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A bounded linear extension operator
for L2,p(R2)

By Arie Israel

Abstract

Let L2,p(R2) be the Sobolev space of real-valued functions on the plane

whose Hessian belongs to Lp. For any finite subset E ⊂ R2 and p > 2,

let L2,p(R2)|E be the space of real-valued functions on E, equipped with

the trace seminorm. In this paper we construct a bounded linear extension

operator T : L2,p(R2)|E → L2,p(R2). We also provide an explicit formula

that approximates the L2,p(R2)|E trace seminorm.

1. Introduction

Given an arbitrary subset E ⊂ Rn and function f : E → R, how can

we tell whether there exists a smooth function F : Rn → R such that F = f

on E? If a smooth extension exists, can we take it to depend linearly on f?

To investigate these questions in more detail we introduce some notation. We

work with the following spaces of smooth functions on Rn:

• X = Cm(Rn) (functions with continuous m’th derivatives), defined by

the norm

‖F‖X := sup
x∈Rn

max
k≤m

|∇kF (x)|;

• X = Cm,1(Rn) (functions with Lipschitz continuous m’th derivatives),

defined by the norm

‖F‖X := sup
x∈Rn

max
k≤m

|∇kF (x)|+ sup
x,y∈Rn

|∇mF (x)−∇mF (y)|
|x− y|

;

• X = Lm,p(Rn) (functions with m’th derivatives belonging to Lp) in the

range n < p <∞, defined by the seminorm

‖F‖X :=

Å∫
Rn
|∇mF (x)|pdx

ã1/p

.
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For any of these spaces,1 we define the trace space X|E :=
¶
F |E : F ∈ X

©
.

This vector space carries the natural trace seminorm

‖f‖X|E := inf
¶
‖F‖X : F ∈ X, F |E = f

©
for f ∈ X|E .

An extension of f ∈ X|E is a function F ∈ X such that F = f on E. A

bounded linear extension operator with norm A ≥ 1 is a linear map T : X|E →
X such that

(1.1) Tf = f on E, and ‖Tf‖X ≤ A‖f‖X|E for all f ∈ X|E .

We can now formulate the Whitney extension problem.

Problem 1. Let E ⊆ Rn (arbitrary) be given.

(a) Provide necessary and sufficient conditions for membership in the trace

space X|E .

(b) Construct a bounded linear extension operator T : X|E → X.

For spaces X with suitable compactness properties, Problem 1 reduces to

the finite, quantitative problem stated below.

Problem 2. Let E ⊆ Rn be finite.

(a) Find an expression M : X|E → R that satisfies

C−1M(f) ≤ ‖f‖X|E ≤ CM(f) for all f : E → R.

(b) Construct a bounded linear extension operator T : X|E → X with norm C.

Here, the constant C = C(X) ≥ 1 should not depend on E.

In this paper we answer Problem 2 for the Sobolev space X = L2,p(R2)

through the following extension theorem.

Theorem 1. Let 2 < p < ∞. Suppose that E ⊆ R2 has cardinality

#E = N < ∞. Then there exists a bounded linear extension operator T :

L2,p(R2)|E → L2,p(R2) with norm C . Moreover, there exist linear functionals

λ1, . . . , λK , where K ≤ CN2, such that

M(f) :=

Ç K∑
k=1

|λk(f)|p
å1/p

satisfies C−1M(f) ≤ ‖f‖L2,p(R2)|E

≤ CM(f) for all f : E → R.

Here, the constant C ≥ 1 depends only on p.

1The Sobolev embedding Lm,p(Rn)⊆Cm−1
loc (Rn) holds, due to the assumption n<p<∞.

In particular, each F ∈ Lm,p(Rn) can be identified with a continuous function after modifi-

cation on a measure-zero subset. Due to this identification, we can meaningfully restrict an

Lm,p(Rn) function to an arbitrary subset of euclidean space.
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Remark 1.1. In future joint work [11] it is shown that the functionals

λ1, . . . , λK can be taken to have an additional structural property called as-

sisted bounded depth and that one may take K ≤ CN . This improvement is

discussed later in the introduction.

Remark 1.2. A compactness argument involving Banach limits and Theo-

rem 1 proves the existence of a bounded linear extension operator T :L2,p(R2)|E
→ L2,p(R2) for infinite subsets E ⊆ R2; this argument solves Problem 1 and is

presented in [11].

We now describe some related results in the literature. Whitney intro-

duced and studied the extension problem for the space X = Cm(Rn). In [26],

he solved Problems 1 and 2 for Cm(R1) through the method of divided differ-

ence quotients. In addition, Whitney laid the groundwork for future progress

on the higher-dimensional case through introducing his classical extension op-

erator for polynomial jets; see [22], [25]. Next came the conjecture of Brudnyi

and Shvartsman termed the finiteness principle for Cm,1(Rn); they proved

their conjecture for m = 1, thereby solving the Whitney extension problem for

C1,1(Rn); see [1], [2], [3], [4], [16], [17], [18]. The next breakthrough was the

proof by C. Fefferman of the finiteness principle and the solution to Problems

1 and 2 for the spaces Cm,1(Rn) and Cm(Rn) for all m,n ≥ 1; see [7], [6], [8],

[9], [10].

On the other hand, most cases of the extension problem for Lm,p(Rn)

are open despite the progress for Cm(Rn). In [15], Luli constructs a bounded

linear extension operator for X = Lm,p(R) and finite E (solving Problem 2(b)),

while Shvartsman [20] treats the more general case when E is infinite, solving

Problems 1 and 2 for Lm,p(R). Recently, Shvartsman has shown that the

classical Whitney extension operator for (m− 1)-jets produces a function with

near-minimal Lm,p(Rn)-seminorm for p > n; see [20]. In particular, this work

resolves Problems 1 and 2 for the space L1,p(Rn) when p > n; see [19].

The inherent gap in difficulty between L1,p(R2) and L2,p(R2) comes from

the fact that pointwise evaluation of the gradient of an L1,p(R2) function is not

well defined, while for F ∈ L2,p(R2), p > 2, the Sobolev embedding theorem

provides a simple notion of consistency:

(1.2) |∇F (x)−∇F (y)| ≤ C|x− y|1−2/p‖F‖L2,p(R2) for x, y ∈ R2.

Thus, when choosing an extension we must ensure that its gradient vectors

are consistent enough so that (1.2) does not force it to have large seminorm;

making an intelligent choice for the gradient of our extension at certain points

of the plane is a key aspect of our solution.

We now provide a sketch of the proof of Theorem 1. For certain subsets

S ⊆ R2 that appear “flat,” the extension problem can be reduced to an easier
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one-dimensional problem, and we construct a bounded linear extension opera-

tor TS : L2,p(R2)|S → L2,p(R2) in this case. In this manner, given f : S → R
we obtain an extension F = TSf having near-optimal seminorm. This near-

optimal extension may be far from unique. For instance, suppose that S is

contained in a line. Then F + L extends f and has the same seminorm as

F for any affine function L that vanishes on S. An analogous phenomenon

occurs more generally for flat subsets S ⊆ R2. Indeed, there may exist two

near-optimal extensions F1, F2 ∈ L2,p(R2) of the given f : S → R2 such that

F1 − F2 has nonnegligible size.

Now consider an arbitrary finite set E ⊆ R2. Using a Calderón-Zygmund

decomposition we split E into an almost-disjoint partition {Eν}Kν=1 formed by

intersecting E with a collection of CZ squares. The decomposition is defined

in such a way that each localized subset Eν is flat. Given f : E → R we

may then construct a near-optimal local extension Fν of each function f |Eν by

previous remarks. As mentioned before, there may be considerable freedom in

the choice of each Fν . This complicates our approach since we cannot ensure

that the local extensions are related to one another. To resolve these issues,

we must place additional constraints on the local extensions that enforce their

mutual consistency. To this end, we introduce the keystone squares, which

are a subcollection of the CZ squares. We can accurately determine the first

order Taylor polynomial of the desired extension near each of the keystone

squares. Then, using this information we specify the Taylor polynomial of

every other local extension at an appropriately chosen basepoint, providing

the aforementioned constraints. These carefully chosen local extensions are

mutually consistent. Thanks to this consistency, the local extensions can be

patched together using a partition of unity to produce a near-optimal extension

of the function f .

Calderón-Zygmund decompositions were used in [7], [6] to solve the Whit-

ney extension problem for Cm−1,1(Rn). However, in that work the Calderón-

Zygmund squares are treated on equal footing (in some sense). This is in

contrast to our proof of Theorem 1, where the keystone squares play a special

rôle. This completes the overview of the proof of Theorem 1.

We switch settings for the moment and consider X = Cm−1,1(Rn). Sup-

pose that E ⊆ Rn has cardinality N <∞.

In [13], Fefferman-Klartag construct linear functionals λ1, . . . , λL on the

trace space X|E such that

(1.3) ‖f‖X|E ≈ max{|λ`(f)| : ` = 1, . . . , L} for every f ∈ X|E .

This formula has several interesting properties. First, not many functionals

are used; in fact, L ≤ CN . Moreover, each functional λ`(f) depends on the

restriction of f to a subset S` ⊆ E with cardinality at most k = k(m,n)
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(independent of E). In [10], Fefferman constructs a bounded linear extension

operator T : X|E → X with the following structural property: there exists d =

d(m,n) such that, for each x∈Rn, there exist y1, . . . , yd ∈ E and a1, . . . , ad∈R
such that

(1.4) Tf(x) =
d∑
j=1

ajf(yj) for every f ∈ X|E .

The depth of an extension operator is defined to be the smallest d as above.

In [14], Luli constructs bounded depth extension operators in the case when

E ⊆ Rn is an arbitrary closed subset. These results are essentially the best

possible. Motivated by them, we pose several open problems.

Open Problem 1. Does there exist d = d(p) such that for every finite subset

E ⊆ R2 there exists a bounded linear extension operator T : L2,p(R2)|E →
L2,p(R2) with depth d?

Open Problem 2. Do there exist k = k(p) and C = C(p) such that for

every finite subset E ⊆ R2 of cardinality #E = N , there exist linear functionals

λ` : L2,p(R2)|E → R and subsets S` ⊆ E such that #S` ≤ k and such that

λ`(f) depends only on f |S` , for each ` = 1, . . . , L, where L ≤ CN , and

C−1 ·
(

L∑
`=1

|λ`(f)|p
)1/p

≤ ‖f‖L2,p(R2)|E ≤ C ·
(

L∑
`=1

|λ`(f)|p
)1/p

∀f : E → R?

Unfortunately, the first open problem is answered negatively in the forth-

coming article [12]. Indeed, for each N ∈ N, there exists EN ⊆ R2 such

that #(EN ) = N , and such that any sequence of linear extension operators

TN : L2,p(R2)|EN → L2,p(R2) with uniformly bounded norm must have depth

approaching infinity. This shows that the Sobolev and Cm,1 versions of the

extension problem have some fundamental differences.

In recent work, Shvartsman [21] has given an alternate proof of Theorem 1.

This paper also answers the second open problem in the affirmative, with

the constant k = 6. The methods in [21] are somewhat different from those

presented here. It would be interesting to understand better the relationship

between these two seemingly different approaches.

We now mention some further results on the structure of linear extension

operators and formulas for the trace norm. In fact, certain (weaker) variants of

the above open problems have been answered positively in [11]. In this paper,

the more general extension problem for Lm,p(Rn) is solved, provided p > n.

We conclude the introduction by stating these improvements in the special

case m = n = 2 of current interest. Given linear functionals ω1, . . . , ωL :

L2,p(R2)|E → R, we say that λ : L2,p(R2)|E → R has assisted bounded depth
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with assists ω1, . . . , ωL provided that

L∑
`=1

(# of nonzero coefficients of ω`) ≤ CN

and

λ(f) =
∑
x∈E

αxf(x) +
L∑
`=1

β`ω`(f),

where

#
¶
x ∈ E : αx 6= 0

©
+ #

¶
1 ≤ ` ≤ L : β` 6= 0

©
≤ C

for some constant C = C(p).

The improvement to Theorem 1 from [11] states the following:

• There exist a bounded linear extension operator T : L2,p(R2)|E → L2,p(R2)

and linear functionals ω1, . . . , ωL : L2,p(R2)|E → R such that, for each

y ∈ R2, the linear functional f 7→ Tf(y) has assisted bounded depth with

assists ω1, . . . , ωL.

• There exist linear functionals λ1, . . . , λL′ that each have assisted bounded

depth with assists ω1, . . . , ωL such that L′ ≤ CN and

C−1 ·
Ç L′∑
`=1

|λ`(f)|p
å1/p

≤ ‖f‖L2,p(R2)|E ≤ C ·
Ç L′∑
`=1

|λ`(f)|p
å1/p

.

This concludes the introduction. In the next section we start on the proof

of Theorem 1.
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support. The author is especially grateful to Charles Fefferman for suggesting
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2. Notation and definitions

Let 2 < p <∞ be fixed throughout.

Smooth function spaces. For a domain Ω ⊆ R2, the Sobolev spaces L2,p(Ω)

and W 2,p(Ω) consist of functions F : Ω → R with finite seminorm, as defined

below:

‖F‖L2,p(Ω) := ‖∇2F‖Lp(Ω),

‖F‖W 2,p(Ω) := ‖F‖Lp(Ω) + ‖∇F‖Lp(Ω) + ‖∇2F‖Lp(Ω).
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These seminorms are extended to vector valued mappings Φ : Ω → R2 in the

obvious way. As before, since p > 2, the Sobolev theorem states that we may

regard each F ∈ L2,p(Ω) as belonging to C1
loc(Ω).

For an interval I ⊆ R (perhaps unbounded), the standard Besov spaces

Ḃ
2− 1

p
,p

(I) andB
2− 1

p
,p

(I) are written Ḃp(I) andBp(I) respectively; these spaces

consist of smooth functions ϕ : I → R with finite seminorm, as defined below:

‖ϕ‖Ḃp(I) :=

Ç∫
I

∫
I

|ϕ′(x)− ϕ′(y)|p

|x− y|p
dxdy

å1/p

,

‖ϕ‖Bp(I) := ‖ϕ‖Lp(I) + ‖ϕ′‖Lp(I) + ‖ϕ‖Ḃp(I).

For a domain Ω ⊆ Rd, d ∈ {1, 2}, and α ∈ (0, 1], the Hölder space Ċ1,α(Ω)

consists of differentiable functions F : Ω→ R with finite seminorm:

‖F‖Ċ1,α(Ω) := sup
x,y∈Ω

|∇F (x)−∇F (y)|
|x− y|α

.

Coordinates. To specify euclidean coordinates (u, v) means to choose x0 ∈
R2 and an orthonormal basis e1, e2 ∈ R2 and set (s, t)uv := se1 + te2 +x0 ∈ R2

for s, t ∈ R. We may drop the subscript uv when the coordinate system being

used is clear from the context.

Unless stated otherwise, coordinate expansions are taken with respect to

some base coordinate system that remains fixed throughout the paper.

Geometry. A square Q ⊆ R2 takes the form Q = (c1, c2) + [−h, h]2. The

sidelength and center ofQ are denoted δQ := 2h and cQ := (c1, c2), respectively.

Write |·| for the standard euclidean norm in R2, and denote the open ball

{y ∈ R2 : |x − y| < r} by B(x, r). For S, S′ ⊆ R2, we put dist(S, S′) :=

inf {|x− y| : x ∈ S, y ∈ S′}.
For any line l ⊆ R2 and subset S ⊆ R2, the orthogonal projection of S

onto l is denoted by projlS.

Jets and Whitney fields. Let P denote the space of affine polynomials

{A · x + b : A ∈ R2, b ∈ R}. For F ∈ C1(R2) and y ∈ R2, we define JyF ∈ P
(the jet of F at y) by

(JyF )(x) = F (y) +∇F (y) · (x− y).

Given a finite set S ⊆ R2, the space of Whitney fields on S is denoted by

Wh(S) := {(Ly)y∈S : Ly ∈ P for each y ∈ S}.

We define JSF ∈ Wh(S) (the jet of F on S) by JSF = (JyF )y∈S . Similarly,

for g ∈ C1(R) and y ∈ R, we set Jyg(x) = g(y) + g′(y) · (x − y). Denote the

order of a multi-index α = (α1, α2) ∈ Z2
+ by |α| := α1 + α2.



190 ARIE ISRAEL

Trace space. Let X be a space of functions on a domain Ω ⊂ Rd, d ∈ {1, 2},
with seminorm ‖ · ‖X. We assume that the functions in X are continuous.

For F ∈ X and C ≥ 1, we say that ‖F‖X is C-optimal (rather, F ∈ X
is C-optimal) with respect to some properties p1, p2, . . . , pk provided that F

satisfies p1, p2, . . . , pk, and

‖F‖X ≤ C · inf{‖G‖X : G ∈ X, G satisfies p1, p2, . . . , pk}.

For E ⊆ Ω, we define the trace space X|E := {F |E : F ∈ X} and trace

seminorm

‖f‖X|E = inf {‖F‖X : F ∈ X, F = f on E} for f ∈ X|E .

Flat subsets. We now define a geometric quantity that measures the flat-

ness of euclidean subsets; this concept was mentioned briefly in the introduc-

tion. The Besov seminorm of a subset S ⊆ R2 is

‖S‖Ḃp := inf
{
‖ϕ‖Ḃp(R) : ∃ ϕ ∈ Ḃp(R), ∃ coordinates (u, v),

S ⊆ {(t, ϕ(t))uv : t ∈ R}
}
.

Note that subsets of line segments have Besov seminorm zero and that finite

subsets have finite Besov seminorm.

Gamma. For a square Q ⊆ R2, finite subset S ⊆ Q, function f : S → R,

point x ∈ Q, and M ≥ 0, we set

(2.1)

ΓQ(f, x,M) :=
¶
L ∈ P : ∃F ∈ L2,p(Q), F |S =f, JxF =L, ‖F‖L2,p(Q)≤M

©
.

Conventions. Unless stated otherwise, all constants are positive and may

depend only on p; they are called universal constants. We write A . B to

mean A ≤ CB for some universal constant C. Similarly, we write A ≈ B to

mean C−1B ≤ A ≤ CB for some universal constant C.

Let c1, c2, c3, c4 ∈ (0, 1) be small universal constants whose values remain

fixed throughout the paper. We use c, C, c̃, ‹C,C1, C2, . . . to denote other uni-

versal constants that may change value from one occurrence to the next.

Suppose that an object O has been constructed with designated proper-

ties, numbered, e.g., (1), (2), (3). These properties are referenced within the

body of text where O is defined (i.e., Section, Lemma, etc.) as (P1) of O, (P2)

of O, and (P3) of O.

3. Background

In this section we establish preliminary results. These results include an

implicit function theorem for the Sobolev space and an extension theorem for
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the one-dimensional Besov space. The reader may wish to start reading Sec-

tion 4, referencing this section as necessary. We now state the two important

embedding theorems; see [5], [24].

Proposition 3.1 (Sobolev embedding theorem). Let Q ⊆ R2 be a square.

For F ∈ L2,p(Q) and x, y ∈ Q, the following hold :

|∇F (x)−∇F (y)| ≤ C|x− y|1−2/p‖F‖L2,p(Q),

|F (x)− JyF (x)| ≤ C|x− y|2−2/p‖F‖L2,p(Q),

‖∇F −∇F (y)‖Lp(Q) ≤ CδQ‖F‖L2,p(Q),

‖F − JyF‖Lp(Q) ≤ Cδ2
Q‖F‖L2,p(Q).

Remark 3.1. The Sobolev theorem also holds for the space L2,p(Ω), where

Ω = Q1 ∪ Q2 and the squares Q1, Q2 have nonempty intersection. Here, one

should replace δQ with diam(Ω) in the above inequalities. Indeed, if x and y

belong to the same square, the initial two inequalities extend directly. In the

alternate case, pick z ∈ Q1∩Q2 such that |z−y| ≤ |x−y| and |z−x| ≤ |x−y|.
Then deduce the inequality for the pair (x, y) by summing the corresponding

inequalities for (x, z) and (y, z). The third and fourth inequalities are derived

by integrating p’th powers of the initial inequalities over Ω.

Proposition 3.2 (Besov embedding theorem). Let I ⊆ R be an interval.

For ϕ ∈ Ḃp(I) and r, s ∈ I , the following hold :

|ϕ′(r)− ϕ′(s)| ≤ C|r − s|1−
2
p ‖ϕ‖Ḃp(I),

|ϕ(r)− Jsϕ(r)| ≤ C|r − s|2−
2
p ‖ϕ‖Ḃp(I).

The Sobolev space and Besov space are related through the following

trace/extension theorem; see [22], [23].

Proposition 3.3. For G : R2 → R, let g := G|R×{0}. Then,

G ∈ L2,p(R2) =⇒ g ∈ Ḃp(R) and ‖g‖Ḃp(R) ≤ C‖G‖L2,p(R2),

G ∈W 2,p(R2) =⇒ g ∈ Bp(R) and ‖g‖Bp(R) ≤ C‖G‖W 2,p(R2).

Conversely, there exists a linear extension operator T1 : Ḃp(R)→ L2,p(R2) that

satisfies

(1) T1g = g on R× {0},
(2) ‖T1g‖L2,p(R2) ≤ C‖g‖Ḃp(R) if g ∈ Ḃp(R),

(3) ‖T1g‖W 2,p(R2) ≤ C‖g‖Bp(R) if g ∈ Bp(R).

Here, the constant C depends only on p.
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We now prove a technical lemma stating that, in an appropriate coordinate

system, a subset of R2 with controlled Besov seminorm must lie on the graph

of a function with controlled Besov norm.

Lemma 3.1. Let D ≥ 1 be given. There exist constants a = a(D, p) > 0

and A = A(D, p) such that the following hold. Let (u, v) be euclidean coor-

dinates, and let S ⊆ R2 be given. Suppose that for some κ1, κ2 ∈ (0, a), the

following hold :

diam(S) ≤ D and ‖S‖Ḃp ≤ κ1;(3.1)

if #S ≥ 1, then there exists x = (ux, vx)uv ∈ S with |vx| ≤ κ2;(3.2)

if #S ≥ 2, then there exists y = (uy, vy)uv ∈ S with y 6= x and(3.3) ∣∣∣∣∣ vy − vxuy − ux

∣∣∣∣∣ ≤ κ2.

Then there exists ϕ ∈ Bp(R) such that S ⊆
¶

(t, ϕ(t))uv : t ∈ R
©

and ‖ϕ‖Bp(R) ≤
A · (κ1 + κ2).

Proof. By rescaling, we may assume that D = 1. By adding points to S,

we may assume that S is closed and that diam(S) = 1 (in particular, #S ≥ 2).

Applying (3.1), we produce euclidean coordinates (u, v), a curve ~φ(s) :=

(s, ϕ̂(s))uv such that ‖ϕ̂‖Ḃp(R) ≤ 2κ1, and an interval I = [a, b] such that

~φ(a), ~φ(b) ∈ S and S ⊆ ~φ(I). Note that

(3.4) |I| = b− a ≤ |~φ(b)− ~φ(a)| ≤ diam(S) = 1.

We change coordinates and write ~φ(s) = (φ1(s), φ2(s))uv. Notice that ‖φ`‖Ḃp(R)

≤ Cκ1 for ` = 1, 2. Subsequently, we work with (u, v) coordinates and drop

the uv subscript for notational convenience.

Take x, y ∈ S as in (3.2), (3.3). Choose sx, sy ∈ I with

x = (ux, vx) = (φ1(sx), φ2(sx)) and y = (uy, vy) = (φ1(sy), φ2(sy)).

Applying the mean-value theorem and Besov embedding theorem, for ~b :=(
ux−uy
sx−sy ,

vx−vy
sx−sy

)
, we obtain

(3.5)

∣∣∣∣ dds ~φ(s)−~b
∣∣∣∣ ≤ Cκ1 for s ∈ 2I.

(Here, 2I denotes the interval with the same center and twice the length of I.)

Integrating (3.5),

|~b| · |I| ≤
∣∣∣∣∫
I

d

ds
~φ(s)ds

∣∣∣∣+ Cκ1|I| ≤ |~φ(a)− ~φ(b)|+ Cκ1 ≤ diam(S) + Cκ1,

|~b| · |I| ≥
∫
I

∣∣∣∣ dds ~φ(s)

∣∣∣∣ ds− Cκ1|I| ≥ diam(S)− Cκ1.



A BOUNDED LINEAR EXTENSION OPERATOR FOR L2,p(R2) 193

Thus, for small enough κ1, we have

(3.6) c|I|−1 ≤ |~b| ≤ C|I|−1, for some universal constants c, C > 0.

The second coordinate of ~b is bounded by κ2 times the first coordinate

(see (3.3)). Thus, for sufficiently small κ1 and κ2, by (3.4), (3.5), and (3.6) we

have

(3.7) c|I|−1 ≤ |φ′1(s)| ≤ C|I|−1 and

∣∣∣∣∣φ′2(s)

φ′1(s)

∣∣∣∣∣ ≤ C · (κ1 + κ2) for s ∈ 2I.

We set ϕ := φ2 ◦ φ−1
1 . Since S ⊆ ~φ(I),

(3.8) S ⊆ {(t, ϕ(t)) : t ∈ φ1(I)}.

Note that |φ′1| ≥ c on 2I, thanks to (3.4) and (3.7). Thus, for I := φ1(2I), we

have

‖ϕ‖p
Ḃp(I)

=

∫
I

∫
I

∣∣∣∣φ′2(φ−1
1 (s))

φ′1(φ−1
1 (s))

− φ′2(φ−1
1 (t))

φ′1(φ−1
1 (t))

∣∣∣∣p
|s− t|p

dsdt(3.9)

=

∫
2I

∫
2I

∣∣∣φ′2(s)
φ′1(s) −

φ′2(t)
φ′1(t)

∣∣∣p
|φ1(s)− φ1(t)|p

· |φ′1(s)| · |φ′1(t)|dsdt

.
∫

2I

∫
2I

|φ′2(s)− φ′2(t)|p

|s− t|p
dsdt+

∫
2I

∫
2I

|φ′1(s)− φ′1(t)|p

|s− t|p
dsdt

. ‖φ2‖pḂp(2I)
+ ‖φ1‖pḂp(2I)

. κp1.

Invoking (3.7) provides the estimates

• dist(R \ φ1(2I), φ1(I)) ≥ 1
2 |I| ·mins∈2I |φ′1(s)| ≥ c

2 ,

• |φ1(2I)| ≤ 2|I| ·maxs∈2I |φ′1(s)| ≤ 2C,

• ‖ϕ′‖L∞(φ1(2I)) = ‖φ′2/φ′1‖L∞(2I) ≤ C · (κ1 + κ2),

• ‖ϕ‖L∞(φ1(2I)) ≤ |ϕ(φ1(sx))|+|φ1(2I)|·‖ϕ′‖L∞(φ1(2I)) ≤ |vx|+C ·(κ1+κ2) ≤
C ′ · (κ1 + κ2) (see (3.2)).

Thanks to the last three bullet points and (3.9), we have ‖ϕ‖Bp(I) .

κ1 + κ2. Thanks to the first bullet point, we may choose θ ∈ C∞c (I) such that

(1) θ ≡ 1 on φ1(I),

(2) ‖θ‖C2 . 1.

Finally, we set ϕ := θ · ϕ. Note that S ⊆ {(t, ϕ(t)) : t ∈ R}, thanks to (3.8),

and that

‖ϕ‖Bp(R) ≤ C · ‖θ‖C2 · ‖ϕ‖Bp(I) . κ1 + κ2,

as desired. �

For a matrix M = (mij), we define |M | := max|mij |.
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Lemma 3.2. Let Φ : Ω1 → Ω2 be a diffeomorphism. Suppose that Φ ∈
L2,p(Ω1),

‖∇Φ‖L∞(Ω1) ≤ A and ‖(∇Φ)−1‖L∞(Ω1) ≤ A for some A ≥ 1.

Then Φ−1 ∈ L2,p(Ω2) and ‖Φ−1‖L2,p(Ω2) ≤ C ·A3+2/p · ‖Φ‖L2,p(Ω1).

Proof. We expand Φ = (Φ1,Φ2) and Φ−1 = Ψ = (Ψ1,Ψ2) in coordinates.

Let y = Φ(x). Differentiating the identity Ψ(y) = x, we obtain

∇Φ(x)∇2Ψk(y)∇Φ(x) +
2∑
i=1

∂iΨk(y)∇2Φi(x) = 0 for k = 1, 2.

Thus, using the identity ∇Ψ(y) = [∇Φ(x)]−1, we see that

∇2Ψk(y) = −
2∑
i=1

∂iΨk(y)∇Ψ(y)∇2Φi(Ψ(y))∇Ψ(y) for k = 1, 2.

Now, take p’th powers and integrate over y ∈ Ω2, apply the change of variables

x=Ψ(y), and use the estimates ‖∇Ψ‖L∞(Ω2)≤A and ‖ det(∇Φ)‖L∞(Ω1) ≤ 2A2.

This completes the proof of Lemma 3.2. �

Now we present an implicit function theorem for Sobolev functions.

Proposition 3.4. There exists c > 0 such that the following hold. Let

Q ⊆ R2 with δQ = 1, and let x ∈ 0.9Q be given.

• Suppose that h ∈ L2,p(Q) satisfies ‖h‖L2,p(Q) ≤ c and |∇h(x)| ≥ 1.

Then

γ := {x ∈ 0.9Q : h(x) = 0} satisfies ‖γ‖Ḃp . ‖h‖L2,p(Q).

• Conversely, suppose that S ⊆ 0.9Q satisfies ‖S‖Ḃp ≤ c. Then there

exists H ∈ L2,p(Q) with

H = 0 on S, ‖H‖L2,p(Q) . ‖S‖Ḃp and |∇H(x)| ≥ 1.

Proof. Let c > 0 be some small constant, determined later in the proof.

We start by proving the first bullet point. Without loss of generality, we may

assume that

(1) A := ‖h‖L2,p(Q) ≤ c,
(2) |∇h(x)| = 1.

Let γ :=
¶
x ∈ 0.9Q : h(x) = 0

©
.

Pick θ ∈ C∞c (Q) such that

(1) θ ≡ 1 on 0.9Q,

(2) |∂αθ| . 1 for |α| ≤ 2.
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Put

g := Jxh+ θ · (h− Jxh).

We shall establish three properties of this function:

(1) ‖g‖L2,p(R2) . A,

(2) ‖∇g −∇g(x)‖L∞(R2) ≤ 1
10 ,

(3) γ =
¶
x ∈ 0.9Q : g(x) = 0

©
.

We obtain the estimate ‖g‖L2,p(Q) . ‖h−Jxh‖W 2,p(Q) through the Leibniz

rule and (P2) of θ. Thus, we have ‖g‖L2,p(Q) . ‖h‖L2,p(Q) = A by the Sobolev

theorem. Moreover, the Sobolev theorem implies that

‖∇g −∇g(x)‖L∞(Q) . ‖g‖L2,p(Q) . A.

Note that g equals an affine function on R2 \ Q since supp(θ) ⊆ Q. Hence,

‖g‖L2,p(R2) . A and ‖∇g − ∇g(x)‖L∞(R2) . A ≤ c. This proves the first two

properties of g provided that c is sufficiently small. The third property of g

holds because g = h on 0.9Q.

We set e2 := ∇g(x) = ∇h(x). We choose e1 ∈ R2 such that (e1, e2) forms

an orthonormal basis. We work with euclidean coordinates (s, t) := x+se1+te2

until the first bullet point is proven.

Define the mapping Φ(s, t) := (s, g(s, t)). Thus,

|∇Φ(x)− Id| = |∇Φ(x)−∇Φ(x)| ≤ |∇g(x)−∇g(x)| ≤ 1/10 for x ∈ R2,

‖Φ‖L2,p(R2) = ‖g‖L2,p(R2) . A.

From these properties we learn that Φ : R2 → R2 is bijective, ‖∇Φ‖L∞(R2)

≤ 10, and ‖(∇Φ)−1‖L∞(R2) ≤ 10. Using Lemma 3.2, we thus have ‖Φ−1‖L2,p(R2)

. A.

We defineϕ(s) to be (Φ−1)2(s, 0); i.e., the t-coordinate function of Φ−1(s, 0).

From (P3) of g, we have

γ ⊆
¶

(s, t) ∈ R2 : Φ(s, t) = (s, 0)
©

=
¶

Φ−1(s, 0) : s ∈ R
©

=
¶

(s, ϕ(s)) : s ∈ R
©
.

Proposition 3.3 implies that ‖ϕ‖Ḃp(R) . ‖Φ
−1‖L2,p(R2) . A. Thus, ‖γ‖Ḃp ≤

‖ϕ‖Ḃp . A, which proves the first bullet point.

We now turn attention to the second bullet point. Suppose that S ⊆ 0.9Q

and B := ‖S‖Ḃp ≤ c. The second bullet-point clearly holds when #S ≤ 1;

thus, we may assume that #S ≥ 2.

Fix distinct points x0, y0 ∈ S and choose euclidean coordinates (u, v) such

that x0 = (0, 0) and y0 = (q, 0) for some q ∈ R. Lemma 3.1 implies that

S ⊆ {(u, ϕ(u)) : u ∈ R} for some ϕ ∈ Bp(R) with ‖ϕ‖Bp(R) . B.

Invoking Proposition 3.3, we obtain G ∈ W 2,p(R2) such that G = ϕ on

R× {0} and ‖G‖W 2,p(R2) . B. The Sobolev theorem implies that

‖∇G‖L∞(R2) . ‖G‖W 2,p(R2) . B ≤ c.
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Taking c sufficiently small, we ensure that ‖∇G‖L∞(R2) ≤ 10−1. Now define the

mapping Ψ(u, v) = (u, v +G(u, v)). The following properties are immediate:

(1) S ⊆
¶

(u, ϕ(u)) : u ∈ R
©

=
¶

(u,G(u, 0)) : u ∈ R
©

=
¶

Ψ(u, 0) : u ∈ R
©

;

(2) ‖∇Ψ−Id‖L∞(R2) ≤ 10−1, and thus ‖∇Ψ‖L∞(R2) ≤ 10 and ‖(∇Ψ)−1‖L∞(R2)

≤ 10;

(3) ‖Ψ‖L2,p(R2) = ‖G‖L2,p(R2) . B;

(4) ‖Ψ−1‖L2,p(R2) . B (see Lemma 3.2).

Define φ(u, v) := (Ψ−1)2(u, v). Note that φ = 0 on S, |∇φ(x)| ≥ 1/2, and

‖φ‖L2,p(Q) . B, thanks to (P1), (P2) and (P4) of Ψ, respectively. We take

H := 2φ to complete the proof of the second bullet point.

The constant c > 0 is chosen small enough so that the previous arguments

hold. This completes the proof of Proposition 3.4. �

Lemma 3.3 (Straightening lemma). There exists c > 0 such that the fol-

lowing hold. Let Q ⊆ R2 satisfy δQ = 1, and suppose that S ⊆ 0.9Q satisfies

‖S‖Ḃp ≤ c. Then there exists a diffeomorphism Φ : R2 → R2 such that

(1) Φ(S) ⊆ R× {0},
(2) ‖Φ‖L2,p(R2) . ‖S‖Ḃp and ‖Φ−1‖L2,p(R2) . ‖S‖Ḃp ,
(3) ‖∇Φ‖L∞(R2) ≤ 10 and ‖∇Φ−1‖L∞(R2) ≤ 10.

Proof. Take Ψ as in the proof of Proposition 3.4, and set Φ := Ψ−1. �

Lemma 3.4. Let Φ : R2 → R2 be a diffeomorphism. Suppose ‖Φ‖L2,p(R2)

≤ A, ‖∇Φ‖L∞(R2) ≤ A and ‖∇Φ−1‖L∞(R2) ≤ A. Then“C−1‖F‖W 2,p(R2) ≤ ‖F ◦ Φ‖W 2,p(R2) ≤ “C‖F‖W 2,p(R2) for every F ∈W 2,p(R2).

Here, the constant “C depends only on A and p.

Proof. We expand Φ = (Φ1,Φ2) in coordinates. Then

(3.10) ∂ij(F ◦Φ) =
∑

k,l∈{1,2}
ck,l · ∂iΦk · ∂jΦl · ∂klF ◦Φ +

∑
k∈{1,2}

∂ijΦk · ∂kF ◦Φ.

Note the estimate ‖∇F‖L∞(R2) . ‖F‖W 2,p(R2) following from the Sobolev the-

orem. Thus, from (3.10) we obtain

‖∇2(F ◦ Φ)‖pLp(R2) ≤ ‹C(A, p) ·
[
‖(∇2F ) ◦ Φ‖pLp(R2) + ‖F‖pW 2,p(R2)

]
.

Since the coordinate change y = Φ(x) has bounded Jacobian, we have

‖∇2(F ◦ Φ)‖Lp(R2) ≤ C(A, p) · ‖F‖W 2,p(R2).

In the same fashion, we show that ‖∇(F ◦Φ)‖Lp(R2) +‖F ◦Φ‖Lp(R2) ≤ C(A, p) ·
‖F‖W 2,p(R2); hence ‖F ◦ Φ‖W 2,p(R2) ≤ C ′(A, p) · ‖F‖W 2,p(R2).
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Now observe that ‖Φ−1‖L2,p(R2) ≤ C ′, thanks to Lemma 3.2. Thus, ap-

plying the above reasoning with Φ−1 instead of Φ, we see that ‖F‖W 2,p(R2) .
‖F ◦ Φ‖W 2,p(R2). This completes the proof of Lemma 3.4. �

We reduce the two-dimensional Sobolev extension problem on certain

“flat” subsets to a one-dimensional Besov extension problem, which we solve

in the next result. Our construction is closely related to Whitney’s extension

theorem for the space C2(R).

Proposition 3.5. Let E1 ⊆ R satisfy diam(E1) . 1. Then there exist a

linear map Tb : Bp(R)|E1 → Bp(R) and linear functionals λ1, . . . , λN0 , where

N0 ≤ C · (#E1)2, such that

• Tb is a bounded linear extension operator: Tbg = g on E1 and ‖Tbg‖Bp(R) ≤
C‖g‖Bp(R)|E1

for any g : E1 → R.

• An approximate formula holds for the Besov trace norm :

C−1

Ç N0∑
i=1

|λi(g)|p
å1/p

≤ ‖g‖Bp(R)|E1
≤ C

Ç N0∑
i=1

|λi(g)|p
å1/p

∀g : E1 → R.

Proof. If #E1 ≤ 1, then the proposition clearly holds; hence, we may

assume that #E1 ≥ 2. We write E1 = {x1, . . . , xN}, where x1 < · · · < xN . It

is convenient to set x0 = −∞ and xN+1 = ∞. Let g : E1 → R be given. We

define the following objects:

• For 1 ≤ k ≤ N , let ν(k) ∈ {k − 1, k + 1} be chosen so that xν(k) ∈ E1 is

nearest to xk.

• For 1 ≤ k ≤ N , set

(3.11)

mk :=
g(xk)− g(xν(k))

xk − xν(k)
and the affine function Lk(x) := g(xk) +mk(x− xk).

• For 0 ≤ k ≤ N , set Ik := [xk, xk+1] \ {−∞,∞} and ∆k := |xk − xk+1|.

By the classical Whitney extension theorem (see [22]), there exists Fk ∈
Ċ1,1(Ik) such that

(1) for k = 1, . . . , N − 1, we have Fk ≡ Lk on [xk, xk + ∆k
10 ] and Fk ≡ Lk+1

on [xk+1 − ∆k
10 , xk+1];

(2) ‖Fk‖Ċ1,1(Ik) is C-optimal with respect to the above property;

(3) Fk depends linearly on the polynomials Lk and Lk+1, and hence also

on g;

(4) F0 = L1 and FN = LN .
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Moreover, the classical Whitney extension theorem provides certain expres-

sions:

(3.12)
Mk := |mk+1 −mk|∆−1

k + |Lk(xk+1)− g(xk+1)|∆−2
k for k = 1, . . . , N − 1,

M0 := 0 and MN := 0,

which satisfy

(3.13) Mk ≈ ‖Fk‖Ċ1,1(Rn).

We define F : R→ R by F (x) = Fk(x) when x ∈ Ik. Let

Akl :=

Ç∫
Ik

∫
Il

1

|x− y|p
dxdy

å1/p

for every k, l ∈ {0, . . . , N} with k < l,

and set

(3.14) M :=

ÇN−1∑
k=1

Mp
k∆2

k +
∑

0≤k,l≤N
k+2≤l

|mk+1 −ml|pApkl

å1/p

.

Note that Ak(k+1) =∞, by definition.

We prove several claims before returning to the task of constructing Tb
and estimating the Besov trace norm.

Claim 1. F = g on E1 and ‖F‖Ḃp(R) .M .

First, we have F = g on E1, by (3.11) and the fact that Fk(xk) = Lk(xk)

for each k. Next, we write

‖F‖p
Ḃp(R)

=
N∑
k=0

∫
Ik

∫
Ik

|F ′(x)− F ′(y)|p

|x− y|p
dxdy(3.15)

+ 2
∑

0≤k<l≤N

∫
Ik

∫
Il

|F ′(x)− F ′(y)|p

|x− y|p
dxdy.

By the Lipschitz bound on the derivative of F = Fk on Ik (see (3.13)) and

since F ′ is constant on I0 and on IN , we have

(3.16)
N∑
k=0

∫
Ik

∫
Ik

|F ′(x)− F ′(y)|p

|x− y|p
dxdy .

N−1∑
k=1

Mp
k∆2

k.

For 0 ≤ k < l ≤ N , we estimate∫
Ik

∫
Il

|F ′(x)− F ′(y)|p

|x− y|p
dydx

.
∫
Ik

∫
Il

|F ′(xk+1)− F ′(xl)|p

|x− y|p
dydx

+

∫
Ik

∫
Il

|F ′(x)− F ′(xk+1)|p

|x− y|p
dydx+

∫
Ik

∫
Il

|F ′(y)− F ′(xl)|p

|x− y|p
dydx
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. |mk+1 −ml|pApkl +Mp
k∆p

k

∫ xk+1−
∆k
10

xk

∫
Il

1

|x− y|p
dydx

+Mp
l ∆p

l

∫ xl+1

xl+
∆l
10

∫
Ik

1

|x− y|p
dxdy.

Here, in the second inequality we use that F ′ ≡ mk+1 on [xk+1 − ∆k
10 , xk+1]

and F ′ ≡ ml on [xl, xl + ∆l
10 ]. Our convention here is that 0 · ∞ = 0, which

arises when k + 1 = l in the first term, when k = 0 in the second term, or

when l = N in the last term. After making the straightforward estimate on

the above integrals, we sum and obtain

(3.17)∑
0≤k<l≤N

∫
Ik

∫
Il

|F ′(x)− F ′(y)|p

|x− y|p
dydx .

∑
0≤k,l≤N
k+2≤l

|mk+1 −ml|pApkl +
N−1∑
k=1

Mp
k∆2

k.

At this time we can derive Claim 1 from (3.14)–(3.17).

Claim 2. Let F ∈ Ḃp(I) for some interval I = [a, b]. Then

∫ b

a

|F ′(x)− F ′(a)|p

|x− a|p−1
dx . ‖F‖p

Ḃp(I)
.

In proving the above claim, we may assume that I = [0, 1] through scale

invariance. For k ≥ 0, we set I ′k := (2−k−1, 2−k].

Note that |F ′(x)−F ′(2−k)|p . ‖F‖p
Ḃp(I′

k
)
2−k(p−2) for x ∈ I ′k, by the Besov

embedding theorem. Therefore,

∫ 1

0

|F ′(x)− F ′(0)|p

xp−1
dx(3.18)

.
∑
k≥0

∫
I′
k

|F ′(2−k)− F ′(0)|p

xp−1
dx+

∑
k≥0

∫
I′
k

|F ′(x)− F ′(2−k)|p

xp−1
dx

.
∑
k≥0

|F ′(2−k)− F ′(0)|p2−k(2−p) +
∑
k≥0

‖F‖p
Ḃp(I′

k
)

.
∑
k≥0

|F ′(2−k)− F ′(0)|p2−k(2−p) + ‖F‖p
Ḃp([0,1])

.

By the Besov embedding theorem, F belongs to C1([0, 1]); hence lim
x→0

F ′(x)

= F ′(0). Thus,

F ′(2−k)− F ′(0) =
∞∑
l=k

î
F ′(2−l)− F ′(2−l−1)

ó
.
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Now, fix 0 < ε < p−2
p and apply Hölder’s inequality, using the above formula:∑

k≥0

|F ′(2−k)− F ′(0)|p2k(p−2)

=
∑
k≥0

∣∣∣∣∣∣∑l≥k(F ′(2−l)− F ′(2−l−1))2lε2−lε

∣∣∣∣∣∣
p

2k(p−2)

≤
∑
k≥0

2k(p−2)
∑
l≥k
|F ′(2−l)− F ′(2−l−1)|p2lεp

∑
l≥k

2−lp
′ε

p/p′

.
∑
k≥0

2k(p−2)
∑
l≥k
|F ′(2−l)− F ′(2−l−1)|p2lεp2−kpε

=
∑
l≥0

|F ′(2−l)− F ′(2−l−1)|p2lεp
∑

0≤k≤l
2k(p−2)−kpε

.
∑
l≥0

|F ′(2−l)− F ′(2−l−1)|p2l(p−2) .
∑
l≥0

‖F‖p
Ḃp(I′

l
)
≤ ‖F‖p

Ḃp([0,1])
.

(Here, p′ denotes the dual exponent to p, and thus 1
p′ + 1

p = 1.) This estimate

and (3.18) complete the proof of Claim 2.

Claim 3. Let ‹F ∈ Ḃp(R) satisfy ‹F = g on E1. Then M . ‖‹F‖Ḃp(R).

We now prove Claim 3. For 1 ≤ k ≤ N , let Jk denote the interval

with endpoints xk and xν(k), and set δk := |Jk| = |xk − xν(k)|. Note that

δk, δk+1 ≤ ∆k for 1 ≤ k ≤ N − 1 because δk equals the distance from xk to its

nearest neighbor in E1 and ∆k = |xk − xk+1|.

Recall that mk =
F̃ (xk)−F̃ (xν(k))

xk−xν(k)
(since ‹F = g on E1 and by (3.11)). Pick

x∗k ∈ Jk such that mk = ‹F ′(x∗k). Set α := 1 − 2/p. By the Besov embedding

theorem,

(3.19) |‹F ′(xk)−mk| = |‹F ′(xk)−‹F ′(x∗k)| . ‖‹F‖Ḃp(Jk)|xk−x
∗
k|α ≤ ‖‹F‖Ḃp(Jk)δ

α
k .

We consider the first sum in (3.14). For k ∈ {1, . . . , N}, we write

Mk = |mk+1 −mk|∆−1
k + |Lk(xk+1)− g(xk+1)|∆−2

k

≤ |mk+1 − ‹F ′(xk+1)|∆−1
k

+ |‹F ′(xk)− ‹F ′(xk+1)|∆−1
k + |mk − ‹F ′(xk)|∆−1

k

+ |Jxk ‹F (xk+1)− g(xk+1)|∆−2
k + |Jxk ‹F (xk+1)− Lk(xk+1)|∆−2

k

(see (3.12)). Since |xk − xk+1| = ∆k,

|Jxk ‹F (xk+1)− Lk(xk+1)|∆−2
k = |‹F ′(xk)−mk|∆−1

k
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(see (3.11)). From this equality, the Besov embedding theorem (to help esti-

mate the second and fourth terms above), and (3.19), we obtain

Mk . ‖‹F‖Ḃp(Jk+1)δ
α
k+1∆−1

k + ‖‹F‖Ḃp(Ik)∆
α−1
k + ‖‹F‖Ḃp(Jk)δ

α
k∆−1

k .

Thus, because δk, δk+1 ≤ ∆k,

Mp
k . ∆

p(α−1)
k

ï
‖‹F‖p

Ḃp(Jk+1)
+ ‖‹F‖p

Ḃp(Ik)
+ ‖‹F‖p

Ḃp(Jk)

ò
.

Summing over k and using that p(α− 1) = −2, we obtain

(3.20)
N−1∑
k=1

Mp
k∆2

k . ‖‹F‖pḂp(R)
.

We consider the second sum in (3.14). For k, l ∈ {0, . . . , N} with k+2 ≤ l,
we write

|mk+1 −ml|p . |mk+1 − ‹F ′(xk+1)|p + |‹F ′(xk+1)− ‹F ′(x)|p + |‹F ′(x)− ‹F ′(y)|p

+ |‹F ′(y)− ‹F ′(xl)|p + |‹F ′(xl)−ml|p.

Now divide the previous inequality by |x − y|p, integrate over x ∈ Ik, y ∈ Il,
and sum over k and l:

∑
0≤k,l≤N
k+2≤l

|mk+1 −ml|pApkl .
N−2∑
k=0

∫ xk+1

xk

∫ ∞
xk+2

|mk+1 − ‹F ′(xk+1)|p

|x− y|p
dydx

(3.21)

+
N−2∑
k=0

∫ xk+1

xk

∫ ∞
xk+2

|‹F ′(xk+1)− ‹F ′(x)|p

|x− y|p
dydx

+

∫
R

∫
R

|‹F ′(x)− ‹F ′(y)|p

|x− y|p
dydx

+
N∑
l=2

∫ xl+1

xl

∫ xl−1

−∞

|‹F ′(y)− ‹F ′(xl)|p
|x− y|p

dxdy

+
N∑
l=2

∫ xl+1

xl

∫ xl−1

−∞

|‹F ′(xl)−ml|p

|x− y|p
dxdy.

From (3.19), we have∫ xk+1

xk

∫ ∞
xk+2

|mk+1 − ‹F ′(xk+1)|p

|x− y|p
dydx(3.22)

. ‖‹F‖p
Ḃp(Jk+1)

δαpk+1 · |xk+1 − xk+2|2−p ≤ ‖‹F‖pḂp(Jk+1)
.
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The last inequality follows because δk+1 ≤ ∆k+1 = |xk+1 − xk+2|, and α · p =

p− 2 > 0. Moreover, Claim 2 implies that

∫ xk+1

xk

∫ ∞
xk+2

|‹F ′(xk+1)− ‹F ′(x)|p

|x− y|p
dydx = C(p)

∫ xk+1

xk

|‹F ′(x)− ‹F ′(xk+1)|p

|x− xk+2|p−1
dx

(3.23)

≤ C(p)

∫ xk+1

xk

|‹F ′(x)− ‹F ′(xk+1)|p

|x− xk+1|p−1
dx . ‖‹F‖p

Ḃp(Ik)
.

From (3.21), (3.22), (3.23), and the mirrored analogues of (3.22) and (3.23),

we obtain∑
0≤k,l≤N
k+2≤l

|mk+1 −ml|pApkl .
N−2∑
k=0

‖‹F‖p
Ḃp(Jk+1)

+
N−2∑
k=0

‖‹F‖p
Ḃp(Ik)

+ ‖‹F‖p
Ḃp(R)

+
N∑
l=2

‖‹F‖p
Ḃp(Il)

+
N∑
l=2

‖‹F‖p
Ḃp(Jl)

. ‖‹F‖p
Ḃp(R)

.

The above inequality and (3.20) immediately imply Claim 3.

We return to the task of constructing the extension operator Tb and esti-

mating the Besov trace norm. We have constructed F ∈ Ḃp(R) that satisfies

(1) F = g on E1,

(2) ‖F‖Ḃp(R) .M

(see Claim 1). Note that F depends linearly on g.

Choose θ ∈ C∞c (R) such that

(1) θ = 1 on E1,

(2) ‖θ‖C2 . 1,

(3) supp(θ) ⊆ [a1, b1] with |a1 − b1| . 1.

This cutoff function exists because diam(E1) . 1.

We define “F := θF . Note that (P1) of F and (P1) of θ imply that “F = g

on E1.

Let L(x) := g(x1) + g(x2)−g(x1)
x2−x1

(x− x1). By the mean value theorem, the

Besov embedding theorem, and since F (x1) = L(x1) and F (x2) = L(x2), we

have

|F ′(x)− L′(x)| . ‖F‖Ḃp(R) and |F (x)− L(x)| . ‖F‖Ḃp(R) for x ∈ [a1, b1].

Since |a1 − b1| . 1, we may integrate p-th powers in the above inequality and

obtain

‖F ′‖Lp([a1,b1]) + ‖F‖Lp([a1,b1]) . ‖F‖Ḃp(R) + ‖L′‖Lp([a1,b1]) + ‖L‖Lp([a1,b1])

.Mp +
|g(x1)− g(x2)|p

|x1 − x2|p
+ |g(x1)|p.
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Thus, by (P2)–(P3) of θ, we have

‖“F‖pBp(R) . ‖θ‖C2 ·
[
‖F‖Ḃp([a1,b1]) + ‖F ′‖Lp([a1,b1]) + ‖F‖Lp([a1,b1])

]
.Mp +

|g(x1)− g(x2)|p

|x1 − x2|p
+ |g(x1)|p.

Using Claim 3, the mean value theorem and the Besov embedding theorem,

we bound each term on the right-hand side above by C‖g‖pBp(R)|E1
. Therefore,

‖“F‖Bp(R) . ‖g‖Bp(R)|E1
. Since “F = g on E1 we have ‖g‖Bp(R)|E1

. ‖“F‖Bp(R).

In particular, the above inequalities are approximate equalities, and hence

‖g‖pBp(R)|E1
≈Mp +

|g(x1)− g(x2)|p

|x1 − x2|p
+ |g(x1)|p.

By definition of M in (3.14), the desired estimate for ‖g‖Bp(R)|E1
holds. Since

F depends linearly on g, so does “F . We set Tb(g) := “F to complete the proof

of Proposition 3.5. �

4. The Calderón-Zygmund decomposition

4.1. CZ squares. Fix a finite set E ⊆ R2. Choose some square Q◦ ⊆ R2,

centered at the origin, such that E ⊆ 1
10Q

◦.

To bisect some given square Q ⊆ R2 means to write Q = Q1 ∪ · · · ∪ Q4,

where δQj = 1
2δQ. We call Q1, . . . , Q4 the children of Q.

A dyadic square is one that arises from Q◦ by repeated bisection. Every

dyadic square Q ( Q◦ is the child of another dyadic square called the dyadic

parent of Q, which we denote by Q+.

Two dyadic squares Q,Q′ are called neighbors provided that Q ∩ Q′ 6= ∅
and int(Q) ∩ int(Q′) = ∅, or Q = Q′; we denote this property by Q↔ Q′.

Let c1 > 0 be a small universal constant whose value is determined later.

We assume that c1 is less than than other more explicit universal constants

that arise in our proof.

Definition 4.1. A dyadic square Q ⊆ Q◦ is OK provided that

‖3Q ∩ E‖Ḃp ≤ c1δ
2/p−1
Q .

Remark 4.1. By the above definition, 3Q∩E lies on the graph of a Besov

function with controlled seminorm; we later use this property to construct an

extension operator for functions on 3Q ∩ E.

We partition Q◦ into a collection of OK squares with pairwise disjoint

interiors using a Calderón-Zygmund decomposition.

Cutting procedure: Given a dyadic square Q ⊆ Q◦, proceed as follows: If

Q is OK, then terminate and return the singleton collection ΛQ = {Q}.
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Otherwise, return the collection

ΛQ =
⋃
{ΛQ′ : Q′ dyadic and (Q′)+ = Q}.

Lemma 4.1. The collection ΛQ◦ contains finitely many squares.

Proof. We set ε := 100−1 inf
¶
|x − y| : x, y ∈ E, x 6= y

©
. If Q ⊆ Q◦ is

dyadic and δQ ≤ ε, then #(3Q∩E) ≤ 1; hence ‖3Q∩E‖Ḃp = 0. Thus, dyadic

squares with sidelength at most ε are OK. Therefore, the cutting procedure

terminates after finitely many steps. The lemma now follows. �

Denote Λ := ΛQ◦ . The squares in Λ are called CZ squares; we index them

by Λ = {Qν}Kν=1.

Denote δν = δQν . We write ν ↔ ν ′ whenever Qν ↔ Qν′ . For any square

Q, we write ‹Q := 1.3Q.

We say that a collection of sets Π has the bounded intersection property

provided that

#
¶
S′ ∈ Π : S ∩ S′ 6= ∅

©
≤ C for each S ∈ Π, for some universal constant C.

Lemma 4.2 (Good Geometry). For every Q,Q′ ∈ Λ, the following prop-

erties hold :

(1) If Q↔ Q′, then 1
2δQ′ ≤ δQ ≤ 2δQ′ .

(2) If Q ∩Q′ = ∅, then ‹Q ∩ ‹Q′ = ∅.
(3) If Q ∩Q′ = ∅, then dist(Q,Q′) ≥ 1

10 max{δQ, δQ′}.
(4) The collection {‹Qν}Kν=1 satisfies the bounded intersection property (with

constant C = 13).

Proof. The last three properties are easily deduced from the first property.

We now prove the first property. For the sake of contradiction, suppose that

there exist Q,Q′ ∈ Λ such that Q↔ Q′ and δQ ≤ 1
4δQ′ . Therefore, δQ+ ≤ 1

2δQ′

and 3Q+ ⊆ 3Q′.

Since Q+ is not OK and 2/p− 1 < 0,

‖3Q′ ∩ E‖Ḃp ≥ ‖3Q
+ ∩ E‖Ḃp > c1δ

2/p−1
Q+ ≥ c1δ

2/p−1
Q′ .

Therefore, Q′ is not OK. This contradicts that Q′ ∈ Λ and completes the proof

of Lemma 4.2. �

4.2. Keystone squares. The keystone squares are simply the CZ squares

that have locally minimal sidelength.

Definition 4.2. The collection of keystone squares Λ] consists of all Q] ∈ Λ

such that

Q ∈ Λ and Q ∩ 100Q] 6= ∅ =⇒ δQ ≥ δQ] .
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Remark 4.2. For Q] ∈ Λ], notice that 10Q] intersects a bounded number

of squares, ensuring that 10Q] ∩ E has simple geometry; in fact, 10Q] ∩ E is

contained in the union of several Besov curves that each have controlled norm.

We use the next definition momentarily.

Definition 4.3. Let a1, a2, a3 > 0 be given. Let Q ⊆ R2 be a square, and

let S ⊆ R2 be finite. We say that Q satisfies R(a1, a2, a3) (rough with constants

a1, a2, a3) relative to S, provided that either of the following conditions hold:

(R1) There exist x1, x2, y1, y2 ∈ Q ∩ S with x1 6= x2 and y1 6= y2 such that

min

®∣∣∣∣∣ x1 − x2

|x1 − x2|
− y1 − y2

|y1 − y2|

∣∣∣∣∣ ,
∣∣∣∣∣ x1 − x2

|x1 − x2|
+

y1 − y2

|y1 − y2|

∣∣∣∣∣
´
> a2.

(R2) a1δ
2/p−1
Q ≤ ‖Q ∩ S‖Ḃp ≤ a3δ

2/p−1
Q .

We record the following small lemma concerning rough squares.

Lemma 4.3. Suppose that Q satisfies R(a1, a2, a3) relative to S. Then

‖Q ∩ S‖Ḃp ≥ ĉ · δ
2/p−1
Q for some constant ĉ = ĉ(a1, a2, p) > 0.

Proof. If (R2) holds, then the conclusion follows immediately.

Suppose that (R1) holds. Take ϕ ∈ Ḃp(R) and euclidean coordinates (u, v)

such that Q∩S ⊆ {(u, ϕ(u)) : u ∈ R}. From (R1) and the mean value theorem,

we find that |ϕ′(u1) − ϕ′(u2)| & a2 for some u1, u2 ∈ R with |u1 − u2| . δQ.

Thus, by the Besov embedding theorem,

‖ϕ‖Ḃp(R) & |ϕ
′(u1)− ϕ′(u2)| · |u1 − u2|2/p−1 & a2δ

2/p−1
Q .

Therefore, ‖Q ∩ S‖Ḃp = inf
¶
‖ϕ‖Ḃp(R) : (u, v) and ϕ as above

©
& a2δ

2/p−1
Q , as

desired. �

Let c2, c3 > 0 be small universal constants, to be determined later in the

paper. We make the following assumption.

Order Remark (OR). We may assume inequalities c1 ≤ c·c3 and c2 ≤ c·c3,

where c is another universal constant arising in the paper.

A sequence of squares {Q′i}ki=1 is called a path provided that Q′i ↔ Q′i+1

for each i = 1, . . . k − 1.

We now present the main result of the section.

Proposition 4.1. The following properties hold :

(K1) For each Q ∈ Λ, there exists Q] ∈ Λ] and there exists a path

Q = Q′1 ↔ Q′2 ↔ · · · ↔ Q′m = Q]

such that Q′k ∈ Λ for 1 ≤ k ≤ m and such that

δQ′
k2
≤ C · (1− c)k2−k1δQ′

k1
for 1 ≤ k1 ≤ k2 ≤ m,

where C > 0 and 0 < c < 1 are universal constants.



206 ARIE ISRAEL

(K2) If Λ 6= {Q◦}, then 9Q] satisfies R(c1, c2, c3) relative to E for every

Q] ∈ Λ].

(K3) The collection {10Q] : Q] ∈ Λ]} has the bounded intersection property.

Proof. We first construct the paths from (K1). Fix Q ∈ Λ, and set

Q′1 = Q0 = Q. The path is determined iteratively starting from Q0 ∈ Λ.

By definition of keystone squares, one of the following conditions holds:

Case 1: Q0 ∈ Λ].

Case 2: There exists Q ∈ Λ such that Q ∩ 100Q0 6= ∅ and δQ ≤
1
2δQ0

.

In the first case, the trivial path Q ↔ Q] := Q satisfies (K1). Alternatively,

suppose that the second case holds. Choose Q1 ∈ Λ that satisfies

(1) Q1 ∩ 100Q0 6= ∅ and δQ1
≤ 1

2δQ0
,

(2) dist(Q1, Q0) ≤ dist(Q,Q0) for every Q ∈ Λ such that Q ∩ 100Q0 6= ∅
and δQ ≤

1
2δQ0

.

Pick a line segment l ⊆ R2 that intersects both Q0 and Q1 and that has

minimal length. Denote by {Q′2, . . . , Q′k1−1} the collection of CZ squares that

intersect l on an interval with nonempty interior. We also set Q′1 := Q0 and

Q′k1
:= Q1. We assume that these squares are indexed to form a path:

Q′1 ↔ Q′2 ↔ · · · ↔ Q′k1
.

By definition of l and since Q′k ∩ l has nonempty interior, we have

dist(Q′k, Q0) < dist(Q1, Q0) for each 2 ≤ k ≤ k1− 1. Also note that l ⊆ 100Q0

thanks to (P1) of Q1, and thus Q′k ∩ 100Q0 6= ∅. Therefore, by (P2) of Q1, we

have

(4.1) δQ′
k
≥ δQ0

for 2 ≤ k ≤ k1 − 1.

Since each Q′k intersects 100Q0, by Good Geometry of the CZ squares we have

δQ′
k
≤ CδQ0

for 2 ≤ k ≤ k1 − 1. Therefore, k1 ≤ C ′ for some universal

constant C ′.

We iterate the above procedure, starting next with Q1 instead of Q0. In

this manner we obtain a sequence of marker squares Qj ∈ Λ, j ≥ 0 such that

(4.2) δQj
≤ 2i−jδQi

for j > i ≥ 0,

and a sequence of intermediate squares Q′k ∈ Λ, k ≥ 1 such that

Q = Q0 = Q′1 ↔ · · · ↔ Q′k1
= Q1 ↔ Q′k1+1 ↔ · · · ↔ Q′k2

= Q2 ↔ · · ·
(4.3)

kj+1 − kj ≤ C and C−1δQj
≤ δQ′

k
≤ CδQj for all j ≥ 0, kj ≤ k ≤ kj+1.

(4.4)
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By (4.2) and the finiteness of Λ, the above path must terminate. Thus, the

iteration eventually enters Case 1; hence, Qn ∈ Λ] for some n. We set Q] :=

Qn. By (4.2) and (4.4), the path in (4.3) satisfies the conditions from (K1).

We now prove (K2). Let Q] ∈ Λ], and set E0 := 9Q] ∩ E. To prove that

9Q] is Rough relative to E, we may assume that (R1) fails. Thus for every

x1, x2, x3, x4 ∈ E0 with x1 6= x2 and x3 6= x4,

(4.5) min

®∣∣∣∣∣ x1 − x2

|x1 − x2|
− x3 − x4

|x3 − x4|

∣∣∣∣∣ ,
∣∣∣∣∣ x1 − x2

|x1 − x2|
+

x3 − x4

|x3 − x4|

∣∣∣∣∣
´
≤ c2.

If Λ 6= {Q◦}, then every CZ square has a parent. By definition of the CZ

squares, (Q])+ is not OK. Therefore, since p > 2, by definition of OK squares,

we have

(4.6) ‖9Q] ∩ E‖Ḃp ≥ ‖3(Q])+ ∩ E‖Ḃp ≥ c1δ
2/p−1

(Q])+ ≥ c1δ
2/p−1

9Q]
.

This proves one inequality from (R2). We now prove the second inequality:

‖9Q] ∩ E‖Ḃp ≤ c3δ
2/p−1

9Q]
. To accomplish this task, we build an interpolating

curve through 9Q] ∩ E. This will complete the proof of (K2).

Let Q ∈ Λ with Q ∩ 9Q] 6= ∅ be given. By definition of the keystone

squares, we have δQ ≥ δQ] .
Now we show that δQ ≤ 100δQ] . For the sake of contradiction, suppose

that δQ ≥ 100δQ] . Since Q ∩ 9Q] 6= ∅, we have ‹Q ∩ ‹Q] 6= ∅. (Recall that‹Q = 1.3Q.) Thus, by Good Geometry, we have δQ ≤ 2δQ] , yielding the desired

contradiction.

Let {Q1, . . . , Qm} be the collection of CZ squares that intersect E0. Hence,

Qi ∩ 9Q] 6= ∅ and δQi/δQ] ∈ [1, 100] for each i. Therefore, m ≤ 200. Since Qi

is OK, we have

‖3Qi ∩ E0‖Ḃp ≤ ‖3Q
i ∩ E‖Ḃp ≤ c1δ

2/p−1
Qi

≤ c1δ
2/p−1

Q]
for 1 ≤ i ≤ m.

We recall the current setup.

(A1) min{| x1−x2
|x1−x2|−

x3−x4
|x3−x4| |, |

x1−x2
|x1−x2|+

x3−x4
|x3−x4| |} ≤ c2 for all x1, x2, x3, x4 ∈ E0

with x1 6= x2, and x3 6= x4;

(A2) E0 =
m⋃
i=1

Qi ∩ E0 and m ≤ 200;

(A3) ‖3Qi ∩ E0‖Ḃp ≤ c1δ
2/p−1

Q]
for i = 1, . . . ,m;

(A4) δQ] ≤ δQi ≤ 100δQ] for i = 1, . . . ,m.

For any collection of squares Q], Q1, . . . , Qm and any subset E0 ⊆ 9Q] that

satisfy (A1)–(A4), we now prove that

(4.7) ‖E0‖Ḃp ≤ c3δ
2/p−1

9Q]
.
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By rescaling assumptions (A1)–(A4) and conclusion (4.7), we may assume that

δQ] = 1; we drop this assumption after proving (4.7).

If #E0 ≤ 1, then (4.7) holds trivially; thus, we may assume that #E0 ≥ 2.

Fix distinct y1, y2 ∈ E0. We specify euclidean coordinates (u, v) such that

y1 = (0, 0) and y2 = (q, 0) for some q ∈ R. We continue working in these

coordinates throughout the proof of Proposition 4.1. For j = 1, . . . ,m, we set

E′j := 3Qj ∩ E0 and E
′
j := proj{v=0}(E

′
j),

Ej := Qj ∩ E0 and Ej := proj{v=0}Ej ,

E0 := proj{v=0}E0.

Since y1, y2 ∈ E0 lie on the u-axis, (A1) and (A3) imply that the hypotheses

of Lemma 3.1 hold for E′j and κ2 := 100c2. Thus, for small enough c1,c2, there

exists ϕj ∈ Bp(R) such that

(1) E′j ⊆ {(u, ϕj(u)) : u ∈ R},
(2) ‖ϕj‖Bp(R) . c1 + c2.

Let Ij be the convex hull of Ej . We consider Ij , Ej , and E0 as subsets of

the u-axis. Write Ij = [aj , bj ], and set Ĩj := [aj − 1
10δQj , bj + 1

10δQj ].

The distance from Ij to the endpoints of Ĩj equals 1
10δQj ≥

1
10 (see (A4)).

By taking projections in (A2), we have

E0 =
m⋃
j=1

Ej ⊆
m⋃
j=1

Ij .

Thus we may choose cutoff functions with the following properties:

(1) θ̃j ∈ C∞c (Ĩj),

(2) θ̃j ≡ 1 on Ij ,

(3) | dk
dxk

θ̃j | . 1 for k ≤ 2.

Notice that ψ =
∑m
j=1 θ̃j satisfies |ψ| . 1 on R and ψ ≥ 1 on

⋃
j Ij . Fix

η ∈ C∞(R) with η(w) ≡ w for w ≥ 1 and η(w) ≥ 1
2 for w ≤ 1. We define

θj := θ̃j · (η ◦ ψ)−1, which satisfies

(1)
∑m
j=1 θj = 1 on E0,

(2) | dk
dxk

θj | . 1 for k ≤ 2,

(3) θj ∈ C∞c (Ĩj).

Let ϕ :=
m∑
j=1

θjϕj . From (P2) of θj and the bound m ≤ 200, we estimate

(4.8) ‖ϕ‖Ḃp(R) ≤
m∑
j=1

‖θjϕj‖Ḃp(R) ≤
m∑
j=1

‖θjϕj‖Bp(R) .
m∑
j=1

‖ϕj‖Bp(R) . c1+c2.

Given x0 ∈ E0, we write x0 = (x0, y0) (in (u, v) coordinates). We now prove

the following
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Claim. If x0 ∈ Ĩj , then x0 ∈ 3Qj .

Recall that Ĩj = [aj − 1
10δQj , bj + 1

10δQj ] and that Ij = [aj , bj ] is the

convex hull of the projection of Ej ⊆ Qj onto the u-axis. Thus, diam(Ij) ≤
diam(Qj) =

√
2δQj . Let xj ∈ Ej be an endpoint of Ij that is closest to x0.

Therefore,

|x0 − xj | ≤ max

®
1

2
diam(Ij),

1

10
δQj

´
≤
√

2

2
δQj .

Since Ej = proj{v=0}Ej , there exists yj ∈ R with xj = (xj , yj) ∈ Ej = E0∩Qj .
For small enough c2, because two points of E0 lie on the u-axis, (A1) implies

that |y0 − yj | ≤ |x0 − xj |; hence,

|x0 − xj |2 = |x0 − xj |2 + |y0 − yj |2 ≤ 2|x0 − xj |2 ≤ δ2
Qj .

Since xj ∈ Qj , the above inequality implies that x0 ∈ 3Qj . This proves the

desired claim.

We now return to proving (K2). We have

ϕ(x0) =
m∑
j=1

θj(x0)ϕj(x0);

moreover, the sum may be taken over j such that x0 ∈ Ĩj (see (P3) of θj). For

each such j, our claim implies that x0 ∈ 3Qj ∩ E0 = E′j ; hence, ϕj(x0) = y0

by (P1) of ϕj . Consequently,

ϕ(x0) =
∑
j

θj(x0)y0 = y0,

where the last equality follows from (P1) of θj . Since x0 ∈ E0 was arbitrary,

we have shown that

E0 ⊆ {(u, ϕ(u)) : u ∈ R}.

Thus, (4.8) implies that ‖E0‖Ḃp . c1 + c2. For small enough c1 and c2 de-

pending on c3, we then have ‖E0‖Ḃp ≤ 92/p−1c3. This proves (4.7) under

the assumption that δQ] = 1. By rescaling, we may drop this assumption.

Together with (4.6), this completes the proof of (K2).

Finally, we prove (K3). Let Q]1, Q
]
2 ∈ Λ] satisfy 10Q]1 ∩ 10Q]2 6= ∅ and

δ
Q]1
≥ δ

Q]2
. Hence, Q]2∩100Q]1 6= ∅. Thus, by definition of the keystone squares,

δ
Q]2
≥ δ

Q]1
. Because the CZ squares have disjoint interiors, for each Q]1 there

can be at most C distinct choices of Q]2 that satisfy the above conditions. This

proves (K3) and completes the proof of Proposition 4.1. �

In Section 7 we prove Theorem 1 in the easier case when Λ = {Q◦}. Until

then, we suppose that Λ 6= {Q◦}. Thus, the conclusion of (K2) holds.
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The keystone squares are indexed by Λ] = {Q]µ : µ = 1, . . . ,K]}. Let

δ]µ := δ
Q]µ

. Define the index map µ : {1, . . . ,K} → {1, . . . ,K]} so that the

path from (K1) connects Qν ∈ Λ and Q]µ(ν) ∈ Λ]. Next we state an easy

corollary of (K1).

Corollary 4.1. For some universal constant C , we have dist(Qν , Q
]
µ(ν))

≤ CδQν and δ
Q]
µ(ν)

≤ CδQν for each ν = 1, . . . ,K .

4.3. Representative points. Recall that ‖3Qν ∩ E‖Ḃp ≤ c1δ
2/p−1
ν for each

CZ square Qν . By definition this means that

3Qν ∩ E ⊆ {(s, ϕν(s)) : s ∈ R} (in some euclidean coordinate system (s, t)),

where ϕν ∈ Ḃp(R), and ‖ϕν‖Ḃp(R) ≤ 2c1δ
2/p−1
ν .

The Besov embedding theorem implies d
dsϕν varies by at most Cc1δ

2/p−1
ν δ

1−2/p
ν

on the projection of 3Qν onto the s-axis. (Recall that δν = δQν .) We assume

that c1 <
1

200C ; hence, d
dsϕν varies by at most 1

100 on this interval. This allows

us to choose xν ∈ 1
2Qν with dist(xν , E) ≥ 1

5δν . These points are called the CZ

representative points, and we set E′ := {xν : ν = 1, . . . ,K}.
For each 1 ≤ µ ≤ K], there exists ν such that Q]µ = Qν . We set x]µ := xν

for this ν. These points are called the keystone representative points, and we

set E] := {x]µ : µ = 1, . . . ,K]}.

Lemma 4.4. The CZ representative points satisfy E′ ⊆ 0.99Q◦.

Proof. Let 1 ≤ ν ≤ K. Note that either

(A) Qν ⊆ Q◦ and Qν intersects the boundary of Q◦, or

(B) Qν ⊆ int(Q◦).

If (A) holds, then we claim that δν ≥ 1
32δQ◦ . Suppose for the sake of

contradiction that δν ≤ 1
64Q

◦. Since E ⊆ 1
10Q

◦, we have 3Q+
ν ∩E ⊆ 9Qν ∩E =

∅; hence Q+
ν is OK. However, this contradicts the fact that Qν is a CZ square.

This shows that δν ≥ 1
32δQ◦ . Consequently, xν ∈ 1

2Qν ⊆ 0.99Q◦ as desired.

Alternatively, suppose that (B) holds. By the above analysis, the distance

between ∂Q◦ and Qν is at least 1
32δQ◦ . Therefore, xν ∈ Qν ⊆ 0.99Q◦ as

desired. �

5. The modified extension problem

5.1. A Sobolev-type inequality. We start by proving an inequality related

to the Sobolev theorem and Proposition 4.1.

Proposition 5.1 (Sobolev-type inequality). Let F ∈ L2,p(R2). Then

K∑
ν=1

ï
|∇F (xν)−∇F (x]µ(ν))|

pδ2−p
ν +|F (xν)−J

x]
µ(ν)

F (xν)|pδ2−2p
ν

ò
.‖F‖pL2,p(R2).
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Proof. Recall (K1) from Proposition 4.1, where we defined the map µ :

{1, . . . ,K} → {1, . . . ,K]} such that for each ν ∈ {1, 2, . . . ,K}, there exists a

sequence of CZ squares Qkν1 , . . . , QkνNν
with

Qν = Qkν1 ↔ · · · ↔ QkνNν
= Q]µ(ν), and(5.1)

δQkνm
. (1− c)m−nδQkνn for 1 ≤ n < m ≤ Nν (here c = c(p) ∈ (0, 1)).

Let ε ∈ (0, 1− 2/p) be fixed, and set

X :=
K∑
ν=1

ï
|∇F (xν)−∇F (x]µ(ν))|

pδ2−p
ν + |F (xν)− J

x]
µ(ν)

F (xν)|pδ2−2p
ν

ò
.

Note that

F (xν)− J
x]
µ(ν)

F (xν) =
Ä
JxνF − Jx]

µ(ν)

F
ä
(x]µ(ν))

+
Ä
∇F (xν)−∇F (x]µ(ν))

ä
· (xν − x]µ(ν)).

Since x]µ(ν) ∈ Q
]
µ(ν) and xν ∈ Qν , we have |xν−x]µ(ν)| ≤ Cδν (see Corollary 4.1).

Thus, through Hölder’s inequality,

X .
K∑
ν=1

∑
|α|≤1

∣∣∣∂αÄJxνF − Jx]
µ(ν)

F
ä
(x]µ(ν))

∣∣∣pδ2−(2−|α|)p
ν

(5.2)

=
K∑
ν=1

∑
|α|≤1

∣∣∣∣∣
Nν−1∑
n=1

∂α
Ä
Jxkνn

F−Jxkν
n+1

F
ä
(x]µ(ν)) ·

î
δQkνn

ó−εî
δQkνn

ó+ε∣∣∣∣∣pδ2−(2−|α|)p
ν

≤
K∑
ν=1

∑
|α|≤1

[
Nν−1∑
n=1

∣∣∣∂αÄJxkνnF−Jxkνn+1
F
ä
(x]µ(ν))

∣∣∣p îδQkνn ó−εp]
·
[
Nν−1∑
n=1

î
δQkνn

óεp′]p/p′
δ2−(2−|α|)p
ν .

(Here, p′ denotes the dual exponent to p; thus 1
p′ + 1

p = 1.)

From (5.1), we have

(5.3) dist(Qν , Qkνn) ≤
n∑

m=1

diam(Qkνm) .
n∑

m=1

(1− c)m−1δQkν
1
. δQkν

1
= δν .

Moreover, since xkνn ∈ Qkνn and x]µ(ν) ∈ Q]µ(ν), we have |xkνn − x
]
µ(ν)| ≤ Cδν .

Thus,∑
|α|≤1

∣∣∣∂αP (x]µ(ν))
∣∣∣pδ2−(2−|α|)p

ν .
∑
|α|≤1

∣∣∣∂αP (xkνn)
∣∣∣pδ2−(2−|α|)p

ν for any P ∈ P.
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Applying (5.1) and the previous estimate in (5.2), we obtain

(5.4) X .
K∑
ν=1

∑
|α|≤1

Nν−1∑
n=1

∣∣∣∂αîJxkνnF−Jxkνn+1
F
ó
(xkνn)

∣∣∣p îδQkνn ó−εp δ2−(2−|α|)p+εp
Qν

.

For each ν ∈ {1, . . . ,K} and n ∈ {1, . . . , Nν} , we have Qkνn ⊆ CQν for some

universal constant C, thanks to (5.3). Note that the sequence kν1 , . . . , k
ν
Nν

repeats at most C = C(p) many times for each fixed ν, thanks to (5.1). Note

also that kνn ↔ kνn+1. Thus, by switching the order of summation in (5.4),

X .
∑
k↔k′

∑
|α|≤1

∣∣∣∂αîJxkF − Jxk′F ó(xk)∣∣∣p[δQk ]−εp

·
∑®

δ
2−(2−|α|)p+εp
Q : Q dyadic, Qk ⊆ CQ

´
.
∑
k↔k′

∑
|α|≤1

∣∣∣∂αîJxkF − Jxk′F ó(xk)∣∣∣p[δQk ]2−(2−|α|)p.

(Since ε < 1−2/p, the exponent in the dyadic sum above is negative.) Applying

the Sobolev theorem (see Remark 3.1) and the bounded intersection property

of the squares {‹Qν}, we see that

X .
∑
k↔k′

‖F‖p
L2,p(Q̃k∪Q̃k′ )

.
∑
k

‖F‖p
L2,p(Q̃k)

. ‖F‖pL2,p(R2).

This completes the proof of Proposition 5.1. �

5.2. The constant-path property. We start by introducing some notation.

Given L ∈ Wh(E′) we denote Lν = Lxν for ν = 1, . . . ,K. Similarly, given

L] ∈Wh(E]) we denote L]µ = L]
x]µ

for µ = 1, . . . ,K].

Let L] ∈Wh(E]) be given. We denote the constant-path extension of L]

by ext(L]) ∈Wh(E′) which is defined by

ext(L]) = L, where Lν = L]µ(ν) for 1 ≤ ν ≤ K.

(Recall that we defined the index map µ at the end of Section 4.2.)

The main important idea in the proof of Theorem 1 is the manner in which

we place additional linear constraints on the sought extension of f , which help

eliminate undesirable degrees of freedom. These constraints form the constant-

path property defined below.

We say that F ∈ L2,p(R2) satisfies the constant-path property (CPP)

provided that JxνF = J
x]
µ(ν)

F for ν = 1, . . . ,K. (Equivalently, this means

that JE′F = ext(JE]F ).) The constant-path property is natural because there

always exist C-optimal extensions that satisfy it, as we demonstrate in the

next result.
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Lemma 5.1. Let f : E → R be given. Then there exists “F ∈ L2,p(R2)

such that

(1) “F = f on E and ‖“F‖L2,p(R2) . ‖f‖L2,p(R2)|E ,

(2) “F satisfies the constant-path property.

Proof. Choose any function F ∈ L2,p(R2) such that

(1) F = f on E,

(2) ‖F‖L2,p(R2) ≤ 2‖f‖L2,p(R2)|E .

We now modify this function near the representative points E′ yielding an“F ∈ L2,p(R2) that satisfies the constant-path property and extends f while

maintaining the near-minimal seminorm.

We set L] := JE]F ∈ Wh(E]) and L := ext(L]) ∈ Wh(E′). Pick cutoff

functions θν for ν = 1, . . . ,K that satisfy

(1) θν = 1 on a neighborhood of xν ,

(2) |∂αθν | ≤ Cδ−|α|ν for |α| ≤ 2,

(3) supp(θν) ⊆ B(xν ,
1
20δν).

Because xν ∈ 1
2Qν and dist(xν , E) ≥ δν/5, we have

θν = 0 on E,(5.5)

and

supp(θν) ⊆ 0.9Qν for each ν.(5.6)

In particular, the cutoff functions θν have disjoint supports. We now define“F := F +
K∑
ν=1

θν · (Lν − JxνF ).

By (5.5), (5.6), and the first property of θν , we see that

(5.7) “F = f on E, and Jxν
“F = Lν for each ν.

In particular, “F satisfies the constant-path property, thanks to the definition

L = ext(L]). It remains to estimate ‖“F‖L2,p(R2). From (5.6), we obtain

‖“F‖pL2,p(R2) . ‖F‖
p
L2,p(R2) +

∑
ν

‖θν · (Lν − JxνF )‖pL2,p(Qν) . ‖F‖
p
L2,p(R2)

(5.8)

+
∑
ν

î
|(Lν − JxνF ) (xν)|pδ2−2p

ν + |∇Lν −∇F (xν)|pδ2−p
ν

ó
.

The second inequality is a consequence of the following fact: If θ ∈ C2(Q)

satisfies |∂αθ| ≤ Cδ−|α|Q for |α| ≤ 2, then ‖θ ·P‖L2,p(Q) . |P (x)| ·δ2/p−2
Q + |∇P | ·

δ
2/p−1
Q for every P ∈ P and x ∈ Q. To prove this fact one may assume that

δQ = 1 by scale-invariance, which reduces the problem to an easy computation.
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Since Lν = L]µ(ν) = J
x]
µ(ν)

F , from Proposition 5.1 and (5.8) we conclude

that

‖“F‖L2,p(R2) . ‖F‖L2,p(R2) ≤ 2‖f‖L2,p(R2)|E .

This completes the proof of Lemma 5.1 �

5.3. The local extension problem. The problem of extending f : E → R
will be decomposed into numerous smaller extension problems, each localized

to some square Q. The geometry of the local subsets E ∩ Q are quite simple

— in fact, each subset lies on a Besov curve with controlled norm — making

these problems easy to solve.

In this section we make the following

Geometric Assumptions. The following objects are given:

• a constant κ > 0,

• a square Q ⊆ R2 and a finite subset S ⊆ 0.9Q such that ‖S‖Ḃp ≤
κδ

2/p−1
Q ,

• a point z ∈ 1
2Q such that dist(z, S) ≥ 1

100δQ.

Proposition 5.2. There exists â > 0 depending only on p such that if

κ ≤ â in the Geometric Assumptions, then there exists a linear map TQ :

L2,p(Q)|S × P → L2,p(Q) such that

(1) TQ(f, P ) = f on S, and JzTQ(f, P ) = P for every f : S → R and

P ∈ P ;

(2) ‖TQ(f, P )‖L2,p(Q) ≈ inf
¶
‖F‖L2,p(Q) : F = f on S and JzF = P

©
.

Moreover, there exist linear functionals λ1, . . . , λJ , where J . #(S)2, such

that

MQ(f, P ) :=

Ç J∑
j=1

|λj(f, P )|p
å1/p

satisfies MQ(f, P ) ≈ ‖TQ(f, P )‖L2,p(Q).

Remark 5.1. Note that MQ(f, P ) is within a constant factor of the semi-

norm

‖(f, P )‖ := inf
¶
‖F‖L2,p(Q) : F = f on S and JzF = P

©
.

Hence, MQ is essentially subadditive in the sense that

MQ(f0 + f1, P0 + P1) ≤ C · [MQ(f0, P0) +MQ(f1, P1)]

for every f0, f1 : S → R and P0, P1 ∈ P.

Proof. By a standard rescaling argument, we may assume that δQ = 1.

Let 0 < â < 1 be some small universal constant, to be determined later. We

assume that κ ≤ â.
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Suppose we can find a linear map T : L2,p(Q)|S → L2,p(Q) that sat-

isfies the conclusion of the proposition, but with P = 0. Then the map

TQ : L2,p(Q)|S × P → L2,p(Q) defined by

TQ(f, P ) := T (f − P |S) + P

satisfies the conclusion of the proposition. Thus, it suffices to construct a linear

map T : L2,p(Q)|S → L2,p(Q) such that Tf = f on S, Jz[Tf ] = 0 and

‖Tf‖L2,p(Q) ≤ C inf
¶
‖F‖L2,p(Q) : F = f on S and JzF = 0

©
.

We momentarily consider the spaces X = W 2,p and X = L2,p. For each

F ∈ X(Q), we claim that there exists F0 ∈ X(R2) such that F0 = F on

0.9Q and ‖F0‖X(R2) ≤ C‖F‖X(Q). This follows from a standard cutoff function

argument. Thus, since S ⊆ 0.9Q, we have

(5.9) ‖f‖L2,p(Q)|S ≈ ‖f‖L2,p(R2)|S and ‖f‖W 2,p(Q)|S ≈ ‖f‖W 2,p(R2)|S .

Recall that S ⊆ 0.9Q satisfies ‖S‖Ḃp ≤ â. For small enough â, Lemma 3.3

provides a diffeomorphism Φ : R2 → R2 such that

(1) Φ(S) ⊆ R× {0},
(2) ‖Φ‖L2,p(R2) ≤ C,

(3) ‖∇Φ‖L∞(R2) ≤ C and ‖∇Φ−1‖L∞(R2) ≤ C.

Let S := Φ(S), and define f : S → R by f = f ◦ Φ−1|S . We subsequently

identify S ⊆ R× {0} with a subset of R through the natural projection. Now,

from Lemma 3.4 we obtain

‖f‖W 2,p(R2)|S = inf
¶
‖F‖W 2,p(R2) : F = f on S

©
(5.10)

= inf
¶
‖F ◦ Φ‖W 2,p(R2) : F ◦ Φ = f on S

©
≈ inf

¶
‖F‖W 2,p(R2) : F = f on S

©
= ‖f‖W 2,p(R2)|

S
.

Moreover, Proposition 3.3 implies that

‖f‖W 2,p(R2)|
S

= inf
¶
‖F‖W 2,p(R2) : F ∈W 2,p(R2), F = f on S

©
(5.11)

≈ inf
¶
‖g‖Bp(R) : g ∈ Bp(R), g = f on S

©
= ‖f‖Bp(R)|

S
.

We invoke Proposition 3.5 to choose g ∈ Bp(R) depending linearly on f

such that

(1) g = f on S,

(2) ‖g‖Bp(R) . ‖f‖Bp(R)|
S
.

We invoke Proposition 3.3 to choose G ∈ W 2,p(R2) depending linearly on g

such that

(1) G = g on R× {0},
(2) ‖G‖W 2,p(R2) . ‖g‖Bp(R).
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Therefore, G = f on S and

(5.12) ‖G‖W 2,p(R2) . ‖f‖Bp(R)|
S
≈ ‖f‖W 2,p(R2)|

S
.

We define F := G ◦ Φ. Firstly, note that F = f ◦ Φ = f on S. Secondly,

we have ‖F‖W 2,p(R2) ≈ ‖G‖W 2,p(R2); hence, (5.10) and (5.12) imply that

(5.13) ‖F‖W 2,p(R2) . ‖f‖W 2,p(R2)|S .

Pick θ ∈ C∞c (B(z, 1
150)) such that

(1) θ ≡ 1 on B(z, 1
200),

(2) ‖θ‖C2 . 1.

Note that θ = 0 on S, because dist(z, S) ≥ 1
100 .

We set “F := (F − θ · JzF )|Q. Note that “F = F − 0 = f on S, and

Jz“F = JzF −JzF = 0. From the Sobolev theorem, (P2) of θ, (5.13), and (5.9),

we obtain

‖“F‖W 2,p(Q) =‖F − θ ·JzF‖W 2,p(Q).‖F‖W 2,p(R2).‖f‖W 2,p(R2)|S≈‖f‖W 2,p(Q)|S .

Because “F = f on S, the previous inequality implies that

(5.14) ‖“F‖W 2,p(Q) ≈ ‖f‖W 2,p(Q)|S .

We also have

‖“F‖W 2,p(Q) . inf
¶
‖H‖W 2,p(Q) : H = f on S, JzH = 0

©
. inf

¶
‖H‖L2,p(Q) : H = f on S, JzH = 0

©
.

In the last inequality above we applied the Sobolev theorem to show that

‖H‖W 2,p(Q) ≈ ‖H‖L2,p(Q) whenever JzH = 0. In particular, we have

(5.15) ‖“F‖W 2,p(Q) ≈ ‖“F‖L2,p(Q).

We define TQ(f) = “F , which satisfies the desired extension/optimality

properties from the proposition (with P = 0). Applying (5.14), (5.15), (5.10),

(5.11), and (5.9), we see that

‖“F‖L2,p(Q) ≈ ‖“F‖W 2,p(Q) ≈ ‖f‖W 2,p(R2)|S ≈ ‖f‖W 2,p(R2)|
S
≈ ‖f‖Bp(R)|§ .

Proposition 3.5 yields the formula

‖f‖pBp(R)|
S
≈

J∑
j=1

|λj(f)|p,

for certain linear functionals λj : Bp(R)|S → R, where J . (#E1)2 = (#S)2.

Since f = f ◦ Φ−1 depends linearly on f , the last two equations complete the

proof of Proposition 5.2. �
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5.4. Patching the local extensions. For each f : E → R and ν ∈{1, . . . ,K},
we set Eν := 1.1Qν ∩ E and fν := f |Eν . Recall that Qν is OK. That is,

‖Eν‖Ḃp ≤ ‖3Qν ∩ E‖Ḃp ≤ c1δ
2/p−1
ν and Eν ⊆ 1.1Qν .

We have already determined xν ∈ 1
2Qν such that dist(xν , Eν) ≥ dist(xν , E)

≥ 1
5δν . Recall that ‹Qν = 1.3Qν . Thus, for small enough c1, by Proposition 5.2

we obtain a linear map Tν : L2,p(‹Qν)|Eν × P → L2,p(‹Qν) such that Fν =

Tν(fν , Lν) satisfies

(1) Fν = fν on Eν and JxνFν = Lν for each f : E → R and Lν ∈ P;

(2) ‖Fν‖L2,p(Q̃ν)
≈ inf

¶
‖F‖

L2,p(Q̃ν)
: F = fν on Eν , and JxνF = Lν

©
.

Moreover, there exist linear functionals λν1 , . . . , λ
ν
Nν

with Nν . (#Eν)2 such

that

Mν(fν , Lν) :=

Ç Nν∑
i=1

|λνi (fν , Lν)|p
å1/p

satisfies Mν(fν , Lν) ≈ ‖Fν‖L2,p(Q̃ν)
.

Using these extension operators and functionals, we prove the next result.

Proposition 5.3. There exists a linear map T : L2,p(R2)|E×Wh(E])→
L2,p(R2) such that the following holds. Given f : E → R and L] ∈ Wh(E]),

set L := ext(L]) and “F := T (f, L]). Then

(1) “F = f on E and JE′“F = L.

(2) ‖“F‖L2,p(R2) ≈ inf
¶
‖F‖L2,p(R2) : F = f on E, JE′F = L

©
.

(3) ‖“F‖L2,p(R2) ≈M(f, L]), where

M(f, L])p :=
K∑
ν=1

Mν(fν , Lν)p

+
∑
ν↔ν′

[
|∇Lν −∇Lν′ |pδ2−p

ν + |(Lν − Lν′)(x]µ(ν))|
pδ2−2p
ν

]
.

Proof. Let f : E → R and L] ∈ Wh(E]) be given. We set L := ext(L]).

We define Fν := Tν(fν , Lν) and Mν := Mν(fν , Lν) for ν = 1, . . . ,K. By defini-

tion,

(1) Fν = fν on Eν ,

(2) JxνFν = Lν ,

(3) Mν ≈ ‖Fν‖L2,p(Q̃ν)
≈ inf

{
‖F‖

L2,p(Q̃ν)
: F = fν on Eν , JxνF = Lν

}
.

Pick a partition of unity:

(1)
K∑
ν=1

θν ≡ 1 on Q◦,

where

(2) 0 ≤ θν ≤ 1,

(3) θν ≡ 1 on 0.9Qν ,
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(4) supp(θν) ⊆ 1.1Qν ,

(5) |∂αθν | ≤ Cδ−|α|ν for |α| ≤ 2.

We set

F :=
∑
ν

θνFν ∈ L2,p(Q◦).

Applying (P1)–(P4) of θν , (P1)–(P2) of Fν , Eν ⊆ 1.1Qν , and xν ∈ 0.9Qν , we

see that

(5.16) F = f on E, and JE′F = L.

Moreover, F depends linearly on (f, L]).

Now we estimate ‖F‖L2,p(Q◦). Note that∑
ν

∂αθν(x) = ∂α
Ç∑

ν

θν

å
(x) =

∂α

∂xα
1 = 0

for x ∈ Q◦ and any nonzero multi-index α.

Let ν ′ ∈ {1, . . . ,K}. By the previous identity,

(5.17) ∇2F =
∑
ν

∇2Fν · θν + 2
∑
ν

∇(Fν −Fν′)⊗∇θν +
∑
ν

(Fν −Fν′) · ∇2θν ,

where (v1 ⊗ v2)ij := (v1
i v

2
j + v1

j v
2
i )/2 denotes the symmetrized tensor product.

If x ∈ supp(θν) ∩ Qν′ , then x ∈ ‹Qν ∩ Qν′ , due to (P4) of θν , and thus

ν ↔ ν ′ by Good Geometry; moreover, this may occur for at most C(p) distinct

indices ν. Thus, from (5.17),

‖∇2F‖pLp(Qν′ )
.

∑
ν:ν↔ν′

‖∇2(Fν)θν‖pLp(Qν′ )
(5.18)

+
∑

ν:ν↔ν′
‖∇(Fν − Fν′)⊗∇(θν)‖pLp(Qν′ )

+
∑

ν:ν↔ν′
‖(Fν − Fν′)∇2(θν)‖pLp(Qν′ )

.

Let ν be such that ν ↔ ν ′. From (P4), (P5) of θν and (P3) of Fν , we have

(5.19) ‖∇2(Fν)θν‖Lp(Qν′ )
≤ C‖∇2(Fν)‖

Lp(Q̃ν)
≈Mν .

From the Sobolev theorem, (P2), (P3) of Fν and (P4), (P5) of θν , we estimate

‖∇(Fν − Fν′)⊗∇θν‖pLp(Qν′ )
. ‖∇(Lν − Lν′)⊗∇θν‖pLp(Qν′ )

(5.20)

+ ‖∇(Fν − Lν)⊗∇θν‖pLp(Qν′ )
+ ‖∇(Lν′ − Fν′)⊗∇θν‖pLp(Qν′ )

. δ2−p
ν |∇Lν −∇Lν′ |p

+ δ−pν ‖∇Fν −∇Lν‖
p

Lp(Q̃ν)
+ δ−pν ‖∇Lν′ −∇Fν′‖

p

Lp(Q̃ν′ )

. δ2−p
ν |∇Lν −∇Lν′ |p + ‖Fν‖p

L2,p(Q̃ν)
+ ‖Fν′‖p

L2,p(Q̃ν′ )

≈ δ2−p
ν |∇Lν −∇Lν′ |p +Mp

ν +Mp
ν′ .
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As in (5.20), we estimate

‖(Fν − Fν′)∇2(θν)‖pLp(Qν′ )
(5.21)

. δ−2p
ν ‖Lν − Lν′‖pLp(Qν′ )

+ ‖Fν‖p
L2,p(Q̃ν)

+ ‖Fν′‖p
L2,p(Q̃ν′ )

. δ2−2p
ν |Lν(xν)− Lν′(xν)|p + δ2−p

ν |∇Lν −∇Lν′ |p +Mp
ν +Mp

ν′ ,

where the second inequality is a consequence of the estimate

‖Lν − Lν′‖pLp(Qν′ )
. δ2

ν |Lν(xν)− Lν′(xν)|p + δ2+p
ν |∇Lν −∇Lν′ |p.

Combining (5.18), (5.19), (5.20) and (5.21) yields

‖∇2F‖pLp(Qν′ )
.

∑
ν:ν↔ν′

Mp
ν

+
∑

ν:ν↔ν′

î
|∇Lν −∇Lν′ |pδ2−p

ν + |Lν(xν)− Lν′(xν)|pδ2−2p
ν

ó
.

We now sum the above inequality over ν ′ ∈ {1, 2, . . . ,K} and use that {Qν′}
partitions Q◦. Thus, ‖F‖L2,p(Q◦) . Ξ, where

Ξp :=
∑
ν

Mp
ν +

∑
ν↔ν′

î
|∇Lν −∇Lν′ |pδ2−p

ν + |Lν(xν)− Lν′(xν)|pδ2−2p
ν

ó
.

(5.22)

Here, we use that for each fixed ν ′ ∈ {1, . . . ,K}, there are at most C indices

ν ∈ {1, . . . ,K} such that ν ↔ ν ′. Thus, each pair (ν, ν ′) with ν ↔ ν ′ is counted

at most 2C times in the sum
∑
ν′

∑
ν:ν↔ν′

.

Now we extend F ∈ L2,p(Q◦) to a function “F ∈ L2,p(R2) without changing

the function values on 0.99Q◦ or increasing the seminorm by more than a

constant factor.

We pick θ ∈ C∞c (Q◦) that satisfies

(1) θ ≡ 1 on 0.99Q◦,

(2) |∂αθ| . δ−|α|Q◦ for |α| ≤ 2.

Fix an arbitrary point x0 ∈ 1
2Q
◦, and set L0 := Jx0F . We define“F := θF + (1− θ)L0 = θ(F − L0) + L0.

Clearly, “F depends linearly on (f, L]). Since E ⊆ 0.99Q◦ and E′ ⊆ 0.99Q◦

(recall Lemma 4.4), from (5.16) and (P1) of θ we have

(5.23) “F = f on E and JE′“F = L.
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Since supp(θ) ⊆ Q◦, from (P2) of θ and the Sobolev theorem, we see that

‖“F‖L2,p(R2) = ‖θ(F − L0)‖L2,p(Q◦) . ‖(F − L0)∇2θ‖Lp(Q◦)(5.24)

+ ‖∇(F − L0)⊗∇θ‖Lp(Q◦) + ‖∇2(F − L0)θ‖Lp(Q◦)

. ‖F‖L2,p(Q◦) . Ξ.

Take an arbitrary F ∈ L2,p(R2) such that F = f on E and JE′F = L. By

applying (P3) of Fν and then the bounded intersection property of {‹Qν}, we

see that ∑
ν

Mp
ν ≈

∑
ν

‖Fν‖p
L2,p(Q̃ν)

.
∑
ν

‖F‖p
L2,p(Q̃ν)

. ‖F‖pL2,p(R2).

In addition, the Sobolev theorem (see Remark 3.1) implies that∑
ν↔ν′

î
|∇Lν −∇Lν′ |pδ2−p

ν + |Lν(xν)− Lν′(xν)|pδ2−2p
ν

ó
.
∑
ν↔ν′

‖F‖p
L2,p(Q̃ν∪Q̃ν′ )

.
∑
ν

‖F‖p
L2,p(Q̃ν)

. ‖F‖pL2,p(R2).

Here, the second and third “.” follow from the bounded intersection property

of {‹Qν}. Thus we have shown that Ξ . ‖F‖L2,p(R2). Therefore, in conjunction

with (5.23) and (5.24), we have that

(5.25) ‖“F‖L2,p(R2) ≈ inf
¶
‖F‖L2,p(R2) : F = f on E, JE′F = L

©
≈ Ξ.

Notice that |xν − x]µ(ν)| . δν , thanks to Corollary 4.1. Thus, for each ν ∈
{1, . . . ,K}, we have

|[Lν − Lν′ ](xν)| ≈ |[Lν − Lν′ ](x]µ(ν))|+ |∇Lν −∇Lν′ | · δν .

Inserting this equation in the definition for Ξ in (5.22) completes the proof of

Proposition 5.3. �

Corollary 5.1. The functional M from the conclusion of Proposition 5.3

satisfies

‖f‖L2,p(R2)|E ≈ inf
¶
M(f, L]) : L] ∈Wh(E])

©
for any f : E → R.

Proof. Note that

‖f‖L2,p(R2)|E

≈ inf

®
inf
¶
‖F‖L2,p(R2) : F = f on E, JE′F = ext(L])

©
: L] ∈Wh(E])

´
.

Indeed, the . direction is trivial. To verify the & direction, we take F = “F
from Lemma 5.1 and L] = JE]

“F . Then JE′F = ext(L]) because “F satisfies

the constant-path property.

Thanks to the conditions satisfied by M in Proposition 5.3, the result

follows immediately. �
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6. Determining the optimal Whitney field

Let f : E → R be given. In this section we solve for L] ∈ Wh(E])

that depends linearly on f and nearly minimizes the expression M(f, L]) from

Proposition 5.3. This minimization problem relates to the trace seminorm

through Corollary 5.1.

Lemma 6.1. There exists a = a(p) > 0 such that the following holds.

Let S ⊆ 0.9Q and z ∈ 1
2Q be given with dist(z, S) ≥ 1

100δQ. Suppose that Q

satisfies R(c, c′, c′′) relative to S for some constants c, c′ > 0 and 0 < c′′ < a.

Then there exists a linear map T1 : L2,p(Q)|S → P such that

T1(f) ∈ ΓQ
Ä
f, z, “C · ‖f‖L2,p(Q)|S

ä
for all f : S → R,

where “C depends only on c′ and p.

Proof. By rescaling we may assume that δQ = 1. We choose the universal

constant a > 0 later in the proof. Let f : S → R be given. Since Q satisfies

R(c, c′, c′′) relative to S, there are two cases to consider.

Case 1. There exist x1, x2 ∈ S and y1, y2 ∈ S, with x1 6= x2 and y1 6= y2,

such that the vectors v1 = x1−x2
|x1−x2| and v2 = y1−y2

|y1−y2| satisfy

min
¶
|v1 − v2|, |v1 + v2|

©
> c′.

In this case, take the matrix M1 ∈ R2×2 whose columns are v1 and v2.

The above condition implies that the entries of M2 := M−1
1 are bounded by

some constant C = C(c′) ≥ 1.

We set m1 := f(x1)−f(x2)
|x1−x2| and m2 := f(y1)−f(y2)

|y1−y2| , and we define the vector

A := (m1,m2)M2.

Define the affine polynomial L1(x) :=A·(x−x1)+f(x1). We set T1(f) :=L1.

We now show that L1 belongs to the appropriate ΓQ(· · · ).
Pick some function F ∈ L2,p(Q) with

(1) F = f on S,

(2) ‖F‖L2,p(Q) ≤ 2‖f‖L2,p(Q)|S .

By the mean value theorem, there exist x∗, y∗ ∈ Q such that v1 ·∇F (x∗) = m1

and v2 · ∇F (y∗) = m2. Since z ∈ Q and δQ = 1, the Sobolev theorem implies

that

|v1 · ∇F (z)−m1| . ‖F‖L2,p(Q) and |v2 · ∇F (z)−m2| . ‖F‖L2,p(Q).

In other terms, |∇F (z) · M1 − (m1,m2)| . ‖F‖L2,p(Q). Multiplying by the

matrix M2, we obtain

|∇F (z)−∇L1| = |∇F (z)−A| = |∇F (z)− (m1,m2)M2| . C‖F‖L2,p(Q).
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Thus, since F (x1) = f(x1), the Sobolev theorem implies that

|L1(z)− F (z)| = |F (x1) +A · (z − x1)− F (z)|
≤ |A · (z − x1)−∇F (z) · (z − x1)|+ |JzF (x1)− F (x1)|
. C‖F‖L2,p(Q).

Therefore,

‖JzF − L1‖W 2,p(Q) ≈ |(JzF − L1)(z)| · δ2/p−2
Q + |∇F (z)−∇L1| · δ2/p−1

Q

. C‖F‖L2,p(Q).

Now choose θ1 ∈ C∞c (B(z, 1
100)) such that

(1) θ1 ≡ 1 on B(z, 1
200),

(2) ‖θ1‖C2 . 1.

Note that θ1 = 0 on S (because dist(z, S) ≥ 1
100).

Define G := F + θ1 · (L1 − JzF ), which satisfies

(1) G = f + 0 = f on S, JzG = JzF + (L1 − JzF ) = L1;

(2) ‖G‖L2,p(Q) . ‖F‖L2,p(Q) + ‖JzF − L1‖W 2,p(Q) . C‖F‖L2,p(Q)

≤ 2C‖f‖L2,p(Q)|S .

Thus,

L1 ∈ ΓQ(f, z, “C‖f‖L2,p(Q)|S ) for some “C = “C(c′, p).

This completes the proof of the lemma in the first case.

Case 2: ‖S‖Ḃp ≤ c
′′, where 0 < c′′ < a.

We take a = â, where â comes from Proposition 5.2. Therefore, Q,S and

z satisfy the hypotheses of Proposition 5.2; hence, there exist linear functionals

λ1, . . . , λJ such that

(6.1)
J∑
j=1

|λj(f, P )|p ≈ inf
¶
‖F‖pL2,p(Q) : F = f on S, JzF = P

©
for any f : S → R and P ∈ P. We now consider the problem of minimizing

the expression from (6.1) with respect to P ∈ P for fixed f : S → R.

Expand P ∈ P in coordinates as P (u, v) = qu + rv + s for q, r, s ∈ R.

We abuse notation and write λj(f, q, r, s) for λj(f, P ). Let K(f, q, r, s) :=∑J
j=1|λj(f, q, r, s)|p.

We apply the following claim, which is an elementary consequence of

Hölder’s inequality.

Main Claim. Let ~β = (βi)
J
j=1 ∈ RJ . Define the linear functional ω :

RJ → R by

ω(z) :=
1

‖~β‖plp

J∑
j=1

|βj |p

βj
zj when ~β 6= 0,
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and ω(z) := 0 when ~β = 0. Then

(6.2)
J∑
j=1

|zj−βjω(z)|p ≤ C·inf
¶ J∑
j=1

|zj−βja|p : a ∈ R
©

for some constant C = C(p).

We apply the Main Claim to compute s ∈ R (depending linear on (f, q, r))

such that K1(f, q, r) := K(f, q, r, s) is near-minimal for fixed (f, q, r). Then

we apply the Main Claim twice again, to compute r ∈ R such that K2(f, q) :=

K1(f, q, r) is near-minimal for fixed (f, q) and to compute q ∈ R such that

K2(f, q) is near-minimal for fixed f .

Thus, the polynomial P1(u, v) := qu+ rv + s satisfies

J∑
j=1

|λj(f, P1)|p ≈ inf

® J∑
j=1

|λj(f, P )|p : P ∈ P
´
.

Moreover, P1 depends linearly on f . Inserting (6.1) on both sides above, we

see that

inf
¶
‖F‖L2,p(Q) : F = f on S and JzF = P1

©
≈ ‖f‖L2,p(Q)|S .

In other terms,

P1 ∈ ΓQ
Ä
f, z, C0‖f‖L2,p(Q)|S

ä
for some C0 = C0(p).

This completes the proof of Lemma 6.1. �

Lemma 6.2. Let Q ⊆ R2, S ⊆ 0.9Q and z ∈ 1
2Q satisfy the hypotheses of

Proposition 5.2. Then

MQ(0, L)p ≤ C · (|L(z)|pδ2−2p
Q + |∇L|pδ2−p

Q ) for any L ∈ P.

Moreover, for any a > 0, if ‖S‖Ḃp ≥ aδ
1−2/p
Q , then

|L(z)|pδ2−2p
Q + |∇L|pδ2−p

Q ≤ C0 ·MQ(0, L)p for any L ∈ P.

Here, the constant C depends only on p, while C0 depends only on a and p.

Proof. By rescaling, we may assume that δQ = 1. Fix L ∈ P for the

remainder of the proof. Recall that

(6.3) MQ(0, L) ≈ inf
¶
‖h‖L2,p(Q) : h = 0 on S, Jzh = L

©
(see Remark 5.1).

Choose θ ∈ C∞c (B(z, 1
150)) such that θ ≡ 1 on B(z, 1

200) and ‖θ‖C2 . 1.

Note that θ = 0 on S, because dist(z, S) ≥ 1
100 .

We set h := θ · L. Note that Jzh = L and h = 0 on S. A straightforward

computation shows that ‖h‖pL2,p(Q) . |L(z)|p + |∇L|p. Thus, from (6.3) we

obtain

(6.4) MQ(0, L)p . |L(z)|p + |∇L|p.
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This proves the first inequality.

For the second conclusion, let a > 0 be given and suppose that ‖S‖Ḃp ≥ a.

Applying (6.3), we find h ∈ L2,p(Q) such that

(1) Jzh = L,

(2) h = 0 on S,

(3) ‖h‖L2,p(Q) .MQ(0, L).

We now show that MQ(0, L) 6= 0. For the sake of contradiction, suppose

thatMQ(0, L) = 0. Thus, h is affine (thanks to (P3) of h); hence, S is contained

in a line (thanks to (P2) of h). However, this contradicts that ‖S‖Ḃp > 0.

Pick an arbitrary point z ∈ S. The Sobolev theorem implies that

|L(z)| = |Jzh(z)− h(z)| . ‖h‖L2,p(Q) .MQ(0, L).

Thus, since z, z ∈ Q and δQ = 1,

(6.5) |L(z)| . |L(z)|+ |∇L| .MQ(0, L) + |∇L|.

Next, we prove that |∇L| ≤ Z(a, p)MQ(0, L). Assume for the sake of

contradiction that

(6.6) |∇L| > Z ·MQ(0, L) for some large parameter Z.

By the Sobolev theorem and (P1), (P3) of h, we see that

|∇h(z)| ≥ |∇h(z)| −C‖h‖L2,p(Q) ≥ |∇L| −C1MQ(0, L) > (Z −C1) ·MQ(0, L).

Here, C1 is some universal constant. Therefore, the function h(x) := h(x) ·
[(Z − C1) ·MQ(0, L)]−1 satisfies

(1) h = 0 on S,

(2) |∇h(z)| ≥ 1,

(3) ‖h‖L2,p(Q) . (Z − C1)−1.

Applying Proposition 3.4 for some large enough choice of Z, we see that

the curve γ :=
¶
x ∈ 0.9Q : h(x) = 0

©
satisfies ‖γ‖Ḃp ≤ a/2. Since S ⊆ γ,

we have ‖S‖Ḃp ≤ ‖γ‖Ḃp ≤ a/2. This contradicts ‖S‖Ḃp ≥ a, proving that

(6.6) cannot hold. Together with (6.5), this proves the second conclusion of

the lemma. �

We denote E]µ := 9Q]µ ∩ E for each keystone square Q]µ. By (K2) from

Proposition 4.1, we see that 9Q]µ satisfies R(c1, c2, c3) relative to the subset

E]µ. Therefore,

(6.7) 10Q]µ satisfies R
Ä
c1 · (9/10)2/p−1, c2, c3 · (9/10)2/p−1

ä
relative to E]µ.

The keystone representative point x]µ defined in Section 4.3 satisfies

x]µ ∈
1

2
Q]µ and dist(x]µ, E

]
µ) ≥ dist(x]µ, E) ≥ 1

5
δ
Q]µ
≥ 1

100
δ

10Q]µ
.
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We apply Lemma 6.1 (for small enough c3), which provides a linear map T ]µ :

L2,p(10Q]µ)|
E]µ
→ P such that L̃]µ := T ]µ(f |

E]µ
) satisfies

L̃]µ ∈ Γ
10Q]µ

Ç
f |
E]µ
, x]µ,

“C · ‖f |
E]µ
‖
L2,p(10Q]µ)|

E
]
µ

å
for some constant “C = “C(c2, p).

Finally, we set L̃] = (L̃]µ)K
]

µ=1 and L̃ = ext(L̃]).

Lemma 6.3. There exists C = C(c1, c2, c3, p) such that

M(f, L̃]) ≤ C ·M(f, L]) for every L] ∈Wh(E]).

Proof. For an arbitrary L] ∈ Wh(E]), we set L := ext(L]). We manip-

ulate the expression for M(f, L̃]) from Proposition 5.3. We first apply the

approximate subadditivity of Mν = M
Q̃ν

(see Remark 5.1) and the triangle

inequality to obtain

M(f, L̃])p .
∑
ν

Mν(fν , Lν)p

+
∑
ν↔ν′

[
|∇Lν −∇Lν′ |pδ2−p

ν + |(Lν − Lν′)(x]µ(ν))|
pδ2−2p
ν

]
+
∑
ν

Mν(0, Lν − L̃ν)p

+
∑
ν↔ν′

[
|∇Lν −∇L̃ν |pδ2−p

ν + |(Lν − L̃ν)(x]µ(ν))|
pδ2−2p
ν

]
+
∑
ν↔ν′
|(Lν′ − L̃ν′)(x]µ(ν))|

pδ2−2p
ν .

Next, substitute the expression for M(f, L]) and apply Lemma 6.2. Thus,

M(f, L̃])p .M(f, L])p+
∑
ν↔ν′

[
|∇Lν −∇L̃ν |pδ2−p

ν +|(Lν − L̃ν)(x]µ(ν))|
pδ2−2p
ν

](6.8)

+
∑
ν

|(Lν − L̃ν)(xν)|pδ2−2p
ν +

∑
ν↔ν′
|(Lν′ − L̃ν′)(x]µ(ν))|

pδ2−2p
ν .

Note that the last two sums in (6.8) are bounded by the first sum. This

follows because |xν − x]µ(ν)| ≤ Cδν and |x]µ(ν′) − x
]
µ(ν)| ≤ Cδν whenever ν ↔ ν ′

(thanks to Corollary 4.1 and the Good Geometry of the CZ squares). Thus,

M(f, L̃])p .M(f, L])p +X, where

X :=
∑
ν

[
|∇Lν −∇L̃ν |pδ2−p

ν + |(Lν − L̃ν)(x]µ(ν))|
pδ2−2p
ν

]
.

Since L = ext(L]),

(6.9) X =
∑
µ

ñ
|∇L]µ−∇L̃]µ|p

∑
ν:µ(ν)=µ

δ2−p
ν +|L]µ(x]µ)−L̃]µ(x]µ)|p

∑
ν:µ(ν)=µ

δ2−2p
ν

ô
.
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From (5.1), we have Q]µ ⊂ CQν for µ = µ(ν). Thus, for any ε > 0,∑
ν:µ(ν)=µ

δ−εν ≤
∑¶

δ−εQ : Q dyadic, Q]µ ⊆ CQ
©
. (δ]µ)−ε.

Hence, in particular for ε = p− 2 and ε = 2p− 2, from (6.9) we have

(6.10) X .
∑
µ

î
|∇L]µ −∇L̃]µ|p(δ]µ)2−p + |L]µ(x]µ)− L̃]µ(x]µ)|p(δ]µ)2−2p

ó
.

Note that ‖E]µ‖Ḃp ≥ ĉ(c1, c2, c3, p)δ
2/p−1

Q]µ
, thanks to (6.7) and Lemma 4.3. By

the second part of Lemma 6.2 and the approximate subadditivity of M
10Q]µ

(see Remark 5.1), following (6.10) we see that

X . C ′
∑
µ

M
10Q]µ

(0|
E]µ
, L]µ − L̃]µ)p(6.11)

. C ′
∑
µ

[
M

10Q]µ
(f |

E]µ
, L]µ)p +M

10Q]µ
(f |

E]µ
, L̃]µ)p

]
for some constant C ′ = C ′(c1, c2, c3, p).

Recall that

L̃]µ ∈ Γ
10Q]µ

(f |
E]µ
, x]µ,

“C‖f |
E]µ
‖) for some “C = “C(c2, p).

Thus, by Proposition 5.2,

M
10Q]µ

(f |
E]µ
, L̃]µ) ≈ inf

{
‖F‖

L2,p(10Q]µ)
: F = f on E]µ, J

x]µ
F = L̃]µ

}
≤ “C · inf

{
‖F‖

L2,p(10Q]µ)
: F = f on E]µ, J

x]µ
F = L]µ

}
≈ “C ·M

10Q]µ
(f |

E]µ
, L]µ).

Therefore, from (6.11) we obtain

X . C ′“C∑
µ

inf

ß
‖F‖p

L2,p(10Q]µ)
: F = f on E]µ, J

x]µ
F = L]µ

™
.

Since {10Q]µ}K
]

µ=1 have the bounded intersection property (recall (K3)), we thus

have

X ≤ C inf{‖F‖L2,p(R2) : F = f on E and JE′F = ext(L])} ≈ C ·M(f, L])p

for some constant C = C(c1, c2, c3, p). This completes the proof of Lemma 6.3.

�

7. Proof of Theorem 1

The CZ decomposition Λ is either the trivial decomposition {Q◦} or some

nontrivial decomposition. We consider these cases separately below.
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Case 1. Λ 6= {Q◦}.
Let f : E → R be given. We apply Lemma 6.3 (and Corollary 5.1) to

choose L̃] ∈Wh(E]) that depends linearly on f and satisfies

(7.1) M(f, L̃]) ≤ C inf
¶
M(f, L]) : L] ∈Wh(E])

©
≈ ‖f‖L2,p(R2)|E .

We set L̃ := ext(L̃]).

Take T and M as in Proposition 5.3. We define T (f) := T (f, L̃]) and

M(f) := M(f, L̃]). From (7.1) and Proposition 5.3, we have

(1) T (f) = f on E,

(2) ‖T (f)‖L2,p(R2) ≈M(f) ≈ ‖f‖L2,p(R2)|E .

We now estimate the number of terms used in the expression that defines

M(f). From Proposition 5.3 and because L̃ = ext(L̃]), we have

M(f, L̃])p =
K∑
ν=1

Mν(fν , L̃ν)p

+
K]∑

µ,µ′=1

î
|∇L̃]µ −∇L̃

]
µ′ |

p∆1,µµ′ + |L̃]µ(x]µ)− L̃]µ′(x
]
µ)|p∆2,µµ′

ó
,

where

∆k,µµ′ :=
∑¶

δ2−kp
ν : ∃ ν, ν ′ ∈ {1, . . . ,K}

such that ν ′ ↔ ν, µ(ν) = µ, µ(ν ′) = µ′
©

for k = 1, 2.

Since L̃ν depends linearly on f , from Proposition 5.2 we have

Mν(fν , L̃ν)p =
Nν∑
k=1

|λνk(f)|p for each ν,

for linear functionals λνk, where Nν . (#Eν)2. Therefore,

M(f, L̃])p =
K∑
ν=1

Nν∑
k=1

|λνk(f)|p

(7.2)

+
K]∑

µ,µ′=1

î
|∇L̃]µ −∇L̃

]
µ′ |

p∆1,µµ′ + |L̃]µ(x]µ)− L̃]µ′(x
]
µ)|p∆2,µµ′

ó
.

The number of terms appearing in the first sum in (7.2) is∑
ν

Nν .
∑
ν

#(Eν)2 =
∑
ν

#(E ∩ 1.1Qν)2 . #(E)2,

where we have used that {1.1Qν} has the bounded intersection property.

Note that E∩9Q] is nonempty for each keystone square Q], thanks to (K2)

and the definition of property R(· · · ). Thus we may assign to each keystone
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square Q] some point y] ∈ E ∩ 9Q]. Since {10Q] : Q] ∈ Λ]} has the bounded

intersection property (see (K3)), the preimage of each y ∈ E has bounded

cardinality. Therefore, K] = #(Λ]) . #(E) = N . It follows that the second

sum from (7.2) contains at most CN2 terms.

We have shown that the sum that defines M(f)p contains at most CN2

terms. This completes the proof of Theorem 1 in the case that Λ 6= {Q◦}.

Case 2. Λ = {Q◦}.

In this case Q◦ is OK, meaning that ‖E‖Ḃp ≤ c1δ
2/p−1
Q◦ . Since E ⊆ 1

10Q
◦,

we can pick z ∈ 0.9Q◦ such that dist(z, E) ≥ 1
10δQ◦ .

Let f : E → R and P ∈ P be given. For small enough c1, Proposition 5.2

implies the existence of a linear map T : L2,p(Q◦)|E ×P → L2,p(Q◦) such that

(1) T (f, P ) = f on E;

(2) JzT (f, P ) = P ;

(3) ‖T (f, P )‖L2,p(Q◦) ≈ inf{‖F‖L2,p(Q◦) : F = f on E, JzF = P ;

(4) ‖T (f, P )‖L2,p(Q◦) ≈M(f, P ), where

M(f, P )p :=
N1∑
i=1

|λi(f, P )|p

for linear functionals λ1, . . . , λN1 , where N1 . (#E)2.

We reason as in the paragraph containing (5.23) from the proof of Propo-

sition 5.3, and extend T (f, P ) ∈ L2,p(Q◦) to a function T (f, P ) ∈ L2,p(R2)

without increasing the seminorm by more than a constant factor or disturbing

the function values on 0.9Q◦. Thus,

(1) T (f, P ) = f on E;

(2) JzT (f, P ) = P ;

(3) ‖T (f, P )‖L2,p(R2) ≈ inf{‖F‖L2,p(R2) : F = f on E, JzF = P};
(4) ‖T (f, P )‖L2,p(R2) ≈M(f, P ).

We apply the Main Claim from the proof of Lemma 6.1 to the expres-

sion M(f, P ). Thus, there exists P ∈ P depending linearly on f such that

M(f, P ) . M(f, P ) for all P ∈ P . Define Tf := T (f, P ), M(f) := M(f, P ),

and λi(f) := λi(f, P ). Then

(1) Tf = f on E,

(2) ‖Tf‖L2,p(R2) ≈ inf
P∈P

inf{‖F‖L2,p(R2) : F = f on E, JzF = P} =

‖f‖L2,p(R2)|E ,

(3) ‖f‖L2,p(R2)|E ≈M(f), where M(f)p =
N1∑
i=1

|λi(f)|p and N1 . (#E)2.

This proves Theorem 1 in the case that Λ = {Q◦}. �
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