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Small eigenvalues of the Laplacian for
algebraic measures in moduli space, and
mixing properties of the Teichmüller flow

By Artur Avila and Sébastien Gouëzel

Abstract

We consider the SL(2,R) action on moduli spaces of quadratic differ-

entials. If µ is an SL(2,R)-invariant probability measure, crucial infor-

mation about the associated representation on L2(µ) (and, in particular,

fine asymptotics for decay of correlations of the diagonal action, the Te-

ichmüller flow) is encoded in the part of the spectrum of the corresponding

foliated hyperbolic Laplacian that lies in (0, 1/4) (which controls the con-

tribution of the complementary series). Here we prove that the essential

spectrum of an invariant algebraic measure is contained in [1/4,∞); i.e.,

for every δ>0, there are only finitely many eigenvalues (counted with mul-

tiplicity) in (0, 1/4−δ). In particular, all algebraic invariant measures have

a spectral gap.

1. Introduction

For any lattice Γ ⊂ SL(2,R), the decomposition of the unitary repre-

sentation of SL(2,R) on L2(SL(2,R)/Γ) into irreducible components consists

almost entirely of tempered representations (with fast decay of matrix coef-

ficients). Only finitely many nontempered representations may appear, each

with finite multiplicity. This corresponds to the well-known result of Selberg

(see, e.g., [Iwa95]) that in a hyperbolic surface of finite volume, the Laplacian

has only finitely many eigenvalues, with finite multiplicity, in (0, 1/4). This

has several remarkable consequences, for instance, on the asymptotics of the

number of closed geodesics, the main error terms of which come from the small

eigenvalues of the Laplacian (by Selberg’s trace formula; see [Hej83]), or for

the asymptotics of the correlations of smooth functions under the diagonal

flow [Rat87].

For a more general ergodic action of SL(2,R), the situation can be much

more complicated. In general, one may even not have a spectral gap. (SL(2,R)
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does not have Kazhdan’s property (T ).) Even in the particularly nice situation

of the SL(2,R) action on a homogeneous space G/Γ with G a semi-simple Lie

group containing SL(2,R) and Γ an irreducible lattice in G (a most natural

generalization of the case G = SL(2,R) above), nontempered representations

may have a much heavier contribution. For instance, [KS09, Th. 1] constructs

examples (with G = SL(2,R) × SU(2)) where the spectrum of the foliated

(along SO(2,R)\SL(2,R) orbits) Laplacian on SO(2,R)\G/Γ has an accumu-

lation point in (0, 1/4). In fact, whether there is always a spectral gap at all

remains an open problem for G = SL(2,R) × SU(2). While one does expect

better behavior in the case where G has no compact factor, it too remains far

from fully understood.

Moduli spaces of quadratic differentials present yet another natural gener-

alization of SL(2,R)/Γ, with different challenges. Let g, n≥0 with 3g−3+n>0,

let Mg,n be the moduli space of quadratic differentials on a genus g Riemann

surface with n punctures, and with at most simple poles at the punctures (al-

ternatively, it is the cotangent bundle of the moduli space of Riemann surfaces),

and letM1
g,n ⊂Mg,n be the subspace of area one quadratic differentials. There

is a natural SL(2,R) action on M1
g,n, which has been intensively studied, not

least because the corresponding diagonal action gives the Teichmüller geodesic

flow. If g=0 and n=4 or if g=1 and n=1, M1
g,n turns out to be of the form

SL(2,R)/Γ. In higher genus the M1
g,n are not homogeneous spaces, and it is

rather important to understand to which extent they may still behave as such.

Recall that Mg,n is naturally stratified by the “combinatorial data” of

the quadratic differential q (order of zeros, number of poles, and whether or

not q is a square of an Abelian differential). Each stratum has a natural com-

plex affine structure, though it is not necessarily connected, the (finitely many)

connected components having been classified by Kontsevich-Zorich [KZ03] and

Lanneau [Lan08]. Each connected component C carries a unique (up to scaling)

finite invariant measure µ which is SL(2,R) invariant and absolutely contin-

uous with respect to C ∩ M1
g,n. (In case of the largest, “generic,” stratum,

which is connected, µ coincides with the Liouville measure in M1
g,n.) Those

measures were constructed, and shown to be ergodic, by Masur [Mas82] and

Veech [Vee82]. In [AGY06] and [AR12], it is shown that for such a Masur-Veech

measure µ, the SL(2,R) action on L2(µ) has a spectral gap.

There are many more ergodic SL(2,R)-invariant measures beyond the

Masur-Veech measures, which can be expected to play an important role in

the analysis of nontypical SL(2,R) orbits. (The consideration of nontypical or-

bits arises, in particular, when studying billiards in rational polygons.) While

all such measures have not yet been classified, it has been recently proved by
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Eskin and Mirzakhani [EM13] that they are all “algebraic,”1 a result analo-

gous to one of Ratner’s Theorems (classifying SL(2,R) invariant measures in

an homogeneous space [Rat92]). For squares of Abelian differentials in M2,0,

a stronger version of this result, including the classification of the algebraic

invariant measures, was obtained earlier by McMullen [McM07].

Let µ be an algebraic SL(2,R)-invariant measure in someM1
g,n. Our goal

in this paper is to see to what extent the action of SL(2,R) on L2(µ) looks like

an action on an homogeneous space, especially concerning small eigenvalues of

the associated Laplacian acting on the subspace of SO(2,R) invariant functions

in L2(µ). Our main theorem states that the situation is almost identical to

the SL(2,R)/Γ case (the difference being that we are not able to exclude the

possibility that the eigenvalues accumulate at 1/4).

Main Theorem. Let µ be an SL(2,R)-invariant algebraic probability mea-

sure in a moduli space of quadratic differentials. For any δ > 0, the spectrum

of the associated Laplacian in [0, 1/4− δ] is made of finitely many eigenvalues,

of finite multiplicity.

This theorem can also be formulated as follows: In the decomposition of

L2(µ) into irreducible components, the representations of the complementary

series occur only discretely, with finite multiplicity. More details are given in

the next section.

Our result is independent of the above mentioned theorem of Eskin and

Mirzakhani [EM13]. With their theorem, we obtain that our result in fact

applies to all SL(2,R)-invariant probability measures.

As mentioned before, the spectral gap (equivalent to the absence of spec-

trum in (0, ε) for some ε > 0) had been previously established in the particular

case of Masur-Veech measures ([AGY06], [AR12]), but without any control

of the spectrum beyond a neighborhood of 0 (which moreover degenerates as

the genus increases). Here we not only obtain very detailed information on

the spectrum up to the 1/4 barrier (beyond which the statement is already

false even for the modular surface M1,1), but manage to address all algebraic

measures, even in the absence of a classification. This comes from the im-

plementation of a rather different, geometric approach, in contrast with the

combinatorial one used to establish the spectral gap for Masur-Veech mea-

sures (heavily dependent on the precise combinatorial description, in terms of

1Here we use the term algebraic in a rather lax sense. What has actually been shown is

that the corresponding GL+(2,R) invariant measure is supported on an affine submanifold of

some stratum, along which it is absolutely continuous (with locally constant density in affine

charts).
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Rauzy diagrams, of the Teichmüller flow restricted to connected components

of strata).

An interesting question is whether there are indeed eigenvalues in (0, 1/4).

It is well known that there is no such eigenvalue in SL(2,R)/Γ for Γ = SL(2,Z),

and by Selberg’s Conjecture [Sel65] the situation should be the same for any

congruence subgroup. It is tempting to conjecture that, in our nonhomoge-

neous situation, there is no eigenvalue either, at least when µ is the Masur-

Veech measure. We will, however, refrain from doing so since we have no

serious evidence in one direction or the other. Let us note, however, that for

some measures µ, there are indeed eigenvalues. For any finite index subgroup

Γ of the congruence subgroup Γ(2) containing {±1}, the curve SL(2,R)/Γ can

be realized as a Teichmüller curve by [EM12]. Suitably choosing Γ and taking

for µ the Liouville measure on the resulting Teichmüller curve, we get an ex-

ample with eigenvalues. Explicit examples have been constructed by Matheus

and Schmithüsen [MWS11]. Notice that this shows indeed that there can be

no uniform spectral gap for all algebraic measures in all moduli spaces. (It is

unknown whether there is a uniform spectral gap in each fixed moduli space.)

A consequence of our main theorem is that the correlations of well-behaved

functions have a nice asymptotic expansion (given by the spectrum of the

Laplacian). For instance, if f1 and f2 are square-integrable SO(2,R)-finite

functions (i.e., f1 and f2 have only finitely many nonzero Fourier coefficients

for the action of SO(2,R)), then their correlations
∫
f1 · f2 ◦ gt dµ with respect

to the Teichmüller flow gt =
Ä
et 0
0 e−t

ä
can be written, for every 0 < δ < 1, as∑M−1

i=0 ci(f1, f2)e−ait + o(e−(1−δ)t), where 0 = a0 < · · · < aM−1 ≤ 1− δ are the

numbers 1 −
√

1− 4λ for λ an eigenvalue of ∆ in [0, (1 − δ2)/4]. This follows

at once from the asymptotic expansion of matrix coefficients of SO(2,R)-finite

functions in [CM82, Th. 5.6]. A similar expansion certainly holds if f1 and f2

are only compactly supported C∞ functions, but its proof would require more

detailed estimates on matrix coefficients.

We expect that our techniques will also be useful in the study of the Ruelle

zeta function ζRuelle(z) =
∏
τ (1 − e−z|τ |) (where τ runs over the prime closed

orbits of the flow g and |τ | is the length of τ). Recall that ζRuelle(z) can be

expressed as an alternating product
∏
ζk(z)

(−1)k, where ζk is a dynamical zeta

function related to the action of gt on the space of k-forms (see, e.g., [Fri86]).

Along the proof of the main theorem, we obtain considerable information for

the action of the Teichmüller flow in suitably defined Banach spaces, which

goes in the direction of providing meromorphic extensions of the functions ζk
(and therefore also of the Ruelle zeta functions), hence opening the way to

precise asymptotic formulas (which should include correction terms coming

from small eigenvalues of the Laplacian) for the number of closed geodesics in

the support of any algebraic invariant measure.
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2. Statements of results

Our results will be formulated in moduli spaces of flat surfaces as follows.

Fix a closed surface S of genus g ≥ 1, a subset Σ = {σ1, . . . , σj} of S and

multiplicities κ = (κ1, . . . , κj) with
∑

(κi− 1) = 2g− 2. We denote by Teich =

Teich(S,Σ, κ) the set of translation structures on S such that the cone angle

around each σi is equal to 2πκi, modulo isotopy. Equivalently, this is the space

of abelian differentials with zeroes of order κi−1 at σi. Also let Teich1 ⊂ Teich

be the set of area one surfaces.

Given a translation surface x, one can develop closed paths (or more

generally paths from singularity to singularity) from the surface to C, using the

translation charts. This defines an element Φ(x) ∈ H1(M,Σ;C). The resulting

period map Φ : Teich → H1(M,Σ;C) is a local diffeomorphism and endows

Teich with a canonical complex affine structure.

The mapping class group Γ of (S,Σ, κ) is the group of homeomorphisms

of S permuting the elements of Σ with the same κi, modulo isotopy. It acts

on Teich and on Teich1. The space Teich is also endowed with an action of

GL+(2,R), obtained by postcomposing the translation charts by GL+(2,R)

elements. The action of the subgroup SL(2,R) of GL+(2,R) leaves Teich1

invariant. Since the actions of GL+(2,R) and Γ commute, we may write the

former on the left and the latter on the right.

Definition 2.1. A measure µ̃ on Teich1 is admissible if it satisfies the fol-

lowing conditions:

• The measure µ̃ is SL(2,R) and Γ-invariant.

• There exists a Γ-invariant affine submanifold Y of Teich such that µ̃ is

supported on X = Y ∩Teich1, and the measure µ̃⊗Leb on X×R∗+ = Y

is locally a multiple of Lebesgue measure on Y .

• The measure µ induced by µ̃ on X/Γ has finite mass and is ergodic

under the action of SL(2,R) on X/Γ.

Although this definition may seem quite restrictive, it follows from Eskin

and Mirzakhani [EM13] that ergodic SL(2,R)-invariant measures are automati-

cally admissible. The following proposition is much weaker, but we nevertheless

include it since its proof is elementary and is needed to obtain further infor-

mation on admissible measures (in particular, on their local product structure;

see Proposition 4.1 below).

Proposition 2.2. Let X be a Γ-equivariant C1 submanifold of Teich1

such that X/Γ is connected, and let µ̃ be an SL(2,R)- and Γ-invariant measure
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on X such that µ̃ is equivalent to Lebesgue measure, and the induced measure

µ in X/Γ is a Radon measure; i.e., it gives finite mass to compact subsets of

X/Γ. Then µ̃ is admissible.

This proposition should be compared to a result of Kontsevich and Möller

in [Möl08]: any GL+(2,R)-invariant algebraic submanifold of Teich is affine.

Here, we obtain the same conclusion ifX is only C1, but we additionally assume

the existence of an invariant absolutely continuous Radon measure on X.

Let µ̃ be an admissible measure, supported by a submanifold X of Teich1.

Every SL(2,R)-orbit in X/Γ is isomorphic to a quotient of SL(2,R). Therefore,

the image of every such orbit in SO(2,R)\X/Γ (the set of translations surfaces

in X, modulo the mapping class group, and in which the vertical direction

is forgotten) is a quotient of the hyperbolic plane and is canonically endowed

with the hyperbolic Laplacian. Gluing those operators together on the different

orbits, we get a Laplacian ∆ on SO(2,R)\X/Γ, which acts (unboundedly) on

L2(SO(2,R)\X/Γ, µ), where µ is µ̃ mod Γ. Our main theorem describes the

spectrum of this operator.

Theorem 2.3. Let µ̃ be an admissible measure, supported by a mani-

fold X . Denote by µ the induced measure on X/Γ. Then, for any δ > 0,

the spectrum of the Laplacian ∆ on L2(SO(2,R)\X/Γ, µ), intersected with

(0, 1/4− δ), is made of finitely many eigenvalues of finite multiplicity.

This theorem can also be formulated in terms of the spectrum of the

Casimir operator, or in terms of the decomposition of L2(X/Γ, µ) into irre-

ducible representations under the action of SL(2,R): For any δ > 0, there

is only a finite number of representations in the complementary series with

parameter u ∈ (δ, 1) appearing in this decomposition, and they have finite

multiplicity. See Section 3.4 for more details on these notions and their rela-

tionships.

Remark 2.4. We have formulated the result in the space X/Γ, where Γ is

the mapping class group. However, if Γ′ is a subgroup of Γ of finite index, then

the proof still applies in X/Γ′. (Of course, there may be more eigenvalues in

X/Γ′ than in X/Γ.) This applies, for instance, to Γ′ the set of elements of Γ

that fix each singularity σi.

Remark 2.5. In compact hyperbolic surfaces, the spectrum of the Lapla-

cian is discrete. Therefore, the essential spectrum of the Laplacian in [1/4,∞)

in finite volume hyperbolic surfaces comes from infinity, i.e., the cusps. Since

the geometry at infinity of moduli spaces of flat surfaces is much more compli-

cated than cusps, one might expect more essential spectrum to show up, and

Theorem 2.3 may come as a surprise. However, from the point of view of mea-

sure, infinity has the same weight in hyperbolic surfaces and in moduli spaces.
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The set of points at distance at least H in a cusp has measure ∼ cH−2, while

its analogue in a moduli space is the set of surfaces with systole at most H−1,

which also has measure of order c′H−2 by the Siegel-Veech formula [EM01].

This analogy (which also holds for recurrence speed to compact sets) justifies

Theorem 2.3 heuristically.

Quadratic differentials. Let g, n ≥ 0 be integers such that 3g− 3 + n > 0,

and let Tg,n be the Teichmüller space of Riemann surfaces of genus g with

n punctures. Its cotangent space is the space Qg,n of quadratic differentials

with at most simple poles at the punctures. It is stratified by fixing some

appropriate combinatorial data (the number of poles, the number of zeros

of each given order, and whether the quadratic differential is a square of an

Abelian differential or not). Much of the theory of quadratic differentials is

parallel to the one of Abelian differentials; in particular, each stratum in Qg,n
can be seen as a Teichmüller space flTeich = flTeich(S̃, Σ̃, κ̃) of half-translation

structures, which allows one to define a natural action of GL+(2,R). Moreover,

strata are endowed with a natural affine structure, which allows one to define

the notion of admissible measure (in particular, the Liouville measure in Qg,n
is admissible). Thus the statement of Theorem 2.3 still makes sense in the

setting of quadratic differentials. As it turns out, it can also be easily derived

from the result about Abelian differentials.

This is most immediately seen for strata of squares, in which case flTeich

is the quotient of a Teichmüller space of Abelian differentials Teich by an

involution (the rotation of angle π). Taking the quotient by SO(2,R), we see

that the spectrum of the Laplacian for some SL(2,R)-invariant measure inflTeich is the same as the one for its (involution-symmetric) lift to Teich, to

which Theorem 2.3 applies.

Even when flTeich is not a stratum of squares, it can still be analyzed in

terms of certain Abelian differentials (the well-known double cover construc-

tion also used in [AR12]). Indeed, in this case the Riemann surface with a

quadratic differential admits a (holomorphic, ramified, canonical) connected

double cover (constructed formally using the doubly-valued square-root of the

quadratic differential), to which the quadratic differential lifts to the square

of an (also canonical) Abelian differential. This double cover carries an extra

bit of information, in the form of a canonical involution, so that flTeich gets

identified with a Teichmüller space of “translation surfaces with involution.”

Forgetting the involution, the latter can be seen as an affine subspace of a

Teichmüller space of translation surfaces, allowing us to apply Theorem 2.3.

Notations. Let us introduce notations for convenient elements of SL(2,R).

For t ∈ R, let gt =
Ä
et 0
0 e−t

ä
. Its action on Qg is the geodesic flow corresponding

to the Teichmüller distance on Tg, and its action in different strata (which we
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still call the Teichmüller flow) will play an essential role in the proof of our

main theorem. We also denote hr = ( 1 r
0 1 ) and h̃r = ( 1 0

r 1 ) as the horocycle

actions and kθ =
Ä

cos θ sin θ
− sin θ cos θ

ä
as the circle action. Throughout this article, the

letter C denotes a constant whose value is irrelevant and can change from line

to line.

Sketch of the proof. The usual strategy to prove that the spectrum of the

Laplacian is finite in [0, 1/4] in a finite volume surface S = SO(2,R)\SL(2,R)/Γ

is the following. One decomposes L2(S) as L2
cusp(S)⊕L2

eis(S), where L2
cusp(S)

is made of the functions whose average on all closed horocycles vanishes and

L2
eis(S) is its orthogonal complement. One then proves that the spectrum in

L2
eis(S) is [1/4,∞) by constructing a basis of eigenfunctions using Eisenstein

series and that the spectrum in L2
cusp(S) is discrete since convolution with

smooth compactly supported functions in SL(2,R) is a compact operator.

There are two difficulties when trying to implement this strategy in non-

homogeneous situations. Firstly, since the geometry at infinity is very compli-

cated, it is not clear what the good analogue of L2
eis(S) and Eisenstein series

would be. Secondly, the convolution with smooth functions in SL(2,R) only

has a smoothing effect in the direction of the SL(2,R) orbits, and not in the

transverse direction (and this would also be the case if one directly tried to

study the Laplacian); therefore, it is very unlikely to be compact.

To solve the first difficulty, we avoid completely the decomposition into

Eisenstein and cuspidal components and work in the whole L2 space. This

means that we will not be able to exhibit compact operators (since this would

only yield discrete spectrum), but we will rather construct quasi-compact op-

erators, i.e., operators with finitely many large eigenvalues and the rest of the

spectrum contained in a small disk. The first part will correspond to the spec-

trum of the Laplacian in [0, 1/4− δ] and the second part to the noncontrolled

rest of the spectrum.

Concerning the second difficulty, we will not study the Laplacian nor con-

volution operators, but another element of the enveloping algebra: the differ-

entiation Lω in the direction ω of the flow gt. Of course, its behavior on the

space L2(X/Γ, µ) is very bad, but we will construct a suitable Banach space B
of distributions on which it is quasi-compact. To relate the spectral properties

of gt on B and of ∆ on L2, we will rely on fine asymptotics of spherical functions

in irreducible representations of SL(2,R). (This part is completely general and

does not rely on anything specific to moduli spaces of flat surfaces.)

The main difficulty of the article is the construction of B and the study of

Lω on B. We rely in a crucial way on the hyperbolicity of gt, which describes

what happens in all the directions of the space under the iteration of the flow.

If B is carefully tuned (its elements should be smooth in the stable direction of
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the flow, and dual of smooth in the unstable direction), then one can hope to

get smoothing effects in every direction, and therefore some compactness. This

kind of argument has been developed in recent years for Anosov maps or flows

in compact manifolds and has proved very fruitful. (See, among others, [Liv04],

[GL06], [BT07], [BL07].) We use the insights of these papers in an essential

way. However, the main difficulty for us is the noncompactness of moduli space.

Since we cannot rely on an abstract compactness argument close to infinity, we

have to get explicit estimates there (using a quantitative recurrence estimate

of Eskin-Masur [EM01]). We should also make sure that the estimates do not

diverge at infinity. Technically, this is done using the Finsler metric of Avila-

Gouëzel-Yoccoz [AGY06] (which has good regularity properties uniformly in

Teichmüller space) to define the Banach space B and plugging the Eskin-Masur

function V into the definition of B. On the other hand, special features of the

flow under study are very helpful. It is affine (hence no distortion appears),

and its stable and unstable manifolds depend smoothly on the base point and

are affine. Moreover, it is endowed in a SL(2,R) action, which implies that

its spectrum cannot be arbitrary. Contrary to [Liv04], we will not need to

investigate spectral values with a large imaginary part.

Let us quickly describe a central step of the proof. At some point, we

need to study the iterates LnT0
of the operator LT0f = f ◦ gT0 for a suitably

chosen T0. Using a partition of unity, we decompose LT0 as L̃1 + L̃2, where L̃1

corresponds to what is going on in a very large compact set K and L̃2 takes

what happens outside K into account. We expand LnT0
=
∑
γi∈{1,2} L̃γ1 · · · L̃γn .

In this sum, if most γis are equal to 2, we are spending a lot of time outside K,

and the Eskin-Masur function gives us a definite gain. Otherwise, a definite

amount of time is spent inside K, where the flow is hyperbolic, and we get a

gain λ given by the hyperbolicity constant of the flow inside K. Unfortunately,

we only know that λ is strictly less than 1 (and K is very large, so λ is likely to

be very close to 1). This would be sufficient to get a spectral gap, but not to

reach 1/4 in the spectrum of the Laplacian. A key remark is that, if we define

our Banach space B using Ck regularity, then the gain is better, of order λk.

Choosing k large enough (at the complete end of the proof), we get estimates

as precise as we want, getting arbitrarily close to 1/4.

In view of this argument, two remarks can be made. Firstly, since we need

to use very high regularity, our proof cannot be done using a symbolic model

since the discontinuities at the boundaries would spoil the previous argument.

Secondly, since k is chosen at the very end of the proof, we have to make sure

that all our bounds, which already have to be uniform in the noncompact space

X/Γ, are also uniform in k.

The paper is organized as follows. In Section 3, we introduce necessary

background on irreducible unitary representations of SL(2,R) and show that
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Theorem 2.3 follows from a statement on spectral properties of the differenti-

ation Lω in the flow direction (Theorem 3.2). In Section 4, we get a precise

description of admissible measures, showing that they have a nice local product

structure. Along the way, we prove Proposition 2.2. In Section 5, we establish

several technical properties of the Ck-norm with respect to the Finsler metric

of [AGY06] that will be instrumental when defining our Banach space B. In

Section 6, we reformulate the recurrence estimates of Eskin-Masur [EM01] in

a form that is convenient for us. Finally, we define the Banach space B in

Section 7 and prove Theorem 3.2 in Section 8.

3. Proof of the main theorem: the general part

3.1. Functional analytic prerequisites. Let L be a bounded operator on a

complex Banach space (B, ‖·‖). A complex number z belongs to the spectrum

σ(L) of L if zI−L is not invertible. If z is an isolated point in the spectrum of L,

we can define the corresponding spectral projection Πz := 1
2iπ

∫
C(wI−L)−1 dw,

where C is a small circle around z. (This definition is independent of the choice

of C.) Then Πz is a projection, its image and kernel are invariant under L, and

the spectrum of the restriction of L to the image is {z}, while the spectrum of

the restriction of L to the kernel is σ(L) − {z}. We say that z is an isolated

eigenvalue of finite multiplicity of L if the image of Πz is finite-dimensional,

and we denote by σess(L) the essential spectrum of L, i.e., the set of elements

of σ(L) that are not isolated eigenvalues of finite multiplicity.

The spectral radius of L is r(L) := sup{|z| : z ∈ σ(L)}, and its essential

spectral radius is ress(L) := sup{|z| : z ∈ σess(L)}. These quantities can also be

computed as follows: r(L) = infn∈N
∥∥∥Ln∥∥∥1/n

, and ress(L) = inf
∥∥∥Ln −K∥∥∥1/n

,

where the infimum is over all integers n and all compact operators K. In

particular, we get that the essential spectral radius of a compact operator is 0;

i.e., the spectrum of a compact operator is made of a sequence of isolated

eigenvalues of finite multiplicity tending to 0, as is well known.

So-called Lasota-Yorke inequalities can also be used to estimate the es-

sential spectral radius.

Lemma 3.1. Assume that, for some n > 0 and for all x ∈ B, we have∥∥∥Lnx∥∥∥ ≤Mn ‖x‖+ ‖x‖′ ,

where ‖·‖′ is a seminorm on B such that the unit ball of B (for ‖·‖) is relatively

compact for ‖·‖′. Then ress(L) ≤M .

This has essentially been proved by Hennion in [Hen93]. The statement

in this precise form can be found in [BGK07, Lemma 2.2].

Assume now that L is a bounded operator on a complex normed vector

space (B, ‖·‖), but that B is not necessarily complete. Then L extends uniquely
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to a bounded operator L on the completion B of B for the norm ‖·‖. We will

abusively talk about the spectrum, essential spectrum or essential spectral

radius of L, thinking of the same data for L.

3.2. Main spectral result. Let µ̃ be an admissible measure supported on a

manifold X, and let µ be its projection in X/Γ.

We want to study the spectral properties of the differentiation operator

Lω in the direction ω of the flow gt. As in [Liv04], it turns out to be easier to

study directly the resolvent of this operator, given by R(z)f =
∫∞
t=0 e

−ztf ◦gt dt.

Given δ > 0, we will study the operator M = R(4δ) on the space DΓ

of C∞ functions on X that are Γ-invariant and compactly supported in X/Γ.

Of course, Mf is not any more compactly supported, so we should be more

precise.

We want to define a norm ‖·‖ on DΓ such that, for any f ∈ DΓ, the

function f ◦ gt (which still belongs to DΓ) satisfies ‖f ◦ gt‖ ≤ C ‖f‖ for some

constant C independent of t. Denoting by DΓ the completion of DΓ for the

norm ‖·‖, the operator Lt : f 7→ f ◦ gt extends continuously to an operator on

DΓ, whose norm is bounded by C. Therefore, the operator M :=
∫∞
t=0 e

−4δtLt
acts continuously on the Banach space DΓ, and it is meaningful to consider

its essential spectral radius. We would like this essential spectral radius to be

quite small. Since ‖f ◦ gt‖ ≤ C ‖f‖, the trivial estimate on the spectral radius

of M is C
∫∞
t=0 e

−4δt dt = C/(4δ). This blows up when δ tends to 0. We will

get a significantly better bound on the essential spectral radius in the following

theorem.

Theorem 3.2. There exists a norm on DΓ satisfying the requirement

‖f ◦ gt‖ ≤ C ‖f‖ (uniformly in f ∈ DΓ and t ≥ 0) such that the essential

spectral radius of M for this norm is at most 1 + δ.

Moreover, for any f1 ∈ DΓ, the linear form f 7→
∫
X/Γ f1f dµ extends

continuously from DΓ to its closure DΓ.

This theorem is proved in Section 8. The main point is, of course, the

assertion on the essential spectral radius; the last one is a technicality that we

will need later on.

Let us admit this result for the moment and see how it implies our main

result, Theorem 2.3. Since Theorem 3.2 deals with the spectrum of Lω, it

is not surprising that it implies a description of the spectrum of the action

of SL(2,R). However, we only control the spectrum of Lω on a quite exotic

Banach space of distributions. To obtain information on the action of SL(2,R),

we will therefore follow an indirect path, through meromorphic extensions of

Laplace transforms of correlation functions. (It seems desirable to find a more

direct and more natural route.)
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3.3. Meromorphic extensions of Laplace transforms. In this section, from

Theorem 3.2 we will obtain a meromorphic extension of the Laplace transform

of the correlations of smooth functions to a suitable domain, described as

follows. For δ > 0, define Dδ ⊂ C as the set of points z = x + iy such that

either x > 0, or (x, y) ∈ [−1 + 7δ, 0]× [−δ, δ] (see Figure 1).

−1 + 7δ 0
+

z0 = 4δ

Dδ

−δ

δ

× ×
×

× ×
×

1/(1 + 2δ)

Figure 1. The domain Dδ. Possible poles of F (marked with ×)

are located in Dδ ∩ <z ≤ 0.

Proposition 3.3. Let δ > 0. Let f1, f2 ∈ DΓ, define for <z > 0 a func-

tion F (z) = Ff1,f2(z) =
∫∞
t=0 e

−zt
Ä∫
X/Γ f1 · f2 ◦ gt dµ

ä
dt. Then the function F

admits a meromorphic extension to (a neighborhood of ) Dδ .

Moreover, the poles of F in Dδ are located in the set {4δ− 1/λ1, . . . , 4δ−
1/λI}, where the λi are the finitely many eigenvalues of modulus at least 1+2δ

of the operator M = R(4δ) acting on the space constructed in Theorem 3.2.

The residue of F at such a point 4δ− 1/λi is equal to
∫
X/Γ f1 ·Πλif2 dµ, where

Πλi is the spectral projection of M associated to λi ∈ σ(M).

Proof. Heuristically, we have F (z) =
∫
X/Γ f1R(z)f2 dµ, where R(z) =∫∞

t=0 e
−ztf ◦gt and, moreover, R(z) = (z−Lω)−1, where Lω is the differentiation

in the direction ω. Let us fix z0 = 4δ. The spectral properties ofM = R(z0) =

(z0−Lω)−1 are well controlled by Theorem 3.2. In view of the formal identity

(z − Lω)−1 = (z0 − z)−1(z0 − Lω)−1((z0 − z)−1 − (z0 − Lω)−1)−1,

we are led to define an operator

(3.1) S(z) =
1

z0 − z
M
Å

1

z0 − z
−M

ã−1

,
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which should coincide with R(z). In particular, we should have the equality

F (z) =
∫
X/Γ f1S(z)f2 dµ. Since S(z) is defined for a large set of values of z, this

should define the requested meromorphic extension of F to a larger domain.

Let us start the rigorous argument. Let DΓ be the Banach space con-

structed in Theorem 3.2, and let λ1, . . . , λI be the finitely many eigenvalues

of modulus ≥ 1 + 2δ of M acting on DΓ. For z with 1/|z0 − z| ≥ 1 + 2δ

and 1/(z0 − z) 6∈ {λ1, . . . , λI}, we can define on DΓ an operator S(z) by the

formula (3.1). Except for the finite set K = {z0 − 1/λ1, . . . , z0 − 1/λI}, this

domain of definition contains D′ = [−1 + 7δ, 1]× [−δ, δ] (which itself contains

Dδ ∩ {<z ≤ 0}). Indeed, for z = (x, y) ∈ D′, one has

|z − z0| ≤ |x− 4δ|+ |y| ≤ 1− 3δ + δ = 1− 2δ < 1/(1 + 2δ).

In particular, z 7→ S(z) is holomorphic on D′\K. Since the points z0−1/λi are

poles of finite order (see, e.g., [Kat66, III.6.5]), S(z) is even meromorphic on

D′. Let us finally set G(z) =
∫
X/Γ f1S(z)f2 dµ ∈ C; this is well defined by the

last statement in Theorem 3.2. The function G is meromorphic and defined

on the set D′, with possible poles at the points z0 − 1/λ1, . . . , z0 − 1/λI . To

conclude, we just have to check that F and G coincide in a neighborhood of z0.

If z is very close to z0, 1/(z0− z) is very large so that all series expansions

are valid. Then the formula (3.1) gives

S(z)f2 =M(1− (z0 − z)M)−1f2 =
∞∑
k=0

(z0 − z)kMk+1f2.

Since Mk+1f =
∫∞
t=0

tk

k! e
−z0tf ◦ gt dt, we obtain

S(z)f2 =

∫ ∞
t=0

∞∑
k=0

(z0 − z)k
tk

k!
e−z0tf ◦ gt dt =

∫ ∞
t=0

e(z0−z)te−z0tf2 ◦ gt dt.

This shows, as desired, that S(z)f2 = R(z)f2 for z close to z0.

Let us now compute the residue of S(z)f2 around a point z0 − 1/λi. We

have

S(z) =
1

z0 − z

Å
1

z0 − z
+M− 1

z0 − z

ãÅ
1

z0 − z
−M

ã−1

=
1

(z0 − z)2

Å
1

z0 − z
−M

ã−1

− 1

z0 − z
.

The term −(z0− z)−1 is holomorphic around z0− 1/λi. Therefore, the residue

of S around this point is given by

1

2iπ

∫
C(z0−1/λi)

1

(z0 − z)2

Å
1

z0 − z
−M

ã−1

dz

=
1

2iπ

∫
C(λi)

w2(w −M)−1 dw

w2
= Πλi ,
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where C(u) denotes a positively oriented path around the point u and we have

written w = 1/(z0 − z). This concludes the proof. �

3.4. Background on unitary representations of SL(2,R). Let us describe

(somewhat informally) the notion of direct decomposition of a representation.

See, e.g., [Dix69] for all the details.

Let Hξ be a family of representations of SL(2,R), depending on a parame-

ter ξ in a space Ξ, and assume that this family of representations is measurable

(in a suitable sense). If m is a measure on Ξ, one can define the direct integral∫
Hξ dm(ξ): an element of this space is a function f defined on Ξ such that

f(ξ) ∈ Hξ for all ξ, with ‖f‖2 :=
∫
‖f(ξ)‖2Hξ dm(ξ) <∞. The group SL(2,R)

acts unitarily on this direct integral, by (g · f)(ξ) = g(f(ξ)). If m′ is another

measure equivalent to m, then the representations
∫
Hξ dm(ξ) and

∫
Hξ dm′(ξ)

are isomorphic.

From now on, let Ξ be the space of all irreducible unitary representa-

tions of SL(2,R), with its canonical Borel structure (which we will describe

below). Any unitary representation H of SL(2,R) is isomorphic to a direct

integral
∫
Hξ dm(ξ), where the space Hξ is a (finite or countable) direct sum

of one or several copies of the same representation ξ. (We say that Hξ is

quasi-irreducible.) Moreover, the measure class of the measure m, and the

multiplicity of ξ in Hξ, are uniquely defined ([Dix69, Th. 8.6.6]), and the rep-

resentation H is characterized by these data.

Let us now describe Ξ more precisely. The irreducible unitary representa-

tions of SL(2,R) have been classified by Bargmann, as follows. An irreducible

unitary representation of SL(2,R) belongs to one of the following families:

• Representations D+
m+1 and D−m+1 for m ∈ N. This is the discrete

series (except for m = 0, where the situation is slightly different: these

representations form the “mock discrete series”).

• Representations P+,iv for v ∈ [0,+∞) and P−,iv for v ∈ (0,∞). This is

the principal series (these representations can also be defined for v < 0,

but they are isomorphic to the same representations with parameter

−v > 0).

• Representations Cu for 0 < u < 1. This is the complementary series.

• The trivial representation.

These representations are described with more details in [Kna01, II.5]. They

are all irreducible, no two of them are isomorphic, and any irreducible unitary

representation of SL(2,R) appears in this list. In particular, to any irreducible

representation ξ of SL(2,R) is canonically attached a complex parameter s(ξ)

(equal to m in the first case, iv in the second, u in the third and 1 in the fourth),

and the Borel structure of Ξ is given by this parameter (and the discrete data

± in the first two cases).
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The Casimir operator Ω is a generator of the center of the enveloping

algebra of SL(2,R); i.e., it is a differential operator on SL(2,R), commuting

with every translation, and of minimal degree. It is unique up to scalar mul-

tiplication, and we will normalize it as

(3.2) Ω = (L2
W − L2

ω − L2
V )/4,

where W =
(

0 1
−1 0

)
, ω =

(
1 0
0 −1

)
, and V = ( 0 1

1 0 ) form a basis of the Lie algebra

of SL(2,R) and LZ denotes the Lie derivative on SL(2,R) with respect to the

left invariant vector field equal to Z at the identity.

The Casimir operator extends to an unbounded operator in every unitary

representation of SL(2,R). Since it commutes with translations, it has to be

scalar on irreducible representations. With the notations we have set up earlier,

it is equal to (1 − s(ξ)2)/4 ∈ R on an irreducible unitary representation ξ of

parameter s(ξ).

An irreducible unitary representation ξ of SL(2,R) is spherical if it con-

tains an SO(2,R)-invariant nontrivial vector. In this case, the SO(2,R)-invar-

iant vectors have dimension 1. Let v be an element of unit norm in this set.

The spherical function φξ is defined on SL(2,R) by

(3.3) φξ(g) = 〈g · v, v〉,

and it is independent of the choice of v. Taking g = gt, the spherical function

is simply the correlations of v under the diagonal flow.

The spherical unitary irreducible representations are the representations

P+,iv and Cu (and the trivial one, of course).

Assume now that SL(2,R) acts on a space Y and preserves a probability

measure µ. Then SL(2,R) acts unitarily on L2(Y, µ) by g · f(x) = f(g−1x).

Therefore, the Casimir operator also acts L2(Y, µ) (as an unbounded op-

erator). Since it commutes with translations, it leaves invariant the space

L2(SO(2,R)\Y, µ) (i.e., the space of functions on Y that are SO(2,R)-invariant

and square-integrable with respect to µ). On this space, Ω can also be described

geometrically as a foliated Laplacian, as follows.

For x ∈ Y , its orbit mod SO(2,R) is identified with a quotient of H =

SL(2,R)/SO(2,R), by the map gSO(2,R) 7→ SO(2,R)g−1x. (Changing the

basepoint x in the orbit changes the parametrization by an SL(2,R) element.)

Therefore, any structure on H that is SL(2,R) invariant can be transferred to

SO(2,R)\Y . This is, in particular, the case of the hyperbolic metric of curva-

ture −1 and of the corresponding hyperbolic Laplacian ∆ given in coordinates

(xH, yH) ∈ H by −yH
Å
∂2

∂x2
H

+ ∂2

∂y2
H

ã
.

Let fK be a function on SO(2,R)\Y belonging to the domain of ∆, and

let f be its canonical lift to Y . Then Ωf is SO(2,R)-invariant and is the lift
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of the function ∆fK on SO(2,R)\Y . This follows at once from the definitions

(and our choice of normalization in (3.2)).

Consider the decomposition L2(Y, µ) '
∫

ΞHξ dm(ξ) of the representa-

tion of SL(2,R) on L2(Y, µ) into an integral of quasi-irreducible representa-

tions. Denoting by H
SO(2,R)
ξ the SO(2,R)-invariant vectors in Hξ, we have

L2(SO(2,R)\Y, µ) '
∫

ΞH
SO(2,R)
ξ dm(ξ). Therefore, the spectrum of ∆ on

L2(SO(2,R)\Y, µ) is equal to the set {(1 − s(ξ)2)/4} for ξ a spherical rep-

resentation in the support of m. (Moreover, the spectral measure of ∆ is the

image of m under this map.) Since the spectrum of the Casimir operator in

the interval (0, 1/4) only comes from the complementary series representations,

which are all spherical, it follows that σ(∆) ∩ (0, 1/4) = σ(Ω) ∩ (0, 1/4) and

that the spectral measures coincide. Therefore, it is equivalent to understand

σ(∆) ∩ (0, 1/4) or to understand representations in the complementary series

arising in L2(Y, µ). While the former point of view is more elementary, the

latter puts it in a larger (and, perhaps, more significant) perspective.

3.5. Meromorphic extensions of Laplace transforms in abstract SL(2,R)

representations. Given H a unitary representation of SL(2,R), let us decom-

pose it as
∫
ΞHξ dm(ξ), where Ξ is the set of unitary irreducible representations

of SL(2,R) and Hξ is a direct sum of copies of the irreducible representation

ξ. For f ∈ H, we will denote by fξ its component in Hξ.

Let us denote by ΞSO(2,R) the set of spherical irreducible unitary represen-

tations. Using the parameter s of an irreducible representation described in

the previous section, ΞSO(2,R) is canonically in bijection with (0, 1] ∪ i[0,+∞).

We will denote by ξs the representation corresponding to a parameter s.

Proposition 3.4. Let f1, f2 ∈ H be invariant under SO(2,R). Let us

define the Laplace transform of the correlations of f1, f2 by

F (z) = Ff1,f2(z) =

∫ ∞
t=0

e−zt〈gt · f1, f2〉dt

for <(z) > 0.

The function F admits an holomorphic extension to {<(z) > −1, z 6∈
(−1, 0]}. Moreover, for every δ > 0, the function F can be written on the

half-space {<(z) > −1 + 2δ} as the sum of a bounded holomorphic function Aδ
and the function

Bδ(z) =
1√
π

∫
s∈[δ,1]

Γ(s/2)

Γ((s+ 1)/2)
〈(f1)ξs , (f2)ξs〉

dm(ξs)

z − s+ 1
.

Proof. We fix a decomposition of Hξ as an orthogonal sum
⊕

0≤i<n ξi,

where n = n(ξ) ∈ N∪ {+∞} is the multiplicity of ξ in Hξ and ξ0, . . . , ξn−1 are

copies of the representation ξ. This decomposition is not canonical, but it can

be chosen to depend measurably on ξ (see [Dix69]). If the representation ξ is
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spherical, we fix in every ξj a vector h(ξ, j) ∈ ξj of unit norm invariant under

SO(2,R).

Let f be an SO(2,R)-invariant element of H. For ξ ∈ ΞSO(2,R), the ele-

ment fξ of Hξ can uniquely be decomposed as
∑
j<n(ξ) f̂(ξ, j)h(ξ, j), where the

coefficients f̂(ξ, j) ∈ C depend measurably on ξ, j.

We use this decomposition for f1 and f2. Let us recall that we defined

the spherical function φξ of a representation ξ in (3.3). Since the functions

gt · h(ξ, j) and h(ξ, j′) are orthogonal for j 6= j′, we have

〈gt·f1, f2〉

=

∫
ΞSO(2,R)

∞
gt

Ñ ∑
j<n(ξ)

f̂1(ξ, j)h(ξ, j)

é
,

Ñ ∑
j′<n(ξ)

f̂2(ξ, j′)h(ξ, j′)

é∫
dm(ξ)

=

∫
ΞSO(2,R)

∑
j<n(ξ)

f̂1(ξ, j)f̂2(ξ, j)〈gth(ξ, j), h(ξ, j)〉dm(ξ)

=

∫
ΞSO(2,R)

Ñ ∑
j<n(ξ)

f̂1(ξ, j)f̂2(ξ, j)

é
φξ(gt) dm(ξ)

=

∫
ΞSO(2,R)

〈(f1)ξ, (f2)ξ〉φξ(gt) dm(ξ).

To proceed, we will need fine asymptotics of the spherical functions φξ.

The first one is due to Ratner [Rat87, Th. 1]: for all δ > 0, there exists a

constant C such that, for any ξ ∈ ΞSO(2,R) with s(ξ) 6∈ [δ, 1], and for any t ≥ 0,

(3.4) |φξ(gt)| ≤ Ce−(1−δ)t.

An important point in this estimate is that the constant C is uniform in ξ,

even though ξ varies in a noncompact domain.

For representations in the complementary series, we will use a more precise

estimate, as follows. Define a function

(3.5) c(s) =
1√
π

Γ(s/2)

Γ((s+ 1)/2)

for s ∈ (0, 1]. This function is known as Harish-Chandra’s function. For all

δ > 0, there exists a constant C > 0 such that, for all s ∈ [δ, 1] and all t ≥ 0,

(3.6)
∣∣∣φξs(gt)− c(s)e(s−1)t

∣∣∣ ≤ Ce−t.
This estimate is proved in Appendix A.

We will now conclude, using (3.4) and (3.6). Let us decompose ΞSO(2,R)

(identified through the parameter s with a subset of C) as the union of [δ, 1]
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and its complement. Then

F (z) =

∫
ξs∈ΞSO(2,R)

∫ ∞
t=0

e−zt〈(f1)ξs , (f2)ξs〉φξs(gt) dt dm(ξs)

=

∫
s∈ΞSO(2,R)\[δ,1]

∫ ∞
t=0

e−zt〈(f1)ξs , (f2)ξs〉φξs(gt) dtdm(ξs)

+

∫
s∈[δ,1]

∫ ∞
t=0

e−zt〈(f1)ξs , (f2)ξs〉(φξs(gt)− c(s)e(s−1)t) dt dm(ξs)

+

∫
s∈[δ,1]

∫ ∞
t=0

e−zt〈(f1)ξs , (f2)ξs〉c(s)e(s−1)t dt dm(ξs).

Let Bδ(z) be the last term in this expression, and let Aδ(z) be the sum of the

two other ones. In Aδ, the factors φξs(gt) and φξs(gt)−c(s)e(s−1)t are bounded,

respectively, by Ce−(1−δ)t and Ce−t (by (3.4) and (3.6)). Therefore, Aδ(z)

extends to an holomorphic function on {<(z) > −1 + δ}, which is bounded on

the half-plane {<(z) ≥ −1 + 2δ}. Since
∫∞

0 e−at dt = 1/a for <(a) > 0, the

function Bδ(z) is equal to∫
s∈[δ,1]

〈(f1)ξs , (f2)ξs〉
c(s)

z − s+ 1
dm(ξs)

for <(z) > 0. This function can be holomorphically extended to z 6∈ [−1+δ, 0],

by the same formula. This proves the proposition. �

3.6. Proof of Theorem 2.3. The representationH=L2(X/Γ, µ) of SL(2,R)

can be decomposed as a direct integral
∫

ΞHξ dm(ξ), where the representation

Hξ is the direct sum of one or several copies of the irreducible representation

ξ ∈ Ξ. We should prove that, for any δ > 0, the restriction of the measure

m to (δ, 1) (identified with the corresponding set of representations in the

complementary series) is made of finitely many Dirac masses and that at those

points the multiplicity of ξ in Hξ is finite.

Let δ > 0 be small. Consider the eigenvalues λi constructed in Proposi-

tion 3.3. We claim that, on the interval (7δ, 1), the measure m only gives mass

to the points 4δ − 1/λi + 1 and that at such a point the multiplicity of ξ in

Hξ is bounded by the dimension of the image of the spectral projection Πλi

described in Proposition 3.3. This will conclude the proof of the theorem.

To proceed, we will use the fact that we have two different expressions for

the meromorphic extensions of Laplace transforms, one related to the geom-

etry of Teichmüller space coming from Proposition 3.3, and one given by the

abstract theory of representations of SL(2,R) in Proposition 3.4. Identifying

these two expressions gives the results, as follows.

First step: m only gives weight to the points 4δ − 1/λi + 1. Assume by

contradiction that m gives positive weight to an interval [a, b] containing no

such point. There exists a function f (0) ∈ H invariant under SO(2,R) such
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that the corresponding components f
(0)
ξ in Hξ satisfy

∫
[a,b]

∥∥∥f (0)
ξs

∥∥∥2

Hξs
dm(ξs)

> 0. Consider f̃
(0)
(n) ∈ D

Γ a sequence of smooth compactly supported functions

converging to f (0) in H. The functions f
(0)
(n) =

∫
θ∈S1 kθf̃

(0)
(n) dθ also belong to DΓ,

are SO(2,R)-invariant, and converge to f (0) in H. In particular, if n is large

enough,
∫
[a,b]

∥∥∥(f (0)
(n))ξs

∥∥∥2

Hξs
dm(ξs) > 0. Let us fix such a function f = f

(0)
(n).

Consider the function Ff,f (z) =
∫∞
t=0 e

−zt〈f, f ◦ gt〉dt, initially defined

for <(z) > 0. By Proposition 3.3, it admits a meromorphic extension to

the domain Dδ, with possible poles only at the points 4δ − 1/λi. Moreover,

Proposition 3.4 shows that the same function can be written, on the set {<(z) >

−1 + 2δ}, as the sum of a bounded holomorphic function and the function

Bδ(z) =
1√
π

∫
s∈[δ,1]

Γ(s/2)

Γ((s+ 1)/2)
‖fξs‖

2
Hξs

dm(ξs)

z − s+ 1
.

It follows that, in {<z > −1 + 7δ}, this function Bδ can only have poles at

the points 4δ − 1/λi. In particular, it is continuous (and real) on the interval

[a − 1, b − 1]. Define a measure dν(s) = 1√
π

Γ(s/2)
Γ((s+1)/2) ‖fξs‖

2
Hξs

dm(ξs) so that

Bδ(z − 1) =
∫

dν(s)/(z − s). Stieltjes’ inversion formula [Wal48, (65.4)] states

that

ν[a, b] = − 1

π
lim
y→0+

∫ b

a
=Bδ(x− 1 + iy) dx.

Since Bδ is continuous and real on [a − 1, b − 1], it follows that ν[a, b] = 0.

In particular,
∫
[a,b] ‖fξs‖

2
Hξs

dm(ξs) = 0. This is a contradiction and concludes

the first step.

Second step: at a point s = 4δ−1/λi+1, the multiplicity of ξs in Hξs is at

most the dimension of Im Πλi in the Banach space of Theorem 3.2. We argue

again by contradiction. Let d = dim Im Πλi , and assume that the multiplicity

of ξs in Hξs is at least d+1. Then in Hξs one can find d+1 orthogonal functions

f (1), . . . , f (d+1) that are SO(2,R)-invariant. Since m has an atom at ξs, these

functions are elements of H = L2(X/Γ, µ). As above, we consider sequences

f
(k)
(n) ∈ D

Γ of SO(2,R)-invariant functions that converge to f (k) in H.

Let F
f

(k)

(n)
,f

(`)

(n)

(z) be the meromorphic extension of the Laplace transform of

the correlations of f
(k)
(n) and f

(`)
(n) ◦gt, and let Mk,`

n denote its residue around the

point 4δ − 1/λi. For each n, the residue Mk,`
n is described by Proposition 3.3.

Since the operator Πλi has a d-dimensional image, it follows that the rank of

the matrix Mn is at most d. On the other hand, Proposition 3.4 shows that

Mk,`
n =

1√
π

Γ(s/2)

Γ((s+ 1)/2)
m(ξs)〈(f (k)

(n))ξs , (f
(`)
(n))ξs〉.
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When n tends to infinity, the functions f
(k)
(n) converge to f (k); hence Mn con-

verges to a diagonal matrix. In particular, Mn is of rank d+1 for large enough

n, a contradiction. �

4. Measures with a local product structure on Teich1

To construct the Banach space of Theorem 3.2, we will need more geomet-

ric information on admissible measures, given by the following proposition. We

recall that Φ : Teich→ H1(M,Σ;C) is the period map, giving local coordinates

on Teich.

Proposition 4.1. Let µ̃ be an admissible measure, supported on a sub-

manifold X of Teich1. Then

(1) For every x ∈ X , there is a decomposition of the tangent space TxX =

Rω(x)⊕ Eu(x)⊕ Es(x), where ω(x) is the direction of the gt-flow,

Eu(x) = TxX ∩DΦ(x)−1(H1(M,Σ;R)),

Es(x) = TxX ∩DΦ(x)−1(H1(M,Σ; iR)).

(2) The subspaces Es(x) and Eu(x) depend in a C∞ way on x ∈ X , are

integrable, and the integral leaves W u(x),W s(x) are affine submanifolds of

Teich.

(3) For every x ∈ X , there is a volume form µu on Eu(x) (defined up to sign)

such that x 7→ µu(x) is C∞. Moreover, x 7→ µu(x) is constant along the

unstable manifolds W u. Additionally, there exists a scalar d ≥ 0 such that

(gt)∗µu = e−dtµu.

(4) For every x ∈ X , there is a volume form µs on Es(x) (defined up to sign)

such that x 7→ µs(x) is C∞. Moreover, x 7→ µs(x) is constant along the

stable manifolds W s. Additionally, (gt)∗µs = edtµs.

(5) For every x ∈ X , the volume form dµ̃(x) on TxX is equal to the product

of dLeb, µu(x), and µs(x) respectively in the directions ω(x), Eu(x) and

Es(x).

All these data are Γ-equivariant. We say that the decomposition dµ̃ = dLeb⊗
dµu ⊗ dµs is the affine local product structure of µ.

Note that, since W u(x) is an affine submanifold, the tangent spaces of

W u(x) at two different points y1, y2 ∈ W u(x) are canonically identified (i.e.,

their images under DΦ(y1) and DΦ(y2) coincide); hence it is meaningful to say

in item (3) of the above definition that y 7→ µu(y) is constant along W u(x).

The same holds for µs along W s.

Note also that Eu and Es are really the strong unstable and stable man-

ifolds. Indeed, DΦ(x)−1(H1(M,Σ;R)) is the weak unstable manifold for the

flow on Teich, but since we are restricting to TxX, we are excluding the neutral

directions. (See the example of area-one surfaces below.)
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If x = a+ib in the chart Φ, then for small r we have hr(x) = a+rb+ib. In

particular, the tangent vector to this curve is always b ∈ H1(M,Σ;R); hence

hr(x) is in the unstable manifold W u(x). Moreover, the differential of hr sends

Eu(x) to Eu(hrx), and its restriction to W u(x) is equal to the identity in the

chart Φ. Since µu is constant along W u(x), this implies that hr leaves µu
invariant, i.e., (hr)∗µu = µu.

The family of volume forms µu(x) on Eu(x) induces a positive measure on

each leaf W u of the unstable foliation, which we also denote by µu. In the same

way, we get a measure µs on each stable manifold. Let us note that, although

the volume forms µu(x) are only defined up to sign, the induced positive mea-

sures µu are canonical. If the manifolds W u and W s were canonically oriented

(or at least had a Γ invariant orientation), then µu(x) and µs(x) themselves

would not be defined only up to sign, but we do not know if this is always the

case.

The scalar d in the above proposition can be identified; see Remark 4.4.

See [BL98] for the notion of local product structure in more complicated non-

smooth settings.

Example 4.2. Consider in Teich the subset X = Teich1 of area one sur-

faces, with its canonical invariant Lebesgue measure µ̃. We will describe its

affine local product structure. In [ABEM12, §2], a similar construction is given

in more geometric terms.

First, assume x ∈ X and Φ(x) = a+ ib. Around x, we identify Teich and

H1(M,Σ;C) using Φ. Then the area of a + a′ + ib is 1 + [a′, b], where [a′, b]

is the intersection product of a′ and b (this is initially defined for elements of

H1(M ;R), but since H1(M,Σ;R) projects to H1(M ;R), it extends trivially

to H1(M,Σ;R)). Therefore, Eu(x) = {a′ ∈ H1(M,Σ;R) : [a′, b] = 0}. This

depends smoothly on x, and the integral leaves of this distribution are locally

the sets {(a+a′, b) : [a′, b] = 0}. These are indeed affine submanifolds of Teich.

Let us now define µu at the point a+ ib. The set H1(M,Σ;R) is endowed

with a canonical volume form vol (giving covolume 1 to H1(M,Σ;Z)). We let

µu be the interior product of a and vol; i.e., if v1, . . . , vk is a basis of Eu(x),

then µu(x)(v1, . . . , vk) = vol(a, v1, . . . , vk). At a nearby point x′ = a + a′ + ib

on the same unstable manifold, µu(x′)(v1, . . . , vk) = vol(a + a′, v1, . . . , vk) =

vol(a, v1, . . . , vk) since a′ belongs to Eu(x). Therefore, µu(x) = µu(x′) as

claimed.

Let d = k + 1 be the dimension of H1(M,Σ;R). The differential of gt,

mapping Eu(x) to Eu(gtx), is simply the multiplication by et, and therefore

(gt)∗µu(x) = e−(d−1)tµu(x). Since µu(gtx) = etµu(x), we get (gt)∗µu(x) =

e−dtµu(gtx).

In the same way, we define a volume form µs(x) on Es(x). It satisfies

(gt)∗µs = edtµs.
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Let us finally define a volume form µ̃′ on TxX as the product of Lebesgue

in the flow direction, µu and µs. It satisfies (gt)∗µ̃
′ = µ̃′, since the factors e−dt

and edt (coming respectively from µu and µs) cancel out.

All those data are intrinsically defined, and therefore Γ-invariant. By

ergodicity of µ in the quotient X/Γ, we have µ̃′ = cµ̃ for some c ∈ (0,+∞).

We will simultaneously prove Proposition 4.1 (the fact that an admissible

measure has a local product structure) and Proposition 2.2 (the fact that

an absolutely continuous measure on a smooth submanifold is automatically

admissible). Indeed, we will start from an absolutely continuous measure and

simultaneously prove that it is admissible and that it has an affine local product

structure. For this proof, we will use the nonuniform hyperbolicity of the

Teichmüller flow. This property is well known, but we will need it later on in

the following precise form. Let us fix on Teich a Γ-invariant Finsler metric. In

later arguments, we will use a specific metric that is well behaved at infinity

(constructed in Subsection 5.1), but the following statement is valid for any

metric.

Proposition 4.3. For any set K ⊂ Teich1 that is compact mod Γ, there

exists T = T (K) such that, for any point x ∈ K and any time t such that

gtx ∈ K and

Leb{s ∈ [0, t] : gs(x) ∈ K} ≥ T,
then ‖Dgt(x)v‖gtx ≤ ‖v‖x /2 for any v ∈ Es(x) and ‖Dgt(x)v‖gtx ≥ 2 ‖v‖x for

any v ∈ Eu(x).

Proof. The uniform hyperbolicity of the Teichmüller flow in compact sub-

sets of Teich1/Γ has been proved by Forni in [For02, Lemma 2.1′], for a differ-

ent norm, the Hodge norm (and for vectors belonging to H1(M ;C) instead of

H1(M,Σ;C)). To obtain the result for the norm under study, it is sufficient

to use the following two facts:

(1) Vectors in H1(M,Σ;C) that vanish in H1(M ;C) are expanded at a

constant rate et in the unstable direction and contracted at a constant

rate e−t in the stable direction.

(2) In a fixed compact subset of Teich1/Γ, any two continuous norms are

equivalent. �

Proof of Propositions 4.1 and 2.2. Let us fix a measure µ̃ as in the as-

sumptions of Proposition 2.2. It is supported on a C1 submanifold X of Teich1,

equivalent to Lebesgue measure on X, and induces a Radon measure µ in X/Γ.

We will prove that µ̃ is admissible and that it has an affine local product struc-

ture.

For x ∈ Teich1, denote by πω, πu, and πs the projections respectively on

the flow, unstable, and stable directions in the tangent space TxTeich1.
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First step: the measure µ has finite mass. In particular, the flow gt is

conservative in the measure space (X/Γ, µ). Since µ is SL(2,R)-invariant,

Athreya’s Theorem [Ath06] shows the existence of a compact setK inX/Γ such

that, under the iteration of gt, µ-almost every point spends asymptotically at

least half its time in K. It follows from Hopf’s ergodic theorem applied to the

ergodic components of µ that µ(X/Γ) ≤ 2µ(K). Since µ is a Radon measure,

this quantity is finite and the result follows.

Second step: at every point x ∈ X , we have

(4.1) TxX = πω(TxX)⊕ πu(TxX)⊕ πs(TxX).

Since the inclusion ⊂ is trivial, it is sufficient to prove the other inclusion. As

gt(x) ∈ X for all t ≥ 0, we have ω(x) = ∂gt(x)/∂t|t=0 ∈ TxX. It is therefore

sufficient to check that πu(TxX) ⊂ TxX and πs(TxX) ⊂ TxX. By symmetry,

it is even sufficient to prove the first inclusion.

We will prove this property for x in a dense subset of X since the general

case follows by continuity. The dimension of πu(TxX) is semi-continuous; hence

it is locally constant on a dense open subset of X. Moreover, since the flow gt
is conservative and µ has full support, Poincaré’s recurrence theorem ensures

that almost every point of X comes back close to itself in the quotient X/Γ

infinitely often in forward and backward time. We will prove (4.1) for such a

point x.

Since the dimension of πu(TyX) is locally constant around x, there exists

a constant C such that, for any y close to x, any vector wu ∈ πu(TyX) admits

a lift w to TyX with ‖w‖ ≤ C ‖wu‖.
Consider v ∈ TxX, and write it as v = vω+vu+vs ∈ πω(TxX)⊕πu(TxX)⊕

πs(TxX). We should prove that vu ∈ TxX. Let ε > 0. Consider t very large

such that y = g−tx is close to x. By Proposition 4.3, if t is large enough,

the norm of wu := Dg−t(x) · vu is bounded by ε. We may therefore find

w ∈ TyX with πu(w) = wu, and ‖w‖ ≤ Cε. Write w = wω + wu + ws. Then

Dgt(y)w ∈ TxX, and this vector can be written as Dgt(y)(wω +ws)+vu where

‖Dgt(y)(wω + ws)‖ ≤ Cε. We have proved that vu is a limit of points of TxX
and, therefore, that vu ∈ TxX. This concludes the proof of the second step.

We can therefore define spaces

Eu(x) = πu(TxX) = TxX ∩ Φ−1(H1(M,Σ;R))

and

Es(x) = πs(TxX) = TxX ∩ Φ−1(H1(M,Σ; iR))

such that TxX = Rω⊕Eu(x)⊕Es(x). Moreover, the dimensions du and ds of

those spaces are locally constant: they cannot decrease strictly by semiconti-

nuity, and they cannot increase strictly since otherwise dim(TxX) would also

increase strictly, a contradiction. Since the space X/Γ is connected, they are
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in fact constant. Finally, since the rotation kπ/2 maps Eu(x) to Es(kπ/2x), we

have du = ds.

Let Y = R∗+X. To simplify notations, we will omit Φ and locally identify

Y with a subset of H1(M,Σ;C). Since the tangent vector to the map t 7→ tx at

x = a+ ib is a+ ib, we have TxY = R(a+ ib) + TxX. With the decomposition

of TxX given at the second step and the equality ω(x) = a − ib, we obtain

TxY = Ẽu(x)⊕ Ẽs(x), where Ẽu(x) = TxY ∩H1(M,Σ;R) = Ra⊕ Eu(x) and

Ẽs(x) = TxY ∩H1(M,Σ; iR) = iRb⊕ Es(x).

Third step: for any x ∈ Y , we have Ẽs(x) = iẼu(x). Let e ∈ Ẽu(x) and

if ∈ Ẽs(x). For small θ, the rotated vector kθ(e+ if) = (cos(θ)e+ sin(θ)f) +

i(− sin(θ)e + cos(θ)f) belongs to TkθxY . Taking f = 0 and projecting to the

real component, we deduce that Ẽu(kθx) contains Ẽu(x). Since they have the

same dimension, it follows that Ẽu(kθx) = Ẽu(x). In the same way, taking

e = 0, we get Ẽu(kθx) = i−1Ẽs(x). Finally, Ẽs(x) = iẼu(x), as desired.

Fourth step: Y is an affine submanifold of Teich. At every point x ∈ Y ,

the tangent space TxY = Ẽu(x)⊕Ẽs(x) is invariant by complex multiplication,

by the third step. This implies that Y is a complex (holomorphic) submanifold

of Teich; see, e.g., [BER99, Prop. 1.3.14].

Let us show that Y is affine around any point x0 ∈ Y . (We thank S. Cantat

for the following argument.) Working in charts and changing coordinates, we

can assume that x0 = 0 and that T0Y = Ck ⊂ CN for k = ds + 1 = du + 1.

Around 0, the manifold Y can therefore be written as a graph {(z, f(z))} for

some holomorphic function from Ck to CN−k. At a point x close to 0, the

tangent space TxY is {(v,Df(x)v) : v ∈ Ck}. In particular, the real part of

this tangent space is included in {(v,Df(x)v) : v ∈ Rk}. Since the dimension

of the real part of TxY is exactly k, it follows that Df(x)v is real for any

real vector v; i.e., all the matrix coefficients of Df(x) are real. Since a real

valued holomorphic function is constant, Df is constant. Therefore, Y is affine

around x0.

Fifth step: the distributions of du-dimensional subspaces Eu and Es are

integrable, and the integral leaves are affine submanifolds of Teich. The strong

unstable manifolds form a foliation F of Teich1 with affine leaves (see Exam-

ple 4.2). Moreover, the dimension of TxF ∩ TxX is independent of x ∈ X, by

the second step. It follows that the restriction of F to X defines a foliation of

X, integrating the distribution of subspaces TxF ∩ TxX = Eu(x). In particu-

lar, the leaf W u(x) integrating Eu(x) is locally given by X ∩Fx, which is also

equal to Y ∩ Fx. Since Y is affine by the fourth step and Fx is affine, W u(x)

is also affine. The argument is the same for W s.

Sixth step: the measure µ̃Y = µ̃⊗Leb on Y is locally a multiple of Lebesgue

measure on the affine manifold Y . Given x ∈ Y , fix a reference Lebesgue
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measure on Y around x (there is a priori no canonical choice of normalization),

and denote by φ̃ the density of µ̃Y with respect to this Lebesgue measure. We

will prove that φ̃ is constant on strong stable and unstable manifolds in a

neighborhood of x. Since the foliations W s and W u are smooth and jointly

nonintegrable, it follows from the classical Hopf argument that φ̃ is constant.

We will work in Y/Γ around the point xΓ. Let us denote by φ the density of

µ around xΓ.

Since µ has finite mass, we can consider a sequence of compactly supported

smooth measures µn converging (for the total mass norm) to µ on X/Γ. For

any t ≥ 0,

|(gt)∗µn − µ| = |(gt)∗µn − (gt)∗µ| = |µn − µ|.
Therefore, for any sequence tn, the measures (gtn)∗µn converge to µ.

Fix M > 0. Let φn,t denote the density of (gt)∗(µn ⊗ Leb) in a ball B

around xΓ. Then, for any n ∈ N and any M > 0, the integral∫
y∈B

∫
z∈Wu(y)∩B

min(|φn,t(z)− φn,t(y)|,M) dLeb(z) dLeb(y)

converges to 0 when t tends to +∞. Indeed, the integrand is bounded by M

and converges almost everywhere to 0 since the flow is hyperbolic along almost

every trajectory and the measure µn is smooth. Let us choose tn such that

this integral is at most 2−n. Since (gtn)∗µn converges to µ, the density φn,tn
converges almost everywhere to φ along a subsequence. This yields∫

y∈B

∫
z∈Wu(y)∩B

min(|φ(z)− φ(y)|,M) dLeb(z) dLeb(y) = 0.

Letting M tend to infinity, we obtain that φ is almost everywhere constant

along unstable manifolds in B, as desired.

Seventh step: the measure µ is ergodic. If µ is not ergodic, we can consider

an invariant set A for the action of SL(2,R) on X/Γ, with positive but not

total measure. Consider ν̃ the restriction of µ̃ to the lift of A in Teich1. The

argument in the previous step applies to ν̃ and shows that the density of ν̃⊗Leb

on Y is locally constant. Since Y/Γ is connected, this implies that ν ⊗ Leb is

equivalent to Lebesgue measure on Y/Γ. This is a contradiction and proves

the ergodicity of µ.

Among other things, we have shown that the measure µ̃ is admissible.

This proves Proposition 2.2. To conclude the proof, we have to complete

the construction of the measures µu and µs forming the affine local product

structure of µ.

Eighth step: construction of canonical volume forms µu(x) and µs(x),

respectively on Eu(x) and Es(x), in terms of µ̃, which are constant respectively

along W u and W s. They are only defined up to sign. Let x ∈ X. Identifying

Teich locally with H1(M,Σ;C) thanks to the period map, we write x = a
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+ ib. If νu(x) is any volume form on Ẽu(x) = Ra + Eu(x), then it yields a

volume form νs(x) on Ẽs(x) thanks to the identification of the third step. The

product νu(x) ∧ νs(x) is a nonzero volume form on Ẽu(x) ⊕ Ẽs(x) = TxY . It

is therefore proportional to µ̃Y (x). Multiplying νu(x) by a unique (up to sign)

normalization, we can ensure that νu(x) ∧ νs(x) = ±µ̃Y . Finally, let µu(x) be

the unique volume form on Eu(x) such that νu(x) is the product of µu(x) and

Lebesgue measure on Ra. Analogously, let µs(x) be the unique volume form

on Es(x) such that νs(x) is the product of µs(x) and Lebesgue measure on iRb.
This construction is completely canonical up to sign, and

µ̃(x) = ±dLeb∧µu(x) ∧ µs(x)

by construction, where dLeb denotes Lebesgue measure along Rω(x). Since µ̃ is

Γ-invariant, it follows that µu and µs are also Γ-invariant (possibly up to sign).

Since µu is constructed in a canonical way in terms of µ̃Y and µ̃Y is con-

stant along unstable manifolds (by the sixth step), it follows that µu is constant

along unstable manifolds. In the same way, µs is constant along stable mani-

folds.

Ninth step: there exists d > 0 such that (gt)∗µu = e−dtµu and (gt)∗µs =

edtµs. Since the action of SL(2,R) is ergodic, the action of the horocycle flow

is also ergodic by Howe-Moore’s theorem [HM79]. In particular, we can choose

x whose orbit is dense. For t ≥ 0, the measure (gt)∗µu(x) is a volume form on

Eu(gtx) and can therefore be written as ed(t)µu(gtx) for some d(t) ∈ R. Since

the measures µu are constant along the unstable manifolds of x and of gtx, it fol-

lows that, for any point y in the horocycle through x, we also have (gt)∗µu(y) =

ed(t)µu(gty). Since this horocycle is dense, (gt)∗µu(z) = ed(t)µu(gtz) for any z.

The function t 7→ d(t) is continuous and satisfies d(t+t′) = d(t)+d(t′). We

may therefore write d(t) = −dt for some d ∈ R (which has to be positive since

the flow is expanding along unstable directions). We obtain (gt)∗µu = e−dtµu.

In the same way, we have (gt)∗µs = ed
′tµs for some d′ ≥ 0. Since

µ̃ = dLeb∧µu ∧ µs is gt-invariant, it follows that d = d′.

This concludes the proofs of the ninth step and of Propositions 4.1 and 2.2.

�

Remark 4.4. The scalar d constructed in Proposition 4.1 satisfies d =

du + 1 = ds + 1, where du and ds are the dimensions respectively of Eu

and Es. To prove this statement, let λ0, . . . , λdu be the Lyapunov expo-

nents of the Kontsevich-Zorich cocycle (see [For02]) restricted to the bundle

Ẽu for the measure µ. The Lyapunov exponents of gt along Ẽu are given by

ν0 = 1 + λ0, . . . , νdu = 1 + λdu , and their sum is equal to d since there is

no expansion in the bundle Ẽu/Eu. Since Ẽs = iẼu, the Lyapunov expo-

nents of the Kontsevich-Zorich cocycle along Ẽs are also λ0, . . . , λdu , and it

follows that the Lyapunov exponents of gt along Ẽs are −1 +λ0, . . . ,−1 +λdu .
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Since gt preserves the measure µ, which is equivalent to Lebesgue measure,

the sum of its Lyapunov exponents vanishes. Hence,
∑
λi = 0. Finally,

d =
∑
νi = du + 1 +

∑
λi = du + 1.

A suitably generalized Pesin formula also gives that d is the entropy of

the measure µ for the flow gt

5. A good Finsler metric on Teich

5.1. Construction of the metric. To define the Banach space satisfying

the conclusions of Theorem 3.2, we will need a Finsler metric on Teich, with

several good properties:

(1) It should be complete and Γ-invariant.

(2) It should behave in a controlled way close to infinity (technically, it

should be slowly varying, see the definition below).

(3) Under the Teichmüller flow, the metric should be noncontracted in the

unstable direction and nonexpanded in the stable direction.

It is certainly possible to cook up a metric satisfying these requirements us-

ing the Hodge metric of Forni on H1(M ;R) [For02] and extending it first to

H1(M,Σ;R) and then to H1(M,Σ;C) (cf. [ABEM12]). However, [AGY06] in-

troduced a geometrically defined metric that turns out to satisfy all the above

properties. This is the metric we will use for simplicity.

Let us describe this continuous Finsler metric on Teich. Since the tangent

space of Teich is everywhere identified with H1(M,Σ;C) through the period

map Φ, it is sufficient to define a family of norms on H1(M,Σ;C), depending

continuously on the point x ∈ Teich, as follows:

‖v‖x = sup

∣∣∣∣∣ v(γ)

Φ(x)(γ)

∣∣∣∣∣ ,
where γ runs over the saddle connections of the surface x. It is proved

in [AGY06] that this is indeed a norm and that the corresponding Finsler met-

ric is complete. Let d denote the distance on Teich coming from this Finsler

metric.

The two following straightforward lemmas show that this metric behaves

well with respect to the Teichmüller flow.

Lemma 5.1. The tangent vectors at 0 to the families t 7→ gt(x), r 7→
hr(x), r 7→ h̃r(x) and θ 7→ kθ(x) are all bounded by 1 in norm. Therefore,

d(x, gtx) ≤ |t|, d(x, hrx) ≤ |r|, d(x, h̃r(x)) ≤ |r| and d(x, kθx) ≤ |θ|.

Proof. Given x with Φ(x) = a+ib, we have Φ(gtx) = eta+ie−tb; hence the

tangent vector of the curve t 7→ gtx at 0 is a− ib, which is clearly bounded by

1 from the formula. Moreover, Φ(hrx) = a+ rb+ ib; hence the tangent vector
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to this curve at 0 is b, again bounded by 1. The computations are similar for

h̃r and kθ. �

Lemma 5.2. The Teichmüller flow is noncontracting in the unstable di-

rection and nonexpanding in the stable direction for the above metric. More

precisely, for any t ≥ 0, for v ∈ H1(M,Σ;R) and w ∈ H1(M,Σ; iR), we have

‖Dgt(x)v‖gtx ≥ ‖v‖x and ‖Dgt(x)w‖gtx ≤ ‖w‖x.

Proof. We have Dgt(x)v = etv. Moreover, if Φ(x) = a + ib, we have

Φ(gtx) = eta+ ie−tb. Therefore,

‖Dgt(x)v‖gtx = sup
γ

et|v(γ)|
|eta(γ) + ie−tb(γ)|

≥ sup
γ

et|v(γ)|
|eta(γ) + ietb(γ)|

= ‖v‖x .

The argument for w is the same. �

The same computation shows that

‖Dgt(x)v‖gtx ≤ e
2t ‖v‖x and ‖Dgt(x)w‖gtx ≥ e

−2t ‖w‖x ,
which corresponds to the classical fact that the upper and lower Lyapunov

exponents of the Teichmüller flow are respectively 2 and −2.

Let µ̃ be an admissible measure, and let X denote its support. The above

Finsler metric can be restricted to every stable or unstable manifold in X and,

therefore, defines distances dWu , dW s on those manifolds. For r > 0, we denote

by W u
r (x) the ball of radius r around x in W u(x) for the distance dWu .

Fix x ∈ X. Let Ψ = Ψx be the canonical local parametrization of the

affine manifold W u(x) by its tangent plane Eu(x). More formally, we define

Ψ(v) for v ∈ Eu(x) as follows. Consider the path κ starting from x with

κ′(t) = v for all t. For small t, κ(t) is well defined and belongs to W u(x). It is

possible that κ(t) is not defined for large t since it could explode to infinity in

Teich. If the path κ is well defined for all t ∈ [0, 1], then we define Ψ(v) = κ(1).

Let us denote by B(0, r) the ball of radius r in Eu(x) for the norm ‖·‖x.

The main result of this section is the following proposition, showing that the

norm ‖·‖x varies slowly in fixed size neighborhoods of any point in the noncom-

pact space X. This is a kind of bounded curvature behavior. Note, however,

that this metric depends only in a continuous way on the point, so we cannot

use true curvature arguments.

Proposition 5.3. The map Ψ is well defined on B(0, 1/2), and there

dWu(x,Ψ(v)) ≤ 2 ‖v‖x. Moreover, for v ∈ B(0, 1/2), and for every w ∈ Eu(x),

(5.1) 1/2 ≤ ‖w‖x
‖w‖Ψ(v)

≤ 2.

Finally, for v ∈ B(0, 1/25), we have dWu(x,Ψ(v)) ≥ ‖v‖x /2.

Before proving this proposition, let us give a simple consequence for the

doubling property of µu. Again, the interest of this proposition is that the

estimates are uniform, even though X is not compact.
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Corollary 5.4. Let µ̃ be a measure with an affine local product structure,

supported on a submanifold X . There exists C > 0 such that, for every x ∈ X
and every r ≤ 1/100, µu(W u

2r(x)) ≤ Cµu(W u
r (x)).

Proof. By Proposition 5.3, Ψ−1(W u
2r(x)) ⊂ B(0, 4r) and Ψ−1(W u

r (x)) ⊃
B(0, r/2). Since y 7→ µu(y) is constant along W u(x), we have (denoting by du
the dimension of Eu(x))

µu(W u
2r(x)) = µu(x)(Ψ−1(W u

2r(x))) ≤ µu(x)(B(0, 4r))

= 8duµu(x)(B(0, r/2)) ≤ 8duµu(x)(Ψ−1(W u
r (x)))

= 8duµu(W u
r (x)). �

The central point in the proof of Proposition 5.3 is the following proposi-

tion.

Proposition 5.5. Let κ : [0, 1] → Teich be a C1 path. For each v ∈
H1(M,Σ;C),

e− length(κ) ≤
‖v‖κ(0)

‖v‖κ(1)

≤ elength(κ),

where length(κ) =
∫ 1
t=0 ‖κ′(t)‖κ(t) dt.

By symmetry, it is sufficient to prove the upper bound. For the proof, we

start with the following lemma. We will write κ(t)(γ) instead of Φ(κ(t))(γ).

Lemma 5.6. Let γ be a saddle connection surviving in the surface κ(t),

t ∈ [t1, t2]. Then

|κ(t2)(γ)|
|κ(t1)(γ)|

≤ e
∫ t2
t1
‖κ′(t)‖κ(t) dt

.

Proof. Let t ∈ [t1, t2]. For small h,

log |κ(t+ h)(γ)| = log |κ(t)(γ) + hκ′(t)(γ) + o(h)|

= log |κ(t)(γ)|+ log |1 + hκ′(t)(γ)/κ(t)(γ) + o(h)|

= log |κ(t)(γ)|+ h<(κ′(t)(γ)/κ(t)(γ)) + o(h).

Hence, t 7→ log |κ(t)(γ)| is differentiable, and its derivative <(κ′(t)(γ)/κ(t)(γ))

is bounded in norm by ‖κ′(t)‖κ(t). The result follows. �

Proof of Proposition 5.5. For 0 ≤ t′1 ≤ t′2 ≤ 1, let us write

I(t′1, t
′
2) = e

∫ t′2
t′
1

‖κ′(t)‖κ(t) dt
.
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Let γ be a fixed saddle connection in the surface κ(0). We want to show that

(5.2) |v(γ)/κ(0)(γ)| ≤ I(0, 1) ‖v‖κ(1) .

By induction, we define a sequence of times t0 < t1 < · · · and sets Γn of

saddle connections on the surface κ(tn), as follows.

Let t0 = 0 and Γ0 = {γ}. Assume tn and Γn are defined. If all the saddle

connections in Γn survive in the surfaces κ(t), t ∈ [tn, 1], we let tn+1 = 1 and

stop the process here. Otherwise, let tn+1 ∈ (tn, 1] be the first time one or

several saddle connections in Γn disappear. If γ̃ is such a saddle connection,

it means that other singularity points arrive on γ̃; i.e., γ̃ is split in κ(tn+1)

into a finite set {γ1, . . . , γk} of saddle connections, which are all in the same

direction. In particular, in homology, γ̃ =
∑
γi and, moreover, |κ(tn+1)(γ̃)| =∑ |κ(tn+1)(γi)|. We let Γn+1 be the union of all the saddle connections in Γn

that survive up to time tn+1 and all the newly created saddle connections γi.
2

We now show that this inductive construction reaches t = 1 in a finite

number of steps. Let Sn =
∑
γ̃∈Γn |κ(tn)(γ̃)|. For γ̃ ∈ Γn, Lemma 5.6 shows

that |κ(tn+1− ε)(γ̃)| ≤ I(tn, tn+1− ε)|κ(tn)(γ̃)|. Summing over γ̃ and letting ε

tend to 0, we get Sn+1 ≤ I(tn, tn+1)Sn. In particular, Sn is uniformly bounded

since Sn ≤ I(0, tn)S0 ≤ I(0, 1)S0. Moreover, the length of saddle connections

in all the surfaces κ(t) is bounded from below since κ([0, 1]) is a compact subset

of the Teichmüller space. This implies that the cardinality of Γn is uniformly

bounded. Since #Γn+1 ≥ #Γn + 1, this would give a contradiction if the

inductive process did not stop after finitely many steps.

We claim that, for all n,

(5.3) sup
γ̃∈Γn

|v(γ̃)/κ(tn)(γ̃)| ≤ I(tn, tn+1) sup
γ̃∈Γn+1

|v(γ̃)/κ(tn+1)(γ̃)|.

Let N be such that tN = 1. Multiplying these inequalities for n = 0, . . . , N−1,

we obtain (5.2), concluding the proof. We now prove (5.3). Let γ̃ ∈ Γn. If γ̃

survives up to time tn+1, Lemma 5.6 gives

|v(γ̃)/κ(tn)(γ̃)| ≤ I(tn, tn+1)|v(γ̃)/κ(tn+1)(γ̃)|,

as desired. Otherwise, γ̃ is split at time tn+1 into finitely many saddle con-

nections γ1, . . . , γk. For small ε > 0, the saddle connection γ̃ survives from

time tn to time tn+1 − ε. Therefore, Lemma 5.6 gives |v(γ̃)/κ(tn)(γ̃)| ≤

2Of course, there can also be moments t after which some of the saddle connections under

consideration may be joined into a single saddle connection. In our analysis, we explicitly

ignore such events (that is, we do not attempt to simplify the sets Γn), keeping track of the

individual saddle connections that could be joined (which naturally do not cease to exist).

This is important since the estimate (5.3) below only works for splittings but not for joinings.
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I(tn, tn+1 − ε)|v(γ̃)/κ(tn+1 − ε)(γ̃)|. When ε tends to 0, this tends to

I(tn, tn+1)
|v(γ̃)|

|κ(tn+1)(γ̃)|
= I(tn, tn+1)

|∑ v(γi)|∑ |κ(tn+1)(γi)|

≤ I(tn, tn+1)

∑ |v(γi)|∑ |κ(tn+1)(γi)|

≤ I(tn, tn+1) sup
|v(γi)|

|κ(tn+1)(γi)|
.

This proves (5.3). �

Proof of Proposition 5.3. Let κ be the path starting from x with κ′ = v.

If κ is well defined on an interval [0, t0], then for t ∈ [0, t0],∥∥κ′(t)∥∥κ(t) = ‖v‖κ(t) ≤ ‖v‖x e
∫ t

0
‖κ′(r)‖κ(r) dr,

by Proposition 5.5. Therefore, the function t 7→ G(t) =
∫ t

0 ‖κ′(r)‖κ(r) dr satis-

fies G′(t) ≤ eG(t) ‖v‖x; i.e., (−e−G(t))′ ≤ ‖v‖x. Integrating this inequality gives

G(t) ≤ − log(1 − t ‖v‖x). Substituting into the inequality G′(t) ≤ eG(t) ‖v‖x,

this yields ∥∥κ′(t)∥∥κ(t) ≤
‖v‖x

1− t ‖v‖x
.

If ‖v‖x < 1, this quantity remains bounded for t ∈ [0, 1]. Therefore, Ψ is well

defined on such vectors v. In particular, Ψ is well defined on the ball B(0, 1/2).

Moreover, dWu(x,Ψ(v)) ≤
∫ 1

0 ‖κ′(t)‖κ(t) ≤ ‖v‖x /(1−‖v‖x). For v ∈ B(0, 1/2),

this gives

(5.4) dWu(x,Ψ(v)) ≤ 2 ‖v‖x .

Using the same notation G as above, Proposition 5.5 shows that, for every

v ∈ B(0, 1/2) and every w ∈ Eu(x), we have e−G(1) ≤ ‖w‖x
‖w‖Ψ(v)

≤ eG(1). Since

G(1) ≤ log(2), this proves (5.1).

Let us now prove that, for v ∈ B(0, 1/25), we also have

(5.5) dWu(x,Ψ(v)) ≥ ‖v‖x /2.

Consider κ : [0, 1]→ W u(x) an almost minimizing path for the distance dWu ,

between x and Ψ(v). By (5.4), its length is less than 1/10. Let us lift κ to a

path κ̃ taking values in Eu(x), starting from 0 and such that κ = Ψ ◦ κ̃, as

long as κ̃ stays in B(0, 1/2).

While κ̃(t) is defined, by (5.1) we have ‖κ̃′(t)‖x ≤ 2 ‖κ̃′(t)‖κ(t). Integrating

this inequality from 0 to t, we get

‖κ̃(t)‖x =

∥∥∥∥∥
∫ t

0
κ̃′(r) dr

∥∥∥∥∥
x

≤
∫ t

0

∥∥κ̃′(r)∥∥x dr ≤ 2

∫ t

0

∥∥κ̃′(r)∥∥κ(r) dr

≤ 2 length(κ) ≤ 1/5.
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Therefore, κ̃(t) stays in B(0, 1/2), and the lifting process may be continued

up to t = 1, where κ̃(1) = v. We get ‖v‖x ≤ 2 length(κ). Hence, ‖v‖x ≤
2dWu(x,Ψ(v)), proving (5.5). �

5.2. Ck norm and partitions of unity. When (E, ‖·‖) is a normed vector

space and f is a Ck function on an open subset of E, let ck(f) be the supremum

of the quantities |Dkf(x; v1, . . . , vk)| for x in the domain of f and v1, . . . , vk
tangent vectors at x of norm at most 1.

If an affine manifold has a Finsler metric, we can define the ck coefficients

of a function in the same way, using the affine structure to define the k-th dif-

ferential at every point and the Finsler metric to measure the tangent vectors.

Note that the (possibly nonsmooth) variation of the Finsler metric from point-

to-point plays no role in this definition since it only uses the Finsler metric at

a fixed point. Those coefficients behave well under the composition with affine

maps.

We can then define the Ck-norm of a function by ‖f‖Ck =
∑k
j=0 cj(f).

When we say that a function is Ck on a noncompact space, we really mean

that its Ck-norm is finite.

Remark 5.7. There are several more general situations where this defi-

nition has a natural extension. Consider for example the following case: W

is an affine submanifold of an affine Finsler manifold Z, and v is a vector

field defined on W (but pointing in any direction in Z). Then, for x ∈ W

and v1, . . . , vk ∈ TxW , the k-th differential Dkv(x; v1, . . . , vk) is well defined

and belongs to the normed vector space TxZ. We can therefore define ck(v)

as the supremum of the quantities
∥∥∥Dkv(x; v1, . . . , vk)

∥∥∥
x
, for x ∈ W and

v1, . . . , vk ∈ TxW with ‖vi‖x ≤ 1. Finally, we set ‖v‖Ck =
∑k
j=0 cj(v) as

above.

Note, however, that there are several situations where it is not possible to

canonically define a Ck-norm as above. For instance, on a general Finsler man-

ifold, there is no canonical connection, and therefore Dkf is not well defined.

In the same way, in Remark 5.7, if W is not affine or if Z is not affine, then we

cannot define ‖v‖Ck . Of course, in a compact subset of W , one could choose

charts to define such a norm, but it would depend on the choice of the charts

— the equivalence class of the Ck-norm is well defined, but the Ck-norm itself

is not. Further on, we will need to control constants precisely, and it will be

very important for us to have a canonical norm.

Now consider an admissible measure µ̃, supported on a manifold X. Since

the local unstable manifolds W u(x) are affine manifolds, the previous discus-

sion applies to them.
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The next proposition constructs good partitions of unity on pieces of such

unstable manifolds.

Proposition 5.8. There exists a constant C with the following property.

Let W be a compact subset of an unstable leaf W u(x). Then there exist finitely

many C∞ functions (ρi)i∈I on W u(x), taking values in [0, 1], with
∑
ρi = 1

on W ,
∑
ρi = 0 outside of {y ∈ W u(x) : dWu(y,W ) ≤ 1/200}, and each ρi

is supported in a ball W u
1/200(xi) for some xi ∈ W . Moreover, we can ensure

that ck(ρi) ≤ C(k!)2, and every point of W u(x) belongs to at most C sets

W u
1/200(xi).

The precise bound C(k!)2 is not important for the applications we have

in mind; what really matters is that we have a bound depending only on k,

uniform in x.

Proof. By Proposition 5.3, the norm ‖·‖x is slowly varying in the sense

of [Hör03, Def. 1.4.7]. Applying Theorem 1.4.10 there to the sequence dk =

c/k3/2 for some c > 0, we get a sequence of functions ρi satisfying the conclusion

of our proposition. They satisfy ck(ρi) ≤ Ck(k!)3/2 for a constant C depending

only on the dimension, so ck(ρi) ≤ C ′(k!)2 and, moreover, the assertions on

the support are also satisfied. One should only be a little careful since the

supports in [Hör03, Th. 1.4.10] are controlled in terms of fixed norms ‖·‖x,

while our conclusion deals with the Finsler metric dWu . Since Proposition 5.3

shows that they are uniformly equivalent in small neighborhoods of the points,

this is not an issue. �

The next lemma is a particular case of Proposition 5.8 (obtained by letting

W = W u
1/200(x)) and will be needed later on.

Lemma 5.9. There exists a constant C with the following property. For

any x ∈ X , there exists a function ρ on W u(x), supported in W u
1/100(x), taking

values in [0, 1], equal to 1 on W u
1/200(x), with ck(ρ) ≤ C(k!)2.

The interest of this lemma is, again, that the estimates are uniform in x

while this point lives in a noncompact space.

In the next statement, we do not use the distance induced by the Finsler

metric on unstable manifolds, but the global distance. Since the previous

arguments only rely on Proposition 5.5, which is satisfied in W u as well as in

the whole space, this lemma follows again from the same techniques.

Lemma 5.10. There exists a constant C with the following property. Let

F : Teich → [1,∞) be a function such that | logF (x) − logF (y)| ≤ d(x, y) for

any x, y ∈ Teich. For any V ≥ 1, there exists a C∞ function ρV : Teich→ [0, 1]

such that ρV (x) = 1 if F (x) ≤ V and ρV (x) = 0 if F (x) ≥ 2V , satisfying

ck(ρV ) ≤ C(k!)2.
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6. Recurrence estimates

Our goal in this section is to prove the following exponential recurrence

estimate. Consider an admissible measure µ̃ with its affine local product struc-

ture, supported on a submanifold X. If x is a translation surface, let sys(x)

be its systole, i.e., the length of the shortest saddle connection in x, and let

V (x) = max(1/ sys(x), 1).

Proposition 6.1. Let δ ∈ (0, 1/4). There exists C > 0 such that, for

any x ∈ X and any t ≥ 0,

1

µu(W u
1/100(x))

∫
Wu

1/100
(x)
V (gty) dµu(y) ≤ Ce−(1−2δ)tV (x) + C.

Moreover, the function log V is 1-Lipschitz for the Finsler norm of the previous

section.

We will use the following lemma, which is due to Eskin-Masur [EM01] and

Athreya [Ath06]. (The order of quantifiers in our statement corrects a mistake

in Athreya’s Lemma 2.10.) The function V
(t)
δ is a linear combination (with

coefficients depending on δ and t) of the function V and of similar functions

taking into account higher complexity complexes.

Lemma 6.2. Fix a neighborhood V of the identity in SL(2,R). For every

δ > 0, there exists C > 0 such that, for all t > 0, there exist a function

V
(t)
δ : Teich → [1,∞) and a scalar b(t) > 0 satisfying the following property.

For all x ∈ Teich1,∫ 2π

0
V

(t)
δ (gtkθx) dθ ≤ Ce−(1−δ)tV

(t)
δ (x) + b(t).

Moreover,

(6.1) V
(t)
δ (gx) ≤ CV (t)

δ (x)

for all x ∈ Teich and all g ∈ V . Finally, there exists a constant Cδ,t such that

V
(t)
δ /V ∈ [C−1

δ,t , Cδ,t].

In the next lemma, we transfer the previous estimate on circle averages

to estimates on horocycle averages.

Lemma 6.3. For every δ > 0, there exists C such that, for any large

enough t, there exists b(t) > 0 such that, for any x ∈ Teich1,∫ 1

0
V

(t)
δ (gthrx) dr ≤ Ce−(1−δ)tV

(t)
δ (x) + b(t) .

Proof. Using the decomposition ANK of SL(2,R), we can write uniquely

hr = gτ(r)h̃r̃(r)kθ(r), where the functions τ , r̃ and θ depend smoothly on r. One
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easily checks that θ′(0) 6= 0. In particular, if n is large enough, r 7→ θ(r) is a

diffeomorphism on [0, 1/n]. Using the commutation relation gτ h̃r̃ = h̃e−2τ r̃gτ ,

we get ∫ 1/n

0
V

(t)
δ (gthrx) dr =

∫ 1/n

0
V

(t)
δ (gtgτ h̃r̃kθx) dr

=

∫ 1/n

0
V

(t)
δ (h̃r̃e−2(t+τ)gτgtkθx) dr.

By (6.1), this is bounded by

C

∫ 1/n

0
V

(t)
δ (gtkθx) dr = C

∫
θ([0,1/n])

V
(t)
δ (gtkux)(θ−1)′(u) du

≤ C
∫ 2π

0
V

(t)
δ (gtkux) du

≤ Ce−(1−δ)tV
(t)
δ (x) + b(t).

Therefore, ∫ 1

0
V

(t)
δ (gthrx) dr =

n−1∑
j=0

∫ 1/n

0
V

(t)
δ (gthrhj/nx) dr

≤
n−1∑
j=0

Ce−(1−δ)tV
(t)
δ (hj/nx) + b(t).

With (6.1), this gives the conclusion of the lemma. �

Lemma 6.4. For every δ > 0, there exist C and τ such that, for any t ≥ 0

and any x ∈ Teich1,

(6.2)

∫ 1

0
V

(τ)
δ (gthrx) dr ≤ Ce−(1−2δ)tV

(τ)
δ (x) + C .

The difference with the previous lemma is that we obtain a result valid

for all times, with constants independent of the time (while b depends on t in

the statement of Lemma 6.3).

Proof. Let us fix τ and b such that, for every x ∈ Teich1,

(6.3)

∫ 1

0
V

(τ)
δ (gτhrx) dr ≤ e−(1−2δ)τ

∫ 1

0
V

(τ)
δ (hrx) + b.

Their existence follows from Lemma 6.3 and (6.1). We can also assume that

e2τ is a (large) integer N .

Let us now prove that, for all n ∈ N,

(6.4)

∫ 1

0
V

(τ)
δ (g(n+1)τhrx) dr ≤ e−(1−2δ)τ

∫ 1

0
V

(τ)
δ (gnτhrx) dr + b.
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A geometric series then shows (6.2) for times of the form nτ , and the general

result follows from (6.1).

To prove (6.4), write g(n+1)τhr = gτgnτhr = gτhe2nτ rgnτ with e2nτ =

Nn = M . Then, writing r′ = Mr,

∫ 1

0
V

(τ)
δ (g(n+1)τhrx) dr =

M−1∑
j=0

∫ 1/M

0
V

(τ)
δ (g(n+1)τhrhj/Mx) dr

=
M−1∑
j=0

∫ 1/M

0
V

(τ)
δ (gτhMrgnτhj/Mx) dr

=
1

M

M−1∑
j=0

∫ 1

0
V

(τ)
δ (gτhr′gnτhj/Mx) dr′

≤ 1

M

M−1∑
j=0

Ç
e−(1−2δ)τ

∫ 1

0
V

(τ)
δ (hr′gnτhj/Mx) dr′ + b

å
,

where the last inequality follows from (6.3) applied to the point gnτhj/Mx.

Changing variables in the opposite direction again, we get (6.4). �

Proof of Proposition 6.1. The log-smoothness of V readily follows from

the fact that log sys is 1-Lipschitz by [AGY06, Lemma 2.12].

Let τ be given by Lemma 6.4. Since V is within a multiplicative constant

of V
(τ)
δ , it also satisfies the inequality (6.2) (with a different constant C).

Fix r ∈ [0, 1/100]. Since µu is invariant under hr,∫
Wu

1/100
(x)
V (gty) dµu(y) =

∫
Wu

1/100
(x)
V (gthrh−ry) dµu(y)

=

∫
h−rWu

1/100
(x)
V (gthrz) dµu(z) ≤

∫
Wu

1/50
(x)
V (gthrz) dµu(z).

Averaging over r, we get∫
Wu

1/100
(x)
V (gty) dµu(y) ≤ 100

∫ 1/100

r=0

∫
Wu

1/50
(x)
V (gthrz) dµu(z) dr

≤ 100

∫
Wu

1/50
(x)

Ç∫ 1

0
V (gthrz) dr

å
dµu(z).

This is bounded by µu(W u
1/50(x))(Ce−(1−2δ)tV (x) + C), using (6.2) for V and

the fact that V (z)/V (x) is uniformly bounded for all z ∈W u
1/50(x) (since log V

is Lipschitz). The result follows since the measures of W u
1/50(x) and W u

1/100(x)

are comparable by Corollary 5.4. �
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7. Distributional coefficients

In this section, we introduce a distributional norm on smooth functions,

similar in many respects to the norms introduced in [GL06]. (The differences

are the control at infinity, and the fact that we only use vector fields pointing in

the stable direction or the flow direction — this is simpler than the approach

of [GL06] and is made possible here by the smooth structure of the stable

foliation.) Let us fix µ̃ an admissible measure with its affine local product

structure, supported by a manifold X. Also let δ > 0 be a fixed small number,

as in the previous section. We recall that ω(x) = ∂gt(x)/∂t|t=0 is the unit

vector field tangent to the flow gt.

Consider a smooth vector field vs on a piece of unstable manifold W u
1/100(x)

such that for every y ∈ W u
1/100(x), vs(y) ∈ Es(y). We can define its ck coef-

ficients as in Remark 5.7. For a vector field vω(y) = ψ(y)ω(y) defined on

W u
1/100(x), we let its ck coefficient be ck(ψ). The definitions of ‖vs‖Ck and

‖vω‖Ck follow. Let us stress that these definitions only involve base points

that are located on an unstable manifold. This implies that these norms be-

have well under g−t, which is contracting along such an unstable manifold, and

is at the heart of the proof of Lemma 8.2 below.

We want to use such vector fields to differentiate functions, several times.

However, the Lie derivative Lv1Lv2f of a function f can only be defined if Lv2f

is defined on an open set, which means that v2 has to be defined on an open

set. Therefore, we will need to extend the above vector fields to whole open

sets, as follows.

Consider first a smooth vector field vs on W u
1/100(x), pointing everywhere

in the stable direction. We will now construct an extension vs of vs to a

neighborhood of W u
1/200(x) in X.

For y ∈W u
1/100(x), the stable manifold W s(y) is affine, its tangent space is

everywhere equal to Es(y), and we may therefore define vs(z) = vs(y) for z ∈
W s(y). This extended vector field is still tangent to the direction Es. Finally,

for small t, we define vs(gtz) = Dgt(z) · vs(z); i.e., we push the vector field by

gt. Since gt sends stable direction to stable direction, vs is everywhere tangent

to the stable direction. Since the unstable direction, the stable direction, and

the flow direction are transverse at every point, we can uniquely parametrize

a point in a neighborhood of W u
1/200(x) as gt(z) for some z ∈ W s

ε (y), y ∈
W u

1/200+ε(x). This defines the extension of vs.

If vω is a vector field along W u
1/100(x) pointing everywhere in the flow

direction, we can also define an extension vω as follows. Along W u, write

vω(y) = ψ(y)ω(y), where the function ψ is smooth. Let vω(gtz) = ψ(y)ω(gtz)

for z ∈ W s
ε (y), as above. This defines a smooth vector field extending vω as

desired.
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For k, ` ∈ N, α ∈ {s, ω}`, and x ∈ X, we can now define a distributional

coefficient of the C∞ function f at x, as follows (the function V has been

defined before Proposition 6.1):

(7.1) ek,`,α(f ;x) :=
1

V (x)

1

µu(W u
1/200(x))

sup

∣∣∣∣∣∣
∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`f dµu

∣∣∣∣∣∣ ,
where the supremum is over all compactly supported functions φ : W u

1/200(x)

→ C with ‖φ‖Ck+` ≤ 1, and all vector fields v1, . . . , v` defined on W u
1/100(x)

such that vj(y) ∈ Es(y) if αj = s and vj(y) ∈ Rω(y) if αj = ω, and

‖vj‖Ck+`+1(Wu
1/100

(x)) ≤ 1. Note that the domain of definition of the vector

fields is larger than the domain of integration in (7.1) — this will be useful

for extension purposes below. Note also that we use the Lie derivative with

respect to the extended vector fields vj , but the norm requirements on the

vector fields vj are only along W u and not in the transverse direction.

Define ek,`,α(f) = supx ek,`,α(f ;x). Let ek,`(f) =
∑
α∈{s,ω}` ek,`,α(f). Fi-

nally, let

(7.2) ‖f‖k = sup
0≤`≤k

ek,`(f).

Remark 7.1. If f1 ∈ DΓ, then we have the estimate∫
X/Γ

f1f dµ ≤ C(f1)ek,0(f) ≤ C(f1) ‖f‖k , f ∈ DΓ,

where C(f1) depends on the support of f1 as well as its Ck-norm therein. This

is readily obtained by decomposing f1 as a sum of finitely many functions with

small support (using partitions of unity), locally using the disintegration of µ

along local unstable manifolds, and applying the definition of ek,0 to bound

the integrals along those.

We will also need a weaker norm, which we denote by ‖·‖′k, given by

(7.3) ‖f‖′k = sup
1

V (x)

1

µu(W u
1/200(x))

∣∣∣∣∣∣
∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`f dµu

∣∣∣∣∣∣ ,
where the supremum is over 0 ≤ ` ≤ k − 1, over all points x ∈ X, all com-

pactly supported functions φ : W u
1/200(x) → C with ‖φ‖Ck+`+1 ≤ 1, and all

vector fields v1, . . . , v` defined on W u
1/100(x) and pointing either in the stable

direction or in the flow direction, such that ‖vj‖Ck+`+1(Wu
1/100

(x)) ≤ 1. Apart

from constants, the difference with the norm ‖f‖k is that we allow less deriva-

tives (at most k − 1 instead of k) and that the test function φ has one more

degree of smoothness. (It is in Ck+`+1 instead of Ck+`.) Therefore, the norm

‖f‖′k is weaker in all directions than the norm ‖f‖k. Hence, the following

compactness result is not surprising.
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Proposition 7.2. Let K be a compact set mod Γ, and let k ∈ N. Let fn
be a sequence of functions in DΓ, supported in K , and with ‖fn‖k ≤ 1. Then

there exists a subsequence fj(n) that is Cauchy for the norm ‖·‖′k.

In other words, if we work with the completions of the spaces, then the

unit ball for the norm ‖·‖k is relatively compact for the norm ‖·‖′k if we consider

only functions on X/Γ that are supported in a fixed compact set.

The rest of this subsection is devoted to the proof of this proposition. (It

is similar to the proof of Lemma 2.1 in [GL06].) We will need a preliminary

lemma.

For any r, let us fix a Cr-norm on the functions supported in K, such

that this norm is Γ-invariant. Such a norm is not canonically defined, but this

will not be a problem in the statements or results to follow since multiplicative

constants do not matter.

Lemma 7.3. There exists a constant C(k, `,K) such that any smooth

function f supported in K satisfies the following property. For any x ∈ K ,

any Ck+` vector fields v1, . . . , v` defined on a neighborhood of W u
1/100(x) with

‖vj‖Ck+` ≤ 1, and any Ck+` function φ, compactly supported on W u
1/200(x)

with ‖φ‖Ck+` ≤ 1,∣∣∣∣∣
∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`f dµu

∣∣∣∣∣ ≤ C∑
`′≤`

ek,`′(f).

The interest of this lemma is that the vector fields vj can be any vector

fields, not only canonical extensions of vector fields pointing in the stable

direction or in the flow direction. Moreover, we also weaken the smoothness

of the vector fields vj , requiring them only to be Ck+` instead of Ck+`+1.

Proof. We prove the statement of the lemma by induction on `. For ` = 0,

this is clear from the definitions. Let us decompose the vector field v1 as

vu1 + vs1 + vω1 where those three components point, respectively, in the unstable

direction, in the stable direction, and in the flow direction. Along W u
1/100(x),

decomposing vs1 along some coordinates vector fields, we can write it as a linear

combination of vector fields of the form ψs1w
s
1, where ψs1 is a function bounded in

Ck+` and ws1 is a C∞ vector field with ‖ws1‖Ck+`+1 ≤ C. To simplify notations,

we will omit a summation and assume that we can write vs1(y) = ψs1(y)ws1(y).

In the same way, we write vω1 (y) = ψω1 (y)ω(y) where ‖ψω1 ‖Ck+` ≤ C. For

convenience, we introduce the notation wω1 = ω.

Let g = Lv2 . . . Lv`f . Since Lv1g only depends on the value of the vector

field v1 (and not its derivatives), we have, along W u
1/200(x), Lv1g = Lvu1 g +

ψs1Lws1
g + ψω1Lwω1

g. Moreover,∫
Wu

1/200
(x)
φ · Lvu1 g dµu = −

∫
Wu

1/200
(x)
Lvu1 φ · g dµu,
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which is bounded by C
∑
`′≤`−1 ek,`′(f) by the induction hypothesis since the

function Lvu1 φ is Ck+`−1 and is multiplied by ` − 1 derivatives of f against

Ck+`−1 vector fields.

It remains to bound
∫
Wu

1/200
(x) φψ

α1
1 · Lwα1

1

Lv2 · · ·Lv`f dµu for some α1 ∈
{s, ω}. Let us exchange the vector fields to put L

w
α1
1

in the last position.

Since [Lv, Lw] = L[v,w], the error we make is bounded by the integral of a Ck+`

function multiplied by ` − 1 derivatives of f against Ck+`−1 vector fields. By

the induction hypothesis, this is again bounded by C
∑
`′≤`−1 ek,`′(f).

It remains to bound
∫
Wu

1/200
(x) φψ

α1
1 ·Lv2 · · ·Lv`Lwα1

1

f dµu. In the same way

as above, we decompose v2 into its unstable, stable, and flow part, integrate

by parts to get rid of the unstable part, and exchange the vector fields to put

the remaining parts of v2 at the end. Iterating this process ` times, we end up

with an estimate∣∣∣∣∣∣
∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`f dµu

∣∣∣∣∣∣
≤ C

∑
`′≤`−1

ek,`′(f) + C sup
α∈{s,ω}`

∣∣∣∣∣∣
∫
Wu

1/200
(x)
φψα1

1 · · ·ψ
α`
` · Lwα1

1

· · ·L
w
α`
`

f dµu

∣∣∣∣∣∣ .
By construction, the vector fields w

αj
j are canonical extensions of Ck+`+1 vector

fields defined along W u
1/200(x) and pointing in the stable or flow direction.

Therefore, the latter integrals are bounded by Cek,`(f) by definition of this

coefficient. �

Proof of Proposition 7.2. The first step of the proof is to show that to

estimate ‖f‖′k, it is sufficient to work with finitely many unstable manifolds.

More precisely, we will show that, for any ε > 0, there exist finitely many

points (xi)i∈I such that, for any function f supported in K and Γ-invariant,

(7.4) ‖f‖′k ≤ Cε ‖f‖k + C sup

∣∣∣∣∣∣
∫
Wu

1/200
(xi)

φ · Lv1 · · ·Lv`f dµu

∣∣∣∣∣∣ ,
where the supremum is taken over all 0 ≤ ` ≤ k − 1, all i ∈ I, all functions

φ compactly supported on W u
1/200(xi), and all vector fields vj defined in some

fixed neighborhood Ui of W u
1/100(xi) with Ck+`+1-norm bounded by 1.

Since K/Γ is compact, it is sufficient to show that integrals along the

unstable manifold of a point x1 can be controlled by similar integrals along the

unstable manifold of a nearby point x0. Let x0, x1 be two nearby points in K

(so that their unstable spaces Eu(x0) and Eu(x1) are also close). Consider a

smooth path xt from x0 to x1 and a smooth family of maps sending Eu(x0)

to Eu(xt). Locally parametrizing the (affine) unstable manifold of the point
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xt by its tangent space (by the map Ψxt introduced before Proposition 5.3),

we obtain a family of affine maps Φt : W u
1/50(x0) → W u(xt) with Φ0 = id,

which we extend smoothly to diffeomorphisms defined on a neighborhood of

W u
1/50(x0).

Fix 0 ≤ ` ≤ k− 1 and consider a Ck+`+1 function φ compactly supported

on W u
1/400(x1) and Ck+`+1 vector fields v1, . . . , v` along W u

1/50(x1), each of them

pointing either in the stable direction or in the flow direction, with Ck+`+1

norm bounded by 1. We want to bound the integral

I1 =

∫
Wu(x1)

φ · Lv1 · · ·Lv`f dµu,

using data along W u(x0).

For each t, we define vector fields vtj on a neighborhood of W u
1/75(xt) by

v0
j = (Φ1)∗vj , and vtj = (Φt)∗v

0
j . Letting Jt ∈ (0,+∞) be the jacobian of Φt

from W u(x0) to W u(xt), we can rewrite I1 as a sum of two terms

I1 =

∫
Wu(x0)

φ ◦ Φ1 · Lv0
1
· · ·Lv0

`
(f ◦ Φ1)J1 dµu

=

∫
Wu(x0)

φ ◦ Φ1 · Lv0
1
· · ·Lv0

`
f · J1 dµu

+

∫ 1

t=0

∂

∂t

Ç∫
Wu(x0)

φ ◦ Φ1 · Lv0
1
· · ·Lv0

`
(f ◦ Φt) · J1 dµu

å
dt.

The first term is bounded by the second term in the right-hand side of (7.4).

Writing wt = (∂Φt/∂t) ◦ Φ−1
t , the integrand of the second term at fixed t is∫

Wu(x0)
φ ◦ Φ1 · Lv0

1
· · ·Lv0

`
((Lwtf) ◦ Φt) · J1 dµu

=

∫
Wu(xt)

φ ◦ Φ1 ◦ Φ−1
t · Lvt1 · · ·Lvt`Lwtf · J1 ◦ Φ−1

t J−1
t dµu.

This is an integral along an unstable manifold of a Ck+`+1 function multiplied

by `+ 1 derivatives of f against Ck+`+1 vector fields. By Lemma 7.3 (applied

to `′ = ` + 1, which is licit since ` < k by assumption), this is bounded in

terms of ‖f‖k. Moreover, if x0 and x1 are close enough, the Ck+`+1-norm of

the vector field wt is arbitrarily small, and we get that this integral is bounded

by Cε ‖f‖k. Putting together the two terms, we see that I1 is bounded by the

right-hand side of (7.4). Up to constants (which do depend on K), the norm

‖f‖′k is defined using integrals similar to I1, but where φ is allowed to have a

larger support W u
1/200(x1) and the vj may have a smaller domain of definition

W u
1/100(x1). However, this is not a problem since those more general integrals

can be decomposed as sums of a bounded number of integrals like I1, using

partitions of unity. This concludes the proof of (7.4).
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It is now easy to conclude the proof. Fix smooth bump functions ρi
compactly supported in Ui (the domain of definition of the vj in (7.4)) and equal

to 1 in a neighborhood of W u
1/200(xi). Since Ck+`+1 is compactly included in

Ck+`, for each xi, i ∈ I, we can choose finitely many functions φm,i compactly

supported in W u
1/200(xi) and finitely many vector fields vj,m,i defined in Ui such

that for all functions φ and vector fields vj that are bounded by 1 in Ck+`+1,

there exists m such that φ and ρivj are ε-close to φm,i and ρivj,m,i in Ck+`.

By Lemma 7.3, with (7.4) this gives

‖f‖′k ≤ C
′ε ‖f‖k + sup

i,m

∣∣∣∣∣∣
∫
Wu

1/200
(xi)

φm,i · Lv1,m,i · · ·Lv`,m,if dµu

∣∣∣∣∣∣ .
Now consider a sequence fn with ‖fn‖k ≤ 1. We extract a subsequence

fj(n) along which all the finitely many quantities∫
Wu

1/200
(xi)

φm,i · Lv1,m,i · · ·Lv`,m,ifj(n) dµu

converge. It follows that lim supn,n′→∞

∥∥∥fj(n) − fj(n′)
∥∥∥′
k
≤ 2C ′ε. Letting ε

tend to 0 and using a standard diagonal argument, we get the required Cauchy

sequence. �

8. A good bound on the essential spectral radius of M

Let µ̃ be an admissible measure with its affine local product structure,

supported by a submanifoldX of Teich1. In this section, we prove Theorem 3.2.

As in the statement of this theorem, let us writeMf =
∫∞
t=0 e

−4δtLtf dt (to be

interpreted as explained in Section 3.2), where δ > 0 is fixed and Ltf = f ◦ gt.
To prove Theorem 3.2, we have to construct a good norm on DΓ. It turns

out that the norms ‖·‖k that we have constructed in the previous section in (7.2)

are suitable for this purpose. The following statement contains Theorem 3.2

(also see Remark 7.1).

Theorem 8.1. For all k, there exists C > 0 such that ‖Ltf‖k ≤ C ‖f‖k,

uniformly in t ≥ 0. Therefore, M acts continuously on the completion of DΓ

for the norm ‖·‖k.

Moreover, if k is large enough, then the essential spectral radius of M on

this space is at most 1 + δ.

This section is devoted to the proof of this result. Until the end of its proof,

we will always specify if a constant depends on k, by using a subscript as in

Ck. Most constants will be independent of k, and this will be very important

for the argument since k will be chosen only at the very end of the proof.

For technical reasons, it is convenient to work with another norm that is

equivalent to ‖·‖k. For A ≥ 1, let us first define a norm equivalent to ‖·‖Ck ,
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by ‖f‖CkA =
∑k
j=0 cj(f)/(j!Aj). Since cj(fg) ≤ ∑j

m=0

( j
m

)
cm(f)cj−m(g), it

follows that ‖fg‖CkA ≤ ‖f‖CkA ‖g‖CkA . Moreover, for any fixed Ck function f

and any ε > 0, if A is large enough, then ‖f‖CkA ≤ (1 +ε) sup |f |. Let us define

eAk,`,α(f ;x) like ek,`,α(f ;x) in (7.1), but replacing the requirements ‖φ‖Ck+` ≤ 1

and ‖vj‖Ck+`+1 ≤ 1 (for the supremum taken in (7.1)) by ‖φ‖Ck+`
A
≤ 1 and

‖vj‖Ck+`+1
A

≤ 1.

We will need to deal separately with the case where all the vector fields in

the definition of eAk,`,α point in the stable direction and the case where at least

one vector field points in the flow direction. Therefore, let us define eAk,`,s(f ;x)

= eAk,`,{s,...,s}(f ;x) and eAk,`,ω(f ;x) = sup eAk,`,α(f ;x), where the supremum is

over all α ∈ {s, ω}` different from {s, . . . , s}. Let eAk,`,s(f) = supx e
A
k,`,s(f ;x)

and similarly for eAk,`,ω(f). For B ≥ 1, let ‖f‖A,Bk,s =
∑k
`=0B

−`eAk,`,s(f) and

similarly for ‖f‖A,Bk,ω . Finally, let ‖f‖A,Bk = ‖f‖A,Bk,s + ‖f‖A,Bk,ω . This norm is

equivalent to ‖f‖k, but more convenient for a lot of inequalities.

In the statements below, when we say “for all large enough A,B. . . ,” we

mean: if A is large enough, then, if B is large enough (possibly depending

on A), then . . . . The assumption “for all large enough k,A,B” should be

interpreted in the same way.

We now start the proof. Some arguments are borrowed from [GL06]. We

write D for the set of C∞ functions supported in a compact set mod Γ. It

contains the previously defined set DΓ of functions in D that are Γ-invariant.

Lemma 8.2. There exists a constant C0 ≥ 1 satisfying the following prop-

erty. For every k, ` ∈ N and every α ∈ {s, ω}`, if A is large enough, then for

every t ≥ 0, every f ∈ D, and every x ∈ X ,

(8.1) eAk,`,α(f ◦ gt;x) ≤ C0e
A
k,`,α(f)

Ä
e−(1−2δ)t + 1/V (x)

ä
.

Proof. We first give the proof for ` = 0. Fix some point x, and fix some

compactly supported function φ : W u
1/200(x)→ C with ‖φ‖CkA ≤ 1. We want to

estimate
∫
Wu

1/200
(x) φ(y)·f ◦gt(y) dµu(y). We change variables, letting z = gt(y).

By Proposition 4.1, the resulting jacobian has the form e−dt for some d > 0.

The integral becomes an integral over gt(W
u
1/200(x)). Proposition 5.8 provides

a partition of unity (ρi)i∈I on this set, with good properties. In particular, ρi
is supported in a ball W u

1/200(xi). The integral becomes∑
i

∫
Wu

1/200
(xi)

ρi(z)φ(g−tz) · f(z) e−dt dµu(z).

Since g−t is affinely contracting along W u, ‖φ ◦ g−t‖CkA ≤ ‖φ‖CkA ≤ 1. There-

fore, the CkA-norm of ρi · φ ◦ g−t is bounded by ‖ρi‖CkA . If A is large enough,

this is at most 2 (since the coefficients cm of ρi, for 1 ≤ m ≤ k, are uniformly
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bounded by Proposition 5.8). Given the definition

eAk,0(f) = sup
y∈X

sup
‖ψ‖

Ck
A

(Wu
1/200

(y))≤1

1

V (y)

1

µu(W u
1/200(y))

∣∣∣∣∣∣
∫
Wu

1/200
(y)
ψf dµu

∣∣∣∣∣∣ ,
it follows that the above integral is bounded by

(8.2)
∑
i

CeAk,0(f)V (xi)µu(W u
1/200(xi))e

−dt

≤ CeAk,0(f)
∑
i

∫
Wu

1/200
(xi)

V (z) e−dt dµu(z)

since log V is Lipschitz by Proposition 6.1. The covering multiplicity of the

sets W u
1/200(xi) is uniformly bounded, by Proposition 5.8. Moreover, all those

sets are included in {z : d(z, gt(W
u
1/200(x))) ≤ 1/200}, which is itself included

in gt(W
u
1/100(x)) since g−t contracts the distance along W u. Therefore, (8.2) is

bounded by

CeAk,0(f)

∫
gt(Wu

1/100
(x))

V (z) e−dt dµu(z) = CeAk,0(f)

∫
Wu

1/100
(x)
V (gty) dµu(y).

By Proposition 6.1, this is bounded by

CeAk,0(f)µu(W u
1/100(x))(e−(1−2δ)tV (x) + 1).

Finally,

1

V (x)

1

µu(W u
1/200(x))

∣∣∣∣∣∣
∫
Wu

1/200
(x)
φ · f ◦ gt dµu(y)

∣∣∣∣∣∣
≤ CeAk,0(f)

µu(W u
1/100(x))

µu(W u
1/200(x))

Ä
e−(1−2δ)t + 1/V (x)

ä
.

The ratio of the measures is bounded, by Corollary 5.4. This proves (8.1) when

` = 0.

Now assume ` > 0. We have to estimate

(8.3)

∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`(f ◦ gt) dµu,

where the vector fields vj are defined on W u
1/100(x), satisfy ‖vj‖Ck+`+1

A
≤ 1, and

point in the direction Es or Rω. Consider a function ρ equal to 1 in W u
1/200(x)

and compactly supported in W u
1/100(x) (as constructed in Lemma 5.9), and de-

fine a new vector field vj,1 = ρ ·vj . It coincides with vj on W u
1/200(x). Therefore

the integral (8.3) can also be written using vj,1 instead of vj . Moreover, if A

is large enough, the definition of the Ck+`+1
A -norm ensures that

‖vj,1‖Ck+`+1
A

= ‖ρ · vj‖Ck+`+1
A

≤ ‖ρ‖Ck+`+1
A

‖vj‖Ck+`+1
A

≤ 21/`.
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Let wj = (gt)∗vj,1. Since the extension wj is defined using the affine

structure and the flow direction, which are invariant under the affine flow gt,

it follows that wj = (gt)∗vj,1. Therefore,

Lv1,1 · · ·Lv`,1(f ◦ gt)(y) = Lw1 · · ·Lw`f(gty).

We claim that the vector fields wj are bounded by 21/` in Ck+`+1
A . (Even

better, cm(wj) ≤ cm(vj,1) for all m.) We can then proceed as in the ` = 0

case, simply getting an additional error factor equal to
∏`
j=1 ‖wj‖Ck+`+1

A
≤ 2.

One should pay attention to the fact that, with the above definition, the vector

fields wj are not always defined on all the balls W1/100(xi) for those xi that

are close to the boundary of gt(W1/200(x)). This is not a problem since wj
is compactly supported in gt(W1/100(x)) by construction. One may therefore

extend it by 0 wherever it is not defined. (This is why we had to use vj,1 and

not vj in this construction.)

It remains to check the formula cm(wj) ≤ cm(vj,1). It comes from the fact

that the definition of cm only involves differentiation along directions in W u

and that g−t is contracting along this manifold. If αj = ω, i.e., vj points in the

flow direction, this estimate is straightforward. Let us therefore assume that

αj = s, i.e., vj points in the stable direction. Consider a point z in the domain

of definition of wj , and m vectors u1, . . . , um at that point which are tangent

to W u(x), with ‖um‖z ≤ 1. Write y = g−tz. We get

Dmwj(z;u1, . . . , um) = e−tDmvj,1(g−tz;Dg−t(z) · u1, . . . , Dg−t(z) · um).

Therefore,

‖Dmwj(z;u1, . . . , um)‖y = e−t ‖Dmvj,1(g−tz;Dg−t(z) · u1, . . . , Dg−t(z) · um)‖y
≤ e−tcm(vj,1) ‖Dg−t(z)u1‖y · · · ‖Dg−t(z)um‖y .

Since the differential Dg−t(z) contracts in the direction of W u by Lemma 5.2,

we have ‖Dg−t(z)un‖y ≤ ‖un‖z ≤ 1. This yields

(8.4) ‖Dmwj(z;u1, . . . , um)‖y ≤ e
−tcm(vj,1).

We are interested in bounding ‖Dmwj(z;u1, . . . , um)‖z. Since d(y, z) ≤ |t| by

Lemma 5.1, Proposition 5.5 shows that the ratio between ‖·‖y and ‖·‖z is at

most et. This cancels the factor e−t in (8.4), and we get the conclusion. �

Corollary 8.3. For every k ∈ N, for every large enough A and B, for

every t ≥ 0 and every f ∈ D, we have ‖f ◦ gt‖A,Bk ≤ 2C0 ‖f‖A,Bk .

Proof. The function V is bounded from below by 1. Taking the supremum

over x in (8.1), we get eAk,`,α(f ◦ gt) ≤ 2C0e
A
k,`,α(f). The result follows from the

definition of the ‖·‖A,Bk norm. �
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It follows from this corollary that we can define the operator M on DΓ.

Let N ∈ N. We will study the norm of MN . We have

(8.5) MNf =

∫ ∞
t=0

tN−1

(N − 1)!
e−4δtLtf dt.

We will estimate differently the contributions
∥∥∥MNf

∥∥∥A,B
k,ω

and
∥∥∥MNf

∥∥∥A,B
k,s

to
∥∥∥MNf

∥∥∥A,B
k

. Let us first deal with the former.

Lemma 8.4. For any N ∈ N, for any k, if A and B are large enough, we

have ∥∥∥MNf
∥∥∥A,B
k,ω
≤ 5C0 ‖f‖A,Bk .

Proof. We will prove that, for any N, k, `, and A sufficiently large, there

exists a constant CN,k,`,A such that

(8.6) eAk,`,ω(MNf) ≤ CN,k,`,A
∑
`′<`

eAk,`′(f) + 4C0e
A
k,`(f).

Taking B much larger than all CN,k,`,A for 0 ≤ ` ≤ k, this directly implies the

statement of the lemma.

Let us fixN,k,`,A. We splitMN as the sum ofM1 :=
∫D

0
tN−1

(N−1)!e
−4δtLt dt

and M2 :=
∫∞
D

tN−1

(N−1)!e
−4δtLt dt, where D is suitably large.

Lemma 8.2 shows that eAk,`,ω(Ltf) ≤ 2C0e
A
k,`,ω(f). Hence, if D is large

enough (depending on N), we have eAk,`,ω(M2f) ≤ C0e
A
k,`,ω(f). The term M2

is therefore not a problem to prove (8.6).

Let us handle M1. Consider first a point x such that V (x) ≥ e(1−2δ)D.

For such a point x, Lemma 8.2 gives eAk,`,ω(Ltf ;x) ≤ 2C0e
A
k,`,ω(f)e−(1−2δ)t for

t ≤ D. In particular,

eAk,`,ω(M1f ;x) ≤
∫ D

t=0

tN−1

(N − 1)!
e−4δteAk,`,ω(Ltf ;x) dt

≤ 2C0

∫ D

t=0

tN−1

(N − 1)!
e−4δteAk,`,ω(f)e−(1−2δ)t dt ≤ 2C0e

A
k,`,ω(f)

since
∫∞
t=0

tN−1

(N−1)!e
−(1+2δ)t dt ≤

∫∞
t=0

tN−1

(N−1)!e
−t dt = 1. This concludes the proof

for such points x.

It remains to consider points x with V (x) ≤ e(1−2δ)D. This set is very large

if D is large, but it is compact mod Γ. Fix such a point x. We have to estimate

integrals of the form
∫
Wu

1/200
(x) φ · Lv1 · · ·Lv`(M1f) dµu, where ‖φ‖Ck+`

A
≤ 1

and ‖vj‖Ck+`+1
A

≤ 1, and at least one of the vector fields vj points in the flow

direction.
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To begin, assume that the last vector field v` points in the flow direction;

i.e., v`(y) = ψ(y)ω(y) for some function ψ with ‖ψ‖Ck+`+1
A

≤ 1. In the ex-

pression Lv1 · · ·Lv`−1
(ψLω(M1f)), if we use at least one of the Lie derivatives

to differentiate ψ, we obtain a term bounded by Ck,`,Ae
A
k,`′(M1f) for some

`′ < `. This is bounded by CN,k,`,A,De
A
k,`′(f) by Lemma 8.2. This error term is

compatible with (8.6). The remaining term is ψLv1 · · ·Lv`−1
(Lω(M1f)). Since

M1f =
∫D
t=0 h(t)Ltf dt for some smooth function h, we have Lω(M1f) =

h(D)LDf − h(0)f −
∫D
t=0 h

′(t)Ltf dt. Therefore, the integral we are studying

can be bounded in terms of `− 1 derivatives of f (or images of f under oper-

ators Lt, which are controlled in terms of f thanks to Lemma 8.2), and this is

bounded by CN,k,`,A,De
A
k,`−1(f). This error term is again compatible with (8.6).

Assume now that one of the vector fields vj points in the flow direction,

but that it is not necessarily the last one. We can exchange the vector fields

to put the vector field vj in the last position and conclude as above. Since

[Lw1 , Lw2 ] = L[w1,w2], the additional error corresponds to the integration of

`− 1 derivatives of M1f against a Ck+` function, but one of the vector fields

is not the canonical extension of a vector field defined on W u
1/100(x). Since we

work in the set {V ≤ e(1−2δ)D}, which is compact mod Γ, Lemma 7.3 shows

that this error is bounded in terms of sup`′<` ek,`′(f) and is again compatible

with (8.6). �

It remains to study
∥∥∥MNf

∥∥∥A,B
k,s

, for which the above integration by parts

trick does not work. Note, however, that contrary to the flow direction, the

stable direction is (nonuniformly) contracted by the flow — this is at the heart

of the following computations. We will estimate ‖Ltf‖A,Bk,s if t is large enough.

This will readily give estimates for
∥∥∥MNf

∥∥∥A,B
k,s

by (8.5).

Let us fix some constants. First, we recall that C0 has been defined in

Lemma 8.2. Let T0 > 0 be large enough so that 40C0 ≤ eδT0 . Let V0 =

2e2(1−δ)T0 , and define

(8.7) K = {x ∈ Teich1 : V (x) ≤ 4V0e
T0}.

This set is compact mod Γ. Finally, applying Proposition 4.3 to K, we get a

time T = T (K).

We will study the operator LnT0 for all n large enough so that nT0 ≥ T/δ.
By Lemma 5.10, we can define a C∞ function ρV0 such that ρV0(x) = 1 if

V (x) ≤ V0 and ρV0(x) = 0 if V (x) ≥ 2V0. Write ψ1 = ρV0 and ψ2 = 1− ρV0 so

that ψ1 +ψ2 = 1. We decompose LT0(f) = LT0(ψ1f)+LT0(ψ2f) = L̃1f + L̃2f .

Therefore, LnT0 =
∑
γ∈{1,2}n L̃γ1 · · · L̃γn .

We first give a lemma ensuring that multiplication by ρV0 or 1−ρV0 in the

definition of L̃1 and L̃2 is not harmful, and then we will turn to the study of
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L̃γ1 · · · L̃γn for γ ∈ {1, 2}n. In Lemma 8.6 we will handle the case where most

γi are equal to 2 (i.e., most time is spent close to infinity, and we can use the

good recurrence estimates of Proposition 6.1). In Lemma 8.7 we will handle

the case where a definite proportion of the γi is equal to 1 (i.e., some time is

spent in the compact set K, and we can take advantage of the hyperbolicity

of the flow there).

Lemma 8.5. Let k ∈ N, and let ψ : X → [0, 1] be a C2k function supported

in a compact set mod Γ. If A and B are large enough, then for any f ∈ D, we

have ‖ψf‖A,Bk,s ≤ 3 ‖f‖A,Bk,s .

Proof. Let us prove that, for every k, ` ≤ k and every large enough A,

there exists a constant Ck,`,A such that, for any f ∈ D,

(8.8) eAk,`,s(ψf) ≤ 2eAk,`,s(f) + Ck,`,A
∑
`′<`

eAk,`′,s(f).

The statement of the lemma follows directly from this estimate if B is much

larger than any of the Ck,`,A.

To estimate eAk,`,s(ψf), we have to compute integrals of the form∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`(ψf) dµu,

where ‖φ‖Ck+`
A
≤1 and v1, . . . , v` have a Ck+`+1

A -norm along W u
1/100(x) bounded

by 1. We can use each Lvi to differentiate either ψ or f . If we differentiate ψ

m times for some m > 0, we obtain an integral of `−m derivatives of f against

a Ck+`−m function; hence this is bounded by CeAk,`′,s(f) for `′ = `−m. (Note

that we are working in the lift of a compact subset of Teich1/Γ; hence the

Ck+`-norm of the extended vector fields vj is bounded.) The remaining term

is
∫
φψ · Lv1 · · ·Lv`f . If A is large enough, ‖φψ‖Ck+`

A
≤ ‖φ‖Ck+`

A
‖ψ‖Ck+`

A
≤ 2;

hence this integral is bounded by 2eAk,`,s(f). We have proved (8.8). �

Lemma 8.6. For every k, n ∈ N, for every γ ∈ {1, 2}n, for every large

enough A,B, we have for every f ∈ D,∥∥∥L̃γ1 · · · L̃γnf
∥∥∥A,B
k,s
≤ (10C0)ne−(1−2δ)T0#{i : γi=2} ‖f‖A,Bk,s .

Proof. It is sufficient to prove that∥∥∥L̃1f
∥∥∥A,B
k,s
≤ 10C0 ‖f‖A,Bk,s and

∥∥∥L̃2f
∥∥∥A,B
k,s
≤ 10C0e

−(1−2δ)T0 ‖f‖A,Bk,s .

Since V is bounded from below by 1, Lemma 8.2 shows that ‖LT0f‖
A,B
k,s ≤

2C0 ‖f‖A,Bk,s if A is large enough. Therefore,∥∥∥L̃1f
∥∥∥A,B
k,s

= ‖LT0(ρV0f)‖A,Bk,s ≤ 2C0 ‖ρV0f‖
A,B
k,s ≤ 6C0 ‖f‖A,Bk,s ,

by Lemma 8.5, if A and B are large enough.
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We turn to L̃2f = LT0((1− ρV0)f). Let x ∈ X. Since log V is 1-Lipschitz,

V (gT0y) ≤ eT0V (y) for all y. If V (x) ≤ e−T0V0/2, it follows that V (y) ≤ e−T0V0

on W u
1/100(x) and, therefore, that V (z) ≤ V0 on gT0(W u

1/100(x)). Hence, 1 −
ρV0 = 0 on this set. The definition of eAk,`,s gives eAk,`,s(LT0((1− ρV0)f);x) = 0.

By Lemma 8.2, we therefore obtain

eAk,`,s(LT0((1− ρV0)f)) = sup
V (x)≥e−T0V0/2

eAk,`,s(LT0((1− ρV0)f);x)

≤ sup
V (x)≥e−T0V0/2

C0e
A
k,`,s((1− ρV0)f)

Ä
e−(1−2δ)T0 +1/V (x)

ä
≤ C0e

A
k,`,s((1− ρV0)f)

Ä
e−(1−2δ)T0 + 2eT0/V0

ä
.

Taking into account the definition of ‖·‖A,Bk,s and the equality 2eT0/V0 =

e−(1−2δ)T0 , we obtain

‖LT0((1− ρV0)f)‖A,Bk,s ≤ 2C0 ‖(1− ρV0)f‖A,Bk,s e−(1−2δ)T0 .

By Lemma 8.5, ‖(1− ρV0)f‖A,Bk,s ≤ ‖f‖
A,B
k,s + ‖ρV0f‖

A,B
k,s ≤ 4 ‖f‖A,Bk,s if A,B are

large enough. We obtain
∥∥∥L̃2f

∥∥∥A,B
k,s
≤ 8C0e

−(1−2δ)T0 ‖f‖A,Bk,s as desired. �

We defined an auxiliary norm ‖·‖′k in (7.3).

Lemma 8.7. Consider γ = (γ1, . . . , γn) with #{i : γi = 1} ≥ T/T0. Then,

for all k, if A and B are large enough,

(8.9)
∥∥∥L̃γ1 · · · L̃γnf

∥∥∥A,B
k,s
≤ 2−k/2 · 36C0 ‖f‖A,Bk + Cn,k,A,B ‖ψγf‖′k ,

where the function ψγ is C∞ and supported in a compact set mod Γ.

The point of this lemma is that, if γ is fixed, we can choose k very large

to make the first term in (8.9) arbitrarily small, while the second term gives a

compact contribution (thanks to Proposition 7.2), and it will therefore not be

an issue to control the essential spectral radius.

Proof. We can write L̃γ1 . . . L̃γnf = LnT0(ψf), where ψ = ψγ =
∏n
j=1 ψγj ◦

g−(n−j)T0
is C∞ and compactly supported.

To estimate eAk,`,s(L̃γ1 . . . L̃γnf) for some 0 ≤ ` ≤ k, we should estimate

integrals of the form

(8.10)

∫
Wu

1/200
(x)
φ · Lv1 · · ·Lv`(LnT0(ψf)) dµu,

where ‖φ‖Ck+`
A
≤ 1, the vector fields vj all point in the stable direction, and

‖vj‖Ck+`+1
A

≤ 1.

As in the proof of Lemma 8.2, we first replace vj by a compactly supported

vector field vj,1 on W u
1/100(x), with ‖vj,1‖Ck+`+1

A
≤ 21/2 (assuming A is large
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enough). Let wj be the push-forward of vj,1 under gnT0 , and let (ρi)i∈I be a

partition of unity on gnT0(W u
1/200(x)) (cf. Proposition 5.8). The integral (8.10)

becomes∑
i∈I

∫
Wu

1/200
(xi)

ρi(z)φ(g−nT0z) · Lw1 · · ·Lw`(ψf)(z) e−dnT0 dµu(z).

Let I ′ ⊂ I be the set of i’s such that ψ is not identically zero on W u
1/200(xi).

We claim that, for i ∈ I ′, for all y ∈W u
1/200(xi),

(8.11) Leb{s ∈ [0, nT0] : g−s(y) ∈ K} ≥ T,

where K is defined in (8.7). Indeed, let z ∈W u
1/200(xi) satisfy ψ(z) 6= 0. For all

j with γj = 1, we have ψ1(g−(n−j)T0
z) 6= 0, and therefore V (g−(n−j)T0

z) ≤ 2V0.

Since g−(n−j)T0
is a contraction along W u, we obtain V (g−(n−j)T0

y) ≤ 4V0 for

any y ∈W u
1/200(xi). For any s ∈ [0, T0], V (g−sg−(n−j)T0

y) ≤ esV (g−(n−j)T0
y) ≤

eT04V0; i.e., g−sg−(n−j)T0
y ∈ K. This implies that

Leb{s ∈ [0, nT0] : g−s(y) ∈ K} ≥ T0#{j : γj = 1},

which is greater than or equal to T , by the assumptions of the lemma. This

proves (8.11).

Fix now i ∈ I ′. We work alongW u
1/200(xi). Since gt is uniformly hyperbolic

along trajectories that spend a time at least T in K (by Proposition 4.3), we

have cm(φ ◦ g−nT0) ≤ 2−mcm(φ) and cm(wj) ≤ 2−m−1cm(vj,1). (Note that we

have a gain even form = 0 since the vector itself is contracted by the differential

of gnT0 .) This gives ‖φ ◦ g−nT0‖Ck+`
A
≤ ‖φ‖Ck+`

A
(there is no gain here at level

m = 0, so no gain overall) and ‖wj‖Ck+`+1
A

≤ 2−1 ‖vj,1‖Ck+`+1
A

≤ 2−1/2. This

gives a gain of 2−1/2 with respect to the noncontracting situation of Lemma 8.2,

and after the same computations, we end up with

(8.12) eAk,`,s(LnT0(ψf)) ≤ 2C0 · 2−`/2eAk,`,s(ψf).

This gives a definite gain if ` is large. In particular, for ` = k, we obtain a gain

of 2−k/2, as in the estimate (8.9) we are trying to prove. However, this is not

sufficient for smaller `. Assume now ` < k. We will regularize the function φ

by convolution in this case to obtain a further gain.

Every norm in Rdu is equivalent to a Euclidean norm, up to a constant only

depending on du (see, e.g., [Hör03, Lemma 1.4.3]). Hence, for any norm on Rdu ,

one can find a nonnegative function ζ supported in B(0, 1), with integral 1 for

the Lebesgue measure giving unit mass to B(0, 1), and with ‖ζ‖C1 ≤ C(du).

For ε > 0, let ζε(x) = ε−duζ(x/ε). This function still has integral 1; it is

supported in B(0, ε) and ‖ζε‖C1 ≤ C(du)ε−1−du .

Consider the vector space Eu(x) with the associated norm ‖·‖x. As in

the previous paragraph, we construct from these data a family of functions ζε,
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which we use to smoothen the function φ along W u(x). Let

φ̃(y) = φ̃ε(y) =

∫
φ(y + z)ζε(−z) dz,

where dz is Lebesgue measure giving volume 1 to the unit ball of Eu(x) for

the norm ‖·‖x. We claim that this function satisfies, for ε ≤ 1/(10(k+ `+ 1)),

for m < k + `, cm(φ− φ̃) ≤ 4εcm+1(φ),(8.13)

ck+`(φ̃) ≤ 4ck+`(φ),

ck+`+1(φ̃) ≤ Ck,A/ε.

Such estimates are classical in the usual case of convolutions in Rd, but more

care is required here since norms vary with the point. Let us admit those

estimates for the moment; we will return to them at the end of the proof. Note

that, since φ̃ is obtained by convolution between φ and a kernel of support of

size ε, the support of φ̃ is larger than that of φ. Since all the functions we are

considering are multiplied by the partition of unity ρi, this is not a problem.

Along gnT0(W u
1/200(x)), the flow g−nT0 contracts by a factor at least 1/2.

Hence, the function φ′ = (φ − φ̃) ◦ g−nT0 satisfies cm(φ′) ≤ 2−mcm(φ − φ̃).

From (8.13), we obtain, in particular, cm(φ′) ≤ 4εcm+1(φ) for m < k + ` and

ck+`(φ
′) ≤ 2−(k+`)(ck+`(φ) + ck+`(φ̃)) ≤ 5 · 2−(k+`)ck+`(φ). Hence,

∥∥φ′∥∥Ck+`
A

=
k+∑̀
m=0

cm(φ′)

m!Am
≤ 4ε

k+`−1∑
m=0

cm+1(φ)

m!Am
+ 5 · 2−(k+`) ck+`(φ)

(k + `)!Ak+`

≤ 4εA(k + `)
k+∑̀
m=1

cm(φ)

m!Am
+ 5 · 2−(k+`) ck+`(φ)

(k + `)!Ak+`

≤
Ä
4εA(k + `) + 5 · 2−(k+`)

ä
‖φ‖Ck+`

A
.

Let us choose

ε = min

Ç
1

10(k + `+ 1)
,

2−(k+`)

4A(k + `)

å
.

We obtain ∥∥φ′∥∥Ck+`
A
≤ 6 · 2−(k+`) ‖φ‖Ck+`

A
≤ 6 · 2−(k+`).

Let us decompose in (8.10) the function φ as φ′ ◦ gnT0 + φ̃. The resulting

term coming from φ′ ◦ gnT0 is similar to (8.12) but with an additional factor

‖φ′‖Ck+`
A
≤ 6·2−k−`, while the term coming from φ̃ is bounded in terms of ‖f‖′k,

since there are at most ` < k derivatives of f integrated against a function in

Ck+`+1. In the end, we get

eAk,`,s(LnT0(ψf)) ≤ 2C0 · 2−`/2 · 6 · 2−k−`eAk,`,s(ψf) + Cn,γ,A,k ‖ψf‖′k .



436 ARTUR AVILA and SÉBASTIEN GOUËZEL

Summing the last equation for ` = 0, . . . , k− 1 and (8.12) for ` = k, we obtain

‖LnT0(ψf)‖A,Bk,s =
k∑
`=0

B−`eAk,`,s(LnT0(ψf))

≤
k−1∑
`=0

12C02−k−3`/2B−`eAk,`,s(ψf) + Cn,γ,A,k,B ‖ψf‖′k

+ 2C02−k/2B−keAk,k,s(ψf)

≤ 12C02−k/2 ‖ψf‖A,Bk,s + Cn,γ,A,k,B ‖ψf‖′k .

Since the function ψ is C∞ and compactly supported, Lemma 8.5 applies if B

is large enough. This concludes the proof.

It remains to prove the estimates (8.13). Let m < k + `, and consider

y ∈W u
1/100(x). For any vectors u1, . . . , um with ‖ui‖y ≤ 1, one has

Dmφ̃(y;u1, . . . , um)−Dmφ(y;u1, . . . , um)

=

∫
z
(Dmφ(y + z;u1, . . . , um)−Dmφ(y;u1, . . . , um))ζε(−z) dz

=

∫
z

∫ 1

t=0
Dm+1φ(y + tz;u1, . . . , um, z)ζε(−z) dz dt.

If ζε(−z) 6= 0, then z is in the ball B(0, ε) for the norm ‖·‖x. Since all norms

along W u
1/100(x) are within a factor 2 of each other, by Proposition 5.3, it

follows that d(y, y+ tz) ≤ 4ε. Proposition 5.5 implies that the norms ‖·‖y and

‖·‖y+tz are within a multiplicative factor e4ε. We deduce∥∥∥Dmφ̃(y;u1, . . . , um)−Dmφ(y;u1, . . . , um)
∥∥∥
y

≤ sup
t,z

∥∥∥Dm+1φ(y + tz;u1, . . . , um, z)
∥∥∥
y

≤ e4ε sup
t,z

∥∥∥Dm+1φ(y + tz;u1, . . . , um, z)
∥∥∥
y+tz

≤ e4εcm+1(φ) ‖u1‖y+tz · · · ‖um‖y+tz ‖z‖y+tz

≤ e4(m+2)εcm+1(φ) ‖u1‖y · · · ‖um‖y ‖z‖y
≤ e4(m+2)εcm+1(φ)2 ‖z‖x ≤ cm+1(φ)e4(m+2)ε2ε.

This shows that cm(φ̃− φ) ≤ 2e4(m+2)εεcm+1(φ). When ε ≤ 1/(10(k+ `+ 1)),

we obtain cm(φ̃− φ) ≤ 4εcm+1(φ), proving the first estimate of (8.13).

The second estimate is completely analogous, except that we do not need

to integrate by parts to use an additional derivative of φ. Finally, the third es-

timate is proved similarly, but putting one single derivative on the function ζε:

Dk+`+1φ̃(y;u1, . . . , uk+`+1) =

∫
Dk+`φ(y+z;u1, . . . , uk+`)Dζε(−z;uk+`+1) dz.
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One proves as above that
∥∥∥Dk+`φ(y + z;u1, . . . , uk+`)

∥∥∥
y
≤ e4(k+`+1)εck+`(φ),

while |Dζε(−z;uk+`+1)| ≤ 2C(du)ε−du−1. Integrating over the ball of radius ε,

one gets an upper bound Cck+`(φ)/ε ≤ Ck,A/ε, as desired. �

To simplify notations, we write Ocomp(f) for terms bounded by ‖ψf‖′k, for

some C∞ function ψ in Teich1 that is supported in a compact set mod Γ. This

notation is invariant under Lt for fixed t (since this operator acts continuously

for ‖·‖′k) and under addition. (If ψ1 and ψ2 are two C∞ functions whose support

is compact mod Γ, consider a function ψ with the same properties that is equal

to 1 on supp(ψ1) ∪ supp(ψ2). Then ‖ψ1f‖′k = ‖ψ1ψf‖′k ≤ C(ψ1) ‖ψf‖′k, and a

similar inequality holds for ψ2.)

Corollary 8.8. For every n ∈ N with n ≥ T/(δT0), if k,A,B are large

enough, we have

‖LnT0f‖
A,B
k,s ≤ e

−(1−4δ)nT0 ‖f‖A,Bk +Ocomp(f).

Proof. We write LnT0f =
∑
γ∈{1,2}n L̃γ1 · · · L̃γnf , and we estimate the

terms coming from each γ.

If #{j : γj = 1} ≥ δn, then the resulting term is bounded by Lemma 8.7.

Otherwise, #{j : γj = 2} ≥ (1− δ)n, and Lemma 8.6 gives an upper bound of

the form (10C0)ne−(1−2δ)T0(1−δ)n ‖f‖A,Bk . Since (1− 2δ)(1− δ) ≥ 1− 3δ, after

summing over the 2n possible values of γ, we obtain

‖LnT0f‖
A,B
k,s ≤ 2n(10C0)ne−(1−3δ)T0n ‖f‖A,Bk + 2n · 36C02−k/2 ‖f‖A,Bk

+ Cn,k,A,B
∑
‖ψn,γf‖′k .

Choosing k large enough, we can make sure that

36C02−k/2 ≤ (10C0)ne−(1−3δ)T0n,

and we obtain a bound of the form

(40C0)ne−(1−3δ)T0n ‖f‖A,Bk + Cn,k,A,B
∑
‖ψn,γf‖′k .

Since 40C0 ≤ eδT0 , this implies the statement of the corollary. �

Corollary 8.9. For any large enough N , if k,A,B are large enough, we

have ∥∥∥MNf
∥∥∥A,B
k,s
≤ 2C0(e(1−4δ)T0 + 2) ‖f‖A,Bk +Ocomp(f).

Proof. We start from the formula

MNf =

∫ ∞
t=0

tN−1

(N − 1)!
e−4δtLtf dt =

∞∑
n=0

∫ (n+1)T0

nT0

tN−1

(N − 1)!
e−4δtLtf dt.

On an interval [nT0, (n + 1)T0] with small n (i.e., n < T/(δT0)), we use

the simple bound ‖Ltf‖A,Bk,s ≤ 2C0 ‖f‖A,Bk coming from Lemma 8.2. Since for
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any fixed T∗ > 0,
∫ T∗

0
tN−1

(N−1)! dt tends to zero when N → ∞, the contribution

of those intervals is bounded, say, by 2C0 ‖f‖A,Bk if N is large enough.

We use the same trivial bound on the intervals [nT0, (n+ 1)T0] with very

large n (n ≥ n0(N) to be chosen later). The contribution of these intervals is

then bounded by ∫ ∞
n0(N)T0

tN−1

(N − 1)!
e−4δt2C0 ‖f‖A,Bk dt.

Choosing n0(N) large enough, we can ensure that this is at most 2C0 ‖f‖A,Bk .

Now consider n in between. For t ∈ [nT0, (n+ 1)T0], we have

‖Ltf‖A,Bk,s ≤ 2C0 ‖LnT0f‖
A,B
k,s ≤ 2C0e

−(1−4δ)nT0 ‖f‖A,Bk +Ocomp(f)

≤ 2C0e
(1−4δ)T0e−(1−4δ)t ‖f‖A,Bk +Ocomp(f).

Integrating over t and then summing over n, we get a contribution bounded

by

2C0e
(1−4δ)T0

∫ ∞
t=0

tN−1

(N − 1)!
e−4δte−(1−4δ)t ‖f‖A,Bk dt+Ocomp(f),

which is bounded by 2C0e
(1−4δ)T0 ‖f‖A,Bk + Ocomp(f) since

∫∞
t=0

tN−1

(N−1)!e
−t dt

= 1. �

Proof of Theorem 8.1. Lemma 8.2 gives the first part of the statement. It

remains to estimate the essential spectral radius of M. Adding the estimates

of Lemma 8.4 and of Corollary 8.9, for large enough N, k,A,B, we have∥∥∥MNf
∥∥∥A,B
k
≤ 2C0(e(1−4δ)T0 + 5) ‖f‖A,Bk +Ocomp(f).

Once and for all, let us fix N large enough so that

2C0(e(1−4δ)T0 + 5) ≤ (1 + δ)N

and then k,A,B such that the previous estimate holds. This estimate trans-

lates into the following: there exists a C∞ function ψ supported in a compact

set mod Γ such that, for any function f in D,∥∥∥MNf
∥∥∥A,B
k
≤ (1 + δ)N ‖f‖A,Bk + ‖ψf‖′k .

The unit ball of DΓ for the norm ‖·‖k is relatively compact for the semi-norm

‖f‖′ := ‖ψf‖′k, by Proposition 7.2. By Hennion’s Theorem (Lemma 3.1), it

follows that the essential spectral radius ofM for the norm ‖·‖A,Bk on the space

DΓ is at most 1 + δ. Since this norm is equivalent to ‖·‖k, this concludes the

proof of Theorem 8.1. �
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Appendix A. Spherical functions

In this section, we prove the estimate (3.6) on the behavior of the spherical

function φξs when ξs is a representation of SL(2,R) in the complementary

series. It is a consequence of classical estimates on spherical functions. Let

us, for instance, follow the computations in [Hel00]. For <s ∈ [−1, 1], let us

define coefficients Γn(s) by Γ0 = 1, Γn = 0 if n is odd and n(n − s)Γn(s) =∑
0<k≤n/2 Γn−2k(s)(2n−4k−s+1) if n is even. It is easy to check by induction

that these coefficients grow more slowly than any exponential. In particular

(see, e.g., [Hel00, introduction, Lemma 4.13]), for every ε > 0, there exists a

constant C > 0 such that

(A.1) ∀s ∈ [−1, 1], ∀n ∈ N, |Γn(s)| ≤ Ceεn.

These coefficients are chosen so that t 7→ e(s−1)t∑Γn(s)e−2nt satisfies an

explicit differential equation of order 2 that is also satisfied by φξs . Another

solution of the same equation is t 7→ e(−s−1)t∑Γn(−s)e−2nt. It follows that φξs
is a linear combination of those two functions. One can identify the coefficients

in this linear combination (they are given by the c function (3.5)) to obtain

the following formula for φξs : for every s ∈ (0, 1] ∪ i(0,+∞),

φξs(gt) = c(s)e(s−1)t
∑
n≥0

Γn(s)e−2nt + c(−s)e(−s−1)t
∑
n≥0

Γn(−s)e−2nt.

This is [Hel00, Th. IV.5.5] in the case of SL(2,R). (The formula for c is given

in [Hel00, Th. IV.6.4].)

For s ∈ [δ, 1], the dominating term in this formula is c(s)e(s−1)t, and

the sum of the other terms is bounded by Ce−t if t ≥ 1, by (A.1). Since

φξs(gt) − c(s)e(s−1)t is uniformly bounded for t ∈ [0, 1] and s ∈ [δ, 1], the

estimate (3.6) follows.
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