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Traveling waves for
nonlinear Schrödinger equations

with nonzero conditions at infinity

By Mihai Mariş

Dedicated to Jean-Claude Saut, who gave me water to cross the desert

Abstract

For a large class of nonlinear Schrödinger equations with nonzero condi-

tions at infinity and for any speed c less than the sound velocity, we prove

the existence of nontrivial finite energy traveling waves moving with speed

c in any space dimension N ≥ 3. Our results are valid as well for the

Gross-Pitaevskii equation and for NLS with cubic-quintic nonlinearity.

1. Introduction

We consider the nonlinear Schrödinger equation

(1.1) i
∂Φ

∂t
+ ∆Φ + F (|Φ|2)Φ = 0 in RN ,

where Φ : RN × R −→ C satisfies the “boundary condition” |Φ| −→ r0 as

|x| −→ ∞, r0 > 0 and F is a real-valued function on R+ satisfying F (r2
0) = 0.

Equations of the form (1.1), with the considered nonzero conditions at

infinity, arise in a large variety of physical problems. They have been used

as models for superconductivity, superfluid Helium II and for Bose-Einstein

condensation ([2], [3], [4], [16], [25], [28], [31], [33], [32]). In nonlinear optics,

they appear in the context of dark solitons, which are localized nonlinear waves

(also called “holes”) moving on a stable continuous background (see [36], [44]).

The boundary condition |Φ| −→ r0 at infinity is precisely due to the nonzero

background.

Two important particular cases of (1.1) have been extensively studied by

physicists and by mathematicians: the Gross-Pitaevskii (GP) equation (where

F (s) = 1 − s) and the so-called “cubic-quintic” Schrödinger equation (where

F (s) = −α1+α3s−α5s
2, α1, α3, α5 are positive and F has two positive roots).

In both cases we have F ′(r2
0) < 0, which ensures that (1.1) is defocusing.
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The boundary condition |Φ| −→ r0 > 0 at infinity makes the structure

of solutions of (1.1) much more complicated than in the usual case of zero

boundary conditions (when the associated dynamics is essentially governed by

dispersion and scattering). This fact is confirmed by the existence of a remark-

able variety of special solutions, such as traveling waves or vortex solutions,

and regimes, like the long wave or the transonic limit.

Using the Madelung transformation Φ(x, t) =
»
ρ(x, t)eiθ(x,t) (which is

well defined whenever Φ 6= 0), equation (1.1) is equivalent to a system of

Euler’s equations for a compressible inviscid fluid of density ρ and velocity

2∇θ. In this context it has been shown that, if F is C1 near r2
0 and F ′(r2

0) < 0,

the sound velocity at infinity associated to (1.1) is vs = r0

»
−2F ′(r2

0); see the

introduction of [42].

In the defocusing case F ′(r2
0) < 0, we perform a simple scaling (Φ(x, t) =

r0Φ̃(x̃, t̃), where x̃ = r0

»
−F ′(r2

0)x, t̃ = −r2
0F
′(r2

0)t, and F̃ (s) = −1
r20F

′(r20)
F (r2

0s))

and we assume from now on that r0 = 1 and F ′(r2
0) = −1. The sound velocity

at infinity then becomes vs =
√

2.

Equation (1.1) is Hamiltonian. Denoting V (s) =
∫ 1
s F (τ) dτ , it is easy to

see that, at least formally, the “energy”

(1.2) E(Φ) =

∫
RN
|∇Φ|2 dx+

∫
RN

V (|Φ|2) dx

is a conserved quantity.

A second conserved quantity for (1.1) is the momentum

P (Φ) = (P1(Φ), . . . , PN (Φ)),

which describes the evolution of the center of mass of Φ. Assuming that Φ−→1

at infinity in a suitable sense and denoting by 〈·, ·〉 the scalar product in C,

the momentum is formally given by

(1.3) Pk(Φ) =

∫
RN
〈i ∂Φ

∂xk
,Φ− 1〉 dx.

Traveling waves and the Roberts programme. In a series of papers (see,

e.g., [2], [3], [25], [31], [32], [33]), particular attention has been paid to a spe-

cial class of solutions of (1.1), namely the traveling waves. These are solutions

of the form Φ(x, t) = ψ(x − cty), where y ∈ SN−1 is the direction of propa-

gation and c > 0 is the speed of the traveling wave. We say that ψ has finite

energy if ∇ψ ∈ L2(RN ) and V (|ψ|2) ∈ L1(RN ). These solutions are supposed

to play an important role in the dynamics of (1.1). In view of formal computa-

tions and numerical experiments, a list of conjectures, often referred to as the

Roberts programme, has been formulated about the existence, the qualitative

properties, the stability of traveling waves and, more generally, their role in

the dynamics of (1.1).
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Figure 1. Energy (E) momentum (p) diagrams for (GP): (a) in

dimension 2; (b) in dimension 3.

Let ψ be a finite energy traveling wave of (1.1) moving with speed c.

Without loss of generality we may assume that y = (1, 0, . . . , 0). If N ≥ 3, it

follows that ψ−z0 ∈ L2∗(RN ) for some constant z0 ∈ C, where 2∗ = 2N
N−2 (see,

e.g., Lemma 7 and Remark 4.2 in [21, pp. 774–775]). Since |ψ| −→ 1 as |x| −→
∞, necessarily |z0| = 1. If Φ is a solution of (1.1) and α ∈ R, then eiαΦ is also

a solution. Hence we may assume that z0 = 1; thus ψ− 1 ∈ L2∗(RN ). Let u =

ψ−1. We say that u has finite energy if ψ does so. Then u satisfies the equation

(1.4) − ic ∂u
∂x1

+ ∆u+ F (|1 + u|2)(1 + u) = 0 in RN .

It is obvious that a function u satisfies (1.4) for some velocity c if and only if

u(−x1, x
′) satisfies (1.4) with c replaced by −c. Hence it suffices to consider

the case c > 0. This assumption will be made throughout the paper.

For the Gross-Pitaevskii equation, C. A. Jones, C. J. Putterman and

P. H. Roberts computed the energy and the momentum of the traveling waves

they had found numerically. In space dimension two and three, they obtained

the curves given in Figure 1.

Formally, traveling waves are critical points of the energy E when the

momentum (with respect to the direction of propagation Ox1) is fixed, say

P1 = p. Equation (1.4) is precisely the Euler-Lagrange equation associated to

this variational problem, and the speed c is the Lagrange multiplier. Note also

that, formally, c = ∂E
∂p .

The first conjecture in the Roberts programme asserts that finite energy

traveling waves of speed c exist if and only if |c| < vs.

In space dimension N = 1, in many interesting applications equation (1.4)

can be integrated explicitly and one obtains traveling waves for all subsonic

speeds. The nonexistence of such solutions for supersonic speeds has also been

proven under general conditions (cf. Theorem 5.1 in [42, p. 1099]).

Despite many attempts, a rigorous proof of the existence of traveling waves

in higher dimensions has been a long lasting problem. In the particular case

of the Gross-Pitaevskii (GP) equation, this problem was considered in a series
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of papers. In space dimension N = 2, the existence of traveling waves was

proven in [8] for all speeds in some interval (0, ε), where ε is small. In space

dimension N ≥ 3, the existence was proven in [7] for a sequence of speeds

cn −→ 0 by using constrained minimization; a similar result was established in

[13] for all sufficiently small speeds by using a mountain-pass argument. In [5],

the existence of traveling waves for (GP) was proven in space dimension N = 2

and N = 3 by minimizing the energy at fixed momentum. The propagation

speed is then the Lagrange multiplier associated to minimizers. If N = 2, this

gives solutions for any speed in a set A ⊂ (0, vs), where A contains points

arbitrarily close to 0 and to vs (although it is not clear that A = (0, vs)). It

was shown later in [14] that the minimization of the energy at fixed momentum

can be used in any dimension N ≥ 2 for general nonlinearities such that the

nonlinear potential V appearing in the energy is nonnegative. Moreover, the

set of solutions that it gives is orbitally stable. However, this method has two

disadvantages. Firstly, it is not clear that the set of speeds of traveling waves

constructed in this way form an interval. Secondly, it was proved in [5] and [37]

that in space dimension N ≥ 3 there exists v0 ∈ (0, vs) such that minimizing

the energy at fixed momentum cannot give traveling waves of speed c ∈ (v0, vs).

In particular, the “upper branch” in Figure 1(b) cannot be obtained in this way.

In the case of cubic-quintic type nonlinearities, it was proved in [41] that

traveling waves exist for any sufficiently small speed if N ≥ 4.

To our knowledge, even for specific nonlinearities there are no existence

results in the literature that cover the whole range (0, vs) of possible speeds.

The nonexistence of traveling waves for supersonic speeds (c > vs) was

proven in [26] in the case of the Gross-Pitaevskii equation, respectively in [42]

for a large class of nonlinearities.

It is the aim of this paper to prove the existence of nontrivial finite energy

traveling waves of (1.1) in space dimension N ≥ 3, under general conditions

on the nonlinearity F and for any speed c ∈ (0, vs).

The qualitative properties of traveling waves have been extensively investi-

gated. It turns out that these solutions have the best regularity allowed by the

nonlinearity F (see, for instance, [18], [19], [42]). It was proved in [5] that the

traveling waves to the (GP) equation are analytic functions. In view of formal

computations, Jones, Putterman and Roberts ([32]) predicted the asymptotic

behavior of traveling waves as |x| −→ ∞. For the (GP) equation, the asymp-

totics have been computed by P. Gravejat (see [27] and references therein). It

is likely that the proofs of Gravejat can be adapted to general nonlinearities.

Even for specific nonlinearities (such as (GP)), the vortex structure of

traveling waves is not yet completely understood. It was conjectured in [33],

[32] that there is a critical speed cv (corresponding to the energy Ev and mo-

mentum pv) such that traveling waves of speed less than cv present vortices,
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while those of speed greater than cv do not. The small velocity solutions to

(GP) constructed in [8], [7], [13] have vortices. For other nonlinearities, the be-

havior may be different. For instance, small speed traveling waves constructed

in [41] in the case of nonlinearities of cubic-quintic type do not have vortices.

We suspect that traveling waves constructed in the present paper develop vor-

tices in the limit c −→ 0 if and only if (1.1) does not admit finite energy

stationary solutions. For general nonlinearities, it was recently proved in [15]

that traveling waves do not have vortices if c is close to vs and N ∈ {2, 3}.
The energy-momentum diagrams for (GP) suggest that there are traveling

waves of arbitrarily small energy and momentum in dimension two. Such

solutions were obtained in [5] by minimizing the energy at fixed (and small)

momentum; their velocities are close to vs. A similar result holds for general

nonlinearities; see [14]. A scattering theory for small energy solutions to (1.1)

in dimension two is therefore excluded.

The situation is completely different in higher dimensions. It was noticed

in [32] that the energy and the momentum of the three-dimensional traveling

waves for (GP) are bounded from below by positive constants Emin and pmin,

respectively. It was proved in [5] that the three-dimensional (GP) equation

does not admit small energy traveling waves, and the proof was later extended

to higher dimensions in [37]. It turns out that this result is true for general

nonlinearities: for any N ≥ 3, there is kN > 0 such that any traveling wave U

to (1.1) satisfying ‖∇U‖L2(RN ) < kN must be constant (see [14, Prop. 1.4]).

This result can be further improved in dimension N ≥ 6 (see [15, Prop. 18]).

Moreover, S. Gustafson, K. Nakanishi and T.-P. Tsai [29], [30] established a

scattering theory of small solutions to (GP) in dimension N ≥ 4 (in the energy

space) and N = 3 (in some weighted space).

In view of formal computations, Jones, Putterman and Roberts conjec-

tured that after a suitable rescaling, the modulus and the phase of traveling

waves converge in the transonic limit c −→ vs to the solitary waves of the

Kadomtsev-Petviashvili I (KP-I) equation. The present paper is the first to

provide finite energy traveling waves to (1.1) of speed close to vs in dimension

N ≥ 3. Very recently it was proved that for general nonlinearities, the three-

dimensional traveling waves found here have modulus close to 1 (thus can be

lifted) and their phase and modulus tend, after rescaling, to ground states of

the KP-I equation (see [15], Theorem 6). Precise estimates on their energy and

momentum have also been established in [15] and are in full agreement with

those in [33] and [32]. Hence the conjecture concerning the existence of the

“upper branch” of travelling waves has been proven in dimension three (with

one exception: it is not clear that we have a continuum of solutions). Quite

unexpectedly, a similar asymptotic behavior of traveling waves in the transonic

limit cannot be true in dimension N ≥ 4 (cf. [15, Prop. 19]).
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A much more difficult problem is to understand the stability of traveling

waves and, more generally, their role in the dynamics of (1.1). The guess

formulated in [32] is that the two-dimensional traveling waves represented in

the momentum-energy diagram in Figure 1 should be stable. In the three-

dimensional case solutions on the “lower branch” should be stable, while those

on the “upper branch” should be unstable. It is also suggested in [32, p. 3000]

that a solution of (GP) starting in a neighborhood of the upper branch could

eventually “collapse” onto the lower branch, generating “sound waves that

radiate the excess energy. . . to infinity.”

Before even speaking of stability, one has to understand the well-posedness

of the Cauchy problem associated to (1.1). Important progress has been

achieved in this direction during the last years; we refer to the survey pa-

per [22] (see also [20]). It was proved in [21], [22] that in the subcritical case

N ∈ {1, 2, 3}, the Cauchy problem for (GP) is globally well-posed for all initial

data in the energy space, and that in the critical case N = 4 it is globally

well-posed for initial data with small energy. The method in [21], [22] adapts

to other nonlinearities, including the cubic-quintic case. (Note that the cubic-

quintic NLS becomes critical in dimension three.) Global well-posedness of the

four-dimensional (GP) and of the three-dimensional cubic-quintic NLS for all

initial data in the energy space has been recently proven in [35].

In dimension one, traveling waves to (GP) are known explicitly. Their

orbital stability has been studied and proven in [39], [6], [23]. Other nonlin-

earities are also considered in [39]. The asymptotic stability of these solutions

is not known.

If the nonlinear potential V is nonnegative, traveling waves can be ob-

tained by minimizing the energy at fixed momentum. Moreover, all minimiz-

ing sequences are precompact, and this gives the orbital stability of the set of

solutions constructed in this way (cf. [14, Th. 6.2]). For the (GP) equation,

the results in [14] imply the orbital stability of the full branch of traveling

waves in dimension 2 and of traveling waves situated on the “lower branch”

below the line E = vsp in dimension 3. If V changes sign, a local minimization

of the energy at fixed momentum is still possible in dimension 2 and gives a

branch of orbitally stable traveling waves. To our knowledge, the orbital stabil-

ity/instability of solutions corresponding to the “upper branch” in dimension

3 as well as the asymptotic stability of traveling waves in any dimension N ≥ 2

are still open problems.

Main results. We will consider the following set of assumptions:

(A1) The function F is continuous on [0,∞), C1 in a neighborhood of 1,

F (1) = 0 and F ′(1) = −1.

(A2) There exist C > 0 and p0 <
2

N−2 such that |F (s)| ≤ C(1 + sp0) for any

s ≥ 0.
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(A3) There exist C, α0 > 0 and r∗ > 1 such that F (s) ≤ −Csα0 for any

s ≥ r∗.
Our main results can be summarized as follows.

Theorem 1.1. Assume that N ≥ 3, 0 < c < vs and conditions (A1) and

(A2) are satisfied. Then equation (1.4) admits a nontrivial finite energy solu-

tion u. Moreover, u ∈ W 2,p
loc (RN ) for any p ∈ [1,∞) and, after a translation,

u is axially symmetric with respect to Ox1.

Corollary 1.2. Suppose that N ≥ 3, 0 < c < vs and conditions (A1)

and (A3) are verified. Then equation (1.4) admits a nontrivial finite energy

solution u such that u ∈W 2,p
loc (RN ) for any p ∈ [1,∞) and, after a translation,

u is axially symmetric with respect to Ox1.

It is easy to see how Corollary 1.2 follows from Theorem 1.1. Indeed,

suppose that Theorem 1.1 holds. Assume that (A1) and (A3) are satisfied.

Let C, r∗, α0 be as in (A3). There exist β ∈ (0, 2
N−1), r̃ > r∗ and C1 > 0 such

that

Cs2α0 − 1

2
≥ C1(s− r̃)2β for any s ≥ r̃.

Let F̃ be a function with the following properties: F = F̃ on [0, 4r̃2], F̃ (s) =

−C2s
β for s sufficiently large, and F̃ (s2)+ 1

2 ≤ −C3(s−r̃)2β for any s ≥ r̃, where

C2, C3 are some positive constants. Then F̃ satisfies (A1), (A2), (A3) and

Theorem 1.1 implies that equation (1.4) with F̃ instead of F has a nontrivial

finite energy solution u. From the proof of Proposition 2.2(i) in [42, pp. 1079–

1080] it follows that any such solution satisfies |1+u|2 ≤ 2r̃2 and, consequently,

F (|1 + u|2) = F̃ (|1 + u|2). Thus u satisfies (1.4).

We have to mention that the traveling waves in Theorem 1.1 are obtained

as minimizers of the functional E + cP1 under a Pohozaev constraint (see

below), where E is the energy and P1 is the momentum with respect to x1. Of

course, if (A1) and (A3) are satisfied but (A2) does not hold, we do not claim

that the solutions given by Corollary 1.2 still solve the same minimization

problem. In fact, assumptions (A1) and (A3) alone do not imply that E is

well defined on a convenient function space.

In particular, for F (s) = 1 − s, conditions (A1) and (A3) are satisfied.

It follows that the Gross-Pitaevskii equation admits nontrivial traveling waves

of finite energy in any space dimension N ≥ 3 and for any speed c ∈ (0, vs)

(although (A2) is not true for N > 3: the (GP) equation is critical if N = 4,

and supercritical if N ≥ 5). A similar result holds for the cubic-quintic NLS.

Notation and function spaces. Throughout the paper, LN is the Lebesgue

measure on RN and ωN = LN (B(0, 1)) is the Lebesgue measure of the unit

ball. For x = (x1, . . . , xN ) ∈ RN , we denote x′ = (x2, . . . , xN ) ∈ RN−1. We
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write 〈z1, z2〉 for the scalar product of two complex numbers z1, z2. Given a

function f defined on RN and λ, σ > 0, we denote by

(1.5) fλ,σ = f

Ç
x1

λ
,
x′

σ

å
the dilations of f . The behavior of functions and of functionals with respect

to dilations in RN will be very important. For 1 ≤ p < N , we denote by p∗

the Sobolev exponent associated to p; that is, 1
p∗ = 1

p − 1
N .

If (A1) is satisfied, let V (s) =
∫ 1
s F (τ) dτ . Then the sound velocity at

infinity associated to (1.1) is vs =
√

2 and using Taylor’s formula for s in a

neighborhood of 1, we have

(1.6) V (s) =
1

2
V ′′(1)(s− 1)2 + (s− 1)2ε(s− 1) =

1

2
(s− 1)2 + (s− 1)2ε(s− 1),

where ε(t) −→ 0 as t −→ 0. Hence V (|ψ|2) can be approximated by 1
2(|ψ|2−1)2

for |ψ| close to 1.

We fix an odd function ϕ ∈ C∞(R) such that ϕ(s) = s for s ∈ [0, 2],

0 ≤ ϕ′ ≤ 1 on R and ϕ(s) = 3 for s ≥ 4. If assumptions (A1) and (A2) are

satisfied, it is not hard to see that there exists C1 > 0 such that

|V (s)| ≤ C1(s− 1)2 for any s ≤ 9;(1.7)

in particular, |V (ϕ2(τ))| ≤ C1(ϕ2(τ)− 1)2 for any τ.

Given u ∈ H1
loc(R

N ) and an open set Ω ⊂ RN , the modified Ginzburg-Landau

energy of u in Ω is defined by

(1.8) EΩ
GL(u) =

∫
Ω
|∇u|2 dx+

1

2

∫
Ω

Ä
ϕ2(|1 + u|)− 1

ä2
dx.

We simply write EGL(u) instead of ERN

GL (u). The modified Ginzburg-Landau

energy will play a central role in our analysis. We consider the function space

X = {u ∈ D1,2(RN ) | ϕ2(|1 + u|)− 1 ∈ L2(RN )}(1.9)

= {u ∈ Ḣ1(RN ) | u ∈ L2∗(RN ), EGL(u) <∞},

where D1,2(RN ) is the completion of C∞c (RN ) for the norm ‖v‖ = ‖∇v‖L2 .

Since ϕ2(|1+u|)−1=(ϕ(|1+u|)+1)(ϕ(|1+u|)−1) and 1≤ϕ(|1+u|)+1≤4,

it is obvious that ϕ2(|1+u|)−1 ∈ L2(RN ) if and only if ϕ(|1+u|)−1 ∈ L2(RN ).

Let N ≥ 3. We claim that for u ∈ D1,2(RN ), there holds ϕ(|1 + u|) − 1 ∈
L2(RN ) if and only if |1 + u| − 1 ∈ L2(RN ). Indeed, if |1 + u| ≤ 2, then

ϕ(|1 + u|) = |1 + u|. If |1 + u| > 2, then necessarily |u| > 1 and

0 ≤ |1 + u| − ϕ(|1 + u|) < |1 + u| < 2|u| < 2|u| 2
∗
2 .



TRAVELING WAVES FOR NONLINEAR SCHRÖDINGER EQUATIONS 115

For N ≥ 3, we have D1,2(RN ) ⊂ L2∗(RN ) by the Sobolev embedding; hence

|u| 2
∗
2 ∈ L2(RN ) and the claim follows. We have thus proved that

X = {u ∈ D1,2(RN )
∣∣∣ |1 + u| − 1 ∈ L2(RN )}.

If N ≥ 3 and (A1), (A2) are satisfied, it is not hard to see that the

function ψ = 1 + u satisfies ∇ψ ∈ L2(RN ) and V (|ψ|2) ∈ L1(RN ) if and only

if u ∈ X (see Lemma 4.1 below). Note that for N = 3, X is not a vector space.

However, in any space dimension, we have H1(RN ) ⊂ X . If u ∈ X , it is easy

to see that for any w ∈ H1(RN ) with compact support, we have u + w ∈ X .

For N = 3, 4, it can be proved that u ∈ D1,2(RN ) belongs to X if and only

if |1 + u|2 − 1 ∈ L2(RN ), and consequently X coincides with the space F1

introduced by P. Gérard in [21, §4].

Some ideas in the proofs and outline of the paper. At least formally, the

solutions of (1.4) are critical points of the functional

(1.10) Ec(u) = E(u) + cQ(u) =

∫
RN
|∇u|2 dx+ cQ(u) +

∫
RN

V (|1 + u|2) dx,

where Q = P1 is the momentum with respect to the x1-direction.

It is the aim of Section 2 to give a convenient definition of the momentum

on the whole space X and to study its basic properties. For now, the formal

definition (1.3) is sufficient.

The existence of finite energy traveling waves has been conjectured for

all subsonic speeds, and the nonexistence of such solutions is known for all

supersonic speeds (at least under some additional technical assumptions; see

[42]). Thus it is important to understand what changes in the structure of Ec
as c crosses the sound velocity.

If 0 < c <
√

2, we may choose ε, δ > 0 such that c <
√

2(1 − 2ε)(1 − δ).
Assume that u ∈ X satisfies 1 − δ ≤ |1 + u| ≤ 1 + δ. Then there is a lifting

1 + u = ρeiθ, and a simple computation shows that

|∇u|2 = |∇ρ|2 + ρ2|∇θ|2, Q(u) = −
∫
RN

(ρ2 − 1)
∂θ

∂x1
dx

and

V (|1 + u|2) = V (ρ2) =
1

2
(ρ2 − 1)2 + o((ρ2 − 1)2) ≥ 1− ε

2
(ρ2 − 1)2

provided that δ is sufficiently small. Then we have

|cQ(u)| ≤
√

2(1− 2ε)(1− δ)
∫
RN
|ρ2 − 1| ·

∣∣∣∣ ∂θ∂x1

∣∣∣∣ dx(1.11)

≤ (1− 2ε)

∫
RN

(1− δ)2
∣∣∣∣ ∂θ∂x1

∣∣∣∣2 +
1

2
(ρ2 − 1)2 dx

≤
∫
RN

(1− 2ε)ρ2|∇θ|2 + V (ρ2)− ε

2
(ρ2 − 1)2 dx

≤ E(u)− εEGL(u).
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Thus Ec(u) ≥ εEGL(u) if |1 + u| is sufficiently close to 1 in the L∞ norm.

Since EGL(u) measures, in some sense, the closeness of 1 + u to 1, we would

like to establish a similar estimate for all functions with small Ginzburg-Landau

energy. However, EGL(u) does not control ‖ |1+u|−1‖L∞ . Moreover, there are

functions with arbitrarily small Ginzburg-Landau energy that present small-

scale topological “defects” (e.g., dipoles). To get rid of these difficulties we

use a procedure of regularization by minimization, which is introduced and

studied in Section 3. Given u ∈ X , we minimize the functional v 7−→ EGL(v)+
1
h2

∫
RN ϕ(|v − u|2) dx in the set {v ∈ X | v − u ∈ H1(RN )}. It is shown

that minimizers exist (but are perhaps not unique) and any minimizer vh has

remarkable properties. For instance,

• EGL(vh) ≤ EGL(u),

• ‖vh − u‖L2 −→ 0 as h −→ 0, and

• ‖ |1 + vh| − 1‖L∞ can be estimated in terms of h and EGL(u) and is

arbitrarily small if EGL(u) is sufficiently small.

In Section 4 we describe the variational framework. Using the above

regularization procedure we prove that for any ε ∈ (0, 1− c
vs

) and for all u ∈ X
with EGL(u) sufficiently small, there holds Ec(u) ≥ εEGL(u). Then we show

that for all k > 0, the functional Ec is bounded on the set {u∈X | EGL(u)≤k}.
Let

Ec,min(k) = inf{Ec(u) | u ∈ X , EGL(u) = k}.
We prove that for 0 < c < vs, the function Ec,min has the following properties:

(i) For any ε ∈ (0, 1 − c
vs

), there is kε > 0 such that Ec,min(k) > εk for

k ∈ (0, kε).

(ii) limk→∞Ec,min(k) = −∞.

(iii) For any k > 0, we have Ec,min(k) < k.

The situation is very different if c > vs: in that case it can be proved that

Ec,min is negative and decreasing on (0,∞).

In order to get critical points of Ec, it is tempting to minimize Ec(u)

under the constraint EGL(u) = k or Q(u) = k, where k is a constant, and

then to search for those k that give minimizers with the associated Lagrange

multiplier equal to zero. However, it is well known that it is hard to control the

Lagrange multipliers in minimization problems that do not have appropriate

scaling or homogeneity properties. In order to avoid that difficulty we adopt

the following strategy. We introduce the functionals:

A(u) =

∫
RN

N∑
j=2

∣∣∣∣ ∂u∂xj
∣∣∣∣2 dx,(1.12)

Bc(u) =

∫
RN

∣∣∣∣ ∂u∂x1

∣∣∣∣2 dx+ cQ(u) +

∫
RN

V (|1 + u|2) dx,(1.13)
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Pc(u) =
N − 3

N − 1
A(u) +Bc(u).(1.14)

It is obvious that Ec(u) = A(u) + Bc(u) = 2
N−1A(u) + Pc(u). If assumptions

(A1) and (A2) above are satisfied, it can be proved (see Proposition 4.1 in

[42, pp. 1091–1092]) that any traveling wave u ∈ X of (1.1) must satisfy the

Pohozaev-type identity Pc(u) = 0. Indeed, it is easy to see that for any u ∈ X ,

we have Ec(u1,σ) = σN−3A(u) + σN−1Bc(u). Formally, a critical point u of

Ec should satisfy d
dσ |σ=1

(Ec(u1,σ)) = 0, which gives precisely Pc(u) = 0. We

will prove the existence of traveling waves by showing that the problem of

minimizing Ec in the set

C = {u ∈ X | u 6= 0, Pc(u) = 0}
admits solutions. It turns out that minimizing a functional under a Pohozaev

constraint (almost) automatically generates critical points of that functional;

that is, the Lagrange multiplier is fixed. This is a very general observation

which seems to work in many problems in Calculus of Variations. To our

knowledge, it is used here for the first time. Let us explain how it works for Ec
in dimension N ≥ 4. Assume that u ∈ C satisfies the Euler-Lagrange equation

E′c(u) = αP ′c(u). Then u is a critical point of the functional Ec−αPc. Formally,

we have d
dσ |σ=1

(Ec(u1,σ)− αPc(u1,σ)) = 0, which is equivalent to

Pc(u)− α
ñÅ
N − 3

N − 1

ã2

A(u) +Bc(u)

ô
= 0.

Since Pc(u) = 0, the above identity implies αN−3
N−1 ·

Ä
N−3
N−1 − 1

ä
A(u) = 0; thus

either A(u) = 0 (and u is constant), or α = 0.

The next step is to prove that C is not empty and inf{Ec(u) | u ∈ C} > 0.

Let us present here the arguments in dimension N ≥ 4. If u ∈ C, we have

Bc(u) = −N−3
N−1A(u) < 0. Then it is easy to see that the function σ 7−→

Ec(u1,σ) = σN−3A(u) + σN−1Bc(u) is increasing on (0, 1) and decreasing on

(1,∞); thus it achieves a maximum at σ = 1. Hence

Ec(u) = Ec(u1,1) ≥ Ec(u1,σ) ≥ Ec,min(EGL(u1,σ)) for all σ > 0.

Since σ 7−→ EGL(u1,σ) takes all values in (0,∞), we infer that

Tc := inf{Ec(u) | u ∈ C} ≥ sup{Ec,min(k) | k > 0} > 0.

In Section 5 we consider the case N ≥ 4 and we prove that the functional

Ec has minimizers in C and these minimizers are solutions of (1.4). To show

the existence of minimizers we use the concentration-compactness principle and

the regularization procedure developed in Section 3. The most difficult part is

to show that minimizing sequences do not “vanish”; that is, their Ginzburg-

Landau energy does not spread over RN . Assume that N ≥ 4 and (un)n≥1
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is a minimizing sequence for Ec on C that “vanishes.” Letting σ0 =
√

2(N−1)
N−3

and ũn = (un)1,σ0 , we see that (ũn)n≥1 also vanishes and A(ũn) + Ec(ũn) =

σN−1
0 Pc(un) = 0. Since A(ũn) = σN−3

0 A(un) and A(un) = N−1
2 (Ec(un) −

Pc(un)) ≥ N−1
2 Tc > 0, we get

(1.15) lim sup
n→∞

Ec(ũn) < 0.

On the other hand, the vanishing of (ũn)n≥1 implies that∫
RN

V (|1 + ũn|2) dx =
1

2

∫
RN

Ä
ϕ2(|1 + ũn|)− 1

ä2
dx+ o(1).

Using the regularization procedure in Section 3 (see Lemma 3.2) we construct

a sequence hn −→ 0, and for each n, we find a minimizer vn of the functional

EGL(v) + 1
h2n

∫
RN ϕ(|v− ũn|2) dx such that ‖ |1 + vn|− 1‖L∞ −→ 0 as n −→∞.

Then we have Q(ũn) = Q(vn) + o(1) and

(1.16) Ec(ũn) = EGL(ũn) + cQ(ũn) + o(1) ≥ EGL(vn) + cQ(vn) + o(1) ≥ 0

for all n sufficiently large by (1.11). It is clear that (1.15) and (1.16) give a

contradiction, and this rules out vanishing.

If “dichotomy” occurs, the Ginzburg-Landau energy of un is located in

two regions that are far away from each other as n −→ ∞. Using again the

regularization procedure we show that there are functions un,1, un,2 such that

(EGL(un,i))n≥1 is bounded and stays away from zero for i = 1, 2, and

(1.17)

|A(un)−A(un,1)−A(un,2)| −→ 0 and |Pc(un)− Pc(un,1)− Pc(un,2)| −→ 0

as n −→ ∞. It is easy to see that (Pc(un,i))n≥1 is bounded for i = 1, 2.

Passing again to a subsequence, we may assume that Pc(un,1) −→ p1 and

Pc(un,2) −→ p2, where p1 + p2 = 0.

If p1 = p2 = 0, we show that lim infn→∞Ec(un,i) ≥ Tc for i = 1, 2, and

then

lim inf
n→∞

Ec(un) = lim inf
n→∞

(Ec(un,1) + Ec(un,2)) ≥ 2Tc, a contradiction.

If p1 < 0, we use Lemma 4.8(ii), which asserts that for any bounded se-

quence (vn)n≥1⊂X satisfying limn→∞Pc(vn)<0, there holds lim infn→∞A(vn)

> N−1
2 Tc. Hence,

lim inf
n→∞

Ec(un) =
2

N − 1
lim inf
n→∞

A(un) ≥ 2

N − 1
lim inf
n→∞

A(un,1) > Tc,

again a contradiction. A similar argument is valid if p2 < 0.

Since “vanishing” and “dichotomy” are excluded, necessarily “concentra-

tion” occurs, and then we show that (un)n≥1 has a subsequence which converges

to a minimizer of Ec in C.
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There are some important differences in the case N = 3 with respect to

the case N ≥ 4, most of them due to different scaling properties. For instance,

for any v ∈ X , we have A(v1,σ) = A(v) and Bc(v1,σ) = σ2Bc(v). If v ∈ C, for

all σ > 0, we have

Pc(v1,σ) = Bc(v1,σ) = σ2Bc(v) = 0 and Ec(v1,σ) = A(v1,σ) = A(v) = Ec(v).

It is then clear that one may expect convergence of minimizing sequences for

Ec in C only after scaling. The proofs that vanishing and dichotomy do not

occur are also a bit more involved. We treat the case N = 3 separately in

Section 6.

Next we have to prove that any minimizer u of Ec in C is nondegenerate

and satisfies a Euler-Lagrange equation E′c(u) = αP ′c(u) (then necessarily α =

0, as explained above). This is done in Proposition 5.6 in the case N ≥ 4,

respectively in Lemma 6.4 and Proposition 6.5 in the case N = 3.

Finally, we prove that traveling waves found by minimization in Sections 5

and 6 are axially symmetric (as one would expect from physical considerations;

see [33]).

In space dimension two the situation is different, mainly because of dif-

ferent scaling properties. Indeed, if N = 2, it is easy to see that for any

nonconstant function u satisfying Pc(u) = 0, the mapping σ 7−→ Ec(u1,σ) is

decreasing on (0, 1] and increasing on [1,∞); hence it achieves its minimum at

σ = 1. This is exactly the opposite of what happens in the case N ≥ 4, when

Ec(u1,σ) reaches its maximum at σ = 1. It can be proved that for N = 2, we

have inf{Ec(u) | u ∈ X , u 6= 0, Pc(u) = 0} = 0 and there are no minimizers

of Ec subject to the constraint Pc = 0. By using different approaches, the

existence of two-dimensional traveling waves has recently been proven in [14]

for a set of speeds that contains elements arbitrarily close to zero and to vs.

The existence for all speeds c ∈ (0, vs) is still an open problem. Although

some of the results in Sections 2–4 are also valid in space dimension N = 2

(with straightforward modifications in the proofs), for simplicity we assume

throughout that N ≥ 3.

If c = 0 and assumptions (A1) and (A2) are satisfied, equation (1.4) has

finite energy solutions if and only if the nonlinear potential V achieves negative

values. The existence follows, for instance, from Theorems 2.1 and 2.2 in [12,

pp. 100 and 103] (see also [9]). On the other hand, any finite energy solution

ψ of the equation ∆ψ + F (|ψ|2)ψ = 0 in RN satisfies the Pohozaev identity

(N − 2)

∫
RN
|∇ψ|2 dx+N

∫
RN

V (|ψ|2) dx = 0

(see, e.g., Lemma 2.4 in [12, p. 104]), and then it is clear that ψ must be

constant if V is nonnegative. In the case c = 0, our proofs imply that E0 has

a minimizer in the set {u ∈ X | u 6= 0, P0(u) = 0} whenever this set is not
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empty. Then it is not hard to prove that minimizers satisfy (1.4) for c = 0

(after a scale change if N = 3). However, for simplicity we assume throughout

(unless the contrary is explicitly mentioned) that 0 < c < vs.

2. The momentum

A good definition of the momentum is essential in any attempt to find

solutions of (1.4) by using a variational approach. Roughly speaking, the

momentum (with respect to the x1-direction) should be a functional with de-

rivative 2iux1 . Various definitions have been given in the literature (see [8],

[5], [7], [41]), any of them having its advantages and its inconveniences. Unfor-

tunately, none of them is valid for all functions in X . We propose a new and

more general definition in this section.

It is clear that for functions u ∈ H1(RN ), the momentum should be given

by

(2.1) Q1(u) =

∫
RN
〈iux1 , u〉 dx,

and this is indeed a nice functional on H1(RN ). The problem is that there are

functions u ∈ X \H1(RN ) such that 〈iux1 , u〉 6∈ L1(RN ).

If u ∈ X is such that 1 + u admits a lifting 1 + u = ρeiθ, a formal

computation gives

(2.2)

∫
RN
〈iux1 , u〉 dx = −

∫
RN

ρ2θx1 dx = −
∫
RN

(ρ2 − 1)θx1 dx.

It is not hard to see that if u ∈ X is as above, then (ρ2 − 1)θx1 ∈ L1(RN ).

However, there are many “interesting” functions u ∈ X such that 1 + u does

not admit a lifting.

Our aim is to define the momentum on X in such a way that it agrees with

(2.1) for functions in H1(RN ) and with (2.2) when a lifting as above exists.

Lemma 2.1. Let u ∈ X be such that m ≤ |1 + u(x)| ≤ 2 a.e. (almost

everywhere) on RN , where m > 0. There exist two real-valued functions ρ, θ

such that ρ− 1 ∈ H1(RN ), θ ∈ D1,2(RN ), 1 + u = ρeiθ a.e. on RN and

(2.3) 〈iux1 , u〉 =
∂

∂x1
(Im(u)− θ)− (ρ2 − 1)

∂θ

∂x1
a.e. on RN .

Moreover, we have ∫
RN

∣∣∣∣(ρ2 − 1)θx1

∣∣∣∣ dx ≤ 1√
2m

EGL(u).

Proof. Since 1 + u ∈ H1
loc(R

N ), the fact that there exist ρ, θ ∈ H1
loc(R

N )

such that 1 + u = ρeiθ a.e. is standard and follows from Theorem 3 in [10,
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p. 38]. We have

(2.4)

∣∣∣∣∣ ∂u∂xj
∣∣∣∣∣
2

=

∣∣∣∣∣ ∂ρ∂xj
∣∣∣∣∣
2

+ ρ2

∣∣∣∣∣ ∂θ∂xj
∣∣∣∣∣
2

a.e. on RN for j = 1, . . . , N.

Since ρ = |1 + u| ≥ m a.e., it follows that ∇ρ,∇θ ∈ L2(RN ). If N ≥ 3,

we infer that there exist ρ0, θ0 ∈ R such that ρ − ρ0 and θ − θ0 belong to

L2∗(RN ). Then it is not hard to see that ρ0 = 1 and θ0 = 2k0π, where

k0 ∈ Z. Replacing θ by θ − 2k0π, we have ρ − 1, θ ∈ D1,2(RN ). Since ρ ≤ 2

a.e., we have ρ2 − 1 = ϕ(|1 + u|)2 − 1 ∈ L2(RN ) because u ∈ X . Clearly

|ρ− 1| = |ρ2−1|
ρ+1 ≤ |ρ2 − 1|; hence ρ− 1 ∈ L2(RN ).

A straightforward computation gives

〈iux1 , u〉 = 〈iux1 ,−1〉 − ρ2θx1 =
∂

∂x1
(Im(u)− θ)− (ρ2 − 1)

∂θ

∂x1
.

By (2.4), we have
∣∣∣ ∂θ∂xj ∣∣∣ ≤ 1

ρ

∣∣∣ ∂u∂xj ∣∣∣ ≤ 1
m

∣∣∣ ∂u∂xj ∣∣∣, and the Cauchy-Schwarz inequality

gives ∫
RN

∣∣∣∣(ρ2 − 1)θx1

∣∣∣∣ dx ≤ ‖ρ2 − 1‖L2‖θx1‖L2

≤ 1

m
‖ρ2 − 1‖L2‖ux1‖L2 ≤ 1

m
√

2
EGL(u). �

Lemma 2.2. Let χ ∈ C∞c (C,R) be a function such that χ = 1 on B(0, 1
4),

0 ≤ χ ≤ 1 and supp(χ) ⊂ B(0, 1
2). For an arbitrary u ∈ X , denote u1 = χ(u)u

and u2 = (1−χ(u))u. Then u1 ∈ X , u2 ∈ H1(RN ) and the following estimates

hold :

(2.5) |∇ui| ≤ C|∇u| a.e. on RN for i = 1, 2, where C depends only on χ,

(2.6)

‖u2‖L2(RN ) ≤ C1‖∇u‖
2∗
2

L2(RN )
and ‖(1− χ2(u))u‖L2(RN ) ≤ C1‖∇u‖

2∗
2

L2(RN )
,

(2.7)∫
RN

Ä
ϕ2(|1 + u1|)− 1

ä2
dx ≤

∫
RN

Ä
ϕ2(|1 + u|)− 1

ä2
dx+ C2‖∇u‖2

∗

L2(RN ),

(2.8)

∫
RN

Ä
ϕ2(|1 + u2|)− 1

ä2
dx ≤ C2‖∇u‖2

∗

L2(RN ).

Let 1+u1 = ρeiθ be the lifting of 1+u1, as given by Lemma 2.1. Then we have

(2.9) 〈iux1 , u〉 = (1− χ2(u))〈iux1 , u〉 − (ρ2 − 1)
∂θ

∂x1
+

∂

∂x1
(Im(u))− ∂θ

∂x1

a.e. on RN .
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Proof. Since |ui| ≤ |u|, we have ui ∈ L2∗(RN ) for i = 1, 2. It is standard

to prove that ui ∈ H1
loc(R

N ) (see, e.g., Lemma C1 in [10, p. 66]) and we have

(2.10)
∂u1

∂xj
=

Ç
∂1χ(u)

∂(Re(u))

∂xj
+ ∂2χ(u)

∂(Im(u))

∂xj

å
u+ χ(u)

∂u

∂xj
.

A similar formula holds for u2. Since the functions z 7−→ ∂iχ(z)z, i = 1, 2, are

bounded on C, (2.5) follows immediately from (2.10).

Using the Sobolev embedding, we have

‖u2‖2L2 ≤
∫
RN
|u|21{|u|> 1

4
}(x) dx ≤ 42∗−2

∫
RN
|u|2∗1{|u|> 1

4
}(x) dx ≤ C1‖∇u‖2

∗

L2 .

This gives the first estimate in (2.6); the second one is similar.

For |u| ≤ 1
4 , we have u1(x) = u(x). Hence,∫

{|u|≤ 1
4
}

Ä
ϕ2(|1 + u1|)− 1

ä2
dx =

∫
{|u|≤ 1

4
}

Ä
ϕ2(|1 + u|)− 1

ä2
dx.

There exists C ′ > 0 such that
(
ϕ2(|1 + z|)− 1

)2 ≤ C ′|z|2 if |z| ≥ 1
4 . Proceeding

as in the proof of (2.6), for i = 1, 2, we have∫
{|u|> 1

4
}

Ä
ϕ2(|1 + ui|)− 1

ä2
dx ≤ C ′

∫
{|u|> 1

4
}
|ui|2 dx ≤ C2‖∇u‖2

∗

L2 .

This clearly implies (2.7) and (2.8).

Since ∂1χ(u)∂(Re(u))
∂xj

+ ∂2χ(u)∂(Im(u))
∂xj

∈ R, using (2.10) we get 〈i∂u1∂x1
, u1〉

= χ2(u)〈iux1 , u〉 a.e. on R. Then (2.9) follows from Lemma 2.1. �

We consider the space Y = {∂x1φ | φ ∈ Ḣ1(RN )}. It is clear that φ1, φ2 ∈
Ḣ1(RN ) and ∂x1φ1 = ∂x1φ2 imply that φ1−φ2 is constant; hence ∇φ1 = ∇φ2.

Defining

‖∂x1φ‖Y = ‖φ‖Ḣ1(RN ) = ‖∇φ‖L2(RN ),

it is easy to see that ‖ · ‖Y is a norm on Y and (Y, ‖ · ‖Y) is a Banach space.

The following holds.

Lemma 2.3. Let N≥2. For any v∈L1(RN )∩Y , we have
∫
RN v(x) dx=0.

Proof. Take φ ∈ Ḣ1(RN ) such that v = ∂x1φ. Then φ ∈ S ′(RN ) and

|ξ|φ̂ ∈ L2(RN ). Hence φ̂ ∈ L1
loc(R

N \ {0}). On the other hand, we have

v = ∂x1φ ∈ L1 ∩ L2(RN ) by hypothesis; hence v̂ = iξ1φ̂ ∈ L2 ∩ C0
b (RN ).

We prove that v̂(0) = 0. We argue by contradiction and assume that

v̂(0) 6= 0. By continuity, there exists m > 0 and ε > 0 such that |v̂(ξ)| ≥ m for

|ξ| ≤ ε. For j = 2, . . . , N , we get

|iξjφ̂(ξ)| = |ξj ||ξ1|
|v̂(ξ)| ≥ m |ξj ||ξ1|

for a.e. ξ ∈ B(0, ε).
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But this contradicts the fact that iξjφ̂ ∈ L2(RN ). Thus necessarily v̂(0) = 0,

and this is exactly the conclusion of Lemma 2.3. �

It is obvious that L1(v) =
∫
RN v(x) dx and L2(w) = 0 are continuous linear

functionals on L1(RN ) and on Y, respectively. Moreover, by Lemma 2.3, we

have L1 = L2 on L1(RN ) ∩ Y. Putting

(2.11) L(v + w) = L1(v) + L2(w) =

∫
RN

v(x) dx

for v ∈ L1(RN ) and w ∈ Y, we see that L is well defined and is a continuous

linear functional on L1(RN ) + Y.

It follows from (2.9) and Lemmas 2.1 and 2.2 that for any u ∈ X , we have

〈iux1 , u〉 ∈ L1(RN ) + Y. This enables us to give the following

Definition 2.4. Given u ∈ X , the momentum of u (with respect to the

x1-direction) is

Q(u) = L(〈iux1 , u〉).
If u ∈ X and χ, u1, u2, ρ, θ are as in Lemma 2.2, from (2.9) we get

(2.12) Q(u) =

∫
RN

(1− χ2(u))〈iux1 , u〉 − (ρ2 − 1)θx1 dx.

It is easy to check that the right-hand side of (2.12) does not depend on the

choice of the cut-off function χ, provided that χ is as in Lemma 2.2.

It follows directly from (2.12) that the functional Q has a nice behavior

with respect to dilations in RN : for any u ∈ X and λ, σ > 0, we have

(2.13) Q(uλ,σ) = σN−1Q(u).

The next lemma will enable us to perform “integrations by parts.”

Lemma 2.5. For any u ∈ X and w ∈ H1(RN ), we have 〈iux1 , w〉 ∈
L1(RN ), 〈iu, wx1〉 ∈ L1(RN ) + Y and

(2.14) L(〈iux1 , w〉+ 〈iu, wx1〉) = 0.

Proof. Since w, ux1 ∈ L2(RN ), the Cauchy-Schwarz inequality implies

〈iux1 , w〉 ∈ L1(RN ). Let χ, u1, u2 be as in Lemma 2.2. Denote w1 = χ(w)w,

w2 = (1 − χ(w))w. Then u = u1 + u2, w = w1 + w2 and it follows from

Lemma 2.2 that u1 ∈ X ∩ L∞(RN ) and u2, w1, w2 ∈ H1(RN ).

As above, we have 〈i∂u2∂x1
, w〉, 〈iu2,

∂w
∂x1
〉 ∈ L1(RN ) by the Cauchy-Schwarz

inequality. The standard integration by parts formula for functions in H1(RN )

(see, e.g., [11, p. 197]) gives

(2.15)

∫
RN

≠
i
∂u2

∂x1
, w

∑
+

≠
iu2,

∂w

∂x1

∑
dx = 0.
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Since u1 ∈ D1,2 ∩ L∞(RN ) and w1 ∈ H1 ∩ L∞(RN ), it is standard to prove

that 〈iu1, w1〉 ∈ D1,2 ∩ L∞(RN ) and

(2.16)

≠
i
∂u1

∂x1
, w1

∑
+

≠
iu1,

∂w1

∂x1

∑
=

∂

∂x1
〈iu1, w1〉 a.e. on RN .

Let Aw = {x ∈ RN | |w(x)| ≥ 1
4}. We have 1

16LN (Aw) ≤ ∫Aw |w|2 dx ≤
‖w‖2L2 and, consequently, Aw has finite measure. It is clear that w2 = 0 and

∇w2 = 0 a.e. on RN \Aw. Since w2 ∈ L2∗(RN ) and ∇w2 ∈ L2(RN ), we infer

that w2 ∈ L1∩L2∗(RN ) and ∇w2 ∈ L1∩L2(RN ). Together with the fact that

u1 ∈ L2∗ ∩ L∞(RN ) and ∇u1 ∈ L2(RN ), this gives 〈iu1, w2〉 ∈ L1 ∩ L2∗(RN )

andÆ
i
∂u1

∂xj
, w2

∏
∈ L1∩L N

N−1 (RN ),

Æ
iu1,

∂w2

∂xj

∏
∈ L1∩L2(RN ) for j = 1, . . . , N.

It is easy to see that

∂

∂xj
〈iu1, w2〉=

Æ
i
∂u1

∂xj
, w2

∏
+

Æ
iu1,

∂w2

∂xj

∏
in D′(RN ).

From the above we infer that 〈iu1, w2〉 ∈ W 1,1(RN ). It is obvious that∫
RN

∂ψ
∂xj

dx = 0 for any ψ ∈ W 1,1(RN ). (Indeed, let (ψn)n≥1 ⊂ C∞c (RN ) be a

sequence such that ψn −→ ψ in W 1,1(RN ) as n −→ ∞; then
∫
RN

∂ψn
∂xj

dx = 0

for each n and
∫
RN

∂ψn
∂xj

dx −→ ∫
RN

∂ψ
∂xj

dx as n −→ ∞.) Thus we have

〈i∂u1∂x1
, w2〉, 〈iu1,

∂w2
∂x1
〉 ∈ L1(RN ) and

(2.17)

∫
RN

≠
i
∂u1

∂x1
, w2

∑
+

≠
iu1,

∂w2

∂x1

∑
dx =

∫
RN

∂

∂x1
〈iu1, w2〉 dx = 0.

Now (2.14) follows from (2.15), (2.16), (2.17), and Lemma 2.5 is proven. �

Corollary 2.6. Let u, v ∈ X be such that u− v ∈ L2(RN ). Then

(2.18) |Q(u)−Q(v)| ≤ ‖u− v‖L2(RN )

Ç∥∥∥∥ ∂u∂x1

∥∥∥∥
L2(RN )

+

∥∥∥∥ ∂v∂x1

∥∥∥∥
L2(RN )

å
.

Proof. It is clear that w = u− v ∈ H1(RN ). Using (2.14), we get

Q(u)−Q(v) = L(〈i(u− v)x1 , u〉+ 〈ivx1 , u− v〉)(2.19)

= L(〈iux1 , u− v〉+ 〈ivx1 , u− v〉)

=

∫
RN
〈iux1 + ivx1 , u− v〉 dx.

Then (2.18) follows from (2.19) and the Cauchy-Schwarz inequality. �

The next result will be useful to estimate the contribution to the momen-

tum of a domain where the modified Ginzburg-Landau energy is small.
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Lemma 2.7. Let M > 0, and let Ω be an open subset of RN . Assume

that u ∈ X satisfies EGL(u) ≤ M , and let χ, ρ, θ be as in Lemma 2.2. Then

we have

(2.20)

∫
Ω

∣∣∣∣(1−χ2(u))〈iux1 , u〉− (ρ2−1)θx1

∣∣∣∣ dx ≤ C(M
1
2 +M

2∗
4 )
Ä
EΩ

GL(u)
ä 1

2 .

Proof. Using (2.6) and the Cauchy-Schwarz inequality, we get∫
Ω

∣∣∣∣(1− χ2(u))〈iux1 , u〉
∣∣∣∣ dx ≤ ‖ux1‖L2(Ω)‖(1− χ2(u))u‖L2(Ω)(2.21)

≤ C1‖ux1‖L2(Ω)‖∇u‖
2∗
2

L2(RN )
.

We have |u1| ≤ 1
2 ; hence |1 + u1| ≤ 3

2 and ϕ(|1 + u1|) = |1 + u1| = ρ. Then

(2.7) gives

(2.22) ‖ρ2 − 1‖2L2(RN ) ≤ C ′(EGL(u) + EGL(u)
2∗
2 ) ≤ C ′(M +M

2∗
2 ).

From (2.4) and (2.5) we have
∣∣∣ ∂θ∂xj ∣∣∣ ≤ 1

ρ

∣∣∣∂u1∂xj

∣∣∣ ≤ C ′′∣∣∣ ∂u∂xj ∣∣∣ a.e. on RN . Therefore∫
Ω

∣∣∣∣(ρ2 − 1)θx1

∣∣∣∣ dx ≤ ‖ρ2 − 1‖L2(Ω)‖θx1‖L2(Ω)(2.23)

≤ C ′′‖ρ2 − 1‖L2(RN )‖ux1‖L2(Ω)

≤ C ′′′
Å
M +M

2∗
2

ã 1
2 Ä
EΩ

GL(u)
ä 1

2 .

Then (2.20) follows from (2.21) and (2.23). �

3. A regularization procedure

Given a function u ∈ X and a set Ω ⊂ RN such that EΩ
GL(u) is small, we

would like to get a fine estimate of the contribution of Ω to the momentum

of u. To do this, we will use a kind of “regularization” procedure for arbitrary

functions in X . A similar device has been introduced in [1] to get rid of small-

scale topological defects of functions; variants of it have been used for various

purposes in [8], [7], [5].

Throughout this section, Ω is an open set in RN . We do not assume Ω

bounded, nor connected. If ∂Ω 6= ∅, we assume that ∂Ω is C2. Let ϕ be as in

the introduction. Fix u ∈ X and h > 0. We consider the functional

Guh,Ω(v) = EΩ
GL(v) +

1

h2

∫
Ω
ϕ
Ä
|v − u|2

ä
dx.

Note that Guh,Ω(v) may equal ∞ for some v ∈ X ; however, Guh,Ω(v) is finite

whenever v ∈ X and v − u ∈ L2(Ω). If there is no risk of confusion, we will

simply write G(v) instead of Guh,Ω(v). We denote H1
0 (Ω)={u ∈ H1(RN ) | u=0

on RN \ Ω} and

H1
u(Ω) = {v ∈ X | v − u ∈ H1

0 (Ω)}.
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The next lemma gives the properties of functions that minimize G in the space

H1
u(Ω).

Lemma 3.1. (i) The functional G has a minimizer in H1
u(Ω).

(ii) Let vh be a minimizer of G in H1
u(Ω). There exist constants C1, C2 > 0,

depending only on N, such that vh satisfies

EΩ
GL(vh) ≤ EΩ

GL(u),(3.1)

‖vh − u‖2L2(Ω) ≤ h2EΩ
GL(u) + C1

Ä
EΩ

GL(u)
ä1+ 2

N h
4
N ,(3.2) ∫

Ω

∣∣∣∣ Äϕ2(|1 + u|)− 1
ä2 − Äϕ2(|1 + vh|)− 1

ä2 ∣∣∣∣ dx ≤ 36hEΩ
GL(u),(3.3)

|Q(u)−Q(vh)| ≤ C2

Å
h2 +

Ä
EΩ

GL(u)
ä 2
N h

4
N

ã 1
2

EΩ
GL(u).(3.4)

(iii) For z ∈ C, denote H(z) =
(
ϕ2(|z + 1|)− 1

)
ϕ(|z + 1|)ϕ′(|z + 1|) z+1

|z+1|
if z 6= −1 and H(−1) = 0. Then any minimizer vh of G in H1

u(Ω)

satisfies the equation

(3.5) −∆vh +H(vh) +
1

h2
ϕ′
Ä
|vh − u|2

ä
(vh − u) = 0 in D′(Ω).

Moreover, for any ω ⊂⊂ Ω we have vh ∈W 2,p(ω) for p ∈ [1,∞); thus,

in particular, vh ∈ C1,α(ω) for α ∈ [0, 1).

(iv) For any h > 0, δ > 0 and R > 0, there exists a constant K =

K(N,h, δ,R) > 0 such that for any u ∈ X with EΩ
GL(u) ≤ K and

for any minimizer vh of G in H1
u(Ω), there holds

(3.6) 1− δ < |1 + vh(x)| < 1 + δ whenever x ∈ Ω and dist(x, ∂Ω) ≥ 4R.

Proof. (i) It is obvious that u ∈ H1
u(Ω). Let (vn)n≥1 be a minimizing

sequence for G in H1
u(Ω). We may assume that G(vn) ≤ G(u) = EΩ

GL(u). This

implies
∫
Ω |∇vn|2 dx ≤ EΩ

GL(u). It is clear that

(3.7)

∫
Ω∩{|vn−u|≤

√
2}
|vn − u|2 dx ≤

∫
Ω
ϕ
Ä
|vn − u|2

ä
dx ≤ h2EΩ

GL(u).

Since vn − u ∈ H1
0 (Ω) ⊂ H1(RN ), by the Sobolev embedding we have

‖vn − u‖L2∗ (RN ) ≤ CS‖∇vn −∇u‖L2(RN ),

where CS depends only on N . Therefore,∫
{|vn−u|≥1}

|vn − u|2 dx ≤
∫
{|vn−u|≥1}

|vn − u|2
∗
dx ≤ ‖vn − u‖2

∗

L2∗ (RN )(3.8)

≤ C ′‖∇vn −∇u‖2
∗

L2(RN ) ≤ C
Ä
EΩ

GL(u)
ä 2∗

2 .

It follows from (3.7) and (3.8) that ‖vn − u‖L2(Ω) is bounded. Hence vn − u
is bounded in H1

0 (Ω). We infer that there exists a sequence (still denoted
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(vn)n≥1) and there is w ∈ H1
0 (Ω) such that vn − u ⇀ w weakly in H1

0 (Ω),

vn − u −→ w a.e. and vn − u −→ w in Lploc(Ω) for 1 ≤ p < 2∗. Let v = u+ w.

Then ∇vn ⇀ ∇v weakly in L2(RN ), and this implies∫
Ω
|∇v|2 dx ≤ lim inf

n→∞

∫
Ω
|∇vn|2 dx.

Using the a.e. convergence and Fatou’s Lemma we infer that∫
Ω

Ä
ϕ2(|1 + v|)− 1

ä2
dx ≤ lim inf

n→∞

∫
Ω

Ä
ϕ2(|1 + vn|)− 1

ä2
dx

and ∫
Ω
ϕ
Ä
|v − u|2

ä
dx ≤ lim inf

n→∞

∫
Ω
ϕ
Ä
|vn − u|2

ä
dx.

Therefore G(v) ≤ lim infn→∞G(vn) and, consequently, v is a minimizer of G

in H1
u(Ω).

(ii) Since u ∈ H1
u(Ω), we have EΩ

GL(vh) ≤ G(vh) ≤ EΩ
GL(u); hence (3.1)

holds. It is clear that ϕ
(|vh − u|2) ≥ 1 if |vh − u| ≥ 1; thus,

LN ({|vh − u| ≥ 1}) ≤
∫
RN

ϕ
Ä
|vh − u|2

ä
dx ≤ h2G(vh) ≤ h2EΩ

GL(u).

Using Hölder’s inequality, the above estimate and the Sobolev inequality we

get

∫
{|vh−u|≥1}

|vh − u|2 dx ≤ ‖vh − u‖2L2∗ ({|vh−u|≥1})

Ä
LN ({|vh − u| ≥ 1})

ä1− 2
2∗

(3.9)

≤ ‖vh − u‖2L2∗ (RN )

Ä
LN ({|vh − u| ≥ 1})

ä1− 2
2∗

≤ CS‖∇vh −∇u‖2L2(RN )

Ä
h2EΩ

GL(u)
ä1− 2

2∗ ≤ 4CSh
4
N

Ä
EΩ

GL(u)
ä1+ 2

N .

It is clear that (3.7) holds with vh instead of vn and then (3.2) follows from

(3.7) and (3.9).

We claim that

(3.10)

∣∣∣∣ϕ(|z|)− ϕ(|ζ|)
∣∣∣∣ ≤ î9

2ϕ
(|z − ζ|2)ó 12 for any z, ζ ∈ C.

Indeed, let 0 ≤ a ≤ b. If b ∈ [a, a+
√

2], we have ϕ((b− a)2) = (b− a)2; hence,

0 ≤ ϕ(b)− ϕ(a) ≤ b− a =
î
ϕ((b− a)2)

ó 1
2 .

If b > a+
√

2, we have 0 ≤ ϕ(b)−ϕ(a) ≤ 3 and
[
ϕ((b− a)2)

] 1
2 ≥ (ϕ(2))

1
2 =
√

2;

thus 0 ≤ ϕ(b)− ϕ(a) ≤ 3√
2

[
ϕ((b− a)2)

] 1
2 . Assuming that |z| ≤ |ζ|, we get∣∣∣∣ϕ(|z|)− ϕ(|ζ|)

∣∣∣∣ = ϕ(|ζ|)− ϕ(|z|) ≤
ï

9

2
ϕ
Ä
(|ζ| − |z|)2

äò 12 ≤ ï9
2
ϕ
Ä
|ζ − z|2

äò 12
.
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It is obvious that∣∣∣Äϕ2(|1 + u|)− 1
ä2 − Äϕ2(|1 + vh|)− 1

ä2∣∣∣(3.11)

≤ 6
∣∣∣ϕ(|1 + u|)− ϕ(|1 + vh|)

∣∣∣ · ∣∣∣ϕ2(|1 + u|) + ϕ2(|1 + vh|)− 2
∣∣∣.

Using (3.11), the Cauchy-Schwarz inequality and (3.10), we get∫
Ω

∣∣∣∣ Äϕ2(|1 + u|)− 1
ä2 − Äϕ2(|1 + vh|)− 1

ä2 ∣∣∣∣ dx
≤ 6

Ç∫
Ω

∣∣∣∣ϕ(|1 + u|)− ϕ(|1 + vh|)
∣∣∣∣2 dx

å 1
2

×
Ç∫

Ω

∣∣∣∣ϕ2(|1 + u|) + ϕ2(|1 + vh|)− 2

∣∣∣∣2 dx
å 1

2

≤ 6

Å∫
Ω

9

2
ϕ
Ä
|vh − u|2

ä
dx

ã 1
2

×
Å

2

∫
Ω

Ä
ϕ2(|1 + u|)− 1

ä2
+
Ä
ϕ2(|1 + vh|)− 1

ä2
dx

ã 1
2

≤ 18
Ä
h2G(vh)

ä 1
2
Ä
2EΩ

GL(u) + 2EΩ
GL(vh)

ä 1
2 ≤ 36hEΩ

GL(u),

and (3.3) is proven. Finally, (3.4) follows directly from (3.1), (3.2) and Corol-

lary 2.6.

(iii) The proof of (3.5) is standard. For any ψ ∈ C∞c (Ω), we have v+ψ ∈
H1
u(Ω), and the function t 7−→ G(v+tψ) achieves its minimum at t = 0. Hence

d
dt |t=0

(G(v + tψ)) = 0 for any ψ ∈ C∞c (Ω), and this is precisely (3.5).

For any z ∈ C, we have

(3.12) |H(z)| ≤ 3|ϕ2(|z + 1|)− 1| ≤ 24.

Since vh ∈ X , we have ϕ2(|1 + vh|) − 1 ∈ L2(RN ), and (3.12) gives H(vh) ∈
L2 ∩ L∞(RN ). We also have

∣∣∣ϕ′ (|vh − u|2) (vh − u)
∣∣∣ ≤ |vh − u| and∣∣∣ϕ′ Ä|vh − u|2ä (vh − u)

∣∣∣ ≤ sup
s≥0

ϕ′
Ä
s2
ä
s <∞.

Since vh − u ∈ L2(RN ), we get ϕ′
(|vh − u|2) (vh − u)∈L2 ∩ L∞(RN ). Using

(3.5) we infer that ∆vh ∈ L2 ∩ L∞(Ω). Then (iii) follows from standard

elliptic estimates (see, e.g., Theorem 9.11 in [24, p. 235]) and a straightforward

bootstrap argument.

(iv) We use (3.5), Sobolev and Gagliardo-Nirenberg inequalities and ellip-

tic regularity theory to prove that there is r ≤ R such that for all x satisfying

B(x, 4R) ⊂ Ω, one may estimate ‖∇vh‖Lp(B(x,r)) in terms of EΩ
GL(u) (see (3.26)

below). This estimate with p > N and the Morrey inequality imply that vh
is uniformly Hölder continuous on {x ∈ Ω | dist(x, ∂Ω) ≥ 4R}. In particular,
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if
∣∣∣ |1 + vh(x0)| − 1

∣∣∣ > δ for some x0 verifying B(x0, 4R) ⊂ Ω, then necessar-

ily
∣∣∣ |1 + vh| − 1

∣∣∣ > δ
2 on a ball of fixed radius centered at x0. This implies

that EΩ
GL(vh) (and, consequently, EΩ

GL(u)) is bounded from below by a positive

constant.

We start by estimating the nonlinear terms in (3.5). Using (3.12), we get∫
Ω
|H(vh)|2 dx ≤ 9

∫
Ω

Ä
ϕ2(|1 + vh|)− 1

ä2
dx ≤ 18EΩ

GL(vh) ≤ 18EΩ
GL(u);

hence ‖H(vh)‖L2(Ω) ≤ 3
√

2
Ä
EΩ

GL(u)
ä 1

2 . By interpolation we find for any p ∈
[2,∞],

(3.13) ‖H(vh)‖Lp(Ω) ≤ ‖H(vh)‖
p−2
p

L∞(Ω)‖H(vh)‖
2
p

L2(Ω) ≤ C
Ä
EΩ

GL(u)
ä 1
p .

It is easy to see that
∣∣∣ϕ′(s2)s

∣∣∣2 ≤ 2ϕ(s2) and
∣∣∣ϕ′(s2)s

∣∣∣ ≤ 2 for any s ≥ 0.

Then we have∫
Ω

∣∣∣ϕ′ Ä|vh − u|2ä (vh − u)
∣∣∣2 dx ≤ 2

∫
Ω
ϕ
Ä
|vh − u|2

ä
dx ≤ 2h2EΩ

GL(u);

thus ‖ϕ′ (|vh − u|2) (vh − u)‖L2(Ω) ≤ h
Ä
2EΩ

GL(u)
ä 1

2 . By interpolation, we get∥∥∥ϕ′ Ä|vh − u|2ä (vh − u)
∥∥∥
Lp(Ω)

(3.14)

≤
∥∥∥ϕ′ Ä|vh − u|2ä (vh − u)

∥∥∥ p−2
p

L∞(Ω)

∥∥∥ϕ′ Ä|vh − u|2ä (vh − u)
∥∥∥ 2
p

L2(Ω)

≤ Ch
2
p

Ä
EΩ

GL(u)
ä 1
p

for any p ∈ [2,∞]. From (3.5), (3.13) and (3.14), we obtain

(3.15) ‖∆vh‖Lp(Ω) ≤ C(1 + h
2
p
−2

)
Ä
EΩ

GL(u)
ä 1
p for any p ≥ 2.

For a measurable set ω ⊂ RN with LN (ω) < ∞ and for any f ∈ L1(ω),

we denote by m(f, ω) = 1
LN (ω)

∫
ω f(x) dx the mean value of f on ω.

Let x0 be such that B(x0, 4R) ⊂ Ω. Using the Poincaré inequality and

(3.1), we have

‖vh −m(vh, B(x0, 4R))‖L2(B(x0,4R)) ≤ CPR‖∇vh‖L2(B(x0,4R))(3.16)

≤ CPR
Ä
EΩ

GL(u)
ä 1

2 .

We claim that there exist k ∈ N, depending only on N , and C∗ = C∗(N,h,R)

such that

(3.17)

‖vh −m(vh, B(x0, 4R))‖W 2,N (B(x0,
R

2k−2 )) ≤ C∗
ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
N

ã
.
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It is well known (see Theorem 9.11 in [24, p. 235]) that for p ∈ (1,∞),

there exists C = C(N, r, p) > 0 such that for any w ∈ W 2,p(B(a, 2r)), there

holds

(3.18) ‖w‖W 2,p(B(a,r)) ≤ C
Ä
‖w‖Lp(B(a,2r)) + ‖∆w‖Lp(B(a,2r))

ä
.

From (3.15), (3.16) and (3.18) we infer that

(3.19) ‖vh −m(vh, B(x0, 4R))‖W 2,2(B(x0,2R)) ≤ C(N,h,R)
Ä
EΩ

GL(u)
ä 1

2 .

If 1
2 − 2

N ≤ 1
N , from (3.19) and the Sobolev embedding we find

(3.20) ‖vh −m(vh, B(x0, 4R))‖LN (B(x0,2R)) ≤ C(N,h,R)
Ä
EΩ

GL(u)
ä 1

2 .

Then using (3.15) (for p = N), (3.20) and (3.18) we infer that (3.17) holds for

k = 2.

If 1
2 − 2

N > 1
N , (3.19) and the Sobolev embedding imply

(3.21) ‖vh −m(vh, B(x0, 4R))‖Lp1 (B(x0,2R)) ≤ C(N,h,R)
Ä
EΩ

GL(u)
ä 1

2 ,

where 1
p1

= 1
2 − 2

N . Then (3.21), (3.15) and (3.18) give

‖vh −m(vh, B(x0, 4R))‖W 2,p1 (B(x0,R))≤C(N,h,R)

ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
N

ã
.

(3.22)

If 1
p1
− 2

N ≤ 1
N , using (3.22), the Sobolev embedding, (3.15) and (3.18) we get

‖vh −m(vh, B(x0, 4R))‖W 2,N (B(x0,
R
2

))≤C(N,h,R)

ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
N

ã
;

otherwise we repeat the process. After a finite number of steps, we find k ∈ N

such that (3.17) holds.

We will use the following variant of the Gagliardo-Nirenberg inequality:

(3.23)

‖w −m(w,B(a, r))‖Lp(B(a,r)) ≤ C(p, q,N, r)‖w‖
q
p

Lq(B(a,2r))‖∇w‖
1− q

p

LN (B(a,2r))

for any w ∈W 1,N (B(a, 2r)), where 1 ≤ q ≤ p <∞ (see, e.g., [34, p. 78]).

Using (3.23) with w = ∇vh and (3.17), we find∥∥∥∥∇vh −mÅ∇vh, B Åx0,
R

2k−1

ãã∥∥∥∥
Lp(B(x0,

R

2k−1 ))
(3.24)

≤ C‖∇vh‖
2
p

L2(B(x0,
R

2k−2 ))
‖∇2vh‖

1− 2
p

LN (B(x0,
R

2k−2 ))

≤ C
Ä
EΩ

GL(u)
ä 1
p

ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
N

ã1− 2
p

for any p ∈ [2,∞), where the constants depend only on N, p, h, R.
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Using the Cauchy-Schwarz inequality and (3.1), we have∣∣∣∣mÅ∇vh, B Åx0,
R

2k−1

ãã∣∣∣∣ ≤ LN ÅB Åx0,
R

2k−1

ãã− 1
2

‖∇vh‖L2(B(x0,
R

2k−1 ))

≤ C
Ä
EΩ

GL(u)
ä 1

2 .

We infer that for any p ∈ [1,∞], the following estimate holds:∥∥∥∥mÅ∇vh, B Åx0,
R

2k−1

ãã∥∥∥∥
Lp(B(x0,

R

2k−1 ))
(3.25)

≤
∣∣∣∣mÅ∇vh, B Åx0,

R

2k−1

ãã∣∣∣∣ÅLN ÅB Åx0,
R

2k−1

ããã 1
p

≤ C(N, p,R)
Ä
EΩ

GL(u)
ä 1

2 .

From (3.24) and (3.25) we obtain for any p ∈ [2,∞),

(3.26)

‖∇vh‖Lp(B(x0,
R

2k−1 )) ≤ C(N, p, h,R)

ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
p

+ 1
N

(1− 2
p

)
ã
.

We will use the Morrey inequality, which asserts that for any w ∈ C0 ∩
W 1,p(B(x0, r)) with p > N , there holds

(3.27)

|w(x)− w(y)| ≤ C(p,N)|x− y|1−
N
p ‖∇w‖Lp(B(x0,r)) for all x, y ∈ B(x0, r)

(see, e.g., the proof of Theorem IX.12 in [11, p. 166]). Using (3.26) and the

Morrey’s inequality (3.27) for p = 2N , we get

(3.28) |vh(x)−vh(y)| ≤ C(N,h,R)|x−y| 12
ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
N

(1+ 1
2∗ )
ã

for any x, y ∈ B(x0,
R

2k−1 ).

Let δ > 0. Assume that there is x0 ∈ Ω such that B(x0, 4R) ⊂ Ω and∣∣∣ |vh(x0)+1|−1
∣∣∣ ≥ δ. Since

∣∣∣ | |vh(x)+1|−1|−| |vh(y)+1|−1|
∣∣∣ ≤ |vh(x)−vh(y)|,

from (3.28) we infer that∣∣∣ |vh(x) + 1| − 1
∣∣∣ ≥ δ

2
for any x ∈ B(x0, rδ),

where

(3.29)

rδ = min

(
R

2k−1
,

Ç
δ

2C(N,h,R)

å2 ÅÄ
EΩ

GL(u)
ä 1

2 +
Ä
EΩ

GL(u)
ä 1
N

(1+ 1
2∗ )
ã−2

)
.

Let

(3.30) η(s) = inf{(ϕ2(τ)− 1)2 | τ ∈ (−∞, 1− s] ∪ [1 + s,∞)}.
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It is clear that η is nondecreasing and positive on (0,∞). We have

EΩ
GL(u) ≥ EΩ

GL(vh) ≥ 1

2

∫
B(x0,rδ)

Ä
ϕ2(|1 + vh|)− 1

ä2
dx(3.31)

≥ 1

2

∫
B(x0,rδ)

η

Å
δ

2

ã
dx =

1

2
LN (B(0, 1))η(

δ

2
)rNδ ,

where rδ is given by (3.29). It is obvious that there exists a constant K > 0,

depending only on N, h, R, δ such that (3.31) cannot hold for EΩ
GL(u) ≤ K.

We infer that
∣∣∣ |1 + vh(x0)| − 1

∣∣∣ < δ if B(x0, 4R) ⊂ Ω and EΩ
GL(u) ≤ K. This

completes the proof of Lemma 3.1. �

Lemma 3.2. Let (un)n≥1 ⊂ X be a sequence of functions satisfying

(a) EGL(un) is bounded, and

(b) limn→∞
(

supy∈RN E
B(y,1)
GL (un)

)
= 0.

There exists a sequence hn −→ 0 such that for any minimizer vn of Gun
hn,RN in

H1
un(RN ), we have ‖ |vn + 1| − 1‖L∞(RN ) −→ 0 as n −→∞.

Proof. The proof of Lemma 3.2 is quite tricky, and we split it into four

steps. First we explain the choice of the sequence (hn)n≥1. Then we prove

that there is C > 0 such that for any minimizer vn of Gun
hn,RN and for all

x ∈ RN , there holds ‖∆vn‖LN (B(x,1)) ≤ C. To get this estimate we write

(3.5) in a convenient form, multiply it by appropriate cut-off functions, then

perform integrations by parts and use elliptic regularity and a finite induction

to prove that un and vn are locally sufficiently close. (For instance, it follows

from (3.36) and (3.51) below that ‖un − vn‖L2(B(x,1)) ≤ ChNn for all x ∈ RN .)

Then we use (3.5) again to get the desired bound on ∆vn. In the third step

we use Sobolev and Morrey inequalities to prove that vn is uniformly Hölder

continuous. Finally, if δ is fixed and
∣∣∣ |1+vn(x0)|−1

∣∣∣ ≥ δ for some x0 ∈ RN , we

have necessarily
∣∣∣ |1 + vn| − 1

∣∣∣ ≥ δ
2 on a ball B(x0, r), where r does not depend

on n; thus ‖ϕ2(|1 + vn|) − 1‖L2(B(x0,1)) is bounded from below by a positive

constant. This is impossible for large n because ‖ϕ2(|1 + vn|) − 1‖L2(B(x0,1))

is close to ‖ϕ2(|1 + un|) − 1‖L2(B(x0,1)) and the last quantity tends to zero by

assumption (b).

Step 1. Choice of hn. Let M = supn≥1EGL(un). For n ≥ 1 and x ∈ RN ,

we denote

mn(x) = m(un, B(x, 1)) =
1

LN (B(0, 1))

∫
B(x,1)

un(y) dy.

By the Poincaré inequality, there exists C0 > 0 such that∫
B(x,1)

|un(y)−mn(x)|2 dy ≤ C0

∫
B(x,1)

|∇un(y)|2 dy.
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From (b) and the Poincaré inequality it follows that

(3.32) sup
x∈RN

‖un −mn(x)‖L2(B(x,1)) −→ 0 as n −→∞.

Let H be as in Lemma 3.1(iii). From (3.12) and (b), we get
(3.33)

sup
x∈RN

‖H(un)‖2L2(B(x,1)) ≤ sup
x∈RN

9

∫
B(x,1)

Ä
ϕ2(|1 + un(y)|)− 1

ä2
dy −→ 0

as n −→∞. It is obvious that H is Lipschitz on C. Using (3.32), we find

(3.34)

sup
x∈RN

‖H(un)−H(mn(x))‖L2(B(x,1)) ≤ C1 sup
x∈RN

‖un −mn(x)‖L2(B(x,1)) −→ 0

as n−→∞. From (3.33) and (3.34) we infer that

sup
x∈RN

‖H(mn(x))‖L2(B(x,1)) −→ 0 as n −→∞.

Since ‖H(mn(x))‖L2(B(x,1)) =
Ä
LN (B(0, 1))

ä 1
2 |H(mn(x))|, we have proved

that

(3.35) lim
n→∞

sup
x∈RN

|H(mn(x))| = 0.

Let
(3.36)

hn = max

ÑÇ
sup
x∈RN

‖un −mn(x)‖L2(B(x,1))

å 1
N+2

,

Ç
sup
x∈RN

|H(mn(x))|
å 1
N

é
.

From (3.32) and (3.35) it follows that hn −→ 0 as n −→ ∞. Thus we may

assume that 0 < hn < 1 for any n. (If hn = 0, we see that un is constant a.e.

and there is nothing to prove.)

Let vn be a minimizer ofGun
hn,RN . (Such minimizers exist by Lemma 3.1(i).)

It follows from Lemma 3.1(iii) that vn satisfies (3.5).

Step 2. We prove that there exist RN > 0 and C > 0, independent on n,

such that

(3.37) ‖∆vn‖LN (B(x,RN )) ≤ C for any x ∈ RN and n ∈ N∗.

Clearly, it suffices to prove (3.37) for x = 0. Let mn = mn(0). Then (3.5) can

be written as

(3.38) −∆vn +
1

h2
n

ϕ′(|vn −mn|2)(vn −mn) = fn,

where

fn = − (H(vn)−H(mn))−H(mn)(3.39)

+
1

h2
n

Ä
ϕ′(|vn −mn|2)(vn −mn)− ϕ′(|vn − un|2)(vn − un)

ä
.
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In view of Lemma 3.1(iii), equality (3.38) holds in Lploc(R
N ) (and not only in

D′(RN )).

The function z 7−→ ϕ′(|z|2)z belongs to C∞c (C), and consequently it is

Lipschitz. Using (3.36), we see that there exists C2 > 0 such that

‖ϕ′(|vn −mn|2)(vn −mn)− ϕ′(|vn − un|2)(vn − un)‖L2(B(0,1))(3.40)

≤ C2‖un −mn‖L2(B(0,1)) ≤ C2h
N+2
n .

By (3.36), we also have

‖H(mn)‖L2(B(0,1)) =
Ä
LN (B(0, 1)

ä 1
2 |H(mn)| ≤

Ä
LN (B(0, 1))

ä 1
2 hNn .

From this estimate, (3.39), (3.40) and the fact that H is Lipschitz, we get

(3.41) ‖fn‖L2(B(0,R)) ≤ C3‖vn−mn‖L2(B(0,R)) +C4h
N
n for any R ∈ (0, 1].

Let χ ∈ C∞c (RN ,R). Taking the scalar product (in C) of (3.38) by the function

χ(x)(vn(x)−mn) and integrating by parts, we find

∫
RN

χ|∇vn|2 dx+
1

h2
n

∫
RN

χϕ′(|vn −mn|2)|vn −mn|2 dx(3.42)

=
1

2

∫
RN

(∆χ)|vn −mn|2 dx+

∫
RN
〈fn(x), vn(x)−mn〉χ(x) dx.

From (3.2), we have ‖vn − un‖L2(RN ) ≤ C5h
2
N
n ; thus,

(3.43) ‖vn−mn‖L2(B(0,1)) ≤ ‖vn−un‖L2(B(0,1))+‖un−mn‖L2(B(0,1)) ≤ K0h
2
N
n .

We prove that

(3.44) ‖vn −mn‖L2(B(0, 1

2j−1 )) ≤ Kjh
2j
N
n for 1 ≤ j ≤

ñ
N2

2

ô
+ 1,

where Kj does not depend on n. We proceed by induction. From (3.43) it

follows that (3.44) is true for j = 1.

Assume that (3.44) holds for some j ∈ N∗, j ≤
î
N2

2

ó
. Let χj ∈ C∞c (RN )

be a real-valued function such that 0 ≤ χj ≤ 1, supp(χj) ⊂ B(0, 1
2j−1 ) and
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χj = 1 on B(0, 1
2j

). Replacing χ by χj in (3.42) and then using the Cauchy-

Schwarz inequality and (3.41), we find

∫
B(0, 1

2j
)
|∇vn|2 dx+

1

h2
n

∫
B(0, 1

2j
)
ϕ′(|vn −mn|2)|vn −mn|2 dx

(3.45)

≤ 1

2
‖∆χj‖L∞(RN )‖vn −mn‖2L2(B(0, 1

2j−1 ))

+ ‖fn‖L2(B(0, 1

2j−1 ))‖vn −mn‖L2(B(0, 1

2j−1 ))

≤ Aj‖vn −mn‖2L2(B(0, 1

2j−1 ))
+ C4h

N
n ‖vn −mn‖L2(B(0, 1

2j−1 )) ≤ A′jh
4j
N
n .

From (3.44) and (3.45) we infer that ‖vn −mn‖H1(B(0, 1

2j
)) ≤ Bjh

2j
N
n . Then the

Sobolev embedding implies

(3.46) ‖vn −mn‖L2∗ (B(0, 1

2j
)) ≤ Djh

2j
N
n .

The function z 7−→ ϕ(|z|2) is clearly Lipschitz on C; thus, we have∫
B(0,1)

|ϕ(|vn − un|2)− ϕ(|vn −mn|2)| dx ≤ C ′6
∫
B(0,1)

|un −mn| dx

≤ C6‖un −mn‖L2(B(0,1)) ≤ C6h
N+2
n .

It is clear that
∫
B(0,1) ϕ(|vn − un|2) dx ≤ h2

nG
un
hn,RN (vn) ≤ h2

nEGL(un) ≤ h2
nM

and we obtain

(3.47)

∫
B(0,1)

ϕ(|vn −mn|2) dx ≤ C7h
2
n.

If |vn(x)−mn| ≥
√

2, we have ϕ(|vn(x)−mn|2) ≥ 2; hence,

(3.48)

LN ({x ∈ B(0, 1) | |vn(x)−mn| ≥
√

2}) ≤ 1

2

∫
B(0,1)

ϕ
Ä
|vn −mn|2

ä
dx ≤ C7

2
h2
n.

By Hölder’s inequality, (3.46) and (3.48), we have

∫
{|vn−mn|≥

√
2}∩B(0, 1

2j
)
|vn −mn|2 dx

(3.49)

≤ ‖vn −mn‖2L2∗ (B(0, 1

2j
))

Ä
LN ({x ∈ B(0, 1) | |vn(x)−mn| ≥

√
2})
ä1− 2

2∗

≤
Å
Djh

2j
N
n

ã2 Ä
C7h

2
n

ä1− 2
2∗ ≤ Ejh

4j+4
N

n .
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From (3.45) it follows that

∫
{|vn−mn|<

√
2}∩B(0, 1

2j
)
|vn −mn|2 dx ≤

∫
B(0, 1

2j
)
ϕ′(|vn −mn|2)|vn −mn|2 dx

(3.50)

≤ A′jh
2+ 4j

N
n ≤ A′jh

4j+4
N

n .

Then (3.49) and (3.50) imply that (3.44) holds for j + 1 and the induction is

complete. Thus (3.44) is established. Denoting jN =
î
N2

2

ó
+1 and RN = 1

2jN−1 ,

we have proved that

(3.51) ‖vn −mn‖L2(B(0,RN )) ≤ KjNh
2jN
N
n ≤ KjNh

N
n .

It follows that∫
B(0,RN )

∣∣∣∣ 1

h2
n

ϕ′(|vn −mn|2)(vn −mn)

∣∣∣∣N dx(3.52)

≤ 1

h2N
n

sup
z∈C

∣∣∣ϕ′ Ä|z|2ä z∣∣∣N−2
∫
B(0,RN )

|vn −mn|2 dx ≤ C8.

Arguing as in (3.40) and using (3.36), we get

‖ϕ′(|vn −mn|2)(vn −mn)− ϕ′(|vn − un|2)(vn − un)‖NLN (B(0,1))(3.53)

≤ C9 sup
z∈C

∣∣∣ϕ′ Ä|z|2ä z∣∣∣N−2‖un −mn‖2L2(B(0,1)) ≤ C10h
2N+4
n .

From (3.39), (3.53) and the fact that H is bounded on C, it follows that

‖fn‖LN (B(0,RN )) ≤ C11, where C11 is independent of n. Using this estimate,

(3.52) and (3.38), we infer that (3.37) holds.

Since any ball of radius 1 can be covered by a finite number of balls of

radius RN , it follows that there exists C > 0 such that

(3.54) ‖∆vn‖LN (B(x,1)) ≤ C for any x ∈ RN and n ∈ N∗.

Step 3. The functions vn are uniformly Hölder continuous. We will use

(3.18) and (3.54) to prove that there exist R̃N ∈ (0, 1] and C > 0 such that

(3.55) ‖vn −mn(x)‖W 2,N (B(x,R̃N )) ≤ C for any x ∈ RN and n ∈ N∗.

As previously, it suffices to prove (3.55) for x0 = 0. From (3.54) and Hölder’s

inequality it follows that for 1 ≤ p ≤ N , we have

(3.56) ‖∆vn‖Lp(B(x,1)) ≤
Ä
LN (B(0, 1))

ä 1
p
− 1
N ‖∆vn‖LN (B(x,1)) ≤ C(p).

Using (3.43), (3.56) with p = 2 and (3.18), we obtain

(3.57) ‖vn −mn(0)‖W 2,2(B(x, 1
2

)) ≤ C.
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If 1
2 − 2

N ≤ 1
N , then (3.57) and the Sobolev embedding give

‖vn −mn(0)‖LN (B(x, 1
2

)) ≤ C.

This estimate, together with (3.54) and (3.18), implies that (3.55) holds for

R̃N = 1
4 .

If 1
2 − 2

N > 1
N , from (3.57) and the Sobolev embedding we find

‖vn −mn(0)‖Lp1 (B(x, 1
2

)) ≤ C,

where 1
p1

= 1
2 − 2

N . This estimate, (3.56) and (3.18) imply

‖vn −mn(0)‖W 2,p1 (B(x, 1
4

)) ≤ C.

If 1
p1
− 2

N ≤ 1
N , from the Sobolev embedding we obtain ‖vn−mn(0)‖LN (B(x, 1

4
))

≤ C. Then using (3.54) and (3.18), we infer that (3.55) holds for R̃N = 1
8 .

Otherwise we repeat the above argument. After a finite number of steps we

see that (3.55) holds.

Next we proceed as in the proof of Lemma 3.1(iv). By (3.23) and (3.55)

we have for p ∈ [2,∞) and any x0 ∈ RN ,

‖∇vn −m(∇vn, B(x0,
1

2
R̃N ))‖Lp(B(x0,

1
2
R̃N ))(3.58)

≤ C‖∇vn‖
2
p

L2(B(x0,R̃N ))
‖∇2vn‖

1− 2
p

LN (B(x0,R̃N ))
≤ C1(p).

Arguing as in (3.25), we see ‖m(∇vn, B(x0,
1
2R̃N ))‖Lp(B(x0,

1
2
R̃N )) is bounded

independently on n and hence

‖∇vn‖Lp(B(x0,
1
2
R̃N )) ≤ C2(p) for any n ∈ N∗ and x0 ∈ RN .

Using this estimate for p = 2N together with the Morrey inequality (3.27), we

see that there exists C∗ > 0 such that for any x, y ∈ RN with |x − y| ≤ R̃N
2

and any n ∈ N∗, we have

(3.59) |vn(x)− vn(y)| ≤ C∗|x− y|
1
2 .

Step 4. Conclusion. Let δn = ‖ |vn + 1| − 1‖L∞(RN ), and choose xn ∈ RN

such that
∣∣∣ |vn(xn)+1|−1

∣∣∣≥ δn
2 . From (3.59) it follows that

∣∣∣ |vn(x)+1|−1
∣∣∣≥ δn

4

for all x ∈ B(xn, rn), where

rn = min

Ç
R̃N
2
,

Å
δn

4C∗

ã2å
.
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Then we have

∫
B(xn,1)

Ä
ϕ2(|1 + vn(y)|)− 1

ä2
dy ≥

∫
B(xn,rn)

Ä
ϕ2(|1 + vn(y)|)− 1

ä2
dy

(3.60)

≥
∫
B(xn,rn)

η

Å
δn
4

ã
dy = LN (B(0, 1))η

Å
δn
4

ã
rNn ,

where η is as in (3.30).

On the other hand, the function z 7−→ (
ϕ2(|1 + z|)− 1

)2
is Lipschitz on C.

Using this fact, the Cauchy-Schwarz inequality, (3.2) and assumption (a), we

get ∫
B(x,1)

∣∣∣∣ Äϕ2(|1 + vn(y)|)− 1
ä2 − Äϕ2(|1 + un(y)|)− 1

ä2 ∣∣∣∣ dy
≤ C

∫
B(x,1)

|vn(y)− un(y)| dy ≤ C ′‖vn − un‖L2(B(x,1))

≤ C ′‖vn − un‖L2(RN ) ≤ C ′′h
2
N
n .

Then using assumption (b), we infer that

(3.61) sup
x∈RN

∫
B(x,1)

Ä
ϕ2(|1 + vn(y)|)− 1

ä2
dy −→ 0 as n −→∞.

From (3.60) and (3.61) we get limn→∞η
Ä
δn
4

ä
rNn = 0, and this clearly

implies limn→∞ δn = 0. Lemma 3.2 is thus proven. �

The next result is based on Lemma 3.1 and will be very useful in the next

sections to prove the “concentration” of minimizing sequences. For 0<R1<R2,

we denote ΩR1,R2 = B(0, R2) \B(0, R1).

Lemma 3.3. Let A > A3 > A2 > 1. There exist ε0 = ε0(N,A,A2, A3) > 0

and Ci = Ci(N,A,A2, A3) > 0 such that for any R ≥ 1, ε ∈ (0, ε0) and u ∈ X
verifying E

ΩR,AR
GL (u) ≤ ε, there exist two functions u1, u2 ∈ X and a constant

θ0 ∈ [0, 2π) satisfying the following properties :

(i) supp(u1) ⊂ B(0, A2R) and 1 + u1 = e−iθ0(1 + u) on B(0, R);

(ii) u2 = u on RN \B(0, AR) and 1 + u2 = eiθ0 = constant on B(0, A3R);

(iii)

∫
RN

∣∣∣ ∣∣∣ ∂u
∂xj

∣∣∣2 − ∣∣∣∂u1

∂xj

∣∣∣2 − ∣∣∣∂u2

∂xj

∣∣∣2 ∣∣∣ dx ≤ C1ε for j = 1, . . . , N ;

(iv)

∫
RN

∣∣∣ Äϕ2(|1+u|)−1
ä2−Äϕ2(|1+u1|)−1

ä2 − Äϕ2(|1+u2|)−1
ä2 ∣∣∣ dx ≤ C2ε;

(v) |Q(u)−Q(u1)−Q(u2)| ≤ C3ε;



TRAVELING WAVES FOR NONLINEAR SCHRÖDINGER EQUATIONS 139

(vi) If assumptions (A1) and (A2) in the introduction hold, then∫
RN

∣∣∣∣V (|1 +u|2)−V (|1 +u1|2)−V (|1 +u2|2)

∣∣∣∣ dx ≤ C4ε+C5

√
ε (EGL(u))

2∗−1
2 .

Proof. Fix k > 0, A1 and A4 such that 1 + 4k < A1 < A2 < A3 <

A4 < A − 4k. Let h = 1 and δ = 1
2 . We will prove that Lemma 3.3 holds for

ε0 = K(N,h = 1, δ = 1
2 , k), where K(N,h, δ,R) is as in Lemma 3.1(iv).

Fix two functions η1, η2 ∈ C∞(R) satisfying the following properties:

η1 = 1 on (−∞, A1], η1 = 0 on [A2,∞), η1 is nonincreasing;

η2 = 0 on (−∞, A3], η2 = 1 on [A4,∞), η2 is nondecreasing.

Let ε < ε0, and let u ∈ X be such that E
ΩR,AR
GL (u) ≤ ε. Let v1 be a

minimizer of Gu1,ΩR,AR in the space H1
u(ΩR,AR). The existence of v1 is guaran-

teed by Lemma 3.1. We have v1 = u on RN \ ΩR,AR. By Lemma 3.1(iii), we

know that v1 ∈W 2,p
loc (ΩR,AR) for any p ∈ [1,∞). Moreover, since E

ΩR,AR
GL (u) ≤

K(N, 1, r02 , k), Lemma 3.1(iv) implies that

(3.62)
1

2
< |1 + v1(x)| < 3

2
if R+ 4k ≤ |x| ≤ AR− 4k.

Since N ≥ 3, ΩA1R,A4R is simply connected, and it follows directly from

Theorem 3 in [10, p. 38] that there exist two real-valued functions ρ, θ ∈
W 2,p(ΩA1R,A4R), 1 ≤ p <∞, such that

(3.63) 1 + v1(x) = ρ(x)eiθ(x) in ΩA1R,A4R.

For j = 1, . . . , N , we have

(3.64)
∂v1

∂xj
=

Ç
∂ρ

∂xj
+ iρ

∂θ

∂xj

å
eiθ and

∣∣∣∣∂v1

∂xj

∣∣∣∣2 =

∣∣∣∣ ∂ρ∂xj
∣∣∣∣2 + ρ2

∣∣∣∣ ∂θ∂xj
∣∣∣∣2

a.e. in ΩA1R,A4R. Thus we get the following estimates:∫
ΩA1R,A4R

|∇ρ|2 dx ≤
∫

ΩA1R,A4R

|∇v1|2 dx ≤ ε,(3.65)

1

2

∫
ΩA1R,A4R

Ä
ρ2 − 1

ä2
dx ≤ EΩA1R,A4R

GL (v1) ≤ ε,(3.66) ∫
ΩA1R,A4R

|∇θ|2 dx ≤ 4

∫
ΩA1R,A4R

|∇v1|2 dx ≤ 4ε.(3.67)

The Poincaré inequality and a scaling argument imply that

(3.68)∫
ΩA1R,A4R

|f −m(f,ΩA1R,A4R)|2 dx ≤ C(N,A1, A4)R2
∫

ΩA1R,A4R

|∇f |2 dx

for any f ∈ H1(ΩA1R,A4R), where C(N,A1, A4) does not depend on R. Let

θ0 = m(θ,ΩA1R,A4R). We may assume that θ0 ∈ [0, 2π). (Otherwise we replace
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θ by θ − 2π
î
θ0
2π

ó
.) Using (3.67) and (3.68), we get

∫
ΩA1R,A4R

|θ − θ0|2 dx ≤ C(N,A1, A4)R2
∫

ΩA1R,A4R

|∇v1|2 dx(3.69)

≤ C(N,A1, A4)R2ε.

We define ũ1 and u2 by

ũ1(x) =



u(x) if x ∈ B(0, R),

v1(x) if x ∈ B(0, A1R) \B(0, R),(
1 + η1

(
|x|
R

)
(ρ(x)− 1)

)
e
i
Ä
θ0+η1

Ä
|x|
R

ä
(θ(x)−θ0)

ä
− 1

if x ∈ B(0, A4R) \B(0, A1R),

eiθ0 − 1 if x ∈ RN \B(0, A4R),

(3.70)

u2(x) =



eiθ0 − 1 if x ∈ B(0, A1R),(
1 + η2

(
|x|
R

)
(ρ(x)− 1)

)
e
i
Ä
θ0+η2

Ä
|x|
R

ä
(θ(x)−θ0)

ä
− 1

if x ∈ B(0, A4R) \B(0, A1R),

v1(x) if x ∈ B(0, AR) \B(0, A4R),

u(x) if x ∈ RN \B(0, AR).

(3.71)

Then we define u1 in such a way that 1 + u1 = e−iθ0(1 + ũ1). Since u ∈ X and

u− v1 ∈ H1
0 (ΩR,AR), it is clear that u1 ∈ H1(RN ), u2 ∈ X and (i), (ii) hold.

Since ρ+ 1 ≥ 3
2 on ΩA1R,A4R, from (3.66) we get

(3.72) ‖ρ− 1‖2L2(ΩA1R,A4R
) ≤

8

9
ε.

Obviously,

∇
Ç

1 + ηi(
|x|
R

)(ρ(x)− 1)

å
=

1

R
η′i(
|x|
R

)(ρ(x)− 1)
x

|x| + ηi(
|x|
R

)∇ρ.

Using (3.65), (3.72) and the fact that R ≥ 1, we get

‖∇
Ç

1 + ηi(
|x|
R

)(ρ(x)− 1)

å
‖L2(ΩA1R,A4R

)

(3.73)

≤ 1

R
sup |η′i| · ‖ρ− 1‖L2(ΩA1R,A4R

) + ‖ηi(
| · |
R

)∇ρ‖L2(ΩA1R,A4R
) ≤ C

√
ε.
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Similarly, using (3.67) and (3.69), we find

∥∥∥∥∥∇
Ç
θ0 + ηi(

|x|
R

)(θ(x)− θ0)

å∥∥∥∥∥
L2(ΩA1R,A4R

)

(3.74)

≤ 1

R
sup |η′i| · ‖θ − θ0‖L2(ΩA1R,A4R

) +

∥∥∥∥∥ηi
Ç | · |
R

å
∇θ
∥∥∥∥∥
L2(ΩA1R,A4R

)

≤ C√ε.

From (3.73), (3.74) and the definition of u1, u2 it follows that ‖∇ui‖L2(ΩA1R,A4R
)

≤ C√ε for i = 1, 2. Therefore∫
RN

∣∣∣∣ ∣∣∣∣ ∂u∂xj
∣∣∣∣2 − ∣∣∣∣∂u1

∂xj

∣∣∣∣2 − ∣∣∣∣∂u2

∂xj

∣∣∣∣2 ∣∣∣∣ dx =

∫
ΩR,AR

∣∣∣∣ ∣∣∣∣ ∂u∂xj
∣∣∣∣2 − ∣∣∣∣∂u1

∂xj

∣∣∣∣2 − ∣∣∣∣∂u2

∂xj

∣∣∣∣2 ∣∣∣∣ dx
≤
∫

ΩR,A1R
∪ΩA4R,AR

∣∣∣∣ ∂u∂xj
∣∣∣∣2 +

∣∣∣∣∂v1

∂xj

∣∣∣∣2dx
+

∫
ΩA1R,A4R

∣∣∣∣ ∂u∂xj
∣∣∣∣2 +

∣∣∣∣∂u1

∂xj

∣∣∣∣2 +

∣∣∣∣∂u2

∂xj

∣∣∣∣2 dx ≤ C1ε

and (iii) is proven.

On ΩA1R,A4R, we have ρ ∈ [1
2 ,

3
2 ]; hence ϕ

(
1 + ηi

(
|x|
R

)
(ρ(x)− 1)

)
= 1 +

ηi
(
|x|
R

)
(ρ(x)− 1) andÇ

ϕ2

Ç
1+ ηi

Ç |x|
R

å
(ρ(x)− 1)

å
− 1

å2

(3.75)

= (ρ(x)− 1)2η2
i

Ç |x|
R

åÇ
2+ ηi

Ç |x|
R

å
(ρ(x)− 1)

å2

≤ 25

4
(ρ(x)− 1)2 ≤ 25

8
|ρ(x)− 1|.

From (3.70)−(3.72) and (3.75), it follows that ‖ϕ2(|1 +ui|)− 1‖L2(ΩA1R,A4R
) ≤

C
√
ε. As above, we get∫
RN

∣∣∣∣ Äϕ2(|1 + u|)− 1
ä2 − Äϕ2(|1 + u1|)− 1

ä2 − Äϕ2(|1 + u2|)− 1
ä2 ∣∣∣∣ dx

≤
∫

ΩR,A1R
∪ΩA4R,AR

Ä
ϕ2(|1 + u|)− 1

ä2
+
Ä
ϕ2(|1 + v1|)− 1

ä2
dx

+

∫
ΩA1R,A4R

Ä
ϕ2(|1 + u|)− 1

ä2
+
Ä
ϕ2(|1 + u1|)− 1

ä2
+
Ä
ϕ2(|1 + u2|)− 1

ä2
dx ≤ C2ε.

This proves (iv).
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Next we prove (v). Since 〈i∂ũ1∂x1
, ũ1〉 has compact support, a simple com-

putation gives

Q(u1) = L

Å≠
i
∂u1

∂x1
, u1

∑ã
(3.76)

= L

Å≠
ie−iθ0

∂ũ1

∂x1
, e−iθ0 − 1 + e−iθ0 ũ1

∑ã
=

∫
RN

≠
i
∂ũ1

∂x1
, ũ1

∑
dx.

From the definition of ũ1 and u2 and the fact that u = v1 on RN \ ΩR,AR, we

get≠
i
∂v1

∂x1
, v1

∑
−
≠
i
∂ũ1

∂x1
, ũ1

∑
−
≠
i
∂u2

∂x1
, u2

∑
= 0 a.e. on RN \ ΩA1R,A4R.

Using this identity, Definition 2.4, (3.76), then (2.3) and (3.70), (3.71), we

obtain

Q(v1)−Q(u1)−Q(u2)

(3.77)

=

∫
ΩA1R,A4R

≠
i
∂v1

∂x1
, v1

∑
−
≠
i
∂ũ1

∂x1
, ũ1

∑
−
≠
i
∂u2

∂x1
, u2

∑
dx

=

∫
ΩA1R,A4R

Im

Å
∂v1

∂x1
− ∂ũ1

∂x1
− ∂u2

∂x1

ã
dx−

∫
ΩA1R,A4R

(ρ2 − 1)
∂θ

∂x1
dx

+

∫
ΩA1R,A4R

2∑
i=1

(Ç
1 + ηi(

|x|
R

)(ρ− 1)

å2

− 1

)
∂

∂x1

Ç
θ0 + ηi(

|x|
R

)(θ − θ0)

å
dx

−
∫

ΩA1R,A4R

∂θ

∂x1
−

2∑
i=1

∂

∂x1

Ç
θ0 + ηi(

|x|
R

)(θ(x)− θ0)

å
dx.

The functions v1− ũ1− u2 and θ∗ = θ−∑2
i=1

(
θ0 + ηi(

|x|
R )(θ(x)− θ0)

)
belong

to C1(ΩR,AR) and v1 − ũ1 − u2 = 1 − eiθ0 = const., θ∗ = −θ0 = const. on

ΩR,AR \ ΩA1R,A4R. Therefore,

(3.78)∫
ΩA1R,A4R

∂

∂x1
(Im(v1 − ũ1 − u2)) dx = 0 and

∫
ΩA1R,A4R

∂θ∗

∂x1
dx = 0.

Using (3.66), (3.67) and the Cauchy-Schwarz inequality, we have

(3.79)

∣∣∣∣ ∫
ΩA1R,A4R

(ρ2 − 1)
∂θ

∂x1
dx

∣∣∣∣ ≤ 2
√

2ε.

Similarly, from (3.72), (3.74), (3.75) and the Cauchy-Schwarz inequality, we

get

(3.80)∣∣∣∣ ∫
ΩA1R,A4R

(Ç
1 + ηi(

|x|
R

)(ρ− 1)

å2

− 1

)
∂

∂x1

Ç
θ0 + ηi(

|x|
R

)(θ − θ0)

å
dx

∣∣∣∣ ≤ Cε.
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From (3.77)−(3.80) we obtain |Q(v1) −Q(u1) −Q(u2)| ≤ Cε, and (3.4) gives

|Q(u)−Q(v1)| ≤ CEΩR,AR
GL (u) ≤ Cε. These estimates clearly imply (v).

It remains to prove (vi). Assume that assumptions (A1) and (A2) in the

introduction are satisfied, and let W (s) = V (s)−V (ϕ2(
√
s)) so that W (s) = 0

for s ∈ [0, 4]. It is not hard to see that there exists C > 0 such that

(3.81)

|W (b2)−W (a2)| ≤ C|b− a|
Ä
a2p0+11{a>2} + b2p0+11{b>2}

ä
for any a, b ≥ 0.

Using (1.7) and (3.81), then Hölder’s inequality, we obtain

∫
RN

∣∣∣∣V (|1 + u|2)− V (|1 + v1|2)

∣∣∣∣ dx
(3.82)

≤
∫

ΩR,AR

∣∣∣∣V (ϕ2(|1+u|))−V (ϕ2(|1+v1|))
∣∣∣∣

+

∣∣∣∣W (|1+u|2)−W (|1+v1|2)

∣∣∣∣dx
≤ C

∫
ΩR,AR

Ä
ϕ2(|1 + u|)− 1

ä2
+
Ä
ϕ2(|1 + v1|)− 1

ä2
dx

+ C

∫
ΩR,AR

∣∣∣∣ |1 + u| − |1 + v1|
∣∣∣∣ Ä|1 + u|2p0+11{|1+u|>2}

+|1 + v1|2p0+11{|1+v1|>2}
ä
dx

≤C ′ε+ C ′
∫

ΩR,AR

|u−v1|
Ä
|1+u|2∗−11{|1+u|>2} + |1+v1|2

∗−11{|1+v1|>2}
ä
dx

≤ C ′ε+ C ′‖u− v1‖L2∗ (ΩR,AR)

(
‖ |1 + u|1{|1+u|>2}‖2

∗−1
L2∗ (ΩR,AR)

+‖ |1 + v1|1{|1+v1|>2}‖2
∗−1
L2∗ (ΩR,AR)

)
.

From the Sobolev embedding, we have

‖u− v1‖L2∗ (RN ) ≤ CS‖∇(u− v1)‖L2(RN )(3.83)

≤ CS(‖∇u‖L2(ΩR,AR) + ‖∇v1‖L2(ΩR,AR)) ≤ 2CS
√
ε.

It is clear that |1 + u| > 2 implies |u| > 1 and |1 + u| < 2|u|; hence,

‖ |1 + u|1{|1+u|>2}‖L2∗ (ΩR,AR) ≤ 2‖u‖L2∗ (RN )(3.84)

≤ 2CS‖∇u‖L2(RN ) ≤ 2CS (EGL(u))
1
2 .

Obviously, a similar estimate holds for v1. Combining (3.82), (3.83) and (3.84),

we find

(3.85)

∫
ΩR,AR

∣∣∣∣V (|1 + u|2)− V (|1 + v1|2)

∣∣∣∣ dx ≤ C ′ε+ C ′′
√
ε (EGL(u))

2∗−1
2 .
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From (3.70) and (3.71) it follows that V (|1+v1|2)−V (|1+u1|2)−V (|1+u2|2) = 0

on RN \ΩA1R,A4R and |1 + v1|, |1 + u1|, |1 + u2| ∈
î

1
2 ,

3
2

ó
on ΩA1R,A4R. Then

using (1.7), (3.66), (3.75) and (3.72), we get

(3.86)

∫
ΩA1R,A4R

|V (|1 + v1|2)| dx ≤ C
∫

ΩA1R,A4R

(ρ2 − 1)2 dx ≤ Cε,

respectively

(3.87)∫
ΩA1R,A4R

|V (|1 + ui|2)| dx ≤ C
∫

ΩA1R,A4R

(Ç
1 + ηi(

|x|
R

)(ρ− 1)

å2

− 1

)2

dx ≤ Cε.

Therefore,

∫
RN

∣∣∣∣V (|1 + v1|2)− V (|1 + u1|2)− V (|1 + u2|2)

∣∣∣∣ dx
(3.88)

≤
∫

ΩA1R,A4R

|V (|1 + v1|2)|+ |V (|1 + u1|2)|+ |V (|1 + u2|2)| dx ≤ Cε.

Then (iv) follows from (3.85) and (3.88) and Lemma 3.3 is proven. �

4. The variational framework

The aim of this section is to study the properties of the functionals Ec,

A, Bc and Pc introduced in (1.10), (1.12), (1.13) and (1.14), respectively. We

assume throughout that assumptions (A1) and (A2) in the introduction are

satisfied. Let

C = {u ∈ X | u 6= 0, Pc(u) = 0}.
In particular, we will prove that C 6= ∅ and inf{Ec(u) | u ∈ C} > 0. This

will be done in a sequence of lemmas. In the next sections we show that Ec
admits a minimizer in C and this minimizer is a solution of (1.4).

We begin by proving that the above mentioned functionals are well defined

on X . Since we have already seen in Section 2 that Q is well defined on X , all

we have to do is to prove that V (|1 + u|2) ∈ L1(RN ) for any u ∈ X . This will

be done in the next lemma.

Lemma 4.1. For any u ∈ X , we have V (|1 + u|2) ∈ L1(RN ). Moreover,

for any δ > 0, there exist C1(δ), C2(δ) > 0 such that for any u ∈ X , we have

1− δ
2

∫
RN

Ä
ϕ2(|1 + u|)− 1

ä2
dx− C1(δ)‖∇u‖2∗L2(RN )(4.1)

≤
∫
RN

V (|1 + u|2) dx

≤ 1 + δ

2

∫
RN

Ä
ϕ2(|1 + u|)− 1

ä2
dx+ C2(δ)‖∇u‖2∗L2(RN ).
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Proof. Fix δ > 0. Using (1.6) we see that there exists β = β(δ) ∈ (0, 1]

such that

(4.2)
1− δ

2
(s− 1)2 ≤ V (s) ≤ 1 + δ

2
(s− 1)2 for any s ∈ ((1−β)2, (1 +β)2).

Let u ∈ X . If |u(x)| < β we have |1+u(x)|2 ∈ ((1−β)2, (1+β)2) and it follows

from (4.2) that V (|1 + u|2)1{|u|<β} ∈ L1(RN ) and

1− δ
2

∫
{|u|<β}

Ä
ϕ2(|1 + u|)− 1

ä2
dx ≤

∫
{|u|<β}

V (|1 + u|2) dx(4.3)

≤ 1 + δ

2

∫
{|u|<β}

Ä
ϕ2(|1 + u|)− 1

ä2
dx.

Assumption (A2) implies that there exists C ′1(δ) > 0 such that∣∣∣∣V (|1 + z|2)− 1− δ
2

(ϕ2(|1 + z|)− 1)2
∣∣∣∣ ≤ C ′1(δ)|z|2p0+2 ≤ C ′′1 (δ)|z|2∗

for any z ∈ C satisfying |z| ≥ β. Using the Sobolev embedding, we obtain∫
{|u|≥β}

∣∣∣∣V (|1 + u|2)− 1− δ
2

(ϕ2(|1 + u|)− 1)2
∣∣∣∣ dx(4.4)

≤ C ′′1 (δ)

∫
{|u|≥β}

|u|2∗ dx ≤ C ′′1 (δ)

∫
RN
|u|2∗ dx ≤ C1(δ)‖∇u‖2∗L2(RN ).

Consequently, V (|1 + u|2)1{|u|≥β} ∈ L1(RN ) and it follows from (4.3) and

(4.4) that the first inequality in (4.1) holds; the proof of the second inequality

is similar. �

Lemma 4.2. Let δ ∈ (0, 1) and let u ∈ X such that 1− δ ≤ |1 +u| ≤ 1 + δ

a.e. on RN . Then

|Q(u)| ≤ 1√
2(1− δ)

EGL(u).

Proof. From Lemma 2.1 we know that there are two real-valued functions

ρ, θ such that ρ − 1 ∈ H1(RN ), θ ∈ D1,2(RN ) and 1 + u = ρeiθ a.e. on RN .

Moreover, from (2.3) and Definition 2.4 we infer that

Q(u) = −
∫
RN

(ρ2 − 1)θx1 dx.

Using the Cauchy-Schwarz inequality, we obtain
√

2(1− δ)|Q(u)| ≤
√

2(1− δ)‖θx1‖L2(RN )‖ρ2 − 1‖L2(RN )

≤ (1− δ)2
∫
RN
|θx1 |2 dx+

1

2

∫
RN

Ä
ρ2 − 1

ä2
dx

≤
∫
RN

ρ2|∇θ|2 +
1

2

Ä
ρ2 − 1

ä2
dx ≤ EGL(u). �
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Lemma 4.3. Assume that 0 ≤ c < vs, and let ε ∈ (0, 1 − c
vs

). There

exists a constant K1 = K1(F,N, c, ε) > 0 such that for any u ∈ X satisfying

EGL(u) < K1, we have∫
RN
|∇u|2 dx+

∫
RN

V (|1 + u|2) dx− c|Q(u)| ≥ εEGL(u).

Proof. Fix ε1 such that ε < ε1 < 1 − c
vs

. Then fix δ1 ∈ (0, ε1 − ε). By

Lemma 4.1, there exists C1(δ1) > 0 such that for any u ∈ X , there holds

(4.5)∫
RN

V (|1 + u|2) dx ≥ 1− δ1

2

∫
RN

Ä
ϕ2(|1 + u|)− 1

ä2
dx− C1(δ1) (EGL(u))

2∗
2 .

Using (3.4) we see that there exists A > 0 such that for any w ∈ X with

EGL(w) ≤ 1, for any h ∈ (0, 1] and for any minimizer vh of Gw
h,RN in H1

w(RN ),

we have

(4.6) |Q(w)−Q(vh)| ≤ Ah 2
NEGL(w).

Choose h ∈ (0, 1] such that ε1−δ1−cAh
2
N > ε. (This choice is possible because

ε1 − δ1 − ε > 0.) Then fix δ > 0 such that c√
2(1−δ) < 1 − ε1. (Such δ exist

because ε1 < 1− c
vs

= 1− c√
2
.)

Let K = K(N,h, δ, 1) be as in Lemma 3.1(iv). Consider u ∈ X such

that EGL(u) ≤ min(K, 1). Let vh be a minimizer of Gu
h,RN in H1

u(RN ). The

existence of vh follows from Lemma 3.1(i). By Lemma 3.1(iv), we have 1− δ <
|1 + vh| < 1 + δ a.e. on RN . Then Lemma 4.2 implies

(4.7) c|Q(vh)| ≤ c√
2(1− δ)

EGL(vh) ≤ (1− ε1)EGL(vh) ≤ (1− ε1)EGL(u).

We have

∫
RN
|∇u|2 dx+

∫
RN

V (|1 + u|2) dx− c|Q(u)|
(4.8)

≥ (1− δ1)EGL(u)− C1(δ1) (EGL(u))
2∗
2 − c|Q(u)| by (4.5)

≥ (1− δ1)EGL(u)− C1(δ1) (EGL(u))
2∗
2 − c|Q(u)−Q(vh)| − c|Q(vh)|

≥ (1− δ1)EGL(u)− C1(δ1) (EGL(u))
2∗
2 − cAh 2

NEGL(u)− (1− ε1)EGL(u)

by (4.6) and (4.7)

=

Å
ε1 − δ1 − cAh

2
N − C1(δ1) (EGL(u))

2∗
2
−1
ã
EGL(u).

Note that (4.8) holds for any u ∈ X with EGL(u) ≤ min(K, 1). Since ε1 −
δ1 − cAh

2
N > ε, it is obvious that ε1 − δ1 − cAh

2
N − C1(δ1) (EGL(u))

2∗
2
−1 > ε

if EGL(u) is sufficiently small, and the conclusion of Lemma 4.3 follows. �
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An obvious consequence of Lemma 4.3 is that Ec(u) > 0 if u ∈ X \{0} and

EGL(u) is sufficiently small. The next lemma implies that there are functions

v ∈ X such that Ec(v) < 0.

Lemma 4.4. Let N ≥ 2. There exists a continuous map from [2,∞) to

H1(RN ), R 7−→ vR such that vR ∈ Cc(RN ) for any R ≥ 2, and the following

estimates hold :

(i)
∫
RN |∇vR|2 dx ≤ C1R

N−2 + C2R
N−2 lnR,

(ii)
∣∣∣ ∫RN V (|1 + vR|2) dx

∣∣∣ ≤ C3R
N−2,

(iii)
∣∣∣ ∫RN

(
ϕ2(|1 + vR|)− 1

)2
dx
∣∣∣ ≤ C4R

N−2,

(iv) −2πωN−1R
N−1 ≤ Q(vR) ≤ −2πωN−1(R− 2)N−1,

where the constants C1−C4 depend only on N and ωN−1 = LN−1(BRN−1(0, 1)).

Proof. Let

TR = {x = (x1, x
′) ∈ RN

∣∣∣ 0 ≤ |x′| ≤ R and −R+ |x′| < x1 < R− |x′|}.

We define θR : RN −→ R in the following way: if |x′| ≥ R, we put

θR(x) = 0 and if |x′| < R, we define

(4.9) θR(x) =


0 if x1 ≤ −R+ |x′|,

π
R−|x′|x1 + π if x ∈ TR,
2π if x1 ≥ R− |x′|.

It is easy to see that x 7−→ eiθR(x) is continuous on RN \{x | x1 = 0, |x′| = R}
and equals 1 on RN \ TR.

Fix ψ ∈ C∞(R) such that ψ = 0 on (−∞, 1], ψ = 1 on [2,∞) and

0 ≤ ψ′ ≤ 2. Let

(4.10) ψR(x) = ψ
(»

x2
1 + (|x′| −R)2

)
and vR(x) = ψR(x)eiθR(x) − 1.

It is obvious that vR ∈ Cc(RN ). (In fact, vR is C∞ on RN \ B, where B =

∂TR ∪ {(x1, 0, . . . , 0) | x1 ∈ [−R,R]}.) On RN \B, we have

∂θR
∂x1

=


π

R−|x′| if x ∈ TR,
0 otherwise ,

∂θR
∂xj

=


πx1

(R−|x′|)2
xj
|x′| if x ∈ TA,R,

0 otherwise,
(4.11)

∂ψR
∂x1

(x) = ψ′
(»

x2
1 + (|x′| −R)2

) x1»
x2

1 + (|x′| −R)2
,(4.12)

(4.13)
∂ψR
∂xj

(x) = ψ′
(»

x2
1 + (|x′| −R)2

) |x′| −R»
x2

1 + (|x′| −R)2

xj
|x′| for j ≥ 2 and x′ 6= 0.
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Then a simple computation gives 〈i∂vR∂x1
, vR〉 = −ψ2

R
∂θR
∂x1

+ ∂
∂x1

(Im(vR)) on

RN \B. Thus, we have

Q(vR) = −
∫
RN

ψ2
R

∂θR
∂x1

dx.

It is obvious that
(4.14)∫ ∞
−∞

∂θR
∂x1

dx1 = 0 if |x′| > R and

∫ ∞
−∞

∂θR
∂x1

dx1 = 2π if 0 < |x′| < R.

Since ∂θR
∂x1
≥ 0 a.e. on RN and 0 ≤ ψR ≤ 1, we get∫
{|R−|x′| |≥2}

∂θR
∂x1

dx ≤
∫
RN

ψ2
R

∂θR
∂x1

dx ≤
∫
RN

∂θR
∂x1

dx,

and using Fubini’s theorem and (4.14) we obtain that vR satisfies (iv).

Using cylindrical coordinates (x1, r, ζ) in RN , where r = |x′| and ζ =
x′

|x′| ∈ SN−2, we get

(4.15)∫
RN
V (|1 + vR|2) dx =

∣∣∣SN−2
∣∣∣ ∫ ∞
−∞

∫ ∞
0
V
(
ψ2
(»

x2
1 + (r −R)2

))
rN−2 dr dx1.

Next we use polar coordinates in the (x1, r) plane, that is we write x1 = τ cosα,

r = R + τ sinα (thus τ =
»
x2

1 + (R− r)2). Since V (ψ2(s)) = 0 for s ≥ 2, we

get ∫ ∞
−∞

∫ ∞
0
V
(
ψ2
(»
x2

1 +(r−R)2
))
rN−2dr dx1(4.16)

=

∫ 2

0

∫ 2π

0
V (ψ2(τ))(R+τ sinα)N−2τ dα dτ.

It is obvious that
∣∣∣ ∫ 2π

0 (R + τ sinα)N−2dα
∣∣∣ ≤ 2π(R + 2)N−2 for any τ ∈ [0, 2].

Then using (4.15) and (4.16), we infer that vR satisfies (ii). The proof of (iii)

is similar.

It is clear that on RN \B, we have

(4.17) |∇vR|2 = |∇ψR|2 + |ψR|2|∇θR|2.

From (4.12) and (4.13) we see that |∇ψR(x)|2 =
∣∣∣ψ′Ä»x2

1 + (|x′| −R)2
ä∣∣∣2.

Proceeding as above and using cylindrical coordinates (x1, r, ζ) in RN , then

passing to polar coordinates x1 = τ cosα, r = R+ τ sinα, we obtain

(4.18)∫
RN

∣∣∣∣ψ′ (»x2
1 + (|x′| −R)2

) ∣∣∣∣2 dx ≤ 2π|SN−2|(R+ 2)N−2
∫ 2

0
s|ψ′(s)|2 ds.

It is easily seen from (4.11) that |∇θR(x)|2 = π2

(R−|x′|)2
(
1 +

x21
(R−|x′|)2

)
if

x ∈ TR, |x′| 6= 0, and ∇θR(x) = 0 a.e. on RN \ TR. Moreover, if (x1, x
′) ∈ TR
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and |x′| ≥ R− 1√
2
, we have ψR(x1, x

′) = 0. Therefore,

∫
RN
|ψR|2|∇θR|2 dx ≤

∫
TR∩{|x′|<R− 1√

2
}
|∇θR|2 dx

(4.19)

=

∫
{|x′|<R− 1√

2
}

∫ R−|x′|

−R+|x′|
|∇θR|2 dx1 dx

′

=

∫
{|x′|<R− 1√

2
}

2π2

R− |x′| +
2π2

3

1

R− |x′| dx
′ =

8

3
π2|SN−2|

∫ R− 1√
2

0

rN−2

R− r dr

=
8

3
π2|SN−2|RN−2

(
−
N−2∑
k=1

1

k

Ç
1− 1

R
√

2

åk
+ ln

Ä
R
√

2
ä)
.

From (4.17), (4.18) and (4.19) it follows that vR satisfies (i). It is not hard

to see that the mapping R 7−→ vR is continuous from [2,∞) to H1(RN ) and

Lemma 4.4 is proven. �

Lemma 4.5. For any k > 0, the functional Q is bounded on the set

{u ∈ X | EGL(u) ≤ k}.
Proof. Let c ∈ (0, vs), and let ε ∈ (0, 1 − c

vs
). From Lemmas 4.1 and 4.3

it follows that there exist two positive constants C2( ε2) and K1 such that for

any u ∈ X satisfying EGL(u) < K1, we haveÅ
1 +

ε

2

ã
EGL(u) + C2

Å
ε

2

ã
(EGL(u))

2∗
2 − c|Q(u)|

≥
∫
RN
|∇u|2 dx+

∫
RN

V (|1 + u|2) dx− c|Q(u)| ≥ εEGL(u).

This inequality implies that there exists K2 ≤ K1 such that for any u ∈ X
satisfying EGL(u) ≤ K2, we have

(4.20) c|Q(u)| ≤ EGL(u).

Hence Lemma 4.5 is proven if k ≤ K2.

Now let u ∈ X be such that EGL(u) > K2. Using the notation (1.5), it is

clear that for σ > 0, we have Q(uσ,σ) = σN−1Q(u) (see (2.13)) and

EGL(uσ,σ) = σN−2
∫
RN
|∇u|2 dx+

σN

2

∫
RN

Ä
ϕ2(|1 + u|)− 1

ä2
dx.

Let σ0 =
(

K2
EGL(u)

) 1
N−2

. Then σ0∈(0, 1) and we have EGL(uσ0,σ0)≤σN−2
0 EGL(u)

= K2. Using (4.20) we infer that c|Q(uσ0,σ0)| ≤ EGL(uσ0,σ0), and this implies
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cσN−1
0 |Q(u)| ≤ σN−2

0 EGL(u), or equivalently

(4.21) |Q(u)| ≤ 1

cσ0
EGL(u) =

1

c
K
− 1
N−2

2 (EGL(u))
N−1
N−2 .

Since (4.21) holds for any u ∈ X with EGL(u) > K2, Lemma 4.5 is proven. �

From Lemma 4.1 and Lemma 4.5 it follows that for any k > 0, the func-

tional Ec is bounded on the set {u ∈ X | EGL(u) = k}. For k > 0, we define

Ec,min(k) = inf{Ec(u) | u ∈ X , EGL(u) = k}.
Clearly, the function Ec,min is bounded on any bounded interval of R+. The

next result gives some basic properties of Ec,min which will be important for

our variational argument.

Lemma 4.6. Assume that N ≥ 3 and 0 < c < vs. The function Ec,min

has the following properties :

(i) There exists k0 > 0 such that Ec,min(k) > 0 for any k ∈ (0, k0).

(ii) We have limk→∞Ec,min(k) = −∞.

(iii) For any k > 0, we have Ec,min(k) < k.

Proof. (i) is an easy consequence of Lemma 4.3.

(ii) It is obvious that H1(RN ) ⊂ X and the functionals EGL, Ec and Q

are continuous on H1(RN ). For ε = 1 and R > 2, consider the functions vR
constructed in Lemma 4.4. Clearly, R 7−→ vR is a continuous curve in H1(RN ).

Lemma 4.4 implies Ec(vR) −→ −∞ as R −→ ∞. From Lemma 4.5 we infer

that EGL(vR) −→∞ as R −→∞, and then it is not hard to see that (ii) holds.

(iii) Fix k > 0. Let vR be as above, and let u = vR for some R sufficiently

large, so that

EGL(u) > k, Q(u) < 0 and Ec(u) < 0.

In particular, we have

Ec(u)− EGL(u) = cQ(u) +

∫
RN

V (|1 + u|2)− 1

2

Ä
ϕ2(|1 + u|2)− 1

ä2
dx < 0.

It is obvious that EGL(uσ,σ) −→ 0 as σ −→ 0; hence there exists σ0 ∈ (0, 1)

such that EGL(uσ0,σ0) = k. Using the fact that EGL(u) − Ec(u) < 0 and

Q(u) < 0, we get

Ec(uσ0,σ0)− EGL(uσ0,σ0)

= σN−1
0 cQ(u) + σN0

∫
RN

V (|1 + u|2)− 1

2

Ä
ϕ2(|1 + u|2)− 1

ä2
dx

= (σN−1
0 − σN0 )cQ(u) + σN0 (Ec(u)− EGL(u)) < 0.

Thus Ec(uσ0,σ0) < EGL(uσ0,σ0). Since EGL(uσ0,σ0) = k, we necessarily have

Ec,min(k) ≤ Ec(uσ0,σ0) < k. �
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From Lemma 4.6(i) and (ii) it follows that

(4.22) 0 < Sc := sup{Ec,min(k) | k > 0} <∞.
Lemma 4.7. The set C = {u ∈ X | u 6= 0, Pc(u) = 0} is not empty, and

we have

Tc := inf{Ec(u) | u ∈ C} ≥ Sc > 0.

Proof. Let w ∈ X \ {0} be such that Ec(w) < 0. (We have seen in the

proof of Lemma 4.6 that such functions w exist.) It is obvious that A(w) > 0

and
∫
RN

∣∣∣∣ ∂w∂x1
∣∣∣∣2 dx > 0; therefore, Bc(w) = Ec(w) − A(w) < 0 and Pc(w) =

Ec(w)− 2
N−1A(w) < 0. Clearly,

(4.23)

Pc(wσ,1) =
1

σ

∫
RN

∣∣∣∣ ∂w∂x1

∣∣∣∣2 dx+
N − 3

N − 1
σA(w) + cQ(w) + σ

∫
RN

V (|1 + w|2) dx.

Since Pc(w1,1) = Pc(w) < 0 and limσ→0Pc(wσ,1) = ∞, there exists σ0 ∈ (0, 1)

such that Pc(wσ0,1) = 0; that is, wσ0,1 ∈ C. Thus C 6= ∅.
To prove the second part of Lemma 4.7, consider first the case N ≥ 4. Let

u ∈ C. It is clear that A(u) > 0, Bc(u) = −N−3
N−1A(u) < 0 and for any σ > 0,

we have Ec(u1,σ) = A(u1,σ) +Bc(u1,σ) = σN−3A(u) + σN−1Bc(u). Hence,

d

dσ
(Ec(u1,σ)) = (N − 3)σN−4A(u) + (N − 1)σN−2Bc(u)

is positive on (0, 1) and negative on (1,∞). Consequently the function σ 7−→
Ec(u1,σ) achieves its maximum at σ = 1.

On the other hand, we have

EGL(u1,σ) = σN−3A(u) + σN−1

Ç∫
RN

∣∣∣∣ ∂u∂x1

∣∣∣∣2 +
1

2

Ä
ϕ2(|1 + u|)− 1

ä2
dx

å
.

It is easy to see that the mapping σ 7−→ EGL(u1,σ) is strictly increasing and

one-to-one from (0,∞) to (0,∞). Hence for any k > 0, there is a unique

σ(k, u) > 0 such that EGL(u1,σ(k,u)) = k. Then we have

Ec,min(k) ≤ Ec(u1,σ(k,u)) ≤ Ec(u1,1) = Ec(u).

Since this is true for any k > 0 and any u ∈ C, the conclusion follows.

Next we consider the case N = 3. Let u ∈ C. We have Pc(u) = Bc(u) = 0

and Ec(u) = A(u) > 0. For σ > 0, we get

Ec(u1,σ) = A(u) + σ2Bc(u) = A(u)

and

EGL(u1,σ) = A(u) + σ2

Ç∫
R3

∣∣∣∣ ∂u∂x1

∣∣∣∣2 +
1

2

Ä
ϕ2(|1 + u|)− 1

ä2
dx

å
.
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Clearly, σ 7−→ EGL(u1,σ) is increasing on (0,∞) and is one-to-one from (0,∞)

to (A(u),∞).

Fix ε > 0. Consider kε > 0 such that Ec,min(kε) > Sc − ε. If A(u) ≥ kε,

from Lemma 4.6(iii) we have Ec,min(kε) < kε; hence,

Ec(u) = A(u) ≥ kε > Ec,min(kε) > Sc − ε.

If A(u) < kε, there exists σ(kε, u) > 0 such that EGL(u1,σ(kε,u)) = kε. Then

we get

Ec(u) = A(u) = Ec(u1,σ(kε,u)) ≥ Ec,min(kε) > Sc − ε.
So far we have proved that for any u ∈ C and any ε > 0, we have Ec(u) > Sc−ε.
The conclusion follows letting ε −→ 0, then taking the infimum for u ∈ C. �

We do not know whether Tc = Sc in Lemma 4.7.

Lemma 4.8. Let Tc be as in Lemma 4.7. The following assertions hold :

(i) For any u ∈ X with Pc(u) < 0, we have A(u) > N−1
2 Tc.

(ii) Let (un)n≥1 ⊂ X be a sequence such that (EGL(un))n≥1 is bounded and

limn→∞ Pc(un) = µ < 0. Then lim infn→∞A(un) > N−1
2 Tc.

Proof. (i) Since Pc(u)<0, it is clear that u 6=0 and thus
∫
RN

∣∣∣ ∂u∂x1 ∣∣∣2 dx >0.

As in the proof of Lemma 4.7, we have Pc(u1,1) = Pc(u) < 0, and (4.23)

implies that limσ→0 Pc(uσ,1) = ∞. Hence there exists σ0 ∈ (0, 1) such that

Pc(uσ0,1) = 0. From Lemma 4.7 we get Ec(uσ0,1) ≥ Tc, and this implies

Ec(uσ0,1)−Pc(uσ0,1) ≥ Tc; that is, 2
N−1A(uσ0,1) ≥ Tc. From the last inequality

we find

(4.24) A(u) ≥ N − 1

2

1

σ0
Tc >

N − 1

2
Tc.

(ii) For n sufficiently large (so that Pc(un) < 0), we have un 6= 0 and∫
RN

∣∣∣∂un∂x1

∣∣∣2 dx > 0. As in the proof of part (i), using (4.23) we see that for each

n sufficiently big, there exists σn ∈ (0, 1) such that

(4.25) Pc((un)σn,1) = 0,

and we infer that A(un) ≥ N−1
2

1
σn
Tc. We claim that

(4.26) lim sup
n→∞

σn < 1.

Notice that if (4.26) holds, we have

lim inf
n→∞

A(un) ≥ N − 1

2

1

lim supn→∞ σn
Tc >

N − 1

2
Tc

and Lemma 4.8 is proven.
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To prove (4.26) we argue by contradiction and assume that there is a

subsequence (σnk)k≥1 such that σnk −→ 1 as k −→∞. Since (EGL(un))n≥1 is

bounded, using Lemmas 4.1 and 4.5 we infer thatÇ∫
RN

∣∣∣∣∂un∂x1

∣∣∣∣2 dx
å
n≥1

,

Å∫
RN

V (|1 + un|2) dx

ã
n≥1

, (A(un))n≥1, (Q(un))n≥1

are bounded. Consequently, there is a subsequence (nk`)`≥1 and there are

α1, α2, β, γ ∈ R such that∫
RN

∣∣∣∣∂unk`∂x1

∣∣∣∣2 dx −→ α1,

∫
RN

V (|1 + unk` |
2) dx −→ γ,

A(unk` ) −→ α2, Q(unk` ) −→ β as ` −→∞.

Writing (4.25) and (4.23) (with (unk` )σnk` ,1
instead of (un)σn,1 and wσ,1, re-

spectively), then passing to the limit as ` −→ ∞ and using the fact that

σnk −→ 1, we find α1 + N−3
N−1α2 + cβ + γ = 0. On the other hand, we have

lim`→∞ Pc(unk` ) = µ < 0, and this gives α1 + N−3
N−1α2 + cβ + γ = µ < 0.

This contradiction proves that (4.26) holds, and the proof of Lemma 4.8 is

complete. �

5. The case N ≥ 4

Throughout this section we assume that N ≥ 4, 0 < c < vs and as-

sumptions (A1) and (A2) in the introduction are satisfied. Most of the results

below do not hold for c > vs. Some of them may not hold for c = 0 and some

particular nonlinearities F .

Lemma 5.1. Let (un)n≥1 ⊂ X be a sequence such that (Ec(un))n≥1 is

bounded and Pc(un) −→ 0 as n −→∞. Then (EGL(un))n≥1 is bounded.

Proof. We have 2
N−1A(un)=Ec(un)−Pc(un); hence (A(un))n≥1 is bounded.

It remains to prove that
∫
RN

∣∣∣∂un∂x1

∣∣∣+ 1
2

(
ϕ2(|1 + un|)− 1

)2
dx is bounded. We

argue by contradiction, and we assume that there is a subsequence, still de-

noted (un)n≥1, such that

(5.1)

∫
RN

∣∣∣∣∂un∂x1

∣∣∣∣+ 1

2

Ä
ϕ2(|1 + un|)− 1

ä2
dx −→∞ as n −→∞.

Fix k0 > 0 such that Ec,min(k0) > 0. Arguing as in the proof of Lemma 4.7, it

is easy to see that there exists a sequence (σn)n≥1 such that

(5.2)

EGL((un)1,σn)=σN−3
n A(un)+σN−1

n

∫
RN

∣∣∣∣∂un∂x1

∣∣∣∣+ 1

2

Ä
ϕ2(|1 + un|)− 1

ä2
dx=k0.
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From (5.1) and (5.2) we have σn−→0 as n−→∞. Since Bc(un)=−N−3
N−1A(un)

+ Pc(un), it is clear that (Bc(un))n≥1 is bounded and we obtain

Ec((un)1,σn) = σN−3
n A(un) + σN−1

n Bc(un) −→ 0 as n −→∞.

But this contradicts the fact that Ec,min(k0) > 0, and the proof of Lemma 5.1

is complete. �

Lemma 5.2. Let (un)n≥1 ⊂ X be a sequence satisfying the following prop-

erties :

(a) There exist C1, C2 > 0 such that C1 ≤ EGL(un) and A(un) ≤ C2 for

any n ≥ 1.

(b) Pc(un) −→ 0 as n −→∞.

Then lim infn→∞Ec(un) ≥ Tc, where Tc is as in Lemma 4.7.

Notice that in Lemma 5.2 the assumption EGL(un) ≥ C1 > 0 is necessary.

To see this, consider a sequence (un)n≥1 ⊂ H1(RN ) such that un 6= 0 and

un −→ 0 as n −→ ∞. It is clear that Pc(un) −→ 0 and Ec(un) −→ 0 as

n −→∞.

Proof. First we prove that

(5.3) C3 := lim inf
n→∞

A(un) > 0.

To see this, fix k0 > 0 such that Ec,min(k0) > 0. Exactly as in the proof of

Lemma 4.7, it is easy to see that for each n, there exists a unique σn > 0 such

that (5.2) holds. Since k0 = EGL((un)1,σn) ≥ min(σN−3
n , σN−1

n )EGL((un)) ≥
min(σN−3

n , σN−1
n )C1, it follows that (σn)n≥1 is bounded. On the other hand,

we have Ec((un)1,σn) = σN−3
n A(un) + σN−1

n Bc(un) ≥ Ec,min(k0) > 0; that is,

(5.4) σN−3
n A(un) + σN−1

n

Å
Pc(un)− N − 3

N − 1
A(un)

ã
≥ Ec,min(k0) > 0.

If there is a subsequence (unk)k≥1 such that A(unk) −→ 0, putting unk in (5.4)

and letting k −→ ∞ we would get 0 ≥ Ec,min(k0) > 0, a contradiction. Thus

(5.3) is proven.

We have Bc(un) = Pc(un)− N−3
N−1A(un), and using (b) and (5.3), we obtain

(5.5) lim sup
n→∞

Bc(un) = −N − 3

N − 1
C3 < 0.

Clearly, for any σ > 0, we have

Pc((un)1,σ) = σN−3N − 3

N − 1
A(un) + σN−1Bc(un)

= σN−3
Å
N − 3

N − 1
A(un) + σ2Bc(un)

ã
.
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For n sufficiently large (so that Bc(un) < 0), let σ̃n =

Å
N−3
N−1

A(un)

−Bc(un)

ã 1
2

. Then

Pc((un)1,σ̃n) = 0, or equivalently (un)1,σ̃n ∈ C. From Lemma 4.7, we obtain

Ec((un)1,σ̃n) = σ̃N−3
n A(un) + σ̃N−1

n Bc(un) ≥ Tc;
that is,

(5.6)

Ec(un) +
Ä
σ̃N−3
n − 1

ä
A(un) +

Ä
σ̃N−1
n − 1

ä Å
Pc(un)− N − 3

N − 1
A(un)

ã
≥ Tc.

Clearly, σ̃n can be written as σ̃n =
(
Pc(un)
−Bc(un) + 1

) 1
2
. Using (b) and (5.5) it

follows that limn→∞ σ̃n = 1. Then passing to the limit as n −→ ∞ in (5.6)

and using the fact that (A(un))n≥1 and (Pc(un))n≥1 are bounded, we obtain

lim infn→∞Ec(un) ≥ Tc. �

We can now state the main result of this section.

Theorem 5.3. Let (un)n≥1 ⊂ X \ {0} be a sequence such that

Pc(un) −→ 0 and Ec(un) −→ Tc as n −→∞.
There exist a subsequence (unk)k≥1, a sequence (xk)k≥1 ⊂ RN and u ∈ C such

that

∇unk(·+xk) −→ ∇u and |1 +unk(·+xk)| − 1 −→ |1 +u| − 1 in L2(RN ).

Moreover, we have Ec(u) = Tc; that is, u minimizes Ec in C.

Proof. From Lemma 5.1 we know that EGL(un) is bounded. We have
2

N−1A(un) = Ec(un)− Pc(un) −→ Tc as n −→∞. Therefore,

(5.7)

lim
n→∞

A(un) =
N − 1

2
Tc and lim inf

n→∞
EGL(un) ≥ lim

n→∞
A(un) =

N − 1

2
Tc.

Passing to a subsequence if necessary, we may assume that there exists α0 ≥
N−1

2 Tc such that

(5.8) EGL(un) −→ α0 as n −→∞.
We will use the concentration-compactness principle ([40]). We denote by

qn(t) the concentration function of EGL(un); that is,

(5.9) qn(t) = sup
y∈RN

∫
B(y,t)

ß
|∇un|2 +

1

2

Ä
ϕ2(|1 + un|)− 1

ä2™
dx.

As in [40], it follows that there exists a subsequence of ((un, qn))n≥1, still

denoted ((un, qn))n≥1, there exists a nondecreasing function q : [0,∞) −→ R

and there is α ∈ [0, α0] such that

(5.10)

qn(t) −→ q(t) a.e on [0,∞) as n −→∞ and q(t) −→ α as t −→∞.
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We claim that

(5.11)

there is a nondecreasing sequence tn −→∞ such that lim
n→∞

qn(tn) = α.

To prove the claim, fix an increasing sequence xk −→∞ such that qn(xk) −→
q(xk) as n −→ ∞ for any k. Then there exists nk ∈ N such that |qn(xk) −
q(xk)| < 1

k for any n ≥ nk; clearly, we may assume that nk < nk+1 for all k. If

nk ≤ n < nk+1, put tn = xk. Then for nk ≤ n < nk+1, we have

|qn(tn)−α| = |qn(xk)−α| ≤ |qn(xk)−q(xk)|+|q(xk)−α| ≤
1

k
+|q(xk)−α| −→ 0

as k −→∞, and (5.11) is proved.

Next we claim that

(5.12) qn(tn)− qn
Å
tn
2

ã
−→ 0 as n −→∞.

To see this, fix ε > 0. Take y > 0 such that q(y) > α − ε
4 and qn(y) −→ q(y)

as n −→ ∞. There is some ñ ≥ 1 such that qn(y) > α − ε
2 for n ≥ ñ.

Then we can find n∗ ≥ ñ such that tn > 2y for n ≥ n∗, and consequently

we have qn( tn2 ) ≥ qn(y) > α − ε
2 . Therefore lim supn→∞

(
qn(tn)− qn( tn2 )

)
=

limn→∞qn(tn)− lim infn→∞ qn( tn2 ) < ε. Since ε was arbitrary, (5.12) follows.

Our aim is to show that α = α0 in (5.10). It follows from the next lemma

that α > 0.

Lemma 5.4. Let (un)n≥1 ⊂ X be a sequence satisfying

(a) M1 ≤ EGL(un) ≤M2 for some positive constants M1, M2.

(b) limn→∞ Pc(un) = 0.

There exists k > 0 such that

sup
y∈RN

∫
B(y,1)

ß
|∇un|2 +

1

2

Ä
ϕ2(|1 + un|)− 1

ä2™
dx ≥ k

for all sufficiently large n.

Proof. We argue by contradiction, and we suppose that the conclusion is

false. Then there exists a subsequence (still denoted (un)n≥1) such that

(5.13) lim
n→∞

sup
y∈RN

∫
B(y,1)

ß
|∇un|2 +

1

2

Ä
ϕ2(|1 + un|)− 1

ä2™
dx = 0.

In order to get a contradiction, we proceed in four steps.

Step 1. We show that |E(un) − EGL(un)| −→ 0 as n −→ ∞. More

precisely, we prove that

(5.14) lim
n→∞

∫
RN

∣∣∣∣V (|1 + un|2)− 1

2

Ä
ϕ2(|1 + un|)− 1

ä2 ∣∣∣∣ dx = 0.
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Fix ε > 0. Assumptions (A1) and (A2) imply that there exists δ(ε) > 0 such

that

(5.15)

∣∣∣∣V (|1 + z|2)− 1

2

Ä
ϕ2(|1 + z|)− 1

ä2 ∣∣∣∣ ≤ ε

2

Ä
ϕ2(|1 + z|)− 1

ä2
for any z ∈ C satisfying

∣∣∣ |1 + z| − 1
∣∣∣ ≤ δ(ε) (see (4.2)). Therefore,∫

{| |1+un|−1|≤δ(ε)}

∣∣∣∣V (|1 + un|2)− 1

2

Ä
ϕ2(|1 + un|)− 1

ä2 ∣∣∣∣ dx(5.16)

≤ ε

2

∫
{| |1+un|−1|≤δ(ε)}

Ä
ϕ2(|1 + un|)− 1

ä2
dx ≤ εM2.

Assumption (A2) implies that there exists C(ε) > 0 such that

(5.17)

∣∣∣∣V (|1 + z|2)− 1

2

Ä
ϕ2(|1 + z|)− 1

ä2 ∣∣∣∣ ≤ C(ε)| |1 + z| − 1|2p0+2

for any z ∈ C verifying
∣∣∣ |1 + z| − 1

∣∣∣ ≥ δ(ε).
Let wn = | |1 + un| − 1|. It is clear that |wn| ≤ |un|. Using the in-

equality |∇|v| | ≤ |∇v| almost everywhere for v ∈ H1
loc(R

N ), we infer that

wn ∈ D1,2(RN ) and

(5.18)

∫
RN
|∇wn|2 dx ≤M2 for any n.

Using (5.17), Hölder’s inequality, the Sobolev embedding and (5.18) we

find ∫
{|1+un|−1|>δ(ε)}

∣∣∣∣V (|1 + un|2)− 1

2

Ä
ϕ2(|1 + un|)− 1

ä2 ∣∣∣∣ dx(5.19)

≤ C(ε)

∫
{wn>δ(ε)}

|wn|2p0+2 dx

≤ C(ε)

Ç∫
{wn>δ(ε)}

|wn|2
∗
dx

å 2p0+2

2∗ Ä
LN ({wn > δ(ε)})

ä1− 2p0+2

2∗

≤ C(ε)C2p0+2
S ‖∇wn‖2p0+2

L2(RN )

Ä
LN ({wn > δ(ε)})

ä1− 2p0+2

2∗

≤ C(ε)C2p0+2
S Mp0+1

2

Ä
LN ({wn > δ(ε)})

ä1− 2p0+2

2∗ .

We claim that for any δ > 0, we have

(5.20) lim
n→∞

LN ({wn > δ}) = 0.

To prove the claim, we argue by contradiction and we assume that there exist

δ0 > 0, a subsequence (wnk)k≥1 and γ > 0 such that LN ({wnk > δ0}) ≥ γ > 0

for any k ≥ 1. Since ‖∇wn‖L2(RN ) is bounded, using Lieb’s lemma (see Lemma

6 in [38, p. 447] or Lemma 2.2 in [12, p. 101]), we infer that there exists β > 0
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and yk ∈ RN such that LN
Ä
{wnk > δ0

2 } ∩B(yk, 1)
ä
≥ β. Let η be as in (3.30).

Then wnk(x) ≥ δ0
2 implies

(
ϕ2(|1 + unk(x)|)− 1

)2 ≥ η Ä δ02 ä > 0. Therefore,∫
B(yk,1)

Ä
ϕ2(|1 + unk(x)|)− 1

ä2
dx ≥ η

Å
δ0

2

ã
β > 0

for any k ≥ 1, and this clearly contradicts (5.13). Thus we have proved that

(5.20) holds.

From (5.16), (5.19) and (5.20) it follows that∫
RN

∣∣∣∣V (|1 + un|2)− 1

2

Ä
ϕ2(|1 + un|)− 1

ä2 ∣∣∣∣ dx ≤ 2εM2

for all sufficiently large n. Thus (5.14) holds and the proof of Step 1 is complete.

Step 2. We find a convenient scaling of un. From Lemma 5.2 we

know that lim infn→∞Ec(un) ≥ Tc. Combined with (b), this implies that

lim infn→∞
2

N−1A(un) ≥ Tc. Let σ0 =
√

2(N−1)
N−3 , and let ũn = (un)1,σ0 . It is

obvious that

(5.21) lim inf
n→∞

A(ũn) = σN−3
0 lim inf

n→∞
A(un) ≥ N − 1

2
σN−3

0 Tc.

Using assumption (a), (5.13) and (5.14) it is easy to see that

(5.22) there exist M̃1, M̃2 > 0 such that M̃1 ≤ EGL(ũn) ≤ M̃2 for any n,

(5.23) lim
n→∞

sup
y∈RN

∫
B(y,1)

ß
|∇ũn|2 +

1

2

Ä
ϕ2(|1 + ũn|)− 1

ä2™
dx = 0 and

(5.24) lim
n→∞

∫
RN

∣∣∣∣V (|1 + ũn|2)− 1

2

Ä
ϕ2(|1 + ũn|)− 1

ä2 ∣∣∣∣ dx = 0.

It is clear that Pc(un) = N−3
N−1σ

3−N
0 A(ũn) + σ1−N

0 Bc(ũn), and then assumption

(b) implies

(5.25) lim
n→∞

Å
N − 3

N − 1
σ2

0A(ũn) +Bc(ũn)

ã
= lim

n→∞
(A(ũn) + Ec(ũn)) = 0.

Step 3. Regularization of ũn. Using (5.22), (5.23) and Lemma 3.2 we

infer that there is a sequence hn −→ 0 and for each n, there exists a minimizer

vn of Gũn
hn,RN in H1

ũn(RN ) such that δn := ‖ |1 + vn| − 1‖L∞(RN ) −→ 0 as

n −→∞. Then using Lemma 4.2 and the fact that |c| < vs =
√

2, we obtain

(5.26) EGL(vn) + cQ(vn) ≥ 0 for all sufficiently large n.

From (5.22) and (3.4) we get

(5.27) |Q(ũn)−Q(vn)| ≤ C
Å
h2
n + h

4
N
n M̃

2
N

2

ã 1
2

M̃2 −→ 0 as n −→∞.
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Step 4. Conclusion. Since EGL(vn) ≤ EGL(ũn), it is clear that

Ec(ũn) = EGL(ũn)

+ cQ(ũn) +

∫
RN

ß
V (|1 + ũn|2)− 1

2

Ä
ϕ2(|1 + ũn|)− 1

ä2™
dx

≥ EGL(vn) + cQ(vn) + c(Q(ũn)−Q(vn))

−
∫
RN

∣∣∣∣V (|1 + ũn|2)− 1

2

Ä
ϕ2(|1 + ũn|)− 1

ä2 ∣∣∣∣ dx.
Using the last inequality and (5.24), (5.26), (5.27), we get lim infn→∞Ec(ũn)

≥ 0. Combined with (5.25), this gives lim supn→∞A(ũn) ≤ 0, which clearly

contradicts (5.21). This completes the proof of Lemma 5.4. �

Next we prove that we cannot have α ∈ (0, α0). To do this we argue again

by contradiction and we assume that 0 < α < α0. Let tn be as in (5.11), and let

Rn = tn
2 . For each n ≥ 1, fix yn ∈ RN such that E

B(yn,Rn)
GL (un) ≥ qn(Rn)− 1

n .

Using (5.12), we have

εn :=

∫
B(yn,2Rn)\B(yn,Rn)

|∇un|2 +
1

2

Ä
ϕ2(|1 + un|)− 1

ä2
dx(5.28)

≤ qn(2Rn)−
Å
qn(Rn)− 1

n

ã
−→ 0 as n −→∞.

After a translation, we may assume that yn = 0. Using Lemma 3.3 with

A = 2, R = Rn, ε = εn, we infer that for all n sufficiently large, there exist

two functions un,1, un,2 having the properties (i)–(vi) in Lemma 3.3.

From Lemma 3.3(iii) and (iv), we get

|EGL(un)− EGL(un,1)− EGL(un,2)| ≤ Cεn,

while Lemma 3.3(i) and (ii) imply EGL(un,1) ≥ E
B(0,Rn)
GL (un) > qn(Rn) − 1

n ,

respectively EGL(un,2) ≥ ERN\B(0,2Rn)
GL (un) ≥ EGL(un)−qn(2Rn). Taking into

account (5.8), (5.11), (5.12) and (5.28), we infer that

(5.29) EGL(un,1) −→ α and EGL(un,2) −→ α0−α as n −→∞.
By (5.28) and Lemma 3.3(iii)−(vi), we obtain

|A(un)−A(un,1)−A(un,2)| −→ 0,(5.30)

|Ec(un)− Ec(un,1)− Ec(un,2)| −→ 0,(5.31)

and

|Pc(un)− Pc(un,1)− Pc(un,2)| −→ 0 as n −→∞.(5.32)

From (5.32) and the fact that Pc(un) −→ 0, we infer that Pc(un,1) +

Pc(un,2) −→ 0 as n −→ ∞. Moreover, Lemmas 4.1, 4.5 and 5.1 imply

that the sequences (Pc(un,i))n≥1 and (Ec(un,i))n≥1 are bounded for i = 1, 2.

Passing again to a subsequence (still denoted (un)n≥1), we may assume that
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limn→∞ Pc(un,1) = p1 and limn→∞ Pc(un,2) = p2, where p1, p2 ∈ R and

p1 + p2 = 0. There are only two possibilities: either p1 = p2 = 0, or one el-

ement of {p1, p2} is negative.

If p1 = p2 = 0, then (5.29) and Lemma 5.2 imply that lim infn→∞Ec(un,i)

≥ Tc for i = 1, 2. Using (5.31), we obtain lim infn→∞Ec(un) ≥ 2Tc, and this

clearly contradicts the assumption Ec(un) −→ Tc in Theorem 5.3.

If pi < 0, it follows from (5.29) and Lemma 4.8(ii) that lim infn→∞A(un,i)

> N−1
2 Tc. Using (5.30) and the fact that A ≥ 0, we obtain lim infn→∞A(un) >

N−1
2 Tc, which is in contradiction with (5.7).

We conclude that we cannot have α ∈ (0, α0).

So far we have proved that limt→∞ q(t) = α0. Proceeding as in [40], it

follows that for each n ≥ 1, there exists xn ∈ RN such that for any ε > 0,

there are Rε > 0 and nε ∈ N satisfying

(5.33) E
B(xn,Rε)
GL (un) > α0 − ε for any n ≥ nε.

Let ũn = un(· + xn), so that ũn satisfies (5.33) with B(0, Rε) instead of

B(xn, Rε). Let χ ∈ C∞c (C,R) be as in Lemma 2.2, and denote ũn,1 = χ(ũn)ũn,

ũn,1 = (1 − χ(ũn))ũn. Since EGL(ũn) = EGL(un) is bounded, we infer from

Lemma 2.2 that (ũn,1)n≥1 is bounded in D1,2(RN ), (ũn,2)n≥1 is bounded in

H1(RN ) and (EGL(ũn,i))n≥1 is bounded for i = 1, 2.

Using Lemma 2.1 we may write 1 + ũn,1 = ρne
iθn , where 1

2 ≤ ρn ≤ 3
2 and

θn ∈ D1,2(RN ). From (2.4) and (2.7) we find that (ρn − 1)n≥1 is bounded in

H1(RN ) and (θn)n≥1 is bounded in D1,2(RN ).

We infer that there exists a subsequence (nk)k≥1 and there are functions

u1 ∈ D1,2(RN ), u2 ∈ H1(RN ), θ ∈ D1,2(RN ), ρ ∈ 1 +H1(RN ) such that

ũnk,1 ⇀ u1 and θnk ⇀ θ weakly in D1,2(RN ),

ũnk,2 ⇀ u2 and ρnk − 1 ⇀ ρ− 1 weakly in H1(RN ),

ũnk,1 −→ u1, ũnk,2 −→ u2, θnk −→ θ, ρnk − 1 −→ ρ− 1

strongly in Lp(K), 1 ≤ p < 2∗ for any compact set K ⊂ RN and a.e. on RN .

Since ũnk,1 = ρnke
iθnk − 1 −→ ρeiθ − 1 a.e., we have u1 = ρeiθ − 1 a.e. on RN .

Denoting u = u1 +u2, we see that ũnk ⇀ u weakly in D1,2(RN ), ũnk −→ u

a.e. on RN and strongly in Lp(K), 1 ≤ p < 2∗ for any compact set K ⊂ RN .

The weak convergence ũnk ⇀ u in D1,2(RN ) implies

(5.34)

∫
RN

∣∣∣∣ ∂u∂xj
∣∣∣∣2 dx ≤ lim inf

k→∞

∫
RN

∣∣∣∣∂ũnk∂xj

∣∣∣∣2 dx <∞ for j = 1, . . . , N.

Using the a.e. convergence ũnk −→ u and Fatou’s Lemma, we obtain

(5.35)

∫
RN

Ä
ϕ2(|1 + u|)− 1

ä2
dx ≤ lim inf

k→∞

∫
RN

Ä
ϕ2(|1 + ũnk |)− 1

ä2
dx.

From (5.34) and(5.35) it follows that u∈X and EGL(u)≤ lim infk→∞EGL(ũnk).



TRAVELING WAVES FOR NONLINEAR SCHRÖDINGER EQUATIONS 161

We will prove that

lim
k→∞

∫
RN

V (|1 + ũnk |2) dx =

∫
RN

V (|1 + u|2) dx,(5.36)

lim
k→∞

‖ |1 + ũnk | − |1 + u| ‖L2(RN ) = 0 and(5.37)

lim
k→∞

Q(ũnk) = Q(u).(5.38)

Fix ε > 0. Let Rε be as in (5.33). Since EGL(ũnk) −→ α0 as k −→ ∞, it

follows from (5.33) that there exists kε ≥ 1 such that

(5.39) E
RN\B(0,Rε)
GL (ũnk) < 2ε for any k ≥ kε.

As in (5.34)−(5.35), the weak convergence ∇ũnk ⇀ ∇u in L2(RN \ B(0, Rε))

implies ∫
RN\B(0,Rε)

|∇u|2 dx ≤ lim inf
k→∞

∫
RN\B(0,Rε)

|∇ũnk |2 dx,

while the fact that ũnk −→ u a.e. on RN and Fatou’s Lemma imply∫
RN\B(0,Rε)

Ä
ϕ2(|1 + u|)− 1

ä2
dx≤ lim inf

k→∞

∫
RN\B(0,Rε)

Ä
ϕ2(|1 + ũnk |)− 1

ä2
dx.

Therefore,

(5.40) E
RN\B(0,Rε)
GL (u) ≤ lim inf

k→∞
E

RN\B(0,Rε)
GL (ũnk) ≤ 2ε.

Let v ∈ X be a function satisfying E
RN\B(0,Rε)
GL (v) ≤ 2ε. Since ϕ(|1+v|) =

|1 + v| and
∣∣∣ |1 + v| − 1

∣∣∣2 ≤ (ϕ2(|1 + v|)− 1
)2

if |1 + v| ≤ 2, using (1.7) we find

∫
{|1+v|≤2}\B(0,Rε)

|V (|1 + v|2)| dx ≤ C1

∫
{|1+v|≤2}\B(0,Rε)

Ä
ϕ2(|1 + v|)− 1

ä2
dx

(5.41)

≤ 2C1E
RN\B(0,Rε)
GL (v) ≤ 4C1ε

and ∫
{|1+v|≤2}\B(0,Rε)

(|1 + v| − 1)2 dx(5.42)

≤
∫
{|1+v|≤2}\B(0,Rε)

Ä
ϕ2(|1 + v|)− 1

ä2
dx ≤ 4ε.

On the other hand, |1 + v(x)| > 2 implies
(
ϕ2(|1 + v(x)|)− 1

)2
> 9, con-

sequently

9LN ({x ∈ RN \B(0, Rε) | |1 + v(x)| > 2})

≤
∫
RN\B(0,Rε)

Ä
ϕ2(|1 + v|)− 1

ä2
dx ≤ 4ε.
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Using the fact that
∣∣∣V (|1+s|2)

∣∣∣≤C (|1+s|2 − 1
)p0+1≤C2|s|2p0+2 if |1+s| ≥ 2,

Hölder’s inequality, the above estimate and the Sobolev embedding we find

∫
{|1+v|>2}\B(0,Rε)

|V (|1 + v|2)| dx ≤ C2

∫
{|1+v|>2}\B(0,Rε)

|v|2p0+2 dx

(5.43)

≤ C
Å∫

RN
|v|2∗dx

ã 2p0+2

2∗ (
LN ({x ∈ RN \B(0, Rε)

∣∣∣ |1 + v(x)| > 2})
)1− 2p0+2

2∗

≤ C3‖∇v‖2p0+2
L2(RN )

ε1− 2p0+2

2∗ ≤ C3 (EGL(v))p0+1 ε1− 2p0+2

2∗ .

Similarly, we get∫
{|1+v|>2}\B(0,Rε)

(|1 + v| − 1)2 dx ≤
∫
{|1+v|>2}\B(0,Rε)

|v|2 dx(5.44)

≤
(
LN ({x ∈ RN \B(0, Rε)

∣∣∣ |1 + v(x)| > 2})
)1− 2

2∗ ‖v‖2L2∗ (RN )

≤ Cε1− 2
2∗ ‖∇v‖2L2(RN ) ≤ CEGL(v)ε1− 2

2∗ .

It is obvious that u and ũnk (with k ≥ kε) satisfy (5.41) and (5.43). If

M > 0 is such that EGL(un) ≤M for all n, from (5.41) and (5.43) we infer that

∫
RN\B(0,Rε)

∣∣∣V (|1 + ũnk |2)− V (|1 + u|2)
∣∣∣ dx

(5.45)

≤
∫
RN\B(0,Rε)

∣∣∣V (|1 + ũnk |2)
∣∣∣+ ∣∣∣V (|1 + u|2)

∣∣∣ dx ≤ Cε+ CMp0+1ε1− 2p0+2

2∗ ,

while (5.42) and (5.44) give

(5.46) ‖ |1 + ũnk | − 1‖2L2(RN\B(0,Rε))
≤ 4ε+ CMε1− 2

2∗ .

Of course, a similar estimate is valid for u.

The mapping z 7−→ V (|1+z|2) is obviously C1. Since |V (|1+z|2)| ≤ C(1+

|z|2p0+2) and ũnk −→ u in L2∩L2p0+2(B(0, Rε)) and almost everywhere, it fol-

lows that |1+ ũnk | −→ |1+u| in L2(B(0, Rε)) and V (|1+ ũnk |2) −→ V (|1+u|2)

in L1(B(0, Rε)). (See, e.g., Theorem A2 in [46, p. 133].) Hence,

(5.47)

∫
B(0,Rε)

∣∣∣V (|1 + ũnk |2)− V (|1 + u|2)
∣∣∣ dx ≤ ε

and

(5.48) ‖ |1 + ũnk | − |1 + u| ‖L2(B(0,Rε)) ≤ ε for all k sufficiently large.

Since ε > 0 is arbitrary, (5.36) follows from (5.45) and (5.47), while (5.37) is

a consequence of (5.46) and (5.48).
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Next we prove (5.38). Fix ε > 0, and let Rε and kε be as in (5.33) and

(5.39), respectively. From (2.6) we obtain

‖(1− χ2(ũn))ũn‖L2(RN ) ≤ C‖∇ũn‖
2∗
2

L2(RN )
≤ C (EGL(un))

2∗
4 .

Using the Cauchy-Schwarz inequality and (5.39), we get∫
RN\B(0,Rε)

∣∣∣∣(1− χ2(ũnk))

≠
i
∂ũnk
∂x1

, ũnk

∑ ∣∣∣∣dx(5.49)

≤ ‖(1− χ2(ũnk))ũnk‖L2(RN )

∥∥∥∥∂ũnk∂x1

∥∥∥∥
L2(RN\B(0,Rε))

≤ CM 2∗
4
√
ε

for any k ≥ kε.
From (2.7) we infer that

‖ρ2
n − 1‖L2(RN ) ≤ C

Ä
EGL(ũn) + ‖∇ũn‖2

∗

L2(RN )

ä 1
2 ≤ C

Å
M +M

2∗
2

ã 1
2

.

Using (2.4) and (2.5) we obtain
∣∣∣∂θn∂x1

∣∣∣ ≤ 2
∣∣∣∂(χ(ũn)ũn)

∂x1

∣∣∣ ≤ C
∣∣∣∂ũn∂x1

∣∣∣ a.e. on RN ,

and then (5.39) implies
∥∥∥∂θnk∂x1

∥∥∥
L2(RN\B(0,Rε))

≤ C
√
ε for any k ≥ kε . Using

again the Cauchy-Schwarz inequality, we find∫
RN\B(0,Rε)

∣∣∣∣ Äρ2
nk
− 1
ä ∂θnk
∂x1

∣∣∣∣ dx(5.50)

≤ ‖ρ2
nk
− 1‖L2(RN )

∥∥∥∥∂θnk∂x1

∥∥∥∥
L2(RN\B(0,Rε))

≤ C (M)
√
ε

for any k ≥ kε. It is obvious that the estimates (5.49) and (5.50) also hold with

u, ρ and θ instead of ũnk , ρnk and θnk , respectively.

Using the fact that ũnk −→ u and ρnk − 1 −→ ρ− 1 in L2(B(0, Rε)) and

a.e. and the dominated convergence theorem, we infer that

(1− χ2(ũnk))ũnk −→ (1− χ2(u))u and ρ2
nk
− 1 −→ ρ2 − 1 in L2(B(0, Rε)).

This information and the fact that
∂ũnk
∂x1

⇀ ∂u
∂x1

and
∂θnk
∂x1

⇀ ∂θ
∂x1

weakly in

L2(B(0, Rε)) imply

(5.51)∫
B(0,Rε)

≠
i
∂ũnk
∂x1

, (1− χ2(ũnk))ũnk

∑
dx −→

∫
B(0,Rε)

≠
i
∂u

∂x1
, (1− χ2(u))u

∑
dx

and

(5.52)

∫
B(0,Rε)

Ä
ρ2
nk
− 1
ä ∂θnk
∂x1

dx −→
∫
B(0,Rε)

Ä
ρ2 − 1

ä ∂θ
∂x1

dx.

Using (5.49)−(5.52) and the representation formula (2.12), we infer that there

is some k1(ε) ≥ kε such that for any k ≥ k1(ε), we have

|Q(ũnk)−Q(u)| ≤ C√ε,
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where C does not depend on k ≥ k1(ε) and ε. Since ε > 0 is arbitrary, (5.38)

is proven.

Notice that the proofs of (5.36)–(5.38) above are also valid if N = 3.

It is obvious that

−cQ(ũnk)−
∫
RN

V (|1 + ũnk |2) dx =
N − 3

N − 1
A(ũnk) +

∫
RN

∣∣∣∣∂ũnk∂x1

∣∣∣∣2dx− Pc(ũnk)

(5.53)

≥ N − 3

N − 1
A(ũnk)− Pc(ũnk).

Passing to the limit as k −→∞ in this inequality and using (5.36), (5.38) and

the fact that A(ũn) −→ N−1
2 Tc, Pc(ũn) −→ 0 as n −→∞, we find

(5.54) − cQ(u)−
∫
RN

V (|1 + u|2) dx ≥ N − 3

2
Tc > 0.

In particular, (5.54) implies that u 6= 0.

From (5.34) we get

(5.55) A(u) ≤ lim inf
k→∞

A(ũnk) =
N − 1

2
Tc.

Using (5.34), (5.36) and (5.38), we find

(5.56) Pc(u) ≤ lim inf
k→∞

Pc(ũnk) = 0.

If Pc(u) < 0, from Lemma 4.8(i) we get A(u) > N−1
2 Tc, contradicting (5.55).

Thus necessarily Pc(u) = 0; that is, u ∈ C. Since A(v) ≥ N−1
2 Tc for any v ∈ C,

we infer from (5.55) that A(u) = N−1
2 Tc. Therefore Ec(u) = Tc and u is a

minimizer of Ec in C.
It follows from the above that

(5.57) A(u) =
N − 1

2
Tc = lim

k→∞
A(ũnk).

Since Pc(u) = 0, limk→∞ Pc(ũnk) = 0 and (5.36), (5.38) and (5.57) hold, it is

obvious that

(5.58)

∫
RN

∣∣∣∣ ∂u∂x1

∣∣∣∣2dx = lim
k→∞

∫
RN

∣∣∣∣∂ũnk∂x1

∣∣∣∣2dx.
Now (5.57) and (5.58) imply limk→∞ ‖∇ũnk‖2L2(RN )

= ‖∇u‖2
L2(RN )

. Together

with the fact that ∇ũnk ⇀ ∇u weakly in L2(RN ), this implies ∇ũnk −→ ∇u
strongly in L2(RN ) (that is, ũnk −→ u in D1,2(RN )), and the proof of Theo-

rem 5.3 is complete. �

In order to prove that the minimizers provided by Theorem 5.3 solve

equation (1.4), we need the following regularity result.
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Lemma 5.5. Let N ≥ 3. Assume that conditions (A1) and (A2) in the in-

troduction hold and that u ∈ X satisfies (1.4) in D′(RN ). Then u ∈W 2,p
loc (RN )

for any p ∈ [1,∞), ∇u ∈W 1,p(RN ) for p ∈ [2,∞), u ∈ C1,α(RN ) for α ∈ [0, 1)

and u(x) −→ 0 as |x| −→ ∞.

Proof. First we prove that for any R > 0 and p ∈ [2,∞), there exists

C(R, p) > 0 (depending on u, but not on x ∈ RN ) such that

(5.59) ‖u‖W 2,p(B(x,R)) ≤ C(R, p) for any x ∈ RN .

We write u = u1 + u2, where u1 and u2 are as in Lemma 2.2. Then |u1| ≤ 1
2 ,

∇u1 ∈ L2(RN ) and u2 ∈ H1(RN ). Hence for any R > 0, there exists C(R) > 0

such that

(5.60) ‖u‖H1(B(x,R)) ≤ C(R) for any x ∈ RN .

Let φ(x) = e−
icx1
2 (1 + u(x)). It is easy to see that φ satisfies

(5.61) ∆φ+

Ç
F (|φ|2) +

c2

4

å
φ = 0 in D′(RN ).

Moreover, (5.60) holds for φ instead of u. From (5.60), (5.61), (3.18) and

a standard bootstrap argument, we infer that φ satisfies (5.59). (Note that

assumption (A2) is needed for this bootstrap argument.) It is then clear that

(5.59) also holds for u.

From (5.59), the Sobolev embeddings and Morrey’s inequality (3.27), we

find that u and ∇u are continuous and bounded on RN and u ∈ C1,α(RN )

for α ∈ [0, 1). In particular, u is Lipschitz; since u ∈ L2∗(RN ), we necessarily

have u(x) −→ 0 as |x| −→ ∞.

The boundedness of u implies that there is some C > 0 such that∣∣∣F (|1 + u|2)(1 + u)
∣∣∣ ≤ C∣∣∣ϕ2(|1 + u|)− 1

∣∣∣
on RN . Therefore F (|1 + u|2)(1 + u) ∈ L2 ∩ L∞(RN ). Since ∇u ∈ L2(RN ),

from (1.4) we find ∆u ∈ L2(RN ). It is well known that ∆u ∈ Lp(RN ) with

1 < p <∞ implies ∂2u
∂xi∂xj

∈ Lp(RN ) for any i, j. (see, e.g., Theorem 3 in [45,

p. 96].) Thus we get ∇u ∈ W 1,2(RN ). Then the Sobolev embedding implies

∇u ∈ Lp(RN ) for p ∈ [2, 2∗]. Repeating the previous argument, after an easy

induction we find ∇u ∈W 1,p(RN ) for any p ∈ [2,∞). �

Proposition 5.6. Assume that conditions (A1) and (A2) in the intro-

duction are satisfied. Let u ∈ C be a minimizer of Ec in C. Then u ∈W 2,p
loc (RN )

for any p ∈ [1,∞), ∇u ∈W 1,p(RN ) for p ∈ [2,∞) and u is a solution of (1.4).

Proof. It is standard to prove that for any R > 0,

Ju(v) =

∫
RN

V (|1 + u+ v|2) dx
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is a C1 functional on H1
0 (B(0, R)) and

J ′u(v).w = −2

∫
RN

F (|1 + u+ v|2)〈1 + u+ v, w〉 dx.

(see, e.g., Lemma 17.1 in [34, p. 64] or Appendix A in [46].) It follows easily

that for any R > 0, the functionals P̃c(v) = Pc(u + v) and Ẽc(v) = Ec(u + v)

are C1 on H1
0 (B(0, R)). The differentiability of Q follows, for instance, from

(2.19). We divide the proof of Proposition 5.6 into several steps.

Step 1. There exists a function w ∈ C1
c (RN ) such that P̃ ′c(0).w 6= 0. To

prove this, we argue by contradiction and we assume that the above statement

is false. Then u satisfies

(5.62)

− ∂2u

∂x2
1

− N − 3

N − 1

(
N∑
k=2

∂2u

∂x2
k

)
+ icux1 − F (|1 + u|2)(1 + u) = 0 in D′(RN ).

Let σ =
»

N−1
N−3 . It is not hard to see that u1,σ satisfies (1.4) in D′(RN ). Hence

the conclusion of Lemma 5.5 holds for u1,σ (and thus for u). This regularity is

enough to prove that u1,σ satisfies the Pohozaev identity

∫
RN

∣∣∣∣∂u1,σ

∂x1

∣∣∣∣2dx+
N − 3

N − 1

∫
RN

N∑
k=2

∣∣∣∣∂u1,σ

∂xk

∣∣∣∣2dx(5.63)

+ cQ(u1,σ) +

∫
RN
V (|1 + u1,σ|2) dx = 0.

To prove (5.63), we multiply (1.4) by
∑N
k=2 χ̃(xn)

∂u1,σ
∂xk

, where χ̃ ∈ C∞c (RN )

is a cut-off function such that χ̃ = 1 on B(0, 1) and supp(χ̃) ⊂ B(0, 2), we

integrate by parts, then we let n −→ ∞; see the proof of Proposition 4.1 and

equation (4.13) in [42, p. 1094] for details.

Since σ =
»

N−1
N−3 , (5.63) is equivalent to

Ä
N−3
N−1

ä2
A(u) + Bc(u) = 0. On

the other hand, we have Pc(u) = N−3
N−1A(u) + Bc(u) = 0 and we infer that

A(u) = 0. But this contradicts the fact that A(u) = N−1
2 Tc > 0, and the proof

of Step 1 is complete.

Step 2. Existence of a Lagrange multiplier. Let w be as above, and let

v ∈ H1(RN ) be a function with compact support such that P̃ ′c(0).v = 0. For

s, t ∈ R, put Φ(t, s) = Pc(u + tv + sw) = P̃c(tv + sw), so that Φ(0, 0) = 0,
∂Φ
∂t (0, 0) = P̃ ′c(0).v = 0 and ∂Φ

∂s (0, 0) = P̃ ′c(0).w 6= 0. The implicit function

theorem implies that there exist δ > 0 and a C1 function η : (−δ, δ) −→ R

such that η(0) = 0, η′(0) = 0 and Pc(u+tv+η(t)w) = Pc(u) = 0 for t ∈ (−δ, δ).
Since u is a minimizer of A in C, the function t 7−→ A(u+ tv+ η(t)w) achieves

a minimum at t = 0. Differentiating at t = 0, we get A′(u).v = 0.
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Hence A′(u).v = 0 for any v ∈ H1(RN ) with compact support satisfying

P̃ ′c(0).v = 0. Taking α = A′(u).w

P̃ ′c(0).w
(where w is as in Step 1), we see that

(5.64) A′(u).v = αP ′c(u).v for any v ∈ H1(RN ) with compact support.

Step 3. We have α < 0. To see this, we argue by contradiction. Suppose

that α > 0. Let w be as in Step 1. We may assume that P ′c(u).w > 0.

From (5.64) we obtain A′(u).w > 0. Since A′(u).w = limt→0
A(u+tw)−A(u)

t and

P ′c(u).w = limt→0
Pc(u+tw)−Pc(u)

t , we see that for t < 0, t sufficiently close to 0,

we have u+ tw 6= 0, Pc(u+ tw) < Pc(u) = 0 and A(u+ tw) < A(u) = N−1
2 Tc.

But this contradicts Lemma 4.8(i). Therefore α ≤ 0.

Assume that α = 0. Then (5.64) implies

(5.65)∫
RN

N∑
k=2

〈 ∂u
∂xj

,
∂v

∂xj
〉 dx = 0 for any v ∈ H1(RN ) with compact support.

Let χ̃ ∈ C∞c (RN ) be such that χ = 1 on B(0, 1) and supp(χ̃) ⊂ B(0, 2). Put

vn(x) = χ(xn)u(x), so that ∇vn(x) = 1
n∇χ̃(xn)u+χ̃(xn)∇u. It is easy to see that

χ̃( ·n)∇u −→ ∇u in L2(RN ) and 1
n∇χ̃( ·n)u ⇀ 0 weakly in L2(RN ). Replacing

v by vn in (5.65) and passing to the limit as n −→∞, we get A(u) = 0, which

contradicts the fact that A(u) = N−1
2 Tc. Hence we cannot have α = 0. Thus,

necessarily, α < 0.

Step 4. Conclusion. Since α < 0, it follows from (5.64) that u satisfies

(5.66)

− ∂
2u

∂x2
1

−
Å
N − 3

N − 1
− 1

α

ã N∑
k=2

∂2u

∂x2
k

+icux1−F (|1+u|2)(1+u) = 0 in D′(RN ).

Let σ0 =
Ä
N−3
N−1 − 1

α

ä− 1
2 . It is easy to see that u1,σ0 satisfies (1.4) in D′(RN ).

Therefore the conclusion of Lemma 5.5 holds for u1,σ0 (and consequently for u).

Then Proposition 4.1 in [42] implies that u1,σ0 satisfies the Pohozaev identity
N−3
N−1A(u1,σ0) +Bc(u1,σ0) = 0, or equivalently N−3

N−1σ
N−3
0 A(u) +σN−1

0 Bc(u) = 0,

which implies
N − 3

N − 1

Å
N − 3

N − 1
− 1

α

ã
A(u) +Bc(u) = 0.

On the other hand, we have Pc(u) = N−3
N−1A(u)+Bc(u) = 0. Since A(u) > 0, we

get N−3
N−1 − 1

α = 1. Then coming back to (5.66) we see that u satisfies (1.4). �

6. The case N = 3

This section is devoted to the proof of Theorem 1.1 in space dimension

N = 3. We only indicate the differences with respect to the case N ≥ 4.
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Clearly, if N = 3, we have Pc = Bc. For v ∈ X , we denote

D(v) =

∫
R3

∣∣∣∣ ∂v∂x1

∣∣∣∣2 dx+
1

2

∫
R3

Ä
ϕ2(|1 + v|)− 1

ä2
dx.

For any v ∈ X and σ > 0 we have

(6.1)

A(v1,σ) = A(v), Bc(v1,σ) = σ2Bc(v) and D(v1,σ) = σ2D(v).

If N = 3, we cannot have a result similar to Lemma 5.1. To see this

consider u ∈ C, so that Bc(u) = 0. Using (6.1) we see that u1,σ ∈ C for any

σ > 0, and we have Ec(u1,σ) = A(u) + σ2Bc(u) = A(u), while EGL(u1,σ) =

A(u) + σ2D(u) −→∞ as σ −→∞.

However, for any u ∈ C, there exists σ > 0 such that D(u1,σ) = 1 (and

obviously u1,σ ∈ C, Ec(u1,σ) = Ec(u)). Since C 6= ∅ and Tc = inf{Ec(u) | u ∈
C}, we see that there exists a sequence (un)n≥1 ⊂ C such that

(6.2) D(un) = 1 and Ec(un) = A(un) −→ Tc as n −→∞.
In particular, (6.2) implies EGL(un) −→ Tc + 1 as n −→∞.

The following result is the equivalent of Lemma 5.2 in the case N = 3.

Lemma 6.1. Let N = 3, and let (un)n≥1 ⊂ X be a sequence satisfying

(a) there exists C > 0 such that D(un) ≥ C for any n, and

(b) Bc(un) −→ 0 as n −→∞.

Then lim infn→∞Ec(un) = lim infn→∞A(un) ≥ Sc, where Sc is given by (4.22).

Proof. It suffices to prove that for any k > 0, there holds

(6.3) lim inf
n→∞

A(un) ≥ Ec,min(k).

Fix k > 0. Let n ≥ 1. If A(un) ≥ k, by Lemma 4.6(iii) we have A(un) ≥
k > Ec,min(k). If A(un) < k, since EGL((un)1,σ) = A(un) + σ2D(un), we

see that there exists σn > 0 such that EGL((un)1,σn) = k. Obviously, we

have σ2
nD(un) < k; hence, σ2

n ≤ k
C by (a). It is clear that Ec((un)1,σn) =

A(un) + σ2
nBc(un) ≥ Ec,min(k), therefore A(un) ≥ Ec,min(k) − σ2

n|Bc(un)| ≥
Ec,min(k)− k

C |Bc(un)|. Passing to the limit as n −→∞, we obtain (6.3). Since

k > 0 is arbitrary, Lemma 6.1 is proven. �

Let

Λc = {λ ∈ R | there exists a sequence (un)n≥1 ⊂ X such that

D(un) ≥ 1, Bc(un) −→ 0 and A(un) −→ λ as n −→∞}.
Using a scaling argument, we see that

Λc = {λ ∈ R | there exist a sequence (un)n≥1 ⊂ X and C > 0 such that

D(un) ≥ C, Bc(un) −→ 0 and A(un) −→ λ as n −→∞}.
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Let λc = inf Λc. From (6.2) it follows that Tc ∈ Λc. It is standard to prove

that Λc is closed in R; hence λc ∈ Λc. From Lemma 6.1 we obtain

(6.4) Sc ≤ λc ≤ Tc.

The main result of this section is as follows.

Theorem 6.2. Let N = 3, and let (un)n≥1 ⊂ X be a sequence such that

(6.5) D(un) −→ 1, Bc(un) −→ 0 and A(un) −→ λc as n −→∞.

There exist a subsequence (unk)k≥1, a sequence (xk)k≥1 ⊂ R3 and u ∈ C such

that

∇unk(·+ xk) −→ ∇u and |1 + unk(·+ xk)| − 1 −→ |1 + u| − 1 in L2(R3).

Moreover, we have Ec(u) = A(u) = Tc = λc and u minimizes Ec in C.

Proof. By (6.5), we have EGL(un) = A(un)+D(un) −→ λc+1 as n −→∞.

Let qn(t) be the concentration function of EGL(un), as in (5.9). Proceeding

as in the proof of Theorem 5.3, we infer that there exist a subsequence of

(un, qn)n≥1, still denoted (un, qn)n≥1, a nondecreasing function q : [0,∞) −→
[0,∞) and α ∈ [0, λc + 1] such that (5.10) holds. We see also that there exists

a sequence tn −→∞ satisfying (5.11) and (5.12).

Clearly, our aim is to prove that α = λc + 1. The next result implies that

α > 0.

Lemma 6.3. Assume that N=3, 0≤c<vs and (un)n≥1⊂X is a sequence

satisfying D(un)−→1, Bc(un)−→0 as n−→∞ and supn≥1EGL(un)=M<∞.

There exists k > 0 such that

sup
y∈R3

∫
B(y,1)

ß
|∇un|2 +

1

2

Ä
ϕ2(|1 + un|)− 1

ä2™
dx ≥ k

for all sufficiently large n.

Proof. We argue by contradiction and assume that the conclusion of

Lemma 6.3 is false. Then there exists a subsequence, still denoted (un)n≥1,

such that

(6.6) sup
y∈R3

E
B(y,1)
GL (un) −→ 0 as n −→∞.

Exactly as in Lemma 5.4 we prove that (5.14) holds; that is,

(6.7) lim
n→∞

∫
R3

∣∣∣∣V (|1 + un|2)− 1

2

Ä
ϕ2(|1 + un|)− 1

ä2 ∣∣∣∣ dx = 0.
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Using (6.7) and the assumptions of Lemma 6.3, we find

cQ(un) = Bc(un)−D(un)(6.8)

−
∫
R3

ß
V (|1 + un|2)− 1

2

Ä
ϕ2(|1 + un|)− 1

ä2™
dx −→ −1

as n −→∞. If c = 0, then (6.8) gives a contradiction and Lemma 6.3 is proven.

From now on we assume that 0 < c < vs.

Fix c1 ∈ (c, vs), then fix σ > 0 such that

(6.9) σ2 >
Mc

c1 − c
.

A simple change of variables shows that M̃ := supn≥1EGL((un)1,σ) < ∞ and

(6.7) holds with (un)1,σ instead of un. It is easy to see that ((un)1,σ)n≥1 also

satisfies (6.6). Using Lemma 3.2 we infer that there exists a sequence hn −→ 0

and for each n there exists a minimizer vn of G
(un)1,σ
hn,R3 in H1

(un)1,σ
(R3) such that

(6.10) ‖ |1 + vn| − 1‖L∞(R3) −→ 0 as n −→∞.
From (3.4) we obtain

(6.11) |Q((un)1,σ)−Q(vn)| ≤ C
Å
h2
n + h

4
3
nM̃

2
3

ã 1
2

M̃ −→ 0 as n −→∞.

Using (6.10), the fact that 0 < c1 < vs and Lemma 4.2 we infer that for all

sufficiently large n, there holds

(6.12) EGL(vn) + c1Q(vn) ≥ 0.

Since EGL(vn) ≤ EGL((un)1,σ), for large n we have

0 ≤ EGL(vn) + c1Q(vn)

(6.13)

≤ EGL((un)1,σ) + c1Q((un)1,σ) + c1|Q((un)1,σ)−Q(vn)|
= A(un) +Bc((un)1,σ) + (c1 − c)Q((un)1,σ) + c1|Q((un)1,σ)−Q(vn)|

+

∫
R3

ß
1

2

Ä
ϕ2(|1 + (un)1,σ|)− 1

ä2 − V (|1 + (un)1,σ|2)

™
dx

= A(un) + σ2Bc(un) + σ2(c1 − c)Q(un)

≤M + σ2Bc(un) + σ2(c1 − c)Q(un) + an,

where

an = c1|Q((un)1,σ)−Q(vn)|

+

∫
R3

ß
1

2

Ä
ϕ2(|1 + (un)1,σ|)− 1

ä2 − V (|1 + (un)1,σ|2)

™
dx.

From (6.7) and (6.11) we infer that limn→∞ an = 0. Then passing to the limit

as n −→ ∞ in (6.13), using (6.8) and the fact that limn→∞Bc(un) = 0 we
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find 0 ≤ M − σ2 c1−c
c . The last inequality clearly contradicts the choice of σ

in (6.9). This contradiction shows that (6.6) cannot hold, and Lemma 6.3 is

proven. �

Next we show that we cannot have α ∈ (0, λc + 1). We argue again by

contradiction, and we assume that α ∈ (0, λc+1). Proceeding exactly as in the

proof of Theorem 5.3 and using Lemma 3.3, we infer that for each n sufficiently

large, there exist two functions un,1, un,2 having the following properties:

(6.14) EGL(un,1) −→ α, EGL(un,2) −→ λc + 1− α,

(6.15) |A(un)−A(un,1)−A(un,2)| −→ 0,

(6.16) |Bc(un)−Bc(un,1)−Bc(un,2)| −→ 0,

(6.17) |D(un)−D(un,1)−D(un,2)| −→ 0 as n −→∞.
Since (EGL(un,i))n≥1 are bounded, from Lemmas 4.1 and 4.5 we see that

Bc(un,i))n≥1 are bounded. Moreover, by (6.16), we have

lim
n→∞

(Bc(un,1) +Bc(un,2)) = lim
n→∞

Bc(un) = 0.

Similarly, (D(un,i))n≥1 are bounded and

lim
n→∞

(D(un,1) +D(un,2)) = lim
n→∞

D(un) = 1.

Passing again to a subsequence (still denoted (un)n≥1), we may assume that

lim
n→∞

Bc(un,1) = b1, lim
n→∞

Bc(un,2) = b2, where bi ∈ R, b1 + b2 = 0,(6.18)

lim
n→∞

D(un,1) = d1, lim
n→∞

D(un,2) = d2, where di ≥ 0, d1 + d2 = 1.(6.19)

From (6.18) it follows that either b1 = b2 = 0, or one of b1 or b2 is negative.

Case 1. If b1 = b2 = 0, we distinguish two subcases.

Subcase 1a. We have d1 > 0 and d2 > 0. Let σi = 2√
di

, i = 1, 2. Then

D((un,i)1,σi) = σ2
iD(un,i) −→ 4 and Bc((un,i)1,σi) = σ2

iBc(un,i) −→ 0 as

n −→∞. From (6.1) and the definition of λc, it follows that

lim inf
n→∞

A(un,i) = lim inf
n→∞

A((un,i)1,σi) ≥ λc, i = 1, 2.

Then (6.15) implies

lim inf
n→∞

A(un) ≥ lim inf
n→∞

A(un,1) + lim inf
n→∞

A(un,2) ≥ 2λc,

and this is a contradiction because by (6.5), we have limn→∞A(un) = λc.

Subcase 1b. One of the di’s is zero, say d1 = 0. Then necessarily d2 = 1;

that is, limn→∞D(un,2)=1. Since EGL(un,2)=A(un,2) +D(un,2)−→1+λc−α
as n −→∞, we infer that limn→∞A(un,2) = λc − α. Hence D(un,2) −→ 1,
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Bc(un,2) −→ 0 and A(un,2) −→ λc−α as n −→∞, which implies λc−α ∈ Λc.

Since α > 0, this contradicts the definition of λc.

Case 2. One of bi’s is negative, say b1 < 0. From Lemma 4.8(ii) we get

lim infn→∞A(un,1) > Tc ≥ λc, and then using (6.15) we find lim infn→∞A(un)

> λc, in contradiction with (6.5).

Consequently, in all cases we get a contradiction, and this proves that we

cannot have α ∈ (0, λc + 1).

Up to now we have proved that limt→∞ q(t) = λc + 1; that is, “concentra-

tion” occurs.

Proceeding as in the case N ≥ 4, we see that there exist a subsequence

(unk)k≥1, a sequence of points (xk)k≥1 ⊂ R3 and u ∈ X such that, denoting

ũnk(x) = unk(x+ xk), we have

∇ũnk ⇀ ∇u in L2(R3)(6.20)

and ũnk −→ u in Lploc(R
3) for 1 ≤ p < 6 and a.e. on R3,

|1 + ũnk | − 1 −→ |1 + u| − 1 in L2(R3),(6.21) ∫
R3
V (|1 + ũnk |2) dx −→

∫
R3
V (|1 + u|2) dx,(6.22)

Q(ũnk) −→ Q(u) as k −→∞.(6.23)

Since
∣∣∣ (ϕ2(s)− 1

)2 − (ϕ2(t)− 1
)2 ∣∣∣ ≤ 24|s − t| (|s− 1|+ |t− 1|), from

(6.21) we get

(6.24)

∫
R3

Ä
ϕ2(|1 + ũnk |)− 1

ä2
dx −→

∫
R3

Ä
ϕ2(|1 + u|)− 1

ä2
dx.

Passing to the limit as k −→∞ in the identity∫
R3

ß
V (|1+ũnk |2)− 1

2

Ä
ϕ2(|1 + ũnk |)− 1

ä2™
dx+ cQ(ũnk)=Bc(ũnk)−D(ũnk),

using (6.22)−(6.24) and the fact that Bc(ũnk) −→ 0, D(ũnk) −→ 1, we obtain∫
R3

ß
V (|1 + u|2)− 1

2

Ä
ϕ2(|1 + u|)− 1

ä2™
dx+ cQ(u) = −1.

Thus u 6= 0.

From the weak convergence ∇ũnk ⇀ ∇u in L2(R3), we get

(6.25)

∫
R3

∣∣∣∣ ∂u∂xj
∣∣∣∣2 dx ≤ lim inf

k→∞

∫
R3

∣∣∣∣∂ũnk∂xj

∣∣∣∣2 dx for j = 1, 2, 3.

In particular, we have

(6.26) A(u) ≤ lim
k→∞

A(ũnk) = λc.

From (6.22), (6.23) and (6.25), we obtain

(6.27) Bc(u) ≤ lim
k→∞

Bc(ũnk) = 0.
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Since u 6= 0, (6.27) and Lemma 4.8(i) imply A(u) ≥ Tc. Then using (6.26) and

the fact that λc ≤ Tc, we infer that necessarily

(6.28) A(u) = Tc = λc = lim
k→∞

A(ũnk).

The fact that Bc(ũnk)−→0, (6.22) and (6.23) imply that
Ä ∫

R3

∣∣∣∂ũnk∂x1

∣∣∣2 dxä
k≥1

converges. If
∫
R3

∣∣∣ ∂u∂x1 ∣∣∣2 dx < limk→∞
∫
R3

∣∣∣∂ũnk∂x1

∣∣∣2 dx, we get

Bc(u) < lim
k→∞

Bc(ũnk) = 0

in (6.27), and then Lemma 4.8(i) implies A(u) > Tc, a contradiction. Taking

(6.25) into account, we see that necessarily

(6.29)

∫
R3

∣∣∣∣ ∂u∂x1

∣∣∣∣2 dx = lim
k→∞

∫
R3

∣∣∣∣∂ũnk∂x1

∣∣∣∣2 dx and Bc(u) = 0.

Thus we have proved that u ∈ C and ‖∇u‖L2(R3) = limk→∞ ‖∇ũnk‖L2(R3).

Combined with the weak convergence ∇ũnk ⇀ ∇u in L2(R3), this implies the

strong convergence ∇ũnk −→ ∇u in L2(R3), and the proof of Theorem 6.2 is

complete. �

To prove that any minimizer provided by Theorem 6.2 satisfies a Euler-

Lagrange equation, we will need the next lemma. It is clear that for any v ∈ X
and any R > 0, the functional B̃v

c (w) := Bc(v +w) is C1 on H1
0 (B(0, R)). We

denote by (B̃v
c )′(0).w = limt→0

Bc(v+tw)−Bc(v)
t its derivative at the origin.

Lemma 6.4. Assume that N ≥ 3 and conditions (A1) and (A2) are satis-

fied. Let v ∈ X be such that (B̃v
c )′(0).w = 0 for any w ∈ C1

c (RN ). Then v = 0

almost everywhere in RN .

Proof. We denote by v∗ the precise representative of v; that is, v∗(x) =

limr→0m(v,B(x, r)) if this limit exists, and 0 otherwise. Since v ∈ L1
loc(R

N ),

it is well known that v = v∗ almost everywhere on RN . (See, e.g., Corollary 1

in [17, p. 44].) Throughout the proof of Lemma 6.4, we replace v by v∗. We

proceed in three steps.

Step 1. There exists a set S ⊂ RN−1 such that LN−1(S) = 0, and for

any x′ ∈ RN−1 \S, the function vx′ := v(·, x′) belongs to C2(R) and solves the

differential equation

(6.30)

− (vx′)
′′(s) + ic(vx′)

′(s)− F (|1 + vx′(s)|2)(1 + vx′(s)) = 0 for any s ∈ R.
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Moreover, we have |vx′(s)| −→ 0 as s −→ ±∞, and vx′ satisfies the following

properties:

vx′ ∈ L2∗(R), ϕ2(|1 + vx′ |)− 1 ∈ L2(R) and (vx′)
′ =

∂v

∂x1
(·, x′) ∈ L2(R),

(6.31)

F (|1 + vx′ |2)(1 + vx′) ∈ L2(R) + L
2∗

2p0+1 (R).(6.32)

It is easy to see that F (|1+v|2)(1+v) ∈ L2(RN )+L
2∗

2p0+1 (RN ). Since v ∈
H1

loc(R
3), using Theorem 2 in [17, p. 164] and Fubini’s Theorem, respectively,

we see that there exists a set S̃ ⊂ RN−1 such that LN−1(S̃) = 0, and for any

x′ ∈ RN−1 \ S̃, the function vx′ is absolutely continuous, vx′ ∈ H1
loc(R) and

(6.31)−(6.32) hold.

Given φ ∈ C1
c (R), we denote

Λφ(x1, x
′) =

≠
∂v

∂x1
(x1, x

′), φ′(x1)

∑
+ c

≠
i
∂v

∂x1
(x1, x

′), φ(x1)

∑
− 〈F (|1 + v|2)(1 + v)(x1, x

′), φ(x1)〉,
where 〈·, ·〉 denotes the scalar product of two complex numbers. From (6.31)

and (6.32) it follows that Λφ(·, x′) ∈ L1(R) for x′ ∈ RN−1 \ S̃. We define

λφ(x′) =
∫
R Λφ(x1, x

′)dx1 if x′ ∈ RN−1 \ S̃ and λφ(x′) = 0 if x′ ∈ S̃. Let

ψ ∈ C1
c (RN−1). It is obvious that the function (x1, x

′) 7−→ Λφ(x1, x
′)ψ(x′)

belongs to L1(RN ), and using Fubini’s Theorem, we get∫
RN

Λφ(x1, x
′)ψ(x′) dx =

∫
RN−1

λφ(x′)ψ(x′) dx′.

On the other hand, using the assumption of Lemma 6.4, we obtain

2

∫
RN

Λφ(x1, x
′)ψ(x′) dx =

Ä
B̃v
c

ä′
(0).(φ(x1)ψ(x′)) = 0.

Hence we have
∫
RN−1 λφ(x′)ψ(x′) dx′ = 0 for any ψ ∈ C1

c (RN−1), and this

implies that there exists a set Sφ ⊂ RN−1 \ S̃ such that LN−1(Sφ) = 0 and

λφ = 0 on RN−1 \ Sφ.

Denote q0 = 2∗

2p0+1 ∈ (1,∞). There exists a countable set {φn ∈ C1
c (R) | n

∈ N} which is dense in H1(R) ∩ Lq′0(R). For each n, consider the set Sφn ⊂
RN−1 as above. Let S = S̃ ∪⋃n∈N Sφn . It is clear that LN−1(S) = 0.

Let x′ ∈ RN−1 \ S. Fix φ ∈ C1
c (R). There is a sequence (φnk)k≥1 such

that φnk −→ φ in H1(R) and in Lq
′
0(R). Then λφnk (x′) = 0 for each k and

(6.31)−(6.32) imply that λφnk (x′) −→ λφ(x′). Consequently, λφ(x′) = 0 for

any φ ∈ C1
c (R) and this implies that vx′ satisfies equation (6.30) in D′(R).

Using (6.30) we infer that (vx′)
′′ (the weak second derivative of vx′) belongs

to L1
loc(R). Then it follows that (vx′)

′ is continuous on R. (See, e.g., Lemma

VIII.2 in [11, p. 123].) In particular, we have vx′ ∈ C1(R). Coming back to
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(6.30) we see that (vx′)
′′ is continuous. Hence, vx′ ∈ C2(R) and (6.30) holds at

each point of R. Finally, we have |vx′(s2)−vx′(s1)| ≤ |s2−s1|
1
2 ‖ (vx′)

′ ‖L2 ; this

estimate and the fact that vx′ ∈ L2∗(R) imply that vx′(s) −→ 0 as s −→ ±∞.

Step 2. There exist two positive constants k1, k2 (depending only on F

and c) such that for any x′ ∈ RN−1 \ S, we have either vx′ = 0 on R or there

exists an interval Ix′ ⊂ R with L1(Ix′) ≥ k1 and
∣∣∣ |1 + vx′ | − 1

∣∣∣ ≥ k2 on Ix′ .

To see this, fix x′ ∈ RN−1 \ S and denote g = |1 + vx′ |2 − 1. Then

g ∈ C2(R,R) and g tends to zero at ±∞. Proceeding exactly as in [42,

pp. 1100–1101], we integrate (6.30) and we see that g satisfies

(6.33) (g′)2(s) + c2g2(s)− 4(g(s) + 1)V (g(s) + 1) = 0 in R.

Using (1.6) we have c2t2−4(t+1)V (t+1) = t2(c2−v2
s+ε1(t)), where ε1(t) −→ 0

as t −→ 0. In particular, there exists k0 > 0 such that

(6.34) c2t2 − 4(t+ 1)V (t+ 1) < 0 for t ∈ [−2k0, 0) ∪ (0, 2k0].

If g = 0 on R, then |1 + vx′ | = 1. Consequently, there exists a lifting

1 + vx′(s) = eiθ(s) with θ ∈ C2(R,R). Using equation (6.30) and proceeding

as in [42, p. 1101], we see that either 1 + vx′(s) = eiθ0 or 1 + vx′(s) = eics+θ0 ,

where θ0 ∈ R is a constant. Since vx′ ∈ L2∗(R), we must have vx′ = 0.

If g 6≡ 0, the function g achieves a negative minimum or a positive maxi-

mum at some s0 ∈ R. Then g′(s0) = 0, and using (6.33) and (6.34) we infer

that |g(s0)| > 2k0. Let

s2 = inf{s < s0

∣∣∣ |g(s)| ≥ 2k0}, s1 = sup{s < s2

∣∣∣ |g(s)| ≤ k0},

so that s1 < s2, |g(s1)| = k0, |g(s2)| = 2k0 and k0 ≤ |g(s)| ≤ 2k0 for s ∈ [s1, s2].

Denote M = sup{4(t + 1)V (t + 1) − c2t2 | t ∈ [−2k0, 2k0]}. From (6.33) we

obtain |g′(s)| ≤
√
M if g(s) ∈ [−2k0, 2k0], and we infer that

k0 = |g(s2)| − |g(s1)| ≤
∣∣∣∣ ∫ s2

s1

g′(s) ds

∣∣∣∣ ≤ √M(s2 − s1);

hence s2−s1 ≥ k0√
M

. Obviously, there exists k2 > 0 such that | |1+z|2−1| ≥ k0

implies | |1 + z| − 1| ≥ k2. Taking k1 = k0√
M

and Ix′ = [s1, s2], the proof of

Step 2 is complete.

Step 3. Conclusion. Let K = {x′ ∈ RN−1 \ S | vx′ 6≡ 0}. It is standard

to prove that K is LN−1-measurable. The conclusion of Lemma 6.4 follows if

we prove that LN−1(K) = 0. We argue by contradiction and we assume that

LN−1(K) > 0.

If x′ ∈ K, it follows from Step 2 that there exists an interval Ix′ of length

at least k1 such that
(
ϕ2(|1 + vx′ |)− 1

)2 ≥ η(k2) on Ix′ , where η is as in (3.30).
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This implies
∫
R

(
ϕ2(|1 + v(x1, x

′)|)− 1
)2
dx1 ≥ k1η(k2). Using Fubini’s theo-

rem, we get∫
RN

Ä
ϕ2(|1 + v(x)|)− 1

ä2
dx =

∫
K

Å∫
R

Ä
ϕ2(|1 + v(x1, x

′)|)− 1
ä2
dx1

ã
dx′

≥ k1η(k2)LN−1(K).

Since v ∈ X , we infer that LN−1(K) is finite.

It is obvious that there exist x′1 ∈ K and x′2 ∈ RN−1 \ (K ∪ S) arbitrarily

close to each other. Then |vx′1 | ≥ k2 on an interval Ix′1 of length k1, while

vx′2 ≡ 0. If we knew that v is uniformly continuous, this would lead to a

contradiction. However, equation (6.30) satisfied by v involves only derivatives

with respect to x1 and does not imply any regularity properties of v with

respect to the transverse variables. (Notice that if v is a solution of (6.30),

then v(x1 +δ(x′), x′) is also a solution, even if δ is discontinuous.) For instance,

for the Gross-Pitaevskii nonlinearity F (s) = 1 − s, it is possible to construct

bounded, C∞ functions v such that v ∈ L2∗(RN ), (6.30) is satisfied for almost

every x′ and the set K constructed as above is a nontrivial ball in RN−1.

(Of course, these functions do not tend uniformly to zero at infinity, are not

uniformly continuous and their gradient is not in L2(RN ).)

We use the fact that one transverse derivative of v (for instance, ∂v
∂x2

) is

in L2(RN ) to get a contradiction.

For x′ = (x2, x3, . . . , xN ) ∈ RN−1, we denote x′′ = (x3, . . . , xN ). Since v ∈
H1

loc(R
N ), from Theorem 2 in [17, p. 164] it follows that there exists J ⊂ RN−1

such that LN−1(J) = 0 and u(x1, ·, x′′) ∈ H1
loc(R

N ) for any (x1, x
′′) ∈ RN−1\J .

Given x′′ ∈ RN−2, we denote

Kx′′ = {x2 ∈ R | (x2, x
′′) ∈ K},

Sx′′ = {x2 ∈ R | (x2, x
′′) ∈ S},

Jx′′ = {x1 ∈ R | (x1, x
′′) ∈ J}.

Fubini’s Theorem implies that for almost all x′′ ∈ RN−2, the sets Kx′′ , Sx′′ ,

Jx′′ are L1-measurable, L1(Kx′′) <∞ and L1(Sx′′) = L1(Jx′′) = 0. Let

G = {x′′ ∈ RN−2 | Kx′′ , Sx′′ , Jx′′ are L1-measurable,(6.35)

L1(Sx′′) = L1(Jx′′) = 0 and 0 < L1(Kx′′) <∞}.
Clearly, G is LN−2-measurable and

∫
G L1(Kx′′) dx

′′ = LN−1(K) > 0; thus

LN−2(G) > 0. We claim that

(6.36)

∫
R2

∣∣∣∣ ∂v∂x2
(x1, x2, x

′′)

∣∣∣∣2dx1 dx2 =∞ for any x′′ ∈ G.

Indeed, let x′′ ∈ G. Fix ε > 0. Using (6.35) we infer that there exist

s1, s2 ∈ R such that (s1, x
′′) ∈ RN−1 \ (K ∪S), (s2, x

′′) ∈ K and |s2− s1| < ε.
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Then v(t, s1, x
′′) = 0 for any t ∈ R. From Step 2 it follows that there exists an

interval I with L1(I) ≥ k1 such that |v(t, s2, x
′′)| ≥ | |1 + v(t, s2, x

′′)| − 1| ≥ k2

for t ∈ I. Assume s1 < s2. If t ∈ I \ Jx′′ , we have v(t, ·, x′′) ∈ H1
loc(R). Hence,

k2 ≤ |v(t, s2, x
′′)− v(t, s1, x

′′)| =
∣∣∣∣∫ s2

s1

∂v

∂x2
(t, τ, x′′) dτ

∣∣∣∣
≤ (s2 − s1)

1
2

Ç∫ s2

s1

∣∣∣∣ ∂v∂x2
(t, τ, x′′)

∣∣∣∣2dτ
å 1

2

.

Clearly, this implies
∫ s2
s1

∣∣∣∣ ∂v∂x2 (t, τ, x′′)

∣∣∣∣2dτ ≥ k22
ε . Consequently,

∫
R2

∣∣∣∣ ∂v∂x2
(x1, x2, x

′′)

∣∣∣∣2dx1 dx2 ≥
∫
I

∫ s2

s1

∣∣∣∣ ∂v∂x2
(t, τ, x′′)

∣∣∣∣2dτ dt ≥ k1k
2
2

ε
.

Since the last inequality holds for any ε > 0, (6.36) is proven. Using (6.36),

the fact that LN−2(G) > 0 and Fubini’s Theorem, we get
∫
RN

∣∣∣∣ ∂v∂x2
∣∣∣∣2 dx = ∞,

contradicting the fact that v ∈ X . Thus necessarily LN−1(K) = 0, and the

proof of Lemma 6.4 is complete. �

Proposition 6.5. Assume that N = 3 and conditions (A1) and (A2) are

satisfied. Let u ∈ C be a minimizer of Ec in C. Then u ∈ W 2,p
loc (R3) for any

p ∈ [1,∞), ∇u ∈ W 1,p(R3) for p ∈ [2,∞) and there exists σ > 0 such that

u1,σ is a solution of (1.4).

Proof. The proof is very similar to the proof of Proposition 5.6. It is clear

that A(u) = Ec(u) = Tc and u is a minimizer of A in C. For any R > 0, the

functionals B̃u
c and Ã(v) := A(u + v) are C1 on H1

0 (B(0, R)). We proceed in

four steps.

Step 1. There exists w ∈ C1
c (R3) such that (B̃u

c )′(0).w 6= 0. This follows

from Lemma 6.4.

Step 2. There exists a Lagrange multiplier α ∈ R such that

(6.37) Ã′(0).v=α(B̃u
c )′(0).v for any v ∈ H1(R3), v with compact support.

Step 3. We have α < 0.

The proof of Steps 2 and 3 is the same as the proof of Steps 2 and 3 in

Proposition 5.6.

Step 4. Conclusion. Let β = − 1
α . Then (6.37) implies that u satisfies

−∂
2u

∂x2
1

− β
Ç
∂2u

∂x2
2

+
∂2u

∂x2
3

å
+ icux1 − F (|1 + u|2)(1 + u) = 0 in D′(R3).
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For σ2 = 1
β , we see that u1,σ satisfies (1.4). It is clear that u1,σ ∈ C and u1,σ

minimizes A (respectively Ec) in C. Finally, the regularity of u1,σ (thus the

regularity of u) follows from Lemma 5.5. �

7. Further properties of traveling waves

By Propositions 5.6 and 6.5 we already know that the solutions of (1.4)

found there are in W 2,p
loc (RN ) for any p ∈ [1,∞) and in C1,α(RN ) for any

α ∈ (0, 1). In general, a straightforward bootstrap argument shows that the

finite energy traveling waves of (1.1) have the best regularity allowed by the

nonlinearity F . For instance, if F ∈ Ck([0,∞)) for some k ∈ N∗, it can

be proved that all finite energy solutions of (1.4) are in W k+2,p
loc (RN ) for any

p ∈ [1,∞) (see, for instance, Proposition 2.2 (ii) in [42]). If F is analytic, it

can be proved that finite energy traveling waves are also analytic. In the case

of the Gross-Pitaevskii equation, this has been done in [5].

Our next result concerns the symmetry of those solutions of (1.4) that

minimize Ec in C.
Proposition 7.1. Assume that N ≥ 3 and conditions (A1) and (A2) in

the introduction hold. Let u ∈ C be a minimizer of Ec in C. Then, after a trans-

lation in the variables (x2, . . . , xN ), u is axially symmetric with respect to Ox1.

Proof. Let Tc be as in Lemma 4.7. We know that any minimizer u of Ec
in C satisfies A(u) = N−1

2 Tc > 0. Using Lemma 4.8(i), it is easy to prove that

a function u ∈ X is a minimizer of Ec in C if and only if

(7.1) u minimizes the functional Pc in the set

ß
v ∈ X | A(v) =

N − 1

2
Tc

™
.

The minimization problem (7.1) is of the type studied in [43]. All we have

to do is to verify that assumptions (A1c) and (A2c) in [43, p. 329] are satisfied

and then to apply the general theory developed there.

Let Π be an affine hyperplane in RN parallel to Ox1. We denote by sΠ

the symmetry of RN with respect to Π and by Π+, Π− the two half-spaces

determined by Π. Given a function v ∈ X , we denote

vΠ+(x) =

v(x) if x ∈ Π+ ∪Π,

v(sΠ(x)) if x ∈ Π−

and

vΠ−(x) =

v(x) if x ∈ Π− ∪Π,

v(sΠ(x)) if x ∈ Π+.

It is easy to see that vΠ+ , vΠ− ∈ X . Moreover, for any v ∈ X , we have

A(vΠ+) +A(vΠ−) = 2A(v) and Pc(vΠ+) + Pc(vΠ−) = 2Pc(v).

This implies that assumption (A1c) in [43] is satisfied.
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By Propositions 5.6 and 6.5 and Lemma 5.5 we know that any minimizer

of (7.1) is C1 on RN , hence assumption (A2c) in [43] holds. Then the axial

symmetry of solutions of (7.1) follows directly from Theorem 2′ in [43, p. 329].
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H. Poincaré Anal. Non Linéaire 23 (2006), 765–779. MR 2259616. Zbl 1122.

35133. http://dx.doi.org/10.1016/j.anihpc.2005.09.004.

[22] P. Gérard, The Gross-Pitaevskii equation in the energy space, in Stationary

and Time Dependent Gross-Pitaevskii Equations, Contemp. Math. 473, Amer.

Math. Soc., Providence, RI, 2008, pp. 129–148. MR 2522016. Zbl 1166.35373.

http://dx.doi.org/10.1090/conm/473/09226.

http://www.zentralblatt-math.org/zmath/en/search/?q=an:0933.35177
http://www.numdam.org/item?id=AIHPA_1999__70_2_147_0
http://www.numdam.org/item?id=AIHPA_1999__70_2_147_0
http://www.ams.org/mathscinet-getitem?mr=1325903
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0823.35017
http://dx.doi.org/10.1137/S0036141092237029
http://dx.doi.org/10.1137/S0036141092237029
http://www.ams.org/mathscinet-getitem?mr=1771523
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0967.46026
http://dx.doi.org/10.1007/BF02791533
http://dx.doi.org/10.1007/BF02791533
http://www.ams.org/mathscinet-getitem?mr=0697382
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0511.46001
http://www.ams.org/mathscinet-getitem?mr=0765961
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0579.35025
http://dx.doi.org/10.1007/BF01217349
http://www.ams.org/mathscinet-getitem?mr=2070812
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1054.35091
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1054.35091
http://dx.doi.org/10.1016/j.na.2003.10.028
http://www.arxiv.org/abs/1203.1912
http://www.arxiv.org/abs/1210.1315
http://www.ams.org/mathscinet-getitem?mr=1646182
http://dx.doi.org/10.1007/s100510050178
http://dx.doi.org/10.1007/s100510050178
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0804.28001
http://www.ams.org/mathscinet-getitem?mr=1659256
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1074.35504
http://www.ams.org/mathscinet-getitem?mr=2001707
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1126.35063
http://dx.doi.org/10.1007/s00605-002-0514-z
http://dx.doi.org/10.1007/s00605-002-0514-z
http://www.ams.org/mathscinet-getitem?mr=2424376
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1156.35086
http://dx.doi.org/10.1080/03605300802031614
http://dx.doi.org/10.1080/03605300802031614
http://www.ams.org/mathscinet-getitem?mr=2259616
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1122.35133
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1122.35133
http://dx.doi.org/10.1016/j.anihpc.2005.09.004
http://www.ams.org/mathscinet-getitem?mr=2522016
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1166.35373
http://dx.doi.org/10.1090/conm/473/09226


TRAVELING WAVES FOR NONLINEAR SCHRÖDINGER EQUATIONS 181
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