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Small eigenvalues of the Laplacian for
algebraic measures in moduli space, and
mixing properties of the Teichmiiller flow

By ARTUR AVILA and SEBASTIEN GOUEZEL

Abstract

We consider the SL(2,R) action on moduli spaces of quadratic differ-
entials. If p is an SL(2,R)-invariant probability measure, crucial infor-
mation about the associated representation on L*(u) (and, in particular,
fine asymptotics for decay of correlations of the diagonal action, the Te-
ichmiiller flow) is encoded in the part of the spectrum of the corresponding
foliated hyperbolic Laplacian that lies in (0,1/4) (which controls the con-
tribution of the complementary series). Here we prove that the essential
spectrum of an invariant algebraic measure is contained in [1/4, c0); i.e.,
for every 0 >0, there are only finitely many eigenvalues (counted with mul-
tiplicity) in (0,1/4—6). In particular, all algebraic invariant measures have
a spectral gap.

1. Introduction

For any lattice I' C SL(2,R), the decomposition of the unitary repre-
sentation of SL(2,R) on L?(SL(2,RR)/T') into irreducible components consists
almost entirely of tempered representations (with fast decay of matrix coef-
ficients). Only finitely many nontempered representations may appear, each
with finite multiplicity. This corresponds to the well-known result of Selberg
(see, e.g., [Iwa95]) that in a hyperbolic surface of finite volume, the Laplacian
has only finitely many eigenvalues, with finite multiplicity, in (0,1/4). This
has several remarkable consequences, for instance, on the asymptotics of the
number of closed geodesics, the main error terms of which come from the small
eigenvalues of the Laplacian (by Selberg’s trace formula; see [Hej83]), or for
the asymptotics of the correlations of smooth functions under the diagonal
flow [Rat87].

For a more general ergodic action of SL(2,R), the situation can be much
more complicated. In general, one may even not have a spectral gap. (SL(2,R)
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does not have Kazhdan’s property (T").) Even in the particularly nice situation
of the SL(2,R) action on a homogeneous space G/I" with G a semi-simple Lie
group containing SL(2,R) and I' an irreducible lattice in G' (a most natural
generalization of the case G = SL(2,R) above), nontempered representations
may have a much heavier contribution. For instance, [KS09, Th. 1] constructs
examples (with G = SL(2,R) x SU(2)) where the spectrum of the foliated
(along SO(2,R)\SL(2,R) orbits) Laplacian on SO(2,R)\G/T" has an accumu-
lation point in (0,1/4). In fact, whether there is always a spectral gap at all
remains an open problem for G = SL(2,R) x SU(2). While one does expect
better behavior in the case where G has no compact factor, it too remains far
from fully understood.

Moduli spaces of quadratic differentials present yet another natural gener-
alization of SL(2,R)/T", with different challenges. Let g,n >0 with 3g—3+n >0,
let M, be the moduli space of quadratic differentials on a genus g Riemann
surface with n punctures, and with at most simple poles at the punctures (al-
ternatively, it is the cotangent bundle of the moduli space of Riemann surfaces),
and let M;n C My, be the subspace of area one quadratic differentials. There
is a natural SL(2,R) action on My ,,
least because the corresponding diagonal action gives the Teichmiiller geodesic
flow. If g=0 and n=4 or if g=1 and n=1, M;n turns out to be of the form
SL(2,R)/T". In higher genus the M}Ln are not homogeneous spaces, and it is
rather important to understand to which extent they may still behave as such.

Recall that Mg, is naturally stratified by the “combinatorial data” of
the quadratic differential ¢ (order of zeros, number of poles, and whether or
not ¢ is a square of an Abelian differential). Each stratum has a natural com-
plex affine structure, though it is not necessarily connected, the (finitely many)
connected components having been classified by Kontsevich-Zorich [KZ03] and
Lanneau [Lan08]. Each connected component C carries a unique (up to scaling)

which has been intensively studied, not

finite invariant measure g which is SL(2,R) invariant and absolutely contin-
uous with respect to C N M;’n. (In case of the largest, “generic,” stratum,
which is connected, @ coincides with the Liouville measure in M;n) Those
measures were constructed, and shown to be ergodic, by Masur [Mas82] and
Veech [Vee82]. In [AGY06] and [AR12], it is shown that for such a Masur-Veech
measure j1, the SL(2,R) action on L?(y) has a spectral gap.

There are many more ergodic SL(2,R)-invariant measures beyond the
Masur-Veech measures, which can be expected to play an important role in
the analysis of nontypical SL(2,R) orbits. (The consideration of nontypical or-
bits arises, in particular, when studying billiards in rational polygons.) While
all such measures have not yet been classified, it has been recently proved by
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Eskin and Mirzakhani [EM13] that they are all “algebraic,”! a result analo-
gous to one of Ratner’s Theorems (classifying SL(2,R) invariant measures in
an homogeneous space [Rat92]). For squares of Abelian differentials in Mo g,
a stronger version of this result, including the classification of the algebraic
invariant measures, was obtained earlier by McMullen [McMO7].

Let p be an algebraic SL(2, R)-invariant measure in some M;n. Our goal
in this paper is to see to what extent the action of SL(2,R) on L?(u) looks like
an action on an homogeneous space, especially concerning small eigenvalues of
the associated Laplacian acting on the subspace of SO(2, R) invariant functions
in L2(p). Our main theorem states that the situation is almost identical to
the SL(2,R)/T" case (the difference being that we are not able to exclude the
possibility that the eigenvalues accumulate at 1/4).

MAIN THEOREM. Let pu be an SL(2, R)-invariant algebraic probability mea-
sure in a moduli space of quadratic differentials. For any 6 > 0, the spectrum
of the associated Laplacian in [0,1/4 — 0] is made of finitely many eigenvalues,
of finite multiplicity.

This theorem can also be formulated as follows: In the decomposition of
L?(p) into irreducible components, the representations of the complementary
series occur only discretely, with finite multiplicity. More details are given in
the next section.

Our result is independent of the above mentioned theorem of Eskin and
Mirzakhani [EM13]. With their theorem, we obtain that our result in fact
applies to all SL(2, R)-invariant probability measures.

As mentioned before, the spectral gap (equivalent to the absence of spec-
trum in (0, €) for some € > 0) had been previously established in the particular
case of Masur-Veech measures ([AGY06], [AR12]), but without any control
of the spectrum beyond a neighborhood of 0 (which moreover degenerates as
the genus increases). Here we not only obtain very detailed information on
the spectrum up to the 1/4 barrier (beyond which the statement is already
false even for the modular surface M; 1), but manage to address all algebraic
measures, even in the absence of a classification. This comes from the im-
plementation of a rather different, geometric approach, in contrast with the
combinatorial one used to establish the spectral gap for Masur-Veech mea-
sures (heavily dependent on the precise combinatorial description, in terms of

1Here we use the term algebraic in a rather lax sense. What has actually been shown is
that the corresponding GL™ (2, R) invariant measure is supported on an affine submanifold of
some stratum, along which it is absolutely continuous (with locally constant density in affine
charts).
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Rauzy diagrams, of the Teichmiiller flow restricted to connected components
of strata).

An interesting question is whether there are indeed eigenvalues in (0,1/4).
It is well known that there is no such eigenvalue in SL(2, R)/I" for I' = SL(2, Z),
and by Selberg’s Conjecture [Sel65] the situation should be the same for any
congruence subgroup. It is tempting to conjecture that, in our nonhomoge-
neous situation, there is no eigenvalue either, at least when p is the Masur-
Veech measure. We will, however, refrain from doing so since we have no
serious evidence in one direction or the other. Let us note, however, that for
some measures u, there are indeed eigenvalues. For any finite index subgroup
I of the congruence subgroup I'(2) containing {#1}, the curve SL(2,R)/T" can
be realized as a Teichmiiller curve by [EM12]. Suitably choosing I" and taking
for p the Liouville measure on the resulting Teichmiiller curve, we get an ex-
ample with eigenvalues. Explicit examples have been constructed by Matheus
and Schmithiisen [MWS11]. Notice that this shows indeed that there can be
no uniform spectral gap for all algebraic measures in all moduli spaces. (It is
unknown whether there is a uniform spectral gap in each fixed moduli space.)

A consequence of our main theorem is that the correlations of well-behaved
functions have a nice asymptotic expansion (given by the spectrum of the
Laplacian). For instance, if f; and fy are square-integrable SO(2,R)-finite
functions (i.e., f; and f2 have only finitely many nonzero Fourier coefficients
for the action of SO(2,R)), then their correlations [ fi - f2 o g du with respect
to the Teichmiiller flow g; = (eot egt
SV ei(f1, fa)e™ % +o(e”(1t) where 0 = ag < --- < apr—1 < 1— 6 are the
numbers 1 — /T — 4\ for A an eigenvalue of A in [0, (1 — 62)/4]. This follows
at once from the asymptotic expansion of matrix coefficients of SO(2, R)-finite
functions in [CM82, Th. 5.6]. A similar expansion certainly holds if f; and fo
are only compactly supported C*° functions, but its proof would require more

can be written, for every 0 < § < 1, as

detailed estimates on matrix coefficients.

We expect that our techniques will also be useful in the study of the Ruelle
zeta function (guene(z) = [[-(1 — e #I7l) (where 7 runs over the prime closed
orbits of the flow g and |7| is the length of 7). Recall that (guene(z) can be
expressed as an alternating product [] Ck(z)(_l)k, where (j, is a dynamical zeta
function related to the action of g; on the space of k-forms (see, e.g., [Fri86]).
Along the proof of the main theorem, we obtain considerable information for
the action of the Teichmiiller flow in suitably defined Banach spaces, which
goes in the direction of providing meromorphic extensions of the functions (
(and therefore also of the Ruelle zeta functions), hence opening the way to
precise asymptotic formulas (which should include correction terms coming
from small eigenvalues of the Laplacian) for the number of closed geodesics in
the support of any algebraic invariant measure.
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2. Statements of results

Our results will be formulated in moduli spaces of flat surfaces as follows.
Fix a closed surface S of genus g > 1, a subset ¥ = {oy,...,0;} of S and
multiplicities kK = (K1, ..., k;) with 3 (k; — 1) = 29 — 2. We denote by Teich =
Teich(S, X, k) the set of translation structures on S such that the cone angle
around each o; is equal to 27k;, modulo isotopy. Equivalently, this is the space
of abelian differentials with zeroes of order k; —1 at ¢;. Also let Teich; C Teich
be the set of area one surfaces.

Given a translation surface x, one can develop closed paths (or more
generally paths from singularity to singularity) from the surface to C, using the
translation charts. This defines an element ®(x) € H'(M, %; C). The resulting
period map ® : Teich — H'(M,¥%;C) is a local diffeomorphism and endows
Teich with a canonical complex affine structure.

The mapping class group I' of (S, 3, k) is the group of homeomorphisms
of S permuting the elements of 3 with the same x;, modulo isotopy. It acts
on Teich and on Teich;. The space Teich is also endowed with an action of
GL™(2,R), obtained by postcomposing the translation charts by GLT(2,R)
elements. The action of the subgroup SL(2,R) of GL*(2,R) leaves Teich;
invariant. Since the actions of GLT(2,R) and I' commute, we may write the
former on the left and the latter on the right.

Definition 2.1. A measure fi on Teich; is admissible if it satisfies the fol-
lowing conditions:

e The measure fi is SL(2,R) and I'-invariant.

e There exists a [-invariant affine submanifold Y of Teich such that f is
supported on X = Y NTeich;, and the measure ft®@Leb on X xR% =Y
is locally a multiple of Lebesgue measure on Y.

e The measure p induced by fi on X/I" has finite mass and is ergodic
under the action of SL(2,R) on X/T.

Although this definition may seem quite restrictive, it follows from Eskin
and Mirzakhani [EM13] that ergodic SL(2, R)-invariant measures are automati-
cally admissible. The following proposition is much weaker, but we nevertheless
include it since its proof is elementary and is needed to obtain further infor-
mation on admissible measures (in particular, on their local product structure;
see Proposition 4.1 below).

PROPOSITION 2.2. Let X be a I'-equivariant C' submanifold of Teichy
such that X /T is connected, and let fi be an SL(2,R)- and I'-invariant measure
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on X such that [ is equivalent to Lebesgue measure, and the induced measure
win X/T' is a Radon measure; i.e., it gives finite mass to compact subsets of
X/T. Then [i is admissible.

This proposition should be compared to a result of Kontsevich and Moller
in [Mo108]: any GL™(2,R)-invariant algebraic submanifold of Teich is affine.
Here, we obtain the same conclusion if X is only C!, but we additionally assume
the existence of an invariant absolutely continuous Radon measure on X.

Let i1 be an admissible measure, supported by a submanifold X of Teich;.
Every SL(2,R)-orbit in X/T" is isomorphic to a quotient of SL(2,R). Therefore,
the image of every such orbit in SO(2,R)\ X/T" (the set of translations surfaces
in X, modulo the mapping class group, and in which the vertical direction
is forgotten) is a quotient of the hyperbolic plane and is canonically endowed
with the hyperbolic Laplacian. Gluing those operators together on the different
orbits, we get a Laplacian A on SO(2,R)\X/T", which acts (unboundedly) on
L?(SO(2,R)\X/T, i1), where p is ft mod I'. Our main theorem describes the
spectrum of this operator.

THEOREM 2.3. Let i be an admissible measure, supported by a mani-
fold X. Denote by p the induced measure on X/I'. Then, for any 6 > 0,
the spectrum of the Laplacian A on L%*(SO(2,R)\X/T,u), intersected with
(0,1/4 — 0), is made of finitely many eigenvalues of finite multiplicity.

This theorem can also be formulated in terms of the spectrum of the
Casimir operator, or in terms of the decomposition of L?(X/T", ) into irre-
ducible representations under the action of SL(2,R): For any ¢ > 0, there
is only a finite number of representations in the complementary series with
parameter u € (9,1) appearing in this decomposition, and they have finite
multiplicity. See Section 3.4 for more details on these notions and their rela-
tionships.

Remark 2.4. We have formulated the result in the space X/I', where I is
the mapping class group. However, if I is a subgroup of I" of finite index, then
the proof still applies in X/I”. (Of course, there may be more eigenvalues in
X/T’ than in X/T'.) This applies, for instance, to I the set of elements of T’
that fix each singularity o;.

Remark 2.5. In compact hyperbolic surfaces, the spectrum of the Lapla-
cian is discrete. Therefore, the essential spectrum of the Laplacian in [1/4, c0)
in finite volume hyperbolic surfaces comes from infinity, i.e., the cusps. Since
the geometry at infinity of moduli spaces of flat surfaces is much more compli-
cated than cusps, one might expect more essential spectrum to show up, and
Theorem 2.3 may come as a surprise. However, from the point of view of mea-
sure, infinity has the same weight in hyperbolic surfaces and in moduli spaces.
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The set of points at distance at least H in a cusp has measure ~ ¢H 2, while
its analogue in a moduli space is the set of surfaces with systole at most H ",
which also has measure of order ¢’ H~2 by the Siegel-Veech formula [EMO1].
This analogy (which also holds for recurrence speed to compact sets) justifies
Theorem 2.3 heuristically.

Quadratic differentials. Let g,n > 0 be integers such that 3¢ —3+n > 0,
and let 7, , be the Teichmiiller space of Riemann surfaces of genus g with
n punctures. Its cotangent space is the space Qg , of quadratic differentials
with at most simple poles at the punctures. It is stratified by fixing some
appropriate combinatorial data (the number of poles, the number of zeros
of each given order, and whether the quadratic differential is a square of an
Abelian differential or not). Much of the theory of quadratic differentials is
parallel to the one of Abelian differentials; in particular, each stratum in 9,
can be seen as a Teichmiiller space Teich = T/‘a&l(g 3, k) of half-translation
structures, which allows one to define a natural action of GL*(2,R). Moreover,
strata are endowed with a natural affine structure, which allows one to define
the notion of admissible measure (in particular, the Liouville measure in Qg
is admissible). Thus the statement of Theorem 2.3 still makes sense in the
setting of quadratic differentials. As it turns out, it can also be easily derived
from the result about Abelian differentials. -

This is most immediately seen for strata of squares, in which case Teich
is the quotient of a Teichmiiller space of Abelian differentials Teich by an
involution (the rotation of angle 7). Taking the quotient by SO(2,R), we see
that the spectrum of the Laplacian for some SL(2,R)-invariant measure in

Teich is the same as the one for its (involution-symmetric) lift to Teich, to
which Theorem 2.3 applies.

Even when Teich is not a stratum of squares, it can still be analyzed in
terms of certain Abelian differentials (the well-known double cover construc-
tion also used in [AR12]). Indeed, in this case the Riemann surface with a
quadratic differential admits a (holomorphic, ramified, canonical) connected
double cover (constructed formally using the doubly-valued square-root of the
quadratic differential), to which the quadratic differential lifts to the square
of an (also canonical) Abelian differential. This double cover carries an extra
bit of information, in the form of a canonical involution, so that Teich gets
identified with a Teichmiiller space of “translation surfaces with involution.”
Forgetting the involution, the latter can be seen as an affine subspace of a
Teichmiiller space of translation surfaces, allowing us to apply Theorem 2.3.

Notations. Let us introduce notations for convenient elements of SL(2, R).
Fort e R, let gy = (eot egf ) Its action on Q, is the geodesic flow corresponding
to the Teichmiiller distance on 7y, and its action in different strata (which we
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still call the Teichmiiller flow) will play an essential role in the proof of our

main theorem. We also denote h, = (37) and h, = (19) as the horocycle

cosf sinf
—sin @ cos 6

letter C' denotes a constant whose value is irrelevant and can change from line

actions and ky = ( ) as the circle action. Throughout this article, the

to line.

Sketch of the proof. The usual strategy to prove that the spectrum of the
Laplacian is finite in [0, 1/4] in a finite volume surface S = SO(2,R)\SL(2,R)/T"
is the following. One decomposes L%(S) as L2, (S) ® L%, (S), where L2, (S)

cusp eis cusp
is made of the functions whose average on all closed horocycles vanishes and

Lgis(S) is its orthogonal complement. One then proves that the spectrum in
L2,(S) is [1/4,00) by constructing a basis of eigenfunctions using Eisenstein
series and that the spectrum in Lgusp
smooth compactly supported functions in SL(2,R) is a compact operator.

(S) is discrete since convolution with

There are two difficulties when trying to implement this strategy in non-
homogeneous situations. Firstly, since the geometry at infinity is very compli-
cated, it is not clear what the good analogue of L% (S) and Eisenstein series
would be. Secondly, the convolution with smooth functions in SL(2,R) only
has a smoothing effect in the direction of the SL(2,R) orbits, and not in the
transverse direction (and this would also be the case if one directly tried to
study the Laplacian); therefore, it is very unlikely to be compact.

To solve the first difficulty, we avoid completely the decomposition into
Eisenstein and cuspidal components and work in the whole L? space. This
means that we will not be able to exhibit compact operators (since this would
only yield discrete spectrum), but we will rather construct quasi-compact op-
erators, i.e., operators with finitely many large eigenvalues and the rest of the
spectrum contained in a small disk. The first part will correspond to the spec-
trum of the Laplacian in [0,1/4 — §] and the second part to the noncontrolled
rest of the spectrum.

Concerning the second difficulty, we will not study the Laplacian nor con-
volution operators, but another element of the enveloping algebra: the differ-
entiation L, in the direction w of the flow g;. Of course, its behavior on the
space L?(X/T, j1) is very bad, but we will construct a suitable Banach space B
of distributions on which it is quasi-compact. To relate the spectral properties
of g; on B and of A on L?, we will rely on fine asymptotics of spherical functions
in irreducible representations of SL(2,R). (This part is completely general and
does not rely on anything specific to moduli spaces of flat surfaces.)

The main difficulty of the article is the construction of B and the study of
L, on B. We rely in a crucial way on the hyperbolicity of g;, which describes
what happens in all the directions of the space under the iteration of the flow.
If B is carefully tuned (its elements should be smooth in the stable direction of
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the flow, and dual of smooth in the unstable direction), then one can hope to
get smoothing effects in every direction, and therefore some compactness. This
kind of argument has been developed in recent years for Anosov maps or flows
in compact manifolds and has proved very fruitful. (See, among others, [Liv04],
[GL06], [BT07], [BLO7].) We use the insights of these papers in an essential
way. However, the main difficulty for us is the noncompactness of moduli space.
Since we cannot rely on an abstract compactness argument close to infinity, we
have to get explicit estimates there (using a quantitative recurrence estimate
of Eskin-Masur [EMO01]). We should also make sure that the estimates do not
diverge at infinity. Technically, this is done using the Finsler metric of Avila-
Gouézel-Yoccoz [AGY06] (which has good regularity properties uniformly in
Teichmiiller space) to define the Banach space B and plugging the Eskin-Masur
function V into the definition of B. On the other hand, special features of the
flow under study are very helpful. It is affine (hence no distortion appears),
and its stable and unstable manifolds depend smoothly on the base point and
are affine. Moreover, it is endowed in a SL(2,R) action, which implies that
its spectrum cannot be arbitrary. Contrary to [Liv04], we will not need to
investigate spectral values with a large imaginary part.

Let us quickly describe a central step of the proof. At some point, we
need to study the iterates L7, of the operator Lr,f = f o gr, for a suitably
chosen Tj. Using a partition of unity, we decompose L7, as L1+ Lo, where £,
corresponds to what is going on in a very large compact set K and Lo takes
what happens outside K into account. We expand L7, = 37, cf1,2) Z«ﬂ e Z%.
In this sum, if most ;s are equal to 2, we are spending a lot of time outside K,
and the Eskin-Masur function gives us a definite gain. Otherwise, a definite
amount of time is spent inside K, where the flow is hyperbolic, and we get a
gain A given by the hyperbolicity constant of the flow inside K. Unfortunately,
we only know that A is strictly less than 1 (and K is very large, so A is likely to
be very close to 1). This would be sufficient to get a spectral gap, but not to
reach 1/4 in the spectrum of the Laplacian. A key remark is that, if we define
our Banach space B using C* regularity, then the gain is better, of order A*.
Choosing k large enough (at the complete end of the proof), we get estimates
as precise as we want, getting arbitrarily close to 1/4.

In view of this argument, two remarks can be made. Firstly, since we need
to use very high regularity, our proof cannot be done using a symbolic model
since the discontinuities at the boundaries would spoil the previous argument.
Secondly, since k is chosen at the very end of the proof, we have to make sure
that all our bounds, which already have to be uniform in the noncompact space
X/T, are also uniform in k.

The paper is organized as follows. In Section 3, we introduce necessary
background on irreducible unitary representations of SL(2,R) and show that
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Theorem 2.3 follows from a statement on spectral properties of the differenti-
ation L, in the flow direction (Theorem 3.2). In Section 4, we get a precise
description of admissible measures, showing that they have a nice local product
structure. Along the way, we prove Proposition 2.2. In Section 5, we establish
several technical properties of the C*-norm with respect to the Finsler metric
of [AGYO06] that will be instrumental when defining our Banach space B. In
Section 6, we reformulate the recurrence estimates of Eskin-Masur [EMO01] in
a form that is convenient for us. Finally, we define the Banach space B in
Section 7 and prove Theorem 3.2 in Section 8.

3. Proof of the main theorem: the general part

3.1. Functional analytic prerequisites. Let £ be a bounded operator on a
complex Banach space (B, ||-||). A complex number z belongs to the spectrum
o (L) of Lif zI—L is not invertible. If z is an isolated point in the spectrum of £,
we can define the corresponding spectral projection IT, := ﬁ Jo(wI — L)~ dw,
where C is a small circle around z. (This definition is independent of the choice
of C.) Then II, is a projection, its image and kernel are invariant under £, and
the spectrum of the restriction of £ to the image is {z}, while the spectrum of
the restriction of £ to the kernel is o(£) — {z}. We say that z is an isolated
eigenvalue of finite multiplicity of £ if the image of II, is finite-dimensional,
and we denote by oess(£) the essential spectrum of £, i.e., the set of elements
of o(L) that are not isolated eigenvalues of finite multiplicity.

The spectral radius of £ is r(£) := sup{|z| : z € 0(£)}, and its essential

spectral radius is ress(£) := sup{|z| : z € gess(£)}. These quantities can also be
_ — 1
, and 7ess(L) = inf HE” - KH "

where the infimum is over all integers n and all compact operators K. In

_ —nll1/n
computed as follows: (L) = inf,en HE /

particular, we get that the essential spectral radius of a compact operator is 0;
i.e., the spectrum of a compact operator is made of a sequence of isolated
eigenvalues of finite multiplicity tending to 0, as is well known.

So-called Lasota-Yorke inequalities can also be used to estimate the es-
sential spectral radius.

LEMMA 3.1. Assume that, for some n > 0 and for all x € B, we have
|272|| < M ) + Il
where ||-|| is a seminorm on B such that the unit ball of B (for ||-||) is relatively

compact for ||-||'. Then ress(L) < M.

This has essentially been proved by Hennion in [Hen93]. The statement
in this precise form can be found in [BGK07, Lemma 2.2].

Assume now that £ is a bounded operator on a complex normed vector
space (B, [|-]|), but that B is not necessarily complete. Then £ extends uniquely
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to a bounded operator £ on the completion B of B for the norm ||-||. We will
abusively talk about the spectrum, essential spectrum or essential spectral
radius of £, thinking of the same data for L.

3.2. Main spectral result. Let i be an admissible measure supported on a
manifold X, and let p be its projection in X/T.

We want to study the spectral properties of the differentiation operator
L, in the direction w of the flow g;. As in [Liv04], it turns out to be easier to
study directly the resolvent of this operator, given by R(z)f = [Z, e * fog; dt.

Given § > 0, we will study the operator M = R(46) on the space D
of C*° functions on X that are I'-invariant and compactly supported in X/T.
Of course, M f is not any more compactly supported, so we should be more
precise.

We want to define a norm ||| on D' such that, for any f € D', the
function f o g; (which still belongs to D) satisfies ||f o g¢|| < C || f]| for some
constant C' independent of ¢. Denoting by DU the completion of D' for the
norm ||-||, the operator £; : f — f o g; extends continuously to an operator on
DT, whose norm is bounded by C. Therefore, the operator M := [, e~ 4tr,
acts continuously on the Banach space DT, and it is meaningful to consider
its essential spectral radius. We would like this essential spectral radius to be
quite small. Since ||f o g¢|| < C||f||, the trivial estimate on the spectral radius
of M is C [, e *dt = C/(45). This blows up when § tends to 0. We will
get a significantly better bound on the essential spectral radius in the following
theorem.

THEOREM 3.2. There exists a norm on DY satisfying the requirement
Ifogill < Clfll (uniformly in f € D' and t > 0) such that the essential
spectral radius of M for this norm is at most 1+ 9.

Moreover, for any fi € D', the linear form f — fX/F fifdu extends

continuously from D' to its closure DT .

This theorem is proved in Section 8. The main point is, of course, the
assertion on the essential spectral radius; the last one is a technicality that we
will need later on.

Let us admit this result for the moment and see how it implies our main
result, Theorem 2.3. Since Theorem 3.2 deals with the spectrum of L, it
is not surprising that it implies a description of the spectrum of the action
of SL(2,R). However, we only control the spectrum of L, on a quite exotic
Banach space of distributions. To obtain information on the action of SL(2, R),
we will therefore follow an indirect path, through meromorphic extensions of
Laplace transforms of correlation functions. (It seems desirable to find a more
direct and more natural route.)
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3.3. Meromorphic extensions of Laplace transforms. In this section, from
Theorem 3.2 we will obtain a meromorphic extension of the Laplace transform
of the correlations of smooth functions to a suitable domain, described as
follows. For § > 0, define Dy C C as the set of points z = x + iy such that
either > 0, or (x,y) € [-1+ 74,0] x [0, ] (see Figure 1).

/

Figure 1. The domain Ds. Possible poles of F' (marked with x)
are located in Ds N Rz < 0.

PROPOSITION 3.3. Let § > 0. Let f1, fo € DY, define for Rz > 0 a func-
tion F(z) = Fy, 4,(2) = [ e (fX/F fi-faoq du) dt. Then the function F'
admits a meromorphic extension to (a neighborhood of) Ds.

Moreover, the poles of F' in Ds are located in the set {40 —1/Ay,...,46 —
1/A1}, where the \; are the finitely many eigenvalues of modulus at least 1+ 20
of the operator M = R(49) acting on the space constructed in Theorem 3.2.
The residue of F at such a point 40 — 1/\; is equal to fX/F f1 -1y, fa dp, where
I1,, is the spectral projection of M associated to \; € o(M).

Proof. Heuristically, we have F(z) = fX/F fiR(2) fadp, where R(z) =
[ =0 e * fogs and, moreover, R(z) = (z—L,,) ", where L,, is the differentiation
in the direction w. Let us fix zg = 46. The spectral properties of M = R(zy) =
(20 — L) ™! are well controlled by Theorem 3.2. In view of the formal identity

(2= Lo)™' = (20 = 2) "' (20 = L) (20 = 2) 7" = (20— L) ™) 7,

we are led to define an operator

(3.1) S(z) = ——M(
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which should coincide with R(z). In particular, we should have the equality
F(z)= fX/F f15(2) fo dp. Since S(z) is defined for a large set of values of z, this
should define the requested meromorphic extension of F' to a larger domain.

Let us start the rigorous argument. Let DT be the Banach space con-
structed in Theorem 3.2, and let Aq,..., A; be the finitely many eigenvalues
of modulus > 1+ 2§ of M acting on DI'. For z with 1/|z9 — 2| > 1+ 20
and 1/(z0 — z) € {\1,...,Ar}, we can define on DT an operator S(z) by the
formula (3.1). Except for the finite set K = {z0 — 1/A1,...,20 — 1/Ar}, this
domain of definition contains D' = [—1 + 74, 1] x [—4, ] (which itself contains
Ds N {Rz < 0}). Indeed, for z = (z,y) € D', one has

|z — 20| < |z —40]+ |y <1-35+0=1-25 <1/(1+ 26).

In particular, z — S(z) is holomorphic on D'\ K. Since the points zg—1/); are
poles of finite order (see, e.g., [Kat66, I111.6.5]), S(z) is even meromorphic on
D' Let us finally set G(2) = [y f15(2)f2dp € C; this is well defined by the
last statement in Theorem 3.2. The function G is meromorphic and defined
on the set D', with possible poles at the points zg — 1/A1,...,20 — 1/A;. To
conclude, we just have to check that F' and G coincide in a neighborhood of zj.

If 2 is very close to zg, 1/(z9 — z) is very large so that all series expansions
are valid. Then the formula (3.1) gives

o0

S(z)fa =M(1— (20 — Z)M)_lfg = Z(zo — Z)kMk+1f2.

k=0

Since MFFLf = [ %e‘z(’tf o g; dt, we obtain

oo 0O k [e'e)
S = [ Y (-2 e fogidi= [ et pyogar,
=0 (=5 k! t=0

This shows, as desired, that S(z)fo = R(z) fa for z close to z.
Let us now compute the residue of S(z)f2 around a point zo — 1/A;. We

have
0 VR |

20 — % N2 — % 20 — % 20 — %

_ 1 (1 —M)l— 1

(20— 2)2 \z0— 2 20— 2

The term —(zp — 2z) ! is holomorphic around zg — 1/A;. Therefore, the residue

of S around this point is given by

—1
1/ ! 3 < L —M) dz
2im Jo(zo-1/0) (20 — 2)? \z20 — 2

1
= / wQ(w—M)_ld—U;:HAi,
C(M) w

T 2ir
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where C'(u) denotes a positively oriented path around the point v and we have
written w = 1/(zp — z). This concludes the proof. O

3.4. Background on unitary representations of SL(2,R). Let us describe
(somewhat informally) the notion of direct decomposition of a representation.
See, e.g., [Dix69] for all the details.

Let He be a family of representations of SL(2,R), depending on a parame-
ter £ in a space =, and assume that this family of representations is measurable
(in a suitable sense). If m is a measure on =, one can define the direct integral
J Hedm(€): an element of this space is a function f defined on = such that
F(€) € He for all & with [|f||* := [ || £(&)]| 7, dm(&) < oo. The group SL(2,R)
acts unitarily on this direct integral, by (¢ - f)(£) = g(f(§)). If m’ is another
measure equivalent to m, then the representations [ He dm(&) and [ He dm/(§)
are isomorphic.

From now on, let = be the space of all irreducible unitary representa-
tions of SL(2,R), with its canonical Borel structure (which we will describe
below). Any unitary representation H of SL(2,R) is isomorphic to a direct
integral [ He dm(§), where the space Hy is a (finite or countable) direct sum
of one or several copies of the same representation . (We say that H¢ is
quasi-irreducible.) Moreover, the measure class of the measure m, and the
multiplicity of £ in Hg, are uniquely defined ([Dix69, Th. 8.6.6]), and the rep-
resentation H is characterized by these data.

Let us now describe = more precisely. The irreducible unitary representa-
tions of SL(2,R) have been classified by Bargmann, as follows. An irreducible
unitary representation of SL(2,R) belongs to one of the following families:

e Representations D, and D,, ., for m € N. This is the discrete
series (except for m = 0, where the situation is slightly different: these
representations form the “mock discrete series”).

e Representations PV for v € [0, +00) and P~ forv € (0,00). This is
the principal series (these representations can also be defined for v < 0,
but they are isomorphic to the same representations with parameter
—v > 0).

e Representations C* for 0 < u < 1. This is the complementary series.

e The trivial representation.

These representations are described with more details in [Kna01, IL.5]. They
are all irreducible, no two of them are isomorphic, and any irreducible unitary
representation of SL(2,R) appears in this list. In particular, to any irreducible
representation £ of SL(2,R) is canonically attached a complex parameter s(§)
(equal to m in the first case, iv in the second, w in the third and 1 in the fourth),
and the Borel structure of = is given by this parameter (and the discrete data
+ in the first two cases).
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The Casimir operator €2 is a generator of the center of the enveloping
algebra of SL(2,R); i.e., it is a differential operator on SL(2,R), commuting
with every translation, and of minimal degree. It is unique up to scalar mul-
tiplication, and we will normalize it as

(3.2) Q= (L — L2 — L) /4,

where W = (9 ), w= (%), and V = (9}) form a basis of the Lie algebra
of SL(2,R) and Lz denotes the Lie derivative on SL(2,R) with respect to the
left invariant vector field equal to Z at the identity.

The Casimir operator extends to an unbounded operator in every unitary
representation of SL(2,R). Since it commutes with translations, it has to be
scalar on irreducible representations. With the notations we have set up earlier,
it is equal to (1 — s(£)?)/4 € R on an irreducible unitary representation ¢ of
parameter s(&).

An irreducible unitary representation £ of SL(2,R) is spherical if it con-
tains an SO(2, R)-invariant nontrivial vector. In this case, the SO(2, R)-invar-
iant vectors have dimension 1. Let v be an element of unit norm in this set.
The spherical function ¢¢ is defined on SL(2,RR) by

(33) d)rf(g) = <g : U7U>7

and it is independent of the choice of v. Taking g = g, the spherical function
is simply the correlations of v under the diagonal flow.

The spherical unitary irreducible representations are the representations
P and C* (and the trivial one, of course).

Assume now that SL(2,R) acts on a space Y and preserves a probability
measure g. Then SL(2,R) acts unitarily on L?(Y, u) by g - f(z) = f(g 'z).
Therefore, the Casimir operator also acts L?(Y,u) (as an unbounded op-
erator). Since it commutes with translations, it leaves invariant the space
L?*(SO(2,R)\Y, i) (i-e., the space of functions on Y that are SO(2, R)-invariant
and square-integrable with respect to p). On this space, €2 can also be described
geometrically as a foliated Laplacian, as follows.

For x € Y, its orbit mod SO(2,R) is identified with a quotient of H =
SL(2,R)/SO(2,R), by the map gSO(2,R) +— SO(2,R)g~'z. (Changing the
basepoint x in the orbit changes the parametrization by an SL(2,R) element.)
Therefore, any structure on H that is SL(2,R) invariant can be transferred to
SO(2,R)\Y. This is, in particular, the case of the hyperbolic metric of curva-
ture —1 and of the corresponding hyperbolic Laplacian A given in coordinates

(zm, yu) € H by —yn <38722 + % -
H H
Let fx be a function on SO(2,R)\Y belonging to the domain of A, and
let f be its canonical lift to Y. Then Qf is SO(2,R)-invariant and is the lift
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of the function A fx on SO(2,R)\Y. This follows at once from the definitions
(and our choice of normalization in (3.2)).

Consider the decomposition L*(Y,u) ~ [z He dm(€) of the representa-
tion of SL(2,R) on L%(Y, u) into an integral of quasi-irreducible representa-

tions. Denoting by H?O(Q’R) the SO(2,R)-invariant vectors in Hg, we have

L2(SO(2,R)\Y,pu) ~ J= Hgo(z’R) dm(€§). Therefore, the spectrum of A on
L?(SO(2,R)\Y, i) is equal to the set {(1 — s(£)?)/4} for ¢ a spherical rep-
resentation in the support of m. (Moreover, the spectral measure of A is the
image of m under this map.) Since the spectrum of the Casimir operator in
the interval (0,1/4) only comes from the complementary series representations,
which are all spherical, it follows that o(A) N (0,1/4) = o(2) N (0,1/4) and
that the spectral measures coincide. Therefore, it is equivalent to understand
o(A)N(0,1/4) or to understand representations in the complementary series
arising in L?(Y, ). While the former point of view is more elementary, the
latter puts it in a larger (and, perhaps, more significant) perspective.

3.5. Meromorphic extensions of Laplace transforms in abstract SL(2,R)
representations. Given H a unitary representation of SL(2,R), let us decom-
pose it as [z He dm(§), where Z is the set of unitary irreducible representations
of SL(2,R) and H¢ is a direct sum of copies of the irreducible representation
§. For f € H, we will denote by f¢ its component in H.

SO(2.R) the set of spherical irreducible unitary represen-

Let us denote by =
tations. Using the parameter s of an irreducible representation described in
the previous section, Z5°9(2R) is canonically in bijection with (0, 1] U [0, +00).

We will denote by & the representation corresponding to a parameter s.
PROPOSITION 3.4. Let fi, fa € H be invariant under SO(2,R). Let us
define the Laplace transform of the correlations of fi, fo by
o0
PE) = Frp() = [ e fro ) de

for R(z) > 0.

The function F admits an holomorphic extension to {R(z) > —1,z ¢
(—1,0]}. Moreover, for every § > 0, the function F' can be written on the
half-space {R(z) > —1+20} as the sum of a bounded holomorphic function As
and the function

1 I'(s/2)
VT Jseis) D((s +1)/2)
Proof. We fix a decomposition of H¢ as an orthogonal sum @Po<icp &,
where n = n(§) € NU{+oo} is the multiplicity of £ in He and &, ...,&,—1 are
copies of the representation £&. This decomposition is not canonical, but it can
be chosen to depend measurably on & (see [Dix69]). If the representation & is

dm(&s)

B e
5(z) z—s+1

(f)ess (f2)e,)



SMALL EIGENVALUES OF THE LAPLACIAN IN MODULI SPACE 401

spherical, we fix in every &; a vector h(&, j) € &; of unit norm invariant under
SO(2,R).

Let f be an SO(2, R)-invariant element of H. For ¢ € 250K the cle-
ment f¢ of He can uniquely be decomposed as 7 ) f({, J)h(&, j), where the
coefficients f (&, 7) € C depend measurably on &, j.

We use this decomposition for fi; and fs. Let us recall that we defined
the spherical function ¢¢ of a representation ¢ in (3.3). Since the functions

h(&,j) and h(&, j') are orthogonal for j # j', we have

(g f1, f2)

::ﬂwm< <§2ﬁ53 ) (EZﬁ%J 0>mﬂ@
= ’ j<n(€ J'<n(§

Lo, 3 A6 DRE D) ath(€,9), e, 7)) dm(6)

- j<n(§)

= Jesoer < Z fl(&])ﬁ(f»ﬁ) de(ge) dm(§)

j<n(§)

= (F)e: (f2)e) Pe(ge) dm(&).

=SO(2,R)

To proceed, we will need fine asymptotics of the spherical functions ¢;.
The first one is due to Ratner [Rat87, Th. 1]: for all § > 0, there exists a
constant C' such that, for any ¢ € Z5°02R) with s(¢) ¢ [6, 1], and for any ¢ > 0,

(3.4) [P (g0)] < Cem (70,

An important point in this estimate is that the constant C' is uniform in &,
even though £ varies in a noncompact domain.

For representations in the complementary series, we will use a more precise
estimate, as follows. Define a function

1 T(s/2)
VT T((s+1)/2)

for s € (0,1]. This function is known as Harish-Chandra’s function. For all
d > 0, there exists a constant C' > 0 such that, for all s € [§,1] and all ¢t > 0,

(3.5) c(s) =

(3.6) [9c.(90) — ()l | < Ce7.

This estimate is proved in Appendix A.
We will now conclude, using (3.4) and (3.6). Let us decompose =
(identified through the parameter s with a subset of C) as the union of [0, 1]

SO(2,R)



402 ARTUR AVILA and SEBASTIEN GOUEZEL

and its complement. Then

FO = [ |, e (R (00 dt i)

=0

o —=zt
S I (PN ASENTAL R

- /SGM /:; e ((f1)es, (F2)e ) (Be.(g0) — c(s)e® 1) dt dm (&)
+ /Sew /to e f1)e,, (fa)e,)e(s)e*™VE dt dm(&,).

Let Bs(z) be the last term in this expression, and let As(z) be the sum of the
two other ones. In Aj, the factors ¢¢_(g¢) and ¢, (g:) —c(s)el*~ V! are bounded,
respectively, by Ce~ (179t and Ce~* (by (3.4) and (3.6)). Therefore, As(z)
extends to an holomorphic function on {#(z) > —1+ J}, which is bounded on
the half-plane {R(z) > —1 + 26}. Since [;~ e *dt = 1/a for R(a) > 0, the
function Bs(z) is equal to

c(s)
/86[671]«]"1)53’ (fz)ﬁJm

for R(z) > 0. This function can be holomorphically extended to z ¢ [—1+4, 0],
by the same formula. This proves the proposition. O

dm(&s)

3.6. Proof of Theorem 2.3. The representation H=L?(X/T', u) of SL(2,R)
can be decomposed as a direct integral [2 He dm(&), where the representation
Hy¢ is the direct sum of one or several copies of the irreducible representation
& € 2. We should prove that, for any 6 > 0, the restriction of the measure
m to (d,1) (identified with the corresponding set of representations in the
complementary series) is made of finitely many Dirac masses and that at those
points the multiplicity of { in Hy is finite.

Let 6 > 0 be small. Consider the eigenvalues A\; constructed in Proposi-
tion 3.3. We claim that, on the interval (74, 1), the measure m only gives mass
to the points 46 — 1/A; + 1 and that at such a point the multiplicity of ¢ in
H¢ is bounded by the dimension of the image of the spectral projection IIy,
described in Proposition 3.3. This will conclude the proof of the theorem.

To proceed, we will use the fact that we have two different expressions for
the meromorphic extensions of Laplace transforms, one related to the geom-
etry of Teichmiiller space coming from Proposition 3.3, and one given by the
abstract theory of representations of SL(2,R) in Proposition 3.4. Identifying
these two expressions gives the results, as follows.

First step: m only gives weight to the points 46 — 1/A\; + 1. Assume by
contradiction that m gives positive weight to an interval [a,b] containing no
such point. There exists a function f(®) € H invariant under SO(2,R) such
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m(&s)

> 0. Consider f((gg € DU a sequence of smooth compactly supported functions

that the corresponding components fg(o) in H¢ satisfy f[a b Hfé(g)

converging to f(9) in H. The functions f((g = Jpest ko f((r(g d@ also belong to DT,
are SO(2,R)- invariant, and converge to f©) in H. In particular, if n is large
enough, f[a b] H £ dm(fs) > 0. Let us fix such a function f = f((sg
Consider the functlon Frp(z) = [Zoe#(f, f o g)dt, initially defined
for ®(z) > 0. By Proposition 3.3, it admits a meromorphic extension to

the domain Ds, with possible poles only at the points 4§ — 1/\;. Moreover,
Proposition 3.4 shows that the same function can be written, on the set {R(z) >

—1+ 20}, as the sum of a bounded holomorphic function and the function

1 D(s/2) am(s,)
Bo) = 77 J i TG + 1)) Meelie, =47

It follows that, in {8z > —1 + 74}, this function B can only have poles at
the points 40 — 1/A;. In particular, it is continuous (and real) on the interval
[a —1,b — 1]. Define a measure dv(s) = fF((s-i/12/2 ||f£5||H§ dm(&s) so that
Bs(z—1) = [dv(s)/(z — s). Stieltjes’ inversion formula [Wal48, (65.4)] states
that

1 b
bj=——1i SBs(x — 1+ iy) de.
vla, b] = —— lim S sz —1+iy)de
Since Bjs is continuous and real on [a — 1,b — 1], it follows that v[a,b] = 0.

In particular, f[mb} || fe. ”125’55 dm(&s) = 0. This is a contradiction and concludes
the first step.

Second step: at a point s = 46 —1/\;+1, the multiplicity of £ in He, is at
most the dimension of ImIly, in the Banach space of Theorem 3.2. We argue
again by contradiction. Let d = dimImII),, and assume that the multiplicity
of { in He_ is at least d+1. Then in H¢, one can find d+1 orthogonal functions
FO At that are SO(2,R)-invariant. Since m has an atom at &g, these
functions are elements of H = L?(X/T, ). As above, we consider sequences
f(k) € D' of SO(2,R)-invariant functions that converge to f*) in H.

(n)
Let F',x) 0 (2) be the meromorphic extension of the Laplace transform of

Finy I )
the correlations of f((f; and f((f;)) ogt, and let M** denote its residue around the
point 45 — 1/);. For each n, the residue M** is described by Proposition 3.3.
Since the operator I, has a d-dimensional image, it follows that the rank of
the matrix M, is at most d. On the other hand, Proposition 3.4 shows that
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When n tends to infinity, the functions f((::))
verges to a diagonal matrix. In particular, M, is of rank d+ 1 for large enough
n, a contradiction. O

converge to f*); hence M,, con-

4. Measures with a local product structure on Teich;

To construct the Banach space of Theorem 3.2, we will need more geomet-
ric information on admissible measures, given by the following proposition. We
recall that ® : Teich — H'(M,%; C) is the period map, giving local coordinates
on Teich.

PROPOSITION 4.1. Let i be an admissible measure, supported on a sub-
manifold X of Teichy. Then

(1) For every x € X, there is a decomposition of the tangent space T,X =
Rw(z) ® E%(x) ® E*(x), where w(zx) is the direction of the g-flow,

E%z) = T,X N D®(z) Y (HY(M,Z;R)),
E*(z) = T,X N D®(x) " (H' (M, ;iR)).

(2) The subspaces E*(x) and E“(x) depend in a C* way on © € X, are
integrable, and the integral leaves W"(x), W*(z) are affine submanifolds of
Teich.

(3) For every x € X, there is a volume form , on E*(x) (defined up to sign)
such that x — py(x) is C*. Moreover, x v p,(z) is constant along the
unstable manifolds W*. Additionally, there exists a scalar d > 0 such that
(gt)*,uu = eidtlufu-

(4) For every x € X, there is a volume form ps on E°(x) (defined up to sign)
such that x — ps(z) is C°°. Moreover, x — us(x) is constant along the
stable manifolds W*. Additionally, (g¢)spts = €% pus.

(5) For every x € X, the volume form dfi(x) on T,X is equal to the product
of dLeb, py(x), and ps(x) respectively in the directions w(zx), E*(x) and
E*(x).

All these data are I'-equivariant. We say that the decomposition dji = dLeb ®

dpy, ® dps s the affine local product structure of p.

Note that, since W*(z) is an affine submanifold, the tangent spaces of
W(x) at two different points y1,y2 € W¥(x) are canonically identified (i.e.,
their images under D®(y;) and D®(y2) coincide); hence it is meaningful to say
in item (3) of the above definition that y — pu,(y) is constant along W (z).
The same holds for ug along W*.

Note also that E* and E* are really the strong unstable and stable man-
ifolds. Indeed, D®(x)~'(H(M,X;R)) is the weak unstable manifold for the
flow on Teich, but since we are restricting to 7, X, we are excluding the neutral
directions. (See the example of area-one surfaces below.)
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If x = a+1ib in the chart ®, then for small r we have h,(x) = a+rb+1ib. In
particular, the tangent vector to this curve is always b € H'(M, ¥;R); hence
hy(x) is in the unstable manifold W*(x). Moreover, the differential of h, sends
E*(z) to E"(hyx), and its restriction to W*(z) is equal to the identity in the
chart ®. Since p, is constant along W"(zx), this implies that h, leaves py,
invariant, i.e., (Ay)sfly = -

The family of volume forms p,,(z) on E*(x) induces a positive measure on
each leaf W* of the unstable foliation, which we also denote by p,,. In the same
way, we get a measure g on each stable manifold. Let us note that, although
the volume forms i, () are only defined up to sign, the induced positive mea-
sures [4, are canonical. If the manifolds W* and W* were canonically oriented
(or at least had a I' invariant orientation), then g, (x) and ps(x) themselves
would not be defined only up to sign, but we do not know if this is always the
case.

The scalar d in the above proposition can be identified; see Remark 4.4.
See [BL98] for the notion of local product structure in more complicated non-
smooth settings.

Ezample 4.2. Consider in Teich the subset X = Teich; of area one sur-
faces, with its canonical invariant Lebesgue measure fi. We will describe its
affine local product structure. In [ABEM12, §2], a similar construction is given
in more geometric terms.

First, assume x € X and ®(z) = a + ib. Around x, we identify Teich and
HY(M,;C) using ®. Then the area of a + o’ +ib is 1 + [a’,b], where [d’, D]
is the intersection product of @’ and b (this is initially defined for elements of
H'(M;R), but since H'(M,;R) projects to H'(M;R), it extends trivially
to H'(M,X;R)). Therefore, E%(x) = {a’ € H'(M,%;R) : [d/,b] = 0}. This
depends smoothly on z, and the integral leaves of this distribution are locally
the sets {(a+d’,b) : [@’,b] = 0}. These are indeed affine submanifolds of Teich.

Let us now define p,, at the point a +ib. The set H'(M, X;R) is endowed
with a canonical volume form vol (giving covolume 1 to H*(M,X;Z)). We let

ty be the interior product of a and vol; i.e., if vy,..., vy is a basis of E¥(z),
then g, (z)(v1,...,vx) = vol(a,v1,...,v;). At a nearby point 2/ = a +a’ +ib
on the same unstable manifold, g, (z')(vi,...,vx) = vol(a + d’,v1,...,v;) =
vol(a,v1,...,vx) since o' belongs to E"(xz). Therefore, puy,(x) = p(z') as
claimed.

Let d = k + 1 be the dimension of H'(M,%;R). The differential of g,
mapping E%(x) to E%(g.x), is simply the multiplication by e’, and therefore
(g6)spiu(@) = e Dy, (2). Since p(gir) = e pu(x), we get (gi)«pu(z) =
eidtﬂu(gtm)'

In the same way, we define a volume form pg(x) on E®(x). It satisfies
(gt)sprs = edtﬂs-
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Let us finally define a volume form /i’ on 7, X as the product of Lebesgue
in the flow direction, p, and jus. It satisfies (g¢)+fi’ = i, since the factors e~
and e® (coming respectively from u, and p,) cancel out.

All those data are intrinsically defined, and therefore I'-invariant. By

ergodicity of p in the quotient X/T', we have i’ = cfi for some ¢ € (0, +00).

We will simultaneously prove Proposition 4.1 (the fact that an admissible
measure has a local product structure) and Proposition 2.2 (the fact that
an absolutely continuous measure on a smooth submanifold is automatically
admissible). Indeed, we will start from an absolutely continuous measure and
simultaneously prove that it is admissible and that it has an affine local product
structure. For this proof, we will use the nonuniform hyperbolicity of the
Teichmiiller flow. This property is well known, but we will need it later on in
the following precise form. Let us fix on Teich a I'-invariant Finsler metric. In
later arguments, we will use a specific metric that is well behaved at infinity
(constructed in Subsection 5.1), but the following statement is valid for any
metric.

PROPOSITION 4.3. For any set K C Teichy that is compact mod T', there
exists T = T(K) such that, for any point v € K and any time t such that
gix € K and

Leb{s € [0,t] : gs(x) e K} > T,
then || Dge(2)vl| g, < |lvll, /2 for any v € E*(x) and || Dge(z)vly,, = 2 ||v]l, for
any v € E%(x).

Proof. The uniform hyperbolicity of the Teichmiiller flow in compact sub-
sets of Teich; /T" has been proved by Forni in [For02, Lemma 2.1'], for a differ-
ent norm, the Hodge norm (and for vectors belonging to H'(M;C) instead of
H(M,>;C)). To obtain the result for the norm under study, it is sufficient
to use the following two facts:

(1) Vectors in H'(M,¥;C) that vanish in H!(M;C) are expanded at a
constant rate e’ in the unstable direction and contracted at a constant
rate e~ in the stable direction.

(2) In a fixed compact subset of Teich;/T", any two continuous norms are
equivalent. O

Proof of Propositions 4.1 and 2.2. Let us fix a measure [i as in the as-
sumptions of Proposition 2.2. It is supported on a C'' submanifold X of Teich;,
equivalent to Lebesgue measure on X, and induces a Radon measure p in X/T.
We will prove that fi is admissible and that it has an affine local product struc-
ture.

For x € Teich;, denote by m,, m,, and 75 the projections respectively on
the flow, unstable, and stable directions in the tangent space 7;Teich;.
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First step: the measure p has finite mass. In particular, the flow g; is
conservative in the measure space (X/T',p). Since p is SL(2,R)-invariant,
Athreya’s Theorem [Ath06] shows the existence of a compact set K in X/T" such
that, under the iteration of g;, p-almost every point spends asymptotically at
least half its time in K. It follows from Hopf’s ergodic theorem applied to the
ergodic components of y that p(X/T') < 2u(K). Since p is a Radon measure,
this quantity is finite and the result follows.

Second step: at every point x € X, we have
(4.1) TeX = 1y (Te X) @ (T X) @ 7s(T2 X).

Since the inclusion C is trivial, it is sufficient to prove the other inclusion. As
gt(z) € X for all ¢ > 0, we have w(x) = 0g(z)/0t|t=0 € Tz X. It is therefore
sufficient to check that m,(7,X) C T, X and 74(7T,X) C 7,X. By symmetry,
it is even sufficient to prove the first inclusion.

We will prove this property for z in a dense subset of X since the general
case follows by continuity. The dimension of 7, (7,X) is semi-continuous; hence
it is locally constant on a dense open subset of X. Moreover, since the flow g,
is conservative and p has full support, Poincaré’s recurrence theorem ensures
that almost every point of X comes back close to itself in the quotient X/I"
infinitely often in forward and backward time. We will prove (4.1) for such a
point x.

Since the dimension of m,(7,X) is locally constant around z, there exists
a constant C' such that, for any y close to x, any vector w, € m,(7,X) admits
a lift w to T, X with [Jw| < C |Jw,].

Consider v € T, X, and write it as v = v, + vy +vs € Ty (T X ) Dy (T X) D
7s(TzX). We should prove that v, € 7T, X. Let € > 0. Consider t very large
such that y = g_;x is close to x. By Proposition 4.3, if ¢ is large enough,
the norm of w, := Dg_(x) - v, is bounded by e. We may therefore find
w € TyX with m,(w) = wy, and ||w|| < Ce. Write w = w,, + w, + ws. Then
Dg(y)w € T, X, and this vector can be written as Dg;(y)(w,, +ws) + v, where
| Dgt(y)(w, + ws)|| < Ce. We have proved that v, is a limit of points of T, X
and, therefore, that v, € T, X. This concludes the proof of the second step.

We can therefore define spaces

E*(z) = my(TeX) = T, X N @~ (H' (M, %5 R))
and
E(x) = my(ToX) = T, X N @7 (H' (M, 5:1R))

such that 7,X = Rw @ E"(z) ® E*(x). Moreover, the dimensions d,, and ds of
those spaces are locally constant: they cannot decrease strictly by semiconti-
nuity, and they cannot increase strictly since otherwise dim(7,X) would also
increase strictly, a contradiction. Since the space X/T" is connected, they are
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in fact constant. Finally, since the rotation ko maps E*(x) to E°(k;ox), we
have d,, = ds.

Let Y = R% X. To simplify notations, we will omit ® and locally identify
Y with a subset of H'(M,X;C). Since the tangent vector to the map t ~ tx at
x = a+1ibis a+ib, we have T,Y = R(a +ib) + 7, X. With the decomposition
of 7, X given at the second step and the equality w(x) = a — ib, we obtain
T.Y = E%(z) ® E*(z), where E%(z) = T,Y N H'(M,%;R) = Ra & E*(z) and
E*(z) = T,Y N HY(M, %;iR) = iRb @ E*(x).

Third step: for any = € Y, we have E*(x) = iE"(z). Let e € E%(x) and
if € E%(x). For small 0, the rotated vector kg(e +if) = (cos(f)e + sin(6) f) +
i(—sin(f)e + cos(#) f) belongs to Ty, Y. Taking f = 0 and projecting to the
real component, we deduce that E%(kgx) contains E%(z). Since they have the

same dimension, it follows that E%(kgz) = E%(x). In the same way, taking
e =0, we get E%(kgr) = i 'E%(z). Finally, £*(z) = iE%(z), as desired.

Fourth step: Y is an affine submanifold of Teich. At every point x € Y,
the tangent space T,Y = E%(z)@® E*(z) is invariant by complex multiplication,
by the third step. This implies that Y is a complex (holomorphic) submanifold
of Teich; see, e.g., [BER99, Prop. 1.3.14].

Let us show that Y is affine around any point 29 € Y. (We thank S. Cantat
for the following argument.) Working in charts and changing coordinates, we
can assume that zp = 0 and that oY = CF c CN for k =ds; +1 = d, + 1.
Around 0, the manifold Y can therefore be written as a graph {(z, f(z))} for
some holomorphic function from C* to CV=*. At a point z close to 0, the
tangent space T.Y is {(v, Df(xz)v) : v € C*}. In particular, the real part of
this tangent space is included in {(v, Df(z)v) : v € R¥}. Since the dimension
of the real part of 7Y is exactly k, it follows that Df(z)v is real for any
real vector v; i.e., all the matrix coefficients of D f(x) are real. Since a real
valued holomorphic function is constant, D f is constant. Therefore, Y is affine
around xzg.

Fifth step: the distributions of dy-dimensional subspaces E* and E°® are
integrable, and the integral leaves are affine submanifolds of Teich. The strong
unstable manifolds form a foliation F of Teich; with affine leaves (see Exam-
ple 4.2). Moreover, the dimension of T, F NT,X is independent of x € X, by
the second step. It follows that the restriction of F to X defines a foliation of
X, integrating the distribution of subspaces T, F N T, X = E"(z). In particu-
lar, the leaf W*(x) integrating E"(x) is locally given by X N F,, which is also
equal to Y N F,. Since Y is affine by the fourth step and F, is affine, W*(x)
is also affine. The argument is the same for W?%.

Sixth step: the measure iy = i®@Leb on'Y is locally a multiple of Lebesgue
measure on the affine manifold Y. Given x € Y, fix a reference Lebesgue
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measure on Y around x (there is a priori no canonical choice of normalization),
and denote by qB the density of fiy with respect to this Lebesgue measure. We
will prove that gg is constant on strong stable and unstable manifolds in a
neighborhood of x. Since the foliations W* and W*" are smooth and jointly
nonintegrable, it follows from the classical Hopf argument that (;; is constant.
We will work in Y/T'" around the point zI". Let us denote by ¢ the density of
w around zI.

Since p has finite mass, we can consider a sequence of compactly supported
smooth measures p, converging (for the total mass norm) to g on X/T'. For
any t > 0,

[(ge)stn — 1 = [(9t)sttn — (9e)pt] = [ — pil.
Therefore, for any sequence t,,, the measures (g, )«itn converge to p.

Fix M > 0. Let ¢, denote the density of (g¢)«(in ® Leb) in a ball B

around zI'. Then, for any n € N and any M > 0, the integral

/y N s 60(2) — G0a(9)], M) ALeb() dLeb(y)

converges to 0 when ¢ tends to +o00. Indeed, the integrand is bounded by M
and converges almost everywhere to 0 since the flow is hyperbolic along almost
every trajectory and the measure p, is smooth. Let us choose ¢, such that
this integral is at most 27". Since (g4, )«fn converges to p, the density ¢y ¢,
converges almost everywhere to ¢ along a subsequence. This yields

| min(|¢(z) — @(y)], M) dLeb(z) dLeb(y) = 0.
yeB JzeWu(y)NB

Letting M tend to infinity, we obtain that ¢ is almost everywhere constant
along unstable manifolds in B, as desired.

Seventh step: the measure i is ergodic. If p is not ergodic, we can consider
an invariant set A for the action of SL(2,R) on X/T", with positive but not
total measure. Consider v the restriction of i to the lift of A in Teich;. The
argument in the previous step applies to 7 and shows that the density of 7®Leb
on Y is locally constant. Since Y/T" is connected, this implies that v ® Leb is
equivalent to Lebesgue measure on Y/I'. This is a contradiction and proves
the ergodicity of p.

Among other things, we have shown that the measure fi is admissible.
This proves Proposition 2.2. To conclude the proof, we have to complete
the construction of the measures u, and ps forming the affine local product
structure of u.

FEighth step: construction of canonical volume forms p,(x) and ps(z),
respectively on E*(x) and E*(x), in terms of fi, which are constant respectively
along W* and W?#. They are only defined up to sign. Let x € X. Identifying
Teich locally with H'(M,Y;C) thanks to the period map, we write z = a
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+ib. If v (x) is any volume form on E%(z) = Ra + E%(z), then it yields a
volume form v,(z) on E*(x) thanks to the identification of the third step. The
product v, (x) A vs(x) is a nonzero volume form on E%(z) @ E*(z) = T,Y. It
is therefore proportional to fiy (z). Multiplying v, (z) by a unique (up to sign)
normalization, we can ensure that v, (x) A vs(x) = £fiy. Finally, let p,(z) be
the unique volume form on E%(x) such that v, (x) is the product of y,(x) and
Lebesgue measure on Ra. Analogously, let ps(z) be the unique volume form
on E*(z) such that v,(x) is the product of ps(x) and Lebesgue measure on iRb.
This construction is completely canonical up to sign, and

fi(x) = + dLeb Apy () A ps(2)

by construction, where dLeb denotes Lebesgue measure along Rw(z). Since fi is
I-invariant, it follows that u, and pg are also I'-invariant (possibly up to sign).

Since p,, is constructed in a canonical way in terms of fiy and fiy is con-
stant along unstable manifolds (by the sixth step), it follows that p,, is constant
along unstable manifolds. In the same way, us is constant along stable mani-
folds.

Ninth step: there exists d > 0 such that (g¢)spu = ¢ %y and (ge)sps =
e 5. Since the action of SL(2,R) is ergodic, the action of the horocycle flow
is also ergodic by Howe-Moore’s theorem [HM79]. In particular, we can choose
x whose orbit is dense. For ¢t > 0, the measure (g¢)s«p,(2) is a volume form on
E"(gix) and can therefore be written as e?®) p, (gyx) for some d(t) € R. Since
the measures u,, are constant along the unstable manifolds of x and of gy, it fol-
lows that, for any point y in the horocycle through x, we also have (g;).« . (y) =
) 11, (gry). Since this horocycle is dense, (g¢)xpiu(2) = €4® 1, (gs2) for any z.
The function ¢ — d(t) is continuous and satisfies d(t+t') = d(t)+d(t'). We
may therefore write d(t) = —dt for some d € R (which has to be positive since

e

the flow is expanding along unstable directions). We obtain (g¢)«jt, = e~ %/u,.
In the same way, we have (g¢).pus = e?ty, for some d > 0. Since

it = dLeb Apy, A s is gi-invariant, it follows that d = d'.
This concludes the proofs of the ninth step and of Propositions 4.1 and 2.2.
O

Remark 4.4. The scalar d constructed in Proposition 4.1 satisfies d =
dy +1 = ds + 1, where d, and ds are the dimensions respectively of E“
and E°. To prove this statement, let Ag,...,\g, be the Lyapunov expo-
nents of the Kontsevich-Zorich cocycle (see [For02]) restricted to the bundle
E* for the measure pu. The Lyapunov exponents of ¢; along E" are given by
vp = 14+ Xo,...,vq, = 1+ Ag,, and their sum is equal to d since there is
no expansion in the bundle E“/E“ Since E5 = iE", the Lyapunov expo-
nents of the Kontsevich-Zorich cocycle along E* are also ), .. .y Ad,, and it
follows that the Lyapunov exponents of g; along E® are —1+ Xy, ..., —1+ A, -
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Since g; preserves the measure p, which is equivalent to Lebesgue measure,
the sum of its Lyapunov exponents vanishes. Hence, >~ A; = 0. Finally,
d:Zl/i:du—l-l-i-Z/\i:du-i-l.

A suitably generalized Pesin formula also gives that d is the entropy of
the measure p for the flow gy

5. A good Finsler metric on Teich

5.1. Construction of the metric. To define the Banach space satisfying
the conclusions of Theorem 3.2, we will need a Finsler metric on Teich, with
several good properties:

(1) It should be complete and I'-invariant.

(2) It should behave in a controlled way close to infinity (technically, it
should be slowly varying, see the definition below).

(3) Under the Teichmiiller flow, the metric should be noncontracted in the
unstable direction and nonexpanded in the stable direction.

It is certainly possible to cook up a metric satisfying these requirements us-
ing the Hodge metric of Forni on H'(M;R) [For02] and extending it first to
H'(M,X;R) and then to H'(M,¥;C) (cf. [ABEM12]). However, [AGY06] in-
troduced a geometrically defined metric that turns out to satisfy all the above
properties. This is the metric we will use for simplicity.

Let us describe this continuous Finsler metric on Teich. Since the tangent
space of Teich is everywhere identified with H'(M,Y;C) through the period
map ®, it is sufficient to define a family of norms on H'(M,X;C), depending
continuously on the point € Teich, as follows:

v(7)
®(x)(7)

where v runs over the saddle connections of the surface x. It is proved
in [AGY06] that this is indeed a norm and that the corresponding Finsler met-
ric is complete. Let d denote the distance on Teich coming from this Finsler
metric.

[v]l,; = sup

)

The two following straightforward lemmas show that this metric behaves
well with respect to the Teichmiiller flow.

LEMMA 5.1. The tangent vectors at 0 to the families t — gi(z), r —
he(z), 7 = he(z) and 6 — ko(x) are all bounded by 1 in norm. Therefore,
d(x, grz) < |t], d(x, hpx) < |r|, d(z, he(z)) <|r| and d(z, kox) < |6].

Proof. Given x with ®(x) = a+1ib, we have ®(g;z) = e'a+ie~'b; hence the
tangent vector of the curve t — gix at 0 is a — ib, which is clearly bounded by
1 from the formula. Moreover, ®(h,x) = a + rb + ib; hence the tangent vector
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to this curve at 0 is b, again bounded by 1. The computations are similar for
iLT and kyg. O

LEMMA 5.2. The Teichmiiller flow is noncontracting in the unstable di-
rection and nonexpanding in the stable direction for the above metric. More
precisely, for any t >0, forv € H'(M,%;R) and w € H'(M,X;iR), we have
1Dg:(x)ollg, = N[0l and [|Dgi(x)wll,,, < [lwl],-

gtz

Proof. We have Dgi(x)v = elv. Moreover, if ®(z) = a + ib, we have
®(gir) = ela + ie~tb. Therefore,

e'lv(y)] e'lv()|
Dgi(x)v =su > su = ||v|l, -
15 e =3P Loty s ie ()] = 5P Tefay) + ity 1l
The argument for w is the same. ]

The same computation shows that
IDge(z)vlly,, < e* |lvll, and [[Dge(x)wll,,, > e [lw]l,,
which corresponds to the classical fact that the upper and lower Lyapunov
exponents of the Teichmiiller flow are respectively 2 and —2.

Let i1 be an admissible measure, and let X denote its support. The above
Finsler metric can be restricted to every stable or unstable manifold in X and,
therefore, defines distances dyyu, dys on those manifolds. For r > 0, we denote
by W¥(x) the ball of radius r around z in W*(x) for the distance dyyu.

Fix x € X. Let ¥ = ¥, be the canonical local parametrization of the
affine manifold W"(z) by its tangent plane E*(x). More formally, we define
U(v) for v € E¥%(z) as follows. Consider the path s starting from z with
k'(t) = v for all t. For small ¢, x(t) is well defined and belongs to W*(z). It is
possible that (t) is not defined for large ¢ since it could explode to infinity in
Teich. If the path & is well defined for all ¢ € [0, 1], then we define ¥ (v) = x(1).

Let us denote by B(0,r) the ball of radius 7 in E*(x) for the norm ||-||.
The main result of this section is the following proposition, showing that the
norm ||-||,, varies slowly in fixed size neighborhoods of any point in the noncom-
pact space X. This is a kind of bounded curvature behavior. Note, however,
that this metric depends only in a continuous way on the point, so we cannot
use true curvature arguments.

PROPOSITION 5.3. The map V¥ is well defined on B(0,1/2), and there
dwu(z, ¥ (v)) < 2|v|,. Moreover, forv e B(0,1/2), and for every w € E*(x),

(5.1) 1jg < Mle o
[wllg )
Finally, for v e B(0,1/25), we have dy«(z, ¥ (v)) > ||v], /2.

Before proving this proposition, let us give a simple consequence for the
doubling property of pu,. Again, the interest of this proposition is that the
estimates are uniform, even though X is not compact.
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COROLLARY 5.4. Let ji be a measure with an affine local product structure,
supported on a submanifold X. There exists C > 0 such that, for every x € X
and every r < 1/100, p,(W3i(z)) < Cpy, (W (x)).

Proof. By Proposition 5.3, U=Y{(W. (x)) C B(0,4r) and ¥~ (W*(z)) D
B(0,7/2). Since y > p,(y) is constant along W*(x), we have (denoting by d,,
the dimension of E%(z))

pa(Wap () = pra(a) (0 (W5 (2))) < pu()(B(0,4r))
= 8% 1, (2)(B(0,7/2)) < 8% py () (W~ (W} (x)))
= 8% 1, (W (). O
The central point in the proof of Proposition 5.3 is the following proposi-
tion.

PROPOSITION 5.5. Let x : [0,1] — Teich be a C! path. For each v €
H'(M,3;C),

— length(k H H < length(x)
H’UHK(U

where length(k) = ft1:0 ||K‘/(t)H,‘i(t) dt.

i

By symmetry, it is sufficient to prove the upper bound. For the proof, we
start with the following lemma. We will write x(t)(7y) instead of ®(x(t))(7).

LEMMA 5.6. Let v be a saddle connection surviving in the surface k(t),
te [tl,tg]. Then

|5t S IW gy de
IZ N

Proof. Let t € [t1,ts]. For small h,
log [1(t + h)(7)| = log |k(t)(7) + hr'(t)(7) + o(h))|
= log [1(t)(7)| +log |1 + ha'(t)(7)/K(t)(7) + o(h))|
= log |K(t)(y)| + hR(x"() (7) /() (7)) + o(h).

Hence, t — log |k(t)(7)| is differentiable, and its derivative R(x'(t)(7)/k(t)(7))
is bounded in norm by [|x'(t)||,;;)- The result follows. O

Proof of Proposition 5.5. For 0 <t} <t} <1, let us write

f/ =" () ()dt
I(th,ty) =€ t
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Let v be a fixed saddle connection in the surface £(0). We want to show that

(5-2) [0()/R(O) ()] < 10, 1) [[]] (1) -

By induction, we define a sequence of times ¢y < t; < --- and sets I';, of
saddle connections on the surface k(ty), as follows.

Let to = 0 and I'g = {v}. Assume ¢, and I',, are defined. If all the saddle
connections in I';, survive in the surfaces k(t), t € [ty, 1], we let t,11 = 1 and
stop the process here. Otherwise, let t,+1 € (¢, 1] be the first time one or
several saddle connections in I';, disappear. If 4 is such a saddle connection,
it means that other singularity points arrive on 4; i.e., 7 is split in &(t,+1)
into a finite set {71,...,7} of saddle connections, which are all in the same
direction. In particular, in homology, ¥ = " +; and, moreover, |k(t,+1)(7)| =
S |K(tnt1)(7i)]- We let I'y 1 be the union of all the saddle connections in I,
that survive up to time t,,1 and all the newly created saddle connections 'yl-.Q

We now show that this inductive construction reaches ¢ = 1 in a finite
number of steps. Let S, = Y 5¢r, |[k(tn)(7)|. For ¥ € ', Lemma 5.6 shows
that |k(tnyr1 —&)(F)] < I(tn, tnr1 —€)|k(tn)(7)|. Summing over 4 and letting e
tend to 0, we get Sp11 < I(tn,tn+1)Sn. In particular, S, is uniformly bounded
since S, < I(0,t,)So < I(0,1)Sy. Moreover, the length of saddle connections
in all the surfaces x(t) is bounded from below since ([0, 1]) is a compact subset
of the Teichmiiller space. This implies that the cardinality of I';, is uniformly
bounded. Since #I', 11 > #I',, + 1, this would give a contradiction if the
inductive process did not stop after finitely many steps.

We claim that, for all n,

(5.3) sup [0(7)/6(tn) (V)] < I(tn, tnr1) sup  [0(3)/k(tnr1)(F)]-

:Yern :Yern-ﬁ-l
Let N be such that ¢ty = 1. Multiplying these inequalities forn =0,..., N —1,
we obtain (5.2), concluding the proof. We now prove (5.3). Let ¥ € I',. If 5
survives up to time ¢,,+1, Lemma 5.6 gives

[w(V)/6(En) (D] < T(tn, tns1)|0(F)/E(En1) ()],

as desired. Otherwise, ¥ is split at time t,1; into finitely many saddle con-
nections 7, ...,7,. For small € > 0, the saddle connection 4 survives from
time t, to time ¢p41 — . Therefore, Lemma 5.6 gives |v(3)/k(tn)(7)] <

20f course, there can also be moments ¢ after which some of the saddle connections under
consideration may be joined into a single saddle connection. In our analysis, we explicitly
ignore such events (that is, we do not attempt to simplify the sets I',,), keeping track of the
individual saddle connections that could be joined (which naturally do not cease to exist).
This is important since the estimate (5.3) below only works for splittings but not for joinings.
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I(tn, tns1 —€)|v(7)/k(tns1 — €)(F)|. When ¢ tends to 0, this tends to

S LDl vl
R T v o R e S{ A T
> lv()

= ) S ) ()
[v(i)
|k (tn1) ()|
This proves (5.3). O

< I(tn,tnt1)sup

Proof of Proposition 5.3. Let x be the path starting from x with ' = v.
If k is well defined on an interval [0, #o], then for ¢ € [0, to],

t o, . .
15/l = 10llay < Nl oo Ol o,

by Proposition 5.5. Therefore, the function ¢t — G(t) = fg 1K/ (r)]] 5y dr satis-
fies G'(t) < €0 ||v]|; i.e., (—e~F®)" < |jv||,. Integrating this inequality gives
G(t) < —log(1 — t]|jv],). Substituting into the inequality G’(t) < e“® |v]|,
this yields

!/
< —7"

If ||v]|, < 1, this quantity remains bounded for ¢ € [0, 1]. Therefore, ¥ is well
defined on such vectors v. In particular, ¥ is well defined on the ball B(0,1/2).
1

Moreover, dyy (2, W(v)) < Ji W (1) < 0], /(1 [[o],)- Forv e B(0,1/2),
this gives
(5.4) dw(z, ¥(v)) < 2|v]], -
Using the same notation G as above, Proposition 5.5 shows that, for every
v € B(0,1/2) and every w € E%(x), we have e~ ¢(1) < % < %M Since
G(1) <log(2), this proves (5.1).

Let us now prove that, for v € B(0,1/25), we also have
(5.5) dwu(z, ¥(v)) > [Jvll, /2.

Consider & : [0,1] — W*(z) an almost minimizing path for the distance dyu,
between x and ¥(v). By (5.4), its length is less than 1/10. Let us lift x to a
path £ taking values in E"(z), starting from 0 and such that kK = ¥ o &, as
long as & stays in B(0,1/2).

While #(t) is defined, by (5.1) we have [|&'(¢)]|, < 2||&'(¢)[,(;). Integrating
this inequality from 0 to ¢, we get

Ol = | [ #ear| < [ER@lar<2 [ R0
< 2length(k) §$1/5.

X
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Therefore, #(t) stays in B(0,1/2), and the lifting process may be continued
up to t = 1, where £(1) = v. We get |[v||, < 2length(x). Hence, [jv], <
2dyu(z, ¥(v)), proving (5.5). O

5.2. C* norm and partitions of unity. When (E,||-||) is a normed vector
space and f is a C* function on an open subset of E, let c(f) be the supremum
of the quantities | D f(x;vy,...,v;)| for z in the domain of f and vy,..., vy
tangent vectors at x of norm at most 1.

If an affine manifold has a Finsler metric, we can define the ¢j coefficients
of a function in the same way, using the affine structure to define the k-th dif-
ferential at every point and the Finsler metric to measure the tangent vectors.
Note that the (possibly nonsmooth) variation of the Finsler metric from point-
to-point plays no role in this definition since it only uses the Finsler metric at
a fixed point. Those coefficients behave well under the composition with affine
maps.

We can then define the C*¥-norm of a function by || f| . = Z?:o ci(f).
When we say that a function is C* on a noncompact space, we really mean
that its C*-norm is finite.

Remark 5.7. There are several more general situations where this defi-
nition has a natural extension. Consider for example the following case: W
is an affine submanifold of an affine Finsler manifold Z, and v is a vector
field defined on W (but pointing in any direction in Z). Then, for x € W
and vy,...,vx € TW, the k-th differential D¥v(z;vy,. .., vg) is well defined
and belongs to the normed vector space 7,Z. We can therefore define c(v)
K for x € W and

as the supremum of the quantities HDkv(x;vl,...,vk)’

VL, € W owith lvif], < 1. Finally, we set [[v]|ox = Z?ZOCj(U) as
above.

Note, however, that there are several situations where it is not possible to
canonically define a C*-norm as above. For instance, on a general Finsler man-
ifold, there is no canonical connection, and therefore D* f is not well defined.
In the same way, in Remark 5.7, if W is not affine or if Z is not affine, then we
cannot define ||v||-x. Of course, in a compact subset of W, one could choose
charts to define such a norm, but it would depend on the choice of the charts
— the equivalence class of the C*-norm is well defined, but the C*-norm itself
is not. Further on, we will need to control constants precisely, and it will be
very important for us to have a canonical norm.

Now consider an admissible measure fi, supported on a manifold X. Since
the local unstable manifolds W*(z) are affine manifolds, the previous discus-
sion applies to them.
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The next proposition constructs good partitions of unity on pieces of such
unstable manifolds.

PROPOSITION 5.8. There exists a constant C' with the following property.
Let W be a compact subset of an unstable leaf W"(x). Then there exist finitely
many C* functions (p;)icy on W*(x), taking values in [0,1], with > p; = 1
on W, S pi = 0 outside of {y € W*(z) : dwu(y, W) < 1/200}, and each p;
is supported in a ball Wlu/Qoo(xi) for some x; € W. Moreover, we can ensure
that ci(p;) < C(K')?, and every point of W¥(x) belongs to at most C sets
W1u/200<1‘i).

The precise bound C(k!)? is not important for the applications we have
in mind; what really matters is that we have a bound depending only on k,
uniform in x.

Proof. By Proposition 5.3, the norm ||-||, is slowly varying in the sense
of [Hor03, Def. 1.4.7]. Applying Theorem 1.4.10 there to the sequence d =
¢/k3/? for some ¢ > 0, we get a sequence of functions p; satisfying the conclusion
of our proposition. They satisfy cx(p;) < CF(k!)3/? for a constant C depending
only on the dimension, so cx(p;) < C’(k!)? and, moreover, the assertions on
the support are also satisfied. Omne should only be a little careful since the
supports in [H6r03, Th. 1.4.10] are controlled in terms of fixed norms |-||,,
while our conclusion deals with the Finsler metric dy«. Since Proposition 5.3
shows that they are uniformly equivalent in small neighborhoods of the points,
this is not an issue. O

The next lemma is a particular case of Proposition 5.8 (obtained by letting
W = W1u/200($)) and will be needed later on.

LEMMA 5.9. There exists a constant C' with the following property. For
any x € X, there exists a function p on W"(x), supported in Wlu/mo(ac)7 taking

values in [0,1], equal to 1 on 1“/200(@, with ci,(p) < C(k)2.

The interest of this lemma is, again, that the estimates are uniform in z
while this point lives in a noncompact space.

In the next statement, we do not use the distance induced by the Finsler
metric on unstable manifolds, but the global distance. Since the previous
arguments only rely on Proposition 5.5, which is satisfied in W* as well as in
the whole space, this lemma follows again from the same techniques.

LEMMA 5.10. There exists a constant C with the following property. Let
F : Teich — [1,00) be a function such that |log F(x) — log F'(y)| < d(x,y) for
any x,y € Teich. For anyV > 1, there exists a C* function py : Teich — [0, 1]
such that py(x) = 1 if F(z) <V and py(x) = 0 if F(x) > 2V, satisfying
Ck(pv) < C(k')z
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6. Recurrence estimates

Our goal in this section is to prove the following exponential recurrence
estimate. Consider an admissible measure fi with its affine local product struc-
ture, supported on a submanifold X. If x is a translation surface, let sys(x)
be its systole, i.e., the length of the shortest saddle connection in x, and let
V(x) = max(1/sys(z), 1).

PROPOSITION 6.1. Let § € (0,1/4). There exists C > 0 such that, for
any x € X and any t > 0,

1 / —(1-26)¢
—ra V(gy) dpu(y) < Ce™ V(z)+C.
MU(W1/100($)) Wl“/mo(x

Moreover, the function log V' is 1-Lipschitz for the Finsler norm of the previous
section.

We will use the following lemma, which is due to Eskin-Masur [EMO01] and
Athreya [Ath06]. (The order of quantifiers in our statement corrects a mistake

in Athreya’s Lemma 2.10.) The function V5(t) is a linear combination (with
coefficients depending on ¢ and t) of the function V' and of similar functions
taking into account higher complexity complexes.

LEMMA 6.2. Fiz a neighborhood V of the identity in SL(2,R). For every
0 > 0, there exists C > 0 such that, for all t > 0, there exist a function
V5(t) : Teich — [1,00) and a scalar b(t) > 0 satisfying the following property.
For all © € Teichy,

27
/ VO (giko) d8 < Ce= =YD () 1 ().
0

Moreover,
(6.1) V2 (g) < OV ()

for all x € Teich and all g € V. Finally, there exists a constant Cs; such that
Vi)V €[G5 Csal.

In the next lemma, we transfer the previous estimate on circle averages
to estimates on horocycle averages.

LEMMA 6.3. For every 6 > 0, there exists C' such that, for any large
enough t, there exists b(t) > 0 such that, for any x € Teichy,

1
/ VO (gehe) dr < Ce= =99 (2) 4 b(t).
0

Proof. Using the decomposition AN K of SL(2,R), we can write uniquely

hy = gr(ryhi@r)ko(r), Where the functions 7, 7 and 6 depend smoothly on r. One
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easily checks that ¢'(0) # 0. In particular, if n is large enough, r — 0(r) is a
diffeomorphism on [0,1/n]. Using the commutation relation g hz = ho—2-39-,
we get

V0O gy = [V (gugohekor) d
k) (gt Tx> r 0 § (gth T 9.%') r

Yo
— A V;S (h;e_g(t.,_T)ngtkg.T})dT.

0

By (6.1), this is bounded by

Y _ (t) 1y
C Vs (gikex)dr = C Vs (gekux)(077) (u) du
0 6(10,1/n])
27
<C ; V(S(t) (gtkyx) du

< Ce =0y () £ b(1).

Therefore,
L =M
/ Vs (gthrx) dr = Z/ Vs (gthrhj/nx) dr
n—1
<3 Cem U=ty () + b(t).
j=0
With (6.1), this gives the conclusion of the lemma. O

LEMMA 6.4. For every § > 0, there exist C' and T such that, for anyt > 0
and any x € Teichy,

1
(6.2) /0 VD (gehyr) drr < Ce= =20ty (2) 4 O

The difference with the previous lemma is that we obtain a result valid
for all times, with constants independent of the time (while b depends on ¢ in
the statement of Lemma 6.3).

Proof. Let us fix 7 and b such that, for every x € Teichy,

1 1
(6.3) / V(;(T) (grhrx)dr < 67(1725)7—/ Va(T)(hra:) +b.
0 0

Their existence follows from Lemma 6.3 and (6.1). We can also assume that
€7 is a (large) integer N.
Let us now prove that, for all n € N,

1 1
(6.4) / VA (g yrhr) dr < e~ (17207 / Vi (gurhyz) dr +b.
0 0
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A geometric series then shows (6.2) for times of the form n7, and the general
result follows from (6.1).

To prove (6.4), write gp,q1)rhr = grgnrhr = grheanrpgnr with enT =
N™ = M. Then, writing ' = Mr,

1 (T) l/M
/0 V;S n—i—l)Th T d?"— Z / g(n+1) h h]/Mx)
M-1 .1/M
- Z/ V(S( )(gThMTgnThj/Mw) dr

1
/0 V(S(T) (grhr’gnrhj/Mx) dr’

|
<

1
(e—(l—Qé)T/O V;;(T)(hrfgnfhj/Ml‘) dr’ + b) :

where the last inequality follows from (6.3) applied to the point gn-h; .
Changing variables in the opposite direction again, we get (6.4). ([

Proof of Proposition 6.1. The log-smoothness of V' readily follows from
the fact that logsys is 1-Lipschitz by [AGY06, Lemma 2.12].

Let 7 be given by Lemma 6.4. Since V is within a multiplicative constant
of V:;(T), it also satisfies the inequality (6.2) (with a different constant C').

Fix r € [0,1/100]. Since p,, is invariant under h,.,

/ V(gey) dpu(y) = / V(gthrh—ry) dppu(y)
Wlu/loo(z) Wlu/loo(x
= Vigh2)dpa(2) < | Vigihe2) dua(2)
h— Wl/lOO( ) Wiu/5()(z)

Averaging over r, we get

/
/ ) V(gry) dp(y) < 100 /1 100/ V(gthrz) dpy(z) dr

1/100( z) 1/50(95

<100 (/ V(gthrz) dr> dpy(2).
1/50
This is bounded by uu(Wlu/E)o(:c))(C’e_(l_Q‘S)tV(x) + (), using (6.2) for V and
the fact that V(2)/V () is uniformly bounded for all z € W1“/50( x) (since log V'
is Lipschitz). The result follows since the measures of W1“/50( x) and W} /100( x)
are comparable by Corollary 5.4. O
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7. Distributional coefficients

In this section, we introduce a distributional norm on smooth functions,
similar in many respects to the norms introduced in [GLO06]. (The differences
are the control at infinity, and the fact that we only use vector fields pointing in
the stable direction or the flow direction — this is simpler than the approach
of [GL06] and is made possible here by the smooth structure of the stable
foliation.) Let us fix fi an admissible measure with its affine local product
structure, supported by a manifold X. Also let 6 > 0 be a fixed small number,
as in the previous section. We recall that w(zx) = 0g¢(x)/0t|t=o is the unit
vector field tangent to the flow g;.

Consider a smooth vector field v* on a piece of unstable manifold W00 ()
such that for every y € Wlu/loo(x)v v3(y) € E*(y). We can define its ¢ coef-
ficients as in Remark 5.7. For a vector field v*(y) = ¥ (y)w(y) defined on
Wi%100(), we let its ¢ coefficient be ck(1)). The definitions of [|v*||cx and
[v“|| o follow. Let us stress that these definitions only involve base points
that are located on an unstable manifold. This implies that these norms be-
have well under g_;, which is contracting along such an unstable manifold, and
is at the heart of the proof of Lemma 8.2 below.

We want to use such vector fields to differentiate functions, several times.
However, the Lie derivative L,, Ly, f of a function f can only be defined if L,,, f
is defined on an open set, which means that vs has to be defined on an open
set. Therefore, we will need to extend the above vector fields to whole open
sets, as follows.

Consider first a smooth vector field v* on Wlu/loo(x), pointing everywhere
in the stable direction. We will now construct an extension v of v® to a
neighborhood of Wf/mo(x) in X.

For y € W) 4 (x), the stable manifold W#(y) is affine, its tangent space is
everywhere equal to E*(y), and we may therefore define v3(z) = v*(y) for z €
W#(y). This extended vector field is still tangent to the direction E*. Finally,
for small ¢, we define v¥(g;2) = Dg.(z) - v5(2); i.e., we push the vector field by
g¢. Since g; sends stable direction to stable direction, v® is everywhere tangent
to the stable direction. Since the unstable direction, the stable direction, and
the flow direction are transverse at every point, we can uniquely parametrize
a point in a neighborhood of W{J/Qoo(x) as g¢(z) for some z € Wi(y), y €
Wi 200+ (). This defines the extension of v°.

If v is a vector field along 1“/100(3;) pointing everywhere in the flow
direction, we can also define an extension v* as follows. Along W%, write
v9(y) = ¥(y)w(y), where the function v is smooth. Let v¥(g;2) = ¥ (y)w(g:2)
for z € W2(y), as above. This defines a smooth vector field extending v“ as
desired.
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For k¢ € N, o € {s,w}’, and 2 € X, we can now define a distributional
coefficient of the C* function f at z, as follows (the function V has been
defined before Proposition 6.1):

1 1
‘[(x)liu(v®?7zoo(m))

where the supremum is over all compactly supported functions ¢ : I/VI“/200 (z)
— C with ||¢||cree < 1, and all vector fields vy, ..., v, defined on Wlu/loo(x)
such that v;j(y) € E*(y) if o;j = s and v;(y) € Rw(y) if o = w, and
HUjHCkJrHI(Wf/lOO(m)) < 1. Note that the domain of definition of the vector

(7.1) erpalfiz) = sup

/ 6 Lor--- Lo f dptal
WU

1/200(x)

fields is larger than the domain of integration in (7.1) — this will be useful
for extension purposes below. Note also that we use the Lie derivative with
respect to the extended vector fields v;, but the norm requirements on the
vector fields v; are only along W*" and not in the transverse direction.

Define ey ¢o(f) = sup, expa(f;7). Let ero(f) = Yacqswit ehealf) Fi-
nally, let

(7.2) 1l = sup exe(f).
0<t<k

Remark 7.1. If f; € D', then we have the estimate
J o P < CUPewolh) < CON SN S €D

where C(f1) depends on the support of f; as well as its C*-norm therein. This
is readily obtained by decomposing f1 as a sum of finitely many functions with
small support (using partitions of unity), locally using the disintegration of
along local unstable manifolds, and applying the definition of ey to bound
the integrals along those.

We will also need a weaker norm, which we denote by |-||%., given by

/ 6 Lo Lof djra) |
W’LL

17200(%

1 1
(7.3) £l = sup
b= V) (W (@)
where the supremum is over 0 < ¢ < k — 1, over all points z € X, all com-
pactly supported functions ¢ : Wi)yo(z) — C with [|¢[|cres < 1, and all
vector fields vq,...,v, defined on Wlu/loo(x) and pointing either in the stable

direction or in the flow direction, such that ||'Uj||ck+g+1(w )y < 1. Apart
1

w ({E
/100
from constants, the difference with the norm || |, is that we allow less deriva-

tives (at most k — 1 instead of k) and that the test function ¢ has one more
degree of smoothness. (It is in C¥T*+1 instead of C¥*%.) Therefore, the norm
| f||} is weaker in all directions than the norm ||f|,. Hence, the following
compactness result is not surprising.
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PROPOSITION 7.2. Let K be a compact set mod I, and let k € N. Let f,
be a sequence of functions in DY, supported in K, and with ||f,||, < 1. Then
there exists a subsequence fj(,) that is Cauchy for the norm 115

In other words, if we work with the completions of the spaces, then the
unit ball for the norm ||-||,, is relatively compact for the norm |-}, if we consider
only functions on X/I" that are supported in a fixed compact set.

The rest of this subsection is devoted to the proof of this proposition. (It
is similar to the proof of Lemma 2.1 in [GL06].) We will need a preliminary
lemma.

For any r, let us fix a C"-norm on the functions supported in K, such
that this norm is I'-invariant. Such a norm is not canonically defined, but this
will not be a problem in the statements or results to follow since multiplicative
constants do not matter.

LEMMA 7.3. There exists a constant C(k,¢,K) such that any smooth
function f supported in K satisfies the following property. For any x € K,
any C** vector fields vy, ..., vy defined on a neighborhood of Wlu/loo(x) with

lvjllcese < 1, and any CF* function ¢, compactly supported on Wlu/QOO(:L')
with 9]l ges < 1,

[ oL Lufdu] <CY o).
W1u/200($) <t
The interest of this lemma is that the vector fields v; can be any vector
fields, not only canonical extensions of vector fields pointing in the stable
direction or in the flow direction. Moreover, we also weaken the smoothness
of the vector fields vj, requiring them only to be C*¢ instead of C*++1.

Proof. We prove the statement of the lemma by induction on £. For £ = 0,
this is clear from the definitions. Let us decompose the vector field v; as
v} +v] + 07 where those three components point, respectively, in the unstable
direction, in the stable direction, and in the flow direction. Along Wlu/loo(x),
decomposing v along some coordinates vector fields, we can write it as a linear
combination of vector fields of the form 1jwj, where ¢{ is a function bounded in
C* and wy is a C™ vector field with ||w§|| qkses1 < C. To simplify notations,
we will omit a summation and assume that we can write v5(y) = ¥ (y)w; (y).
In the same way, we write v{(y) = ¥ (y)w(y) where |[¢¢|oese < C. For
convenience, we introduce the notation w{ = w.

Let g = Ly, ... Ly, f. Since L,, g only depends on the value of the vector
field v; (and not its derivatives), we have, along Wf/mo(:c), Ly g = Lyrg +
waw—fg + WfLWg- Moreover,

/u ( QZ)'Lv“fgd/‘u:_/u ()Lvi‘gb'gd,uua

1/200 1/200
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which is bounded by C Y p<p_; er e (f) by the induction hypothesis since the
function Lyu¢ is CFH=1 and is multiplied by ¢ — 1 derivatives of f against
CHFH=1 yector fields.

It remains to bound foL/%o(f) PYS - LwlTlLv2 “++ Ly, f dpy, for some oy €

{s,w}. Let us exchange the vector fields to put LF in the last position.
1

Since [Ly, L] = Ly 4, the error we make is bounded by the integral of a Ck+t
function multiplied by ¢ — 1 derivatives of f against C*¢~1 vector fields. By
the induction hypothesis, this is again bounded by C' > <y ex ¢ (f).

It remains to bound fW1u/200(x) AU Ly, -+ LwLwlTlf dTu,H. In the same way

as above, we decompose vy into its unstable, stable, and flow part, integrate
by parts to get rid of the unstable part, and exchange the vector fields to put
the remaining parts of v at the end. Iterating this process ¢ times, we end up
with an estimate

¢' Lv1 L’L)efd:u”u,

W 200(®)

<C Z ere(f)+C sup

0<0—1 aE{s,w}e

/W“ U I

1/200(x)

.. LWf dll,éu .

wi?t
By construction, the vector fields w?j are canonical extensions of C*+*1 vector
fields defined along W1u/200<l’) and pointing in the stable or flow direction.
Therefore, the latter integrals are bounded by Cey ¢(f) by definition of this
coefficient. 0

Proof of Proposition 7.2. The first step of the proof is to show that to
estimate | f||}, it is sufficient to work with finitely many unstable manifolds.
More precisely, we will show that, for any ¢ > 0, there exist finitely many
points (x;);er such that, for any function f supported in K and I'-invariant,

(T4 SIS Celfl+Cmp| [ 6 Luye Luf d

f/zoo(zi)

where the supremum is taken over all 0 < ¢ < k — 1, all ¢ € I, all functions
¢ compactly supported on Wf/zoo(xi)v and all vector fields v; defined in some

fixed neighborhood U; of Wy, (;) with C*++1norm bounded by 1.

Since K/I' is compact, it is sufficient to show that integrals along the
unstable manifold of a point z; can be controlled by similar integrals along the
unstable manifold of a nearby point x¢. Let zg, 1 be two nearby points in K
(so that their unstable spaces E*(z¢) and E"(z1) are also close). Consider a
smooth path z; from zy to z; and a smooth family of maps sending E"(zg)
to E"(z;). Locally parametrizing the (affine) unstable manifold of the point
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x; by its tangent space (by the map W¥,, introduced before Proposition 5.3),
we obtain a family of affine maps ®; : Wy)5q(z0) — W*(z) with &y = id,
which we extend smoothly to diffeomorphisms defined on a neighborhood of

W1u/50 ((EQ)
Fix 0 < ¢ < k —1 and consider a C*+¢*+1 function ¢ compactly supported
on W j50(x1) and C*++1 vector fields vy, . . . , v along Wi 50(21), each of them

pointing either in the stable direction or in the flow direction, with Ck+¢+1
norm bounded by 1. We want to bound the integral

I =/ 6 Lo Lz f A,
Wu(zy)

using data along W*"(x).
For each ¢, we define vector fields v}f. on a neighborhood of VVlu/75 (z¢) by

v = (®1)*75, and v} = (P;).v}. Letting J; € (0,+00) be the jacobian of ®;

from W*(zg) to W"(x;), we can rewrite I; as a sum of two terms
11:/ ¢O(I)1-Lvo-'-Lvo(fo(I)l)Jld,uu
W (zo) ! ¢

= ¢po®y-Lyo---Lyof-Jidu,
Wu(xo) 1 4

1
+/ a(/ (Z)OCI)l-Lvo---Lvo(fO(I)t)'Jld,uu>dt.
t=0 Ot \Jwu(zo) 1 ¢

The first term is bounded by the second term in the right-hand side of (7.4).
Writing wy = (0®;/t) o &', the integrand of the second term at fixed ¢ is

[ 0@ Ly Lig((Lunf) o®0) - T
W (zo) £

= po®yo®, - Lyt LyLy,f-Jio®  Jt duy.
Wu(ilft) 1 4

This is an integral along an unstable manifold of a C*T*+1 function multiplied
by £+ 1 derivatives of f against C*T¢+1 vector fields. By Lemma 7.3 (applied
to £ = £ + 1, which is licit since £ < k by assumption), this is bounded in
terms of || f||,. Moreover, if 29 and z; are close enough, the C****1norm of
the vector field w; is arbitrarily small, and we get that this integral is bounded
by Ce || f||;,- Putting together the two terms, we see that I is bounded by the
right-hand side of (7.4). Up to constants (which do depend on K), the norm
Ilf ||;g is defined using integrals similar to I;, but where ¢ is allowed to have a
larger support Wf/QOO(:Ul) and the v; may have a smaller domain of definition
Wlu/loo(xl)‘ However, this is not a problem since those more general integrals
can be decomposed as sums of a bounded number of integrals like Iy, using
partitions of unity. This concludes the proof of (7.4).
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It is now easy to conclude the proof. Fix smooth bump functions p;
compactly supported in ¢; (the domain of definition of the v; in (7.4)) and equal
to 1 in a neighborhood of Wlu/mo(a:i). Since C*++1 is compactly included in
Ck+¢_ for each x;, i € I, we can choose finitely many functions ®m,i compactly
supported in Wf‘/200($i) and finitely many vector fields v;,, ; defined in U; such
that for all functions ¢ and vector fields v; that are bounded by 1 in Ck+(+1,
there exists m such that ¢ and p;v; are e-close to ¢, ; and p;vj ., in Ck+,
By Lemma 7.3, with (7.4) this gives

£l < C'elfll; + sup

7,m

/ Qsm,i : Lvl,m,i Tt va,myifd/j/u .

WIU/QOO(xi)

Now consider a sequence f, with || f,|/, < 1. We extract a subsequence
Jj(n) @long which all the finitely many quantities

w ¢m77: ’ LUl,m,i T Lvl,m,ifj(n) d/’Lu
wi /zoo(xi)
/
. < 2C’¢. Letting ¢
tend to 0 and using a standard diagonal argument, we get the required Cauchy
sequence. ([

converge. It follows that limsup,, /. Hfj(n) — fim)

8. A good bound on the essential spectral radius of M

Let i be an admissible measure with its affine local product structure,
supported by a submanifold X of Teich;. In this section, we prove Theorem 3.2.
As in the statement of this theorem, let us write M f = [>, e %L, f dt (to be
interpreted as explained in Section 3.2), where § > 0 is fixed and L.f = f o g;.

To prove Theorem 3.2, we have to construct a good norm on D'. It turns
out that the norms ||-||, that we have constructed in the previous section in (7.2)
are suitable for this purpose. The following statement contains Theorem 3.2
(also see Remark 7.1).

THEOREM 8.1. For all k, there exists C' > 0 such that || Lf]|, < C || fllx,
uniformly in t > 0. Therefore, M acts continuously on the completion of D¥
for the norm ||-||,.

Moreover, if k is large enough, then the essential spectral radius of M on
this space is at most 1 + 9.

This section is devoted to the proof of this result. Until the end of its proof,
we will always specify if a constant depends on k, by using a subscript as in
C). Most constants will be independent of k, and this will be very important
for the argument since k£ will be chosen only at the very end of the proof.

For technical reasons, it is convenient to work with another norm that is
equivalent to ||-[[,. For A > 1, let us first define a norm equivalent to |||,
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by [Ifllen = Shoo¢i(£)/(G147). Since ¢;(fg) < Xh—o (2)em(f)cj—m(g), it
follows that HngCf‘ < Hqu3 HgHCﬁ. Moreover, for any fixed C* function f
and any € > 0, if A is large enough, then Hf”Cf; < (1+4¢)sup|f|. Let us define
e?’&a(f; z) like g .o (f; ) in (7.1), but replacing the requirements ||¢|| su+e < 1
and [|vj]| qkee1 < 1 (for the supremum taken in (7.1)) by ”¢"C§+Z < 1 and
foyllesresn < 1.

We will need to deal separately with the case where all the vector fields in
the definition of eﬁ ¢,o POINt in the stable direction and the case where at least
one vector field points in the flow direction. Therefore, let us define e‘,: 0 S(fiz)
= eﬁ&{sw,s}(f;x) and eﬁ7£7w(f;x) = sup e’,?’&a(f;x), where the supremum is
over all o € {s,w}’ different from {s,...,s}. Let e,‘?’gvs(f) = sup, e‘,?’&s(f;x)
and similarly for eﬁ&w(f). For B > 1, let ||f| f”sB =%, B_Zeﬁe,s(f) and
similarly for HfH,?f Finally, let Hf”?’B = Hf”ﬁ’sB + HfH?f This norm is
equivalent to || f||,, but more convenient for a lot of inequalities.

7

In the statements below, when we say “for all large enough A, B...,” we
mean: if A is large enough, then, if B is large enough (possibly depending
on A), then.... The assumption “for all large enough k, A, B” should be
interpreted in the same way.

We now start the proof. Some arguments are borrowed from [GL06]. We
write D for the set of C°*° functions supported in a compact set mod I'. It
contains the previously defined set DU of functions in D that are I'-invariant.

LEMMA 8.2. There exists a constant Cy > 1 satisfying the following prop-
erty. For every k,0 € N and every a € {s,w}t, if A is large enough, then for
everyt > 0, every f € D, and every x € X,

(8.1) et palfogsa) < Coeitpo(f) (72 4 1/V ().

Proof. We first give the proof for £ = 0. Fix some point x, and fix some
compactly supported function ¢ : Wi, (x) — C with HQSHC,’Z < 1. We want to

estimate fWu/ (@) o(y)- foge(y) dpy(y). We change variables, letting z = g4(y).
1/200

By Proposition 4.1, the resulting jacobian has the form e~% for some d > 0.
The integral becomes an integral over 9t(W1u/200 (z)). Proposition 5.8 provides
a partition of unity (p;);er on this set, with good properties. In particular, p;

is supported in a ball 1“/200(a:i). The integral becomes

S [ el ) SR e dpl),
i Wlu/zoo(xi)

Since g is affinely contracting along W*, [[¢ 0 g—¢[lcx < [[¢llcr < 1. There-

fore, the CX-norm of p; - ¢ 0 g_; is bounded by HpiHCf" If A is large enough,

this is at most 2 (since the coefficients ¢,, of p;, for 1 < m < k, are uniformly
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bounded by Proposition 5.8). Given the definition

1 1

A

ej.o(f) = sup sup " / Y f At
yeX ||¢||C§(Wf/200(y))§1 V(y) ILLU( fl/200<y)) Wiu/goo(y)

it follows that the above integral is bounded by

(8.2) Z Ce‘/io(f)v(l“i)ﬂu(Wft/Qoo(fUi))e_dt

<celeNY [ |

1/200(‘“

: V(z) e dpy(2)

since log V' is Lipschitz by Proposition 6.1. The covering multiplicity of the
sets Wlu/QOO(xi) is uniformly bounded, by Proposition 5.8. Moreover, all those
sets are included in {z : d(z, g+( f‘/zoo(aj))) <'1/200}, which is itself included
in gt(T/Vlu/lo0 (x)) since g_; contracts the distance along W*. Therefore, (8.2) is
bounded by

Celo(h) | VE) e (e = Cebolf) [ Vi) duuty)
gt(WfL/wo(x)) Wlu/loo(x)

By Proposition 6.1, this is bounded by
Ceito (W00 (@) (e T2V (@) + 1),

Finally,
1 1
. le) d u
Er el SR AL
W(W
< Cefo(HE (Wij1o0(2)) (em =2 4 1/V ().

HU(W{J/QOO(J:))
The ratio of the measures is bounded, by Corollary 5.4. This proves (8.1) when
¢=0.
Now assume ¢ > 0. We have to estimate
(8.3) / 6 Lux- Lus(f 0 91) dbta,
W 900(®)

where the vector fields v; are defined on W7o, (z), satisfy [[v; || kit < 1, and
point in the direction E* or Rw. Consider a function p equal to 1 in W'y, (z)
and compactly supported in Wf/loo(:c) (as constructed in Lemma 5.9), and de-
fine a new vector field v;; = p-v;. It coincides with v; on W1u/200<m)- Therefore
the integral (8.3) can also be written using v;; instead of v;. Moreover, if A

is large enough, the definition of the Cﬁ+£+1—norm ensures that

[vjllgrer = llo-vjllgrren < llollgrrern lvjllgreers < 21/t
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Let wj = (g¢)«vj,1. Since the extension w; is defined using the affine
structure and the flow direction, which are invariant under the affine flow ¢,
it follows that w; = (g¢)«v;1. Therefore,

Lz L (f o 91)(y) = L -+ L f(91y)-

We claim that the vector fields w; are bounded by 21/¢ in C’ff”l. (Even
better, ¢, (w;) < ¢m(vj1) for all m.) We can then proceed as in the £ = 0
case, simply getting an additional error factor equal to ngl |w;l prrerr < 2.
A
One should pay attention to the fact that, with the above definition, the vector
fields w; are not always defined on all the balls W, 1g9(x;) for those x; that
are close to the boundary of g;(W a00(z)). This is not a problem since w;
is compactly supported in g;(W;100(x)) by construction. One may therefore
extend it by 0 wherever it is not defined. (This is why we had to use v;; and
not v; in this construction.)

It remains to check the formula ¢, (w;) < ¢ (vj1). It comes from the fact
that the definition of ¢,, only involves differentiation along directions in W*
and that g_; is contracting along this manifold. If a; = w, i.e., v; points in the
flow direction, this estimate is straightforward. Let us therefore assume that
aj = s, i.e., v; points in the stable direction. Consider a point z in the domain
of definition of w;, and m vectors u1, ..., u,, at that point which are tangent
to W"(x), with [Ju,||, < 1. Write y = g_4z. We get

D™Mwji(zu1,. .., Uy) = e_tDmvj,l(g,tz; Dg_i(z) - ui,...,Dg—¢(2) - ).
Therefore,
D™y (25t )y = € 1™ 051 (94 Dg () s, Dg () )
< e fem(vjn) [ Dg—e(2)uall, - [ Dg—t(2)uml, -

Since the differential Dg_;(z) contracts in the direction of W* by Lemma 5.2,
we have ||[Dg_i(2)unll, < [lunl|, < 1. This yields

(8.4) D™ w;(z;un, -y um)ll, < e em(vi).

We are interested in bounding || D™ w;(z;u1,. .., um)|,. Since d(y,z) < |t| by
Lemma 5.1, Proposition 5.5 shows that the ratio between ||-|[, and |-, is at
most e’. This cancels the factor e~ in (8.4), and we get the conclusion. [

COROLLARY 8.3. For every k € N, for every large enough A and B, for
every t > 0 and every f € D, we have || f o g ?’B < 2C) Hf||?’B

Proof. The function V is bounded from below by 1. Taking the supremum
over x in (8.1), we get eé&a(f ogt) < 2006737&04“)- The result follows from the

definition of the ||'||?’B norm. O
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It follows from this corollary that we can define the operator M on DL.
Let N € N. We will study the norm of M. We have

tN_l

8.5 Nf=| e, fdt.
( ) M f o (N—l)'e tf

A,B A,B

We will estimate differently the contributions HMN f N and HMN f ’ N
W ,8
A,B

to HMNf’ L Let us first deal with the former.

LEMMA 8.4. For any N € N, for any k, if A and B are large enough, we
have

w27 < scosite

Proof. We will prove that, for any N, k, /¢, and A sufficiently large, there
exists a constant C ¢ 4 such that

(8.6) oMY F) < Cnpea Y eino(f) +4Coei(f).
<t

Taking B much larger than all Cy ¢ 4 for 0 < £ < k, this directly implies the
statement of the lemma.
N—
Let us fix N, k, ¢, A. We split MY as the sum of M; := fOD &7_11)!6*4&& dt

and My := [’ %6*4&£t dt, where D is suitably large.

Lemma 8.2 shows that eﬁz’w(ﬁtf) < 20061?,6,“;(]0)- Hence, if D is large
enough (depending on N), we have eﬁéﬁw(/\/lgf) < Coe’,;"e’w(f). The term My
is therefore not a problem to prove (8.6).

Let us handle M;. Consider first a point z such that V(z) > ¢(1=20)P,
For such a point z, Lemma 8.2 gives eé&w(ﬁtf;x) < 2Coeﬁ£7w(f)e*(1*25)t for
t < D. In particular,

D 4N-1

A . —45t A .
CtwMifiz) < /t:O o €orw(Lefix)dt

D tN_l
<26y [ e el (1)e 0 dE < 2C0efl o)
since [, %e*(lwé)t dt < [[Z, %e*t dt = 1. This concludes the proof
for such points =x.

It remains to consider points z with V (z) < e(1=2)P_ This set is very large
if D is large, but it is compact mod I'. Fix such a point x. We have to estimate
integrals of the form bem(x) ¢ - Ly - - - Lyy(M1 f) Ay, where H(f)HCT@ <1
and [|vj| sk+e+1 < 1, and at least one of the vector fields v; points in the flow

A

direction.
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To begin, assume that the last vector field vy points in the flow direction;
ie., v(y) = Y(y)w(y) for some function ¢ with H'Lb”czuﬂ < 1. In the ex-
pression Ly - - - Ly (¥ Ly, (M1 f)), if we use at least one of the Lie derivatives
to differentiate 1), we obtain a term bounded by C](;7£7Ae;€47€l (M f) for some
¢" < {. This is bounded by CN,k,E,A,Deﬁgl(f) by Lemma 8.2. This error term is
compatible with (8.6). The remaining term is ¢ Ly - - - Liy— (Lo (M1 f)). Since
Mif = [P h(t)Lef dt for some smooth function h, we have L,(Mif) =
h(D)Lpf — h(0)f — ftgo h'(t)L¢f dt. Therefore, the integral we are studying
can be bounded in terms of ¢ — 1 derivatives of f (or images of f under oper-
ators Ly, which are controlled in terms of f thanks to Lemma 8.2), and this is
bounded by CN,k,&A’De,‘igfl(f). This error term is again compatible with (8.6).

Assume now that one of the vector fields v; points in the flow direction,
but that it is not necessarily the last one. We can exchange the vector fields
to put the vector field v; in the last position and conclude as above. Since
[Lawy s Luws] = Ljwy ws)» the additional error corresponds to the integration of
¢ — 1 derivatives of M f against a C**¢ function, but one of the vector fields
is not the canonical extension of a vector field defined on W1u/100(33)~ Since we
work in the set {V < e(1=29P1 which is compact mod T', Lemma 7.3 shows
that this error is bounded in terms of supy,ex ¢ (f) and is again compatible
with (8.6). O

A’B . . .
It remains to study HMN fHk , for which the above integration by parts
,8
trick does not work. Note, however, that contrary to the flow direction, the
stable direction is (nonuniformly) contracted by the flow — this is at the heart
,é’é,B if ¢ is large enough.
A,B
This will readily give estimates for HMN fHk by (8.5).
,S

Let us fix some constants. First, we recall that Cy has been defined in
Lemma 8.2. Let Ty > 0 be large enough so that 40C,; < €. Let 1V =
2¢2(1-9)T0 and define

of the following computations. We will estimate ||Lf|

(8.7) K = {z € Teich; : V(z) < 4VpeT0}.

This set is compact mod I'. Finally, applying Proposition 4.3 to K, we get a
time T' = T'(K).

We will study the operator £,,1, for all n large enough so that nTy > T'/6.
By Lemma 5.10, we can define a C* function py, such that py,(z) = 1 if
V(z) < Vo and py, (z) = 0 if V() > 2Vh. Write ¢1 = py, and 12 = 1 — py so
that ¢1 412 = 1. We decompose L, (f) = L, (Y1 f) + L, (2 f) = L1f + Laf.
Therefore, Lnr, = > yeq1,2)n Ly Loy,

We first give a lemma ensuring that multiplication by py; or 1 — py; in the
definition of £; and Ly is not harmful, and then we will turn to the study of
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L., L, for v € {1,2}". In Lemma 8.6 we will handle the case where most
i are equal to 2 (i.e., most time is spent close to infinity, and we can use the
good recurrence estimates of Proposition 6.1). In Lemma 8.7 we will handle
the case where a definite proportion of the ~; is equal to 1 (i.e., some time is
spent in the compact set K, and we can take advantage of the hyperbolicity
of the flow there).

LEMMA 8.5. Letk € N, and letv : X — [0,1] be a C** function supported

in a compact set mod I'. If A and B are large enough, then for any f € D, we
A,B A,B
have |l fl < 31 f ks -

Proof. Let us prove that, for every k, ¢/ < k and every large enough A,
there exists a constant C}, ¢ 4 such that, for any f € D,
(8.8) Chs(VF) < 26005 (F) + Crea Y e o(F)-
o<t
The statement of the lemma follows directly from this estimate if B is much
larger than any of the Cj ¢ 4.
To estimate e;i 0 (¥ f), we have to compute integrals of the form

¢ Loy - Log(9 f) dpau,

W) 500()

where |[¢|| e+« <1 and vy, ..., v, have a CkH 1 _norm along Wi100(x) bounded
by 1. We ca?n use each Ly; to differentiate either ¢ or f. If we differentiate 1)
m times for some m > 0, we obtain an integral of £ —m derivatives of f against
a CF+f=™ function; hence this is bounded by Ce,‘f’e,ﬂs(f) for ¢/ = ¢ —m. (Note
that we are working in the lift of a compact subset of Teich; /T"; hence the

C**+*-norm of the extended vector fields T; is bounded.) The remaining term

is [¢p - Ly -+ Lypf. If A is large enough, ||¢¢||Cz+e < ||¢||Cz+z ||¢||C1:‘+z < 2;
hence this integral is bounded by 2e£ ¢.5(f)- We have proved (8.8). O

LEMMA 8.6. For every k,n € N, for every v € {1,2}", for every large
enough A, B, we have for every f € D,

N - A,B i o A
|2 | < (10Co)me =20 T2y | 8
Proof. Tt is sufficient to prove that
-~ |AB 5 |4B —(1—
1Lur| 7 < 10ColIfI? and ([ Zaf]| T < 10Coe 20T | | E

Since V' is bounded from below by 1, Lemma 8.2 shows that ||Lr, f ||?7’SB <
2C || fH?’SB if A is large enough. Therefore,

L], = emova NI < 2C0 low JIRS < 6Co 117

by Lemma 8.5, if A and B are large enough.

A,B
k,s
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We turn to Lof = L7, (1= py,)f). Let € X. Since log V' is 1-Lipschitz,
V(gr,y) < efoV(y) for ally. If V(x) < e~ 10V} /2, it follows that V (y) < e 101
on Wl/wo(x) and, therefore, that V(z) < V; on gTO(Wf/IOO(x)). Hence, 1 —
pv, = 0 on this set. The definition of eﬁas gives e,ﬁg,s(ﬁTO((l —pw)f);x) =0.
By Lemma 8.2, we therefore obtain

eites(Lr(L=pvp)f)) = sup ey (L (1= prp)f)i)
V(z)>e~ToVy/2

< sup Coepg (1= prp) ) (720 41/V ()
V(z)>e~ToVy/2

< Coefl o (1= pro) ) (707200 12T /1)

Taking into account the definition of ||-||?’;B and the equality 2¢7°/Vy =

e~ (172010 we obtain

122 (1 = pwo) f )H <200||(1—on)f||AB ~(-20)7,
Pl Il < 4Hf||;;‘B if A, B are

‘ < 8006 (1=26)To HfHAB as desired. O

By Lemma 8.5, [[(1 — puy) f

large enough. We obtain H,CQ f

We defined an auxiliary norm |-}, in (7.3).

LEMMA 8.7. Considery = (y1,...,%n) with #{i : v, =1} > T/Ty. Then,
for all k, if A and B are large enough,

- - AB B A
(89) ||y Lond|| T <272 36C0 | AT + Copoan N1 £l
where the function 1, is C°° and supported in a compact set mod I'.

The point of this lemma is that, if v is fixed, we can choose k very large
to make the first term in (8.9) arbitrarily small, while the second term gives a
compact contribution (thanks to Proposition 7.2), and it will therefore not be
an issue to control the essential spectral radius.

Proof. We can write /371 .. .E%f = Loty (Y f), where ¢ = by, =[]} 4,0
9—(n—j)T, 18 C*° and compactly supported.

To estimate eﬁ,z,s(ém ... L., f) for some 0 < £ < k, we should estimate
integrals of the form

(3.10) | 6 Lo Loy (60)) djn,
W1u/200(z)
where ||| kit < 1, the vector fields v; all point in the stable direction, and
ol < 1.
As in the proof of Lemma 8.2, we first replace v; by a compactly supported
vector field vj1 on Wi gq(), with HUJElHCj““ < 21/2 (assuming A is large
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enough). Let w; be the push-forward of v;; under g,7,, and let (p;)icr be a
partition of unity on gnr, (W1“/200 (x)) (cf. Proposition 5.8). The integral (8.10)
becomes

S [ w6 ) T L £) () e (),

iel Wf/200<xi)

Let I' C I be the set of i’s such that 1 is not identically zero on Wlu/mo(xi).
We claim that, for i € I, for all y € W{“L/Qoo(azi),

(8.11) Leb{s € [0,nTp] : g-s(y) € K} > T,

where K is defined in (8.7). Indeed, let z € f/%o(:z:i) satisfy 1(z) # 0. For all
J with v; = 1, we have 11 (9_(,—jy1,2) # 0, and therefore V(g_(,—j1,2) < 2Vp.
Since g_(,—j)y7, is a contraction along W*, we obtain V(g_¢,—j)r,y) < 4V for
any y € W{‘/Qoo(aci). For any s € [0, 7o), V(9-s9—(n-im¥) < €V (9—(n—jmy¥) <
eT04Vy; ie., 9-s9—(n—j)Toy € K. This implies that

Leb{s € [0,nTo] : g—s(y) € K} 2 To#{j : 7 =1},

which is greater than or equal to T', by the assumptions of the lemma. This
proves (8.11).

Fix now i € I'. We work along Wlu/200 (x;). Since g; is uniformly hyperbolic
along trajectories that spend a time at least 7" in K (by Proposition 4.3), we
have ¢ (¢ 0 g—n1y) < 27™em(¢) and cp(w;) < 27" ey (v)1). (Note that we
have a gain even for m = 0 since the vector itself is contracted by the differential
of gnr,.) This gives ||¢ o g—n1 || okt < & ke (there is no gain here at level

m = 0, so no gain overall) and |lw;||x+err < 27 o] prrers < 271/2 This
A A

1/2 with respect to the noncontracting situation of Lemma 8.2,

and after the same computations, we end up with

(8.12) €hts(Laty (W) < 2C0 - 27 Peily (0.

This gives a definite gain if £ is large. In particular, for £ = k, we obtain a gain
of 27%/2 as in the estimate (8.9) we are trying to prove. However, this is not
sufficient for smaller ¢. Assume now ¢ < k. We will regularize the function ¢
by convolution in this case to obtain a further gain.

gives a gain of 2~

Every norm in R% is equivalent to a Euclidean norm, up to a constant only
depending on d, (see, e.g., [H6r03, Lemma 1.4.3]). Hence, for any norm on R%
one can find a nonnegative function ¢ supported in B(0, 1), with integral 1 for
the Lebesgue measure giving unit mass to B(0,1), and with [|(||o1 < C(du).
For ¢ > 0, let (.(x) = e %((z/e). This function still has integral 1; it is
supported in B(0,¢) and ||{c||c1 < C(dy)e™ 4.

Consider the vector space E*(x) with the associated norm |-||,. As in
the previous paragraph, we construct from these data a family of functions (.,
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which we use to smoothen the function ¢ along W*(z). Let

B) = dey) = [ Sy +2)¢(~2)dz

where dz is Lebesgue measure giving volume 1 to the unit ball of E*(x) for
the norm ||-||,. We claim that this function satisfies, for ¢ < 1/(10(k + ¢+ 1)),

(8.13) for m <k+0, cn(d— @) <decmyir(9),
chre(@) < depio(9),
Chrer1(d) < Croafe.

Such estimates are classical in the usual case of convolutions in R?, but more
care is required here since norms vary with the point. Let us admit those
estimates for the moment; we will return to them at the end of the proof. Note
that, since gg is obtained by convolution between ¢ and a kernel of support of
size €, the support of gz~5 is larger than that of ¢. Since all the functions we are
considering are multiplied by the partition of unity p;, this is not a problem.

Along gn1, (W1u/200(x))v the flow g_,7, contracts by a factor at least 1/2.
Hence, the function ¢ = (¢ — d}) o g_n1, satisfies ¢, (@) < 27 ¢ (¢ — q~5)
From (8.13), we obtain, in particular, ¢,,(¢') < 4ecp41(¢p) for m < k + £ and
Crre(9) < 2700 (@) + crpe()) < 5-27F D¢ 4(¢). Hence,

k+t k+e—1
||¢/|| ke = + Cm(d)’) < 4e + Cm+1 +5.2—(k+€)ck+7£(¢)
Ca oy mlA™ T mlA™ (i + 0)| AFTE
k+4
c (¢) ko) Chre(®)
<4eAk + /¢ o—(k+0) __Ck+\P)
< 4eA(k + ) 'Am+5 (k + O)I AR+

< (4eA(k + E) +5 .27 (0 6l e -

Let us choose

) 1 2f(k+€)
i (10(k+e+ 1) 4A(k+£))
We obtain
H(ﬁ/HCff,” <6- o= (k+0) "¢“C§+Z <6- o—(k+0)

Let us decompose in (8.10) the function ¢ as ¢’ o g,7, + ¢. The resulting
term coming from ¢’ o g, 7, is similar to (8.12) but with an additional factor
¢’ HCk+Z < 6-27F= while the term coming from ¢ is bounded in terms of || ||},

since there are at most ¢ < k derivatives of f integrated against a function in
CF++1 Tn the end, we get

Chps (Lo, (VF)) < 2Co - 27726 - 275 ety (U f) + Crmoae [0S -
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Summing the last equation for £ =0,...,k —1 and (8.12) for ¢ = k, we obtain

k

ILur, (WP = 3 B ety (Lo (1))
=0
k—1

< 3120027 K32 B e, (U f) + Crma 11
=0

+ 2002*/23*’“@?7,978@ )
< 1206272 |0 f 1P + Coya s 10 £, -

Since the function ¢ is C*° and compactly supported, Lemma 8.5 applies if B
is large enough. This concludes the proof.

It remains to prove the estimates (8.13). Let m < k + ¢, and consider
y € Wlu/loo(x)' For any vectors ui, ..., um with [[u][, <1, one has

qug(y; ULy ooy Up) — DMO(ys U, ..oy Um)

= [0l + 2w, ) = DTGl un))Ge(—2)

1
= / D™y +tzyur, ... um, 2)(—2) dz dt.
z Jt=0

If (.(—%) # 0, then z is in the ball B(0,¢) for the norm ||-||,. Since all norms
along Wf/loo(:c) are within a factor 2 of each other, by Proposition 5.3, it
follows that d(y,y +tz) < 4e. Proposition 5.5 implies that the norms ||-||, and
[[[l+¢» are within a multiplicative factor e*s. We deduce

HDmg)(y; UL, .. Um) — DMO(y;ug, ... ,um)”y

Dm+1¢(y +tz UL, ..., U, Z)Hy

< sup
t,z

< e* sup ’DmH(]ﬁ(y +tziuy, ..., Un, z)H
t,z

y+tz
< 648Cm+1(¢) ||u1Hy+tz T ||um||y+tz ||z||y+tz

< 64(m+2)scm+1(¢) HU1Hy tet ”Um”y ”ZHy

< e 1 (9)2 )12, < empa(@)e! T2

This shows that ¢,,(¢ — ¢) < 2e*"+t2eec, (). When e < 1/(10(k + £+ 1)),
we obtain ¢, (¢ — @) < 4ecpy1(¢), proving the first estimate of (8.13).

The second estimate is completely analogous, except that we do not need
to integrate by parts to use an additional derivative of ¢. Finally, the third es-
timate is proved similarly, but putting one single derivative on the function (.:

DM G (ysuy e upe) = /Dk_‘_égb(y“"z?ula--~7Uk+€)DC€(_Z§uk+E+1)dZ'
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One proves as above that HD’”%(y +ziug,. .. ’ukH)H < ekttt 0 (9),
y

while | D¢ (—2; ugyeq1)| < 2C(d,)e~% 1. Integrating over the ball of radius ¢,
one gets an upper bound Ceyy¢(¢)/e < Cy a/e, as desired. O

To simplify notations, we write O“™P( f) for terms bounded by ||¢ f||}., for
some C* function v in Teich; that is supported in a compact set mod I'. This
notation is invariant under £; for fixed ¢ (since this operator acts continuously
for ||-||3,) and under addition. (If 11 and /2 are two C functions whose support
is compact mod I, consider a function ¢ with the same properties that is equal

to 1 on supp(1) Usupp(¥2). Then [[¢1 f, = llapfll < C(ehr) 411y, and a
similar inequality holds for 1)5.)

COROLLARY 8.8. For everyn € N with n > T/(6Ty), if k, A, B are large
enough, we have

Lo flliel < e=A0mTo || f| 5 4 Ocomp ().

Proof. We write Lnr,f = Y eq1,2)n E% -~£~%f, and we estimate the
terms coming from each .

If #{j : v; = 1} > 0n, then the resulting term is bounded by Lemma 8.7.
Otherwise, #{j : 7; =2} > (1 —6)n, and Lemma 8.6 gives an upper bound of
the form (10Co) e~ (1=2)To(1=0)n || £ 45 " Gince (1 — 26)(1 — 6) > 1 — 34, after
summing over the 2" possible values of 7, we obtain

I£un, 57 < 2°(10C0)"e0=0T0m | 4P 4 2t 36Co2742 |
+ Cn,k,A,B Z ||1/}n,’7f||;g :

Choosing k large enough, we can make sure that
36Co27%/% < (10Cq)" e (130 Ton,
and we obtain a bound of the form
(40Co)"e 3T || £IAE 4 G D [n £ -
Since 40Cy < €970, this implies the statement of the corollary. O

COROLLARY 8.9. For any large enough N, if k, A, B are large enough, we
have

B — com
MY £ < 2Co(eA71T0 4 2) [ [P + 0P (f).

A
k7
Proof. We start from the formula
oo N-1 0 rn+1)Ty  4N-1

se UL fdt.

—40t _ _
o Ny LS b= ,;)/nm N 1)

On an interval [nTp, (n + 1)Tp] with small n (i.e., n < T/(6Tp)), we use
the simple bound ||Etf||?’sB < 2C) ||f||?’B coming from Lemma 8.2. Since for

MNf =
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any fixed T, > 0, f[;f * % dt tends to zero when N — oo, the contribution
A:
2

of those intervals is bounded, say, by 2Cj || f]| Bif N is large enough.

We use the same trivial bound on the intervals [nTp, (n + 1)Tp] with very
large n (n > ng(IV) to be chosen later). The contribution of these intervals is
then bounded by

o N s A,B
/(N)T (N—l)'e 2C0 7l d.
no 0 °

Choosing no(N) large enough, we can ensure that this is at most 2Cj || f||’,3’B.
Now consider n in between. For t € [nTp, (n + 1)Tp], we have

ILef P < 2C0 | Lamy [l < 2Coe™ (=40 To || p|| P 4 O%omp ()

< 2006(1—46)T06—(1—4§)t ||f||x’:1,B + Ocomp(f).

Integrating over ¢ and then summing over n, we get a contribution bounded
by

9] tN—l
9 (1—46)To/ 46t~ (1-48)t || ¢ AB g4 4 Ocomp
006 o (N—l)'e € ”f”k +O (f)7
which is bounded by 2Ce—4o || f||4F 4 Ocomp( f) since e (f\l,v:ll)!e_t dt
=1. O

Proof of Theorem 8.1. Lemma 8.2 gives the first part of the statement. It
remains to estimate the essential spectral radius of M. Adding the estimates
of Lemma 8.4 and of Corollary 8.9, for large enough N, k, A, B, we have

A,B
MYV F[T < 200 4 5) AT + 0P (f).
Once and for all, let us fix N large enough so that
2Co (4T 4 5) < (14 )N

and then k, A, B such that the previous estimate holds. This estimate trans-
lates into the following: there exists a C'™ function ¥ supported in a compact
set mod I' such that, for any function f in D,

MY A < ISP + ol

The unit ball of D for the norm ||-||,, is relatively compact for the semi-norm
| £]I" == "f]l%, by Proposition 7.2. By Hennion’s Theorem (Lemma 3.1), it
follows that the essential spectral radius of M for the norm |- ||;€4’B on the space
DU is at most 1 + §. Since this norm is equivalent to ||-||,, this concludes the
proof of Theorem 8.1. O
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Appendix A. Spherical functions

In this section, we prove the estimate (3.6) on the behavior of the spherical
function ¢¢, when &, is a representation of SL(2,R) in the complementary
series. It is a consequence of classical estimates on spherical functions. Let
us, for instance, follow the computations in [Hel00]. For Rs € [—1,1], let us
define coefficients I'y(s) by I'p = 1, I', = 0 if n is odd and n(n — s)I'y(s) =
>o<k<n/2 Tn—2k(s)(2n—4k —s+1) if n is even. It is easy to check by induction
that these coefficients grow more slowly than any exponential. In particular
(see, e.g., [Hel00, introduction, Lemma 4.13]), for every € > 0, there exists a
constant C' > 0 such that

(A1) Vse[-1,1], ¥neN, |Tn(s)| < Ce™.

These coefficients are chosen so that t — e(s~ Dt STy (s)e 2t satisfies an
explicit differential equation of order 2 that is also satisfied by ¢¢,. Another
solution of the same equation is t — e(=5"DtS™ T, (—s)e~2"*. Tt follows that ¢,
is a linear combination of those two functions. One can identify the coefficients
in this linear combination (they are given by the ¢ function (3.5)) to obtain
the following formula for ¢¢,: for every s € (0,1] Ui(0, 4+00),

Pe,(9t) = C(S)e(sfl)t Z Lp(s)e 2 + c(—s)e(fsfl)t Z [p(—s)e 2",
n>0 n>0
This is [Hel00, Th. IV.5.5] in the case of SL(2,R). (The formula for ¢ is given
in [Hel00, Th. IV.6.4].)

For s € [0,1], the dominating term in this formula is ¢(s)e*~D* and
the sum of the other terms is bounded by Ce™t if t > 1, by (A.1). Since
de.(g1) — c(s)e®™ V! is uniformly bounded for ¢ € [0,1] and s € [4,1], the
estimate (3.6) follows.
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