Optimal asymptotic bounds for spherical designs

By Andriy Bondarenko, Danylo Radchenko, and Maryna Viazovska

Abstract

In this paper we prove the conjecture of Korevaar and Meyers: for each \(N \geq c_d t \), there exists a spherical \(t \)-design in the sphere \(S^d \) consisting of \(N \) points, where \(c_d \) is a constant depending only on \(d \).

1. Introduction

Let \(S^d \) be the unit sphere in \(\mathbb{R}^{d+1} \) with the Lebesgue measure \(\mu_d \) normalized by \(\mu_d(S^d) = 1 \).

A set of points \(x_1, \ldots, x_N \in S^d \) is called a spherical \(t \)-design if

\[
\int_{S^d} P(x) \, d\mu_d(x) = \frac{1}{N} \sum_{i=1}^{N} P(x_i)
\]

for all polynomials in \(d+1 \) variables, of total degree at most \(t \). The concept of a spherical design was introduced by Delsarte, Goethals, and Seidel [12]. For each \(t, d \in \mathbb{N} \), denote by \(N(d, t) \) the minimal number of points in a spherical \(t \)-design in \(S^d \). The following lower bound,

\[
N(d, t) \geq \begin{cases}
\binom{d+k}{d} + \binom{d+k-1}{d} & \text{if } t = 2k, \\
2 \binom{d+k}{d} & \text{if } t = 2k + 1,
\end{cases}
\]

is proved in [12].

Spherical \(t \)-designs attaining this bound are called tight. The vertices of a regular \(t+1 \)-gon form a tight spherical \(t \)-design in the circle, so \(N(1, t) = t + 1 \). Exactly eight tight spherical designs are known for \(d \geq 2 \) and \(t \geq 4 \). All such configurations of points are highly symmetrical, and optimal from many © 2013 Department of Mathematics, Princeton University.
different points of view (see Cohn, Kumar [10] and Conway, Sloane [11]). Unfortunately, tight designs rarely exist. In particular, Bannai and Damerell [2], [3] have shown that tight spherical designs with \(d \geq 2 \) and \(t \geq 4 \) may exist only for \(t = 4, 5, 7, \) or \(11 \). Moreover, the only tight 11-design is formed by minimal vectors of the Leech lattice in dimension 24. The bound (1) has been improved by Delsarte’s linear programming method for most pairs \((d, t)\); see [22].

On the other hand, Seymour and Zaslavsky [20] have proved that spherical \(t \)-designs exist for all \(d, t \in \mathbb{N} \). However, this proof is nonconstructive and gives no idea of how big \(N(d, t) \) is. So, a natural question is to ask how \(N(d, t) \) differs from bound (1). Generally, to find the exact value of \(N(d, t) \) even for small \(d \) and \(t \) is a surprisingly hard problem. For example, everybody believes that 24 minimal vectors of the \(D_4 \) root lattice form a 5-design with minimal number of points in \(S^3 \), although it is only proved that \(22 \leq N(3, 5) \leq 24 \); see [6]. Further, Cohn, Conway, Elkies, and Kumar [9] conjectured that every spherical 5-design consisting of 24 points in \(S^3 \) is in a certain 3-parametric family. Recently, Musin [17] has solved a long standing problem related to this conjecture. Namely, he proved that the kissing number in dimension 4 is 24.

In this paper we focus on asymptotic upper bounds on \(N(d, t) \) for fixed \(d \geq 2 \) and \(t \to \infty \). Let us give a brief history of this question. First, Wagner [21] and Bajnok [1] proved that \(N(d, t) \leq C_d t^{Cd^3} \) and \(N(d, t) \leq C_d t^{Cd^3} \), respectively. Then, Korevaar and Meyers [14] have improved these inequalities by showing that \(N(d, t) \leq C_d t^{(d^2+d)/2} \). They have also conjectured that

\[
N(d, t) \leq C_d t^d.
\]

Note that (1) implies \(N(d, t) \geq c_d t^d \). Here and in what follows we denote by \(C_d \) and \(c_d \) sufficiently large and sufficiently small positive constants depending only on \(d \), respectively.

The conjecture of Korevaar and Meyers attracted the interest of many mathematicians. For instance, Kuijlaars and Saff [19] emphasized the importance of this conjecture for \(d = 2 \) and revealed its relation to minimal energy problems. Mhaskar, Narcowich, and Ward [16] have constructed positive quadrature formulas in \(S^d \) with \(C_d t^d \) points having almost equal weights. Very recently, Chen, Frommer, Lang, Sloan, and Womersley [7], [8] gave a computer-assisted proof that spherical \(t \)-designs with \((t+1)^2\) points exist in \(S^2 \) for \(t \leq 100 \).

For \(d = 2 \), there is an even stronger conjecture by Hardin and Sloane [13] saying that \(N(2, t) \leq \frac{1}{2} t^2 + o(t^2) \) as \(t \to \infty \). Numerical evidence supporting the conjecture was also given.

In [4], we have suggested a nonconstructive approach for obtaining asymptotic bounds for \(N(d, t) \) based on the application of the Brouwer fixed point theorem. This led to the following result:
For each \(N \geq C_d t^{2d/(d+2)} \), there exists a spherical \(t \)-design in \(S^d \) consisting of \(N \) points.

Instead of the Brouwer fixed point theorem, in this paper we use the following result from the Brouwer degree theory [18, Ths. 1.2.6 and 1.2.9].

Theorem A. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a continuous mapping and \(\Omega \) an open bounded subset, with boundary \(\partial \Omega \), such that \(0 \in \Omega \subset \mathbb{R}^n \). If \(\langle x, f(x) \rangle > 0 \) for all \(x \in \partial \Omega \), then there exists \(x \in \Omega \) satisfying \(f(x) = 0 \).

We employ this theorem to prove the conjecture of Korevaar and Meyers.

Theorem 1. For each \(N \geq C_d t^{d} \), there exists a spherical \(t \)-design in \(S^d \) consisting of \(N \) points.

Note that Theorem 1 is slightly stronger than the original conjecture because it guarantees the existence of spherical \(t \)-designs for each \(N \) greater than \(C_d t^{d} \).

This paper is organized as follows. In Section 2 we explain the main idea of the proof. Then in Section 3 we present some auxiliary results. Finally, we prove Theorem 1 in Section 4.

2. Preliminaries and the main idea

Let \(\mathcal{P}_t \) be the Hilbert space of polynomials \(P \) on \(S^d \) of degree at most \(t \) such that
\[
\int_{S^d} P(x) d\mu_d(x) = 0,
\]
equipped with the usual inner product
\[
\langle P, Q \rangle = \int_{S^d} P(x) Q(x) d\mu_d(x).
\]
By the Riesz representation theorem, for each point \(x \in S^d \), there exists a unique polynomial \(G_x \in \mathcal{P}_t \) such that
\[
\langle G_x, Q \rangle = Q(x) \quad \text{for all} \quad Q \in \mathcal{P}_t.
\]
Then a set of points \(x_1, \ldots, x_N \in S^d \) forms a spherical \(t \)-design if and only if
\[
(2) \quad G_{x_1} + \cdots + G_{x_N} = 0.
\]

The gradient of a differentiable function \(f : \mathbb{R}^{d+1} \to \mathbb{R} \) is denoted by
\[
\frac{\partial f}{\partial x} := \left(\frac{\partial f}{\partial \xi_1}, \ldots, \frac{\partial f}{\partial \xi_{d+1}} \right), \quad x = (\xi_1, \ldots, \xi_{d+1}).
\]
For a polynomial \(Q \in \mathcal{P}_t \), we define the spherical gradient
\[
(3) \quad \nabla Q(x) := \frac{\partial}{\partial x} \left(Q \left(\frac{x}{|x|} \right) \right),
\]
where \(| \cdot | \) is the Euclidean norm in \(\mathbb{R}^{d+1} \).
We apply Theorem A to the open subset Ω of a vector space \mathcal{P}_t:

$$\Omega := \left\{ P \in \mathcal{P}_t \left| \int_{S^d} |\nabla P(x)| d\mu_d(x) < 1 \right. \right\}.$$

Now we observe that the existence of a continuous mapping $F : \mathcal{P}_t \to (S^d)^N$, such that for all $P \in \partial \Omega$

$$\sum_{i=1}^{N} P(x_i(P)) > 0, \text{ where } F(P) = (x_1(P), \ldots, x_N(P)),$$

readily implies the existence of a spherical t-design in S^d consisting of N points. Indeed, consider a mapping $L : (S^d)^N \to \mathcal{P}_t$ defined by

$$(x_1, \ldots, x_N) \xrightarrow{L} G_{x_1} + \cdots + G_{x_N},$$

and the following composition mapping $f = L \circ F : \mathcal{P}_t \to \mathcal{P}_t$. Clearly

$$\langle P, f(P) \rangle = \sum_{i=1}^{N} P(x_i(P))$$

for each $P \in \mathcal{P}_t$. Thus, applying Theorem A to the mapping f, the vector space \mathcal{P}_t, and the subset Ω defined by (4), we obtain that $f(Q) = 0$ for some $Q \in \partial \Omega$. Hence, by (2), the components of $F(Q) = (x_1(Q), \ldots, x_N(Q))$ form a spherical t-design in S^d consisting of N points.

The most naive approach to construct such F is to start with a certain well-distributed collection of points $x_i (i = 1, \ldots, N)$, put $F(0) := (x_1, \ldots, x_N)$, and then move each point along the spherical gradient vector field of P. Note that this is the most greedy way to increase each $P(x_i(P))$ and make $\sum_{i=1}^{N} P(x_i(P))$ positive for each $P \in \partial \Omega$. Following this approach we will give an explicit construction of F in Section 4, which will immediately imply the proof of Theorem 1.

3. Auxiliary results

To construct the corresponding mapping F for each $N \geq C_d t^d$, we extensively use the following notion of an area-regular partition.

Let $\mathcal{R} = \{R_1, \ldots, R_N\}$ be a finite collection of closed sets $R_i \subset S^d$ such that $\bigcup_{i=1}^{N} R_i = S^d$ and $\mu_d(R_i \cap R_j) = 0$ for all $1 \leq i < j \leq N$. The partition \mathcal{R} is called area-regular if $\mu_d(R_i) = 1/N, i = 1, \ldots, N$. The partition norm for \mathcal{R} is defined by

$$\|\mathcal{R}\| := \max_{R \in \mathcal{R}} \text{diam } R,$$

where diam R stands for the maximum geodesic distance between two points in R. We need the following fact on area-regular partitions (see Bourgain, Lindenstrauss [5] and Kuijlaars, Saff [15]).
Theorem B. For each $N \in \mathbb{N}$, there exists an area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ with $\|\mathcal{R}\| \leq B_d N^{-1/d}$ for some constant B_d large enough.

We will also use a result that is an easy corollary of Theorem 3.1 in [16].

Theorem C. There exists a constant r_d such that for each area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ with $\|\mathcal{R}\| < \frac{r_d}{m}$, each collection of points $x_i \in R_i$ ($i = 1, \ldots, N$), and each polynomial P of total degree m,

\[
\frac{1}{2} \int_{S^d} |P(x)| \, d\mu_d(x) \leq \frac{1}{N} \sum_{i=1}^N |P(x_i)| \leq \frac{3}{2} \int_{S^d} |P(x)| \, d\mu_d(x)
\]

holds.

Theorem 3.1 in [16] was stated for slightly different definition of an area-regular partition. Namely, it was additionally assumed that each R_i is a spherical region. However the proof clearly works for our more general definition as well; see [16, §3.3].

Corollary 1. For each area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ with $\|\mathcal{R}\| < \frac{r_d}{m+1}$, each collection of points $x_i \in R_i$ ($i = 1, \ldots, N$), and each polynomial P of total degree m,

\[
\frac{1}{3\sqrt{d}} \int_{S^d} |\nabla P(x)| \, d\mu_d(x) \leq \frac{1}{N} \sum_{i=1}^N |\nabla P(x_i)| \leq 3\sqrt{d} \int_{S^d} |\nabla P(x)| \, d\mu_d(x).
\]

Proof. For a point $x = (\xi_1, \ldots, \xi_{d+1}) \in S^d$, we get by (3) that

\[
|\nabla P(x)| = \sqrt{P_1^2(x) + \cdots + P_{d+1}^2(x)}
\]

where

\[
P_j(x) := \frac{\partial P}{\partial \xi_j}(x) - \sum_{k=1}^{d+1} \xi_j \xi_k \frac{\partial P}{\partial \xi_k}(x)
\]

are polynomials of total degree at most $m + 1$. Thus, using a simple inequality

\[
\frac{1}{\sqrt{d+1}} \sum_{k=1}^{d+1} |P_k(x_i)| \leq \sqrt{\frac{1}{d+1} \sum_{k=1}^{d+1} P_k^2(x_i)} \leq \sum_{k=1}^{d+1} |P_k(x_i)|
\]

and then applying (6) to polynomials P_k, we obtain the statement of the corollary. \hfill \Box

4. Proof of Theorem 1

In this section we construct the map F introduced in Section 2 and thereby finish the proof of Theorem 1.

For $d, t \in \mathbb{N}$, take $C_d > (54dB_d/r_d)^d$, where B_d is as in Theorem B and r_d is as in Theorem C, and fix $N \geq C_d t^d$. Now we are in a position to give an exact
construction of the mapping $F : \mathcal{P}_t \to (S^d)^N$, which satisfies condition (5).

Take an area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ with

$$\|\mathcal{R}\| \leq B_d N^{-1/d} < \frac{r_d}{54d}$$

as provided by Theorem B, and choose an arbitrary $x_i \in R_i$ for each $i = 1, \ldots, N$. Put $\varepsilon = \frac{1}{6\sqrt{d}}$, and consider the function

$$h_\varepsilon(u) := \begin{cases}
 u & \text{if } u > \varepsilon, \\
 \varepsilon & \text{otherwise}.
\end{cases}$$

Take a mapping $U : \mathcal{P}_t \times S^d \to \mathbb{R}^{d+1}$ such that

$$U(P, y) = \frac{\nabla P(y)}{h_\varepsilon(|\nabla P(y)|)}.$$

For each $i = 1, \ldots, N$, let $y_i : \mathcal{P}_t \times [0, \infty) \to S^d$ be the map satisfying the differential equation

$$\frac{d}{ds} y_i(P, s) = U(P, y_i(P, s))$$

with the initial condition

$$y_i(P, 0) = x_i$$

for each $P \in \mathcal{P}_t$. Note that each mapping y_i has its values in S^d by definition of spherical gradient (3). Since the mapping $U(P, y)$ is Lipschitz continuous in both P and y, each y_i is well defined and continuous in both P and s, where the metric on \mathcal{P}_t is given by the inner product. Finally, put

$$F(P) = (x_1(P), \ldots, x_N(P)) := \left(y_1(P, \frac{r_d}{3t}), \ldots, y_N(P, \frac{r_d}{3t}) \right).$$

By definition, the mapping F is continuous on \mathcal{P}_t. So, as explained in Section 2, to finish the proof of Theorem 1 it suffices to prove

Lemma 1. Let $F : \mathcal{P}_t \to (S^d)^N$ be the mapping defined by (10). Then for each $P \in \partial \Omega$,

$$\frac{1}{N} \sum_{i=1}^{N} P(x_i(P)) > 0,$$

where Ω is given by (4).

Proof. Fix $P \in \partial \Omega$; that is,

$$\int_{S^d} |\nabla P(x)| d\mu_d(x) = 1.$$
For the sake of simplicity, we write $y_i(s)$ in place of $y_i(P, s)$. By the Newton-Leibniz formula, we have

\begin{equation}
\frac{1}{N} \sum_{i=1}^{N} P(x_i(P)) = \frac{1}{N} \sum_{i=1}^{N} P(y_i(r_d/3t))
= \frac{1}{N} \sum_{i=1}^{N} P(x_i) + \int_{0}^{r_d/3t} \frac{d}{ds} \left[\frac{1}{N} \sum_{i=1}^{N} P(y_i(s)) \right] ds.
\end{equation}

Now to prove Lemma 1, we first estimate the value

\[\left| \frac{1}{N} \sum_{i=1}^{N} P(x_i) \right| \]

from above and then estimate the value

\[\frac{d}{ds} \left[\frac{1}{N} \sum_{i=1}^{N} P(y_i(s)) \right] \]

from below for each $s \in [0, r_d/3t]$. We have

\[\left| \frac{1}{N} \sum_{i=1}^{N} P(x_i) \right| = \sum_{i=1}^{N} \int_{R_i} P(x_i) - P(x) \, d\mu_d(x) \leq \sum_{i=1}^{N} \int_{R_i} |P(x_i) - P(x)| \, d\mu_d(x) \]

\[\leq \|\mathcal{R}\| \sum_{i=1}^{N} \max_{z \in S^d, \text{dist}(z, x_i) \leq \|\mathcal{R}\|} |\nabla P(z)|, \]

where dist(z, x_i) denotes the geodesic distance between z and x_i. Hence, for $z_i \in S^d$ such that dist$(z_i, x_i) \leq \|\mathcal{R}\|$ and

\[|\nabla P(z_i)| = \max_{z \in S^d, \text{dist}(z, x_i) \leq \|\mathcal{R}\|} |\nabla P(z)|, \]

we obtain

\[\left| \frac{1}{N} \sum_{i=1}^{N} P(x_i) \right| \leq \frac{\|\mathcal{R}\|}{N} \sum_{i=1}^{N} |\nabla P(z_i)|. \]

Consider another area-regular partition $\mathcal{R}' = \{R'_1, \ldots, R'_N\}$ defined by $R'_i = R_i \cup \{z_i\}$. Clearly $\|\mathcal{R}'\| \leq 2\|\mathcal{R}\|$ and so, by (8), we get $\|\mathcal{R}'\| < r_d/(27d t)$. Applying inequality (7) to the partition \mathcal{R}' and the collection of points z_i, we obtain that

\begin{equation}
\left| \frac{1}{N} \sum_{i=1}^{N} P(x_i) \right| \leq 3\sqrt{d} \|\mathcal{R}\| \int_{S^d} |\nabla P(x)| \, d\mu_d(x) < \frac{r_d}{18 \sqrt{d} t}.
\end{equation}
for any $P \in \partial \Omega$. On the other hand, the differential equation (9) implies

\[
\frac{d}{ds} \left[\frac{1}{N} \sum_{i=1}^{N} P(y_i(s)) \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{|\nabla P(y_i(s))|^2}{h_\varepsilon(|\nabla P(y_i(s))|)} \geq \frac{1}{N} \sum_{i: |\nabla P(y_i(s))| \geq \varepsilon} |\nabla P(y_i(s))| \geq \frac{1}{N} \sum_{i=1}^{N} |\nabla P(y_i(s))| - \varepsilon.
\]

Since

\[
\frac{\nabla P(y)}{h_\varepsilon(|\nabla P(y)|)} \leq 1
\]

for each $y \in S^d$, it follows again from (9) that $\left| \frac{dy_i(s)}{ds} \right| \leq 1$. Hence we arrive at

\[
\text{dist}(x_i, y_i(s)) \leq s.
\]

Now for each $s \in [0, r_d/3t]$, we consider the area-regular partition $\mathcal{R}'' = \{R''_1, \ldots, R''_N\}$ given by $R''_i = R_i \cup \{y_i(s)\}$. By (8), we have

\[
\|\mathcal{R}''\| < \frac{r_d}{54dt} + \frac{r_d}{3t},
\]

so we can apply (7) to the partition \mathcal{R}'' and the collection of points $y_i(s)$. This and inequality (13) yield

\[
\frac{d}{ds} \left[\frac{1}{N} \sum_{i=1}^{N} P(y_i(s)) \right] \geq \frac{1}{N} \sum_{i=1}^{N} |\nabla P(y_i(s))| - \frac{1}{6\sqrt{d}} \geq \frac{1}{3\sqrt{d}} \int_{S^d} |\nabla P(x)| d\mu_d(x) - \frac{1}{6\sqrt{d}} = \frac{1}{6\sqrt{d}}
\]

for each $P \in \partial \Omega$ and $s \in [0, r_d/3t]$. Finally, equation (11) and inequalities (12) and (14) imply

\[
\frac{1}{N} \sum_{i=1}^{N} P(x_i(P)) > \frac{1}{6\sqrt{d}} \frac{r_d}{3t} - \frac{r_d}{18 \sqrt{d} t} = 0.
\]

Lemma 1 is proved. □

Acknowledgements. We thank Joaquim Bruna, Jacob Korevaar, Pieter Moree, Michael Ontiveros, Joaquim Ortega-Cerdà, Andriy Prymak, Edward Saff, Igor Shevchuk, and Sergey Tikhonov for several fruitful discussions. We also thank the referee for valuable suggestions.
References

(Received: March 10, 2011)