Dn(U)

by Proposition 5.9(b), the third vertical map in this diagram is an isomorphism

for any U ∈ S, and the result follows. �

5.11. Modules over
’‹Dn,K and double filtrations. Whenever N is a sheaf

of R-modules on X, let NK := N ⊗R K denote the corresponding sheaf of

K-vector spaces. Let M be a sheaf of K-vector spaces over X, and let F0M
be a sheaf of R-submodules of M. We say that F0M is an R-lattice in M if

• the natural map (F0M)K →M is an isomorphism, and

• ⋂∞a=0 π
aF0M = 0.

If F0M is an R-lattice in M, we call gr0M := F0M/πF0M the slice of M;

this is a sheaf of k-vector spaces. For example,
”‹Dn is an R-lattice in

’‹Dn,K with

slice isomorphic to ‹Dn/π‹Dn by Proposition 5.10(d).
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Now suppose that M is a sheaf of
’‹Dn,K-modules. A double filtration on

M consists of an R-lattice F0M inM that is a
”‹Dn-submodule, and a positive

Z-filtration F• gr0M on gr0M compatible with the filtration on ‹Dn. We call

GrM := gr(gr0M)

the associated graded sheaf of M with respect to this double filtration.

Note that
’‹Dn,K(U) is a doubly filtered K-algebra by Proposition 5.10(b)

for any open U ⊆ X, and recall the notion of double filtrations on modules

over such algebras from Section 3.2.

Lemma. Let (F0M, F• gr0M) be a double filtration on a
’‹Dn,K-moduleM,

and let U ⊆ X be an open subscheme.

(a) ((F0M)(U), (F• gr0M)(U)) is a double filtration on M :=M(U).

(b) There is a natural embedding Gr(M) ↪→ (GrM)(U) of Gr(
’‹Dn,K(U))-

modules.

Proof. Certainly F0M := (F0M)(U) is an R-lattice and a
”‹Dn(U)-submod-

ule in M . The short exact sequence 0→ F0M
π→ F0M→ gr0M→ 0 induces

an embedding gr0M ↪→ (gr0M)(U) of
”‹Dn(U)/π

”‹Dn(U)-modules. The sepa-

rated filtration on the sheaf gr0M induces a separated filtration on (gr0M)(U)

and hence a separated filtration on gr0M . Taking associated graded modules,

we obtain an inclusion

Gr(M) = gr gr0M ↪→ gr ((gr0M)(U))

of graded gr

Å”‹Dn(U)/π
”‹Dn(U)

ã
-modules.

Each short exact sequence 0→Fi−1(gr0M)→Fi(gr0M)→gri(gr0M)→0

of sheaves induces an embedding

gri((gr0M)(U)) ↪→ (gri(gr0M))(U).

Putting these together gives the required inclusion Gr(M) ↪→ (Gr(M))(U) of

graded Gr(
’‹Dn,K(U))-modules. �

5.12. Good double filtrations.

Definition. Let M be a sheaf of
’‹Dn,K-modules. We say that a double

filtration (F0M, F• gr0M) onM is good if F0M is a coherent
”‹Dn-module and

F• gr0M is a good filtration on gr0M as a ‹Dn-module.

Proposition. Let M be a coherent
’‹Dn,K-module.

(a) M has at least one good double filtration (F0M, F• gr0M).



REPRESENTATIONS OF COMPACT p-ADIC ANALYTIC GROUPS 493

(b) If (F0M, F• gr0M) is a good double filtration on M, then for any U ∈ S ,

((F0M)(U), (F• gr0M)(U)) is a good double filtration on M(U) and the

map

Gr(M(U)) ↪→ (GrM)(U)

appearing in Lemma 5.11(b) is an isomorphism.

Proof. (a) By the proof of [12, Lemma 3.4.3], we can find a coherent”‹Dn-submodule N of M such that the natural map NK → M is an isomor-

phism. Since N ∼= lim
←−
N/πnN by Lemma 5.4, N is an R-lattice in M. Now

N/πN is a coherent
”‹Dn/π”‹Dn-module and ‹Dn surjects onto

”‹Dn/π”‹Dn by Propo-

sition 5.10(d), so N/πN is also a coherent ‹Dn-module. We can therefore find a

good filtration F•(N/πN ) on N/πN by Lemma 5.8(c). Thus (N , F•(N/πN ))

is a good double filtration on M.

(b) Since F0M is a coherent
”‹Dn-module, H1(U,F0M) = 0 by Corol-

lary 5.9, so the inclusion gr0(M(U)) ↪→ (gr0M)(U) is an isomorphism. The

cokernel of the inclusion

gri((gr0M)(U)) ↪→ (gri(gr0M))(U)

is precisely H1(U,Fi−1 gr0M), which is zero because U is affine and Noetherian

and because Fi−1 gr0M is a coherent O-module by Lemma 5.8(d). Therefore

Gr(M(U)) −→ (GrM)(U)

is an isomorphism. Now GrM is a coherent gr ‹Dn-module by assumption and

U is affine and Noetherian, so (GrM)(U) is a finitely generated (gr ‹Dn)(U)-

module. But gr ‹Dn ∼= τ∗OfiT ∗X by Proposition 5.7(c) and (GrM)(U) is killed

by π, so Gr(M(U)) ∼= (GrM)(U) is a finitely generated Gr(
’‹Dn,K(U))-module

by Proposition 5.10(a). �

5.13. Theorem. S is coherently
’‹Dn,K-affine.

Proof. Since
’‹Dn,K is coherent by Proposition 5.10(d), once again it suffices

to consider the case where X ∈ S and show that X is coherently
’‹Dn,K-affine.

By Proposition 5.12(a),M has an R-lattice F0M that is coherent as a
”‹Dn-

module. By Corollary 5.9, F0M is Γ-acyclic, F0M(X) is finitely generated as

a
”‹Dn(X)-module and F0M is generated by global sections. The result follows

easily from this together with the fact that H i(X,M) ∼= H i(X,F0M)⊗RK for

all i > 0. This latter is true because X is a Noetherian space, so cohomology

commutes with direct limits by [42, Prop. III.2.9]. �
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5.14. Characteristic varieties. LetM be a coherent
’‹Dn,K-module. Pick a

good double filtration onM using Proposition 5.12; then Gr(M) = gr(gr0M)

is a coherent gr ‹Dn-module and gr ‹Dn ∼= τ∗OfiT ∗X by Proposition 5.7(c).

Definition. The characteristic variety of M is the support of Gr(M)

regarded as a sheaf on the enhanced cotangent bundle flT ∗X. More precisely,

writing ‚�Gr(M) for the OfiT ∗X -module OfiT ∗X⊗τ−1τ∗O
T̃∗X

τ−1(Gr(M)), we define

Ch(M) := Supp(‚�Gr(M)) ⊆flT ∗X.
Since ‚�Gr(M) is a coherent sheaf on T ∗X, Ch(M) is closed. Ch(M) is

actually contained in the special fibre ‡T ∗Xk of the enhanced cotangent bundle

because Gr(M) is annihilated by π.

Lemma. LetM be a coherent
’‹Dn,K-module, and let U ∈ S . Then Ch(M)

∩flT ∗U = Ch(M(U)).

Proof. By Proposition 5.12(b), the good double filtration onM induces a

good double filtration on M(U) such that GrM(U) ∼= (GrM)(U). Then

Ch(M(U)) = Supp(Gr(M(U))) = Supp(Â�(GrM)(U))

= Supp(‡GrM|fiT ∗U ) = Ch(M) ∩flT ∗U,
as required. �

Corollary. (a) Ch(M) does not depend on the choice of good double

filtration on M.

(b) If 0 → L → M → N → 0 is a short exact sequence of coherent
’‹Dn,K-

modules, then Ch(M) = Ch(L) ∪ Ch(N ).

Proof. By the lemma, Ch(M) =
⋃
U∈S Ch(M(U)) only depends on the lo-

cal sectionsM(U) ofM. It follows from Theorem 5.13 that Γ(U,−) is exact on

coherent
’‹Dn,K-modules, and now both parts follow from Proposition 3.3. �

5.15. Coherent cohomology. We now specialise to the setting of Section 4.7,

so that X is the flag variety and ξ : B̃ → B is the locally trivial H-torsor

from the basic affine space to the flag variety. Recall the enhanced moment

map β : fiT ∗B → g∗ from Section 4.8 and the enhanced cotangent bundle

τ : fiT ∗B → B from Section 4.7:

B̃

ξ ��=
==

==
==

=
fiT ∗B

τ
~~}}

}}
}}

}}

β !!B
BB

BB
BB

B

B g∗
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Let M be a ‹Dn-module. Then H•(B,M) :=
⊕

i>0H
i(B,M) is naturally

a Γ(B, ‹Dn)-module, and we can view it as a U(g)n-module via the natural map

ϕn : U(g)n → Γ(B, ‹D)n → Γ(B, ‹Dn) obtained by applying the deformation

functor to the morphism U(ϕ) : U(g) → ‹D of deformable R-algebras defined

in Section 4.9 and then sheafifying.

Proposition. Let M be a coherent ‹Dn-module, and let F•M be a good

filtration on M. Then

(a) H•(B, grM) is a finitely generated O(g∗)-module, and

(b) H•(B,M) is a finitely generated U(g)n-module.

Proof. (a) The morphism τ : fiT ∗B → B is affine. By definition, grM is a

coherent gr ‹Dn ∼= τ∗OT̃ ∗B-module. Thus if we define flgrM = O
T̃ ∗B ⊗τ−1τ∗O

T̃∗B

τ−1(grM), then flgrM is a coherent O
T̃ ∗B-module such that τ∗flgrM = grM.

Next,

H•(B, grM) ∼= H•(fiT ∗B,flgrM)

by [40, Cor. III.1.3.3]. Since the enhanced moment map β : fiT ∗B → g∗ is

projective by Proposition 4.8(b), R•β∗flgrM is a coherent Og∗-module by [42,

Th. III.8.8(b)]. Since g∗ is affine, Γ(g∗, R•β∗flgrM) ∼= H•(fiT ∗B,flgrM) by [42,

Prop. III.8.5], and therefore H•(B, grM) is a finitely generated O(g∗)-module.

(b) The filtration F•M on M induces a filtration on any Čech complex

computing H•(B,M) and hence a convergent third octant cohomological spec-

tral sequence

Eij1 = H i+j(B, gr−iM)⇒ H i+j(B,M).

This spectral sequence implies grH•(B,M) is a subquotient of H•(B, grM)

as a grU(g)n-module. But grU(g)n is Noetherian because it is isomorphic to

S(g) by Lemma 3.5, and the result follows. �

5.16. Characteristic varieties of global sections. The set of global sections

Γ(B,M) of a
’‹Dn,K-moduleM is a module over A := ÿ�U(g)n,K via the completed

deformed ring homomorphism ’ϕn,K : A → Γ(B,’‹Dn,K), and A is an almost

commutative affinoid K-algebra by Proposition 3.8. The next result is an

analogue of [17, Lemma 1.6(c)].

Proposition. LetM be a coherent
’‹Dn,K-module, and let M = Γ(B,M).

Then M is a finitely generated A-module and

Ch(M) ⊆ β(Ch(M)).
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Proof. Choose a good double filtration on M. Then by Lemma 5.11 it

induces a double filtration on M and there is a natural embedding

Gr(M) ↪→ Γ(B,Gr(M))

of Gr(A) ∼= S(gk)-modules. By applying Proposition 5.15(a) to the coher-

ent ‹Dn-module gr0M equipped with its good filtration F• gr0M, we see that

Γ(B,Gr(M)) is finitely generated over S(gk). Since S(gk) is Noetherian,

Gr(M) is a finitely generated Gr(A)-module, and hence the double filtration

on M is good. Hence M is finitely generated over A by Lemma 3.2 and

Ch(M) = Supp(Gr(M)) ⊆ Supp(Γ(B,Gr(M))).

Let F := ‡GrM := O
T̃ ∗B⊗τ−1τ∗O

T̃∗B
Gr(M) so that Ch(M) = Supp(F). Since

Gr(M) is already a τ∗OT̃ ∗B−module, the natural map Gr(M) → τ∗F is an

isomorphism. But τ : fiT ∗B → B is an affine morphism, so

Γ(B,Gr(M)) = Γ(B, τ∗F) = Γ(fiT ∗B,F) = Γ(g∗, β∗F).

Whenever f : X → Y is a continuous map between topological spaces and G
is a sheaf of abelian groups on X, we have Supp(f∗G) ⊆ f(Supp(G)). Hence,

Ch(M)⊆Supp(Γ(B,Gr(M)))=Supp(Γ(g∗, β∗F))=Supp(β∗F)⊆β(Ch(M))

because g∗ is an affine scheme. Finally, Ch(M) is a closed subscheme of fiT ∗B
since F is coherent, and β is a proper morphism by Proposition 4.8 and [42,

Th. II.4.9], so β(Ch(M)) is closed and the result follows. �

5.17. The localisation functor. Let M be an A := ÿ�U(g)n,K-module. For

any open subscheme U ⊆ B, the algebra
’‹Dn,K(U) is an A-module via ring

homomorphism ’ϕn,K : ÿ�U(g)n,K →
’‹Dn,K(U). We can therefore define the

localisation functor

Loc : ÿ�U(g)n,K −mod→’‹Dn,K −mod

by letting Loc(M) be the sheafification of the presheaf U 7→ ’‹Dn,K(U) ⊗A M
on B. This functor is right exact because it is the left adjoint to the global

sections functor Γ.

Proposition. Let M be a finitely generated A-module, and let M =

Loc(M). Then

(a) M is a coherent
’‹Dn,K-module.

(b) If U ∈ S , then M(U) =
’‹Dn,K(U)⊗AM .

Proof. (a) Since A is an almost commutative affinoid K-algebra, it is

Noetherian by Lemma 3.2(b). Hence we can find a presentation F1 → F0 →
M → 0 of M , where F0 and F1 are finitely generated free A-modules. Since
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Loc is right exact, we obtain a presentation Loc(F1) → Loc(F0) → M → 0.

Since Loc(A) ∼= ’‹Dn,K is coherent by Proposition 5.10(c), we deduce thatM is

also coherent.

(b) Let N :=
’‹Dn,K(U)⊗AM , a finitely generated

’‹Dn,K(U)-module. The

restriction ofM to U is isomorphic to
’‹Dn,K |U ⊗‘̃Dn,K(U)

N , and it follows from

Theorem 5.13 that the sections of this sheaf over U are simply N . �

5.18. The characteristic variety of Loc(M).

Lemma. Let M be a finitely generated A := ÿ�U(g)n,K-module, let U ∈ S ,

and let B :=
’‹Dn,K(U). Then every good double filtration on M induces a good

double filtration on N := B ⊗AM and a natural surjection

Gr(B)⊗Gr(A) Gr(M)� Gr(N).

Proof. Let F0N be the image of F0B⊗F0AF0M in N . Then F0N ·K = N

and F0N is a finitely generated F0B-submodule of N , so F0N is an R-lattice

in N by Proposition 3.2(a). Moreover the gr0B-module gr0N = F0N/πF0N

is a quotient of gr0B ⊗gr0 A gr0M .

Equip gr0N with the quotient filtration induced from the tensor filtration

on gr0B⊗gr0 Agr0M . Then Gr(N) is a quotient of Gr(B)⊗Gr(A) Gr(M), which

implies that the filtration on gr0N as a gr0B-module is good. �

The following result is an analogue of [17, Prop. 1.8].

Proposition. Let M be a finitely generated A-module, and let M =

Loc(M). Then

β(Ch(M)) ⊆ Ch(M).

Proof. Choose a good double filtration on M using Proposition 3.2(b).

Since M is a coherent
’‹Dn,K-module by Proposition 5.17(a),

Ch(M) =
⋃
U∈S

Ch(M(U))

by Lemma 5.14. Let U ∈ S, and let B =
’‹Dn,K(U). Then N :=M(U) is equal

to B⊗AM by Proposition 5.17(b), and N carries a good double filtration such

that Gr(N) is a quotient of Gr(B)⊗Gr(A) Gr(M) by the lemma. Therefore

Ch(N) = Supp(Gr(N)) ⊆ Supp(Gr(B)⊗Gr(A) Gr(M)) ⊆ β−1(Supp(Gr(M)))

by [38, §0.4.3.1], and the result follows. �
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6. The Beilinson-Bernstein theorem for ’Dλn,K
We continue with the notation from Section 4.7 in this section. R will

denote a complete discrete valuation ring of arbitrary characteristic, unless

stated otherwise.

6.1. Serre twists. The scheme B is projective over R by [49, §II.1.8]. Fix

an embedding i : B ↪→ PNR into some projective space over R, and let L :=

i∗O(1) be the corresponding very ample invertible sheaf on B.

For any OB-moduleM and any s ∈ Z, we letM(s) :=M⊗OB L⊗s denote

the Serre twist of M.

Lemma. Let F be a coherent OB-module. Then there exists an integer

u > 0 such that F(s) is generated by its global sections and is Γ-acyclic when-

ever s > u.

Proof. Because L is very ample, this follows from Serre’s Theorems [42,

Ths. II.5.17 and III.5.2(b)] �

We will first study coherent modules over the sheaf of algebras

C := SymOB(OB ⊗ g) ∼= OB ⊗ S(g).

Proposition. Let M be a coherent C-module. Then there exists an in-

teger t such that M(s) is Γ-acyclic whenever s > t.

Proof. Consider the following diagram of schemes over Spec(R):

B × g∗

p

{{vvv
vv

vv
vv

v
q

$$HHH
HHH

HHH
H

B

##GG
GG

GG
GG

GG
g∗

{{vvvvvvvvv

Spec(R).

Since C = p∗OB×g∗ , [39, Prop. II.1.4.3 and Cor. II.1.4.5] show that there is a

coherent OB×g∗-module N such that M∼= p∗N .

Now by [39, Prop. II.4.6.13(i)], the invertible Og∗-module Og∗ is ample

relative to idg∗ , so [39, Prop. II.4.6.13(iv)] gives that p∗L = L⊗ROg∗ is ample

relative to q. Thus it follows from the relative version of Serre’s Theorem, [40,

Th. III.2.2.1(ii)], that N (s) := N ⊗OB×g∗ (p∗L)⊗s is q∗-acyclic for sufficiently

large values of s.

Since g∗ is affine, [40, Prop. III.1.4.14] implies that

H i(B × g∗,N (s)) ∼= Γ(g∗, Riq∗N (s)) = 0
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for i > 0 and s sufficiently large. On the other hand, because p is an affine

morphism, [40, Cor. III.1.3.3] tells us that

H i(B × g∗,N (s)) ∼= H i(B, p∗N (s))

for all i and s. It remains to show that whenever F is a coherentOB×g∗-module,

p∗(F ⊗OB×g∗ p
∗L) ∼= p∗F ⊗OB L

as then p∗(N (s)) ∼=M(s) for all s > 0. But this follows from [38, §0.5.4.10]. �

Corollary. Let M be a coherent ‹Dn-module. Then there exists an in-

teger t such that M(s) is Γ-acyclic whenever s > t.

Proof. Choose a good filtration on M using Lemma 5.8(c); then grM is

a coherent gr ‹Dn-module. By Proposition 4.8(a), the natural map ϕ : OB ⊗ g

→ ‹TB is surjective, so C surjects onto gr(‹Dn) ∼= SymOB
‹TB by Proposition 5.7(c).

So grM is a coherent C-module, and therefore there exists an integer t such

that
gr(M(s)) ∼= (grM)(s)

is Γ-acyclic for all s > t by the proposition. Because B is Noetherian, co-

homology commutes with direct limits by [42, Prop. III.2.9]. Therefore each

homogeneous component griM(s) is Γ-acyclic and each filtered piece FiM(s)

is also Γ-acyclic. FinallyM(s) is the direct limit of the FiM(s) and therefore

is also Γ-acyclic, whenever s > t. �

6.2. The geometric translation functor. Let A be one of the sheaves ‹Dn,”‹Dn or
’‹Dn,K . For every integer s, we can consider the twisted sheaf

A(s) := L⊗s ⊗OB A⊗OB L
⊗(−s).

As an OB-module this sheaf is isomorphic to A, but it is also naturally a sheaf

of rings that a priori is not isomorphic to A. Of course, locally the sheaves of

rings A(s) and A are isomorphic. We believe there to be a global isomorphism,

but we will not need it.

Note that for every A-module N , the twisted sheaf (s)N := L⊗s⊗OBN is

naturally an A(s)-module by contracting tensor products. If L is trivialisable

on U , then (s)N|U is isomorphic to N|U as A|U -modules if we view A|U as

acting on (s)N|U along a local isomorphism A|U → A(s)|U .

We retain the notation A(s) to mean the left A-module A⊗OB L⊗s with

A acting on the left factor.

Lemma. Let s ∈ Z.

(a) A(s) is a coherent sheaf of rings. Moreover
”‹Dn(s)

∼=
‘‹D(s)
n as sheaves of rings.

(b) If N is a coherent A-module, then (s)N is a coherent A(s)-module. Also

A(s) is a coherent A-module.

(c) The functor N 7→ (s)N is exact.
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(d) If F is an OB-module and t, u ∈ Z, then

(u)(A(t) ⊗OB F) ∼= A(t+u) ⊗OB (F(u))

as A(t+u)-modules.

Proof. (a)–(c) are all local properties that may be verified by working on

a base that trivialises L together with the corresponding statements for the

untwisted objects.

For (d), we observe that F(u) and (u)F are canonically isomorphic as

OB-modules and contract various tensor products. �

6.3. A family of generating objects. The following result is essentially [46,

Prop. 3.3(i)], but we give the proof for the benefit of the reader.

Theorem. The sheaves {’‹Dn,K(s) : s ∈ Z} generate the category of coher-

ent
’‹Dn,K-modules.

Proof. We set A = ‹Dn to aid legibility. Let M ∈ coh(‘AK), and choose a

good double filtration (F0M, F• gr0M) on M using Proposition 5.12. Then

gr0M is a coherent A-module, so by Corollary 6.1 we can find an integer t

such that (gr0M)(s) is Γ-acyclic for all s > t. Since (gr0M)(s) ∼= (s) gr0M
as sheaves of OB-modules, we may deduce that (s) gr0M is also Γ-acyclic for

all s > t.
Next, since (t)(gr0M) is a coherent A(t)-module by Lemma 6.2(b), we

can find a coherent OB-submodule F of (t)(gr0M) that generates it as an

A(t)-module by the proof of Lemma 5.8(b); this gives a surjection

A(t) ⊗OB F � (t)(gr0M)

of A(t)-modules. Twisting this by L⊗u on the left and applying Lemma 6.2(d)

gives surjections

A(t+u) ⊗OB (F(u)) ∼= (u)(A(t) ⊗OB F)� (t+ u)(gr0M)

of A(t+u)-modules for any integer u.

Now by Lemma 6.1, there is a surjection OaB � F(u) for some integers

a > 1 and u > 0. We therefore obtain a surjection

A(t+u) ⊗OB O
a
B � A(t+u) ⊗OB (F(u))� (t+ u)(gr0M)

of A(t+u)-modules. Let s := t+ u; then (s)(gr0M) is Γ-acyclic and generated

as a A(s)-module by its global sections.

Let N := F0M and K := (s)N its twist. Since M has no π-torsion, for

all i > 0 there is a short exact sequence of sheaves

0→ gr0M
πi−→ N/πi+1N → N/πiN → 0.
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Since also H1(B, (s)(gr0M)) = 0, twisting this sequence by L⊗s on the left

and taking cohomology shows that the arrow

Γ(B,K/πi+1K)→ Γ(B,K/πiK)

is surjective for all i > 0.

Thus a finite subset of Γ(B, (s)(gr0M)) generating (s)(gr0M) as a A(s)-

module may be lifted inductively to elements w1, . . . , wa ∈ lim
←−

Γ(B,K/πiK).

Since K is a coherent “A(s) ∼= ‘A(s)-module, K(U) is π-adically complete

for each U ∈ S by [12, §3.2.3(v)], so the natural map K → lim
←−
K/πiK is an

isomorphism. Pulling back the wi along this isomorphism on global sections

gives a finite collection of elements in Γ(B,K) that generate K as a “A(s)-module

by Nakayama’s Lemma. We therefore obtain a surjective map
Ä “A(s)

äa
� K of“A(s)-modules, and by twisting back by L⊗−s on the left, a surjective mapÄ

(−s) “A(s)
äa
� N

of left “A-modules. But (−s) “A(s) ∼= “A(−s) as left “A-modules by Lemma 6.2(d),

so we obtain a surjective map (
”‹Dn(−s))a � N of

”‹Dn-modules, and after invert-

ing π, a surjective map (
’‹Dn,K(−s))a �M of

’‹Dn,K-modules, as required. �

6.4. Twisted differential operators. We can apply the deformation functor

to the map j : U(h)→ ‹D defined in Section 4.4 to obtain a central embedding

of the constant sheaf U(h)n into ‹Dn:

U(h)n ↪→ ‹Dn.
Each linear functional λ ∈ HomR(πnh, R) extends to an R-algebra homo-

morphism U(h)n
∼=−→U(πnh)→R and gives R the structure of a U(h)n-module,

which we denote by Rλ.

Until the end of Section 6 we fix λ ∈ HomR(πnh, R).

Definition. The sheaf of deformed twisted differential operators Dλn on

B with parameters n, λ is the central reduction

Dλn := ‹Dn ⊗U(h)n Rλ.

We give Rλ the trivial filtration 0 =:F−1Rλ⊂Rλ=:F0Rλ as a U(h)n-module,

and we view Dλn as a sheaf of filtered R-algebras, equipped with the tensor

filtration.

Lemma. (a) Let U ∈ S . Then
Ä
Dλn
ä
|U is isomorphic to (Dn)|U as a sheaf

of filtered R-algebras.

(b) Dλn is a sheaf of deformable R-algebras.

(c) There is an isomorphism of sheaves grDλn ∼= SymO T .
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Proof. (a) Let F be a sheaf of deformable R-algebras on B, and let Fn be

the sheafification of the presheaf V 7→ F(V )n. Since sheafification commutes

with restriction, we see that (Fn)|U is naturally isomorphic to (F|U )n.

Next, by Propositions 3.6 and 4.6 there are sheaf isomorphisms

(D|U )n ⊗ U(h)n
∼=−→
Ä
D|U ⊗ U(h)

ä
n

∼=−→ (‹D|U )n =
Ä‹Dnä|U

that induce an isomorphism
Ä
Dλn
ä
|U
∼=−→(Dn)|U of sheaves of filteredR-algebras.

(b) Since U is affine and Noetherian, it follows from Section 4.2 that

gr(D(U)) is a locally free O(U)-module. Now proceed as in the proof of

Lemma 5.7(b).

(c) The universal property of sheafification together with [56, §I.6.13] in-

duce a morphism of sheaves

gr ‹Dn ⊗grU(h)n grRλ → grDλn.

Now SymO
‹T ∼= gr ‹Dn by Proposition 5.7(c), and this isomorphism sends the

image of S(h) in SymO
‹T to grU(h)n ⊆ gr ‹Dn by construction. Since grRλ is

the trivial h-module R by definition and grU(h)n ∼= S(h) by Lemma 3.5, we

obtain a morphism of sheaves of graded R-algebras

SymO
‹T ⊗S(h) R→ grDλn.

Now the short exact sequence 0 → h ⊗ O j⊗1−→ ‹T σ−→ T → 0 of locally free

sheaves on B from Lemma 4.4 induces an isomorphism SymO
‹T ⊗S(h)R

Sym(σ)⊗1−→
SymO T . We finally obtain a morphism of sheaves of graded R-algebras

SymO T → grDλn,

which is seen to be an isomorphism over any U ∈ S by part (a). �

6.5. Completions and central reduction. The following elementary lemma

will be useful in what follows. Recall that if M is an R-module, then M̂ denotes

its π-adic completion.

Lemma. Let B → A be a map of Noetherian R-algebras, and let M be a

finitely generated B-module. Then “A ⊗
B̂
M̂ is π-adically complete, and there

is a natural isomorphism of R-modules

ψM : Ÿ�A⊗B M −→ “A⊗
B̂
M̂.

If B → A is a central embedding and M is a cyclic B-module, then ψM is an

R-algebra isomorphism.

Proof. The first part follows from [12, §3.2.3(iii), (v)]. Hence the natural

map A ⊗B M → “A ⊗
B̂
M̂ extends to an R-linear map ψM : Ÿ�A⊗B M −→“A ⊗

B̂
M̂ . Because A and B are Noetherian, it follows from [12, §3.2.3(ii)]
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that the functors ÿ�A⊗B − and “A ⊗
B̂
− are right exact. Since ψ is a natural

transformation between these functors such that ψB is an isomorphism, we

can pick a presentation for M by finitely generated free B-modules, apply

both functors to this presentation and invoke the Five Lemma to deduce that

ψM is an isomorphism.

The last statement is now clear. �

Definition. Let ”Dλn := lim
←−
Dλn/πaDλn be the π-adic completion of Dλn,

and let ’Dλn,K := ”Dλn ⊗R K.

Since the discrete valuation ring R is already π-adically complete by as-

sumption, Rλ is already a ÷U(h)n-module; we will denote the ÿ�U(h)n,K-module

Rλ ⊗R K by Kλ.

Proposition. (a) If U ∈ S , then ’Dλn,K(U) ∼= Ÿ�D(U)n,K is an almost com-

mutative affinoid K-algebra and Gr(’Dλn,K(U)) ∼= O(T ∗Uk).

(b)
’‹Dn,K is a sheaf of complete doubly filtered K-algebras.

(c) There is an isomorphism ’Dλn,K ∼=−→’‹Dn,K⊗◊�U(h)n,K
Kλ of sheaves of complete

doubly filtered K-algebras.

(d) The sheaf ’Dλn,K is coherent.

Proof. In view of Lemma 6.4, parts (a) and (b) follow from the proof of

Proposition 5.10 after making appropriate changes.

(c) For each U ∈ S, U(h)n → ‹Dn(U) is a map of Noetherian R-algebras.

Since Rλ is π-adically complete, there is thus an isomorphism of complete

R-algebras

ψU :
¤�‹Dn(U)⊗U(h)n Rλ

∼=−→ ◊�‹Dn(U)⊗’U(h)n
Rλ

by the lemma. The reduction of ψU mod π is a morphism of filtered algebras,

and the family of morphisms (ψU )U∈S is compatible with restriction, so it

induces the required isomorphism ψ : ’Dλn,K ∼=−→ ’‹Dn,K ⊗◊�U(h)n,K
Kλ of sheaves

of complete doubly filtered K-algebras.

(d) Since ’Dλn,K is a quotient of
’‹Dn,K , this follows from the coherence of’‹Dn,K proved in Proposition 5.10(c). �

Using the above, we will henceforth identify coh(’Dλn,K) with the full sub-

category of coh(
’‹Dn,K) consisting of sheaves such that πnh acts via the charac-

ter λ.
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6.6. The generic fibre. The sheaf DλK := Dλn ⊗R K does not depend on

the deformation parameter n. Its restriction to BK is naturally isomorphic to

a classical sheaf of twisted differential operators in the sense of Beilinson and

Bernstein [8].

The next result allows us to apply the classical theorem of Beilinson-

Bernstein to those ’Dλn,K-modules that can be ‘uncompleted.’

Theorem. Let M be a coherent Dλn-module.

(a) If MK is generated by global sections as a DλK-module, then ”MK is gen-

erated by global sections as a ’Dλn,K-module.

(b) If MK is Γ-acyclic, then so is ”MK .

Proof. Note that by [42, Prop. III.2.9], H i(B,MK) ∼= H i(B,M) ⊗R K
for all i. (a) Let v1, . . . , va ∈ Γ(B,MK) generate MK as a DλK-module; by

clearing denominators we may assume that these generators all lie in Γ(B,M).

Let α : (Dλn)a →M be the map of Dλn-modules defined by these global sections;

then C := coker(α) is coherent and CK = 0 by assumption. Thus we have an

exact sequence

(Dλn)a →M→ C → 0

in coh(Dλn). By Lemma 5.8(a), the functor Γ(U,−) is exact on coh(Dλn) for

all U ∈ S. Since Dλn(U) is Noetherian by Lemma 6.4 and since π ∈ Dλn(U) is

central, the functor of π-adic completion is exact on finitely generated Dλn(U)-

modules by [12, §3.2.3(ii)]. Hence the sequence⁄�(Dλn)a(U)→ ◊�M(U)→’C(U)→ 0

is exact for all U ∈ S. Hence the sequence of sheaves

(”Dλn)a
α̂K−→ ”M→ Ĉ → 0

is exact. Now C is π-torsion and coherent as a Dλn-module, so πmC = 0 for

some integer m since B is quasi-compact. Hence πmĈ = 0 also, and therefore

the morphism α̂K : (’Dλn,K)a → ”MK is surjective.

(b) By Proposition 5.15, H i(B,M) is a finitely generated U(g)n-module.

On the other hand, it is π-torsion when i > 0 by assumption. Since π is central

in U(g)n, we deduce that there exists an integer m such that πmH i(B,M) = 0

for all i > 0.

Now for all a, b > 0, there is a commutative diagram

0 // M πa+b //

πa

��

M //

id

��

M/πa+bM //

τa,b

��

0

0 // M πb // M // M/πbM // 0
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of sheaves of coherent Dλn-modules with exact rows. This induces a commuta-

tive diagram on cohomology

H i(B,M)
πa+b //

πa

��

H i(B,M)

id
��

// H i(B,M/πa+bM) //

Hi(τa,b)
��

H i+1(B,M)

πa

��
H i(B,M)

πb // H i(B,M) // H i(B,M/πbM) // H i+1(B,M)

with exact rows for each i > 0. If a > m, then the last vertical arrow is zero,

since πmH i+1(B,M) = 0. Thus the image of H i(τa,b) is the image of H i(B,M)

in H i(B,M/πbM).

It follows that the projective system H i(B,M/πbM) satisfies the Mittag-

Leffler condition for each i > 0 and so by [40, Prop. 0.13.3.1] together with

Lemma 5.8 that H i(B, ”M) ∼= lim
←−

H i(B,M/πbM) for all i > 0. Taking the

projective limit of the columns of the cohomology diagram for i > 0 and using

the fact that the maps in the first and last columns are zero for a > m, we

then obtain isomorphisms H i(B,M) ∼= H i(B, ”M), whence

H i(B, ”MK) ∼= H i(B, ”M)⊗R K ∼= H i(B,M)⊗R K = 0

whenever i > 0, as claimed. �

6.7. Integral and dominant weights. We assume from now on that G is

semisimple and simply-connected and that K is a field of characteristic zero.

Let h1, . . . , hl ∈ h be the simple coroots corresponding to the simple roots

in h∗K given by the adjoint action of H on g/b, let ω1, . . . , ωl ∈ h∗K be the

corresponding system of fundamental weights, and let ρ = ω1 + · · · + ωl.

Thus ωi(hj) = δij for all i, j and any µ ∈ h∗K can be written in the form

µ =
∑l
i=1 µ(hi)ωi. Since K is a field of characteristic zero, h∗K contains an

isomorphic copy Zω1⊕ · · · ⊕Zωl of the weight lattice Λ of the group H. Since

h is spanned by the hi over R; see [49, §II.1.6, §II.1.11] — our space of twists

HomR(πnh, R) can be naturally identified with π−nR⊗Z Λ.

Recall that a weight µ ∈ h∗K is said to be integral if µ ∈ Λ ⊆ h∗K or

equivalently µ(hi) ∈ Z for all i. An integral weight µ is said to be dominant if

µ(hi) > 0 for all i. Following [9] we extend this notion to nonintegral weights

as follows: an arbitrary weight µ ∈ h∗K is dominant if µ(h) /∈ {−1,−2,−3, · · · }
for any positive coroot h ∈ h. Finally, we will say that λ is ρ-dominant if λ+ρ

is dominant.

Theorem. If λ is ρ-dominant, then H i(B,’Dλn,K(s)) = 0 for all i > 1 and

all integers s.

Proof. Apply Theorem 6.6(b) and paragraph (iii) of the proof of [8, Théo-

rème Principal], noting that our sheaf DλK is their sheaf Dλ+ρ. Our ground
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field K is not algebraically closed, but this part of the proof of the Beilinson-

Bernstein Theorem does not require this assumption. �

Corollary. If λ is ρ-dominant, every coherent ’Dλn,K-module is Γ-acyclic.

Proof. LetM∈ coh(’Dλn,K), and let d = dimB. Using Theorem 6.3, choose

a resolution

· · · → Pd
fd→ Pd−1

fd−1→ · · · f1→ P0
f0→M→ 0,

where each Pi is a direct sum of right twists of ’Dλn,K . Now if Mi = Im fi,

then for each i > 1, the long exact sequence of cohomology together with

Theorem 6.7 shows that

H i(B,M) = H i+1(B,M1) = · · · = H i+d(B,Md) = 0

by [42, Th. III.2.7]. �

We now start working towards computing the global sections of ”Dλn.

6.8. Restrictions on the prime p. Let p be the characteristic of the residue

field k of R. Recall that p is said to be bad for an irreducible root system Φ if

• p = 2 when Φ = Bl, Cl or Dl;

• p = 2 or 3 when Φ = E6, E7, F4 or G2;

• p = 2, 3 or 5 when Φ = E8.

We say that p is bad for G if it is bad for some irreducible component of the

root system of G, and we say that p is a good prime for G if p is not bad.

Finally p is said to be very good for G if p is good and no irreducible component

of the root system of G is of type Amp−1 for some integer m > 1.

We assume from now on that p is a very good prime for G.

6.9. Rings of invariants. Recall that we have chosen a Cartan subgroup

T of G in Section 4.10 and that it induces a root space decomposition g =

n ⊕ t ⊕ n+ of g. The Weyl group W of G acts naturally on t and hence on

the symmetric algebra S(t). On other hand, the adjoint action of G on g

extends to an action on U(g) by ring automorphisms. This action preserves

the filtration on U(g) and induces the adjoint action of G on grU(g) ∼= S(g).

Let

ψ : S(g)G → S(t)

be the composition of the inclusion S(g)G ↪→ S(g) with the projection S(g)→
S(t) along the decomposition S(g)=S(t)⊕(nS(g) + S(g)n+). By [27, Th. 7.3.7],

the image of ψ is contained in S(t) ∩ S(tK)W = S(t)W, and ψ is injective.

Let U(g)G denote the subalgebra of G-invariants of U(g). Since taking

G-invariants is left exact, there is a natural inclusion

ι : gr(U(g)G)→ S(g)G
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of graded rings. Inspired by the ideas contained in [48, §9.6], we can now

compute the associated graded ring of U(g)G.

Proposition. The rows of the diagram

0 // gr(U(g)G)
π //

ι

��

gr(U(g)G) //

ι

��

gr(U(gk)
Gk) //

ιk
��

0

0 // S(g)G
π //

ψ

��

S(g)G //

ψ

��

S(gk)
Gk //

ψk
��

0

0 // S(t)W
π // S(t)W // S(tk)

Wk // 0

are exact, and each vertical map is an isomorphism.

Proof. We view this diagram as a sequence of complexes C•
ι•→ D•

ψ•→ E•.

It is easy to check that each complex is exact except possibly in the right-most

nonzero entry. Since p is very good for G and G is simply-connected, it follows

from [26, Cor. du Th. 2] that E• is actually exact.

Now ψ is injective by [27, Th. 7.3.7] and ψk is an isomorphism by [50,

Th. 4(i)] since p is good, so ψ• ◦ ι• is also injective. Consider the short exact

sequence of complexes 0→ C•
ψ•◦ι•−→ E• → F • → 0, where F • := coker(ψ• ◦ ι•).

Since E• is exact and H0(C•) = H1(C•) = 0, the long exact sequence of co-

homology shows that H0(F •) = H2(F •) = 0 and that there is an isomorphism

H1(F •)
∼=−→ H2(C•).

Since ψK ◦ ιK : gr(U(gK)GK ) → S(tK)WK is an isomorphism by [27,

Th. 7.3.7], we see that F 0 =F 1 =coker(ψ◦ι) is π-torsion. But since H0(F •)=0,

the sequence 0 → F 0 π→ F 1 is exact whence F 0 = F 1 = 0. Hence H1(F •) =

H2(C•) = 0 and the top row C• of the diagram is exact.

Finally, since ψ• ◦ ι• : C• → E• is now an isomorphism in all degrees

except possibly 2, it must be an isomorphism by the Five Lemma. The result

follows because ψ• and ι• are both injections. �

Corollary. gr(U(g)G) is isomorphic to a polynomial algebra over R in

l variables.

Proof. Since ψ ◦ ι is a graded isomorphism by the proposition, this follows

from [26, Th. 3] and [49, §I.2.10(3)]. �

6.10. Global sections of ’Dλn,K . It follows from Corollary 6.9 that U(g)G is

itself a commutative polynomial algebra over R in l variables. Henceÿ�U(g)Gn,K := ¤�(U(g)G)n,K

is a commutative Tate algebra in l variables.
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The commutative square in Lemma 4.10 consists of deformableR-algebras.

Applying the deformation functor to it we obtain another commutative square

of deformable R-algebras

(U(g)G)n

��

φn // U(t)n

(j◦i)n
��

U(g)n
U(ϕ)n

// ‹Dn.
We view the U(h)n-module Rλ as a (U(g)G)n-module via restriction along

the map (i ◦ φ)n : (U(g)G)n → U(h)n, and we let Kλ := Rλ ⊗R K be the

corresponding ÿ�U(g)Gn,K-module. We make the following definitions:

• Uλn := U(g)n ⊗(U(g)G)n Rλ,

• ”Uλn := lim
←−
Uλn/πaUλn , and

• ’Uλn,K := ”Uλn ⊗R K.

Because the diagram commutes, the map U(ϕ)n⊗(j◦i)n : U(g)n⊗U(t)n → ‹Dn
factors through (U(g)G)n and we obtain algebra homomorphisms

ϕλn : Uλn → Dλn,”ϕλn : ”Uλn → ”Dλn,
and ’ϕλn,K : ’Uλn,K→’Dλn,K .
It is not immediately clear whether Uλn is a deformable R-algebra as it could

a priori have π-torsion. Presumably grU(g) is a free module over gr
Ä
U(g)G

ä
,

which would imply that Uλn is deformable. However we will not need to

prove this.

Theorem. (a) ’Uλn,K ∼= ÿ�U(g)n,K ⊗◊�U(g)Gn,K

Kλ is an almost commutative

affinoid K-algebra.

(b) The map ’ϕλn,K : ’Uλn,K → Γ(B,’Dλn,K) is an isomorphism of complete doubly

filtered K-algebras.

(c) There is an isomorphism S(gk)⊗S(gk)Gk k
∼=−→ Gr(’Uλn,K).

Proof. (a) By Corollary 6.9 and Lemma 3.5, (U(g)G)n is Noetherian. Thus

there is an R-algebra isomorphism ”Uλn ∼=−→÷U(g)n⊗’U(g)Gn
Rλ by Lemma 6.5. So’Uλn,K is an almost commutative affinoid K-algebra, being a quotient of ÿ�U(g)n,K .

(b), (c) Let {U1, . . . , Um} be an open cover of B by open affines that

trivialise the torsor ξ; thus the special fibre Bk is covered by the special fibres
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Ui,k. For part (b), it will be enough to prove that the sequence

C• : 0→’Uλn,K ‘ϕλn,K−→ m⊕
i=1

’Dλn,K(Ui)→
⊕
i<j

’Dλn,K(Ui ∩ Uj)

is exact. Since C• is a complex in the category of complete doubly filtered

K-algebras, it is enough to show that Gr(C•) is exact.

By Corollary 3.7, there is a commutative diagram with exact rows

0 // gr(U(g)G)
π //

��

gr(U(g)G) //

��

Gr(ÿ�U(g)Gn,K) //

��

0

0 // gr(U(g))
π // gr(U(g)) // Gr(ÿ�U(g)n,K) // 0.

Since gr(U(g)) = S(g), Proposition 6.9 induces a commutative square

Gr(ÿ�U(g)Gn,K) //

��

S(gk)
Gk

��

Gr(ÿ�U(g)n,K) // S(gk),

where the horizontal maps are isomorphisms and the vertical maps are inclu-

sions. Since Gr(Kλ) is the trivial Gr(ÿ�U(g)Gn,K)-module k, we obtain a natural

surjection

S(gk)⊗S(gk)Gk k
∼= Gr(ÿ�U(g)n,K)⊗

Gr(◊�U(g)Gn,K)
Gr(Kλ)� Gr(’Uλn,K),

which fits into the commutative diagram

0 // S(gk)⊗S(gk)Gk k //

��

m⊕
i=1
O(T ∗Ui,k) //

⊕
i<j
O(T ∗(Ui,k ∩ Uj,k))

0 // Gr(’Uλn,K) //
m⊕
i=1

Gr(’Dλn,K(Ui)) //

OO

⊕
i<j

Gr(’Dλn,K(Ui ∩ Uj)),

OO

where the bottom row is Gr(C•) and the top row appeared in the proof of

[14, Prop. 3.4.1] and is induced by the moment map T ∗Bk → g∗k. It was

shown in loc. cit. that under the assumption that p is very good for G, the

top row is exact. The second and third vertical arrows are isomorphisms by

Proposition 6.5(a). An elementary diagram chase now shows that Gr(C•) is

exact, proving (b), and also that the first vertical arrow is an isomorphism,

proving (c). �
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6.11. The localisation functors. Recall the localisation functor from Sec-

tion 5.17:

Loc : ÿ�U(g)n,K −mod→’‹Dn,K −mod.

For each λ ∈ HomR(πnh, R), we also have a functor

Locλ : ’Uλn,K −mod→’Dλn,K −mod,

given by M 7→ ’Dλn,K ⊗‘Uλn,K M , which we will also call a localisation functor.

Since ’Dλn,K is a quotient of
’‹Dn,K by Proposition 6.5(c), we can and will view

Locλ(M) as a
’‹Dn,K-module.

Lemma. For any finitely generated ’Uλn,K-module M , there is a natural

surjection of
’‹Dn,K-modules Loc(M)� Locλ(M).

Proof. By Theorem 6.10(a), there is an isomorphism’‹Dn,K⊗◊�U(g)n,K

’Uλn,K ∼= ’‹Dn,K⊗◊�U(g)n,K

Çÿ�U(g)n,K ⊗◊�U(g)Gn,K

Kλ

å
∼=’‹Dn,K⊗◊�U(g)Gn,K

Kλ

of sheaves of complete doubly filtered K-algebras. There is also the isomor-

phism ’Dλn,K ∼= ’‹Dn,K ⊗◊�U(h)n,K
Kλ

of sheaves of complete doubly filtered K-algebras by Proposition 6.5(c). These

isomorphisms fit together into a commutative diagram’‹Dn,K ⊗◊�U(g)n,K

’Uλn,K
∼=

��

// // ’Dλn,K
∼=

��’‹Dn,K ⊗◊�U(g)Gn,K

Kλ // // ’‹Dn,K ⊗◊�U(h)n,K
Kλ

,

and the obvious surjective horizontal arrow in the second row induces the

dotted surjective arrow in the first row. This proves the result in the case

when M = ’Uλn,K ; in the general case, pick a presentation F1 → F0 → M → 0

of M where F1 and F0 are finitely generated free ’Uλn,K-modules, and apply the

Five Lemma. �

6.12. The equivalence of categories. Recall that a weight λ ∈ h∗K is said

to be regular if its stabilizer under the action of W is trivial. Recall also that

we are assuming that our ground field K has characteristic zero.
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Proposition. Let the weight λ ∈ HomR(πnh, R) be such that λ + ρ is

dominant. Then B is coherently ’Dλn,K-acyclic. If λ+ ρ is also regular, then B

is ’Dλn,K-affine.

Proof. LetMbe a coherent ’Dλn,K-module. By Corollary 6.7,M is Γ-acyclic.

Because we may view M as a coherent
’‹Dn,K-module, M(X) is finitely gener-

ated over ÿ�U(g)n,K by Proposition 5.16. Thus M(X) is a coherent ’Dλn,K(X)-

module, and so B is coherently ’Dλn,K-acyclic.

Suppose now that λ+ρ is regular. By Theorem 6.3 and Proposition 6.5(c)

we can find a surjection F � M where F is a direct sum of sheaves of the

form ’Dλn,K(si) for some integers si. Since each DλK(si) is a coherent DλK-mod-

ule, it is generated by its global sections by paragraph (iv) of the proof of [8,

Théorème Principal]. Hence each ’Dλn,K(si) is generated by its global sections

by Theorem 6.6(a) and we can therefore find a surjection F0 →M where F0

is a direct sum of copies of ’Dλn,K . Applying the same argument to the kernel

of this surjection gives a presentation F1 → F0 → M → 0. Since Γ is exact

and Locλ is right exact, there is a commutative diagram

F1
// F0

// M // 0

Locλ(Γ(F1)) //

OO

Locλ(Γ(F0)) //

OO

Locλ(Γ(M)) //

OO

0

with exact rows and with the first two vertical maps isomorphisms. Thus it

follows from the Five Lemma that the canonical map Locλ(Γ(M))→M is an

isomorphism, soM is generated by its global sections and B is ’Dλn,K-affine, as

required. �

We can finally prove Theorem C.

Theorem. Let the weight λ ∈ HomR(πnh, R) be such that λ+ ρ is domi-

nant and regular. Then the functors Locλ and Γ are mutually inverse equiva-

lences of abelian categories between coh(’Uλn,K) and coh(’Dλn,K).

If λ + ρ is dominant but not regular, then Locλ and Γ still induce mu-

tually inverse exact equivalences of abelian categories between coh(’Uλn,K) and

coh(’Dλn,K)/ ker Γ.

Proof. This follows from immediately from the proposition and Proposi-

tion 5.1. �
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Corollary. Suppose that λ is ρ-dominant, let M be a finitely generated’Uλn,K-module, and let M = Locλ(M). Then

β(Ch(M)) = Ch(M).

Proof. We have Ch(Locλ(M)) ⊆ Ch(Loc(M)) by Lemma 6.11 and Corol-

lary 5.14(b). Now M ∼= Γ(Locλ(M)) by the theorem, so

Ch(M) = Ch(Γ(Locλ(M)) ⊆ β Ch(Locλ(M)) ⊆ β Ch(Loc(M)) ⊆ Ch(M)

by Propositions 5.16 and 5.18. �

7. Bernstein’s Inequality

In this section we continue to assume that R is a complete discrete val-

uation ring with uniformizer π, residue field k and field of fractions K of

characteristic zero.

7.1. Affinoid Weyl algebras and symplectic forms. Suppose that V is a

free R-module of finite rank equipped with an alternating bilinear form ω, and

recall from Example 3.4(d) the definition of the enveloping algebra Rω[V ] of

(V, ω). As we remarked in Section 3.5, this is a deformable R-algebra. Thus

given an alternating form ω on a free R-module of finite rank, we may form

the almost commutative affinoid K-algebra Kω〈V 〉n := ⁄�Rω[V ]n,K .

If S is an R-algebra, then we write VS for the free S-module S⊗RV . Sim-

ilarly, given an R-bilinear form φ : V × V → R, we write φS for the S-bilinear

form on VS obtained by S-linearly extending φ.

Definition. We say that an R-bilinear form ω on a free R-module V

of finite rank is symplectic if ωK and ωk are symplectic forms on VK and Vk
respectively; that is, if ωK and ωk are nondegenerate alternating forms.

Definition. If ω is a symplectic form on V , we call Kω〈V 〉n an affinoid

Weyl algebra.

If A = R[x1, . . . , xm, ∂1, . . . , ∂m] is the m-th Weyl algebra over R, then A

is the enveloping algebra of the standard symplectic form on R2m. Moreover,

since every symplectic form on R is equivalent to the standard one, up to

isomorphism every enveloping algebra of a symplectic form arises in this way.

For the remainder of this section, we fix a free R-module V of rank 2m

and a symplectic form ω on V .

Whenever W is a free summand of V , ω will restrict to an alternating

form on W that, by abuse of notation, we will also call ω.

7.2. Grassmannians and ⊥.

Definition. For each 0 6 t 6 2m, we define Gt(V ) to be the set of free

summands of V as an R-module of rank t. Similarly, we define Gt(Vk) to be

the set of k-subspaces of Vk of dimension t.
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Proposition. The natural map Gt(V ) → Gt(Vk) given by W 7→ Wk is a

surjection.

Proof. Since R is π-adically complete, we may apply the idempotent lifting

lemma to Mn(R)→Mn(k). �

Definition. If W is a free summand of V , we define

W⊥ = {v ∈ V | ω(v, w) = 0 for all w ∈W}.

Similarly, if W is a subspace of Vk, we define W⊥6Vk by the same formula.

Lemma. (a) If W ∈ Gt(V ), then W⊥ ∈ G2m−t(V );

(b) (W⊥)k = (Wk)
⊥ for all W ∈ Gt(V ).

Proof. For (a), it suffices to prove that W⊥ is a free summand of V . Its

rank then follows from the rank-nullity theorem since ω is nondegenerate. Since

R is a discrete valuation ring, it is enough to show that V/W⊥ is π-torsion-

free. But we know ω(πv,w) = πω(v, w), so for v ∈ V , πv ∈ W⊥ if and only if

v ∈W⊥.

For (b), (W⊥)k is easily seen to be contained in (Wk)
⊥. Since ωk is nonde-

generate, dim(Wk)
⊥ = 2m− t by the rank-nullity theorem, and dim(W⊥)k =

2m− t by part (a). The result follows. �

Recall that each Gt(Vk) is an irreducible algebraic variety, when equipped

with the Zariski topology.

Theorem. For each 0 6 t 6 2m, the map ⊥ : Gt(Vk) → G2m−t(Vk) that

sends Wk →W⊥k is a homeomorphism.

Proof. Since ωk is nondegenerate, it defines a perfect pairing Vk ×Vk → k

and so identifies Vk and V ∗k . Then the result is well known; see [51, §2.8] for

example. �

7.3. Simplicity of affinoid Weyl algebras. We now consider how V acts by

derivations on Kω〈V 〉n.

Lemma. For v ∈ V , let ε(v) := ω(v,−) be its image in V ∗ := HomR(V,R),

let ∂v ∈ V ∗k be the image of ε(v) modulo π, and suppose that ∂v 6= 0. Let dv be

the R-derivation of Rω[V ]n given by

dv : r 7→ vr − rv
πn

.

Then

(a) dv extends to a derivation dv of Kω〈V 〉n.

(b) Gr(dv) is the unique k-derivation of SymVk that extends ∂v .
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(c) For all m > 0, the K-linear endomorphism dmv
m! of Kω〈V 〉n preserves the

R-lattice F0Kω〈V 〉n, and Gr
Ä
dmv
m!

ä
acts as the m-th divided power of ∂v on

SymVk.

Proof. All parts follow from some straightforward calculations. �

The following result is a special case of [62, Prop. 1.4.6]. We provide a

proof for the convenience of the reader.

Theorem. The ring Kω〈V 〉n is simple.

Proof. Since Kω〈V 〉n is a complete doubly filtered K-algebra, it suffices

to prove that if I 6= 0 is an ideal, then Gr(I) ⊆ SymVk contains 1.

Since ωk is a nondegenerate form on Vk, for each ∂ ∈ V ∗k there is v ∈ V
such that the reduction of ω(v,−) mod π induces ∂. Moreover, by the lemma,

Gr
Ä
dmv
m!

ä
is the m-th divided power of ∂ on SymVk. It is easy to verify that

there are no nontrivial ideals in SymVk invariant under all of these differential

operators. �

7.4. Bernstein’s inequality.

Theorem. Suppose that V is a free R-module of rank 2m and ω is a

symplectic form on V . If M is a nonzero finitely generated Kω〈V 〉n-module,

then every irreducible component X of Ch(M) satisfies

dimX > m.

It is straightforward to construct modules that attain this bound.

Proof. We may find a sequence of submodules 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mr = M such that Mi/Mi−1 is pure for all i > 1. By Proposition 3.3, Ch(M) =⋃

Ch(Mi/Mi−1), so we may reduce to the case that M is pure. Moreover by

Theorem 3.3 we know that in this case every irreducible component of Ch(M)

has the same dimension. So it suffices to show that dim Ch(M) > m.

Suppose that dim Ch(M) < m. By base changing to the completion of

the maximal unramified extension of K and applying Proposition 3.9, we may

assume that k is an infinite field. Choose a good double filtration on M . Now

X := {W ∈ Gm(Vk) | Gr(M) is over finitely generated over SymW}

is a nonempty and Zariski open subset in Gm(Vk) by the Generic Noether Nor-

malization Lemma [37, Remark 3.4.4]. So X⊥ is again open and nonempty by

Theorem 7.2. Since Gm(Vk) is irreducible, we deduce that X ∩X⊥ is nonempty.

Using Proposition 7.2, choose W ∈ Gm(V ) such that Wk ∈ X ∩ X⊥.

Then (W⊥)k ∈ X by Lemma 7.2(b), so M is finitely generated over both

Kω〈W 〉n and Kω〈W⊥〉n by Lemma 3.2(a). Choose a finite generating set X
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for M as a Kω〈W⊥〉n-module. Now elements of Kω〈W⊥〉n act as Kω〈W 〉n-

endomorphisms of M , so

AnnKω〈W 〉n(M) =
⋂
x∈X

annKω〈W 〉n(x).

But dim Ch(M) < m = dim GrKω〈W 〉n, so M must be torsion as a

Kω〈W 〉n-module and each term in the intersection is nonzero. Since Kω〈W 〉n
is a Noetherian domain, [59, Th. 2.1.15] implies that AnnKω〈W 〉n(M) 6= 0.

But AnnKω〈W 〉n(M) ⊆ AnnKω〈V 〉n(M), and so the latter is a nonzero ideal

of Kω〈V 〉n. By Theorem 7.3, AnnKω〈V 〉n(M) = Kω〈V 〉n and M = 0, as

required. �

Corollary. If A = R[x1, . . . , xm, ∂1, . . . , ∂m] = D(Am) is the m-th Weyl

algebra equipped with the order filtration and M is a nonzero finitely gen-

erated ’An,K-module, then every irreducible component X of Ch(M) satisfies

dimX > m.

Proof. As in the proof of the theorem above, we may reduce to the case

that M is pure and so assume that every irreducible component of Ch(M) has

the same dimension. So again it suffices to show that dim Ch(M) > m.

If n is even, there is an isomorphism of R-algebras α : Rω[V ]n/2 → An,

which induces an isomorphism α̂ : Kω〈V 〉n/2 → ’An,K of complete filtered

rings. Although α̂ is not an isomorphism of complete doubly filtered alge-

bras, Gr(’An,K) and Gr(Kω〈V 〉n/2) are both polynomial algebras over k in 2m

variables (with different gradations). Letting N be the restriction of M to a

Kω〈V 〉n/2-module via α̂, we see that

dim Ch(M) = 2m− j(M) = 2m− j(N) = dim Ch(N) > m

by Theorem 3.3 and the theorem above.

If n is odd, first we base-change to K ′ = K(
√
π) and let A′ = R′ ⊗R

A, where R′ = R[
√
π]. Then K ′ ⊗K ’An,K ∼= ◊�A′2n,K′ by Lemma 3.9(c). By

Proposition 3.9 this has not changed dim Ch(M), and we have returned to the

case when n is even. �

7.5. A global version of Bernstein’s inequality. Recall the notation of Sec-

tion 6.4.

Theorem. If M is a nonzero coherent ’Dλn,K-module, then every irre-

ducible component X of Ch(M) satisfies dimX > dimB.

Proof. Let m = dimB. By the proof of Lemma 4.7(c), the Weyl translates

Uw of the big cell in B each trivialise the torsor ξ : B̃ → B and are isomorphic

to Am. Hence Theorem 5.13 and Lemma 5.14 tell us that for each w in the

Weyl group W,M(Uw) is a finitely generated
’‹Dn,K(Uw)-module and Ch(M)∩



516 KONSTANTIN ARDAKOV and SIMON WADSLEY‡T ∗Uw = Ch(M(Uw)). Because the Uw cover B, it thus suffices to prove that

every irreducible component of Ch(M(Uw)) has dimension at least m for every

w ∈W such that M(Uw) 6= 0.

By Proposition 6.5(a), ’Dλn,K(Uw) is isomorphic to ¤�D(Am)n,K as an almost

commutative affinoid K-algebra. The result now follows from Corollary 7.4.

�

8. Quillen’s Lemma

Recall that Quillen proved in [65] that the endomorphism ring of a simple

module over an almost commutative k-algebra is algebraic over k. We will

generalise this to show that the endomorphism ring of a simple module over

an almost commutative affinoid K-algebra A is algebraic over K provided that

gr0A is commutative and Gorenstein. In particular, this will apply to our ringsÿ�U(g)n,K for n > 0.

In this section, K will be a complete discrete valuation field of arbitrary

characteristic and A will denote a complete filtered K-algebra such that F0A

is an R-lattice in A and the slice gr0A is a finitely generated commutative

k-algebra. We have in mind almost commutative affinoid K-algebras with

commutative slice, but our proofs do not need to use the filtration on the slice

except to guarantee that the slice is finitely generated as a k-algebra.

8.1. Regular ϕ-lattices and Quillen’s Lemma. Let M be a finitely gener-

ated A-module, and let ϕ ∈ EndA(M). We say that ϕ is simple if every nonzero

element of the K-algebra generated by ϕ acts invertibly on M . Clearly every

nonzero ϕ ∈ EndA(M) is simple whenever M is a simple A-module by Schur’s

Lemma, but there are other interesting examples. We will prove that every

simple endomorphism is algebraic over K.

Suppose now that ϕ is a simple endomorphism of a finitely generated

A-module M . We let K(ϕ) be the subfield of EndA(M) generated by K and

ϕ and note that we can view M as an A−K(ϕ)-bimodule.

Definition. We say that an R-lattice N in M is an F0A-lattice if it is a

finitely generated F0A-submodule of M . We say that an F0A-lattice N in M

is a regular ϕ-lattice if the subring

B := {θ ∈ K(ϕ) | θ(N) ⊆ N}

of K(ϕ) is a discrete valuation ring and an R-lattice in K(ϕ).

We begin along similar lines to Quillen’s original proof. However we can

only do this if M has a regular ϕ-lattice.

Lemma. Suppose that M has a regular ϕ-lattice N . Then the residue field

of B = {θ ∈ K(ϕ) | θ(N) ⊆ N} is an algebraic extension of k.



REPRESENTATIONS OF COMPACT p-ADIC ANALYTIC GROUPS 517

Proof. Let τ be a uniformiser of B, and note that the residue field k′ :=

B/τB of B acts faithfully on N/τN by the definition of B. In particular,

N/τN is nonzero. Since B is an R-lattice in K(ϕ), π is not a unit in B. Hence

π ∈ τB, and N/τN is a finitely generated gr0A = F0A/πF0A-module.

Let s ∈ k′, and consider the k-subalgebra k[s] of the field k′ generated by s.

Because gr0A is commutative by assumption and N/τN is a finitely generated

(gr0A)[s]-module, by the Generic Flatness Lemma [41, Lemme IV.6.9.2], we

can find a nonzero element f ∈ k[s] such that (N/τN)f is a free k[s]f -module.

Now every nonzero element of k′ acts invertibly on N/τN because k′ is a field;

hence every nonzero element of k[s]f acts invertibly on the nonzero free k[s]f -

module (N/τN)f . This forces k[s]f to be a field. Because k[s]f is a finitely

generated k-algebra, it must be algebraic over k by the Nullstellensatz. �

Proposition. Suppose that M has a regular ϕ-lattice N . Then the residue

field of B := {θ ∈ K(ϕ) | θ(N) ⊆ N} is a finite algebraic extension of k.

Proof. Once again let τ be a uniformiser of B. We have already seen that

the residue field k′ of B must be algebraic over k and that k′ acts by automor-

phisms on N/τN and so may be identified with a subfield of Endgr0 A(N/τN).

Let P ∈ Spec(gr0A) be a minimal prime over Anngr0 A(N/τN). Then

if k(P ) is the residue field of (gr0A)P and X := k(P ) ⊗gr0 A N/τN , there is

a k-algebra homomorphism Endgr0 A(N/τN) → Endk(P )(X). Thus we may

identify k′ with a subfield of Endk(P )(X), which is a matrix ring over k(P )

since X is a finite-dimensional k(P )-vector space.

Since gr0A is a finitely generated k-algebra, k(P ) is a finitely generated

field extension of k. Now k′k(P ) is commutative finite-dimensional k(P )-

algebra, since it is a subspace of Endk(P )(X) and since k(P ) lies in the centre

of Endk(P )(X). Thus if Q is a prime ideal in k′k(P ), then L = k′k(P )/Q is

an integral domain and a finite-dimensional k(P )-vector space. Thus L is a

finitely generated field extension of k. It follows from [52, Prop. III.6] that

every subextension and, in particular, the image of k′ in L, is a finitely gener-

ated field extension of k. But k′ is isomorphic to its image in L, and the result

follows. �

Corollary. Let A be a complete filtered K-algebra such that F0A is an

R-lattice in A and the slice gr0A is a finitely generated commutative k-algebra.

Suppose that M is a finitely generated A-module and ϕ ∈ EndA(M) is simple.

If M has a regular ϕ-lattice, then ϕ is algebraic over K .

Proof. Suppose that N is a regular ϕ-lattice in M . Then the residue field

k′ of B := {θ ∈ K(ϕ) | θ(N) ⊆ N} is a finite extension of k by the proposition.

Since B is a discrete valuation ring with maximal ideal τB, the τ -adic filtration

on B is separated, and therefore B is finitely generated R-module by [56,
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Th. I.5.7]. Because B is an R-lattice in K(ϕ), we deduce that K(ϕ) is a

finite-dimensional K-vector space. �

We thank Qing Liu [57] for giving an example that shows it is possible

to find a discrete valuation on the function field K(t) whose residue field is

algebraic (and necessarily infinite-dimensional) over k.

8.2. Microlocalisation. We will next show that if A, M and ϕ satisfy our

conditions and M satisfies one extra hypothesis, then it has a regular ϕ-lattice.

We begin this process by working microlocally.

We fix a complete filtered K-algebra A with commutative slice, a finitely

generated A-module M and a simple ϕ ∈ EndA(M). We fix an F0A-lattice

F0M in M and let P1, . . . , Pr be the distinct minimal primes in gr0A above

Anngr0 A(gr0M). Let

T := gr0A\
r⋃
i=1

Pi.

Since grA = (gr0A)[s, s−1] by Lemma 3.1, T is a multiplicatively closed subset

in grA consisting of homogeneous elements of degree zero, so we can consider

the microlocalisation of A at T :

Q := QT (A)

as in Section 2.4.

Lemma. The slice gr0QT (M) of QT (M) is an Artinian gr0Q-module,

and QT (M) is an Artinian Q-module.

Proof. Some product of the Pi’s annihilates gr0M , so we can find a finite

chain of (gr0A)T -submodules of (gr0M)T with each subquotient isomorphic

to (gr0A/Pi)T for some i. By our choice of T , (gr0A/Pi)T is the residue field

of the local ring of gr0A at Pi, so (gr0M)T has finite length.

It follows that grQT (M) ∼= (gr0M)T [s, s−1] has the descending chain

condition on graded grQ-modules. Since QT (M) is complete with respect to its

filtration, it follows from [56, Prop. I.7.1.2] that it is an Artinian Q-module. �

Now by functoriality of microlocalisation, every A-module endomorphism

of M extends to a Q-module endomorphism of QT (M). We can therefore view

QT (M) as a Q − K(ϕ)-bimodule. We fix a choice of a simple Q − K(ϕ)-

bimodule quotient V of QT (M) and note the lemma implies that V is an

Artinian Q-module.

8.3. Finding a maximal lattice preserver. We retain the notation of the

previous section.
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Definition. Let L be an R-lattice in V . We say that L is an F0Q-lattice

if it is a finitely generated F0Q-submodule of V . We say that a subring B of

K(ϕ) is a lattice preserver if BL ⊆ L for some F0Q-lattice L in V .

Lemma. V has at least one F0Q-lattice. For any F0Q-lattice L in V ,

L/πL has finite length and L has Krull dimension 1 as a F0Q-module.

Proof. Let L0 be the image of F0QT (M) in V . Since F0Q is Noetherian

and π-adically complete, the proof of Proposition 3.2(a) shows that L0 is an

R-lattice in V and is therefore a F0Q-lattice. Since L0/πL0 is a quotient of

gr0QT (M), it has finite length by Lemma 8.2. If L is another F0Q-lattice in

V , then by the arguments in the proof of [36, Prop. 1.1.2], L/πL also has finite

length; indeed, the class of L/πL in the Grothendieck semigroup of gr0Q-

modules equals the class of L0/πL0. The last statement now follows from [56,

Prop. I.7.1.2]. �

We fix an F0Q-lattice L0 in V and let L be the set of F0Q-lattices in V

contained in L0 but not contained in πL0. Let P denote the set of lattice

preservers in K(ϕ). Notice that every lattice preserver preserves a lattice in L
since for every finitely generated F0Q-submodule L of V , there is an integer a

such that πaL ∈ L.

Proposition. The set P has a maximal element.

Proof. By the lemma, P is nonempty because it contains the subring of

K(ϕ) consisting of elements that preserve L0. By Zorn’s Lemma, it will be

enough to prove that P is chain complete.

Let {Bα}α∈A be a chain in P. For each α ∈ A, let Lα be the largest

F0Q-lattice in L such that BαLα ⊆ Lα. Lα exists because L0 is a Noetherian

F0Q-module.

Now if Bα ⊆ Bβ, then BαLβ ⊆ Lβ so Lβ ⊆ Lα by the maximality of Lα.

Hence the Lα form a descending chain in L. We claim that L∞ :=
⋂
Lα is

also in L. Since L0 has Krull dimension 1 as a F0Q-module by the lemma,

the chain {Lα}α∈A has deviation at most 1 and so any well-ordered subchain

has order-type < ω2. By passing to a final segment of the chain {Lα}α∈A we

may assume that its order-type is either ω or a singleton. In the latter case

L∞ = Lα for some α so L∞ ∈ L, and in the former case the claim follows from

Lemma 2.7.

Finally the subring B∞ of K(ϕ) consisting of elements that preserve L∞
is an upper bound for {Bα}α∈A in P: if α ∈ A, then BαL∞ ⊆ BβLβ ⊆ Lβ for

all β > α, so BαL∞ ⊆
⋂
β>α Lβ = L∞ and Bα ⊆ B∞. �

8.4. Theorem. Every maximal lattice preserver is a discrete valuation

ring.



520 KONSTANTIN ARDAKOV and SIMON WADSLEY

Proof. Let B be a maximal element of P, and choose L ∈ L such that

BL ⊆ L. Note that the maximality of B forces it to be equal to {θ ∈ K(ϕ) :

θL ⊆ L}.
First we show that B is local. We pick f ∈ B and show that one of

f and 1 − f must be a unit in B. Since L is π-adically complete and since

each L/πaL has finite length as a F0Q-module by Lemma 8.3, it follows from

Fitting’s Lemma (see the proof of [30, Th. I.10.4]) that L decomposes as U⊕W ,

where

U = {u ∈ L | lim
i→∞

f i(u) = 0}

and

W =
⋂
i>0

f iL.

Because B is commutative, both U and W are B-modules as well as

F0Q-modules. Thus UK ⊕WK is a decomposition of V = LK into a direct

sum of Q−K(ϕ)-bimodules. But V is a simple bimodule by construction (see

Section 8.2), so either U = 0 or W = 0. If U = 0, then f is injective and

W = L, so f is surjective; thus f−1 ∈ B. Otherwise W = 0 and U = L, so

limn→∞ f
n = 0 and 1− f is a unit in B. Hence B is a local ring with maximal

ideal m, say.

Next, we will show that m is invertible as a fractional ideal. To that end,

define m−1 = {x ∈ K(ϕ) | xm ⊆ B}. We will show that m−1m is B; certainly

it is contained in B and contains m since 1 ∈ m−1. Since m is a maximal

ideal in B, it thus suffices to show that m−1m 6= m. Now mL is an F0Q-

submodule of L and so is finitely generated as such since F0Q is Noetherian.

Thus we may find f1, . . . , fu ∈ m such that mL =
∑u
i=1 fiL. Let J be the

ideal in B generated by f1, . . . , fu. The argument above shows that each fi
acts topologically nilpotently on L, so we can find an integer m > 1 such that

JmL 6 πL. Choose m to be the least such; then we can find x ∈ Jm−1 such

that xL * πL. Thus x
π is not in B but x

πmL 6 L, and therefore x
π ∈ m−1.

If m−1m = m, then x
πmL 6 mL, and the subring B′ of K(ϕ) generated by

B and x
π preserves mL. But then B′ ∈ P and B′ strictly contains B, which

contradicts the maximality of B.

Now every invertible fractional ideal in an integral domain is a finitely

generated projective module of rank one by the Dual Basis Lemma [59, Lemma

3.5.2]. Since B is local, it follows that m is a principal ideal generated by τ ,

say. Moreover we have seen that τ acts topologically nilpotently so the m-adic

filtration of B is separated. It follows that for every nonzero element x of B,

there is a nonnegative integer n such that x ∈ (τn)\(τn+1). Thus x = yτn for

some unit y ∈ B. Therefore B is a discrete valuation ring. �
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8.5. Dimension theory. We retain the notation of the previous subsec-

tions, and we also impose the additional condition that gr0A is Gorenstein.

We will need this so that we can apply Gabber’s maximality principle. We

recall the statement of this now.

Theorem (Gabber’s Maximality Principle). Suppose that C is an Auslan-

der-Gorenstein ring, and let X be a finitely generated pure C-module contained

in a C-module Y (not necessarily finitely generated) such that every finitely

generated submodule of Y is pure. Then Y contains a unique largest finitely

generated submodule Z containing X such that

jC(Z/X) > jC(X) + 2.

Proof. See [15, Th. 1.14]. �

We will also need the following preparatory results.

Lemma. Suppose that gr0A is Gorenstein and N is a finitely generated

F0A-module. Then

(a) F0A is Auslander-Gorenstein.

(b) If N is π-torsion-free, then jF0A(N) = jA(NK).

(c) If L is an F0A-lattice in M and N is a submodule of M/L such that

QT (N) = 0, then jF0A(N) > jF0A(L) + 2.

Proof. Part (a) follows from Proposition 2.5(b) since grF0A ∼= (gr0A)[s].

(b) First notice that ExtiA(NK , A) ∼= ExtiF0A(N,F0A)K for each i > 0.

Thus j := jF0A(N) 6 jA(NK), and to prove the equality we must show that

ExtjF0A
(N,F0A) is not π-torsion. Since dF0A is finitely partitive by Proposi-

tion 2.5(a), we have that jF0A(N/πN) > j. By considering the long exact

sequence for ExtF0A(−, F0A) associated to the short exact sequence 0→ N →
N → N/πN → 0, we deduce that π : ExtjF0A

(N,F0A) → ExtjF0A
(N,F0A) is

an injection.

(c) Since N ⊆ M/L is finitely generated, it is contained in π−mL for

some m > 1. By considering the filtration on N induced by L < π−1L <

· · · < π−mL, we may reduce to the case when m = 1, so that πN = 0.

Now N is a gr0A-submodule of π−1L/L ∼= L/πL, so Supp(N) is contained in

Supp(L/πL). Since L and F0M are both F0A-lattices in M , Supp(L/πL) =

Supp(F0M/πF0M) by [56, Chapter III, Lemma 4.1.9], so L/πL is annihilated

as a gr0A-module by some product of the minimal primes P1, . . . , Pr above

Anngr0 A(gr0M). On the other hand, QT (N) = 0 and πN = 0 together imply

that N is a T -torsion gr0A-module by Corollary 2.4, so tN = 0 for some t ∈ T .

Since gr0A is Gorenstein and t /∈ Pi for all i,

jgr0 A(gr0A/〈Pi, t〉) > jgr0 A(gr0A/Pi) for all i
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by Proposition 2.5(a). Choose a finite filtration of π−1L/L by gr0A-submodules

where each subquotient is killed by some Pi. The restriction of this filtra-

tion to N ⊆ π−1L/L then shows that jgr0 A(N) > mini jgr0 A(gr0A/Pi) =

jgr0 A(L/πL).

We can now apply the Rees Lemma [1, Lemma 1.1] twice to obtain

jF0A(N) = jgr0 A(N) + 1 > jgr0 A(L/πL) + 2 = jF0A(L/πL) + 1.

Because F0A is Auslander-Gorenstein by (a) and dF0A is finitely partitive by

Proposition 2.5(a),

jF0A(L/πL) > jF0A(L) + 1,

and the result follows. �

8.6. Finding a global regular ϕ-lattice.

Proposition. Suppose that M is a simple A−K(ϕ)-bimodule. Then M

has a regular ϕ-lattice.

Proof. Since QT (M) surjects onto V , the natural map φ : M → V is

nonzero, and therefore kerφ is a proper A-submodule of M . Since V is a

K(ϕ)-module quotient of QT (M), kerφ is in fact an A −K(ϕ)-subbimodule.

Therefore by our assumption, φ is an injection, and we will use it to identify M

with an A-submodule of V . By Proposition 8.3 we can find a maximal element

B of P. Let L ∈ L be an F0Q-lattice preserved by B; we will show that L∩M
is the required regular ϕ-lattice.

Let S = {s ∈ A : gr s ∈ T} be the microlocal Ore set arising from

T ⊆ gr0A. Alternatively put, S is just the preimage of T in F0A; since 1 ∈ T ,

we see that 1 + πF0A ⊆ S, and therefore π is in the Jacobson radical of F0AS .

Since MS is dense in QT (M), (L∩MS)+πL = L and so L = F0Q.(L∩MS).

Since also L∩MS = F0AS .(L∩M), L is generated by L∩M as an F0Q-module.

Because L is Noetherian as an F0Q-module, we can find a finitely generated

F0A-submodule X of L ∩M such that F0Q.X = L. Since L ∩M generates

M as a K-vector space, by enlarging X if necessary we may assume that X is

also an R-lattice in M .

Let N be the largest A-submodule of M with dA(N) < dA(M). Then

N is a proper characteristic submodule of M and is therefore stable under

every element of K(ϕ) ⊆ EndA(M). Since M is a simple A−K(ϕ)-bimodule,

N = 0, and so M is pure. Now F0A is Auslander-Gorenstein by Lemma 8.5(a),

so every finitely generated F0A-submodule of M is pure by Lemma 8.5(b).

Thus M contains a unique largest finitely generated submodule Z containing

X such that jF0A(Z/X) > jF0A(X) + 2 by Gabber’s Maximality Principle,

Theorem 8.5. We will show that L ∩M is contained in Z and so is finitely

generated over F0A since F0A is Noetherian.
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Suppose that X ′ is any finitely generated F0A-submodule of L ∩M con-

taining X. Then QT (X ′) = QT (X) = L; thus QT (X ′/X) = 0, and so

jF0A(X ′/X) > jF0A(X) + 2

by Lemma 8.5(c). Therefore X ′ 6 Z. This means that every finitely generated

submodule of L ∩M is contained in Z, and so L ∩M is itself a submodule of

Z as claimed.

Finally, since L = F0Q.(L ∩M),

{θ ∈ K(ϕ) | θ(L ∩M) ⊆ L ∩M} = {θ ∈ K(ϕ) | θ(L) ⊆ L}

is a discrete valuation ring by Theorem 8.4. �

We can finally state and prove our version of Quillen’s Lemma.

Corollary. Let A be an almost commutative affinoid K-algebra with

commutative Gorenstein slice. Then every simple endomorphism of every

finitely generated A-module is algebraic over K .

Proof. As we explained in Section 8.1, we can view M as an A −K(ϕ)-

bimodule. Since M is a Noetherian A-module, we can find a simple A−K(ϕ)-

bimodule quotient M of M ; note that the A-linear endomorphism ϕ of M

induced by ϕ is still simple. Then by Proposition 8.6, M has a regular ϕ-lattice,

so by Corollary 8.1, ϕ is algebraic over K. But the natural map K(ϕ)→ K(ϕ)

is an isomorphism since K(ϕ) is a field, so ϕ is also algebraic over K. �

Remarks. (a) The same proof shows that if A is any complete filtered

K-algebra such that F0A is an R-lattice in A and gr0A is a finitely gener-

ated Gorenstein commutative k-algebra, then the conclusion of the corol-

lary holds.

(b) It may be possible to relax the assumption that gr0A is Gorenstein by

using the version of Gabber’s maximality principle found in [81] based

around Auslander dualising complexes. However we do not know whether

all almost commutative affinoid K-algebras have an Auslander dualising

complex.

9. Modules over completed enveloping algebras

9.1. Finite-dimensional modules. We begin our study of finitely generated

modules over completed enveloping algebras with the following rather general

result.

Proposition. Let A be a complete doubly filtered K-algebra such that

Gr(A) is a connected graded polynomial algebra over k, and let M be a finitely

generated A-module.

(a) M is finite-dimensional over K if and only if dim Ch(M) = 0.
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(b) If A has at least one nonzero finite-dimensional module V , then inj.dimA =

dim Gr(A) and d(M) = dim Ch(M).

Proof. (a) Choose a good double filtration (F0M,F• gr0M) on M using

Proposition 3.2(b). Then dim Ch(M) = 0 if and only if Gr(M) is finite-

dimensional over k. Now if Gr(M) is finite-dimensional over k, then the double

filtration is good forM as a doubly filteredK-module, and thereforeM is finite-

dimensional over K by Lemma 3.2(a). Conversely, if M is finite-dimensional

over K, then F0M has to be finitely generated over R by Proposition 2.7 be-

cause it is an R-lattice in M , so gr0M and Gr(M) are finite-dimensional over k.

(b) By part (a), dim Ch(V ) = 0, so dim Gr(A) = jA(V ) by Theorem 3.3.

Clearly jA(V ) 6 inj.dimA 6 gldA. Now π is a central regular element of F0A

contained in the Jacobson radical of F0A and A = (F0A)π. Therefore,

gldA 6 gldF0A− 1 = gld gr0A 6 gld Gr(A) = dim Gr(A)

by [59, §7.4.4, 7.3.7, 7.5.3(iii)] and [56, Cor. I.7.2.2]. The first statement fol-

lows, and we obtain the second from Theorem 3.3. �

Now let g be an R-Lie algebra that is free of finite rank as an R-module,

and let A denote the almost commutative affinoid K-algebra ÿ�U(g)n,K . Then

Gr(A) ∼= S(gk) is commutative and Gorenstein with dim Gr(A) = dim gk, and

we always have the trivial A-module K = A/AgK that is one-dimensional over

K. Thus we obtain the following

Corollary. Let M be a finitely generated A = ÿ�U(g)n,K-module. Then

d(M)=dim Ch(M) and d(M)=0 if and only if M is finite-dimensional over K .

Note the proposition fails for the affinoid Weyl algebras of Section 7.1

because these never have any nonzero modules that are finite-dimensional over

K by Bernstein’s Inequality, Theorem 7.4.

9.2. Finite-dimensional modules. We now continue with the notation and

assumptions of Section 6.7. Since the usual enveloping algebra U(gK) is a

K-subalgebra of A = ÿ�U(g)n,K , we can view every A-module as a U(gK)-module

by restriction.

Proposition. Restriction induces an equivalence of abelian categories be-

tween finite-dimensional A-modules and finite-dimensional U(gK)-modules.

Proof. Let V be a finite-dimensional U(gK)-module. By Weyl’s Theorem

[27, Th. 1.6.3], V is a direct sum of simple U(gK)-submodules, and each simple

submodule has a highest weight by [27, Prop. 7.2.1(i)]. Now the proof of [44,

Th. 27.1(b)] shows that we can find an R-lattice L in V that is stable under

U(g). Hence it is also stable under U(g)n. Since L is finitely generated over
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R, it is π-adically complete and is therefore an F0A = ÷U(g)n-module. Hence

V is also an A-module, so the restriction functor is essentially surjective on

objects. This functor is clearly faithful, so it remains to show that it is full.

Let V,W be two finite-dimensional A-modules, and let f : V → W be a

U(gK)-module homomorphism. Choose g-stable R-lattices L⊆V and M⊆W .

Since L is finitely generated over R, πmf(L) ⊆ M for some integer m, so

f is continuous. Since U(gK) is dense in A, it follows that f is actually an

A-module homomorphism. �

Recall the set of integral dominant weights Λ+ = Nω1 ⊕ · · · ⊕ Nωl ⊆ h∗

from Section 6.7 and the isomorphism i : t
∼=−→ h from Section 4.10.

Corollary. Every finite-dimensional A-module is semisimple. For each

λ ∈ Λ+, there is a simple finite-dimensional A-module L(λ) with highest weight

λ◦ i uniquely determined up to isomorphism, and all finite-dimensional simple

A-modules are of this form.

Proof. This follows from [27, §1.6.3, 7.1.11, 7.2.2]. �

We could have also constructed a g-stable R-lattice in each L(λ) by con-

sidering the co-ordinate ring O(B̃) of the basic affine space B̃ = G/N (see

Section 4.7). This is a Λ+-graded g-stable subring of the usual representation

ring O(B̃K) ∼=
⊕
λ∈Λ+ L(λ), so its homogeneous components give the required

g-stable lattices.

9.3. The centre. Recall the Harish-Chandra homomorphism φ : U(g)G

−→ U(t) from Section 4.10. This is a morphism of deformable R-algebras,

and applying the deformation and π-adic completion functors, we obtain the

deformed Harish-Chandra homomorphism’φn,K : ÿ�U(g)Gn,K −→ ÿ�U(t)n,K ,

which we will denote by φ̂ : Z → ‹Z in an attempt to alleviate the notation.

Now the Weyl group W of G acts on t∗K by

w • λ = w(λ+ ρ′)− ρ′,

where ρ′ := i∗(ρ) = ρ ◦ i ∈ t∗ denotes the image of ρ ∈ h∗ under the dual

isomorphism i∗ : h∗
∼=−→ t∗. In fact, ρ′ is equal to half the sum of the T-roots

on n+. If we view U(t)K as an algebra of polynomial functions on t∗K , we

get a corresponding ‘dot’-action of W on U(t)K . This action preserves the

R-subalgebra U(t)n of U(t)K and therefore extends to a natural ‘dot’-action

of W on ‹Z = ÿ�U(t)n,K .

Proposition. Suppose that p is a very good prime for G.

(a) The algebra Z is contained in the centre of A.



526 KONSTANTIN ARDAKOV and SIMON WADSLEY

(b) The map φ̂ is injective, and its image is the ring of invariants ‹ZW•.

(c) The algebra ‹Z is free of rank |W| as a module over ‹ZW•.

(d) ‹ZW• is isomorphic to a Tate algebra K〈S1, . . . , Sl〉 as a complete doubly

filtered K-algebra.

Proof. (a) The algebra U(g)GK is central in U(g)K by [44, Lemma 23.2], so

it is also contained in the centre of A since U(g)K is dense in A. But U(g)GK is

dense in Z, so Z is also central in A.

(b) By the classical result of Harish-Chandra [27, Th. 7.4.5], φ sends U(g)GK
onto U(t)W•K , so φ̂(Z) is contained in ‹ZW•. This algebra is complete and doubly

filtered, and Gr(‹ZW•) can be naturally identified with S(tk)
Wk .

Consider the morphism of complete doubly filteredK-algebras α : Z→ ‹ZW

induced by φ̂. Its associated double graded map Gr(α) : Gr(Z) → Gr(‹ZW)

can naturally be identified with the isomorphism ψk : S(gk)
Gk

∼=−→ S(tk)
Wk

by Corollary 3.7 and Proposition 6.9. Hence Gr(α) is an isomorphism, and

therefore by completeness, α is also an isomorphism.

(c) By [26, Th. 2(c)], S(tk) is a free graded S(tk)
Wk -module of rank |W|.

It follows from Lemma 3.2(a) that ‹Z is finitely generated over Z, and it is easy

to see that in fact it’s free of rank |W|.
(d) By [26, Cor. du Théorème 3], S(tk)

Wk is a polynomial algebra in l

homogeneous generators over k. Fix some (double) lifts s1, . . . , sl ∈ U(t)W•n of

these generators, and define an R-algebra homomorphism R[S1, . . . , Sl]→ ‹ZW•

by sending Si to si. This extends to an isomorphism K〈S1, . . . , Sl〉 → ‹ZW• of

complete doubly filtered K-algebras. �

It was shown in [2, Th. 5.2.1] that, in fact, Z is the whole centre of A

when n = 0. We plan to show in a later paper that this is true for any n > 0.

From now on we will assume that n > 0 and that p is a very good prime

for G.

9.4. Z-locally finite modules. Let M be an A-module. Since Z is central

in A, the action of Z on M induces an K-algebra homomorphism

χM : Z → EndA(M),

which we call the central character of M .

Definition. We say that M is Z-locally finite if dimK Z.m < ∞ for all

m ∈M .

It is easy to see that if M is finitely generated over A, then M is Z-locally

finite if and only if dimK ImχM < ∞. It is also clear that Z-locally finite

modules are closed under taking submodules, quotient modules and extensions.

We are now ready to prove Theorem D from the introduction.
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Theorem. Let M be a simple A-module. Then ImχM is a finite field

extension of K , so M is Z-locally finite.

Proof. By Schur’s Lemma, EndA(M) is division ring. It is algebraic over

K by Corollary 8.6 since n > 0 by assumption. So ImχM is an integral domain

that is algebraic over K; it is therefore a field, and kerχM is a maximal ideal

of Z. But Z ∼= K〈S1, . . . , Sl〉 is a Tate algebra by Proposition 9.3, and every

maximal ideal of Z has finite codimension over K by [31, Th. 3.2.1(5)]. �

Let M be a finitely generated A-module. By applying the theorem to

a simple factor module of M , we see that M has a nonzero Z-locally finite

quotient. In fact, a stronger statement is true.

Proposition. Let M be a finitely generated A-module with d(M) > 1.

Then M has a Z-locally finite quotient N such that d(N) > 1.

Proof. Since d(M) = dim Ch(M) > 1 by Corollary 9.1, gr0M is infinite-

dimensional over k. We can therefore find an element f ∈ gk such that

(gr0M)f 6= 0. Hence Qf (M) is a finitely generated nonzero module over

the microlocalisation Qf (A), and we may choose some simple quotient W of

Qf (M) as a Qf (A)-module.

The degree zero part F0Qf (A) is an R-lattice in Qf (A), and the slice

gr0Qf (A) is isomorphic to the localisation (gr0A)f ∼= S(gk)[t]/〈tf − 1〉. So

gr0Qf (A) is a finitely generated Gorenstein commutative k-algebra, which

means that it is possible to apply Corollary 8.6 to the algebra Qf (A). The

central subalgebra Z of A is still central in Qf (A) and therefore acts on W by

Qf (A)-module endomorphisms. Therefore W is Z-locally finite by the proof

of the theorem above.

Now let N be the image of M in W , and suppose for a contradiction that

d(N) = 0. Then N is finite-dimensional over K by Proposition 9.1, so we can

find a g-stable lattice L inside N by Section 9.2. Since n > 0, πngL 6 πL, so

gr0A = S(gk) acts on gr0N = L/πL through its augmentation. Since f ∈ gk,

it follows that Qf (N) = 0. This is a contradiction, because Qf (N) surjects

onto the simple Qf (A)-module W . Thus N is the required Z-locally finite

quotient of M that satisfies d(N) > 1. �

9.5. Base change. We want to apply Theorem 6.12 and Corollary 6.11

to our finitely generated Z-locally finite A-module M . However ImχM could

be strictly bigger than K; also we need to produce a ’Uλn,K-module for some

appropriate weight λ ∈ h∗K . We will solve both problems by passing to a finite

field extension of K.

For any finite field extension K ′ of K with ring of integers R′, let π′ ∈ R′
be a uniformizer and let e be the ramification index of K ′ over K, so that
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πR′ = π′eR′. Let G′ = R′×RG, H′ := R′×RH, g′ = R′⊗R g, t′ = R′⊗R t and

h′ = R′⊗Rh be the corresponding base-changed objects. Since t has finite rank

over R, we will identify t′∗ := HomR′(t
′, R′) with R′ ⊗R t∗. The isomorphism

i : t
∼=−→ h extends to an isomorphism i : t′

∼=−→ h′.

Lemma. Let K ′/K be a finite field extension. Then

(a) K ′ ⊗K Z ∼=¤�U(g′)G
′

ne,K′ .

(b) K ′ ⊗K ‹Z ∼= ⁄�U(t′)ne,K′ .

Proof. We know that U(g′)G
′ ∼= R′ ⊗R U(g)G by [49, §I.2.10(3)]. Now

both parts follow from Lemma 3.9(c). �

Let A′ := K ′ ⊗K A, and note that A′ ∼= ¤�U(g′)en,K′ by Lemma 3.9(c).

Recall the central quotients ÷Uλen,K′ of ¤�U(g′)en,K′ from Section 6.10 for each

weight λ ∈ π′−neh′∗.

Theorem. Let M be a finitely generated Z-locally finite A-module. Then

there exists a finite extension K ′ of K with ramification index e, a weight

λ ∈ π′−neh′∗ and a finitely generated ÷Uλen,K′-module N such that d(M) = d(N).

Proof. Choose a submodule M0 of M maximal subject to having d(M/M0)

= d(M). Replacing M by M/M0 we may assume that M is d-critical in the

sense that d(M/M ′) < d(M) for any nonzero proper A-submodule M ′ of M .

In particular, M must be d-pure: d(M ′) = d(M) for any nonzero submodule

M ′ of M .

Let P := kerχM = AnnZ(M), and suppose that xy ∈ P for some x, y ∈ Z.

If x /∈ P , then xM is a nonzero submodule of M , so d(xM) = d(M). Because

xyM = 0, multiplication by x induces an A-module surjection M/yM�xM ,

whence d(M/yM)>d(M). This is only possible if yM=0 since M is d-critical.

Hence P is a prime ideal in Z; since M is Z-locally finite, P is in fact maximal.

Next, ‹Z is a finitely generated Z-module via φ̂ by Proposition 9.3, so ‹Z is

an integral extension of Z. Thus by [6, Cor. 5.9, Theorem 5.10], for example,

we may find a maximal ideal m of ‹Z with φ̂−1(m) = P and define K ′ := ‹Z/m,

a finite extension of K. Extend the natural surjection ‹Z � K ′ to a K ′-algebra

homomorphism θ : K ′ ⊗K ‹Z → K ′. By the lemma, K ′ ⊗K ‹Z ∼= ⁄�U(t′)ne,K′ is

a Tate algebra, so θ sends the power-bounded subset π′net′ of K ′ ⊗K ‹Z to the

ring of integers R′ in K ′, and we can find an element λ ∈ π−neh′∗ such that

λ ◦ i is the restriction of θ to π′net′.

Now N := K ′ ⊗Z/P M is a finitely generated A′-module, and Lemma 2.6

tells us that dA′(N) = dA(N) = dA(M). By the lemma above, K ′ ⊗K Z ∼=¤�U(g′)G
′

ne,K′ , and this algebra acts on N via λ◦ i◦(1⊗ φ̂) by construction. It now
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follows from Theorem 6.10(a) that N is a finitely generated ÷Uλen,K′-module, as

required. �

9.6. Using the W -action. Theorem 9.5 tells us that after making an ap-

propriate base change, we may assume that our finitely generated Z-locally

finite A-module has a K-rational central character λ ◦ i ◦ φ̂. However Corol-

lary 6.11 requires λ to be ρ-dominant; our next result shows that we may

achieve this by using the action of the Weyl group.

Lemma. For any weight µ ∈ h∗K , there exists w ∈ W such that w(µ) is

dominant.

Proof. Let us define a binary relation > on h∗K by λ > µ if and only if λ−µ
is a linear combination of positive roots with nonnegative integer coefficients.

Since K has characteristic zero, this is a partial order on h∗K . Since W is finite,

we can find an element λ = w(µ) in the W-orbit of µ that is maximal with

respect to this ordering. If λ(h) ∈ {−1,−2, · · · } for some positive coroot h ∈ h,

then taking α to be the corresponding positive root, we have that

sα(λ) = λ− λ(h)α

lies in the W-orbit of µ and sα(λ) > λ, which contradicts the maximality of λ.

So λ(h) /∈ {−1,−2, · · · } for any positive coroot h ∈ h, and hence λ = w(µ) is

dominant. �

9.7. Springer fibres. We will assume throughout Sections 9.7–9.9 that the

field k is algebraically closed. We will identify the k-points of the scheme

g∗ = Spec(SymR g) with the dual of the k-vector space gk; thus g∗(k) = g∗k. We

will also abuse notation and denote the map on k-points f(k) : X(k)→ Y (k)

induced by a morphism of R-schemes f : X → Y simply as f : X(k)→ Y (k).

With these notations, the diagram from Section 5.6 on the level of k-points

looks as follows: fiT ∗B(k)

τ
{{vvv

vv
vv

vv

β $$IIIIIIIII

B(k) g∗(k).

We are interested in the Springer fibres, which by definition are the sets β−1(y)

as y runs over g∗k; these are algebraic varieties over k.

Let G,B,N denote the sets of k-points of G,B,N respectively, and let us

identify the set B(k) of k-points of the flagR-scheme BwithG/B={gB : g∈G}.
The group G acts on gk and on g∗k via the adjoint and coadjoint actions, re-

spectively; if S is a subset of gk, let S⊥ = {λ ∈ g∗k : λ(S) = 0} denote its

annihilator in g∗k. Note that nk ⊆ bk ⊆ gk are the Lie algebras of the algebraic

groups N ⊆ B ⊆ G.
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Lemma. Let y ∈ g∗k. Then τβ−1(y) is equal to {gB ∈ B(k) : y ∈ (g.nk)
⊥}.

Proof. Let gB ∈ B(k). The geometric fibre of the morphism of vector

bundles ϕ : OB ⊗ g → ‹TB used in Section 4.8 to define the enhanced moment

map β is just the action map gk → TgN (G/N) of gk on the homogeneous space

G/N at the point gN ∈ G/N . Because the action map is surjective by [16,

Prop. II.6.7], this tangent space can be naturally identified with gk/g.nk. It

follows that the restriction of β to τ−1(gB) = Â�T ∗gB(G/B) is the dual of this

action map, which we will identify with the inclusion (g.nk)
⊥ ↪→ g∗k. With

these identifications in place, it is now clear that gB ∈ τβ−1(y) if and only if

y ∈ (g.nk)
⊥. �

9.8. Nilpotent orbits. We define the nilpotent cone in g∗k as the set of

zeros of Gk-invariant polynomials in S(gk) = O(g∗k) with no constant term:

N ∗ = V (S(gk)
Gk
+ ). Thus,

O(N ∗) = S(gk)⊗S(gk)Gk k.

The nilpotent cone N = V (S(g∗k)
Gk
+ ) in gk is defined similarly. Since we are

assuming that the characteristic of k is very good for G, there is a nondegener-

ate G-invariant bilinear form on gk that induces a G-equivariant isomorphism

κ : g∗k → gk (see [14, §3.1.2]). This isomorphism maps N ∗ onto N .

The nilpotent cone N is a union of G-orbits in gk called the nilpotent

orbits. The corresponding G-orbits in N ∗ are called the coadjoint nilpotent

orbits. It turns out that these are very closely connected with Springer fibres.

The next result is well known, but we give the proof for the benefit of the

reader.

Proposition. For any y ∈ N ∗, we have dimβ−1(y) 6 dimB− 1
2 dimG.y.

Proof. Note first that dim τβ−1(y) = dimβ−1(y) for all y ∈ g∗k because

the map τ is clearly injective on the Springer fibre β−1(y). Since we have

been assuming from Section 6.7 onwards that G is simply-connected, a result

of Springer [7, Cor. 9.3.4] tells us that there is a G-equivariant isomorphism

η : N → U , where U ⊆ G is the variety of unipotent elements.

Let u = η(κ(y)) ∈ U . Since κ(n⊥k ) = bk, Lemma 9.7 implies that

τβ−1(y) = {gB ∈ G/B : κ(y) ∈ g.bk} = {gB ∈ G/B : u ∈ gBg−1}.

Thus τβ−1(y) is the set of fixed points (G/B)u of the action of u on G/B, and

it follows from [78, Th. 3.5(a)] that

dim τβ−1(y) = dim(G/B)u 6
1

2
(dimCG(u)− l),

where CG(u) is the centralizer of u in G and l is the rank of G. The result is

now clear because dimCG(u) = dimG− dimG.u = 2 dimB+ l− dimG.y. �
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Remarks. (a) It is possible to give a slightly more direct, but longer, proof

of this result mimicking the proof of [78, Th. 3.5] (see also [45, Th. 6.8]),

using the Steinberg variety of triples

{(b1, b2, z) ∈ B(k)× B(k)×G.κ(y) : z ∈ b1 ∩ b2},

where we now think of B(k) as the set of G-conjugates of bk in gk.

(b) In fact, under our assumptions on p, equality always holds in the proposi-

tion. This is the ‘Dimension Formula,’ originally a conjecture of Grothen-

dieck, and it was proven by Steinberg [78] as a consequence of the Bala-

Carter classification of unipotent classes. The book [45] gives a good

overview of this subject; see also [64] and [29].

9.9. The minimal nonzero nilpotent orbit. Let gC be the complex semisim-

ple Lie algebra with the same root system Φ as our group G, and let GC denote

the adjoint complex algebraic group associated with gC. It is known [24, Re-

mark 4.3.4] that there is a unique nonzero nilpotent GC-orbit in g∗C of minimal

dimension, called the minimal nilpotent orbit. The dimension of this orbit is

even integer since each coadjoint GC-orbit is a symplectic manifold.

Definition. We let r denote half the dimension of the minimal nilpotent

orbit:

r :=
1

2
min{dimGC.y : 0 6= y ∈ gC}.

The values of r are well known. We took the following table from [74,

§1.6]:

Φ Al Bl Cl Dl E6 E7 E8 F4 G2

dimG l2 + 2l 2l2 + l 2l2 + l 2l2 − l 78 133 248 52 14

r l 2l − 2 l 2l − 3 11 17 29 8 3.

Pommerening proved that structure of nilpotent coadjoint orbits in good char-

acteristic is the same as over C. However we will only need to know the fol-

lowing consequence of the Bala-Carter-Pommerening classification of nilpotent

orbits.

Proposition. For any nonzero y ∈ N ∗, 1
2 dimG.y > r.

Proof. By [7, §9.2.1], N is the set of nilpotent elements in gk. In view

of the G-equivariant isomorphism κ : g∗k → gk, the required inequality now

follows from [64, Ths. 2.6 and 2.7]. �

9.10. A lower bound for d(M). We now return to our original setting,

dropping the assumption that the field k is algebraically closed. We can finally

state and prove the analogue of Smith’s Theorem for modules over π-adically

completed enveloping algebras.
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Theorem. Suppose that n > 0. Let M be a finitely generated ÿ�U(g)n,K-

module with d(M) > 1. Then d(M) > r.

Proof. By Proposition 9.4, we may assume that M is Z-locally finite.

By passing to a finite field extension of K if necessary and applying Theo-

rem 9.5, we may further assume that M is a ’Uλn,K-module for some λ ∈ h∗K .

Since λ ◦ (i ◦ φ̂) = (w • λ) ◦ (i ◦ φ̂) for any w ∈ W by Proposition 9.3(b),

we may also assume that λ is ρ-dominant by applying Lemma 9.6. Thus

Gr(M) is a Gr(’Uλn,K) ∼= S(gk) ⊗S(gk)Gk k-module by Theorem 6.10(c), and if

M := Locλ(M) is the corresponding coherent ’Dλn,K-module, then β(Ch(M)) =

Ch(M) by Corollary 6.11.

Let k be an algebraic closure of k, and let X,Y denote the k-points of

Ch(M) and Ch(M), respectively. These are algebraic varieties over k such

that dimX = dim Ch(M) and dimY = dim Ch(M). Moreover, Y ⊆ N ∗

because Gr(M) is annihilated by S(gk)
Gk
+ , and β : fiT ∗B(k) → g∗(k) maps X

onto Y .

Let f : X → Y be the restriction of β to X. Since dimY = d(M) > 1 by

Corollary 9.1, we can find a nonzero smooth point y ∈ Y . Since f is surjective,

we can find a smooth point x ∈ f−1(y). Considering the map dfx : TX,x → TY,y
induced by f on Zariski tangent spaces shows that

dimY + dim f−1(y) > dimTX,x.

Now dimTX,x > dimB by Bernstein’s Inequality, Theorem 7.5. Hence,

d(M) = dim Ch(M) = dimY > dimB − dimβ−1(y)

> 1
2 dimG.y

> r

by Propositions 9.8 and 9.9. �

We believe we can show that the bound in this theorem is best possible

as it is in the classical result of Smith [74, §3.10]. However we will leave this

for another paper.

10. Microlocalisation of Iwasawa algebras

10.1. Completed group rings. We now specialize further and assume that

the uniformizer π of our complete discrete valuation ring R is the prime num-

ber p. We make no assumptions about the residue field k of R, except that it

is of characteristic p. We let v : R → Z ∪ {∞} be the discrete valuation of R,

normalized by v(p) = 1. Note that these assumptions imply that R contains a

canonical copy of the p-adic integers Zp.
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Whenever G is a profinite group, we will denote its completed group ring

with coefficients in R by

RG := R[[G]] = lim
←−

R[G/N ].

Here N runs over all the open normal subgroups N of G. When G is a compact

p-adic Lie group, we call RG the Iwasawa algebra of G with coefficients in R.

For simplicity of exposition, and since as usual the case p = 2 is slightly

different, we will assume throughout Section 10 that our prime p is odd.

10.2. Uniform pro-p groups and their Lie algebras. We refer the reader to

[28, §4] for the definition of uniform pro-p groups and briefly recall their main

properties here. We fix the uniform pro-p group G of dimension d := dimG

and a minimal topological generating set {g1, . . . , gd} for G until the end of

Section 10. Thus each element of G can be written uniquely in the form

gλ11 · · · g
λd
d for some λ1, . . . , λd ∈ Zp. It is shown in [28, Th. 4.30] that the

operations

λ · x = xλ,

x+ y = lim
i→∞

(xp
i
yp

i
)p
−i
,

[x, y] = lim
i→∞

(x−p
i
y−p

i
xp

i
yp

i
)p
−2i

define on the set G the structure of a Lie algebra over Zp. We will denote this

Lie algebra by LG. It is known that LG is a powerful Lie algebra, in the sense

that it is free of finite rank as a module over Zp and [LG, LG] is contained in

pLG — note that we are assuming that p 6= 2. Note also that [p−1LG, p
−1LG]

is then contained in p−1LG, which motivates the following

Definition. LetG be a uniform pro-p group. We define theR-Lie algebra

associated with G to be

1

p
RLG := R⊗Zp

Å
1

p
LG

ã
.

It is clear that 1
pRLG is an R-Lie algebra which is free over R of rank d.

We can also consider the associated graded group to G:

grG :=
∞⊕
i=0

griG =
∞⊕
i=0

Gp
i
/Gp

i+1
.

Since G is uniform, each graded piece griG is a finite elementary abelian

p-group. Moreover by [28, Lemma 4.10], the p-power map induces a bijection

griG → gri+1G of abelian p-groups, so in fact grG is naturally a graded

module over the polynomial ring Fp[t] where t acts by raising elements to their

p-th powers:

t · gGpi+1
= gpGp

i+2
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for all g ∈ Gpi . This module is free of rank d. Since L
Gpi

= piLG for all i > 0,

we can use [28, Cor. 4.15] to identify grG with

grLG :=
∞⊕
i=0

piLG/p
i+1LG,

and therefore grG carries the structure of a graded Fp[t]-Lie algebra. By

tensoring grG with k over Fp, we obtain the following

Lemma. Let G be a uniform pro-p group, let h be its associated R-Lie

algebra, and let hk = h/ph. Then there is a natural isomorphism of graded

k[t]-Lie algebras

grG⊗Fp k
∼= thk[t].

In particular, grG is abelian whenever hk is abelian.

10.3. The m-adic filtration on RG. Let bi = gi − 1 ∈ R[G], and write

bα = bα1
1 · · · b

αd
d ∈ R[G]

for any d-tuple α ∈ Nd. Then it follows from the proof of [28, Th. 7.20] that

RG can be naturally identified with the set of noncommutative formal power

series in b1, . . . , bd with coefficients in R:

RG =

®∑
α∈Nd

λαbα | λα ∈ R
´
.

Let m = ker(RG → k) be the unique maximal ideal of RG, and let deg :

RG → Z ∪ {∞} be the degree function corresponding to the m-adic filtration

on RG; thus deg(x) = a precisely when x ∈ ma\ma+1. We can now state the

fundamental result due to Lazard.

Theorem. The group ring R[G] is dense in RG, and

deg

Ç∑
α∈Nd

λαbα
å

= min
¶
v(λα) + |α| | α ∈ Nd

©
.

The degree filtration on RG is complete, and the associated graded ring grRG

is isomorphic to the enveloping algebra of the k[t]-Lie algebra grG⊗Fp k:

grRG ∼= U(grG⊗Fp k).

Proof. The group ring R[G] is dense in RG because it contains all sums of

the form
∑
α∈Nd λαbα where only finitely many coefficients are nonzero. The

displayed formula for the degree of an element in RG follows from [28, Th. 7.5],

and the completeness of the degree filtration on RG follows from the fact that

R is π-adically complete.

Define a function ω : G → Z+ ∪ {∞} by ω(g) = i + 1 if g ∈ Gpi\Gpi+1

and ω(1) =∞. Then ω is a p-valuation on G in the sense of [53, Def. III.2.1.2]
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because p is odd, and the associated graded Lie algebra grG of G with respect

to ω in the sense of [53, §II.1.1.72] coincides with the Lie algebra grG defined

above because [x, y] ≡ x−1y−1xy mod Gp
2

for any x, y ∈ G\Gp by [28, Lemma

4.28]. The last assertion of the theorem now follows from [53, Th. III.2.3.3]. �

Corollary. grRG is a Noetherian domain.

Proof. By Lemma 10.2, grG ⊗Fp k is isomorphic to thk[t]. This is a free

k[t]-module of rank d. Now apply the Poincaré-Birkhoff-Witt Theorem. �

10.4. The microlocalisation of RG at gr p. We can now make the con-

nection between Iwasawa algebras and almost commutative affinoid algebras.

Since h := 1
pRLG is a R-Lie algebra that is free of finite rank as an R-module,

we know from Example 3.4(c) that U(h) is an almost commutative R-algebra.

Hence we may form its p-adic completion in the manner of Section 3.7:◊�U(h)K =
(
lim
←−

U(h)/prU(h)
)
⊗R K.

On the other hand, the set of powers of gr p in grRG is multiplicatively closed

and consists of homogeneous central elements, and grRG is Noetherian by

Corollary 10.3, so we can consider the corresponding microlocal Ore set S

from Section 2.4:

S := {x ∈ RG | grx = (gr p)a for some a > 0} =
⋃
a>0

Ä
pa + ma+1

ä
⊆ RG.

Theorem. Let G be a uniform pro-p group, and let h = 1
pRLG be its

associated R-Lie algebra. Then the microlocalisation of RG at gr p is isomor-

phic as a complete Z-filtered ring to the almost commutative affinoid K-algebra◊�U(h)K :

Qgr p(RG) ∼= ◊�U(h)K .

Proof. Since p is odd, the exponential series exp(u) converges to a unit in

the algebra A := ◊�U(h)K whenever u ∈ LG ⊆ ph. Now the Campbell-Hausdorff

formula [28, Th. 6.28] shows that

u ∗ v := log(exp(u) exp(v))

is an element of LG for all u, v ∈ LG, and ψ : u 7→ exp(u) is an isomorphism

from the uniform pro-p group G to the subgroup exp(LG) of the group of units

ofA by the proof of [28, Th. 9.10]. We thus obtain anR-algebra homomorphism

ψ : R[G]→ A

such that ψ(u) = exp(u) for all u ∈ G. Let {u1, . . . , ud} be the R-basis for

h corresponding to the topological generating set {g1, . . . , gd} of G. In these
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coordinates, the map ψ satisfies

ψ(bα) = (epu1 − 1)α1 · · · (epud − 1)αd ≡ p|α|uα mod p|α|+1F0A,

where the monomial uα = uα1
1 · · ·u

αd
d is computed inside the enveloping algebra

U(h) ⊆ A. Now let x =
∑
α∈Nd λαbα ∈ R[G] be a nonzero element, and let

m = deg(x). Then m = min
¶
v(λα) + |α| | α ∈ Nd

©
by Theorem 10.3, and

ψ(x) ≡ pm
∑

v(λα)=m−|α|

Ç
λα

pvp(λα)

å
uα mod pm+1F0A.

Now the slice gr0A ofA is isomorphic to U(hk) and the images of the monomials

uα in gr0A are k-linearly independent by the Poincaré-Birkhoff-Witt Theorem.

Hence

deg(ψ(x)) = deg(x) for all x ∈ R[G]

and the homomorphism ψ is strictly filtered. Since A is complete and since

R[G] is dense in RG by Theorem 10.3, ψ extends to a strictly filtered ring

homomorphism

ψ : RG→ A,

which sends gr p ∈ grRG to s = gr p ∈ grA. Now grA ∼= U(hk)[s, s
−1] by

Lemma 3.1, so s is a homogeneous unit in grA and hence ψ extends to a

strictly filtered ring homomorphism

ψK : Qt(RG)→ A

by the universal property of algebraic microlocalisation. Since ψK is strictly

filtered, it must be injective. Now

grQt(RG) ∼= (grRG)t

by Lemma 2.4, and the above computation shows that

gr(ψK)(t) = s, and

gr(ψK)(gr(bi)) = sui for all i = 1, . . . , d.

Hence the image of gr(ψK) contains the generators of grA as an algebra over

grK ∼= k[t, t−1], so gr(ψK) is surjective. Hence ψK is also surjective because

Qt(RG) and A are complete. �

10.5. Remarks.

(a) Theorem 10.4 is essentially due to Lazard since it appears in a differ-

ent language as [53, §IV.3.2.5] and is proved there for the larger class of

p-saturated groups. The completed enveloping algebra ’U(h) is shown to

be isomorphic to the ‘saturation’ Sat(R[G]) of the valued group ring R[G].

(b) The algebra A is heavily used in the foundational Chapter 6 of the book

[28] under the name Qp[[G]]. It underpins the entire development of Lie

theory for compact p-adic analytic groups in that book.
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(c) We believe that our way of phrasing Theorem 10.4 is new in the literature.

The algebra A appears as the ‘largest’ distribution algebra D1/p(G,K) in

the paper [70] by Schneider and Teitelbaum.

(d) One advantage of the viewpoint we give in this paper is that the theory

of algebraic microlocalisation tells us which modules are killed by the base

change functor associated to the ring homomorphism RG→ A: these are

precisely the S-torsion modules.

10.6. Crossed products. The subgroup Gp
n

of G is uniform by [28, Ths.

3.6(i), 4.5] and the group Hn := G/Gp
n

is finite by [28, Prop. 1.16(iii)]. Con-

sider the completed group ring RGp
n
, and let mn be its unique maximal ideal.

The group G acts on RGp
n

by conjugation. This action preserves the mn-adic

filtration and fixes p. Hence it preserves the corresponding microlocal set

Sn :=
⋃
a>0

(pa + ma+1
n )

in RGp
n

and induces an action of G by ring automorphisms on the microlo-

calisation

Un := Qgr p(RG
pn).

We will write this action on the left; thus x 7→ gx is the automorphism induced

by g ∈ G on Un. We now define a multiplication on Un ⊗RGpn RG by setting

(x⊗ g) · (y ⊗ h) = x(gy)⊗ gh

for x, y ∈ Un and g, h ∈ G.

Proposition. Let h = 1
pRLG be the associated R-Lie algebra of G.

(a) Un ∼= ÿ�U(h)n,K is an almost commutative affinoid K-algebra.

(b) Un ⊗RGpn RG is a crossed product Un ∗Hn of ÿ�U(h)n,K with Hn = G/Gp
n
.

(c) The inclusion RGp
n
↪→ Un extends to a natural inclusion RG ↪→ Un ∗Hn.

(d) Un ∗Hn is a flat right RG-module.

(e) If M is a finitely generated RG-module, then (Un ∗Hn)⊗RGM = 0 if and

only if M is Sn-torsion.

Proof. (a) The R-Lie algebra associated with the uniform pro-p group Gp
n

is clearly pnh, so Un is isomorphic to Ÿ�U(pnh)K by Theorem 10.4. But this is

just ÿ�U(h)n,K by definition.

(b) and (c) Recall [59, §1.5.8] that a crossed product of a ring S by a group

H is an associative ring S ∗H that contains S as a subring and contains a set

of units H = {h : h ∈ H}, isomorphic as a set to H, such that

• S ∗H is a free right S-module with basis H;

• for all x, y ∈ H, xS = Sx and x · yS = xyS.



538 KONSTANTIN ARDAKOV and SIMON WADSLEY

Such a crossed product determines an action σ : H → Aut(S) and a twisting

τ by the rules

σ(x)(s) = x −1s x,

x y = xy τ(x, y)

for all x, y ∈ H and s ∈ S. Here τ(x, y) ∈ S× for all x, y ∈ H. It turns

out that σ defines a group homomorphism H → Out(S) and τ is a 2-cocycle

τ : H ×H → S× for the action of H on S× via σ. Conversely, starting with a

ring S, a group H, a group homomorphism σ : H → Out(S) and a 2-cocycle

τ : H × H → S×, one can construct an associative ring S ∗σ,τ H that is a

crossed product of S by H, having the prescribed action and twisting; see [63].

Now RG is a crossed product of RGp
n

with Hn defined by some action

σ : Hn → Out(RGp
n
) and twisting τ : Hn×Hn → (RGp

n
)×. Units in RGp

n
are

units in Un, and ring automorphisms of RGp
n

extend to ring automorphisms

of Un because the mn-adic filtration on RGp
n

is canonical. Furthermore, inner

automorphisms extend to inner automorphisms, so we obtain an action σ′ :

Hn → Out(Un) and a twisting τ ′ : Hn × Hn → U×n that is still a 2-cocycle.

Thus we can form the crossed product Un ∗σ′,τ ′Hn that equals Un⊗RGpn RG as

a set and a ring homomorphism RG→ Un ∗σ′,τ ′ Hn that extends the inclusion

of RGp
n

into Un. It is clear that the multiplication in this crossed product

agrees with the one defined above.

(d) For any RG-module M , there is an isomorphism of left Un-modules:

(Un ∗Hn)⊗RGM = Un ⊗RGpn RG⊗RGM ∼= Un ⊗RGpn M.

Restriction of modules is exact, and Un = Qgr p(RG
pn) is a flat RGp

n
-module

by Lemma 2.4.

(e) This follows from Lemma 2.4 and the displayed isomorphism above.

�

Remark. It can probably be shown that the crossed product Un ∗ Hn is

isomorphic to the distribution algebra D pn
√

1/p
(G,K), but we will not need

this isomorphism.

10.7. Re-valuation of p ∈ RG. We now reinterpret the work of Schneider

and Teitelbaum [70, §4]. The main idea is to define degree functions

degw : RG→ R ∪ {∞}
for any real number w > 1 such that

degw(p) = w and degw(bi) = 1 for all i = 1, . . . , d.

Definition. For any real number w>1, define degw : RG→R∪{∞} by

degw

Ç∑
α∈Nd

λαbα
å

= min
¶
w · v(λα) + |α| | α ∈ Nd

©
with the understanding that this minimum value is ∞ if all the λα are zero.
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Thus deg1 is the degree function associated to the m-adic filtration on RG.

Lemma. For any w > 1, degw is a degree function in the sense of Sec-

tion 2.2.

Proof. When translated to the language of norms, degw corresponds to

the norm || · ||p−1/w defined in [70, p. 160]. Then the result follows from [70,

Prop. 4.2]. �

Morally, as w → ∞ the element p ∈ RG approaches 0, so the filtrations

approach mod p Iwasawa algebra kG := RG/pRG, equipped with its m-adic

filtration.

Let grw RG be the associated graded ring of RG with respect to the as-

sociated R-filtration, and let Xi = grw bi ∈ grw1 RG be the principal symbols

of the topological generators bi of RG. The associated graded ring grw R of

R with respect to degw is isomorphic to the polynomial ring k[tw] with tw in

degree −w; see Section 2.2 for our conventions.

Proposition. (a) grw RG is isomorphic to the polynomial ring

k[tw, X1, . . . , Xd] as k[tw]-modules.

(b) If w > 1, then this is an isomorphism of graded rings.

Proof. Apply [70, Lemma 4.3] and the remarks immediately before this

lemma. �

10.8. The restriction of degpn to RGp
n
. Recall that {g1, . . . , gd} is a min-

imal topological generating set for the uniform pro-p group G.

By [28, Th. 3.6(iii)], {gp
n

1 , . . . , gp
n

d } is a minimal topological generating set

for the open uniform subgroup Gp
n

of G, so

RGp
n

=

®∑
α∈Nd

λαbαn | λα ∈ R
´
,

where bαn := (gp
n

1 −1)α1 · · · (gp
n

d −1)αd . We can now calculate the restriction of

the filtration degpn onRG to its subalgebra RGp
n
. The next result is essentially

[66, Prop. 6.2], but we give a proof for the convenience of the reader.

Proposition. Let mn be the maximal ideal of RGp
n
. If x ∈ ma

n\ma+1
n for

some integer a > 0, then degpn(x) = pna.

Proof. The polynomial (1 +X)p
n − (1 +Xpn) is divisible by p and has no

constant term. Therefore,

(1 + bi)
pn ≡ 1 + bp

n

i mod pm0

for all i = 1, . . . , d. Since degpn(m0) > 1 and degpn(p) = pn by definition, we

see that
gp

n

i − 1 = bp
n

i + εi
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for some εi ∈ RG with degpn(εi) > pn. It follows that

bαn = (gp
n

1 − 1)α1 · · · (gp
n

d − 1)αd = bp
nα1

1 · · · bp
nαd
d + εα = bp

nα + εα

for some εα ∈ RG with degpn(εα) > pn|α|. Thus,

degpn(mj
n) > pnj for all j > 0.

Now as x ∈ ma
n\ma+1

n , we can write

x ≡
∑
α∈T

λαbαn mod ma+1
n

for some nonempty set T of indices α satisfying v(λα) = a− |α| for all α ∈ T .

Because degpn(ma+1
n ) > pn(a+ 1) > pna,

x =
∑
α∈T

λαbp
nα + x′

for some x′ with degpn(x′) > pna. Since v(λα) = a− |α| for all α ∈ T , we see

that

degpn

(∑
α∈T

λαbp
nα

)
= min{pnv(λα) + pn|α| | α ∈ T} = pna

by the definition of degpn . Hence degpn(x) = pna, as required. �

Let S(w) be the microlocal Ore set in RG associated to the degw filtration

and the powers of tw in grw RG:

S(w) = {x ∈ RG | grw(x) = taw for some a > 0},

and recall the microlocal Ore set Sn ⊆ RGp
n

from Section 10.6.

Corollary. (a) The restriction of the degpn filtration to RGp
n

is a re-

scaling of the mn-adic filtration on RGp
n
.

(b) The image of grp
n
RGp

n
inside grp

n
RG is precisely k[tpn ][Xpn

1 , . . . , Xpn

d ],

with all generators in degree pn.

(c) For any n > 0, Sn is contained in S(pn).

Proof. The first two statements are clear. Let pa + x ∈ Sn for some a > 0

and x ∈ ma+1
n . Then

degpn(x) > pn(a+ 1) > pna

by Proposition 10.8, so pa + x ∈ S(pn). �

10.9. The filtration on kG. Write x for the image of x ∈ RG in the com-

pleted group ring kG := RG/pRG. We will abuse notation and write bα = bα,

so that kG is in bijection with the set of noncommutative formal power series

in b1, . . . , bd with coefficients in k:

kG =

®∑
α∈Nd

λαbα | λα ∈ k
´
.
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Let us define deg : kG→ R ∪ {∞} as follows:

deg

Ç∑
α∈Nd

µαbα
å

= min {|α| | µα 6= 0} .

Let m = ker(kG→ k) be the maximal ideal of kG; then clearly

deg(x) =

a if x ∈ ma\ma+1,

∞ if x = 0,

so deg is the usual degree function associated with the m-adic filtration on kG.

The degree functions degw on RG and deg on kG are related as follows.

Lemma. Let x ∈ RG be such that x 6= 0. Then

(a) deg(x) > degw(x) for any w > 1.

(b) If y ∈ RG is such that y = x and if w > deg(x), then

degw(y) = deg(x).

Proof. (a) Write x =
∑
α∈Nd λαbα for some λα ∈ R. Since x is nonzero,

deg(x) = |β| for some β ∈ Nd such that v(λβ) = 0. Then

deg(x) = |β| > min
¶
w · v(λα) + |α| | α ∈ Nd

©
= degw(x).

(b) Let α be such that |α| < |β|. By definition of deg, p divides λα,

and the coefficient µα of bα in y differs from λα by a multiple of p. Since

w > deg(x) = |β| by assumption,

w · v(µα) + |α| > w > |β|

for any such α. On the other hand,

w · v(µα) + |α| > |β|

is trivially true whenever |α| > |β|, so

degw(y) = min{w · v(µα) + |α|} > |β| = deg(x).

But we showed in (a) that deg(x) = deg(y) > degw(y). �

10.10. Good generating sets. Since the m-adic filtration on kG is complete

and the associated graded ring is Noetherian, it is well known that the Rees

ring

k̃G =
⊕
j∈Z

mjt−j ⊂ kG[t, t−1]

is Noetherian (where as always mj = kG if j 6 0).

Let J be a left ideal of kG. Then the Rees ideal

J̃ =
⊕
j∈Z

(J ∩mj)t−j /l k̃G
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is finitely generated over k̃G. Let z1t
−d1 , · · · , z`t−d` be a homogeneous gener-

ating set for J̃ for some zi ∈ J with deg(zi) = di; then {z1, . . . , z`} is a good

generating set for J :

J ∩mn =
∑̀
i=1

mn−dizi for all n ∈ Z.

We record this as a lemma.

Lemma. Let x ∈ J . Then there exist ri ∈ kG such that x =
∑`
i=1 rizi and

deg(ri) > deg(x)− di

for all i = 1, . . . , `.

Here is the faithful flatness result of Schneider and Teitelbaum from the

point of view of noncommutative algebra.

10.11. Theorem. Let J be a left ideal of RG such that RG/J is p-torsion-

free. Then there exists w0 > 1, depending only on J , such that grw(RG/J) is

tw-torsion-free for all w > w0.

Proof. Suppose that tw · X ∈ grw J for some homogeneous element X ∈
grw RG; we will show if w is large enough, then we can find x′ ∈ J such that

X = grw x′, which implies that X ∈ grw J .

Let {z1, . . . , z`} be a good generating set for the left ideal J of kG, as in

Section 10.10. Let di = deg(zi), and define

w0 := max{d1, . . . , d`}.

We fix lifts ai ∈ J for these generators and note that if w > w0, then

degw(ai) = di for all i = 1, . . . , `

by Lemma 10.9(b). Choose some x ∈ RG, possibly not in J , such that grw x

= X. Since grw p · grw x ∈ grw J ,

px+ z ∈ J

for some z ∈ RG with degw(z) > degw(px). So z ∈ J , and by Lemma 10.10

we can find r1, . . . , r` ∈ kG such that x =
∑`
i=1 rizi and

deg(ri) > deg(x)− di for all i = 1, . . . , `.

Choose lifts si ∈ RG of ri ∈ kG satisfying degw(si) = deg(ri). Then

z =
∑̀
i=1

siai + py
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for some y ∈ RG, and

degw

(∑̀
i=1

siai

)
> min{degw(si) + degw(ai)}

= min{deg(ri) + di} > deg(z) > degw(z)

by Lemma 10.9(a). Hence,

degw(py) = degw

(
z −

∑̀
i=1

siai

)
> degw(z) > degw(px).

Since tw is not a zero-divisor in grw RG, we deduce that

degw(y) > degw(x).

Since each ai lies in J ,

px+ py = px+ z −
∑̀
i=1

siai ∈ J.

But RG/J is p-torsion-free, so x′ := x + y ∈ J ; since degw(y) > degw(x), we

deduce that X = grw x = grw x′ ∈ grw J . �

Corollary. Let M be a finitely generated p-torsion-free RG-module.

Then there exists n0 ∈ N such that M is Sn-torsion-free for all n > n0.

Proof. Let KG = K ⊗R RG. It is enough to prove that the KG-module

MK = K ⊗R M is Sn torsion-free for all n sufficiently large. We can find

a finite composition series for MK consisting of KG-submodules such that

each composition factor is cyclic; then MK is Sn-torsion-free provided all the

composition factors are Sn-torsion-free. Thus we may reduce to the case where

M is a cyclic RG-module, M ∼= RG/J , say.

By Theorem 10.11, there exists w0 > 1 such that grw(RG/J) is tw-torsion-

free whenever w > w0. Hence RG/J is S(w)-torsion-free if w > w0 by

Lemma 2.4.

Choose n0 such that pn0 > w0, and let n > n0. Then pn > w0 and

Sn ⊆ S(pn) by Corollary 10.8(c), so M is Sn-torsion-free. �

10.12. The congruence kernels. We now make the following additional as-

sumption on our uniform pro-p group G in order to connect it to the rest of the

paper. There is an algebraic group G satisfying the conditions of Section 6.7

such that

• the Lie algebra g of G and the Lie algebra LG of G satisfy pm+1g =

R⊗Zp LG for some integer m > 0,

• p is a very good prime for G in the sense of Section 6.8.
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Thus pmg is the R-Lie algebra 1
pRLG associated to the uniform pro-p group

G in the sense of Section 10.2. In the case when R = Zp, it follows from the

discussion in [72, §7] that the so-called (m+ 1)-st congruence kernel

G = ker(G(Zp)→ G(Zp/pm+1Zp))
of the group of Zp-points G(Zp) satisfies these conditions. We now combine

the earlier results of this paper in order to obtain some information about the

representation theory of the central localisation

KG := K ⊗R RG = K ⊗R R[[G]]

of the completed group ring R[[G]]. Equivalently, we study the category of

p-torsion-free RG-modules. Perhaps our methods are applicable to a slightly

wider class of compact p-adic analytic groups, but it may help the reader to

keep these congruence kernels in mind.

10.13. Modules over KG. Note that RG is an R-lattice in KG and the

slice gr0KG
∼= kG is a complete Z-filtered ring when equipped with its m-adic

filtration; see Section 10.9. Thus KG is itself a complete doubly filtered

K-algebra with Gr(KG) = gr kG ∼= k[x1, . . . , xd] and the theory of Sec-

tions 3.1–3.3 applies, although it is not an almost commutative affinoid K-

algebra because the filtration on its slice is negative.

Lemma. KG is Auslander-Gorenstein with inj.dimKG = dimG. Let M

be a finitely generated KG-module. Then d(M) = dim Ch(M) and d(M) = 0

if and only if M is finite-dimensional over K .

Proof. The first part is originally due to Otmar Venjakob [79, Th. 3.29] but

also follows from Theorem 3.3. Since KG always has the trivial module K that

is one-dimensional over K, the second part follows from Proposition 9.1. �

We can now put all the pieces together and prove the main result of our

paper. Recall the integer r defined in Section 9.9 and the algebras Un =

Qgr p(RG
pn) defined in Section 10.6, and note that in our current notation,

Un ∼= ¤�U(g)n+m,K

by Theorem 10.4.

Theorem. Let M be a finitely generated KG-module that is infinite-

dimensional over K . Then d(M) > r.

Proof. Let j = j(M); then the KG-module N := ExtjKG(M,KG) is

finitely generated and nonzero. Pick any finitely generated RG-submodule

and R-lattice F0N in N . By Corollary 10.11, N is Sn-torsion-free for some

integer n, which we may as well assume to be positive. Let B = Un ∗ Hn;

then B ⊗KG N = B ⊗RG F0N is nonzero by Proposition 10.6(e). Now B is
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a flat RG-module by Proposition 10.6(d), so B is also a flat KG-module and

inj.dimKG = inj.dimB by [3, Lemma 5.4], Proposition 9.1 and the lemma, so

we may apply Proposition 2.6 to deduce

dKG(M) = dB(B ⊗KGM).

Since M ′ := B ⊗KG M is a finitely generated B-module and B is a finitely

generated Un-module, M ′ is a finitely generated Un-module. Finally, dB(M ′) =

dKG(M) > 1 by the lemma because M is infinite-dimensional over K, and

dB(M ′) = dUn(M ′) by [3, Lemma 5.4]. Hence we may apply Theorem 9.10 to

deduce that dKG(M) = dUn(M ′) > r. �

We can now prove Theorem A from the introduction.

Proof of Theorem A. Suppose that K, G and M are as in the statement

of Theorem A. By restricting from KG to QpG and applying Lemma 2.6 we

may assume that K = Qp. Since the Lie algebra of G is split semisimple, we

can find an open uniform subgroup H of G that satisfies the assumptions of

Section 10.12. Choose an open normal subgroup N of G contained in H; then

dKG(M) = dKN (M) = dKH(M) by [4, Lemma 5.4], and the result follows

from the theorem above. �

11. Finite-dimensional KG-modules

In this section we study finite-dimensional KG-modules. The results and

proof techniques in Sections 11.1–11.3 are similar to those for distribution

algebras found in Prasad’s appendix to [68]. It is not clear to us how to

deduce our results directly from those found there.

11.1. Lie modules and Artin modules. We continue with the notation of

Section 10.12, but we drop the restriction on p.

Definition. We let M denote the category of KG-modules that are

finite-dimensional over K, and all KG-module homomorphisms. We let L
denote the full subcategory of M consisting modules obtained from finite-

dimensional U0-modules by restriction; we tentatively call objects in L Lie

modules. We say that V ∈ M is an Artin module if some open subgroup of

G acts trivially on V , and we let A denote the full subcategory consisting of

Artin modules.

We will denote an Artin module V by the corresponding representation

ρ : G → GL(V ). Note that if V is an abstract K[G]-module such that some

open normal subgroup U of G acts trivially, then V is automatically an Artin

module because the action of K[G] on V factors through K[G/U ] and the

completed group ring KG surjects onto K[G/U ]. We will use this observation

without further mention in what follows.
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Proposition. Let M ∈M, and suppose that M is Sn-torsion-free. Then

the natural map

ηM : M −→ (Un ∗Hn)⊗KGM

is an isomorphism of KG-modules.

Proof. Suppose first that n = 0, and write S = S0. Choose a finitely

generated RG-submodule and R-lattice N in M , and choose a good filtration

F•N on N for the m-adic filtration on RG. Then U0⊗KGM = Qgr p(RG)⊗RGN
is the microlocalisation Qgr p(N) of N at gr p, which in turn is isomorphic to

the completion of NS := (RG)S ⊗RG N with respect to a certain filtration

F•(NS) on this RGS-module; see Section 2.4. The filtration F•(NS) is good,

and the filtration on (RG)S is Zariskian by Lemma 2.4, so F•NS is separated

by [56, Cor. I.5.5].

Let L = F0(NS); then because pi ∈ F−i(RG)S for all i, we see that

Fi(NS) = p−iL for all i. Since F•NS is separated, L is an R-lattice in NS and

Qgr p(N) is the completion of NS with respect to this lattice.

Now because p ∈ S, the partial localisation M = NK of N is contained

in NS . Let s ∈ S. Since M = NK is S-torsion-free by assumption, s acts

injectively on M . Because M is finite-dimensional over K, the action of s

is actually surjective, and therefore by the universal property of localisation,

the natural map M → NS is an isomorphism. So NS is finite-dimensional

over K, and hence L is finitely generated over R by Proposition 2.7. But

finitely generated R-modules are already p-adically complete, so the natural

map NS → Qgr p(N) is an isomorphism.

Returning to the general case, let Mn = M denote the restriction of M to

KGp
n
. Then there is a commutative diagram of KGp

n
-modules

M
ηM //

��

(Un ∗Hn)⊗KGM

��
Mn

// Un ⊗KGpn Mn

,

where the left column is the identity map and the right column is the isomor-

phism (Un ∗Hn)⊗KGM = (Un ⊗KGpn KG)⊗KGM
∼=−→ Un ⊗KGpn Mn given

by the definition of the crossed product Un ∗ Hn. Since the bottom row is a

bijection by the case n = 0 applied to the KGp
n
-module Mn, ηM is a bijection,

and the result follows. �

Theorem. (a) The category M is semisimple: every submodule W of

V ∈M has a complement.

(b) U0 ⊗KG − is an equivalence of categories between L and the category of

finite-dimensional U(gK)-modules.
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Proof. (a) By Corollary 10.11, V is Sn-torsion-free for some n. Let us

identify V with (Un ∗ Hn) ⊗KG V using the proposition; then V is a finite-

dimensional Un ∗Hn-module and W is a Un ∗Hn-submodule. By Corollary 9.2,

we can find a Un-linear projection σ from V onto W . Since we are working

over a field of characteristic zero, the average σ′ := 1
|Hn|

∑
h∈Hn hσh

−1
of the

Hn-conjugates of σ is a Un ∗Hn-linear projection of V onto W ; see [63, Lemma

1.1] for more details. Now kerσ′ is a KG-stable complement to W in V .

(b) Let C denote the category of finite-dimensional U0-modules. The re-

striction functor R = HomKG(U0,−) is right adjoint to the base-change functor

L = U0 ⊗KG − and sends C to L by definition. If V = RW ∈ L, then S0 acts

invertibly on V because S0 consists of units in U0. Therefore V is S0-torsion-

free and the counit of the adjunction ηV : V → RLV is an isomorphism by

the proposition, which implies that L sends L to C. For W ∈ C, the unit

of the adjunction εW : LRW → W satisfies R(εW ) ◦ ηRW = 1RW by the

unit-counit equation. So R(εW ) is an isomorphism because ηRW is an isomor-

phism. Therefore εW is bijective and hence an isomorphism, so L : L → C is

an equivalence of categories. But we already know from Corollary 9.2 that C is

equivalent to the category of finite-dimensional U(gK)-modules via restriction

along the inclusion U(gK) ↪→ U0. �

Corollary. Let V ∈ L be simple. Then EndKG(V ) = K .

Proof. Apply part (b) of the theorem and [27, Prop. 7.1.4(iv)]. �

We will see shortly that M is built from L and A in a very precise way:

in fact, M is the tensor product of L and A in the sense of [25, §5].

11.2. A factorization theorem. Recall that a module V is said to be iso-

typic if V ∼= W s for some simple module W and some s > 0.

Lemma. Let M ∈ M be a simple module that is Sn-torsion-free. Then

M ′ := (Un ∗Hn)⊗KGM is an isotypic Un-module.

Proof. The group G acts by conjugation on the algebra Un, and this action

fixes the Harish-Chandra centre Zn := ¤�U(g)Gn+m,K of Un = ¤�U(g)n+m,K because

this conjugation action is induced by the adjoint representation of G on gK . Let

W be a nonzero simple Un-submodule of M ′, and let g ∈ G; then gW is another

simple Un-submodule with the same action of Zn. But up to isomorphism,

there is only one simple finite-dimensional Un-module with this action of Zn,

so gW ∼= W as a Un-module.

Let N be the image of (Un ∗Hn)⊗UnW in M ′. This is a nonzero KG-sub-

module of M ′ by construction. But M ′ is a simple KG-module by Proposi-

tion 11.1, so N = M ′. Now N is a finite sum of modules of the form gW
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as a Un-module; since finite-dimensional Un-modules are semisimple by Corol-

lary 9.2, it follows that M ′ = N is an isotypic Un-module. �

Theorem. Let M be a simple finite-dimensional KG-module. Then M ∼=
V ⊗ ρ for some simple V ∈ L and some simple ρ ∈ A.

Proof. Using Corollary 10.11, choose n such that M is Sn-torsion-free;

then M ′ := (Un ∗ Hn) ⊗KG M is an isotypic Un-module by the lemma, so

M ′ ∼= W t for some simple, finite-dimensional Un-module W . By Corollary 9.2,

we may assume that W is the restriction to Un of a simple finite-dimensional

U0-module. Let V = RW be the corresponding object in L; note that V is

simple by Theorem 11.1(b). Consider the vector space

ρ := HomKGpn (V,M).

Because V and M are finite-dimensional over K, ρ is also finite-dimensional

over K. Moreover the inclusion W ↪→ M ′ gives by restriction to KGp
n

a

nonzero element of ρ so ρ 6= 0. The rule

(g.f)(v) = gf(g−1v), g ∈ G, v ∈ V, f ∈ ρ

defines an action of G on ρ, which by definition is trivial on Gp
n
; thus ρ ∈ A is

an Artin representation of G. Now KG acts diagonally on the tensor product

V ⊗ ρ, and there is a natural KG-module map

θ : V ⊗ ρ→M

given by evaluation: θ(v ⊗ f) = f(v). The map θ is nonzero because ρ 6= 0;

since M is simple, it follows that θ is surjective. But dimKM = dimKM
′ =

tdimKW by Proposition 11.1, and

dimK ρ = dimK HomKGpn (W,W t) = t dimK HomKGpn (W,W ) = t

by Corollary 11.1 applied to the group Gp
n
. Hence dimK V ⊗ ρ = t dimKW

also and θ is an isomorphism. Finally, if ρ′ is a nonzero submodule of ρ, then

V ⊗ ρ′ is a nonzero submodule of V ⊗ ρ. Because V ⊗ ρ ∼= M is simple, this

submodule must be the whole of V ⊗ ρ and a dimension count shows that

ρ′ = ρ. �

11.3. Uniqueness of factorization.

Lemma. Let ρ be an Artin representation that is trivial on Gp
n
, and let

V ∈ L be simple. Then the natural map

ψ : ρ→ HomKGpn (V, V ⊗ ρ)

given by ψ(x)(v) = v ⊗ x is an isomorphism of KG-modules.
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Proof. Since Gp
n

is normal in G, the group G acts on HomKGpn (V, V ⊗ρ)

via (g.f)(v) = g.f(g−1v). The action of Gp
n

is trivial, so HomKGpn (V, V ⊗ ρ)

is an Artin representation of G.

It is straightforward to verify that ψ is an injective KG-module homo-

morphism. Because ρ is trivial on Gp
n
, the restriction of V ⊗ ρ to KGp

n
is a

direct sum of dimK ρ copies of the restriction of V , so

dimK HomKGpn (V, V ⊗ ρ) = dimK ρ · dimK EndKGpn (V ).

It now follows from Theorem 11.1(b) that V is still simple as a KGp
n
-module,

so EndKGpn (V ) = K by Corollary 11.1. Hence ρ is an isomorphism. �

We can now give a partial classification of simple finite-dimensional KG-

modules for compact p-adic analytic groups G satisfying the hypotheses of

Section 10.12.

Theorem. Let V ∈ L and ρ ∈ A be simple.

(a) The module V ⊗ ρ ∈M is simple.

(b) If V ⊗ ρ ∼= V ′ ⊗ ρ′ for some simple V ′ ∈ L and ρ′ ∈ A, then V ∼= V ′ and

ρ ∼= ρ′.

Proof. (a) By the proof of [5, Lemma 4.4(c)], there is a K-linear isomor-

phism

HomKG(V ⊗ ρ, V ⊗ ρ) ∼= HomKG(V, V ⊗ ρ⊗ ρ∗),
where ρ∗ denotes the Artin representation dual to ρ. But

HomKG(V, V ⊗ρ⊗ρ∗)=(HomKGpn (V, V ⊗ ρ⊗ ρ∗))G∼=(ρ⊗ρ∗)G∼=HomKG(ρ, ρ)

by the lemma. So dimK EndKG(V ⊗ ρ) = dimK EndKG(ρ). Now there is a

natural ring homomorphism

EndKG(ρ)→ EndKG(V ⊗ ρ)

given by f 7→ 1V ⊗ f . It is easy to see that this map is injective, so it must be

an isomorphism by considering dimensions. Hence EndKG(V ⊗ ρ) is a division

ring by Schur’s Lemma.

On the other hand, the categoryM is semisimple by Theorem 11.1(a), so

V ⊗ ρ = V n1
1 ⊕ · · · ⊕ V nt

t for some simple Vi ∈M. Therefore,

EndKG(V ⊗ ρ) ∼= Mn1(D1)⊕ · · · ⊕Mnt(Dt)

is a direct sum of matrix algebras over division rings Di = EndKG(Vi). Since

EndKG(V ⊗ρ) is itself a division ring, this can only happen if r = 1 and n1 = 1.

Hence V ⊗ ρ = V1 is simple.

(b) Choose n large enough so that ρ and ρ′ are trivial on Gp
n
; then the

restriction of V ⊗ ρ to KGp
n

is isomorphic to both V dimK ρ and (V ′)dimK ρ′ .
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Theorem 11.1(b) now implies that V ∼= V ′ in L, and therefore

ρ ∼= HomKGpn (V, V ⊗ ρ) ∼= HomKGpn (V ′, V ′ ⊗ ρ′) ∼= ρ′

as KG-modules by the lemma. �

Combining Theorem 11.1(a), Theorem 11.2 and Theorem 11.3 gives the

following

Corollary. (a) There is a bijection between the isomorphism classes of

simple objects in M and pairs ([V ], [ρ]) of isomorphism classes of simple

objects V ∈ L and ρ ∈ A.

(b) There is an isomorphism of Grothendieck groups

K0(M) ∼= K0(L)⊗Z K0(A).

11.4. The Grothendieck group of Artin representations. We finish this pa-

per by giving a description of the Grothendieck group of the category A of

Artin K-representations of an arbitrary pro-p group G. We still assume that

K is a complete discrete valuation field of characteristic zero and uniformizer p.

Let K(µp∞) be the infinite totally ramified field extension of K obtained by

adjoining the set µp∞ of all p-power roots of unity to K, and let

Γ = Gal(K(µp∞)/K).

We fix an isomorphism Qp/Zp → µp∞ , which induces an isomorphism Aut(µp∞)

→ Zp×. Since K is unramified, the action of Γ on µp∞ is faithful and gives

rise to the cyclotomic character χ : Γ
∼=−→ Zp× given explicitly by

σ(λ) = λχ(σ) for all σ ∈ Γ and λ ∈ µp∞ .

Imitating [73, §12.4], we define a continuous permutation action of Γ on our

pro-p group G by the similar rule

σ.g = gχ(σ) for all σ ∈ Γ and g ∈ G.

If X is a compact totally disconnected topological space, let C∞(X,K) denote

the K-algebra of locally constant K-valued functions on X. Any continuous

action of Γ on X induces an action of Γ on C∞(X,K) by the rule

(σ.f)(x) = f(σ−1.x) for all σ ∈ Γ, f ∈ C∞(X,K), x ∈ X.

Now let ρ : G → V be an Artin K-representation of G. Then by definition,

ker ρ is an open normal subgroup of G, so ρ(G) is a finite p-subgroup of GL(V ).

Let χρ : G→ K be the character of ρ, defined in the usual way by

χρ(g) = tr ρ(g) for all g ∈ G.

This function is locally constant, being constant on the cosets of ker ρ, so χρ ∈
C∞(G,K). It is also constant on conjugacy classes of G, so χρ ∈ C∞(G,K)G,
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where we let G act on itself by conjugation. If g ∈ G and ωi are the eigenvalues

of ρ(g), then ω
χ(σ)
i are the eigenvalues of ρ(σ.g) for any σ ∈ Γ. This shows that

χρ(σ.g) = χρ(g) for all σ ∈ Γ and g ∈ G.

Thus χρ is a Γ-invariant, locally constant, class function on G:

χρ ∈ C∞(G,K)G×Γ.

Proposition. Let G be a pro-p group, and let A be its category of K-linear

Artin representations. Then there is a natural K-algebra isomorphism

χ : K ⊗Z K0(A) −→ C∞(G,K)G×Γ

given by χ(λ⊗ [ρ]) = λχρ.

Proof. Let U denote the set of open normal subgroups of G, and for each

U ∈ U , let G0(K[G/U ]) denote the Grothendieck group of the category of all

finitely generated (hence finite-dimensional) K[G/U ] modules. For each pair

U,W ∈ U such that U ⊇W , there is a natural commutative diagram

K ⊗Z G0(K[G/U ])
χ //

��

C∞(G/U,K)G×Γ

��
K ⊗Z G0(K[G/W ])

χ //

��

C∞(G/W,K)G×Γ

��
K ⊗Z K0(A)

χ // C∞(G,K)G×Γ,

where the vertical maps in the left-hand column are obtained by inflation and

those in the right-hand column are obtained by pull-back of functions. Now

A is the filtered limit of the categories of finite-dimensional K[G/U ]-modules

with respect to the inflation functors as U runs over U , so

K ⊗Z K0(A) ∼= lim
−→

K ⊗Z G0(K[G/W ])

by [80, Lemma II.6.2.7]. Since each locally constant function on G must be

constant on the cosets of at least one open normal subgroup U , we also have

C∞(G,K)G×Γ ∼= lim
−→

C∞(G/U,K)G×Γ.

Because the top two rows in the diagram are isomorphisms by [73, Ch. 12,

Th. 25], the bottom row must therefore also be an isomorphism. Finally, direct

sum and tensor product give K0(A) the structure of a commutative ring, it is

straightforward to check that χ is additive and multiplicative. �

We finally remark that in the case when G is a uniform pro-p group,

Kirillov’s orbit method provides an explicit bijection between G-orbits in the

Pontryagin dual of the Lie algebra LG and isomorphism classes of irreducible
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complex Artin representations of G. This bijection is directly compatible with

the above isomorphism χ. See [47] and [20] for more details.
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Progr. Math. 218, Birkhäuser, Boston, MA, 2004. MR 2014891. Zbl 1096.14014.

[32] H. Frommer, The locally analytic principal series of split reductive groups, 2003,

Münster: SFB-preprint, p. 265. Available at http://www.math.uni-muenster.de/

sfb/about/publ/heft265.ps.

[33] O. Gabber, The integrability of the characteristic variety, Amer. J. Math.

103 (1981), 445–468. MR 0618321. Zbl 0492.16002. http://dx.doi.org/10.2307/

2374101.
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