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Traveling waves for
nonlinear Schrodinger equations
with nonzero conditions at infinity

By MiHAT MARIS

Dedicated to Jean-Claude Saut, who gave me water to cross the desert

Abstract

For a large class of nonlinear Schrédinger equations with nonzero condi-
tions at infinity and for any speed c less than the sound velocity, we prove
the existence of nontrivial finite energy traveling waves moving with speed
c in any space dimension N > 3. Our results are valid as well for the
Gross-Pitaevskii equation and for NLS with cubic-quintic nonlinearity.

1. Introduction

We consider the nonlinear Schrodinger equation

(1.1) z’ac,;erAchrF(\ch)q):o in RY,

where ® : RV x R — C satisfies the “boundary condition” |®| — 7o as
|z| — 00, 79 > 0 and F is a real-valued function on R satisfying F(r2) = 0.

Equations of the form (1.1), with the considered nonzero conditions at
infinity, arise in a large variety of physical problems. They have been used
as models for superconductivity, superfluid Helium II and for Bose-Einstein
condensation ([2], [3], [4], [16], [25], [28], [31], [33], [32]). In nonlinear optics,
they appear in the context of dark solitons, which are localized nonlinear waves
(also called “holes”) moving on a stable continuous background (see [36], [44]).
The boundary condition |®| — 7 at infinity is precisely due to the nonzero
background.

Two important particular cases of (1.1) have been extensively studied by
physicists and by mathematicians: the Gross-Pitaevskii (GP) equation (where
F(s) =1 —s) and the so-called “cubic-quintic” Schrédinger equation (where
F(s) = —a1+ass—ass?, a1, as, as are positive and F has two positive roots).
In both cases we have F’(r3) < 0, which ensures that (1.1) is defocusing.
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The boundary condition |®| — 79 > 0 at infinity makes the structure
of solutions of (1.1) much more complicated than in the usual case of zero
boundary conditions (when the associated dynamics is essentially governed by
dispersion and scattering). This fact is confirmed by the existence of a remark-
able variety of special solutions, such as traveling waves or vortex solutions,
and regimes, like the long wave or the transonic limit.

Using the Madelung transformation ®(z,t) = +/p(x, 1)@ (which is
well defined whenever ® # 0), equation (1.1) is equivalent to a system of
Fuler’s equations for a compressible inviscid fluid of density p and velocity
2V6. In this context it has been shown that, if F is C! near r¢ and F’(r¢) < 0,
the sound velocity at infinity associated to (1.1) is vs = rg\/—2F"(r2); see the
introduction of [42].

In the defocusing case F'(rg) < 0, we perform a simple scaling (®(x,t) =
ro® (%, 1), where & = ro\/—F'(r3)z, t = —r3F'(r3)t, and F(s) = T(Q)F%bg)F(T%s))
and we assume from now on that 79 = 1 and F’(r3) = —1. The sound velocity
at infinity then becomes vy = /2.

Equation (1.1) is Hamiltonian. Denoting V(s) = fsl F(7)dr, it is easy to
see that, at least formally, the “energy”

(1.2) B(®) :/RN |V<I>2dx+/RN V(| da

is a conserved quantity.
A second conserved quantity for (1.1) is the momentum

P(®) = (PL(®), ..., Pn(®)),

which describes the evolution of the center of mass of ®. Assuming that ® —1
at infinity in a suitable sense and denoting by (-,-) the scalar product in C,
the momentum is formally given by

(13) Re@) = [ o

N Za—mk, ® —1)dax.

Traveling waves and the Roberts programme. In a series of papers (see,
e.g., [2], [3], [25], [31], [32], [33]), particular attention has been paid to a spe-
cial class of solutions of (1.1), namely the traveling waves. These are solutions
of the form ®(x,t) = 1(z — cty), where y € SV~1 is the direction of propa-
gation and ¢ > 0 is the speed of the traveling wave. We say that 1 has finite
energy if Vi € L2(RY) and V(|¢|?) € L*(RY). These solutions are supposed
to play an important role in the dynamics of (1.1). In view of formal computa-
tions and numerical experiments, a list of conjectures, often referred to as the
Roberts programme, has been formulated about the existence, the qualitative
properties, the stability of traveling waves and, more generally, their role in
the dynamics of (1.1).
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Figure 1. Energy (E) momentum (p) diagrams for (GP): (a) in
dimension 2; (b) in dimension 3.

Let 1 be a finite energy traveling wave of (1.1) moving with speed c.
Without loss of generality we may assume that y = (1,0,...,0). If N > 3, it
follows that 1) — 2o € L* (RN) for some constant zy € C, where 2* = % (see,
e.g., Lemma 7 and Remark 4.2 in [21, pp. 774-775]). Since || — 1 as |z| —
00, necessarily |zg| = 1. If @ is a solution of (1.1) and a € R, then €'*® is also
a solution. Hence we may assume that zgp = 1; thus ¢y —1 € L2 (R"). Let u =

1y—1. We say that u has finite energy if ¢ does so. Then u satisfies the equation
0

(1.4) —ica—“+Au+F(|1+u|2)(1+u)=o in RV.
z1

It is obvious that a function wu satisfies (1.4) for some velocity c if and only if
u(—x1,2") satisfies (1.4) with ¢ replaced by —c. Hence it suffices to consider
the case ¢ > 0. This assumption will be made throughout the paper.

For the Gross-Pitaevskii equation, C. A. Jones, C. J. Putterman and
P. H. Roberts computed the energy and the momentum of the traveling waves
they had found numerically. In space dimension two and three, they obtained
the curves given in Figure 1.

Formally, traveling waves are critical points of the energy F when the
momentum (with respect to the direction of propagation Ox;) is fixed, say
Py = p. Equation (1.4) is precisely the Euler-Lagrange equation associated to
this variational problem, and the speed c is the Lagrange multiplier. Note also
that, formally, ¢ = %—g.

The first conjecture in the Roberts programme asserts that finite energy
traveling waves of speed c¢ exist if and only if |¢| < vs.

In space dimension N = 1, in many interesting applications equation (1.4)
can be integrated explicitly and one obtains traveling waves for all subsonic
speeds. The nonexistence of such solutions for supersonic speeds has also been
proven under general conditions (cf. Theorem 5.1 in [42, p. 1099]).

Despite many attempts, a rigorous proof of the existence of traveling waves
in higher dimensions has been a long lasting problem. In the particular case
of the Gross-Pitaevskii (GP) equation, this problem was considered in a series
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of papers. In space dimension N = 2, the existence of traveling waves was
proven in [8] for all speeds in some interval (0,¢), where ¢ is small. In space
dimension N > 3, the existence was proven in [7] for a sequence of speeds
¢n — 0 by using constrained minimization; a similar result was established in
[13] for all sufficiently small speeds by using a mountain-pass argument. In [5],
the existence of traveling waves for (GP) was proven in space dimension N = 2
and N = 3 by minimizing the energy at fixed momentum. The propagation
speed is then the Lagrange multiplier associated to minimizers. If N = 2, this
gives solutions for any speed in a set A C (0,vs), where A contains points
arbitrarily close to 0 and to vy (although it is not clear that A = (0,vs)). It
was shown later in [14] that the minimization of the energy at fixed momentum
can be used in any dimension N > 2 for general nonlinearities such that the
nonlinear potential V' appearing in the energy is nonnegative. Moreover, the
set of solutions that it gives is orbitally stable. However, this method has two
disadvantages. Firstly, it is not clear that the set of speeds of traveling waves
constructed in this way form an interval. Secondly, it was proved in [5] and [37]
that in space dimension N > 3 there exists vy € (0,vs) such that minimizing
the energy at fixed momentum cannot give traveling waves of speed ¢ € (v, vs).
In particular, the “upper branch” in Figure 1(b) cannot be obtained in this way.

In the case of cubic-quintic type nonlinearities, it was proved in [41] that
traveling waves exist for any sufficiently small speed if N > 4.

To our knowledge, even for specific nonlinearities there are no existence
results in the literature that cover the whole range (0, vs) of possible speeds.

The nonexistence of traveling waves for supersonic speeds (¢ > vg) was
proven in [26] in the case of the Gross-Pitaevskii equation, respectively in [42]
for a large class of nonlinearities.

It is the aim of this paper to prove the existence of nontrivial finite energy
traveling waves of (1.1) in space dimension N > 3, under general conditions
on the nonlinearity F' and for any speed ¢ € (0, vy).

The qualitative properties of traveling waves have been extensively investi-
gated. It turns out that these solutions have the best regularity allowed by the
nonlinearity F (see, for instance, [18], [19], [42]). It was proved in [5] that the
traveling waves to the (GP) equation are analytic functions. In view of formal
computations, Jones, Putterman and Roberts ([32]) predicted the asymptotic
behavior of traveling waves as |x| — oo. For the (GP) equation, the asymp-
totics have been computed by P. Gravejat (see [27] and references therein). It
is likely that the proofs of Gravejat can be adapted to general nonlinearities.

Even for specific nonlinearities (such as (GP)), the vortex structure of
traveling waves is not yet completely understood. It was conjectured in [33],
[32] that there is a critical speed ¢, (corresponding to the energy E, and mo-
mentum p,) such that traveling waves of speed less than ¢, present vortices,
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while those of speed greater than ¢, do not. The small velocity solutions to
(GP) constructed in [8], [7], [13] have vortices. For other nonlinearities, the be-
havior may be different. For instance, small speed traveling waves constructed
in [41] in the case of nonlinearities of cubic-quintic type do not have vortices.
We suspect that traveling waves constructed in the present paper develop vor-
tices in the limit ¢ — 0 if and only if (1.1) does not admit finite energy
stationary solutions. For general nonlinearities, it was recently proved in [15]
that traveling waves do not have vortices if ¢ is close to vs and N € {2,3}.

The energy-momentum diagrams for (GP) suggest that there are traveling
waves of arbitrarily small energy and momentum in dimension two. Such
solutions were obtained in [5] by minimizing the energy at fixed (and small)
momentum; their velocities are close to vs. A similar result holds for general
nonlinearities; see [14]. A scattering theory for small energy solutions to (1.1)
in dimension two is therefore excluded.

The situation is completely different in higher dimensions. It was noticed
in [32] that the energy and the momentum of the three-dimensional traveling
waves for (GP) are bounded from below by positive constants Fyi, and pmin,
respectively. It was proved in [5] that the three-dimensional (GP) equation
does not admit small energy traveling waves, and the proof was later extended
to higher dimensions in [37]. It turns out that this result is true for general
nonlinearities: for any N > 3, there is ky > 0 such that any traveling wave U
to (1.1) satisfying [|VU||2(gvy < kny must be constant (see [14, Prop. 1.4]).
This result can be further improved in dimension N > 6 (see [15, Prop. 18]).
Moreover, S. Gustafson, K. Nakanishi and T.-P. Tsai [29], [30] established a
scattering theory of small solutions to (GP) in dimension N > 4 (in the energy
space) and N = 3 (in some weighted space).

In view of formal computations, Jones, Putterman and Roberts conjec-
tured that after a suitable rescaling, the modulus and the phase of traveling
waves converge in the transonic limit ¢ — vs to the solitary waves of the
Kadomtsev-Petviashvili I (KP-I) equation. The present paper is the first to
provide finite energy traveling waves to (1.1) of speed close to vs in dimension
N > 3. Very recently it was proved that for general nonlinearities, the three-
dimensional traveling waves found here have modulus close to 1 (thus can be
lifted) and their phase and modulus tend, after rescaling, to ground states of
the KP-I equation (see [15], Theorem 6). Precise estimates on their energy and
momentum have also been established in [15] and are in full agreement with
those in [33] and [32]. Hence the conjecture concerning the existence of the
“upper branch” of travelling waves has been proven in dimension three (with
one exception: it is not clear that we have a continuum of solutions). Quite
unexpectedly, a similar asymptotic behavior of traveling waves in the transonic
limit cannot be true in dimension N > 4 (cf. [15, Prop. 19)).
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A much more difficult problem is to understand the stability of traveling
waves and, more generally, their role in the dynamics of (1.1). The guess
formulated in [32] is that the two-dimensional traveling waves represented in
the momentum-energy diagram in Figure 1 should be stable. In the three-
dimensional case solutions on the “lower branch” should be stable, while those
on the “upper branch” should be unstable. It is also suggested in [32, p. 3000]
that a solution of (GP) starting in a neighborhood of the upper branch could
eventually “collapse” onto the lower branch, generating “sound waves that
radiate the excess energy. .. to infinity.”

Before even speaking of stability, one has to understand the well-posedness
of the Cauchy problem associated to (1.1). Important progress has been
achieved in this direction during the last years; we refer to the survey pa-
per [22] (see also [20]). It was proved in [21], [22] that in the subcritical case
N € {1,2,3}, the Cauchy problem for (GP) is globally well-posed for all initial
data in the energy space, and that in the critical case N = 4 it is globally
well-posed for initial data with small energy. The method in [21], [22] adapts
to other nonlinearities, including the cubic-quintic case. (Note that the cubic-
quintic NLS becomes critical in dimension three.) Global well-posedness of the
four-dimensional (GP) and of the three-dimensional cubic-quintic NLS for all
initial data in the energy space has been recently proven in [35].

In dimension one, traveling waves to (GP) are known explicitly. Their
orbital stability has been studied and proven in [39], [6], [23]. Other nonlin-
earities are also considered in [39]. The asymptotic stability of these solutions
is not known.

If the nonlinear potential V' is nonnegative, traveling waves can be ob-
tained by minimizing the energy at fixed momentum. Moreover, all minimiz-
ing sequences are precompact, and this gives the orbital stability of the set of
solutions constructed in this way (cf. [14, Th. 6.2]). For the (GP) equation,
the results in [14] imply the orbital stability of the full branch of traveling
waves in dimension 2 and of traveling waves situated on the “lower branch”
below the line F = vgp in dimension 3. If V' changes sign, a local minimization
of the energy at fixed momentum is still possible in dimension 2 and gives a
branch of orbitally stable traveling waves. To our knowledge, the orbital stabil-
ity /instability of solutions corresponding to the “upper branch” in dimension
3 as well as the asymptotic stability of traveling waves in any dimension N > 2
are still open problems.

Main results. We will consider the following set of assumptions:
(A1) The function F is continuous on [0,00), C! in a neighborhood of 1,
F(1)=0and F'(1) = —-1.
(A2) There exist C > 0 and py < 25 such that [F(s)| < C(1+ s) for any
s> 0.
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(A3) There exist C, ap > 0 and r, > 1 such that F(s) < —Cs® for any
S > Ty.

Our main results can be summarized as follows.

THEOREM 1.1. Assume that N >3, 0 < ¢ < vg and conditions (A1) and
(A2) are satisfied. Then equation (1.4) admits a nontrivial finite energy solu-
tion u. Moreover, u € VVi’f(RN) for any p € [1,00) and, after a translation,
u s axially symmetric with respect to Ox;.

COROLLARY 1.2. Suppose that N > 3, 0 < ¢ < vs and conditions (A1)
and (A3) are verified. Then equation (1.4) admits a nontrivial finite energy
solution u such that u € W'li’f(RN) for any p € [1,00) and, after a translation,
u 18 azially symmetric with respect to Ox1.

It is easy to see how Corollary 1.2 follows from Theorem 1.1. Indeed,
suppose that Theorem 1.1 holds. Assume that (Al) and (A3) are satisfied.
Let C, 1., ap be as in (A3). There exist 8 € (0, %), 7 > 1y and C1 > 0 such
that

1
082a0_§ > Cy(s — 7)2P for any s > 7.

Let F be a function with the following properties: F' = F on [0,472], F(s) =
—CysP for s sufficiently large, and F(SQH—% < —C3(s—7)28 for any s > 7, where
Cy, Cs are some positive constants. Then F satisfies (A1), (A2), (A3) and
Theorem 1.1 implies that equation (1.4) with F' instead of F' has a nontrivial
finite energy solution u. From the proof of Proposition 2.2(i) in [42, pp. 1079—
1080] it follows that any such solution satisfies |1+u|? < 272 and, consequently,
F(J1 4 ul?) = F(|1 + u|?). Thus u satisfies (1.4).

We have to mention that the traveling waves in Theorem 1.1 are obtained
as minimizers of the functional F + c¢P; under a Pohozaev constraint (see
below), where E is the energy and P; is the momentum with respect to z;. Of
course, if (A1) and (A3) are satisfied but (A2) does not hold, we do not claim
that the solutions given by Corollary 1.2 still solve the same minimization
problem. In fact, assumptions (A1) and (A3) alone do not imply that E is
well defined on a convenient function space.

In particular, for F'(s) = 1 — s, conditions (Al) and (A3) are satisfied.
It follows that the Gross-Pitaevskii equation admits nontrivial traveling waves
of finite energy in any space dimension N > 3 and for any speed ¢ € (0, vs)
(although (A2) is not true for N > 3: the (GP) equation is critical if N =4,
and supercritical if N > 5). A similar result holds for the cubic-quintic NLS.

Notation and function spaces. Throughout the paper, £V is the Lebesgue
measure on RY and wy = £V(B(0,1)) is the Lebesgue measure of the unit
ball. For z = (z1,...,7x) € RY, we denote 2’ = (x3,...,7y) € RV7L. We
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write (z1,z2) for the scalar product of two complex numbers z1,z9. Given a
function f defined on RN and \, o > 0, we denote by

_ (e
(15 ho=1(5%)

the dilations of f. The behavior of functions and of functionals with respect
to dilations in RN will be very important. For 1 < p < N, we denote by p*
1_ 1

the Sobolev exponent associated to p; that is, 1% =5 N

If (A1) is satisfied, let V(s) = fsl F(1)dr. Then the sound velocity at
infinity associated to (1.1) is vs = v/2 and using Taylor’s formula for s in a
neighborhood of 1, we have

(1.6) V(s) = %V”(l)(s —1)2 4+ (s—1)%(s—1) = %(s —1)2 (s —1)%(s— 1),

where e(t) — 0 as t —» 0. Hence V(|1|?) can be approximated by 3 (|2 —
for || close to 1.

We fix an odd function ¢ € C*°(R) such that ¢(s) = s for s € [0,2],
0<¢" <1onRand p(s) =3 for s > 4. If assumptions (Al) and (A2) are
satisfied, it is not hard to see that there exists C; > 0 such that

(1.7) [V(s)] < Ci(s —1)% for any s < 9;
in particular, |V (p?(7))| < C1(¢*(1) — 1)? for any 7.

Given u € HL (R") and an open set Q C R", the modified Ginzburg-Landau
energy of u in §2 is defined by

(1.8) B2, (u /|Vu|2dx—|—2/ 211+ uf) — 1) dr.

We simply write Egr,(u) instead of EgﬁV (u). The modified Ginzburg-Landau
energy will play a central role in our analysis. We consider the function space

(1.9) X ={ueD?RY)| (|1 +u|) —1e L>RN)
={ue HY(RM) |ue L¥ (RY), Eqr(u) < 0o},

where DV2(RY) is the completion of C2°(RY) for the norm ||v|| = ||Vo|| 2.

Since ?(|1+u|)—1=(p(|14+u])+1)(e(|14+u])—1) and 1 < (|14+u])+1<4,
it is obvious that ¢?(|1+u|)—1 € L?(RY) if and only if (|1 +u|)—1 € L2(RN).
Let N > 3. We claim that for u € DY2(RY), there holds (|1 +u|) — 1 €
L2RN) if and only if |1 + u| — 1 € L2(RY). Indeed, if |1 + u| < 2, then
o(|1 +u|) = |1 +ul. If |1 +u| > 2, then necessarily |u| > 1 and

0<[14ul—(l+u]) <|l+ul <2ul <2ul?
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For N > 3, we have DM?(RY) c L? (R") by the Sobolev embedding; hence
\u]% € L?(R") and the claim follows. We have thus proved that
X ={ueD*RY) | [L+ul-1€®RY)).

If N > 3 and (Al), (A2) are satisfied, it is not hard to see that the
function 1 = 1 + u satisfies Vi € L2(RY) and V(|¢|?) € L*(RY) if and only
if u € X (see Lemma 4.1 below). Note that for N = 3, X' is not a vector space.
However, in any space dimension, we have H'(RY) c X. If u € X, it is easy
to see that for any w € H'(RY) with compact support, we have u + w € X.
For N = 3,4, it can be proved that u € DM?(RY) belongs to X if and only
if [14+wu/? -1 € L?(RY), and consequently X coincides with the space F}
introduced by P. Gérard in [21, §4].

Some ideas in the proofs and outline of the paper. At least formally, the
solutions of (1.4) are critical points of the functional

(1.10) Eo(u) = E(u) + cQ(u) :/RN ]Vu\de—i—cQ(u)—i—/RN V(1 + uf?) da,

where Q = P; is the momentum with respect to the x1-direction.

It is the aim of Section 2 to give a convenient definition of the momentum
on the whole space X and to study its basic properties. For now, the formal
definition (1.3) is sufficient.

The existence of finite energy traveling waves has been conjectured for
all subsonic speeds, and the nonexistence of such solutions is known for all
supersonic speeds (at least under some additional technical assumptions; see
[42]). Thus it is important to understand what changes in the structure of E,
as ¢ crosses the sound velocity.

If 0 < ¢ < /2, we may choose ¢, § > 0 such that ¢ < v/2(1 — 2¢)(1 — §).
Assume that u € X satisfies 1 — 9§ < |1 +u| < 14 6. Then there is a lifting
1+ u = pe?, and a simple computation shows that

VUl = Vol +20F, Q) == [ (=1 de

and

V(4 uP) = V() = 507 1 +ol(? ~ 1) =

provided that § is sufficiently small. Then we have

(1.11) QU < Va1 —22)(1=5) [ 1o~ 1-

o0
<(1-2 1—0)2=—| +=(p*>—1)?
< ( 6)/RN( 5) pr +5(" —1)7de

< [ =2 902 + V(D) = (6= 1) da
RN 2
< E(u) — eEgL(u).

dx

dry
2
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Thus E.(u) > eEqr(u) if |1 + u| is sufficiently close to 1 in the L* norm.
Since Egr,(u) measures, in some sense, the closeness of 1 4+ u to 1, we would
like to establish a similar estimate for all functions with small Ginzburg-Landau
energy. However, Egr,(u) does not control || [14+u|—1|| . Moreover, there are
functions with arbitrarily small Ginzburg-Landau energy that present small-
scale topological “defects” (e.g., dipoles). To get rid of these difficulties we
use a procedure of regularization by minimization, which is introduced and
studied in Section 3. Given u € X', we minimize the functional v — Eqp,(v)+
7z Jay ©(Jv — u|?)dz in the set {v € X | v —u € H'(RNM)}. It is shown
that minimizers exist (but are perhaps not unique) and any minimizer v, has
remarkable properties. For instance,

* Ecr(va) < Egr(u),

e ||vp, —ulf2 —> 0as h — 0, and

e || |1 + vp| — 1]|z~ can be estimated in terms of h and Egy(u) and is
arbitrarily small if Eqy,(u) is sufficiently small.

In Section 4 we describe the variational framework. Using the above
regularization procedure we prove that for any ¢ € (0,1 — i) and for all u € X
with Egr(u) sufficiently small, there holds E.(u) > eEgp(u). Then we show
that for all £ > 0, the functional E. is bounded on the set {ue X' | Eqr,(u) <k}.

Let
E¢min(k) = inf{E.(u) |u e X, Eqr(u) = k}.
We prove that for 0 < ¢ < v, the function E. min has the following properties:

(i) For any ¢ € (0,1 — i), there is k. > 0 such that E;in(k) > €k for
ke (0, k).
(11) hmk_,oo Ec,min(k) = —OQ.
(iii) For any k > 0, we have E,min(k) < k.
The situation is very different if ¢ > v,: in that case it can be proved that
E¢ min is negative and decreasing on (0, 00).

In order to get critical points of E., it is tempting to minimize FE.(u)
under the constraint Fgr,(u) = k or Q(u) = k, where k is a constant, and
then to search for those k£ that give minimizers with the associated Lagrange
multiplier equal to zero. However, it is well known that it is hard to control the
Lagrange multipliers in minimization problems that do not have appropriate
scaling or homogeneity properties. In order to avoid that difficulty we adopt
the following strategy. We introduce the functionals:

2

ou dz,

0z

N
12 Aw= | jz;

ou

2
2
o dm+cQ(u)+/RN V(1 + uf?) da,

(113)  Bo(u) = [RN
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(114)  Pow) = Y23 Aw) + Bu(u).
N-1

It is obvious that E.(u) = A(u) + Be(u) = 327 A(u) + Pe(u). If assumptions
(Al) and (A2) above are satisfied, it can be proved (see Proposition 4.1 in
[42, pp. 1091-1092]) that any traveling wave u € X of (1.1) must satisfy the
Pohozaev-type identity P.(u) = 0. Indeed, it is easy to see that for any u € X,
we have E.(u1,) = oV 73A(u) + oV "1 B.(u). Formally, a critical point u of
E. should satisfy %‘UZI(EC(uLU)) = 0, which gives precisely P.(u) = 0. We
will prove the existence of traveling waves by showing that the problem of
minimizing F. in the set

C={ueX|u#0,P.(u) =0}

admits solutions. It turns out that minimizing a functional under a Pohozaev
constraint (almost) automatically generates critical points of that functional;
that is, the Lagrange multiplier is fixed. This is a very general observation
which seems to work in many problems in Calculus of Variations. To our
knowledge, it is used here for the first time. Let us explain how it works for FE,
in dimension N > 4. Assume that u € C satisfies the Euler-Lagrange equation
E!(u) = aP(u). Then u is a critical point of the functional E.—aP,. Formally,
we have %W:l(EC(“LU) — aP.(u1,)) = 0, which is equivalent to

Pu(w) — a {(ﬁf Alu) + BCM 0.

Since P.(u) = 0, the above identity implies a% : (% - 1) A(u) = 0; thus
either A(u) =0 (and u is constant), or a = 0.

The next step is to prove that C is not empty and inf{E.(u) | v € C} > 0.
Let us present here the arguments in dimension N > 4. If u € C, we have
Be(u) = —8=3A(u) < 0. Then it is easy to see that the function o —
E.(u1,) = oV 3 A(u) + oN"1B.(u) is increasing on (0,1) and decreasing on
(1,00); thus it achieves a maximum at o = 1. Hence

E.(u) = Ec(u11) > Ec(u1,6) > Eemin(EcL(u1,6)) for all o > 0.
Since 0 — Egr,(u1,,) takes all values in (0, c0), we infer that
T, = inf{E.(u) | u € C} > sup{Ecmin(k) | k> 0} > 0.

In Section 5 we consider the case N > 4 and we prove that the functional
E. has minimizers in C and these minimizers are solutions of (1.4). To show
the existence of minimizers we use the concentration-compactness principle and
the regularization procedure developed in Section 3. The most difficult part is
to show that minimizing sequences do not “vanish”; that is, their Ginzburg-
Landau energy does not spread over RY. Assume that N > 4 and (up)n>1
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is a minimizing sequence for E. on C that “vanishes.” Letting og = %
and Uy, = (un)1,0,, We see that (uy,),>1 also vanishes and A(dy,) + Ec(t,) =
oy ' Pe(un) = 0. Since A(i,) = op *A(u,) and A(u,) = Y (Ee(un) —
P.(uy)) > %TC > 0, we get

(1.15) lim sup E. () < 0.

n—oo

On the other hand, the vanishing of (@y,),>1 implies that

[ovirsade =5 [ (014 - 1) do o).

Using the regularization procedure in Section 3 (see Lemma 3.2) we construct
a sequence h, —> 0, and for each n, we find a minimizer v,, of the functional
EcrL(v)+ 75 Jan ¢(|v — @y |?) da such that || |14 v, —1]|fee — 0 as n — oo.
Then we have Q(tn) = Q(vy) +0(1) and

(1.16)  Eu(iin) = Bar(iin) + cQ(iin) + o(1) = Ear(va) + cQ(vn) + o(1) > 0

for all n sufficiently large by (1.11). It is clear that (1.15) and (1.16) give a
contradiction, and this rules out vanishing.

If “dichotomy” occurs, the Ginzburg-Landau energy of u, is located in
two regions that are far away from each other as n — oco. Using again the
regularization procedure we show that there are functions w1, u, 2 such that
(EgL(un,i))n>1 is bounded and stays away from zero for i = 1,2, and
(1.17)
|A(un) — A(un,1) — A(up2)| — 0 and  |P.(up) — Pe(un1) — Pe(un2)| — 0

as n — oo. It is easy to see that (P.(un;))n>1 is bounded for i = 1,2.
Passing again to a subsequence, we may assume that P.(u,1) — p; and
Pc(un,2) — po, where p1 + py = 0.

If p1 = p2 = 0, we show that liminf, oo Ec(upn) > T for i = 1,2, and
then

liminf E.(uy,) = Uminf(Ee(un,1) + Ec(unz2)) > 21, a contradiction.
n—oo n—oo

If p1 < 0, we use Lemma 4.8(ii), which asserts that for any bounded se-
quence (v, )p>1 C A satisfying lim,, o0 Pe(vy,) <0, there holds lim inf,, o0 A(vy,)
> %Tc. Hence,

2
liminf E.(uy,) = liminf A(u,) > N liminf A(uy,,1) > T,

n—00 — 1 n—oo — n—00

again a contradiction. A similar argument is valid if py < 0.

Since “vanishing” and “dichotomy” are excluded, necessarily “concentra-
tion” occurs, and then we show that (uy,),>1 has a subsequence which converges
to a minimizer of E. in C.
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There are some important differences in the case N = 3 with respect to
the case N > 4, most of them due to different scaling properties. For instance,
for any v € X, we have A(v1,) = A(v) and B.(v1,) = 0%B.(v). If v € C, for
all ¢ > 0, we have

P.(v14) = Be(v1,) = 0?Be(v) =0 and  E.(v1,) = A(v1,) = A(v) = E(v).

It is then clear that one may expect convergence of minimizing sequences for
E. in C only after scaling. The proofs that vanishing and dichotomy do not
occur are also a bit more involved. We treat the case N = 3 separately in
Section 6.

Next we have to prove that any minimizer u of E. in C is nondegenerate
and satisfies a Euler-Lagrange equation E.(u) = aP.(u) (then necessarily o =
0, as explained above). This is done in Proposition 5.6 in the case N > 4,
respectively in Lemma 6.4 and Proposition 6.5 in the case N = 3.

Finally, we prove that traveling waves found by minimization in Sections 5
and 6 are axially symmetric (as one would expect from physical considerations;
see [33]).

In space dimension two the situation is different, mainly because of dif-
ferent scaling properties. Indeed, if N = 2, it is easy to see that for any
nonconstant function u satisfying P.(u) = 0, the mapping o — E.(u1,) is
decreasing on (0, 1] and increasing on [1, 00); hence it achieves its minimum at
o = 1. This is exactly the opposite of what happens in the case N > 4, when
E.(u1,) reaches its maximum at ¢ = 1. It can be proved that for N = 2, we
have inf{E.(u) | v € X,u # 0, P.(u) = 0} = 0 and there are no minimizers
of E. subject to the constraint P. = 0. By using different approaches, the
existence of two-dimensional traveling waves has recently been proven in [14]
for a set of speeds that contains elements arbitrarily close to zero and to ws.
The existence for all speeds ¢ € (0,vs) is still an open problem. Although
some of the results in Sections 2—4 are also valid in space dimension N = 2
(with straightforward modifications in the proofs), for simplicity we assume
throughout that N > 3.

If ¢ = 0 and assumptions (A1) and (A2) are satisfied, equation (1.4) has
finite energy solutions if and only if the nonlinear potential V' achieves negative
values. The existence follows, for instance, from Theorems 2.1 and 2.2 in [12,
pp. 100 and 103] (see also [9]). On the other hand, any finite energy solution
1 of the equation A+ F(|1?)y = 0 in R satisfies the Pohozaev identity

(V=2 [ VuPde+N [ V(e =0

(see, e.g., Lemma 2.4 in [12, p. 104]), and then it is clear that ¢ must be
constant if V' is nonnegative. In the case ¢ = 0, our proofs imply that Fy has
a minimizer in the set {u € X | u # 0, Po(u) = 0} whenever this set is not
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empty. Then it is not hard to prove that minimizers satisfy (1.4) for ¢ = 0
(after a scale change if N = 3). However, for simplicity we assume throughout
(unless the contrary is explicitly mentioned) that 0 < ¢ < w;.

2. The momentum

A good definition of the momentum is essential in any attempt to find
solutions of (1.4) by using a variational approach. Roughly speaking, the
momentum (with respect to the x;-direction) should be a functional with de-
rivative 2iu,,. Various definitions have been given in the literature (see [8],
[5], [7], [41]), any of them having its advantages and its inconveniences. Unfor-
tunately, none of them is valid for all functions in X. We propose a new and
more general definition in this section.

It is clear that for functions u € H'(R"), the momentum should be given
by

(2.1) Q1(u) —/RN@uxl,u) dx,

and this is indeed a nice functional on H'(RY). The problem is that there are
functions u € X \ H'(R”) such that (iu,,,u) ¢ L*(RY).

If w € X is such that 1 + u admits a lifting 1 + u = pe?, a formal
computation gives

' _ 2 _ 2 _
(2.2) /RN (Tugy,, u) dx = /RN p 0y, do = /RN(p 1)0,, dzx.

It is not hard to see that if u € X is as above, then (p? — 1)0,, € LY(RY).
However, there are many “interesting” functions u € X such that 1 + u does
not admit a lifting.

Our aim is to define the momentum on & in such a way that it agrees with
(2.1) for functions in H'(RY) and with (2.2) when a lifting as above exists.

LEMMA 2.1. Let u € X be such that m < |1 +u(x)| < 2 a.e. (almost
everywhere) on RN, where m > 0. There exist two real-valued functions p, 0
such that p—1 € HY(RYN), 6 € DM2(RN), 1+ u = pe' a.e. on RN and

= aaml(lm(u) —0)— (p* - 1)6851 a.e. on RV,

o

Proof. Since 1 +u € H (RY), the fact that there exist p,0 € HL (RY)
such that 1 +u = pe® a.e. is standard and follows from Theorem 3 in [10,

(2.3) (Tug, ,u)
Moreover, we have

1
(p* — 1)y, | dx < TEGL(u).

m
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p. 38]. We have

2 2 2

ou

0

o
695]-

00

0z

(2.4) = 2 a.c.on RN for j=1,...,N.

Since p = [1 + u| > m a.e., it follows that Vp, V0 € L*(RN). If N > 3,
we infer that there exist pp,fyp € R such that p — pg and 60 — 6y belong to
L? (RY). Then it is not hard to see that pg = 1 and 6y = 2kom, where
ko € Z. Replacing 0 by 6 — 2kom, we have p — 1,0 € DV2(RY). Since p < 2
a.e., we have p2 — 1 = (|1 + u|)2 — 1 € L*(RY) because u € X. Clearly
lp—1| = % < |p? — 1|; hence p — 1 € L>(RY).

A straightforward computation gives

. . 0 00
<Zum17u> = <Zux1> _1> - p20:p1 = Tm(lm(u) - 9) - (P2 - 1)87321
By (2.4), we have (%gj < % 86772 < %‘867“]_ , and the Cauchy-Schwarz inequality
gives
Lo |67 =00 d < 102 = 111200211
RN
<~ Ulgele e € —Fer(w). O
—|lp* = u — u).
_mp L2 leQ_m\/i GL

LEMMA 2.2. Let x € C°(C,R) be a function such that x =1 on B(0, 1),
0 < x <1 and supp(x) C B(0, %) For an arbitrary v € X, denote u1 = x(u)u
and uz = (1—x(u))u. Thenu; € X, ug € HY(RYN) and the following estimates
hold:

(2.5) |Vu;| < C|Vu| a.e. on RN fori=1,2, where C depends only on ¥,

(2.6)
2* 2*

luzll 2y < ColVul gy and [1(1 = x2(w))ull ) < CollVal 2 g,

(2.7)
2 2 2 2 2+
L G =1) o< [ (G014 ul) = 1) do+ ol Vulfa gy

2 *
(2.8) AJ&m+M%4)W<%WW%wy
Let 1+uy = pe’¥ be the lifting of 14w, as given by Lemma 2.1. Then we have
. . 00 0 00
(29) ity 1) = (1= x2(0) 1) = (3 = g+ 5 () = 37

a.e. on RN.
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Proof. Since |u;| < |u|, we have u; € L2 (RY) for i = 1,2. It is standard

to prove that u; € HL (RY) (see, e.g., Lemma C1 in [10, p. 66]) and we have
ouy O(Re(u)) O(Im(u)) ou

2.10 — =10 — 40 —_— —.
210 50— (0@ 2G4 o 2R Y )

A similar formula holds for ugz. Since the functions z — 9;x(2)z, ¢ = 1,2, are
bounded on C, (2.5) follows immediately from (2.10).
Using the Sobolev embedding, we have

fualle < [ uPLge (@) de < 2

RN

This gives the first estimate in (2.6); the second one is similar.
For |u| < %, we have uj(z) = u(z). Hence,

2 2
/ (*(11+ ) —1) d:cz/ (¢*(11+ul) = 1) da.
{lul<1} {lul<1}

There exists C’ > 0 such that (p?(|1 + 2]) — 1)2 < C'|z|%if |2| > 1. Proceeding
as in the proof of (2.6), for i = 1,2, we have

/ (P4 —1) de < c’/ w2 dz < Col|Vul 3.
{lul>3} {lul>3}
This clearly implies (2.7) and (2.8).

Since 6lx(u)% + agx(u)% € R, using (2.10) we get <i%’u1>
= x2(u) (iug,, u) a.e. ojn R. Then (2.9) Jfollows from Lemma 2.1. O

We consider the space Y = {9,,¢6 | ¢ € H'(RN)}. Tt is clear that ¢y, ¢y €
H'(RM) and 0,,¢1 = 0., ¢ imply that ¢; — ¢5 is constant; hence Vg, = Vo.
Defining

1021 lly = 10l 1y = V622,

it is easy to see that || - |y is a norm on Y and (), | - ||y) is a Banach space.
The following holds.

LEMMA 2.3. Let N >2. For any ve LY(RN)NY, we have [gn v(x) dz=0.

Proof. Take ¢ € H'(RN) such that v = 8,,¢. Then ¢ € S'(RM) and
I€l¢ € L2(RY). Hence ¢ € LL (RN \ {0}). On the other hand, we have
v =0y ¢ € L' N L2(RY) by hypothesis; hence 7 = i&1¢p € L2 N CY(RM).

We prove that ©(0) = 0. We argue by contradiction and assume that
0(0) # 0. By continuity, there exists m > 0 and ¢ > 0 such that [9(§)| > m for
|€] <e. For j=2,...,N, we get

191 14l

i&0(6)] = 7221 0(8)| = mly  for ae. £ € B(0,¢).
1] 1]
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But this contradicts the fact that zfj(;AS ¢ L2(RY). Thus necessarily 9(0) = 0,
and this is exactly the conclusion of Lemma 2.3. (]

It is obvious that L;(v) = [z v(2) dz and Ly(w) = 0 are continuous linear
functionals on Ll(RN ) and on )Y, respectively. Moreover, by Lemma 2.3, we
have L1 = Ly on L'(RY) N Y. Putting

(2.11) L(v+ w) = Ly (v) + Lo(w) = /RN o(x) de

for v € LY(RY) and w € Y, we see that L is well defined and is a continuous
linear functional on L'(RN) + .

It follows from (2.9) and Lemmas 2.1 and 2.2 that for any v € X', we have
(iug,,u) € LY(RYN) + . This enables us to give the following

Definition 2.4. Given u € X, the momentum of u (with respect to the
x1-direction) is

Q(u) = L((iug,,u)).

If u e X and x,u1,uz, p,0 are as in Lemma 2.2, from (2.9) we get

(212) Q) = [ (1= W) i, 0) = (5 = ), da.

It is easy to check that the right-hand side of (2.12) does not depend on the
choice of the cut-off function y, provided that x is as in Lemma 2.2.

It follows directly from (2.12) that the functional @ has a nice behavior
with respect to dilations in R: for any u € X and X\, o > 0, we have

(2.13) Quyes) = oV 1Q(u).
The next lemma will enable us to perform “integrations by parts.”

LEMMA 2.5. For any u € X and w € H'(RY), we have {(iug,,w) €
LYRN), (iu,wy,) € L'RN) +Y and

(2.14) L((iug,, w) + (iu, wy,)) = 0.

Proof. Since w,u,, € L*(RY), the Cauchy-Schwarz inequality implies
(itg,, w) € LY(RYN). Let x, u1, ug be as in Lemma 2.2. Denote w; = x(w)w,
we = (1 — x(w))w. Then u = uj + ug, w = wy + we and it follows from
Lemma 2.2 that u1 € X N L¥(RY) and uz, w1, wo € H'(RVN).

As above, we have (i‘g%, w), (iug, g—ﬁ) € L'(RY) by the Cauchy-Schwarz
inequality. The standard integration by parts formula for functions in H*(R")
(see, e.g., [11, p. 197]) gives

(2.15) /RN <igz?,w> + <iu2, gxui> dx = 0.
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Since u; € D2 N L¥(RY) and w1 € H' N L®°(RY), it is standard to prove
that (iu1,w;) € D2 N L®(RY) and

0 0 3}
(2.16) <i82,w1> + <z‘u1, &azwll> = 9 (tuy,w1) a.e. on RV,

Let Ay, = {z € RN | lw(z)| > 1}. We have 5LV (4,) < S, lw]? dz <
|w||?, and, consequently, A, has finite measure. It is clear that wy = 0 and
Vwy =0 a.e. on RV \ A,. Since wy € L*" (RY) and Vws € L?(RY), we infer
that wy € L' N LY (RY) and Vwy € L' N L%(RYN). Together with the fact that
up € L¥ N L®(RYN) and Vu; € L2(RY), this gives (iug,ws) € L' N L2 (RY)
and

<Z‘8u17w2> e leL%(RNL <iu1, 8w2> c LlﬂLQ(RN) forj=1,...,N.
axj 81’]'

It is easy to see that

£j<iu1’w2>:<ig;t’w2>+<wl’21:]2-> in D'(RY).
From the above we infer that (iuj,ws) € WHL(RYN). It is obvious that
Jan % dz = 0 for any ¢» € WUL(RN). (Indeed, let ()n>1 € C2(RN) be a
sequence such that ¢, — ¢ in WH(RY) as n —» oco; then [gu ?975? dr =0
for each n and [z~ %d:ﬁ — Jg~ %dw as n —> 00.) Thus we have
(ig—;i,wﬁ, (tuy, ‘g—ff} € L'(RY) and

Ouq > < 8w2> B o . B
(2.17) /RN <zaxl,w2 + (iug, o dx = . a—xl(zul,wﬁ dz = 0.
Now (2.14) follows from (2.15), (2.16), (2.17), and Lemma 2.5 is proven. [

COROLLARY 2.6. Let u, v € X be such that u —v € L>(RY). Then

Bu il )
Oxy |lp2my)

81‘1
Proof. Tt is clear that w = u — v € HY(R"). Using (2.14), we get

(2.19) Qu) — Q(v) = L((i(u — v)a,, u) + (1vz,, u — v))
= L({iug,,u — v) + (ivg,,u — v))

(218)  Qu) = Q)| < [lu — vl| 2w (‘

L2(RN) ‘

= Jow (tug, + 10y, u — v) dx.

Then (2.18) follows from (2.19) and the Cauchy-Schwarz inequality. O

The next result will be useful to estimate the contribution to the momen-
tum of a domain where the modified Ginzburg-Landau energy is small.
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LEMMA 2.7. Let M > 0, and let Q be an open subset of R™. Assume
that uw € X satisfies Egr,(u) < M, and let x, p, 0 be as in Lemma 2.2. Then
we have

(220) [ 0= iy ) (0 = 18,
Proof. Using (2.6) and the Cauchy-Schwarz inequality, we get
e21) [ 1= W),

We have |u1| < 3; hence |1 +u1| < 3 and ¢(|1 + w1|) = |1 + u1| = p. Then
(2.7) gives

* 1
dr < C(M? + M) (EZ (u))?.

dr < flug, [l z20) (1 = X (w)ull2(0)

o
< C1HUz1|’L2(Q)HVUHL22(RN)'

2* 2*
(2.22) lp* = 1122 mny < C'(Ber(u) + Baw(u)T) < /(M + M),
From (2.4) and (2.5) we have (%’j < % g%jl_ <’ gT”j‘ a.e. on RY. Therefore

(,02 - 1)9961

(2.23) /Q

dx < [1p* = 1 2 10z, | 220
< C"p* = Uz llttay |20
<o (M + 1\425>é (B2 (u))? .
Then (2.20) follows from (2.21) and (2.23). O

3. A regularization procedure

Given a function u € X and a set Q C RY such that EZ; (u) is small, we
would like to get a fine estimate of the contribution of 2 to the momentum
of u. To do this, we will use a kind of “regularization” procedure for arbitrary
functions in X'. A similar device has been introduced in [1] to get rid of small-
scale topological defects of functions; variants of it have been used for various
purposes in [8], [7], [5].

Throughout this section, 2 is an open set in RY. We do not assume
bounded, nor connected. If 9Q # ), we assume that 9 is C2. Let ¢ be as in
the introduction. Fix u € X and h > 0. We consider the functional

" 1
Gho() = Bu(0) + 75 [ @ (v —uf?) da.

Note that G}, o(v) may equal oo for some v € X; however, G} o(v) is finite
whenever v € X and v —u € L%(Q). If there is no risk of confusion, we will
simply write G(v) instead of G}, (v). We denote H}(Q)={uec H'RN) | u=0
on RV \ Q} and

HY(Q)={veX|v—uec H}(Q)}.
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The next lemma gives the properties of functions that minimize G in the space
HL(Q).

LeEMMA 3.1. (i) The functional G has a minimizer in HL(S2).

(ii) Let vy, be a minimizer of G in HL(Q). There exist constants C1, Cy > 0,
depending only on N, such that vy, satisfies

(3.1) EgL(Uh) < EgL(”)v
1+
(3.2) lon — ull720y < h*E&y(u) + C1 (B (u))

(3.3) /’ (1 +ul) = 1) = (@21 + o) 1)’

2

4
h™,

dz < 36hESy (u),

B4) Q) — Q)| < Ca (K + (B (w) ¥ h¥)* B (u).

(iii) For z € C, denote H(z) = (ch(]z + 1)) =D e(lz + 1))¢'(|z + 1]) éﬁl
if z # —1 and H(—1) = 0. Then any minimizer v, of G in HL(Q)

satisfies the equation

(3.5) — Avp, + H(vp) + %g@' (|vh - u|2) (vp —u) =0 in D'(Q).

Moreover, for any w CC 2 we have vy, € W?P(w) for p € [1,00); thus,
in particular, v, € CH%(w) for a € 0,1).

(iv) For any h > 0, § > 0 and R > 0, there exists a constant K =
K(N,h,8,R) > 0 such that for any u € X with E¢; (u) < K and
for any minimizer vy, of G in HL(Q), there holds

(36) 1-d0<[14+wvp(x)| <1496 whenever x € Q0 and dist(x,9Q) > 4R.
Proof. (i) It is obvious that u € H}(Q). Let (v,),>1 be a minimizing

sequence for G in H(Q). We may assume that G(v,) < G(u) = E&; (u). This
implies [, |Vv,|? dr < E&; (u). Tt is clear that

(3.7) vn — uf? dz < /ng (Jvn — ul?) do < h2E; (u).

/Qﬂ{vn—US\/i}
Since v, —u € H} () ¢ HY(RY), by the Sobolev embedding we have

|vn — ullp2r () < Csl|Von = Vul| 2wy,
where Cg depends only on N. Therefore,
3.8 / vn—uzd:cg/ vn—u2*d$§ vn—uz**
(38) {Ivn—u\21}| | {Ivn—u|21}| ’ | I ®)

*

2*
S C/van — %Z(RN) S C (EgL(U)) 2 .

It follows from (3.7) and (3.8) that ||v, — u||z2(q) is bounded. Hence v, —u
is bounded in H{ (). We infer that there exists a sequence (still denoted
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(vn)n>1) and there is w € HE(Q) such that v, — u — w weakly in H{(Q),
Up —u — w a.e. and v, —u — win Lf (Q) for 1 <p < 2*. Let v = u + w.
Then Vv, — Vv weakly in L?2(R"), and this implies

/|Vv]2d:v§liminf/ |Vn|? da.
QO n—00 [¢)

Using the a.e. convergence and Fatou’s Lemma we infer that

2 2 . . 2 2
/Q (cp (1 +v|) - 1) dx < hnrglolgf/Q (cp (1 +wy|) — 1) dx
and
2 o 2
/ng(v—u\ > dx<hnn_1)£f/ﬂtp(|vn—u] ) dx.
Therefore G(v) < liminf, ,~ G(v,) and, consequently, v is a minimizer of G
in H(Q).
(ii) Since u € HL(Q), we have EZ (v) < G(vy) < E&; (u); hence (3.1)
holds. It is clear that ¢ (Jvp, — ul?) > 1if |vp, — u| > 1; thus,
Yo —ul 2 1)) < [ o (lon —ul?) de < WG(0) < PG (w).
R
Using Holder’s inequality, the above estimate and the Sobolev inequality we

get

(3.9)
/{vh—u>1} [on =l do < flon = wlFar (10, w1y (£ ({on = ul = 1})

2
1-Z

_2
=

1
< Jon = ullZar gy (£ (o — ul = 1)) 2

1-%

4 1+2
< Osl| Vo — Vaull 2oy (RPEG () ™% < 4Csh™ (B (w) 7 .

It is clear that (3.7) holds with vy, instead of v, and then (3.2) follows from
(3.7) and (3.9).
We claim that

(310)  [e(a) - olleD| < [$o - D) foranyz cec
Indeed, let 0 < a < b. If b € [a,a + /2], we have ¢((b—a)?) = (b— a)?; hence,
0 < (b) —pla) <b—a=[p((b-a))]

Ifb > a++/2, we have 0 < ¢(b)—p(a) < 3and [p((b— a)2)]? > (#(2))? = vZ;
thus 0 < p(b) — p(a) < 75 [¢((b - a)?)]

D=

[N

. Assuming that |z| < ||, we get

[
[

[o(lzD = (ich| = () = wllal) < 50 (el = 10?)]” < [50 (16 - 27)]
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It is obvious that
(311)  |(P(+u) =1)" = (P + ) - 1))
<6lp(I1+ul) — (|1 +val)| - |*(11 + ul) + (11 + val) — 2,
Using (3.11), the Cauchy-Schwarz inequality and (3.10), we get

/' (1+u) —1)* = (L1 +wn) — 1)’

2@;)5
() n
< 6(/;;@(!% —up?) dw)é
x (2/Q (P21 +ul) = 1) + (P21 + o) — 1) d:c)é

1 1
< 18 (h*G(vn))? (2EEL (w) + 2E8L(va))? < 36hEGy, (u),
and (3.3) is proven. Finally, (3.4) follows directly from (3.1), (3.2) and Corol-
lary 2.6.
(iii) The proof of (3.5) is standard. For any ¢ € C2°(2), we have v + 1 €

H! (), and the function ¢ — G(v+ty) achieves its minimum at ¢ = 0. Hence

%Itzo (G(v+t)) =0 for any ¢ € C°(Q2), and this is precisely (3.5).

For any z € C, we have
(3.12) H(2)| < 3lp%(|z+ 1) — 1] < 24.

Since v, € X, we have (|1 +wvp|) — 1 € L2(RY), and (3.12) gives H(vy) €
L2 N L=(RY). We also have ‘gp’ (Jon — ul?) (vp, — u)’ < |vp, — u| and

dzx

sa(/ﬂ]so<|1+u|>—so<1+vh|>

(11 +ul) + ¢*(11 +va]) — 2

’90/ (|vh - u]2) (vp, — u)’ < Sli%) ¢ (32) 5 < 00.
Since v, — u € L2(RY), we get ¢’ (|vop, — ul?) (v, — u) € L2 N L®°(RY). Using
(3.5) we infer that Av, € L2 N L>®()). Then (iii) follows from standard
elliptic estimates (see, e.g., Theorem 9.11 in [24, p. 235]) and a straightforward
bootstrap argument.

(iv) We use (3.5), Sobolev and Gagliardo-Nirenberg inequalities and ellip-
tic regularity theory to prove that there is » < R such that for all x satisfying
B(z,4R) C €, one may estimate ||Vvp|| 1o (p(z,) in terms of EZy (u) (see (3.26)
below). This estimate with p > N and the Morrey inequality imply that vy,
is uniformly Holder continuous on {x € Q | dist(z,0?) > 4R}. In particular,
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if ' 1+ vp(zo)| — 1‘ > ¢ for some x verifying B(xg,4R) C §2, then necessar-
ily ’ 11+ vp| — 1’ > ¢ on a ball of fixed radius centered at . This implies

that E&; (vy) (and, consequently, E&; (u)) is bounded from below by a positive
constant.
We start by estimating the nonlinear terms in (3.5). Using (3.12), we get

/ H (op)[? dee < 9/ 211+ vy]) —1)° do < 185 (vy) < 18EZy (u);

NI

1[1ence]> [ H (vn) |l 12(0) < 3V2 (EGL( ))
2,00

. By interpolation we find for any p €

p—2 2

(3.13) 1 (o)l o) < IH (o)l 2 1 H (0n) 12y < C (EGL(w))

o(2)s| < 20(?)

D=

2)5‘ < 2 for any s > 0.

Then we have

o' (|Uh — u|2) (vp, — u)'2dm < 2/ © (|vh - u\2) dx < 2h2E8L(u);
Q

1
thus [’ (Jon — ul?) (op —u)||L2@) < b (2E8L(u)> . By interpolation, we get

(3.14) || (lon — ul?) (vn — u)

Lr(Q)

& (fon —uf?) (on — w7

<

| (lon = ul?) (o8 — w)|?

L (Q) 12(9)
1
< Chv (EZy,(u))”
for any p € [2,00]. From (3.5), (3.13) and (3.14), we obtain
1
(3.15) | Av| oy < C(1+ he?) (EG(w))” for any p > 2.

For a measurable set w C RY with £V (w) < oo and for any f € L'(w),
we denote by m(f,w) = ﬁ@ ., f(x) dx the mean value of f on w.

Let xg be such that B(zg,4R) C 2. Using the Poincaré inequality and
(3.1), we have

(3.16) |[vn — m(vn, B(wo,4R))|| 12(B(zo,4r)) < CPRIVUL| L2(B(20,4R))
1
< CpR(E&y(u))? .

We claim that there exist k& € N, depending only on N, and C, = C.(N, h, R)
such that
(3.17)

o = (e, B0, 4Ry (0 ) < o ((BEL(W)

ST
z|=

+ (EgL(U))
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It is well known (see Theorem 9.11 in [24, p. 235]) that for p € (1, 00),
there exists C = C(N,r,p) > 0 such that for any w € W?P(B(a,?2r)), there
holds

(3.18) lwllw2r(Bar) < C (HwHLP(B(a,QT)) + ||AwHL1’(B(a,2r))) :
From (3.15), (3.16) and (3.18) we infer that

N

(3‘19) th — m(vp, B($074R))Hw2v2 (B(z0,2R)) = C(N,h, R) (EgL(U)>
% < +, from (3.19) and the Sobolev embedding we find

1
(320)  llon —m(vn, Bz, 4R)) | L (B(zp.2m)) < C(N. hy R) (EGL(u))”

Then using (3.15) (for p = N), (3.20) and (3.18) we infer that (3.17) holds for
kE=2.
If 5— %> N, (3.19) and the Sobolev embedding imply

D=

(3.21) lon, — m(v, B(xo, 4R))|| 1o1 (B(o.2R)) < C(N, b, R) (EgL(u)) ,

where - = 3 — . Then (3.21), (3.15) and (3.18) give

(3.22)
lon — m(un, Blao, ARl (B(ao,sy) <OV, b, ) (B8 () + (B () V).

If

< +, using (3.22), the Sobolev embedding, (3.15) and (3.18) we get

S

1
p1

1 1
th - m(vha B(.’L'(), 4R>)HW25N(B(]}O7§)) < C(N7 h? R) ((EgL(u>) *+ (EgL(u» N>;
otherwise we repeat the process. After a finite number of steps, we find k € N
such that (3.17) holds.

We will use the following variant of the Gagliardo-Nirenberg inequality:

(3.23)
q 1-4
lw = m(w, B(a, )| Lr(B(ar) < C0: ¢ NI Lo 50,20 IV 30,20

for any w € WHN(B(a,2r)), where 1 < ¢ < p < oo (see, e.g., [34, p. 78]).
Using (3.23) with w = Vv, and (3.17), we find

(3.24) Vo —m (Von B (20, 55 )

Lp(B( )

2
< CHV,UthQ(B( 0, k ||v UhHLNZE 2k}32))

1—-2
p

<O (& w)? ((E(%L(u))i + (B w)™)

for any p € [2,0), where the constants depend only on N, p, h, R.
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Using the Cauchy-Schwarz inequality and (3.1), we have

N

R R -
"m <Vvh,B (3607 2,€_1)>’ <N (B (3607 F» HVUhHm(B(:CO,?;il))
1
<C(E3L(u)?.

We infer that for any p € [1, o], the following estimate holds:

03) (S8 (r0 )

LP(B(x072k}i1 )

1
R R »
= ‘m (W’“B (:"0’ 2k—1>)‘ (EN (B (xo’ 2k—1))>p
1
< C(N,p,R) (E&(u))® .
From (3.24) and (3.25) we obtain for any p € [2,00),

(3.26) 1 1 1 2
E_yy < C(N,p,h,R) ((EgL(u))5 + (EgL(u));+ﬁ(l_5)> .

||VUh||Lp(B(gw:0,2,€,1

We will use the Morrey inequality, which asserts that for any w € C° N
WLP(B(zg, 7)) with p > N, there holds
(3.27)

_N
lw(z) —w(y)| < Clp, Nz =y~ % [Vl o) for all z,y € B(xo,7)
(see, e.g., the proof of Theorem IX.12 in [11, p. 166]). Using (3.26) and the
Morrey’s inequality (3.27) for p = 2N, we get
1 (0 3 Q0 7 (1+5%)
(3.28) [un (@) —vn(v)] < COV. b, R)|o— ] ( (BEL () + (& (w) ¥ 77)

for any z,y € B(x, %)
Let 6 > 0. Assume that there is zy € Q such that B(z¢,4R) C Q and
[ [on (o) +1| 1| > 4. Since || [vn(z)+1|=1]=| [oa(y)+1|=1| | < |vn(@)—va(w)];
from (3.28) we infer that
J
’|vh(:c)+1|—1’ > B for any = € B(zo,rs),

where

(3.29)

rs = min (251’ (ZC(N(fh, R)>2 ((E&(“»

Let

NI

(B ) ) ) .

(3.30) n(s) = inf{(p*(7) = 1)? | 7 € (—00,1 — s] U [1 4 5,00)}.
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It is clear that n is nondecreasing and positive on (0, 00). We have

1 2
(331 B =BGz  (P1+u)-1)d
B(zo,rs)
1 (5) 1 .n 5. N
> = — | de==-L"(B(0,1 —)rs ,
25 ) 1(3) @ = 3L BO.DME)

where 75 is given by (3.29). It is obvious that there exists a constant K > 0,
depending only on N, h, R, § such that (3.31) cannot hold for EZ; (u) < K.
We infer that |1+ vn(wo)] — 1| < 8 if B(xo,4R) C © and E& (u) < K. This
completes the proof of Lemma 3.1. (]

LEMMA 3.2. Let (up)n>1 C X be a sequence of functions satisfying

(a) Egr(uy) is bounded, and

(b) limp—eo (supyeRN EgIE ’1)(un)> =0.

There exists a sequence hy, — 0 such that for any minimizer v, of Gi™ gn i1
H! (RY), we have || |v, + 1| — | oo gy —> 0 as n — oc.

Proof. The proof of Lemma 3.2 is quite tricky, and we split it into four
steps. First we explain the choice of the sequence (hy),>1. Then we prove
that there is C' > 0 such that for any minimizer v, of GZZ7RN and for all
r € RV, there holds |[Avp|l LN (B(za)) < C. To get this estimate we write
(3.5) in a convenient form, multiply it by appropriate cut-off functions, then
perform integrations by parts and use elliptic regularity and a finite induction
to prove that u, and v, are locally sufficiently close. (For instance, it follows
from (3.36) and (3.51) below that [[un, — vnll12(B(,1)) < ChY for all x € RM.)
Then we use (3.5) again to get the desired bound on Aw,. In the third step
we use Sobolev and Morrey inequalities to prove that v, is uniformly Holder
continuous. Finally, if ¢ is fixed and ‘ |14-vp,(z0)|— 1’ > § for some g € RV, we

have necessarily ‘ |1+ vy,| — 1‘ > g on a ball B(zg,r), where r does not depend

on n; thus [[©*(11 + val) = 1| 12(B(,1)) is bounded from below by a positive
constant. This is impossible for large n because [[*(|1 + vnl) = 1]l L2(B(o 1))
is close to [|@?(|1 + un|) — 1| 22(B(z0,1)) and the last quantity tends to zero by
assumption (b).

Step 1. Choice of hy,. Let M = sup, >, Eqr(uy). Forn > 1 and x € RV,
we denote

1
mal) = m(ue. Bz 1) = x50 /. L)

By the Poincaré inequality, there exists Cy > 0 such that

| ) = ma() Py <Co [ Vun(y)dy.
B(z,1) B(z,1

z,
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From (b) and the Poincaré inequality it follows that

(3.32) sup [|un — mn(2)| 12(B(2,1)) — 0 as n —» oo.
zeRN

Let H be as in Lemma 3.1(iii). From (3.12) and (b), we get

(3.33)

2
sup || H (un)l|72(pz1)) < sup 9/ (*(11+un(y))) = 1) dy — 0
z€RN z€RN  JB(z,1)

as n —» 0o. It is obvious that H is Lipschitz on C. Using (3.32), we find
(3.34)

sup || H (un) — H(mn (7)) 22(B(z1)) < C1 sup |[un — mn(2)||L2(B(z,1)) — 0
zeRN zeRN

as n—o00. From (3.33) and (3.34) we infer that

sup HH(mn(x))HLz(B(x,l)) — 0 asn — oo.
zcRN

1
Since | H (mn ()l r2(p1y) = (LY(B(0,1)))? [H(mp(x))|, we have proved
that

(3.35) Jim  sup |H (my,(x))| = 0.
zeRN

Let

(3.36)

1 1
Ntz ~
h,, = max (( sup |lu, — mn(ﬂf)HLQ(B(x,l))) : ( sup \H(mn(l’))!) ) :
zeRN zeRN

From (3.32) and (3.35) it follows that h,, — 0 as n — oo. Thus we may
assume that 0 < h,, < 1 for any n. (If h,, = 0, we see that wu, is constant a.e.
and there is nothing to prove.)

Let vy, be a minimizer of GZZ,R ~- (Such minimizers exist by Lemma 3.1(i).)

It follows from Lemma 3.1(iii) that v, satisfies (3.5).

Step 2. We prove that there exist Ry > 0 and C > 0, independent on n,
such that

(3.37) [Av|[ LN (B(z,ry)) < C for any 2 € RY and n € N*.

Clearly, it suffices to prove (3.37) for = 0. Let m,, = m;(0). Then (3.5) can
be written as

1
(338) — Avn + 7290/(|Un — mn|2)(vn - mn) = fna

hn
where

(3.39) fn == (H(vn) — H(my)) — H(my)

+ hig (‘Pl(”Un — |2 (v — M) — @' (v — unl?) (vn — Un)) .

n
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In view of Lemma 3.1(iii), equality (3.38) holds in L} (R") (and not only in
D'(RN)).

The function z — ¢/(|z|?)z belongs to C°(C), and consequently it is
Lipschitz. Using (3.36), we see that there exists Cy > 0 such that

(3.40) ”SO/OUn - mn‘2)(vn —My) — ‘Pl(lvn - unlz)(vn - un)HLQ(B(O,l))
< Callun — mallz2(B0,1)) < C2hy 2.

By (3.36), we also have

N|=
SIS

”H(mn)”m(B(o,l)) = (ﬁN(B(Q 1)> |H (mp)| < (EN( (0, 1))) hN-

From this estimate, (3.39), (3.40) and the fact that H is Lipschitz, we get
(3.41) anHL2 B(O,R)) < Cgan—mnHL2 OR))+C'4h for any R € (0,1].

Let x € C2°(RY,R). Taking the scalar product (in C) of (3.38) by the function
x(x)(vp(z) — my) and integrating by parts, we find
(3.42) / x|V |* dx + / X' (|vn — ma|?)|vn — my|? dx

RN h2

= 5 [ @l = et [ (), val@) — (@) da
RN RN
2
From (3.2), we have [[vy, — un| 2@~y < Csha'; thus,

2
(3.43) [lvn—mnllL2(B(0,1)) < lvn—unllL2(B(0,1)) + |un—mnllL2(B(0,1)) < Koha'-

We prove that

2

2j . _|N
(3‘44) ”Un mnHLQ(B(O’ T 1)) S thé\f for 1 S ¥l S {2} + 17

where K does not depend on n. We proceed by induction. From (3.43) it
follows that (3.44) is true for j = 1.
Assume that (3.44) holds for some j € N*, j < [ } Let x; € C(RY)

be a real-valued function such that 0 < x; < 1, supp(x;) € B(0, y%l) and
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Xx; = 1 on B(0, 2J) Replacing x by x; in (3.42) and then using the Cauchy-
Schwarz inequality and (3.41), we find
(3.45)

1
/ |V, |? dx—i——z/ @' (|vn — mp)?)|vn — my|* dz
B(0 hi JB(0, %)

’2])

< *HAXJ‘HLOO RN)HUn - mn||i2(3(072j£1))

+ an”L2(B(o ||Un mnHL?(B(o,Qj%l))

4j
N 4
< Ajllvn — mnHLz(B(o,zj%l)) + Caliy on = mall 2 (g0, 1y < Ajha

2j
From (3.44) and (3.45) we infer that v, — mnHHl(B(o 1y) < Bjha'. Then the
Y

Sobolev embedding implies
The function z — ¢(|z|?) is clearly Lipschitz on C; thus, we have

L el =) = pllon = ma) do < Cy [y = | do
B(0,1)

B(0,1)
< Collun — mnllr2(0,1)) < Cohn 2.

It is clear that [ 1)@ (lvn — up|?) doe < R2GY - (vn) < h2Eqr(uyn) < h2M

hn, RN
and we obtain

(3.47) / o[ — mn|?) dz < Cyh2.
B(0,1)

If v, () — my| > V2, we have ©(|v, () — my|?) > 2; hence,

(3.48)

£¥(( € BO) | on(e) ~mal 2 V2 < 3 [ (jon —mal?) dz < TR
2JB(0,1) 2

)

By Holder’s inequality, (3.46) and (3.48), we have
(3.49)

vy, — mp|? da
723)

/{|vn mn|>Vv2}NB(0

1-5%
< fon = mallE e o1y (£ (€ BOD) | fon(a) = ma] = v2}))'

4j+4

< (Dh%)Q (Crh2)'" T < Ejh™
= g'vn 7n = 7'vn .
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From (3.45) it follows that

(3.50)
/ [vn = mn|* dax S/ &' (Jvn — mu|?) v — my|? dx
{|Un—mn|<\/§}ﬂB(0,$) B(O,%)
;244 , ., didd
< Abhn N < AGhy N

Then (3.49) and (3.50) imply that (3.44) holds for j + 1 and the induction is

complete. Thus (3.44) is established. Denoting jny = [%2] +land Ry = W%,
we have proved that
e N
(3.51) lon = mnllr2(B0,Ry)) < Kjyha" < Kjyhy
It follows that
1 / 2 N
(3.52) / P (|lvn = mp|?) (vy, — my)| dx
B(0,Ry) | iy
< —sup |¢’ (\z|2) Z‘N_Q/ Uy, — myp|? dz < Cg
g n mn — .
h2NV e B(0.Ry)

Arguing as in (3.40) and using (3.36), we get
(3.53) ' (Jon = 1m0 [*) (00 = M) = @' ([0n = wn|?) (vn — Un)HgN(B(OJ))

N2
< Cy Sup ‘<P' (I21%) Z' ltn = mnll72(p(0,1)) < Crohy™ .
z

From (3.39), (3.53) and the fact that H is bounded on C, it follows that
”anLN(B(O’RN)) < Cq1, where C1; is independent of n. Using this estimate,
(3.52) and (3.38), we infer that (3.37) holds.

Since any ball of radius 1 can be covered by a finite number of balls of
radius Ry, it follows that there exists C' > 0 such that

(3.54) [Av|[ v (B(z1)) < C for any z € RY and n € N*.

Step 3. The functions vy, are uniformly Holder continuous. We will use
(3.18) and (3.54) to prove that there exist Ry € (0,1] and C > 0 such that

(3.55)  ||vn — mn(m)”wlN(B(x,RN)) <C for any € RY and n € N*.

As previously, it suffices to prove (3.55) for zp = 0. From (3.54) and Holder’s
inequality it follows that for 1 < p < N, we have

1

(3.56) 1AV Lo (1)) < (LV(B(0,1)))7
Using (3.43), (3.56) with p = 2 and (3.18), we obtain

(3.57) lor = M (0) 22w, 1)) < C-

_1
N

[Avn|l v (B(z1)) < CP)-
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< A ~> then (3.57) and the Sobolev embedding give

l\.’)\»—l
Z\M

[on = ma ()| Lx (pa, 1)) < C-
This estimate, together with (3.54) and (3.18), implies that (3.55) holds for
Ry =3
If 1 — £ > 1, from (3.57) and the Sobolev embedding we find

[[on — mn(0)]| 1, (B(z,1)) <0,

where p% = 1 — 2. This estimate, (3.56) and (3.18) imply
[ — mn(O)HWZpl(B(x,%)) <C.
If L _ 2 < 2, from the Sobolev embedding we obtain ||v, — My (0)[| & (B a1
1

< C’. Then using (3.54) and (3.18), we infer that (3.55) holds for Ry = 1.
Otherwise we repeat the above argument. After a finite number of steps we
see that (3.55) holds.

Next we proceed as in the proof of Lemma 3.1(iv). By (3.23) and (3.55)
we have for p € [2,00) and any zo € RY,

1 -
(358) van - m(vaw B(x()? 7RN))HLP xo 2}%N))

< CIVull? LIIv2 nlln

L2(B(wo,Rn LY (Bao,n)) = C1 ().

Arguing as in (3.25), we see |m(Vuy, B(zo, %RN))HLP(B(mo,%RN)) is bounded
independently on n and hence

||VUTL||LP(B(;EO7%RN)) < Cs(p) for any n € N* and zp € RY.

Using this estimate for p = 2N together with the Morrey inequality (3.27), we
see that there exists C, > 0 such that for any =,y € RY with |z —y| < RQN
and any n € N*, we have

(3.59) [on (@) = va(y)] < Cula —y]2.

Step 4. Conclusion. Let 6, = || |vn, + 1| — 1| oo (rv), and choose z,, € RN
such that ‘ |Un(1‘n)+1|—1‘ > %". From (3.59) it follows that ‘ \vn(:r)—l—ll—l‘ > %"
for all z € B(xy,ry,), where
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Then we have

(3.60)
Jy @ m@) =) dy= [ () - 1) dy

on on
> [ (%) ay= e B (%),
B(zn,rn) 4 4
where 7 is as in (3.30).

On the other hand, the function z — (p2(|1 + z|) — 1)2 is Lipschitz on C.
Using this fact, the Cauchy-Schwarz inequality, (3.2) and assumption (a), we

get
/B(x,l)
<

<C [ lonly) — un®ldy < Cllen = wnll 2y
B(z,1)

(21 + o)) = 1) = (P21 + un()) —1)° \ dy

2
< C'lvn — un”B(RN) <C"hY.

Then using assumption (b), we infer that

(3.61) sup / (gpz(|1 +on(y)|) — 1)2 dy — 0 as n —» oo.
zeRN JB(z,1)

From (3.60) and (3.61) we get limy,_oon (%") rN = 0, and this clearly

implies lim,_ ., 6, = 0. Lemma 3.2 is thus proven. U

The next result is based on Lemma 3.1 and will be very useful in the next
sections to prove the “concentration” of minimizing sequences. For 0 < Ry < Ro,
we denote Qp, g, = B(0, R2) \ B(0, Ry).

LEMMA 3.3. Let A > A3 > Ag > 1. There existeg = eo(N, A, Az, A3) >0
and C; = C; (N A, Ay, A3) > 0 such that for any R > 1, € € (0,&9) and u € X

RAR( )

verifying Eqp < g, there exist two functions uy, ug € X and a constant

0o € [0,27) satisfying the following properties:
(i) supp(u1) C B(0, A2R) and 1 +uy = e~ (1 +u) on B(0, R);
(ii) ug =wu on RN \ B(0, AR) and 1+ uy = €% = constant on B(0, A3R);

(i) /R N) ‘ 5
(iv) [RN)(SD (1ul)=1)* (1) ~1)° — (PP([1+ual) —1)* | do < Coe:
(V) 1Q(u) — Q(u1) — Q(u2)| < Cse;

‘61“‘ _ ‘8112

oz, 6%‘ ‘dw<015f0r]—1 ,IN;
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(vi) If assumptions (A1) and (A2) in the introduction hold, then

2% 1

/RN ]V(\Hu\?)—V<\1+U1!2>—V(!1+u2\2> dx < Cye+Csv/e (Ear(u)

Proof. Fix k > 0, A; and A4 such that 1 + 4k < A; < Ay < A3 <
Ay < A—4k.Let h=1and § = % We will prove that Lemma 3.3 holds for
g0 = K(N,h =1,6 = 3,k), where K(N, h,d, R) is as in Lemma 3.1(iv).
Fix two functions 71,72 € C°°(R) satisfying the following properties:
m =1on (—o0,A1], m =0on [Ag,00), 1 is nonincreasing;

n2 =0 on (—o0, Az], m2=1o0n [A4,00), 702 is nondecreasing.

Let ¢ < €, and let u € X be such that Egﬁ’AR(u) < e. Let v1 be a

minimizer of GI,QR,AR

teed by Lemma 3.1. We have v; = u on RV \ Qg ar. By Lemma 3.1(iii), we

in the space H!(Qr ar). The existence of v; is guaran-

know that v; € Vvlif(QR,AR) for any p € [1,00). Moreover, since ESE’AR (u) <
K(N,1,%, k), Lemma 3.1(iv) implies that

1 3
(3.62) §<\1+v1(1‘)| <3 if R+ 4k < |z| < AR — 4k.

Since N > 3, Q4,Rr A,r is simply connected, and it follows directly from
Theorem 3 in [10, p. 38] that there exist two real-valued functions p, 6 €
W2P(Qa,r.A.R), 1 < p < o0, such that

(3.63) 1+ v1(z) = p(x)e?@) in Qa, g AR
For j=1,..., N, we have
vy dp . 00 0 ov > | 9p|? 5| 00 |?
3.64 — = = —]e d |=—| ==& it
( ) 8.21?]' ((i’tj * Zpal'j) ¢ a ij 8.%'j 8.%'j
a.e. in 4, r 4,r- Thus we get the following estimates:
(3.65) / V2 da < / Vo P de < e,
QA R, A4R A1R, AyR
1 9 2 QA 1R, A4R
(3.66) 5 (p*—1)" do < By (01) <,
2 QA R, AgR
(3.67) / VO dx < 4/ |V | da < 4e.
QA R, A4R AR, AyR
The Poincaré inequality and a scaling argument imply that
(3.68)
7 = mf Qan )P de < OOV ALANE [ (VfPds
QA R, A4R QA R, A4R

for any f € H'(Qa,r, a,r), where C(N, A;, A4) does not depend on R. Let
0o = m(0,9Q4,r, a,r). We may assume that y € [0,27). (Otherwise we replace
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0 by 6 — 27 [90].) Using (3.67) and (3.68), we get

o2

QA R, AR

(3.69) / 0 — 6o|? dz < C(N, Ay, A4)R2/ |V |? da
QA R, AR
< C(N, Ay, Ag)R%.
We define %1 and us by

u(x) if z € B(0, R),
v1(x) if € B(0,A1R) \ B(0, R),

B70) @) = (1 (%) (o) - 1) Ji(torm (%) 0@-00)
if 2 € B(0, A4R) \ B(0, A1 R),

e —1 ifz e RV\ B(0,A4R),

e —1 ifz € B(0,AR),

(1 + 12 (ER‘) (p(x) — 1)) ei<90+n2(%)(9(x)_00)> —1
(3.71) up(z) = if z € B(0,A4R) \ B(0, A1R),

v1(x) if z € B(0, AR) \ B(0, A4R),

u(z) if v € RV \ B(0, AR).

Then we define u; in such a way that 1 +u; = e*ieo(l +4y). Since u € X and
u—v1 € HY(Qg, ar), it is clear that u; € HY(RY), ug € X and (i), (ii) hold.
Since p+1> 2 on Qu, g, 4,r, from (3.66) we get

8
(372) ”p - 1“%2(9,4137,44}3) S §€'
Obviously,
|z] Ll x |z
i(— -1 ==n(—= —1)— +ni(—= .
v (14 n e - 0) = e - o5 e

Using (3.65), (3.72) and the fact that R > 1, we get

(3.73)
|z|
v (1 Fu0) = 1) D@y aum)
1 ||
< —sup ] - 1o = Ul z2(0a, paym) + 1)Vl 200, 5, ) < Cy/e.
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Similarly, using (3.67) and (3.69), we find

(3.74)

19 (30 nhote) - )

L2(Qa R, A4R)

|-
i| —= | VO
ae
From (3.73), (3.74) and the definition of u1, us it follows that || Vu;, ||L2(QA1R’A4R)
< Cy/e for i = 1,2. Therefore

< Cy/e.

1
< 5P 73] - 10 = O0ll 2(@a, 5, aym) +
LQ(QAlR, A4R)

oul? 0w |? |Oug|? oul? [0ur)? |Oug|?
/ oult_|ow|t_|gup da;:/ oult_|oult_|%u ),
RN 856]' 8xj 8xj QR AR 81:]- 8:Uj al‘j
2 2
< / Ou |t on
QR A, RUQA R AR axj axj
2 2 2
+ % % + % dx S 015
QAlR,A4R Oa:j a$]’ 8xj

and (iii) is proven.
On Q4,5,4,7, we have p € [1,3]; hence ¢ (1+n; (1) (p(2) = 1)) = 1+
ni (1) (p(x) - 1) and

o (#(en () 6w -0) 1)
= ot~ (1) (2 () G - )

0
< 2(p() = 1? < Dlpla) ~ 11

From (3.70)—(3.72) and (3.75), it follows that |[¢?(|1 +us|) — 1|22
Cy/z. As above, we get

o [0+ ) = 1) = (4 ) = 1) = (01 + wal) - 1)°

QAIR, A4R) <

dx

<

2 2
/ (P31 + ) = 1)+ (11 + 0 = 1) do
QRr,A; RUQA, R, AR

w0 =1+ (L)) 1)’

+ (%11 +ual) = 1) da < Coe.

This proves (iv).
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Next we prove (v). Since <ig—gi, @) has compact support, a simple com-
putation gives

(3.76) Q(u1) =1L <<zgz,u1>)

_ L<< —26’08 176—1‘90 _ 1+6—i90ﬂ1>) :/ <Z%7ﬂl> dzr.
0x1 RV \ 011

From the definition of % and uy and the fact that v = v; on RN \ Qr AR, we
get

On >_<%>_<% >_ N
<Z8x17v1 zaxl,ul Zf)ml’UQ =0 a.e.on R" \ Qa,r R

Using this identity, Definition 2.4, (3.76), then (2.3) and (3.70), (3.71), we
obtain

(3.77)
Q(v1) — Q(u1) — Q(u2)

- <i%v>—<i%ﬂ>—<i%u>daj
- 01‘1’ 1 81?17 1 awlv 2

Q4R A4R

00
- Im<7_7_7>dx_/ 2 _1)—dz
QA R, A4R 8371 8:1:1 81’1 QU n, A4R(p )axl

2 - )0 o
+ QAIR’AALR; <<1 ()~ 1)> — 1) 8:61(00 +m(§)(9 0 )> da

- /Q 8371 Z 11 (90 + i |Z’ )(0(x) — 90)) dz.

The functions vy — @iy — up and 0* = 6 — S°2_; (00 + ni( i )(O(z) — 90)) belong

‘R
to Cl(QRAR) and v; — @ —us = 1 — €% = const., #* = —fy = const. on
Qr.ar \ Q4R a,r. Therefore,
(3.78)

(Im(vy — 41 —ug)) de =0 and / 09 dx = 0.
Q

AR, A4R Oy

/ 0
QA R, AR 3:E1
Using (3.66), (3.67) and the Cauchy-Schwarz inequality, we have

0
/ =12 4| < 2v3e.
QA R, A4R O

Similarly, from (3.72), (3.74), (3.75) and the Cauchy-Schwarz inequality, we
get
(3.80)

L. ((1 o - 1))2— ) - <90 e - 0o>) &

(3.79)

< CE.
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From (3.77)—(3.80) we obtain |Q(v1) — Q(u1) — Q(u2)| < Ce, and (3.4) gives
IQ(u) — Q(v1)| < CE&T’AR (u) < Ce. These estimates clearly imply (v).

It remains to prove (vi). Assume that assumptions (Al) and (A2) in the
introduction are satisfied, and let W (s) = V(s) — V(p?(1/s)) so that W (s) = 0
for s € [0,4]. It is not hard to see that there exists C' > 0 such that
(3.81)

W () = W(a®)| < C|b—al (a2p0+1]l{a>2} + 62p0+1]l{b>2}) for any a,b > 0.
Using (1.7) and (3.81), then Holder’s inequality, we obtain
(3.82)

| vt = v+ o)
RN

<.
QR, AR

+ ‘W(|1+u|2)—W(|1+v1|2)

dx

V(1)) V(e (1+u1])

dzx

gc/Q (P21 +u) = 1)* + (1 + o) — 1) da

+ C/
QR, AR

|14 u| — |1+ v1]

(11 + ulPo Ly sy

‘Hl + 01‘2p0+1]1{|1+v1|>2}) dx

<C'e + sz lu—vi| (|14 T gy + 14012 1, 50y ) da

R, AR

< C'e+ C'lu=vill g2 g uy (111 + L grsusa) [ (g,
2*—1
L+ 01T 52 o (g 1) -

From the Sobolev embedding, we have
(383)  |u—v1ll g2y < Csl[V(u = v1) || 2 mw)
< Cs(IVullz2@p ar) + IVULll 2205 an)) < 2CsVe.
It is clear that |1+ u| > 2 implies |u| > 1 and |1 4+ u| < 2|u|; hence,
(3.84) |1+ U|]1{|1+u|>2}HL2*(QR7AR) < 2||UHL2*(RN)
1
< 205||VUHL2(RN) < 2Cs (Egr(u))? .

Obviously, a similar estimate holds for v;. Combining (3.82), (3.83) and (3.84),
we find

(3.85) /Q o

2% —1

V(1+4ul®) = V(1+v)|de < Ce+C"e(EgL(u)) 2
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From (3.70) and (3.71) it follows that V (|14v1|*) =V (|1+u1[?) =V (|1+uz|?) = 0
on RV \ Qu g a,r and [14 vy, |1 +us|, |1 +ug| € [%, %} on 24,r A,r- Then
using (1.7), (3.66), (3.75) and (3.72), we get

(3.86) / V(14 v1|?)|dz < C (p* — 1)?dx < Ce,
QA R, AyR

QA R, AyR

respectively
(3.87)

2 2
/ V(11 +u|?)|de < C <<1+77¢(|36|)(p—1)> - ) dx < Ce.
QA R, AyR QA R, AR R

Therefore,
(3.88)

o

< / V(1 + 01+ V(1 +u )] + V(1 4 u2f?)| do < Ce.
QA R, A4R

V(14+v]?) = V(1 +u)?) = V(|1 +u?)|dz

Then (iv) follows from (3.85) and (3.88) and Lemma 3.3 is proven. O

4. The variational framework

The aim of this section is to study the properties of the functionals E.,
A, B and P, introduced in (1.10), (1.12), (1.13) and (1.14), respectively. We
assume throughout that assumptions (Al) and (A2) in the introduction are
satisfied. Let

C={ueX|u#0,P.(u) =0}.

In particular, we will prove that C # 0 and inf{E.(u) | v € C} > 0. This
will be done in a sequence of lemmas. In the next sections we show that F.
admits a minimizer in C and this minimizer is a solution of (1.4).

We begin by proving that the above mentioned functionals are well defined
on X. Since we have already seen in Section 2 that @ is well defined on X, all
we have to do is to prove that V(|14 u|?) € L*(RY) for any u € X. This will
be done in the next lemma.

LEMMA 4.1. For any u € X, we have V(|1 + ul?) € LY(RN). Moreover,
for any 6 > 0, there exist C1(6), C2(d) > 0 such that for any v € X, we have
1-9 2 x
@) 5 [P = 1) de = o) Vulf gy

< / V(1 + uf?) de
RN

< 1+06

2 *
< N (Wz(u +ul) — 1) dx + CQ<5)HVUH2L2(RN)'



TRAVELING WAVES FOR NONLINEAR SCHRODINGER EQUATIONS 145

Proof. Fix § > 0. Using (1.6) we see that there exists 8 = 3(4) € (0,1]
such that

1-96

(42) ——(s— 1)? <V(s) < Lo

5 (s—1)% for any s € ((1—B)% (1+5)?).
Let u € X. If |u(x)| < 8 we have |1+u(z)|? € ((1—8)2, (1+5)?) and it follows
from (4.2) that V(|1 + ul*)Lg,<g € L' (RY) and
1-0

2 Hul<sy

(4.3) (21 +ul) —1)° da < / V(1 + uf?) dz

{Jul<B}
<[ (Pl 1)
2 J{jul<s}

Assumption (A2) implies that there exists C](d) > 0 such that

4]

1- .
‘V(ll +2%) = (P ([1+ 2) = | < CLO ™2 < CY(9)]/*

for any z € C satisfying |z| > . Using the Sobolev embedding, we obtain

)
(4.4) / 'V(|1—|—u|2)—(@2(\1+u|)—1)2 dz
{Jul>8} 2
<C”6/ g <C”5/ 2 gz < Oy IVulZson.
< C1(9) Wﬁ}lu! r < CY(9) o ul” dz < C1(6)[[Vull72@mm

Consequently, V(|1 + u|*)Lg, 55 € L'(RY) and it follows from (4.3) and
(4.4) that the first inequality in (4.1) holds; the proof of the second inequality
is similar. (]

LEMMA 4.2. Let ¢ € (0,1) and let u € X such that 1 —6 < |14u| <1+

a.e. on RY. Then
1

mEGL(u).

Proof. From Lemma 2.1 we know that there are two real-valued functions
p, 0 such that p — 1 € HY(RY), § € DM2(RV) and 1 +u = pe? a.e. on RV.
Moreover, from (2.3) and Definition 2.4 we infer that

Q) == [ (7~ 1) dr.
RN
Using the Cauchy-Schwarz inequality, we obtain
V2(1 = 8)|Q(w)] < V2(1 = 0)[162, [l 2@wmllp* = Ul L2y

1 2
<(1— 2/ 2 7/ 2
<O-02 [ oty [ (2 -1) e

1 2
212 2
< /RNp Vo= + 3 (p - 1) dx < Egr,(u). O

Q(u)] <
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LEMMA 4.3. Assume that 0 < ¢ < vg, and let ¢ € (0,1 — v—cs) There
exists a constant K1 = K1(F,N,c,e) > 0 such that for any u € X satisfying
Eqr(u) < K1, we have

/ |Vu|2d:v+/ V(1 + ul?) dz — c|Q(u)| > Ea ().
RN RN

Proof. Fix €1 such that e < &1 <1 — FCS Then fix §; € (0,67 —¢). By
Lemma 4.1, there exists C1(d1) > 0 such that for any u € X, there holds
(4.5)

Jo Ve = 250 (21 ul) = 1)° do = o8 (o ()

Using (3.4) we see that there exists A > 0 such that for any w € X’ with
Egr(w) <1, for any h € (0, 1] and for any minimizer v;, of G}/ g in HI(RN),
we have

(4.6) Q(w) — Q(uvn)| < ARN Egy(w).

Choose h € (0, 1] such that 1 —d; —CcARN > e. (This choice is possible because
g1 — 90 —e > 0.) Then fix 6 > 0 such that —=— < 1 —&;. (Such J exist

V3(1-9)
because £1 <1— & =1— %)

Let K = K(N,h,d,1) be as in Lemma 3.1(iv). Consider v € X such
that Egr(u) < min(K,1). Let vy be a minimizer of G}l gx in HL(RYN). The
existence of vy, follows from Lemma 3.1(i). By Lemma S.i(iv), we have 1 —§ <
|1 +wvp| <146 ae on RY. Then Lemma 4.2 implies

(4.7)  clQ(vn)| < Eap(vp) < (1 —e1)Ear(ve) < (1 —e1)Ear(uw).

V2(1—0)
We have
(4.8)

/ Ve + / V(L) dr — Q)
R R
> (1 —61)EcL(u) — C1(61) (EoL(u)? — c|Q(u)] by (4.5)
> (1=0d1)EcL(u) — C1(01) (EaL(w)) 2 — c[Q(u) — Q(vn)| — c[Q(v)]

> (1 - 6))Ear(u) — C1(61) (Eaw(w) T — cAR® Egr(u) — (1 — 1) Ear (u)
by (4.6) and (4.7)

V)
o[

*

m‘“

= (61 — (51 — CAh% — 01(51) (EGL(U))%_I) EGL(U).

Note that (4.8) holds for any v € X with Egr(u) < min(K,1). Since g1 —

51 — cAhN > e, it is obvious that e — 01 — cARN — C1(61) (EGL(u))%f1 > €
if Eqr(u) is sufficiently small, and the conclusion of Lemma 4.3 follows. [
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An obvious consequence of Lemma 4.3 is that E.(u) > 0if u € X'\ {0} and
Eg1.(u) is sufficiently small. The next lemma implies that there are functions
v € X such that E.(v) < 0.

LEMMA 4.4. Let N > 2. There exists a continuous map from [2,00) to
HY(RY), R+ vg such that vg € C.(RY) for any R > 2, and the following
estimates hold:

(i) Jan [Vog>de < C1RN=2 4 O3RN 2InR,
(i) | frow V1 + vrf?) do| < C3RN=2,

(i) | frn (92(11 +vrl) = 1)° da| < C1LRV2,
v)

(iv) —2mwn_1 RN~ < Q(vg) < —2mwn_1(R —2)VN 1,
where the constants C1—Cy depend only on N andwy_1 = LY "1 (Bgn-1(0,1)).

Proof. Let
Tr={z=(z1,2) RV [0< |¢/| < Rand — R+ |¢/| <1 < R—|2/|}.

We define 6z : RV — R in the following way: if |2/| > R, we put
Or(z) = 0 and if |2'| < R, we define

0 if &1 < —-R+|2'],
(4.9) HR(x) = R—L\xﬂxl +7 ifxe Trg,
27 if &1 > R —|2/].

It is easy to see that z — ¢7(®) is continuous on RN \ {z | 21 = 0, |2/| = R}
and equals 1 on RV \ Tr.

Fix ¢ € C*(R) such that ¢y = 0 on (—o0,1], ¥ = 1 on [2,00) and
0 <y <2. Let

(4.10) r(@) =¢ (Vai+ (|- R)?) and wva(z) = Yp(@)e?™) — 1.

It is obvious that vy € CC(RN). (In fact, vg is C* on RN \ B, where B =
OTr U{(r1,0,...,0) | z1 € [-R,R]}.) On R" \ B, we have

(4.11) %:{R—M if # € Tk, C%R:{W;j it v € Ta R,

Oz, 0 otherwise , 0z; 0 otherwise,

3¢R T
B2 e = R ) e
(4. 13)
W, |2’ —
a% (\/.Tl ) \/ n \x’| |x ‘ for j > 2 and 2’ # 0.
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Then a simple computation gives (i ‘gz ,UR) = —@b%g%* + 8%1 (Im(vg)) on
RY \ B. Thus, we have
06
_ 290k
It is obvious that
(4. 14)
%dxl—O if |2'| > R and / %dxl—Qw if 0 < |2/| < R.
8 T — 8951

Since 297’1* >0ae on RY and 0 < Yr < 1, we get

90r o0R
YR 1 R 4 <~/ YR 1,
/{|R |=/] |>2} 0y RN wR 0y RN 011

and using Fubini’s theorem and (4.14) we obtain that vg satisfies (iv).

Using cylindrical coordinates (x1,7,¢) in RN, where r = |2/| and ¢ =
|,| € SN2 we get
(4.15)

/V\1+UR| dx = SN 2'/ / wQ z? + (T—R)2)T‘N72d7“dx1.

Next we use polar coordinates in the (z1,r) plane, that is we write z; = 7 cos a,
r =R+ 7sina (thus 7 = /22 + (R —r)2). Since V(¢)%(s)) = 0 for s > 2, we
get

(4.16) /_OO /Oo?/ wQ \/m% —i—(r—R)?))rN’zdr dxy
// V(@3 (1))(R +7sina)N 7 dadr.

It is obvious that ’fo (R + 7sin a)N*Qda’ < 27(R+2)N=2 for any 7 € [0,2].
Then using (4.15) and (4.16), we infer that vg satisfies (ii). The proof of (iii)
is similar.
It is clear that on RY \ B, we have

(4.17) Vog|* = [Vir|? + WR!Q!V@R!Q-

2
From (4.12) and (4.13) we see that |Vyg(z 1/1/(\/.%'1 + (|2'] — 2)‘ :
Proceeding as above and using cylindrical Coordlnates (z1,7,¢) in RN, then

passing to polar coordinates x1 = 7 cosa, r = R + 7sin «, we obtain
(4.18)

oo

It is easily seen from (4.11) that |VOg(x)|? m (1 + e |$’|) ) if
x € Tg, |2'| # 0, and VOr(z) = 0 a.e. on RN \ Tg. Moreover, if (x1,2') € Tx

(Va3 + (17| - R)?) ‘2 dz < 27|SN2|(R 4 2)N 2 /2 s|0/ (s)|? ds.
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and |2/| > R — f’ we have 1p(x1,2') = 0. Therefore,

(4.19)

/ |¢R|2|VGR|2dx§/ VOR|? d
RN Tr{la| <R~}

R—|z/|
= / / |VOg|? dzy da’
\$’|<R—— R+|2’|

_ 272 272 1 o 2|SN 2|/ *ﬁ rN_2

+
~ Na<r-2y R—l2'] 3 R— R—fo“ R -
= S|V RN —Nil I k+1n(Rf2) :
3 SR\ R

From (4.17), (4.18) and (4.19) it follows that vp satisfies (i). It is not hard
to see that the mapping R — vp is continuous from [2,00) to H'(RY) and
Lemma 4.4 is proven. [l

LEMMA 4.5. For any k > 0, the functional Q) is bounded on the set
{u eX | EGL(U) < k‘}

Proof. Let ¢ € (0,v5), and let € € (0,1 — ;*). From Lemmas 4.1 and 4.3
it follows that there exist two positive constants C3(§5) and K such that for
any u € X satisfying Eqp,(u) < K7, we have

(1+5) Bantw) + 2 (5) (Barw)F — Q)
> [ Vuldet [ V() de = Q)| = B (w).

This inequality implies that there exists Ko < K; such that for any u € X
satisfying Eqy,(u) < Ko, we have

(4.20) Qu)] < B (u).

Hence Lemma 4.5 is proven if k < K.
Now let u € X be such that Eqr,(u) > K». Using the notation (1.5), it is
clear that for o > 0, we have Q(uy ) = o™ 1Q(u) (see (2.13)) and

Borue) =" [t % [ (1) <1)° dr

1

Let 09 = (%)m Then og € (0, 1) and we have Egr,(Uog.00) <0d 2 Far(u)
= K. Using (4.20) we infer that ¢|Q(uey,00)| < EGL(Uog,00), and this implies
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CUo “NQ(u)| <Ug 2EGL( ), or equivalently

(421) Q)| € B w) = K5 ™ (Ba(w)

cog

2

2

-2 .

Since (4.21) holds for any u € X with Fgr,(u) > K3, Lemma 4.5 is proven. [

From Lemma 4.1 and Lemma 4.5 it follows that for any k > 0, the func-
tional E. is bounded on the set {u € X' | Eq(u) = k}. For k > 0, we define

Ec,min(k) = inf{Ec(u) | u e X, EGL(U) = k‘}

Clearly, the function E. i is bounded on any bounded interval of R4. The
next result gives some basic properties of E. nin which will be important for
our variational argument.

LEMMA 4.6. Assume that N > 3 and 0 < ¢ < vs. The function E¢min
has the following properties:
(i) There exists ko > 0 such that E.min(k) > 0 for any k € (0, ko).
(ii) We have limy_,o0 B¢ min(k) = —00.
(iii) For any k > 0, we have E;min(k) < k.

Proof. (i) is an easy consequence of Lemma 4.3.

(ii) It is obvious that H'(R") C X and the functionals Eqr,, E. and Q
are continuous on H'(RY). For ¢ = 1 and R > 2, consider the functions vg
constructed in Lemma 4.4. Clearly, R — vp is a continuous curve in H!(R").
Lemma 4.4 implies E.(vg) — —oo as R — oo. From Lemma 4.5 we infer
that Eqr(vgr) — oo as R — o0, and then it is not hard to see that (ii) holds.

(iii) Fix k£ > 0. Let vy be as above, and let u = vg for some R sufficiently
large, so that

Eqr(u) >k, Q(u) <0 and E.(u) <0.

In particular, we have
Eo(u) — Ea(u) = cQ(u / V(1 +uf?) ( 2(11 + uf?) - 1)° dz < 0.

It is obvious that Egr,(4ss) —> 0 as ¢ — 0; hence there exists o9 € (0,1)
such that Egr(usye,) = k. Using the fact that Eqgp(u) — Ec(u) < 0 and
Q(u) < 0, we get

Ee(uay,00) — EaL(tog,o)
1 2
= ob Q)+ o [ VI +u) =5 (P uP) ~ 1) da

= (00 " = 0")eQ(u) + o (Ee(u) — EqL(u)) < 0.

Thus Ec(tey,00) < Earn(Ueg,ey). Since Egr(ueyq,) = k, we necessarily have
Eemin(k) < Ee(tgy,00) < k. O
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From Lemma 4.6(i) and (ii) it follows that
(4.22) 0 < S :=sup{Ecmin(k) | k> 0} < cc.
LEMMA 4.7. The set C = {u € X | u # 0, P.(u) = 0} is not empty, and

we have
T. :=inf{E.(u) |u e C} > S, > 0.

Proof. Let w € X \ {0} be such that E.(w) < 0. (We have seen in the
proof of Lemma 4.6 that such functions w exist.) It is obvious that A(w) >0
and [gw ’%‘Zd:v > 0; therefore, B.(w) = E.(w) — A(w) < 0 and P.(w) =
Ee(w) — 527 A(w) < 0. Clearly,

(4.23)
1 6w 2 N—3 2
Puwy) = U/RN i N_laA(w)—ch(w)—ka/RN V(|1 + w|?) da.

Since P.(w1,1) = Pe(w) < 0 and limy—,0P.(ws,1) = 00, there exists og € (0,1)
such that P.(wg,1) = 0; that is, we, 1 € C. Thus C # 0.

To prove the second part of Lemma 4.7, consider first the case N > 4. Let
u € C. It is clear that A(u) > 0, Be(u) = —X=2A(u) < 0 and for any o > 0,
we have E.(u1,) = A(u1,,) + Be(u1,,) = oV 3A(u) + N "1 B.(u). Hence,

a
do

is positive on (0, 1) and negative on (1,00). Consequently the function o —

(Ee(u14)) = (N = 3)oN 1 A(u) + (N — 1)V 2B, (u)

E.(u1,,) achieves its maximum at o = 1.
On the other hand, we have

2
EGL(UI,U) = O’N_3A(u) + JN_l (/
RN

o

1,5 2
Bo, +§(¢ (11 +ul) - 1) da:).

It is easy to see that the mapping o — Eqr,(u1,,) is strictly increasing and
one-to-one from (0,00) to (0,00). Hence for any k£ > 0, there is a unique
o(k,u) > 0 such that Egr.(u1 4(ku)) = k. Then we have

Eemin(k) < EC(Ul,a(k,u)) < Ee(u1,1) = Ee(u).

Since this is true for any k£ > 0 and any u € C, the conclusion follows.
Next we consider the case N = 3. Let u € C. We have P.(u) = B.(u) =0
and E.(u) = A(u) > 0. For ¢ > 0, we get

E.(u1,) = A(u) + 0®Be(u) = A(u)

and
Ou|?

L1
8.%'1 2

Ecr(u1 o) = A(u) + o? (/1;{6 (@2(|1 +ul) — 1)2 d:c) .
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Clearly, o0 — Eqr1,(u1,,) is increasing on (0, 00) and is one-to-one from (0, co)
to (A(u), 00).

Fix ¢ > 0. Consider k. > 0 such that E. min(k:) > Sc —e. If A(u) > ke,
from Lemma 4.6(iii) we have E.min(k:) < ke; hence,

E.(u) = A(u) > k: > E¢min(ke) > Se — €.

If A(u) < ke, there exists o(ke,u) > 0 such that Eqr(uy (k. ,u) = ke- Then
we get

EC<’LL) = A(u) = Ec<u17g(k57u)) > Ec’min(ks) > S, —e.

So far we have proved that for any u € C and any ¢ > 0, we have E.(u) > S.—¢.
The conclusion follows letting ¢ — 0, then taking the infimum for v € C. [

We do not know whether T, = S, in Lemma 4.7.

LEMMA 4.8. Let T, be as in Lemma 4.7. The following assertions hold:
(i) For any u € X with P.(u) < 0, we have A(u) > %Tc.
(ii) Let (un)n>1 C X be a sequence such that (EGr(un)),> is bounded and
limy, 00 Pe(un) = p < 0. Then liminf,, o A(uy,) > %TC.

Proof. (i) Since P,(u) <0, it is clear that u#0 and thus [gx ‘%‘2 dr >0.
As in the proof of Lemma 4.7, we have P.(u11) = Pe(u) < 0, and (4.23)
implies that lim,_,o P:(us1) = co. Hence there exists o9 € (0,1) such that
P.(ugy,1) = 0. From Lemma 4.7 we get E.(ug,1) > T¢, and this implies
E(tugy,1) — Pe(ugy1) > Tp; that is, ﬁA(uaO’l) > T,.. From the last inequality
we find
N-11 N -1

—T1.> —T..
(o) ¢ 2 ¢

(4.24) Au) >

(ii) For n sufficiently large (so that P.(u,) < 0), we have u, # 0 and
Oun

fRN ox1
n sufficiently big, there exists o, € (0,1) such that

(425) Pc((un)on,l) = 07

and we infer that A(u,) > N2_1 iTC‘ We claim that

2
dz > 0. As in the proof of part (i), using (4.23) we see that for each

(4.26) limsup o, < 1.
n—oo
Notice that if (4.26) holds, we have
N-—-1 1 N -1
liminfA(u,) > - T. > T.
n—00 2 limsup,_,. on

and Lemma 4.8 is proven.
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To prove (4.26) we argue by contradiction and assume that there is a
subsequence (o, )k>1 such that o,, — 1 as k — oco. Since (Eqr,(un)),,>; is
bounded, using Lemmas 4.1 and 4.5 we infer that

(oo

are bounded. Consequently, there is a subsequence (n,)¢>1 and there are
a1, az, B, v € R such that

o

Writing (4.25) and (4.23) (with (un,,)s,, ;1 instead of (up)s,,1 and we,, re-
14

spectively), then passing to the limit as £ — oo and using the fact that

on, — 1, we find a1 + %ag + ¢8 + v = 0. On the other hand, we have

Oun
a$1

i dx>n21, </RN V(|1 +un\2)da:>n>l, (Aun))n>1, (Q(un))n>1

Oy, |2
81‘1

A(uny,) — a2, Q(un,,) — B as £ — oo.

dx — o, / V(|1 + up, |?) dz — v,
RN ¢

limy_yoo Pc(unké) = pu < 0, and this gives oy + %O@ +cB+y=p<O0.
This contradiction proves that (4.26) holds, and the proof of Lemma 4.8 is
complete. O

5. The case N > 4

Throughout this section we assume that N > 4, 0 < ¢ < v; and as-
sumptions (A1) and (A2) in the introduction are satisfied. Most of the results
below do not hold for ¢ > vs. Some of them may not hold for ¢ = 0 and some
particular nonlinearities F'.

LEMMA 5.1. Let (up)n>1 C X be a sequence such that (Ec(up))n>1 is
bounded and P.(un) — 0 as n — 0o. Then (Egr(up))n>1 is bounded.

Proof. We have 2+ A(up,) = E.(un)—Pe(uy); hence (A(up))n>1 is bounded.
Qua | 1 L(Q2(|1 4 un|) — 1)2 dx is bounded. We

dx1
argue by contradiction, and we assume that there is a subsequence, still de-

noted (un)n>1, such that

(5.1) /RN Ot

81‘1
Fix ko > 0 such that E;min(ko) > 0. Arguing as in the proof of Lemma 4.7, it
is easy to see that there exists a sequence (03, ),>1 such that
(5.2)

Fow((tn)1.0,) =0 S Alun)+¥ " |
RN

It remains to prove that [gn

1
+§(902(|1+Un!)—1)2 dxr — o0 as n — o0.

1 2
+3 (Y*(1+unl) = 1) dz=ko.

un

ox1
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From (5.1) and (5.2) we have ,, —0 as n—o0. Since B (un)=—3=2A(uy)
+ P.(uy), it is clear that (B.(uy))n>1 is bounded and we obtain

Eo((un)1.00) = 0N 3 A(up) + oY 1 Be(up) — 0 as n —s 00.

But this contradicts the fact that E¢ min(ko) > 0, and the proof of Lemma 5.1
is complete. O

LEMMA 5.2. Let (up)n>1 C X be a sequence satisfying the following prop-
erties:

(a) There exist C1, Cy > 0 such that C1 < Egr(uyn) and A(u,) < Cy for
any n > 1.
(b) P.(up) — 0 as n — oc.

Then liminf, oo Ec(uy) > T,, where T, is as in Lemma 4.7.

Notice that in Lemma 5.2 the assumption Egr,(u,) > C1 > 0 is necessary.
To see this, consider a sequence (uy)p>1 C HY(RY) such that u, # 0 and
u, — 0 as n — oo. It is clear that P.(u,) — 0 and E.(u,) — 0 as
n — 00.

Proof. First we prove that
(5.3) C3 :=liminf A(uy) > 0.

n—o0

To see this, fix ko > 0 such that E.in(ko) > 0. Exactly as in the proof of
Lemma 4.7, it is easy to see that for each n, there exists a unique o, > 0 such
that (5.2) holds. Since kg = EgL((un)1,0,) > min(ol =3, N "V Eqr((uy)) >
min(oY =3, 0N =1)Cy, it follows that (0,,),>1 is bounded. On the other hand,
we have E.((un)1.0,) = 0N 3 A(un) + o "1 Be(un) > Eemin(ko) > 0; that is,
N -3
N-—-1
If there is a subsequence (uy, )r>1 such that A(uy,) — 0, putting u,, in (5.4)
and letting k — oo we would get 0 > E min(ko) > 0, a contradiction. Thus

(5.3) is proven.
We have B.(uy,) = P.(uy) — %A(un), and using (b) and (5.3), we obtain

-3

(54) oY P Adun) + ol (Pulun) A(un)) 2 Eemin(ko) > 0.

N
(5.5) lim sup B.(uy,) = —

C3 < 0.
Clearly, for any o > 0, we have
N —
PC((un)LG) = UN_SﬁA(un) + UN_lBC(un)
N —
= N3 (S Alun) + 0 Befun))
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1
N=3 A0\ 3
For n sufficiently large (so that B.(u,) < 0), let &, = (%)2. Then

P.((un)1,5,) = 0, or equivalently (uy)15, € C. From Lemma 4.7, we obtain

EC((un)lﬁn) = 5-712773"4(“’71) + 67];[7130(1571) > Tc;

that is,
(5.6) o
Eelun) + (55 — 1) Alwn) + (55 — 1) (Pofusy) - NiilA(un)) >,

1
Clearly, 6, can be written as &, = (% + 1) . Using (b) and (5.5) it
follows that lim, o, 6, = 1. Then passing to the limit as n — oo in (5.6)
and using the fact that (A(uy,))n>1 and (P.(un))n>1 are bounded, we obtain
liminf, o0 FEec(uy) > Te. O

We can now state the main result of this section.

THEOREM 5.3. Let (up)n>1 C X \ {0} be a sequence such that
P.(up) — 0 and E.(uy) — T as n — 00.

There exist a subsequence (un, )k>1, a sequence (zx)k>1 C RN and u € C such
that

Vi, (-+xp) — Vu  and |1 +up, (- +x)| —1 — [1+u| -1 in L*(RY).
Moreover, we have E.(u) = T¢; that is, u minimizes E. in C.

Proof. From Lemma 5.1 we know that Egr,(uy) is bounded. We have
1 A(un) = Ec(un) — Pe(uy) — T. as n —> oo. Therefore,
(5.7)
. N -1 . . N -1
nhﬁrrolo Auy) = TTC and hnrglorolf Eqr(uy) > nlggo A(up) = TTC.
Passing to a subsequence if necessary, we may assume that there exists ag >

%Tc such that
(5.8) Ecy(un) — ag as n — oo.

We will use the concentration-compactness principle ([40]). We denote by
qn(t) the concentration function of Egp,(uy,); that is,

1
69 a®= s [ Vw5 (G014 - 1)} e
yGRN B(yvt) 2

As in [40], it follows that there exists a subsequence of ((un,qn))n>1, still
denoted ((un, ¢n))n>1, there exists a nondecreasing function ¢ : [0,00) — R
and there is « € [0, ap] such that

(5.10)

gn(t) — q(t) a.e on [0,00) as n — 0o and q(t) — a as t — oc.
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We claim that
(5.11)
there is a nondecreasing sequence t,, — oo such that li_>rn an(tn) = a.
n o

To prove the claim, fix an increasing sequence x; — oo such that ¢, (zx) —
q(z) as n —» oo for any k. Then there exists ny € N such that |g,(x) —
q(zr)| < % for any n > ny; clearly, we may assume that ng < ngyq for all k. If
ng <n < ngi1, put t, = k. Then for ng < n < ngyq, we have

|gn(tn) —al = lgn(zr) —al <lgn(zr) —q(zr)[+lg(zr) —af < %qu)—al —0

as k — o0, and (5.11) is proved.
Next we claim that

t
(5.12) anltn) ~an (%) =0 asn— oo

To see this, fix ¢ > 0. Take y > 0 such that q(y) > a — § and ¢.(y) — q(y)
as n — oo. There is some 7 > 1 such that g,(y) > a — § for n > 7.
Then we can find n, > 7 such that ¢, > 2y for n > n,, and consequently

we have gn(%) > gn(y) > o — 5. Therefore limsup,, . (¢n(tn) — gn(%)) =

limy, —y00qn (tn) — liminf,, o qn(%) < e. Since ¢ was arbitrary, (5.12) follows.

Our aim is to show that @ = ag in (5.10). It follows from the next lemma
that a > 0.
LEMMA 5.4. Let (up)p>1 C X be a sequence satisfying
(a) My < Egr(un) < My for some positive constants My, M.
(b) limy—00 Pe(uy) = 0.
There exists k > 0 such that
1 2
sup / {|Vun|2—|—f(902(|1—|—un|)—1> }dek
yeRN Y B(y,1) 2
for all sufficiently large n.

Proof. We argue by contradiction, and we suppose that the conclusion is
false. Then there exists a subsequence (still denoted (uy)n>1) such that

1 2
5.13 lim sup/ {Vu 2 (Pl +u) -1 }dx:().
( ) "0 yeRN Y B(y,1) Ve 2 ((P ( ol )

In order to get a contradiction, we proceed in four steps.

Step 1. We show that |E(u,) — Egr(un)] — 0 as n — oco. More
precisely, we prove that

(5.14) lim dz = 0.

n—oo RN

V(14 u,?) - % (@2(|1 + unl) — 1)2
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Fix € > 0. Assumptions (A1) and (A2) imply that there exists d(¢) > 0 such
that

(5.15) ’vm T ’ < S (P42 1)

£
2 =2
2

for any z € C satisfying ' 1+ 2| — 1‘ < 6(e) (see (4.2)). Therefore,

1 2
(5.16) / ‘V(|1+un|2)—<902(|1—|—Un|)—1) dz
{l[14+un|-1]<5(e)} 2
<£ (P21 + unl) = 1)° dz < eMo.
2 J{ltunl -11<5(0)}
Assumption (A2) implies that there exists C'(¢) > 0 such that
1
Ga1) V() - 5 (P 2) - 1) | < OO+ 2| - 1
for any z € C verifying ’ |1+ 2| — 1‘ > 0(¢).
Let w, = [|1 + uy| — 1|. It is clear that |w,| < |up|. Using the in-

equality |V|v|| < |Vu| almost everywhere for v € HL (RY), we infer that
wy, € DM2(RY) and

(5.18) / |Vwn,|? de < M, for any n.
RN

Using (5.17), Holder’s inequality, the Sobolev embedding and (5.18) we
find

1
(5.19) / 'V(|1—i—un\2)—(goQ(\l—i-unD—l)Q do
{14+un|—1/>8()} 2
< C(e) / 2P0 iz
{wn>d(e)}
2po+2
N 2% 1_2p0+2
< C(e) (/ [ 2 dm) (LY (> 001
{wn>6()}
2po+2 2po+2 N 172@%2
< CEOCH [V, | 2052, (€Y (wn > 6(0)D)

1— 2po+2

< CECE M (L (fun > 5(2))

We claim that for any ¢ > 0, we have

(5.20) lim £ ({w, > d}) = 0.

n—oo

To prove the claim, we argue by contradiction and we assume that there exist
8o > 0, a subsequence (wy, )k>1 and v > 0 such that £V ({wy,, > do}) > > 0
for any k > 1. Since ||Vwy || z2rw~) is bounded, using Lieb’s lemma (see Lemma
6 in [38, p. 447] or Lemma 2.2 in [12, p. 101]), we infer that there exists 8 > 0
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and y; € RY such that £V ({wnk } N B( yk, ) Let 1 be as in (3.30).
Then wy, () > % implies (p?(|1 + unk( > (70) > 0. Therefore,

/_\
Oq

[ (@) 1) ez (D) 50
B(yk,1)

for any k > 1, and this clearly contradicts (5.13). Thus we have proved that
(5.20) holds.
From (5.16), (5.19) and (5.20) it follows that

o

for all sufficiently large n. Thus (5.14) holds and the proof of Step 1 is complete.

1
V(L4 ual?) = 5 (£2(L 4+ ual) - 1)° | de < 2eMp

Step 2. We find a convenient scaling of u,. From Lemma 5.2 we
know that liminf, ,o Ec(u,) > T.. Combined with (b), this implies that
liminfn_,ooﬁfl(un) > T.. Let g = \/%, and let @, = (up)1,6y- It is
obvious that

N -1
o . N—371. . N-3
(5.21) hnrr_l)ng(un) =0 hnn_l)ng(un) > 500 T.

Using assumption (a), (5.13) and (5.14) it is easy to see that
(5.22)  there exist M, Ms > 0 such that M; < Eqr(ty,) < M, for any n,

1
(5.23)  lim sup / {|Vﬂn|2+7(g02(\1+ﬂn|) —1)2} dr =0 and
B(y,1) 2

n—oo yeRN

(5.24) lim

n—oo RN

- 1 N 2
V(1 + @n)?) — 5 (¢*(11 +@)) — 1) |dz =0.

It is clear that Pr(u,) = X=05~ N A(tn) 4+ 037N Be(iiy), and then assumption
(b) implies

(NB

(5.25)  lim

n—0o0

3A(i,) + Beliin) ) = lim (A(iin) + Ee(iin)) = 0.

n—oo

Step 3. Regularization of U,. Using (5.22), (5.23) and Lemma 3.2 we
infer that there is a sequence h,, — 0 and for each n, there exists a minimizer
vy, of GZZ,RN in HY (RY) such that &, := [||1 + v,| — Ugoomnvy — 0 as
n — oo. Then using Lemma 4.2 and the fact that |c| < vy = v/2, we obtain

(5.26) Egr(vn) + cQ(vy,) > 0 for all sufficiently large n.
From (5.22) and (3.4) we get

1

4 2 ~
(65.27)  |QU) ~ Qua) < C (2 + WY NG ) N —0  asn— oo
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Step 4. Conclusion. Since Egy,(v,) < Egr(uy), it is clear that
Ec(ﬂn) == EGL(an)

FeQUan) + [ AV + ) = 5 (A1 + @) - 1) do

> EGL('Un) + CQ('Un) + C(Q(ﬁn> - Q(’Un)>
1., - 2
-/ 3 (P01 +3D) - 1)
Using the last inequality and (5.24), (5.26), (5.27), we get liminf,, o Ec(ty,)
> 0. Combined with (5.25), this gives limsup,,_, ., A(t,) < 0, which clearly
contradicts (5.21). This completes the proof of Lemma 5.4. O

V(|1 + @ |*) — dz.

Next we prove that we cannot have o € (0, ap). To do this we argue again
by contradiction and we assume that 0 < o < . Let ¢, be asin (5.11), and let
R, = %’ For each n > 1, fix y, € R such that Egﬁy"’R")(un) > gn(Ry) — %
Using (5.12), we have

1
(5.28) Va4 5 (9*(11 + al) ~1)" da

.
B(yn72Rn>\B(yn7Rn)
1
< qn(2Ry) — <qn(Rn) - ﬁ) — 0 as n — 00.

After a translation, we may assume that y, = 0. Using Lemma 3.3 with
A =2 R=R,, ¢ =c¢,, weinfer that for all n sufficiently large, there exist
two functions w1, upn2 having the properties (i)—(vi) in Lemma 3.3.

From Lemma 3.3(iii) and (iv), we get

|EGL(un) - EGL(Un,l) - EGL(Un,2)| < Cena

while Lemma 3.3(i) and (ii) imply Eqr,(un1) > EgI(JO’R")(un) > qu(Ry,) — L

n’
respectively Eqr,(up2) > EgS\B(O’QR")(un) > Ear(un) —qn(2R,). Taking into

account (5.8), (5.11), (5.12) and (5.28), we infer that

(5.29) Egr(un1) — o and Ecr(un2) — ag—« as n — oo.
By (5.28) and Lemma 3.3(iii)—(vi), we obtain

(5.30) |A(upn) — A(un1) — A(up2)] — 0,

(5.31) |Ec(un) — Ec(tun,1) — Ec(unz2)] — 0,

and

(5.32) |P.(un) — Pe(un1) — Pe(un2)| — 0 as n — 0.

From (5.32) and the fact that P.(u,) — 0, we infer that P.(u,1) +
P.(up2) — 0 as n — oo. Moreover, Lemmas 4.1, 4.5 and 5.1 imply
that the sequences (P.(un;))n>1 and (Ec(un;))n>1 are bounded for ¢ = 1, 2.
Passing again to a subsequence (still denoted (u,)n>1), we may assume that
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limy, 00 Pe(tn,1) = p1 and limy,_yoo Pe(up2) = p2, where p1,p2 € R and
p1 + p2 = 0. There are only two possibilities: either p; = po = 0, or one el-
ement of {p1, p2} is negative.

If py = p2 =0, then (5.29) and Lemma 5.2 imply that liminf,, o Ec(un,;)
> T, for i = 1, 2. Using (5.31), we obtain liminf,,_, Ec(uy,) > 27, and this
clearly contradicts the assumption E.(u,) — T in Theorem 5.3.

If p; <0, it follows from (5.29) and Lemma 4.8(ii) that liminf,, . A(uy ;)
> %Tc. Using (5.30) and the fact that A > 0, we obtain lim inf,, o A(uy) >
VAT, which is in contradiction with (5.7).

We conclude that we cannot have a € (0, ayp).

So far we have proved that lim; ,~ ¢(t) = ap. Proceeding as in [40], it
follows that for each n > 1, there exists z,, € R such that for any ¢ > 0,
there are R, > 0 and n. € N satisfying

(5.33) Egﬁz”’RE)(un) >ap—¢ for any n > n..

Let u, = up(- + ), so that a, satisfies (5.33) with B(0, R.) instead of
B(zy, Re). Let x € C°(C,R) be as in Lemma 2.2, and denote @y, 1 = X(Un)Un,
Up,1 = (1 — x(@y))ay. Since Egr(4n) = Egr(uy) is bounded, we infer from
Lemma 2.2 that (@n,1)n>1 is bounded in DY2(RY), (@y,2)n>1 is bounded in
HYRY) and (EgL(iin:))n>1 is bounded for i = 1, 2.

Using Lemma 2.1 we may write 1 + @, 1 = pne'?n | where % < pn < % and
0, € DM2(RYN). From (2.4) and (2.7) we find that (p, — 1),>1 is bounded in
HYRY) and (6,)n>1 is bounded in DL2(RY).

We infer that there exists a subsequence (ny)r>1 and there are functions
up € DV2(RN), ug € HY(RYN), § € DV2(RN), p € 1 + HY(RY) such that

Gp,1 —uy  and 6, —0 weakly in DV2(RY),
Uppo —uz and  pg —1—p—1 weakly in Hl(RN)7

ank,l — U1, ﬂnkﬂ — U9, an — 0, Pny, — 1— P — 1

strongly in LP(K), 1 < p < 2* for any compact set K C R and a.e. on RV,

Since Uy, 1 = pnkew"k -1 — pew — 1 a.e., we have u; = pew —1ae on RV.
Denoting u = w1 +ug, we see that @,, — u weakly in DL2(RY), Up, — U

a.e. on RY and strongly in LP(K), 1 < p < 2* for any compact set K C R,
The weak convergence i, — u in DV2(RY) implies

2

dz < lim inf
k—oo JRN

2

o
g dxr < 0o forj=1,...,N.

8.’Bj
Using the a.e. convergence u,, — u and Fatou’s Lemma, we obtain

2 2 .. 2 ~ 2
— < —
(5.35) /N ((p (11 4 ul) 1) dz hkmmf/N ((p (11 + p, ) 1) dzx.

From (5.34) and(5.35) it follows that u € X and Eqr,(v) <liminfy_,~ Eqr,(tn, )

(5.34) /RN g)“

Zj
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We will prove that

. . N 2
(5.36) dim [ V(L[ de = [RN V(1 +uf?) de,
(5.37) Hm | 1+ @, | — |1+ ul || 2myy =0 and
k—o0
(5.38) lim Q(ty,) = Q(u).
k—ro0

Fix € > 0. Let R, be as in (5.33). Since Egr,(Uy,) — ag as k — 00, it
follows from (5.33) that there exists k. > 1 such that

(5.39) EGRLV\B(O’RE)(Q%) < 2 for any k > k..

As in (5.34)—(5.35), the weak convergence Vi, — Vu in L2(R" \ B(0, R.))
implies

/ |Vu|? dz < lim inf Vi, |* dz,
RN\B(0,R:) k—oo JRN\B(0,R.)

while the fact that u,, — u a.e. on R" and Fatou’s Lemma imply

2 2 . 2 - 2
14+ul)—1) dr<liminf 14+, |)—1) dx.
S, (L) =1)* dwstiming [ (214, ]) 1)
Therefore,
(5.40) ey WO w) < timinf B PO (G, ) < 2.
—00
Let v € X be a function satisfying Egg\B(O’RE)(v) < 2¢. Since ¢(|14+v|) =

2
14| and | [1+v] =1 < (9*(11 +v]) = 1) if [+ 0] < 2, using (1.7) we find

(5.41)
/ |V(|1+v[2)]da:§C1/ (21 + o) = 1) da
{140/ <2)\B(O.R.) {IL+0|<2}\B(O.R.)
< 20, BRVBOR) () < 40e
and
(5.42) / (14| —1)?da
{|14+v|<2}\B(0,R:)
g/ (P2(1+0]) = 1)7 do < 4.
{1+0|<2)\BO,R.)

On the other hand, |1 + v(z)| > 2 implies (¢*(|1 + v(z)|) — 1)2 > 9, con-
sequently

9N {z e RN\ B(0,R.) | |1 +v(z)| > 2})
< (P21 + o)) = 1)” do < 4e,

/RN \B(0,R:)
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Using the fact that ’V(\H—S\Q)’ <C(|1+sf? - 1)p0+1 < Cols]?Pot2if [1+5| > 2,
Holder’s inequality, the above estimate and the Sobolev embedding we find

(5.43)

/ V(14 v} dz < 02/ |v|?Pot2 dx:
{I1+v|>2}\B(0,R:) {I14+v|>2}\B(0,R.)
2pp+2 1_2p0+2

<C (/RNIU|2*dx)2* (gN({x e RV \ B(0,R.) | |1 +v(z)] > 2})) 57

_ 2pg+2 2po+2

< Oy Vol e ™ < Ca(Bar(v)P el

Similarly, we get

(5.44) (11 40| = 1)2de < / 0|2 da
{|14v|>2}\B(0,R¢)
2

1-5%
1+o@)]>2D)) 7 ol e

V/UH%Q(RN) S CEGL(”U)&l_Q%‘ .

/{|1+v|>2}\B(0,RE)
< (£Y({x e R¥\ B(0, R.)

2
< Celz

It is obvious that w and u,, (with k& > k.) satisfy (5.41) and (5.43). If
M > 01is such that Egr,(uy,) < M for all n, from (5.41) and (5.43) we infer that
(5.45)
/ VL4 i [2) = V(L4 )| do
RN\ B(0,R:)
2pp+2
2*

<

/ ’V(|1+ank‘2)‘+’V(|1—|—u|2)‘dq;§C€+CM170+1€17
RN\B(0,R.)

while (5.42) and (5.44) give
~ _2
(5.46) 1+ @y | = U7 2 po,poy < 46+ CMe' 7.

Of course, a similar estimate is valid for w.

The mapping z — V(]142|?) is obviously C*. Since |V (|1+2[*)] < C(1+
|2|#P0%2) and @y, — win LN L*°2(B(0, R.)) and almost everywhere, it fol-
lows that |1+, | — |1 +u| in L2(B(0, R.)) and V(|1 +1ip, |*) — V(|1+u|?)
in L(B(0, R.)). (See, e.g., Theorem A2 in [46, p. 133].) Hence,

(5.47) / VLt i, )~ V(1 + )| do < €
B(0,R:)
and
(548) [T+ @n, | — |1 +ul[lz2(B0,r.)) < € for all k sufficiently large.

Since € > 0 is arbitrary, (5.36) follows from (5.45) and (5.47), while (5.37) is
a consequence of (5.46) and (5.48).
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Next we prove (5.38). Fix ¢ > 0, and let R. and k. be as in (5.33) and
(5.39), respectively. From (2.6) we obtain

2* *

- . Fad
11 = X*(@n))nl 2y < ClVanll B gy < C (Bor(un)) T .

Using the Cauchy-Schwarz inequality and (5.39), we get

ou
10 / 1 —\2(a, <i$,ﬁn > dx
( ) RN\B(0,R.) ( i) o1 k
< 1L = X g )iy 2y | s < OMTVE
< k k (RY) ox1 L2(RN\B(O,R.))

for any k > k..
From (2.7) we infer that

1
1 *\ 5
192~ Ul o) < O (Bon (i) + |VitalFoguny)* < € (3 + 207 )

- a.e. on RV,

L RN\B(O.A.)) < Cy/e for any k > k. . Using

again the Cauchy-Schwarz inequality, we find

Using (2.4) and (2.5) we obtain ‘g%

and then (5.39) implies ‘ %ggf

< 2| 20x(fo)i)

Oty
< C‘ o1

00
5.50 / 2o—1) %\ dx
(5:50) RN\B(0,R:) (i =) Oy
a0,
<|lp2, = 2@ axf LR BO.R) <C(M)ye

for any k > k.. It is obvious that the estimates (5.49) and (5.50) also hold with
u, p and 6 instead of uy,, pn, and 6, , respectively.

Using the fact that @,, — u and p,, —1 — p—1in L?(B(0, R.)) and
a.e. and the dominated convergence theorem, we infer that

(1— Xz(ﬁnk))ﬁnk — (1 —x%(uw)u and ,072% —1—p?>—1 in L*(B(0,R.)).
This information and the fact that 2 — 2w apg Pme o 38791 weakly in

8(21 Twl 8Il
L*(B(0, Rc)) imply
(5.51)

aﬂnk 2/~ ~ > < 9 >
Q.. 1- n n dr — e 1— d
/B(o,Rg) <z By ( X (tny,))ln, ) dx 0.1 Zaxl ( X (u))u) dx
and
00 90
>0 / 1 nkdx_>/ P —1) o —da
o B(0,Re) (,o =) Oy B(0,R:) (p ) Oz

Using (5.49)—(5.52) and the representation formula (2.12), we infer that there
is some kj(g) > k. such that for any k > k1(¢), we have

|Q(in,) — Qu)| < CVE,




164 MIHAI MARIS

where C' does not depend on k > k;(¢) and e. Since € > 0 is arbitrary, (5.38)
is proven.

Notice that the proofs of (5.36)—(5.38) above are also valid if N = 3.
It is obvious that

(5.53)
N -3 Ot |?
_ ~ _ ~ 2 _ v ~ Nk _ ~
cQ(tn,) /RNV(“"‘UM‘ )de_lA(unk)"'/RN oz, dz — Pe(tn,,)
N-3 -
> N_lA(unk)_PC(unk)'

Passing to the limit as & — oo in this inequality and using (5.36), (5.38) and
the fact that A(u,) — %Tc, P.(1,) — 0 as n — oo, we find

N -3

(5.54) — eQ(u) - / V(L) de > T,> 0.
R
In particular, (5.54) implies that u # 0.
From (5.34) we get
N -1
(5.55) A(u) < liminf A(ty, ) = ——1T.
k—o0 2
Using (5.34), (5.36) and (5.38), we find
(5.56) P.(u) < liminf P.(@y, ) = 0.
k—ro0

If P.(u) < 0, from Lemma 4.8(i) we get A(u) > Y17, contradicting (5.55).
Thus necessarily P.(u) = 0; that is, u € C. Since A(v) > %TC for any v € C,
we infer from (5.55) that A(u) = ¥31T.. Therefore E.(u) = T. and u is a
minimizer of E. in C.
It follows from the above that
N-—-1

(5.57) Au) = TTC = klggo A(tp,).

Since P.(u) = 0, limy_yo0 Pe(tp,) = 0 and (5.36), (5.38) and (5.57) hold, it is
obvious that
ou

(5.58) /R |

Now (5.57) and (5.58) imply limy_, HVankH%Q(RN) = HVUH%Z(RN). Together
with the fact that Vi, — Vu weakly in L2(RY), this implies Vi,, — Vu
strongly in L2(RY) (that is, ,, — u in DH?(RY)), and the proof of Theo-
rem 5.3 is complete. O

2

dr = lim
k—oo JRN

2
dx.

D,

In order to prove that the minimizers provided by Theorem 5.3 solve
equation (1.4), we need the following regularity result.
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LEMMA 5.5. Let N > 3. Assume that conditions (A1) and (A2) in the in-
troduction hold and that v € X satisfies (1.4) in D'(RN). Thenu € T/Vlif(RN)

for anyp € [1,00), Vu € WIP(RYN) forp € [2,00), u € CH(RN) fora € [0,1)
and u(x) — 0 as |z| — oo.

Proof. First we prove that for any R > 0 and p € [2,00), there exists
C(R,p) > 0 (depending on u, but not on x € R") such that

(5.59) ullw2r(B,r)) < C(R,p) for any = € RY.

We write u = uj + ug, where u; and ug are as in Lemma 2.2. Then |u;| < %,
Vu; € L2(RY) and ug € H'(RY). Hence for any R > 0, there exists C'(R) > 0
such that

(5.60) |ull i1 (B(2,R)) < C(R) for any = € RV,

Let ¢(x) = e_ic%(l + u(z)). It is easy to see that ¢ satisfies

62
(5.61) Ao+ (F(|¢>|2) + 4> 6=0  inD'(RM).

Moreover, (5.60) holds for ¢ instead of w. From (5.60), (5.61), (3.18) and
a standard bootstrap argument, we infer that ¢ satisfies (5.59). (Note that
assumption (A2) is needed for this bootstrap argument.) It is then clear that
(5.59) also holds for u.

From (5.59), the Sobolev embeddings and Morrey’s inequality (3.27), we
find that v and Vu are continuous and bounded on RY and u € CL*(RY)
for a € [0,1). In particular, u is Lipschitz; since u € L* (RY), we necessarily
have u(z) — 0 as |x| — oc.

The boundedness of u implies that there is some C > 0 such that

[P+ uP) (1 +w)| < Cle*(1 +ul) - 1]

on RM. Therefore F(|1 4+ u|?)(1 +u) € L? N L®(RY). Since Vu € L2(RYN),
from (1.4) we find Au € L2(R"). It is well known that Au € LP(RY) with
1 < p < oo implies 8228“% € LP(RN) for any 1, j. (see, e.g., Theorem 3 in [45,
p. 96].) Thus we get Vu € WH2(RY). Then the Sobolev embedding implies
Vu € LP(RY) for p € [2,2*]. Repeating the previous argument, after an easy

induction we find Vu € WHP(RY) for any p € [2,00). O

PROPOSITION 5.6. Assume that conditions (A1) and (A2) in the intro-
duction are satisfied. Letu € C be a minimizer of E. inC. Thenu € I/V'l2’p(RN)

ocC

for any p € [1,00), Vu € WIP(RN) forp € [2,00) and u is a solution of (1.4).
Proof. Tt is standard to prove that for any R > 0,

Ju(v) = /RN V(1 +u+ o) da
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is a C! functional on HE(B(0, R)) and
J(v).w = —2/ F(1+u+v*) (1 4 u+v,w) de.
RN

(see, e.g., Lemma 17.1 in [34, p. 64] or Appendix A in [46].) It follows easily
that for any R > 0, the functionals P.(v) = P.(u+ v) and E,(v) = E,(u + v)
are C' on H(B(0, R)). The differentiability of Q follows, for instance, from
(2.19). We divide the proof of Proposition 5.6 into several steps.

Step 1. There exists a function w € CHRN) such that P.(0).w # 0. To
prove this, we argue by contradiction and we assume that the above statement
is false. Then u satisfies
(5.62)

2
—8—12‘ N 3<§ >+z’cu$1—F(\1+u|2)(1+U)—0 in D'(RY).
Jxy N —

Let o = /R—=. It is not hard to see that uy , satisfies (1.4) in D’(RY). Hence
the conclusion of Lemma 5.5 holds for u; , (and thus for u). This regularity is
enough to prove that u , satisfies the Pohozaev identity

(5.63) [R . [R . Z

+eQ(ury) +/ V(14w %) dz = 0,
RN

8U1,U 8’LL1 N

ox

To prove (5.63), we multiply (1.4) by S0, X(£ )aul", where x € C'OO(RN)

oxy,

is a cut-off function such that y = 1 on B(0,1) and supp(x) C B(0,2), w
integrate by parts, then we let n — oo; see the proof of Proposition 4.1 and
equation (4.13) in [42, p. 1094] for details.

Since 0 = \/g, (5.63) is equivalent to (% 3)2A(u) + B.(u) = 0. On
the other hand, we have P.(u) = HA( ) + Be(u) = 0 and we infer that

A(u) = 0. But this contradicts the fact that A(u) = Y NAT, > 0, and the proof
of Step 1 is complete.

Step 2. FExistence of a Lagrange multiplier. Let w be as above, and let
v € HY(RM) be a function with compact support such that ]50/(0).1) = 0. For
s,t € R, put ®(t,s) = P.(u+ tv + sw) = P.(tv + sw), so that ®(0,0) = 0,
861) 2(0,0) = P/(0).v = 0 and 22(0,0) = P/(0).w # 0. The implicit function
theorem implies that there exist 6 > 0 and a C! function 7 : (-=§,d) — R
such that n(0) = 0, #'(0) = 0 and P.(u+tv+n(t)w) = P.(u) =0 for t € (=4, 9).
Since w is a minimizer of A in C, the function t — A(u + tv +n(t)w) achieves
a minimum at ¢t = 0. Differentiating at ¢t = 0, we get A’(u).v = 0.
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Hence A’(u).v = 0 for any v € H'(R") with compact support satisfying
P!(0).v = 0. Taking a = % (where w is as in Step 1), we see that
(5.64) A'(u).w = aP.(u)v for any v e H(RY) with compact support.

Step 3. We have a < 0. To see this, we argue by contradiction. Suppose
that @ > 0. Let w be as in Step 1. We may assume that P.(u).w > 0.

From (5.64) we obtain A’(u).w > 0. Since A'(u).w = limtﬁow
Pe(uttw)—Pc(u)
?

and

P/(u).w = limy_0 , we see that for ¢ < 0, ¢ sufficiently close to 0,
we have u + tw # 0, Pe(u + tw) < P.(u) =0 and A(u + tw) < A(u) = YT,
But this contradicts Lemma 4.8(i). Therefore o < 0.

Assume that o = 0. Then (5.64) implies
(5.65)

N
/ (a—u, ﬁ> dz =0 for any v € H(RY) with compact support.
RN (= Ox; Ox;

Let ¥ € C°(RY) be such that y = 1 on B(0,1) and supp(x) C B(0,2). Put
vn(z) = Xx(£)u(x), so that Vo, (z) = LVX(£)u+x(£)Vu. It is easy to see that
X(£)Vu — Vu in L*(RY) and 1V¥(2)u — 0 weakly in L?(R"). Replacing
v by v, in (5.65) and passing to the limit as n — oo, we get A(u) = 0, which
contradicts the fact that A(u) = %Tc. Hence we cannot have a = 0. Thus,
necessarily, o < 0.

Step 4. Conclusion. Since a < 0, it follows from (5.64) that u satisfies
(5.66)
0*u (N -3 1 0%u

N
, 2 _ : N
o ]\7—1_a),€2283:/,2€+lcu$1_F(|1+u| J(1+u) =0 in D'(RY).

_1
Let 0¢g = (% — é) 2. It is easy to see that uj ,, satisfies (1.4) in D'(RY).
Therefore the conclusion of Lemma 5.5 holds for u; 4, (and consequently for u).
Then Proposition 4.1 in [42] implies that u; , satisfies the Pohozaev identity
V=3 A(un o) + Be(ui,6) = 0, or equivalently ¥=200""3A(u) + o' B.(u) = 0,

which implies

N -3 <N -3 1)
—(=———-—)4A B.(u) = 0.
No1\N=1 o/ AW Bl =0

On the other hand, we have P,(u) = %A(u)—{—Bc(u) = 0. Since A(u) > 0, we
get % —1 = 1. Then coming back to (5.66) we see that u satisfies (1.4). O

6. The case N =3

This section is devoted to the proof of Theorem 1.1 in space dimension
N = 3. We only indicate the differences with respect to the case N > 4.
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Clearly, if N = 3, we have P. = B.. For v € X, we denote

D(U):/RS v |?

oxy
For any v € X and o > 0 we have
(6.1)
A(vi o) = A(v), B.(vi4) = o?B.(v) and D(vi o) = o?D(v).

da:—|—2/ 2(11 +v]) —1) dz.

If N = 3, we cannot have a result similar to Lemma 5.1. To see this
consider u € C, so that B.(u) = 0. Using (6.1) we see that u;, € C for any
o > 0, and we have E.(u1,) = A(u) + 02B.(u) = A(u), while Egp(u1,) =
A(u) + 0?D(u) — o0 as 0 — .

However, for any u € C, there exists o > 0 such that D(u;,) =
obviously uj , € C, Ec(u1,,) = Ec(u)). Since C # () and T, = inf{E.(u
C}, we see that there exists a sequence (uy,),>1 C C such that

(6.2) D(u,) =1 and E.(up) = A(up) — T, asn — 0.

(and

1
)| ue

In particular, (6.2) implies Eqp,(u,) — T + 1 as n — oc.
The following result is the equivalent of Lemma 5.2 in the case N = 3.
LEMMA 6.1. Let N =3, and let (up)n>1 C X be a sequence satisfying

(a) there exists C > 0 such that D(uy,) > C for any n, and
(b) Be(un) — 0 as n — o0.

Thenliminf, o Ec(uy) = liminf,, o A(u,) > S., where S, is given by (4.22).
Proof. Tt suffices to prove that for any k& > 0, there holds
(6.3) liggioréfA(un) > E¢ min(k).

Fix £ > 0. Let n > 1. If A(u,) > k, by Lemma 4.6(iii) we have A(u,) >
k > Eemin(k). If A(u,) < k, since EgL((un)10) = A(un) + 0?D(uy,), we
see that there exists o, > 0 such that Eqp((un)is,) = k. Obviously, we
have 02D(u,) < k; hence, 02 < % by (a). It is clear that E.((un)iqs,) =
A(up) + 02Be(un) > Ecmin(k), therefore A(up) > Eemin(k) — 02|Be(uy)| >
E¢ min(k) — %|Bc(un)| Passing to the limit as n — 0o, we obtain (6.3). Since
k > 0 is arbitrary, Lemma 6.1 is proven. U

Let
A. = {X € R| there exists a sequence (up)n>1 C X such that
D(uy) > 1, B.(un) — 0 and A(u,) — X as n —» oo}
Using a scaling argument, we see that

Ac.={X € R| there exist a sequence (up)p>1 C & and C' > 0 such that
D(uy) > C, Be(up) — 0 and A(u,) — A as n — oo}.
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Let A. = inf A.. From (6.2) it follows that 7. € A.. It is standard to prove
that A. is closed in R; hence A\, € A.. From Lemma 6.1 we obtain

(6.4) Se <A < T

The main result of this section is as follows.

THEOREM 6.2. Let N =3, and let (uy)n>1 C X be a sequence such that
(6.5) D(up) — 1, Belup) —0 and A(up) — A asn — oo.

There exist a subsequence (un, )k>1, a sequence (xx)k>1 C R® and u € C such
that

Vg, (- +21) — Vu  and |1 +u,, (-+x5)| —1 — |[14+u| -1 in L*(R3).

Moreover, we have E.(u) = A(u) = T, = A\ and u minimizes E. in C.

Proof. By (6.5), we have Eqr,(upn) = A(up)+D(un) — Ae+1asn — oo.
Let gn(t) be the concentration function of Egr,(uy), as in (5.9). Proceeding
as in the proof of Theorem 5.3, we infer that there exist a subsequence of
(Un, @n)n>1, still denoted (up,@n)n>1, @ nondecreasing function ¢ : [0, 00) —
[0,00) and « € [0, A; + 1] such that (5.10) holds. We see also that there exists
a sequence t,, — oo satisfying (5.11) and (5.12).

Clearly, our aim is to prove that a = A\, + 1. The next result implies that
a>0.

LEMMA 6.3. Assume that N=3, 0<c<vs and (up)n>1 CX is a sequence
satisfying D(u,) — 1, Be(up) —0 as n— 00 and sup,,>; EqL(u,) =M <oo.
There exists k > 0 such that

1
sup / {|Vun|2+f(g02(\1+un|)—1)2} dx >k

for all sufficiently large n.

Proof. We argue by contradiction and assume that the conclusion of
Lemma 6.3 is false. Then there exists a subsequence, still denoted (up)n>1,
such that

(6.6) sup Egﬁy’l)(un) —0 as n — 00.
yeR3

Exactly as in Lemma 5.4 we prove that (5.14) holds; that is,

(6.7) lim

n—oo R3

1 2
V(1 +un)?) — 3 (¢*(11 +ual) = 1) |dz = 0.




170 MIHAI MARIS

Using (6.7) and the assumptions of Lemma 6.3, we find
(6.8)  cQ(un) = Be(upn) — D(up)

- /R v+ up) - % (P14 unh) — 1)} dw — -1

asn — oo. If ¢ = 0, then (6.8) gives a contradiction and Lemma 6.3 is proven.
From now on we assume that 0 < ¢ < ;.

Fix ¢; € (¢,vs), then fix 0 > 0 such that
Mc

¢l —c

(6.9) o2 >

A simple change of variables shows that M := sup,,>1 oL ((un)1,0) < oo and
(6.7) holds with (up)1, instead of u,. It is easy to see that ((up)1,0)n>1 also
satisfies (6.6). Using Lemma 3.2 we infer that there exists a sequence h, — 0

and for each n there exists a minimizer v,, of Ggu"%;g" in H (1u Yo (R3) such that
(6.10) |11+ wvn| = 1| pocmsy — 0 as n —» 00.

From (3.4) we obtain

(6.11) |Q((un)1) ~ Qua)| < C (W2 + hid13) AT — 0 asn— oo

Using (6.10), the fact that 0 < ¢; < vs and Lemma 4.2 we infer that for all
sufficiently large n, there holds

(6.12) Ecr(vn) + c1Q(vn) > 0.
Since Eqr,(vn) < Egr((un)1,0), for large n we have
(6.13)

0< EGL(Un) + ClQ(Un)
< EGL((un)l,U) + CIQ((un)l,U) + cl’Q((un)l,a) - Q(Un)’
= A(un) + B ((“n>1 o)+ (e1 = )Q((un)1,0) + c1lQ((un)1,0) — Q(vn)]
+/ P(1+ ()i ol) — 1)° = V(L + ()1 o)} d

= A(up) +o Bc(un) + 02(c1 — ¢)Q(uy)
< M+ 0?Be(up) + 0%(c1 — ¢)Q(un) + an,

where

an = c1|Q( (Un)l o) — Q(vy)]
+/ |1+(u”)1‘7’)_1) _V(|1+(Un)1,g|2)} dx

From (6.7) and (6.11) we infer that lim,, . @y, = 0. Then passing to the limit
as n — oo in (6.13), using (6.8) and the fact that lim, o Bc(u,) = 0 we
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find 0 < M — Uzcl—gc. The last inequality clearly contradicts the choice of o
in (6.9). This contradiction shows that (6.6) cannot hold, and Lemma 6.3 is
proven. O

Next we show that we cannot have a € (0, A\. + 1). We argue again by
contradiction, and we assume that « € (0, A\ +1). Proceeding exactly as in the
proof of Theorem 5.3 and using Lemma 3.3, we infer that for each n sufficiently
large, there exist two functions uy 1, un 2 having the following properties:

(6.14) Ear(un,1) — «, Ecr(un2) — Ae+1—q,
(6.15) |A(un) — Aun,1) — A(unz2)| — 0,

(6.16) |Be(un) — Be(tun1) — Be(un )] — 0,

(6.17) |D(un) — D(un1) — D(up2)] — 0 as n — 0o.

Since (EgL(un,i))n>1 are bounded, from Lemmas 4.1 and 4.5 we see that
Be(un,i))n>1 are bounded. Moreover, by (6.16), we have

lim (Be(un,1) + Be(un2)) = nh_)rglo B.(u,) = 0.

n—oo

Similarly, (D(un,i))n>1 are bounded and
Jim (D(un,1) + D(un2)) = Jim D(u,) = 1.
Passing again to a subsequence (still denoted (uy)n>1), we may assume that
(6.18) nh—>Holo Bc(uml) = by, nh_g.lo Bc(umg) = by, whereb; € R, by + by =0,
(6.19) lim D(un,l) =di, lim D(’u,ng) =dy, whered; >0, di +do = 1.
n—oo n—oo

From (6.18) it follows that either by = by = 0, or one of b; or b is negative.

Case 1. If by = by = 0, we distinguish two subcases.

Subcase la. We have di > 0 and do > 0. Let o; = %, i = 1,2. Then

D((uni)1.0;) = 02D(un;) — 4 and Be((uni)1,0;) = 02Be(un;) — 0 as
n — oo. From (6.1) and the definition of A, it follows that

liminf A(uy ;) = iminf A((uni)1,0,) > Ae, 1 =1,2.
n—o0 n—o0
Then (6.15) implies

liminf A(u,) > linrgioréfA(un,l) + linrgiorolfA(un’g) > 2N,

n—ro0
and this is a contradiction because by (6.5), we have lim,, o, A(u,) = Ac.
Subcase 1b. One of the d;’s is zero, say di = 0. Then necessarily ds = 1;
that is, limy, 0 D(up2)=1. Since Egr,(un2)=A(un2) + D(up2) — 14+ A —
as n — 0o, we infer that lim, o A(up2) = A\¢ — . Hence D(uy2) — 1,
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Be(up2) — 0 and A(un2) — A\c — @ as n —» oo, which implies A\ —a € A,.
Since « > 0, this contradicts the definition of A..

Case 2. One of b;’s is negative, say by < 0. From Lemma 4.8(ii) we get
liminf, o A(up1) > Te > A¢, and then using (6.15) we find liminf,, oo A(uy)
> A, in contradiction with (6.5).

Consequently, in all cases we get a contradiction, and this proves that we
cannot have av € (0, Ac + 1).

Up to now we have proved that lim;_, q(t) = Ac + 1; that is, “concentra-
tion” occurs.

Proceeding as in the case N > 4, we see that there exist a subsequence
(tn, )k>1, a sequence of points (zx)r>1 C R? and u € X such that, denoting
Un, () = up, (r + x1), we have

(6.20) Vi, — Vu in L*(R?)
and i, — uin LY (R?) for 1 <p < 6 and a.e. on R?,
(6.21) 1+ @y | —1 —> [14+ul—1 in L*(R3),
(6.22) / V(1 + i, |2) de —>/ V(1 + uf?) dr,
R3 R3
(6.23) Q(tn,) — Q(u) as k — oo.

Since | (¢2(s) = 1)° = (%(t) = 1)*| < 245 = #] (s = 1| + [t = 1]), from
(6.21) we get

(6.24) / (@2(I1 + iy ) — 1) dm—>/ 2(11 4 uf) — 1) da.
R3
Passing to the limit as k — oo in the identity
B 1 - 2 N N -
LAV 0 ) =5 (621 + )= )} o+ 0Qin) = Belin) =Dl ).
using (6.22)—(6.24) and the fact that B(ay,) — 0, D(uy,, ) — 1, we obtain

/R3 {V(Il +ul?) - % (¢*(11+ul) - 1)2} dz + cQ(u) = —1.

Thus u # 0.
From the weak convergence Vi, — Vu in L?(R?), we get
ou |? Oty |
(6.25) / TV de < liminf YT gr for j=1,2,3.
R3 | 0% k—oo JR3 | O
In particular, we have
(6.26) A(u) < lim A(tp,) = Ae.
k—o00

From (6.22), (6.23) and (6.25), we obtain
(6.27) B.(u) < lim B(ty,) = 0.
k—o0
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Since u # 0, (6.27) and Lemma 4.8(i) imply A(u) > T,. Then using (6.26) and
the fact that A\, < T, we infer that necessarily

(6.28) A(u) =T, = Ao = lim A(iin, ).

k—oo

i, |2
ox1

The fact that Be(iin,) — 0, (6.22) and (6.23) imply that ( [gs

Otin,, |2
"k
RET dx, we get

dx)k21

2
converges. If [gs (%“Ll‘ dr < limy_o0 [gs

B(u) < lim Be(ty,) =0
k—o0

in (6.27), and then Lemma 4.8(i) implies A(u) > T, a contradiction. Taking
(6.25) into account, we see that necessarily

(6.29) /R 3

Thus we have proved that u € C and ||Vu||p2r3) = limg o0 (| Viin, |12 (r3)-
Combined with the weak convergence Vi, — Vu in L?(R?), this implies the
strong convergence Vi, — Vu in L?(R3), and the proof of Theorem 6.2 is
complete. O

2

dr = lim
k—oo JR3

2

u dx and B.(u) = 0.

81‘1

D,

To prove that any minimizer provided by Theorem 6.2 satisfies a Euler-
Lagrange equation, we will need the next lemma. It is clear that for any v € X
and any R > 0, the functional BY(w) := Be(v +w) is C* on H}(B(0, R)). We
denote by (BY)(0).w = 1imt_>ow its derivative at the origin.

LEMMA 6.4. Assume that N > 3 and conditions (A1) and (A2) are satis-
fied. Let v € X be such that (B2)'(0).w = 0 for any w € CLRN). Thenv =0
almost everywhere in RV,

Proof. We denote by v* the precise representative of v; that is, v*(z) =
lim,_,o m(v, B(z,r)) if this limit exists, and 0 otherwise. Since v € L}OC(RN),
it is well known that v = v* almost everywhere on RY. (See, e.g., Corollary 1
in [17, p. 44].) Throughout the proof of Lemma 6.4, we replace v by v*. We

proceed in three steps.

Step 1. There exists a set S C RY~! such that £V~1(S) = 0, and for
any 2/ € RN\ S, the function v, := v(-,2’) belongs to C%(R) and solves the
differential equation
(6.30)

~ (00)"(5) + icvp)(8) — F(|1 + 0p ()2)(1 +var(s)) =0 for amy s € R.
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Moreover, we have |v,/(s)] — 0 as s — Fo00, and v,/ satisfies the following
properties:

(6.31)

vy € L¥(R), @214 vw|)— 1€ L2R) and (vy) = 20

" Ory

(6.32) F(14 vy )1+ vy) € LQ(R)+L2P%(R).

(a') € L*(R),

It is easy to see that F/(|1+v[?)(1+v) € LQ(RN)—I—LQP%ﬁ(RN). Since v €
H} (R3), using Theorem 2 in [17, p. 164] and Fubini’s Theorem, respectively,
we see that there exists a set § € RV~ such that £LY~1(S) = 0, and for any
2’ € RVN=1\ S, the function v,/ is absolutely continuous, v,s € HL _(R) and
(6.31)—(6.32) hold.

Given ¢ € CL(R), we denote

M) = (2,0, o))+ ¢ (i, '), 0o) )
— (F(IL+ o) (1 +v)(a1,2"), d(x1)),
where (-, -) denotes the scalar product of two complex numbers.~ From (6.31)
and (6.32) it follows that Ag(,2') € L'(R) for 2/ € RV"1\ S. We define
Mo(2') = [g Ap(a1,2")dxy if 2/ € RVN71\ S and A\g(2') = 0 if 2’ € S. Let

Y € CHRN7Y). Tt is obvious that the function (x1,2) — Ag(z1,2")b(2")
belongs to L'(RY), and using Fubini’s Theorem, we get

o Astaraia)de = [ ds@oa) i

On the other hand, using the assumption of Lemma 6.4, we obtain
~ /
2 |, Aolara)i(a) do = (BL) (0)(¢(a)e(a') = 0.
Hence we have [gn-1 Ap(2)¥(2')da’ = 0 for any 1 € CLRN™!), and this
implies that there exists a set Sy € RV=!\ § such that LN~1(S,) = 0 and
Ao =0on RN\ S,.

Denote ¢y = 2;)711 € (1,00). There exists a countable set {¢, € CL(R) | n

€ N} which is dense in H'(R) N L%(R). For each n, consider the set S¢, C
RN~ as above. Let S = S UUpen So,- It is clear that £V=1(S) = 0.

Let 2/ € RV-1\ S. Fix ¢ € C}(R). There is a sequence (¢n, )r>1 such
that ¢n, — ¢ in H'(R) and in L%(R). Then Ay, («/) = 0 for each k and
(6.31)—(6.32) imply that A4, (z) — Ag(2'). Consequently, A\y(z') = 0 for
any ¢ € C}(R) and this implies that v, satisfies equation (6.30) in D'(R).
Using (6.30) we infer that (vy)” (the weak second derivative of v,/) belongs
to L (R). Then it follows that (v,/)" is continuous on R. (See, e.g., Lemma

loc

VIIL.2 in [11, p. 123].) In particular, we have v, € C*(R). Coming back to
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(6.30) we see that (v,s)" is continuous. Hence, v,y € C?(R) and (6.30) holds at
each point of R. Finally, we have |v,/(s2) — v, (s1)] < |s2 —51]%\\ (ver)' || 25 this
estimate and the fact that v, € L? (R) imply that v, (s) — 0 as s — +oo.

Step 2. There exist two positive constants k1, ko (depending only on F
and c) such that for any 2/ € RN~ \ S, we have either v, = 0 on R or there
exists an interval I, C R with £'(I/) > k; and ’ |14 vy | — 1’ > ko on .

To see this, fix 2/ € R¥71\ S and denote g = |1 + vy|?> — 1. Then
g € C?(R,R) and g tends to zero at +o0o. Proceeding exactly as in [42,
pp. 1100-1101}, we integrate (6.30) and we see that g satisfies

(6.33) (g)2(s) 4+ ?g*(s) — 4(g(s) + 1)V (g(s) +1) = 0 in R.

Using (1.6) we have c*t2—4(t+1)V (t+1) = t3(c> —v2+¢1(t)), where g1 (t) — 0
as t — 0. In particular, there exists kg > 0 such that

(6.34) AP A+ 1)V(E+1) <0 for t € [~2ko,0) U (0, 2ko)].

If g =0 on R, then |1 4+ v,s| = 1. Consequently, there exists a lifting
1+ v (s) = €9¢) with € C*(R,R). Using equation (6.30) and proceeding
as in [42, p. 1101], we see that either 1+ v,/(s) = €% or 1 + v,/(s) = elestoo
where 6y € R is a constant. Since v,» € L?" (R), we must have v, = 0.

If g # 0, the function g achieves a negative minimum or a positive maxi-
mum at some sg € R. Then ¢'(sp) = 0, and using (6.33) and (6.34) we infer
that |g(so)| > 2ko. Let

s9 = inf{s < s ‘ lg(s)| > 2ko}, s1 = sup{s < s9 ) lg(s)| < ko},

so that s1 < s2, |g(s1)| = ko, |g(s2)| = 2ko and ko < |g(s)| < 2k for s € [s1, s2].
Denote M = sup{4(t + 1)V (t + 1) — ®t? | t € [~2ko, 2ko]}. From (6.33) we
obtain [¢'(s)| < VM if g(s) € [2ko, 2ko], and we infer that

52
Fo = lg(s)] — lgls1)| < | [ g/(s)ds| < V(52— 1)
51
hence s9 —s1 > \}“—OM Obviously, there exists k > 0 such that | [14+2|2—1| > kg
implies | |1 + z| — 1| > ko. Taking k1 = joﬁ and I, = [s1, s3], the proof of

Step 2 is complete.

Step 3. Conclusion. Let K = {2’ € RVN=1\ S | vy # 0}. It is standard
to prove that K is £V~ !-measurable. The conclusion of Lemma 6.4 follows if
we prove that £N~1(K) = 0. We argue by contradiction and we assume that
LN1(K) > 0.

If ' € K, it follows from Step 2 that there exists an interval I of length
at least k1 such that (¢*(|1 + vy|) — 1)2 > n(ka) on I/, where 7 is as in (3.30).



176 MIHAI MARIS

This implies [g (¢(|1 + v(z1,2')]) — 1)2 dx1 > kin(k2). Using Fubini’s theo-
rem, we get

/RN (@2(‘1 +v(z)|) — 1>2 dz = /K (/R (902(]1 +v(xy,2)]) — 1)2 darl) dz’
> kyn(ke) LN (K.

Since v € X, we infer that LV ~1(K) is finite.

It is obvious that there exist #} € K and oy € RN~1\ (K U S) arbitrarily
close to each other. Then |v,/| > kz on an interval I, of length ki, while
Uy, = 0. If we knew that v is uniformly continuous, this would lead to a
contradiction. However, equation (6.30) satisfied by v involves only derivatives
with respect to x1 and does not imply any regularity properties of v with
respect to the transverse variables. (Notice that if v is a solution of (6.30),
then v(xz1+0(2"),2’) is also a solution, even if § is discontinuous.) For instance,
for the Gross-Pitaevskii nonlinearity F'(s) = 1 — s, it is possible to construct
bounded, C* functions v such that v € L2 (R"), (6.30) is satisfied for almost
every 2/ and the set K constructed as above is a nontrivial ball in RN™1,
(Of course, these functions do not tend uniformly to zero at infinity, are not
uniformly continuous and their gradient is not in L2(RY).)

We use the fact that one transverse derivative of v (for instance, %) is
in L2(R") to get a contradiction.
For o' = (29,23,...,2y5) € RV~ we denote 2" = (23,...,2x). Since v €

HE (RY), from Theorem 2 in [17, p. 164] it follows that there exists J C RV !
such that £N=1(J) = 0 and u(z1, -, 2") € HL (RY) for any (z1,2") € RN "1\ J.
Given 2” € RY72, we denote

Ky ={z2 € R| (22,2") € K},
Sy = {x9 € R| (x2,2") € S},
Jor ={x1 € R | (z1,2") € J}.

Fubini’s Theorem implies that for almost all 2” € RVN=2, the sets K, Sy,
Jr are Ll-measurable, L1(K, ) < oo and L1(Syr) = L1 (Jn) = 0. Let

(6.35) G ={a" e RN"2| Ky, Syn, Jpn are L'-measurable,
ﬁl(Sx//) = ,CI(JI//) =0and 0 < ,CI(KIN) < o0}

Clearly, G is £V 2measurable and [, L'(K,»)dz” = LVN7YK) > 0; thus
LN=2(G) > 0. We claim that

o 2
(6.36) / —v(xl, x9,2")| dxy dzy = 00 for any 2" € G.
R2 |0z
Indeed, let 2” € G. Fix € > 0. Using (6.35) we infer that there exist
s1, 52 € R such that (s1,2”) € RN "1\ (K US), (s2,2") € K and |sy — 51| < €.
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Then v(t, s1,2”) = 0 for any t € R. From Step 2 it follows that there exists an
interval I with £1(I) > k; such that |v(t, s2,2”)| > | |1+ v(t, 52, 2")| — 1| > ko
for t € I. Assume s1 < 8. If t € I\ Jpr, we have v(t,-,2") € HL_(R). Hence,

52 Ju
ko < |v(t,s2,2") —v(t,s1,2")| = —(t,7,2")dr
S1 8-172
s o 2 3
1 2 v 2
< 52512(/ —(t, 7, 2" dT) .
o= s ([ tma?)

2

2
Clearly, this implies [ %(t,ﬂ 2| dr > ’%2 Consequently,

2 S92
/ dxl d(]?g Z / /
R?2 IJsy

Since the last inequality holds for any € > 0, (6.36) is proven. Using (6.36),
2

v —
6I2’ dl' = 00,

ov
7(-%17 x2, fE”)

2 2
dr dt > %
8%2 e

ov "
8762(@7,95 )

the fact that £Y~2(G) > 0 and Fubini’s Theorem, we get [gw

contradicting the fact that v € X. Thus necessarily LY ~1(K) = 0, and the
proof of Lemma 6.4 is complete. O

PROPOSITION 6.5. Assume that N = 3 and conditions (A1) and (A2) are
satisfied. Let u € C be a minimizer of E. in C. Then u € I/Vli’f(st) for any
p € [1,00), Vu € WHP(R3) for p € [2,00) and there exists o > 0 such that
U1, s a solution of (1.4).

Proof. The proof is very similar to the proof of Proposition 5.6. It is clear
that A(u) = E.(u) = T, and u is a minimizer of A in C. For any R > 0, the
functionals BY and A(v) := A(u + v) are C' on H{(B(0, R)). We proceed in
four steps.

Step 1. There exists w € C1(R?) such that (B%)'(0).w # 0. This follows
from Lemma 6.4.

Step 2. There exists a Lagrange multiplier o € R such that
(6.37) A'(0).v=a(B%)(0).v for any v € H(R?), v with compact support.

Step 3. We have o < 0.

The proof of Steps 2 and 3 is the same as the proof of Steps 2 and 3 in
Proposition 5.6.

Step 4. Conclusion. Let § = —é. Then (6.37) implies that u satisfies
0%u Pu 0%u
gt

. 2 : 3
_TIE%_ %+%§>+ZCUII—F(‘1+U‘ )(1+U):OIDD/(R)
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For o2

= %, we see that u; , satisfies (1.4). It is clear that u;, € C and uj »
minimizes A (respectively E.) in C. Finally, the regularity of u; , (thus the

regularity of u) follows from Lemma 5.5. O

7. Further properties of traveling waves

By Propositions 5.6 and 6.5 we already know that the solutions of (1.4)
found there are in VVlif(RN) for any p € [1,00) and in C*(RY) for any
a € (0,1). In general, a straightforward bootstrap argument shows that the
finite energy traveling waves of (1.1) have the best regularity allowed by the
nonlinearity F. For instance, if ' € C¥([0,00)) for some k € N*, it can
be proved that all finite energy solutions of (1.4) are in VVIIZZFZP (RY) for any
p € [1,00) (see, for instance, Proposition 2.2 (ii) in [42]). If F is analytic, it
can be proved that finite energy traveling waves are also analytic. In the case
of the Gross-Pitaevskii equation, this has been done in [5].

Our next result concerns the symmetry of those solutions of (1.4) that

minimize F, in C.

PROPOSITION 7.1. Assume that N > 3 and conditions (Al) and (A2) in
the introduction hold. Letu € C be a minimizer of E. in C. Then, after a trans-
lation in the variables (za,...,xN), u is azially symmetric with respect to Ox1.

Proof. Let T, be as in Lemma 4.7. We know that any minimizer u of F,
in C satisfies A(u) = YT, > 0. Using Lemma 4.8(i), it is easy to prove that
a function v € X is a minimizer of F, in C if and only if
(7.1) w minimizes the functional P, in the set {U eX|Alw) = %Tc} .

The minimization problem (7.1) is of the type studied in [43]. All we have
to do is to verify that assumptions (Al.) and (A2.) in [43, p. 329] are satisfied
and then to apply the general theory developed there.

Let II be an affine hyperplane in RY parallel to Ox;. We denote by sy
the symmetry of RY with respect to II and by IT*, II- the two half-spaces
determined by II. Given a function v € X', we denote

v(x) if x € II'T UL,
o+ () = .
v(si(z)) ifxell”
and
v(x) if x € I~ UTI,
UH* (x) = . +
v(si(z)) if x € IIT.
It is easy to see that v+, vp- € X. Moreover, for any v € X, we have
A(vg+) + A(vg-) = 2A(v)  and  P.(vp+) + Pe(vp-) = 2P(v).
This implies that assumption (A1l.) in [43] is satisfied.
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By Propositions 5.6 and 6.5 and Lemma 5.5 we know that any minimizer
of (7.1) is C! on R¥, hence assumption (A2.) in [43] holds. Then the axial
symmetry of solutions of (7.1) follows directly from Theorem 2’ in [43, p. 329].
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