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On the birational automorphisms of
varieties of general type

By Christopher D. Hacon, James McKernan, and Chenyang Xu

In memory of Eckart Viehweg

Abstract

We show that the number of birational automorphisms of a variety of

general type X is bounded by c · vol(X,KX), where c is a constant that

only depends on the dimension of X.
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1. Introduction

Throughout this paper, unless otherwise mentioned, the ground field k

will be an algebraically closed field of characteristic zero.

Theorem 1.1. If n is a positive integer, then there is a constant c such

that the birational automorphism group of any projective variety X of general

type of dimension n has at most c · vol(X,KX) elements.

For curves, this is a weak form of the classical Hurwitz Theorem which

says that if C is a curve of genus g ≥ 2 with automorphism group G, then

|G| ≤ 84(g − 1). Note that vol(C,KC) = 2g − 2 and so this bound may be

rephrased as |G| ≤ 42 · vol(C,KC).

This problem has been extensively studied in higher dimensions; see, for

example, [1], [3], [8], [10], [16], [30], and [31] for surfaces; [9], [26], [29], [32],

and [33] in higher dimensions; and [5] for surfaces in characteristic p.

Xiao, [31], proved that if S is a smooth projective surface of general type,

with automorphism group G, then |G| ≤ (42)2 vol(S,KS). (If S is minimal,

then vol(S,KS) = K2
S ; for the general definition of the volume, see [21, 2.2.31]

or Definition 2.3.1.) Xiao shows that we have equality if and only if S is a quo-

tient of C ×C, where C is a curve whose automorphism group has cardinality

42(2g−2), by the action of a very special subgroup of the automorphism group

of C × C.

Question 1.2. Find an explicit bound for the constant c appearing in

Theorem 1.1.

If C is a curve with automorphism group of maximal size, that is, |Aut(C)|
= 84(g − 1) and

X = C × C × · · · × C,
then Aut(X) = n!(42)n(2g−2)n and vol(X,KX) = n!(2g−2)n, so that c ≥ 42n.

If we consider the example of the Fermat hypersurface

X = (Xm
0 +Xm

1 + · · ·+Xm
n+1 = 0) ⊂ Pn+1,

then Aut(X) ≥ (n + 2)!mn+1 and vol(X,KX) = m(m − n − 2)n. If we take

m = n+ 3, then the ratio

Aut(X)

vol(X,KX)
≥ (n+ 2)!(n+ 3)n

exceeds 42n for n sufficiently large (indeed, n ≥ 5 suffices), so that c is even-

tually greater than 42n. In fact, c grows faster than nn, so that c grows faster

than any exponential function.

It is all too easy to give examples that show Theorem 1.1 fails spectacularly

in characteristic p. Consider the finite field Fq2 with q2 elements, where q = pk
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is a power of a prime p. Note that the function

Fq2 −→ Fq2 given by b −→ b̄ = bq

is an involution that plays the role of complex conjugation in characteristic p.

Suppose that V = Fmq2 is the standard vector space of dimension m over the

field Fq2 . Then there is a sesquilinear pairing

V × V −→ Fq2 given by (a, b) −→
∑
i

aib̄i.

Let Um(q) denote the group of m ×m unitary matrices over the field Fq2 , so

that Um(q) is the group of linear maps of V preserving the pairing. Recall

that Um(q) is a finite simple group of Lie type (see, for example, [13]) whose

notation we follow. Note that the Fermat hypersurface

X = (Xq+1
0 +Xq+1

1 + · · ·+Xq+1
n+1 = 0) ⊂ Pn+1

is the projectivisation of the null cone of the pairing, so that Aut(X) ⊃
Un+2(q). We have

|Un+2(q)| = 1

(n+ 2, q + 1)
q(
n+2
2 )

n+2∏
i=2

(qi − (−1)i);

see, for example, the table on page 8 of [13]. Note that both the order of the au-

tomorphism group and the volume of the Fermat hypersurface are polynomials

f and g in q. f has degreeÇ
n+ 2

2

å
+

Ç
n+ 3

2

å
− 1,

and g has degree
(n+ 1).

If n = 1, the genus is a quadratic polynomial in q and the order of the auto-

morphism group is bounded by a polynomial of degree 4 in g.

Question 1.3. Fix a positive integer n. Can we find positive integers c

and d such that if X is any n-dimensional smooth projective variety of general

type over an algebraically closed field of arbitrary characteristic, then

|Aut(X)| ≤ c · vol(X,KX)d?

It is known that if n = 1, then we may take c = 216 and d = 4 (cf. [25]).

We now explain how to derive Theorem 1.1 from a result about the

quotient. If Y is a variety of general type, then the automorphism group

G = Aut(Y ) is known to be finite; see [22]. If f : Y −→ X = Y/G is the

quotient map, then there is a Q-divisor ∆ on X such that KY = f∗(KX + ∆).

We call any such log pair (X,∆) a global quotient ; cf. Definition 2.2.1. As

vol(Y,KY ) = |G| · vol(X,KX + ∆),

the main issue is to bound vol(X,KX + ∆) from below.



1080 CHRISTOPHER D. HACON, JAMES MCKERNAN, and CHENYANG XU

Theorem 1.4. Fix a positive integer n. Let D be the set of log pairs

(X,∆), which are global quotients, where X is projective of dimension n.

(1) The set

{vol(X,KX + ∆) | (X,∆) ∈ D}

satisfies the DCC.

Further, there are two constants δ > 0 and M such that if (X,∆) ∈ D and

KX + ∆ is big, then

(2) vol(X,KX + ∆) ≥ δ, and

(3) φM(KX+∆) is birational.

DCC is an abbreviation for the descending chain condition. Note that,

by convention, φM(KX+∆) = φbM(KX+∆)c (cf. Section 2.1). Note also that the

set of volumes of smooth projective varieties of fixed dimension is a discrete

set (cf. [28], [15], and [27]). The situation for log pairs is considerably more

subtle.

Remark 1.5. [28], [15], and [27] show that if we fix a positive integer n,

then the set

{vol(X,KX) |X is a smooth projective variety of dimension n}

is discrete. However, the corresponding statement fails for kawamata log ter-

minal surfaces, whence also for surface with reduced boundary with simple

normal crossings. For an example, see [19].

However, we do have

Conjecture 1.6 (Kollár; cf. [17], [1]). Fix n ∈ N and a set I ⊂ [0, 1]

that satisfies the DCC. If D is the set of simple normal crossings pairs (X,∆),

where X is projective of dimension n, and the coefficients of ∆ belong to I ,

then the set

{vol(X,KX + ∆) | (X,∆) ∈ D}

satisfies the DCC.

Alexeev (cf. [1] and [2]) proved Conjecture 1.6 for surfaces. Note that

if (X,∆) is a global quotient, then the coefficients of ∆ belong to the set

I = { r−1
r | r ∈ N}, so that Theorem 1.4 is a special case of Conjecture 1.6.

We hope to give an affirmative answer to Conjecture 1.6 using some of

the techniques developed in this paper. Let

I =

ß
r − 1

r
| r ∈ N

™
.
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Assuming an affirmative answer to Conjecture 1.6 for this particular set, it is

interesting to wonder what is the smallest possible volume. Let

(X,∆) =

Ç
Pn,

1

2
H0 +

2

3
H1 +

6

7
H2 + · · ·+ rn+1

rn+1 + 1
Hn+1

å
,

where H0, H1, . . . ,Hn+1 are n+2 general hyperplanes and r1, r2, . . . are defined

recursively by

r0 = 1 and rn+1 = rn(rn + 1).

Note that (X,∆) ∈ D. It is easy to see that the volume of KX + ∆ is

1

rnn+2

.

Question 1.7. Find an explicit bound for

δ = min{vol(X,KX + ∆) | (X,∆) ∈ D}.

The most optimistic answer to Conjecture 1.7 would be

δ =
1

rnn+2

.

Note that c ≥ 1
δ . When n = 1, we have

δ =
1

r3
=

1

42
,

and the reciprocal is precisely the constant c = 42. On the other hand, one

can check that rn grows roughly like

a2n

for some constant a > 1 so that, in general, there is a huge difference between

rn and cn. In fact, it is easy to check that

rn+1 =
n∏
i=0

(ri + 1);

see [18, §8] for more details.

Theorem 1.8 (Deformation invariance of log plurigenera). Let π :X −→ T

be a projective morphism of smooth varieties. Suppose that (X,∆) is log canon-

ical and has simple normal crossings over T .

(1) If KX + ∆ is kawamata log terminal, and either KX + ∆ or ∆ is big

over T , and m is any positive integer such that m∆ is integral, then

h0(Xt,OXt(m(KXt + ∆t))) is independent of t ∈ T .

(2) κσ(Xt,KXt + ∆t) is independent of t ∈ T .

(3) vol(Xt,KXt + ∆t) is independent of t ∈ T .
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For the definitions of κσ and simple normal crossings over T , see Sec-

tion 2.1. We will prove a similar but stronger statement Theorem 4.2 which

implies Theorem 1.8. Obviously, Theorem 1.8 is a generalisation of Siu’s the-

orem on invariance of plurigenera; cf. [24]. We recently learnt that (1) of The-

orem 1.8 holds even without the assumption that KX + ∆ is big; see Theorem

0.2 of [6]. We use Theorem 1.8 to prove

Theorem 1.9. Fix a set I ⊂ [0, 1] that satisfies the DCC. Let D be a set

of simple normal crossings pairs (X,∆), which is log birationally bounded (cf.

Definition 2.4.1), such that if (X,∆) ∈ D, then the coefficients of ∆ belong to

I . Then the set

{vol(X,KX + ∆) | (X,∆) ∈ D}

satisfies the DCC.

1.1. Sketch of the proof of Theorem 1.4. The proof of Theorem 1.4 is by

induction on the dimension n, and the proof is divided into two steps. The first

step uses some ideas of Tsuji that are used to prove some fixed multiple of KX

defines a birational map for a variety X of general type; see [28], [15] and [27].

In this step we establish that modified versions of (2) and (3) of Theorem 1.4

are equivalent, given that Theorem 1.4n−1 holds. (That is, Theorem 1.4 holds

in dimension n− 1.) Namely, consider

(2) vol(X, r(KX + ∆)) > δ, and

(3) φMr(KX+∆) is birational.

We show that if (X,∆) is a global quotient of dimension n, then there are

constants δ > 0 and M such that for every positive integer r, (2) implies (3);

see Theorem 6.1.

It is clear that if some fixed multiple of r(KX + ∆) defines a birational

map, then the volume of r(KX + ∆) is bounded from below, Lemma 2.3.2,

so that there are constants δ and M such that (3) implies (2). To go the

other way, we need to construct a divisor 0 ≤ D ∼Q mr(KX + ∆), where

m is fixed, that has an isolated non-kawamata log terminal centre at a very

general point and is not kawamata log terminal at another very general point,

Lemma 2.3.4. As we know that log canonical models exist by [7], we may

assume that KX + ∆ is ample, so that lifting divisors from any subvariety is

simply a matter of applying Serre vanishing. In this case, it is well known,

since the work of Anghern and Siu [4], that to construct D we need to bound

the volume of KX + ∆ from below on special subvarieties V of X (specifically,

any V that is a non-kawamata log terminal centre of (X,∆ + ∆0), where ∆0

is proportional to KX + ∆); see Theorem 2.3.5 and Theorem 2.3.6.
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If V = X, then there is nothing to prove, as we are assuming that

vol(X, r(KX + ∆)) > δ. Otherwise, the dimension of V is less than the dimen-

sion of X, and we may proceed by induction on the dimension; as V passes

through a very general point of X, V is birational to a global quotient. In fact,

we even know that vol(V, (KX + ∆)|V ) is bounded from below.

So from now on we assume that (2) implies (3). We may suppose that the

constant δ appearing in (2) is at most one. The next step is to prove that (3)

holds when r = 1. (That is, (3) of Theorem 1.4 holds.) There are two cases. If

the volume of KX + ∆ is at least one, then the volume of KX + ∆ is certainly

bounded from below, and there is nothing to prove. Otherwise, we may find

r > 0 such that δ < 1 ≤ vol(X, r(KX + ∆)) < 2n. But then φm(KX+∆) is

birational, where m = Mr and, at the same time, the volume of m(KX + ∆)

is bounded from above. In this case, the degree of the image of φm(KX+∆) is

bounded from above, and so we know that the image belongs to a bounded

family. In fact, one can prove that both the degree of the image and the degree

of the image of ∆ and the exceptional locus have bounded degree, Theorem 3.1,

so we only need to concern ourselves with a log birationally bounded family of

log pairs, Definition 2.4.1. This finishes the first step.

To finish the argument, we need to argue that the volume is bounded

from below if we have a log birationally bounded family of log pairs. This is

the most delicate part of the argument and is the second step. We use some

ideas that go back to Alexeev. Firstly, it is not much harder to prove that

the volume of global quotients satisfies the DCC. The first part of the second

step is to argue that we only need to worry about log pairs (X,∆) that are

birational to a single pair (Z,B), rather than a bounded family of log pairs.

For this we prove a version of deformation invariance of log plurigenera for

log pairs; see Theorem 1.8. Deformation invariance fails in general (cf. [11,

4.10]). We need to assume that the family has simple normal crossings over

the base (which roughly means that every component of ∆ is smooth over the

base). To reduce to this case involves some straightforward manipulation of a

family of log pairs, see the proof of Theorem 1.9 in Section 5. We prove, cf.

Theorem 4.2, a version of Theorem 1.8 that is better suited to induction. To

this end, we first show that if we have a family of log pairs over a curve, then

we can run the MMP in a family (Proposition 4.1).

So we are reduced to the most subtle part of the argument. We are given

a simple normal crossings pair (Z,B), a set I that satisfies the DCC, and we

want to argue that if (X,∆) is a simple normal crossings pair such that there is

a birational morphism f : X −→ Z with f∗∆ ≤ B, then the volume of KX +∆

belongs to a set that satisfies the DCC; see Proposition 5.1. To fix ideas, let

us suppose that Z is a smooth surface. (This is the case originally treated by



1084 CHRISTOPHER D. HACON, JAMES MCKERNAN, and CHENYANG XU

Alexeev.) We are given a sequence of simple normal crossings surfaces (Xi,∆i)

and birational morphisms fi : Xi −→ Z.

We have that Φi = fi∗∆i ≤ B and the coefficients of Φi belong to I. Note

that we are free to pass to an arbitrary subsequence, so that we may assume

that Φi ≤ Φi+1. In particular, the volume of KZ + Φi is not decreasing. The

problem is that if we write

KXi + ∆i = f∗i (KZ + Φi) + Ei,

then Ei might have negative coefficients, so that the volume of KXi + ∆i is

less than the volume of KZ + Φi. Suppose that we write Ei = E+
i −E

−
i , where

E+
i ≥ 0 and E−i ≥ 0 have no common components. Note that E+

i has no effect

on the volume, as Ei is supported on the exceptional locus. What bothers us

is the possibility that the E−i involve exceptional divisors that live on higher

and higher models.

Clearly, we should consider the limit Φ = limi Φi. However, this is not

enough; we need to take the limit of the divisors ∆i on various models and to

work with linear systems on these models. It was for just this purpose that the

language of b-divisors was introduced by Shokurov. Recall that a b-divisor

D is just the choice of a divisor DX on every model X, which is compatible

under pushforward.

For us there are three relevant b-divisors. Since we want to work on higher

models without changing the volume, or the fact that the coefficients lie in the

set I, we introduce, Definition 5.5, the b-divisor M∆i associated to a log pair

(Xi,∆i). Given a model Y −→ Xi, we just throw in any exceptional divisor

with coefficient one. We next take the limit B of the sequence of b-divisors

M∆i ; on Z we just recover the divisor Φ. Finally, in Definition 5.2 we define a

b-divisor L∆i that assigns to a model π : Y −→ Xi the positive part of the log

pullback. Actually, this is the most complicated of the three b-divisors, and it

is the subtle behaviour of the b-divisors L∆i that complicates the proof.

If we set ∆′i = ∆i ∧ LΦi,Xi , then

vol(Xi,KXi + ∆′i) = vol(Xi,KXi + ∆i);

see (2) of Lemma 5.3. If we knew that the coefficients of ∆′i belong to a set

I ⊂ J that satisfies the DCC, then we would be done. In fact, if LΦ ≤ B, then

it is relatively straightforward to conclude that the volume satisfies the DCC;

see the proof of Proposition 5.1. Unfortunately, since Xi −→ Z might extract

arbitrarily many divisors, it is all too easy to write down examples where the

smallest set J that contains the coefficients of every Φi does not satisfy the

DCC (cf. Example 1.10).

Therefore, our objective is to find a model Z ′ −→ Z and suitable modifi-

cations ∆′i of ∆i such that LΦ′ ≤ B′, where B′ is the limit of M∆′
i
. We choose
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∆′i so that the difference ∆i −∆′i is supported only on the strict transform of

the exceptional divisors of Z ′ −→ Z. In this case, it is not hard to arrange for

the coefficients of ∆′i to belong to a set I ⊂ J that satisfies the DCC.

We construct Z ′ −→ Z by induction. For this, we can work locally about

a point p in Z. Suppose that p is the intersection of two components B1 and

B2 of Φ. If B1 and B2 appear with coefficient b1 and b2 in Φ and π : Z ′ −→ Z

blows up p, then working locally about p, we may write

KZ′ + b1B
′
1 + b2B

′
2 + eE = π∗(KZ + b1B1 + b2B2),

where e = b1 +b2−1. Here primes denote strict transforms and E is the unique

exceptional divisor. We suppose that LΦ ≤ B does not hold, so that there is

some valuation ν, with centre p, such that LΦ(ν) > B(ν). Since e = b1 +b2−1,

the larger b1 and b2, the further we expect to be from the inequality LΦ ≤ B.

We introduce the weight w, which counts the number of components of Φ of

coefficient one; that is, the number of i such that bi = 1. In the case of a

surface, the weight is 0, 1, or 2, and it clearly suffices to construct Z ′ −→ Z so

that the weight goes down.

In fact, the extreme cases are relatively easy. If the weight is two, then

we just take Z ′ −→ Z to be the blow up of p. The key point is that then the

base locus of the linear system

f ′i∗|m(KXi + ∆i)| ⊂ |m(KZ + Φi)|

contains p in its support for all m sufficiently large and divisible, and this forces

the strict transform of E to be a component of E+
i as well. Therefore we are

free to decrease the coefficient of E in Φ′ away from 1. At the other extreme,

if the weight is zero, then (Z,Φ) is kawamata log terminal and we may find

Z ′ −→ Z which extracts every divisor of coefficient greater than zero. In this

case, LΦ′(ρ) = 0 for every valuation ρ whose centre on Z ′ is not a divisor and

the inequality LΦ′ ≤ B′ is trivial.

The hard case is when the weight is one, so that one of b1 and b2 is

one. Suppose that b2 = 1. If ν is a valuation such that LΦ(ν) > 0, then

ν corresponds to a weighted blow up. At this point it is convenient to use

the language of toric geometry. A weighted blow up corresponds to a pair of

natural numbers (v1, v2) ∈ N2. In fact, if

F = { v1 ∈ N | (1− b1)v1 < 1},

then

{ (v1, v2) ∈ N2 | v1 ∈ F}
is the set of all valuations ν such that LΦ(ν) > 0. The crucial point is that F

is finite. For every element f1 ∈ F, we pick v2 ∈ N, which minimises B(f1, v2).

(This makes sense as I satisfies the DCC.) We then pick any simple normal

crossings model Z ′ −→ Z on which the centre of every one of these finitely
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many valuations is a divisor. Using standard toric geometry, one can check

that on Z ′ every valuation ν ′, whose centre belongs to a component of Φ′ of

coefficient one, satisfies the property LΦ′(ν ′) ≤ B′(ν ′). It follows that the

weight of (Z ′,Φ′) is zero and this completes the induction. The details are

contained in the proof of Proposition 5.1.

Example 1.10. Consider the behaviour of LΦ in a simple example. We

use the notation above. Note that e = b1 + b2 − 1 is an increasing and affine

linear function of b1 and b2, hence a continuous function of b1 and b2. We

are only concerned with the possibility that e > 0, and in this case, LΦ,Z′ =

b1B
′
1 + b2B

′
2 + eE, by definition. There are two interesting points, p1 = B′1∩E

and p2 = B′2 ∩ E, lying over p, and the coefficients of the divisors containing

them are b1, e and b2, e. The problem is that we can blow up along either

point and keep going.

Suppose that

I =

ß
r − 1

r
| r ∈ N

™
.

Note that if b1 = i
r and b2 = r−1

r , then

e = b1 + b2 − 1 =
i

r
+
r − 1

r
− 1 =

i− 1

r
.

So, the smallest set J that contains I and that is closed under the operation of

picking any two elements b1 and b2 and replacing them by b1 +b2−1 (provided

this sum is nonnegative) is Q ∩ [0, 1]. Clearly, this set does not satisfy the

DCC.

2. Preliminaries

2.1. Notation and conventions. We will use the notation in [20] and [21].

If D =
∑
diDi is a Q-divisor on a normal variety X, then the round down of D

is bDc =
∑bdicDi, where bdc denotes the largest integer that is at most d, the

fractional part of D is {D} = D−bDc, and the round up of D is dDe = −b−Dc.
If D′ =

∑
d′iDi is another Q-divisor, then D ∧D′ := ∑

min{di, d′i}Di.

The sheaf OX(D) is defined by

OX(D)(U) = {f ∈ k(X) | (f)|U +D|U ≥ 0},

so that OX(D) = OX(bDc). Similarly we define |D| = |bDc|. If X is normal,

and D is a Q-divisor on X, the rational map φD associated to D is the rational

map determined by the restriction of bDc to the smooth locus of X.

If X is a normal projective variety and D is a Q-Cartier divisor, κσ(X,D)

denotes the numerical Kodaira dimension, which is defined by Nakayama in
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[23, V.2.5] as follows. Let H be a divisor on X. We define

σ(X,D;H) := max

®
k ∈ N | lim sup

m→∞

h0(X,H +mD)

mk
> 0

´
and

κσ(X,D) := max{σ(X,D;H) |H is a divisor}.

If D is pseudo-effective, we define Nσ(X,D) as in [23, III.4] or [7, 3.3.1].

A log pair (X,∆) consists of a normal variety X and a Q-Weil divisor

∆ ≥ 0 such that KX + ∆ is Q-Cartier. The support of ∆ =
∑
i∈I di∆i is

the sum D =
∑
i∈I ∆i. If (X,∆) has simple normal crossings, then a stratum

of (X,∆) is an irreducible component of the intersection ∩j∈J∆j , where J is

a nonempty subset of I. (In particular, a stratum is always a proper closed

subset of X.) If we are given a morphism X −→ T , then we say that (X,∆) has

simple normal crossings over T if (X,∆) has simple normal crossings and both

X and every stratum of (X,∆) is smooth over T . We say that the birational

morphism f : Y −→ X only blows up strata of (X,∆) if f is the composition

of birational morphisms fi : Xi+1 −→ Xi, 1 ≤ i ≤ k, with X = X0, Y = Xk+1,

and fi is the blow up of a stratum of (Xi, Di), where Di is the sum of the strict

transform of D and the exceptional locus.

A log resolution of the pair (X,∆) is a projective birational morphism

µ : Y −→ X such that the exceptional locus is the support of a µ-ample divisor

and (Y,G) has simple normal crossings, where G is the support of the strict

transform of ∆ and the exceptional divisors. Note that the extra assumption

that the exceptional locus is the support of a µ-ample divisor is not standard.

However it is convenient for our purpose, and it can be always achieved after

possibly choosing a higher model. If we write

KY + Γ +
∑

aiEi = µ∗(KX + ∆),

where Γ is the strict transform of ∆, then ai is called the coefficient of Ei with

respect to (X,∆). Note that −ai is the discrepancy of the pair (X,∆) with

respect to Ei; see [20, 2.25]. A non-kawamata log terminal centre is the centre

of any valuation ν whose coefficient is at least one.

In this paper, we only consider valuations ν of X whose centre on some

birational model Y of X is a divisor. We say that a formal sum B =
∑
aνν,

where the sum ranges over all valuations of X, is a b-divisor if the set

FX = {ν | aν 6= 0 and the centre of ν on X is a divisor}

is finite. The trace BY of B is the sum
∑
aνBν , where the sum now ranges

over the elements of FY . In fact, to give a b-divisor is the same as to give

a collection of divisors on every birational model of X, which are compatible

under pushforward.
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2.2. Log pairs.

Definition 2.2.1. We say that a log pair (X,∆) is a global quotient if there

is a smooth quasi-projective variety Y and a finite subgroup G ⊂ Aut(Y )

such that X = Y/G. If π : Y −→ X is the quotient morphism, then KY =

π∗(KX + ∆).

Note that if (X,∆) is a global quotient, then X is Q-factorial, (X,∆) is

kawamata log terminal, and the coefficients of ∆ belong to the setß
r − 1

r
| r ∈ N

™
;

cf. [20, 5.15, 5.20].

Lemma 2.2.2. If (X,∆) is a log pair and the coefficients of ∆ are less

than one, then

bm∆c ≤ d(m− 1)∆e,

for every positive integer m, with equality if the coefficients of ∆ belong to the

set { r−1
r | r ∈ N}.

Proof. Easy. �

2.3. The volume.

Definition 2.3.1. Let X be a normal n-dimensional irreducible projective

variety, and let D be a Q-divisor. The volume of D is

vol(X,D) = lim sup
m→∞

n!h0(X,OX(mD))

mn
.

We say that D is big if vol(X,D) > 0.

For more background, see [21]. We will need the following simple result.

Lemma 2.3.2. Let X be a projective variety, and let D be a divisor such

that the rational map φD : X 99K Pn is birational onto its image Z . Then,

the volume of D is greater than or equal to the degree of Z . In particular, the

volume of D is at least 1.

Proof. This is well known; see, for example, (2.2) of [15]. �

Definition 2.3.3. Let X be a normal projective variety, and let D be a

big Q-Cartier Q-divisor on X. If x and y are two very general points of X

then, possibly switching x and y, we may find 0 ≤ ∆ ∼Q (1 − ε)D, for some

0 < ε < 1, where (X,∆) is not kawamata log terminal at y, (X,∆) is log

canonical at x, and {x} is a non-kawamata log terminal centre. Then we say

that D is potentially birational.
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Lemma 2.3.4. Let X be a normal projective variety, and let D be a big

Q-Cartier divisor on X .

(1) If D is potentially birational, then φKX+dDe is birational.

(2) If X has dimension n and φD is birational, then (2n+ 1)bDc is poten-

tially birational. In particular, φKX+(2n+1)D is birational and KX +

(2n+ 1)D is big.

Proof. Replacing X by a resolution, we may assume that X is smooth.

As D is big, we may write D ∼Q A + B, where A is an ample Q-divisor and

B ≥ 0. Using A to tie break (cf. [18, 6.9]), we may assume that (X,∆) is

kawamata log terminal in a punctured neighbourhood of x. As

dDe − (∆ + εB + dDe −D) ∼Q εA

is ample, Nadel vanishing implies that

H1(X,OX(KX + dDe)⊗ J (∆ + εB + dDe −D)) = 0,

where J (∆ + εB + dDe −D) is the multiplier ideal sheaf. But then we may

find a section σ ∈ H0(X,OX(KX + dDe)) vanishing at y but not at x. In

particular, as y is very general, we may also find τ not vanishing at y. But

then some linear combination ρ of τ and σ is a section that vanishes at x and

not at y. This is (1).

Replacing D by bDc, we may assume that D is Cartier. Let X ′ be the

image of φD. Let x′ = φD(x) and y′ = φD(y), and let ∆′ be the sum of n

general hyperplanes through x′ and n general hyperplanes through y′. Let ∆

be the strict transform of ∆′. As x and y are general, φD is an isomorphism in a

neighbourhood of x and y. It follows that (X,∆) is not kawamata log terminal

at y, (X,∆) is log canonical at x, and if we blow up x, then the coefficient of

the exceptional divisor is one. It is then easy to see that (2n+1)D is potentially

birational and (2) follows from (1). �

We will need the following result from [18].

Theorem 2.3.5. Let (X,∆) be a kawamata log terminal pair, where X

is projective. Suppose that x and y are two closed points of X . Let ∆0≥0 be a

Q-Cartier divisor on X such that (X,∆ + ∆0) is log canonical in a neighbour-

hood of x but not kawamata log terminal at y, and there is a non-kawamata

log terminal centre V that contains x. Let H be an ample Q-divisor on X such

that vol(V,H|V ) > 2kk, where k = dimV .

Then, possibly switching x and y, there is a Q-divisor H ∼Q ∆1 ≥ 0 and

rational numbers 0 < ai ≤ 1 such that (X,∆ + a0∆0 + a1∆1) is log canonical

in a neighbourhood of x but not kawamata log terminal at y, and there is a

non-kawamata log terminal centre V ′ that contains x such that dimV ′ < k.
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Proof. By (6.9.1) of [18], we may assume that V is the unique non kawa-

mata log terminal centre that contains x, and we may apply (6.8.1), (6.8.1.3),

and (6.5) of [18]. �

Theorem 2.3.6. Let (X,∆) be a kawamata log terminal pair, where X

is projective of dimension n, and let H be an ample Q-divisor. Suppose γ0 ≥ 1

is a constant such that vol(X, γ0H) > nn. Suppose ε is a constant with the

following property :

For very general x in X and every 0 ≤ ∆0 ∼Q λH such that

(X,∆ + ∆0) is log canonical at x, if V is the minimal non-

kawamata log terminal centre containing x, then vol(V, λH|V )

> εk, where k is the dimension of V and λ ≥ 1 is a rational

number.

Then mH is potentially birational, where

m = 2γ0 (1 + γ)n−1 and γ =
2n

ε
.

Proof. Let x and y be two very general points of X. Possibly switching

x and y, we will prove by descending induction on k that there is a Q-divisor

∆0 ≥ 0 such that

([)k ∆0 ∼Q λH, for some 1 ≤ λ < 2γ0(1 + γ)n−1−k, where

(X,∆ + ∆0) is log canonical at x, not kawamata log terminal

at y, and there is a non-kawamata log terminal centre V of

dimension at most k containing x.

As
vol(X, 2γ0H) > 2nn,

we may find 0 ≤ Φ ∼Q 2γ0H such that (X,∆+Φ) is not log canonical at either

x or y. If
β = sup{α |KX + ∆ + αΦ is log canonical at x}

is the log canonical threshold, then β < 1. Possibly switching x and y, we may

assume that (X,∆ +βΦ) is not kawamata log terminal at y. Clearly ∆0 = βΦ

satisfies ([)n−1, so this is the start of the induction.

Now suppose that we may find a Q-divisor ∆0 satisfying ([)k. We may

assume that V is the minimal non-kawamata log terminal centre containing x

and that V has dimension k. By assumption,

vol(V, λγH|V ) > 2kk,

so that by Theorem 2.3.5, possibly switching x and y, we may find ∆1 ∼Q µH,

where µ < λγ and constants 0 < ai ≤ 1 such that (X,∆ + a0∆0 + a1∆1) is log

canonical at x, not kawamata log terminal at y and there is a non-kawamata

log terminal centre V ′ containing x, whose dimension is less than k. As

a0∆0 + a1∆1 ∼Q (a0λ+ a1µ)H
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and

λ′ = a0λ+ a1µ ≤ (1 + γ)λ < 2γ0(1 + γ)n−1−(k−1),

a0∆0 + a1∆1 + max(0, 1− λ′)B satisfies ([)k−1, where the support of B ∼Q H

does not contain either x or y. (We only need to add on B in the unlikely

event that λ′ < 1.) This completes the induction and the proof. �

2.4. Bounded pairs.

Definition 2.4.1. We say that a set X of varieties is birationally bounded if

there is a projective morphism Z −→ T , where T is of finite type such that for

every X ∈ X, there is a closed point t ∈ T and a birational map f : Zt 99K X.

We say that a set D of log pairs is log birationally bounded if there is a log

pair (Z,B), where the coefficients of B are all one, and a projective morphism

Z −→ T , where T is of finite type such that for every (X,∆) ∈ D, there is a

closed point t ∈ T and a birational map f : Zt 99K X such that the support

of Bt contains the support of the strict transform of ∆ and any f -exceptional

divisor.

Lemma 2.4.2. Fix a positive integer n.

(1) Let X and Y be two sets of varieties such that if X ∈ X, then we may

find Y ∈ Y birational to X . If Y is birationally bounded, then X is

birationally bounded.

(2) Let X be a set of varieties of dimension n. If there is a constant V

such that for every X ∈ X, we may find a Weil divisor D such that φD
is birational and the volume of D is at most V , then X is birationally

bounded.

(3) Let D and G be two sets of log pairs such that if (X,∆) ∈ D, then

we may find (Y,Γ) ∈ G, and a birational map f : Y 99K X , where the

support of Γ contains the support of the strict transform of ∆ and any

f -exceptional divisor. If G is log birationally bounded, then D is log

birationally bounded.

(4) Let D be a set of log pairs of dimension n. If there are constants V1

and V2 such that for every (X,∆) ∈ D we may find a Weil divisor

D such that φD : X 99K Y is birational, then the volume of D is at

most V1, and if G denotes the sum over the components of the strict

transform of ∆ and the φ−1-exceptional divisors, then G ·Hn−1 ≤ V2,

where H is the very ample divisor on Y determined by φD. Then D is

log birationally bounded.

(5) If the set D of log pairs is log birationally bounded, then

X = {X | (X,∆) ∈ D}

is birationally bounded.
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Proof. (1), (3), and (5) are clear. We prove (4). Suppose that Y ⊂ Ps
is a closed subvariety of dimension n and degree at most V1. Then by the

classification of minimal degree subvarieties of projective space, we may assume

s ≤ V1 + 1−n. By boundedness of the Chow variety, there are flat morphisms

Z −→ T and B −→ T such that if Y ⊂ Ps has dimension n (respectively n−1)

and degree at most V1 (respectively V2), then Y is isomorphic to the fibre Zt
(respectively Bt) over a closed point t ∈ T . Passing to a stratification of T

and a log resolution of the generic fibres of Z −→ T , we may assume that the

fibres of Z −→ T are smooth. In particular, (Z,B) is a log pair.

Now suppose that (X,∆) ∈ D. By assumption there is a divisor D such

that φD : X 99K Y is birational. The degree of the image is at most the

volume of D; that is, at most V1. So there is a closed point t ∈ T such that

Y is isomorphic to Zt. By assumption, G ·Hn−1 ≤ V2 so that we may assume

that G corresponds to Bt. But then D is log birationally bounded. This is (4).

The proof of (2) is similar to and easier than the proof of (4). �

3. Birationally bounded pairs

Section 3 is devoted to a proof of

Theorem 3.1. Fix a positive integer n and two constants A and δ > 0.

Then the set of log pairs (X,∆) satisfying

(1) X is projective of dimension n,

(2) (X,∆) is log canonical,

(3) the coefficients of ∆ are at least δ,

(4) there is a positive integer m such that vol(X,m(KX + ∆)) ≤ A, and

(5) φKX+m(KX+∆) is birational

is log birationally bounded.

The key result is

Lemma 3.2. Let X be a normal projective variety of dimension n and

let M be a base point free Cartier divisor such that φM is birational. Let

H = 2(2n+ 1)M . If D is a sum of distinct prime divisors, then

D ·Hn−1 ≤ 2n vol(X,KX +D +H).

Proof. Possibly discarding φM -exceptional components of D, we may as-

sume that no component of D is φM -exceptional. If f : Y −→ X is a log

resolution of the pair (X,D) and G is the strict transform of D, then

D ·Hn−1 = G · (f∗H)n−1

and

vol(Y,KY +G+ f∗H) ≤ vol(X,KX +D +H).
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Replacing (X,D) by (Y,G) and M by f∗M , we may assume that (X,D) has

simple normal crossings and, possibly blowing up more, that the components

of D do not intersect.

Since no component of D is contracted, we may find an ample Q-divisor

A and a Q-divisor B ≥ 0 such that

M ∼Q A+B,

where B and D have no common components. As KX +D+ δB is divisorially

log terminal for any δ > 0 sufficiently small, it follows that

H i(X,OX(KX + E + pM)) = 0

for all positive integers p, i > 0 and any integral Weil divisor 0 ≤ E ≤ D. If

we let

Am = KX +D +mH,

then

H i(D,OD(Am)) = 0

for all i > 0 and m > 0, and so there is a polynomial P (m) of degree n − 1,

with

P (m) = h0(D,OD(Am)),

for m > 0. Condition (2) of Lemma 2.3.4 implies that A1 = KX+D+H is big,

and so [7] implies that KX +D +H has a log canonical model. In particular,

there is a polynomial of Q(m) of degree n, with

Q(m) = h0(X,OX(2mA1))

for any sufficiently divisible positive integer m. Note that the leading coeffi-

cients of P (m) and Q(m) are

D ·Hn−1

(n− 1)!
and

2n vol(X,KX +D +H)

n!
.

If Di is a component of D and Mi = (D −Di + (2n+ 1)M)|Di , then

H0(X,OX(KX +D + (2n+ 1)M)) −→ H0(Di,ODi(KDi +Mi))

is surjective, and so the general section of H0(X,OX(KX +D + (2n+ 1)M))

does not vanish identically on any component of D. Pick sections

s ∈ H0(X,OX(KX +D + (2n+ 1)M)) and l ∈ H0(X,OX((2n+ 1)M)),

whose restrictions to each component of D is nonzero. Let

t = s⊗2m−1 ⊗ l ∈ H0(X,OX(2mA1 −Am)).
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Consider the following commutative diagram:

0 - OX(Am −D) - OX(Am) - OD(Am) - 0

0 - OX(2mA1 −D)
?

- OX(2mA1)
?

- OD(2mA1)
?

- 0,

where the vertical morphisms are injections induced by multiplying by t.

Note that

H0(X,OX(Am)) −→ H0(D,OD(Am))

is surjective. Hence every element of H0(D,OD(2mA1)) in the image of

H0(D,OD(Am)) lifts to H0(X,OX(2mA1)). Therefore,

P (m) ≤ h0(X,OX(2mA1))− h0(X,OX(2mA1 −D)).

Note that

Q(m− 1) = h0(X,OX(2(m− 1)A1)) ≤ h0(X,OX(2mA1 −D)),

as h0(X,OX(2KX +D + 2H)) 6= 0. It follows that

P (m) ≤ Q(m)−Q(m− 1).

Now compare the leading coefficients of P (m) and Q(m)−Q(m− 1). �

Proof of Theorem 3.1. Let (X,∆) be a log pair satisfying the hypotheses

of Theorem 3.1. If π : Y −→ X is a log resolution of (X,∆) that resolves the

indeterminacy of

φ = φKX+m(KX+∆) : X 99K Z

and Γ is the strict transform of ∆ plus the sum of the exceptional divisors,

then (X,∆) is log birationally bounded if and only if (Y,Γ) is log birationally

bounded, by condition (3) of Lemma 2.4.2. On the other hand,

vol(Y,m(KY + Γ)) ≤ vol(X,m(KX + ∆)) ≤ A,

and φKY +(2n+1)(m+1)(KY +Γ) is birational, as (m+ 1)(KY + Γ) is big.

Replacing (X,∆) by (Y,Γ) and m by (2n + 1)(m + 1), we may assume

that

φ = φKX+m(KX+∆) : X −→ Z

is a birational morphism. In particular, if we decompose bKX +m(KX + ∆)c
into its mobile part M and its fixed part E, so that

|KX +m(KX + ∆)| = |M |+ E,

then M is big and base point free. Let H be a divisor on Z such that M = φ∗H,

so that H is very ample.
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Note that

vol(X,KX +m(KX + ∆)) ≤ vol(X, (m+ 1)(KX + ∆))

≤ 2nA.

On the other hand, let G be the sum of the components of the strict

transform of ∆ on Z. Pick B ∈ |bKX +m(KX + ∆)c|. Let

α = max

Å
1

δ
, 2(2n+ 1)

ã
.

If D0 is the sum of the components of ∆ and B that are not contracted by φ,

then

D0 ≤ α(B + ∆).

Note that there is a divisor C ≥ 0 such that

α(B + ∆) + C ∼Q α(m+ 1)(KX + ∆).

As φ is a morphism and M is base point free, Lemma 3.2 implies that

G ·Hn−1 ≤ D0 · (2(2n+ 1)M)n−1

≤ 2n vol(X,KX +D0 + 2(2n+ 1)M)

≤ 2n vol(X,KX + α(B + ∆) + 2(2n+ 1)(M + E + ∆))

≤ 2n vol(X,KX + ∆ + α(m+ 1)(KX + ∆)

+ 2(2n+ 1)(m+ 1)(KX + ∆))

≤ 2n(1 + 2α(m+ 1))n vol(X,KX + ∆)

≤ 23nαn vol(X, (m+ 1)(KX + ∆))

≤ 24nαnA.

Now apply (4) of Lemma 2.4.2. �

4. Deformation invariance of log plurigenera

Proposition 4.1. Let (X,∆) be a Q-factorial log pair. Suppose that

X −→ T is a projective morphism to a smooth curve T whose fibres (Xt,∆t)

are terminal, where every component of ∆ dominates T . Let 0 ∈ T be a closed

point. Suppose that

• either ∆ or KX + ∆ is big over T , and

• no component of ∆0 belongs to the stable base locus of KX0 + ∆0.

Then we may find a log terminal model f : X 99K Y of (X,∆) over T such

that f is an isomorphism at the generic point of every component of ∆0 and

f0 : X0 99K Y0 is a weak log canonical model of (X0,∆0).
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Proof. We first prove this result under the additional hypothesis thatKX+

∆ is pseudo-effective over T .

Note that X is smooth in codimension two, as the fibres Xt of X −→ T

are Cartier and smooth in codimension two. Hence,

(KX + ∆)|X0 = (KX +X0 + ∆)|X0 = KX0 + ∆0.

It follows from [7, 1.4.5] that the coefficient of any valuation µ with respect to

(X,X0 + ∆) is at most zero if the centre of µ is neither a component of ∆ nor

a component of ∆0.

By [7, 1.2], we may run the (KX +∆)-MMP over T ; that is, we may find a

sequence g1, g2, . . . , gm−1 of divisorial contractions and flips gk : Xk 99K Xk+1

starting at X = X1 and ending with a log terminal model Y = Xm for the

pair (X,∆) over T . Let ∆k denote the pushforward of ∆ under the induced

birational map fk : X 99K Xk. We will prove by induction on k that

(a) gk is an isomorphism at the generic point of any component of ∆k
0, and

(b) gk0 : Xk
0 99K X

k+1
0 is a birational contraction.

Suppose that (a–b)≤k−1 hold. Then fk0 : X0 99K Xk
0 is a birational contraction

that does not contract any components of ∆0, and so (Xk
0 ,∆

k
0) is terminal.

(b)≤k−1 implies that no component of ∆k
0 is a component of the stable

base locus of KXk
0

+ ∆k
0. Suppose that gk is not an isomorphism at the generic

point of a divisor D contained in Xk
0 . Then D is covered by curves C such

that

(KXk
0

+ ∆k
0) · C = (KXk + ∆k) · C < 0.

It follows that D is a component of the stable base locus of KXk
0

+ ∆k
0, so that

D is not a component of ∆k
0. Thus, (a)k holds.

Suppose that G ⊂ Xk+1
0 is a prime divisor, which is not a component

of ∆k+1
0 . By the classification of log canonical surface singularities, we may

find a valuation ν with centre G on Xk+1 whose coefficient d with respect to

(Xk+1, Xk+1
0 +∆k+1) is at least zero. As Xk

0 is the pullback of a divisor from T ,

gk is (KXk + Xk
0 + ∆k)-negative and so the coefficient c of ν with respect to

(Xk, Xk
0 + ∆k) is at least d, with equality if and only if gk is an isomorphism

at the generic point of G. By (a)k, the centre of ν on Xk is not a component of

∆k
0. It follows that 0 ≤ d ≤ c ≤ 0, so that c = d = 0 and gk is an isomorphism

at the generic point of G. Hence, gk0 is a birational contraction; that is, (b)k
holds. This completes the induction and the proof that (a–b)≤m−1 hold.

As gk0 is a birational contraction that is (KXk
0
+∆k

0)-negative, for k ≤ m−1,

it follows that f0 is a (KX0 + ∆0)-negative birational contraction. But then f0

is a weak log canonical model.
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It remains to prove that KX +∆ is pseudo-effective over T . Pick a divisor

A that is ample over T , and let

λ = inf{t ∈ R |KX + ∆ + tA is π-pseudo-effective}

be the π-pseudo-effective threshold. It is proved in [7] that λ is rational. By

what we have already proved, we may find a log terminal model f : X 99K Y of

KX + ∆ +λA over T such that f0 : X0 99K Y0 is a weak log canonical model of

KX0 +∆0 +λA0. Let G = f∗(KX +∆+λA). If λ > 0, then KX0 +∆0 +λA0 is

big, so that G0 is big and nef. But then Gn0 > 0 is positive, and so Gnt = Gn0 > 0

for every t ∈ T . As G is nef over T , it is big over T , and so KX +∆+λA is big

over T , a contradiction. It follows that λ = 0 so that KX+∆ is pseudo-effective

over T . �

Theorem 4.2. Let X −→ T be a flat projective morphism of quasi-

projective varieties. Let (X,∆) be a log pair such that the fibres (Xt,∆t) are

Q-factorial terminal for every t ∈ T . Assume that every component R of ∆

dominates T and that the fibres of the Stein factorisation of R −→ T are

irreducible. Let m > 1 be any integer such that D = m(KX + ∆) is integral.

If either KX +∆ or ∆ is big over T , then h0(Xt,OXt(Dt)) is independent

of t ∈ T .

Proof. Let R be a component of ∆, let S −→ T be the normalisation of

the Stein factorisation of R −→ T so that S −→ T is finite and S is normal,

and let

Y - X

S
?

- T
?

be the fibre square. As S −→ T is finite, S is irreducible and Y −→ S is

flat, Y is a quasi-projective variety. Y is normal by [14, 5.12.7]. Replacing

X −→ T by Y −→ S finitely many times, we may assume that the fibres of

R −→ T are irreducible for every component R of ∆. Fix a closed point 0 ∈ T .

Replacing T by the intersection of general hyperplane sections containing 0, we

may assume that T is a curve. Replacing T by its normalisation and passing

to the fibre square, we may assume that T is smooth. As the fibres of X −→ T

are Q-factorial terminal, [11, 3.2] implies that X is Q-factorial.

It suffices to show that |D0| = |D|X0 . In particular, we may suppose that

KX0 + ∆0 is pseudo-effective. Further, we are free to work locally about 0. In

particular, we may assume that T is affine. [7, 1.2] implies that the divisor

Nσ(X0,KX0 + ∆0), defined in Section 2.1, is a Q-divisor. In particular,

Θ0 = ∆0 −∆0 ∧Nσ(X0,KX0 + ∆0)
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is a Q-divisor. By assumption we may find a Q-divisor 0 ≤ Θ ≤ ∆ whose

restriction to X0 is Θ0. If we set

µ =
m

m− 1
,

then KX + µ∆ is big. Therefore, we may find Q-divisors A ≥ 0 and B ≥
0, where A is ample, the support of A is a prime divisor, and X0 is not a

component of B such that KX + µ∆ ∼Q A + B. Possibly passing to an open

subset of T we may assume that the components of B dominate T . Pick

δ ∈ (0, 1/2) such that (Xt,∆t + δ(At + Bt)) is terminal for every t ∈ T . If we

let

H =
δ

m− 1− δ
A,

then
D − Ξ ∼Q KX + Φ + δB + (m− 1− δ)(KX + Θ +H),

where Φ = (1− δµ+ δ)∆ and Ξ = (m− 1− δ)(∆−Θ).

As H0 is ample, no component of Θ0 +H0 belongs to the stable base locus

ofKX0+Θ0+H0. Proposition 4.1 implies that we may find a log terminal model

f : X 99K Y for (X,Θ+H) such that the induced birational map f0 : X0 99K Y0

is a weak log canonical model of (X0,Θ0 +H0).

Let p : W −→ X and q : W −→ Y resolve f : X 99K Y , where p is also a

log resolution of (X,∆ +A+B). If we let

G = (m− 1− δ)f∗(KX + Θ +H),

then G is big and nef and

(m− 1− δ)p∗(KX + Θ +H) = q∗G+ F,

where F ≥ 0 is exceptional for q.

Let W0 be the strict transform of X0. As (X0,Φ0 + δB0) is kawamata log

terminal, inversion of adjunction, [7, 1.4.5], implies that (X,X0 + Φ + δB) is

purely log terminal. Therefore, if we write

KW +W0 = p∗(KX +X0 + Φ + δB) + E,

then dEe ≥ 0 is exceptional for p. Let

L = dp∗(D − Ξ) + E − F e.

Possibly passing to an open subset of T , we may assume X0 is Q-linearly

equivalent to zero. In particular,

L−W0 ∼Q KW + C + q∗G,

where C is the fractional part of −p∗(D−Ξ)−E+F . Hence (W,C) is kawamata

log terminal and Kawamata-Viehweg vanishing implies that

H1(W,OW (L−W0)) = 0.
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Let N = p∗(KX + Θ)− q∗f∗(KX + Θ). As H is ample, p∗H ≤ q∗f∗H, and

so

mN = (1 + δ)N + (m− 1− δ)N ≥ F.
As Ξ ≤ m(∆−Θ), we have D − Ξ ≥ m(KX + Θ), and so it follows that

M = L− bmq∗f∗(KX + Θ)c
= dL−mq∗f∗(KX + Θ)e
≥ dmN + E − F e
≥ dEe.

Let q0 : W0 −→ X0 denote the restriction of q to W0, and let L0 and M0 denote

the restriction of L and M to W0. We have

|D0| = |m(KX0 + Θ0)| by definition of Θ0,

⊂ |mf0∗(KX0 + Θ0)| since f0 is a birational contraction,

= |mq∗0f0∗(KX0 + Θ0)|
⊂ |L0| as M0 ≥ 0,

= |L|W0 since H1(W,OW (L−W0)) = 0,

⊂ |D|X0 since dEe is exceptional for p.

Thus equality holds, as the reverse inequality holds automatically. �

Proof of Theorem 1.8. We first prove (1). Let 0 ∈ T be a closed point.

Replacing T by an unramified cover, we may assume that the strata of (X,∆)

intersect X0 in strata of (X0,∆0). Since the only valuations of nonnegative

coefficient lie over the strata of (X,∆), replacing (X,∆) by a blow up, we may

assume that (X,∆) is terminal. Thus (1) follows from Theorem 4.2.

Now we prove (2). Pick m0 > 0 such that m0∆ is integral and an ample

divisor H such that H+m0∆ is very ample. Pick a prime divisor A ∼ H+m0∆

such that (X,∆ + A) has simple normal crossings over T . If m ≥ m0 is any

positive integer such that m∆ is integral, thenÅ
X,∆′ =

m−m0

m
∆ +

1

m
A

ã
is a simple normal crossings pair and it is kawamata log terminal. Further,

KX + ∆′ ∼Q KX + ∆ +H/m,

and ∆′ is big over T . Thus (2) follows from (1).

Note that

vol(Xt,KXt + ∆t) = lim
ε→0

vol(Xt,KXt + (1− ε)∆t).

As (Xt, (1− ε)∆t) is kawamata log terminal, (3) follows from (1) and (2). �
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5. DCC for the volume of bounded pairs

We prove Theorem 1.9 in this section. We first deal with the case that T

is a closed point.

Proposition 5.1. Fix a set I ⊂ [0, 1] that satisfies the DCC and a simple

normal crossings pair (Z,B), where Z is projective of dimension n. Let D be

the set of simple normal crossings pairs (X,∆), where X is projective, the

coefficients of ∆ belong to I , and there is a birational morphism f : X −→ Z

with Φ = f∗∆ ≤ B.

Then the set

{vol(X,KX + ∆) | (X,∆) ∈ D}

also satisfies the DCC.

Definition 5.2. Let (X,∆) be a log pair. If π : Y −→ X is a birational

morphism, then we may write

KY + Γ = π∗(KX + ∆) + E,

where Γ ≥ 0 and E ≥ 0 have no common components, π∗Γ = ∆, and π∗E = 0.

Define a b-divisor L∆ by setting L∆,Y = Γ.

Lemma 5.3. Let (X,∆) be a simple normal crossings pair, where X is a

projective variety.

(1) If Y −→ X is a birational morphism such that (Y,Θ = L∆,Y ) has

simple normal crossings and Γ−Θ ≥ 0 is exceptional, then

vol(X,KX + ∆) = vol(Y,KY + Γ).

(2) If f : X −→ Z is a birational morphism such that (Z,Φ = L∆,Z) has

simple normal crossings and Θ = ∆ ∧ LΦ,X , then

vol(X,KX + ∆) = vol(X,KX + Θ).

Proof. (1) is clear, as

H0(X,OX(m(KX + ∆))) ' H0(Y,OY (m(KY + Γ)))

for all m.

For (2), suppose m is a sufficiently divisible positive integer. We have

H0(X,OX(m(KX + ∆))) ⊂ H0(Z,OZ(m(KZ + Φ)))

= H0(X,OX(m(KX + LΦ,X))),

and so

H0(X,OX(m(KX + ∆))) = H0(X,OX(m(KX + Θ))). �
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Lemma 5.4. Let (Z,Φ) be a simple normal crossings pair that is log

canonical. If ν is a valuation such that LΦ(ν) > 0, then the centre of ν is

a stratum W of (Z,Φ) and there is a birational morphism Y = Yν −→ Z such

that ρ(Y/Z) = 1, Y is Q-factorial, and the centre of ν is a divisor on Y ; Yν is

unique with these properties.

Proof. This is a consequence of the existence of log terminal models, which

is proved in [7], and uniqueness of log canonical models. �

Definition 5.5. Let (X,∆) be a log pair. Define a b-divisor M∆ by as-

signing to any valuation ν,

M∆(ν) =

multB(∆) if the centre of ν is a divisor B on X,

1 otherwise.

Definition 5.6. Let B be a b-divisor whose coefficients belong to [0, 1], and

let (Z,Φ = BZ) be a model with simple normal crossings. Let Z ′ −→ Z be a

log resolution, and let Σ be a set of valuations σ whose centres are exceptional

divisors for Z ′ −→ Z such that LΦ(σ) > 0.

For every valuation σ ∈ Σ, let Γσ = (LΦ∧B)Yσ , where Yσ −→ Z is defined

in Definition 5.4. Let
Θ =

∧
σ∈Σ

LΓσ ,Z′

be the minimum of the divisors LΓσ ,Z′ .

The cut of (Z,B), associated to Z ′ −→ Z and Σ, is the pair (Z ′,B′),

where
B′ = B ∧MΘ,

so that the trace of B′ on Z ′ is Θ∧BZ′ , and otherwise B′ is the same b-divisor

as B.

We say that the pair (Z ′,B′) is a reduction of the pair (Z,B) if they are

connected by a sequence of cuts; that is, there are pairs (Zi,Bi), 0 ≤ i ≤ k,

starting at (Z0,B0) = (Z,B) and ending at (Zk,Bk) = (Z ′,B′), such that

(Zi+1,Bi+1) is a cut of (Zi,Bi) for each 0 ≤ i < k.

Lemma 5.7. Let B be a b-divisor whose coefficients belong to a set I ⊂
[0, 1] that satisfies the DCC, and let (Z,Φ = BZ) be a model with simple normal

crossings. Then there is a reduction (Z ′,B′) of (Z,B) such that

LΦ′ ≤ B′,

where Φ′ = B′Z′ .

Proof. If W is a stratum of (Z,Φ), then define the weight w of W as

follows. If there is a valuation ν, with centre W , such that B(ν) < LΦ(ν),

then let w be the number of components of Φ with coefficient 1 that contain

W . Otherwise, if there is no such ν, then let w = −1.



1102 CHRISTOPHER D. HACON, JAMES MCKERNAN, and CHENYANG XU

Define the weight of (Z,B) to be the maximum weight of the strata of

(Z,Φ). Suppose the weight of (Z,B) is −1. Then LΦ(ν) ≤ B(ν) for any

valuation ν whose centre is a stratum. If ρ is a valuation, whose centre is not

a stratum, we have 0 = LΦ(ρ) ≤ B(ρ) (cf. [20, 2.31]). In this case we just take

Z ′ = Z.

From now on we suppose that the weight w ≥ 0. Suppose that (Z ′,B′) is

a cut of (Z,B). Then B′ and B have the same coefficients, except for finitely

many valuations. In particular, the coefficients of B′ belong to a set I ′ ⊃ I

that still satisfies the DCC. It suffices therefore to prove that we can find a cut

(Z ′,B′) of (Z,B) with smaller weight.

Now if (Z ′,B′) is a cut of (Z,B), then B′Z′ ≤ LΦ,Z′ . On the other hand,

if ν is any valuation whose centre is not a divisor on Z ′, then B(ν) = B′(ν). It

follows that the weight of (Z ′,B′) is at most the weight of (Z,B). Therefore,

as (Z,Φ) has only finitely many strata, we may construct (Z ′,B′) étale locally

about every stratum. Thus, we may assume that Z = Cn and that Φ is

supported on the coordinate hyperplanes.

We will use the language of toric geometry; cf. [12]. Cn is the toric variety

associated to the cone spanned by the standard basis vectors e1, e2, . . . , en in

Rn. If ν is any valuation such that LΦ(ν) > 0, then ν is toric and we will

identify ν with an element (v1, v2, . . . , vn) of Nn. Order the components of Φ

so that the last w components have coefficient one, and let 0 ≤ c1, c2, . . . , cs < 1

be the initial coefficients, so that n = s+ w. With this ordering, we have

LΦ(ν) = 1−
∑
i

vi(1− ci).

(Indeed both sides of this equation are affine linear in v1, v2, . . . , vn and c1, c2,

. . . , cs, and it is easy to check we have equality when either ν is the zero vector

or when ν = ei, 1 ≤ i ≤ n.) Consider the finite set

F =
{

(v1, v2, . . . , vs) ∈ Ns |
∑
i

vi(1− ci) < 1
}
.

Given a valuation ν = (v1, v2, . . . , vn), note that LΦ(ν) > 0 if and only if

(v1, v2, . . . , vs) ∈ F.

As I satisfies the DCC, for every f = (f1, f2, . . . , fs) ∈ F, we may pick a

valuation σ = (f1, f2, . . . , fs, vs+1, vs+2, . . . , vn) such that

B(σ) = inf{B(ν) | ν = (f1, f2, . . . , fs, us+1, us+2, . . . , un)}.

Let Σ be a set of choices of such valuations σ, so that Σ and F have the same

cardinality. Let Z ′ −→ Z be any log resolution of (Z,Φ) such that the centre

of every element of Σ is a divisor on Z ′. We may assume that the induced

birational map Z ′ −→ Yσ is a morphism for every σ ∈ Σ. Let (Z ′,B′) be the

cut of (Z,B) associated to Z ′ → Z and Σ.
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There are two cases. If w = 0, then Σ = F is the set of all valuations of

coefficient less than one. It follows that if ν is any valuation whose centre on

Z ′ is not a divisor, then LΦ′(ν) = 0, so that the weight of (Z ′,B′) is −1, which

is less than the weight of (Z,B).

Otherwise we may assume that w ≥ 1. Suppose that ν is a valuation

whose centre is not a divisor on Z ′ such that B′(ν) < 1 and LΦ′(ν) > 0.

Then B(ν) = B′(ν) and LΦ(ν) > 0, and so ν = (v1, v2, . . . , vn) is toric and

(v1, v2, . . . , vs) ∈ F. By construction, there is an element σ of Σ with the same

first s coordinates as ν such that B(σ) ≤ B(ν) < 1. The cone spanned by

the standard basis vectors e1, e2, . . . , en is divided into m ≤ n subcones by σ

(these are the maximal cones of Yσ), where m is the number of nonzero entries

of σ, and so ν is a nonnegative linear combination of σ and n−1 vectors taken

from e1, e2, . . . , en. It follows that

(]) ν =
∑
j 6=l

λjej + λσ

for some index 1 ≤ l ≤ n and nonnegative real numbers λ1, λ2, . . . , λn and λ,

where the lth entry of σ is nonzero.

If the centre of ν on Z ′ is contained in w components of Φ′ of coefficient

one, then the centre of ν on Yσ is also contained in w components of coefficient

one of Γσ = (LΦ ∧B)Yσ . By assumption, the exceptional divisor of Yσ −→ Y

has coefficient strictly less than one, and so the centre of ν on Yσ must be con-

tained in the strict transform of the last w coordinate hyperplanes. But then,

by standard toric geometry, l ≤ s. Hence the lth entry of ν is nonzero. Compar-

ing the coefficient of el in (]), we must have λ = 1, so that ν ≥ σ. In this case,

LΦ′(ν) ≤ LΓσ(ν) by definition of B′,

≤ LΓσ(σ) as ν ≥ σ,

≤ B(σ) since Γσ ≤ BYσ ,

≤ B(ν) by our choice of σ,

= B′(ν) by definition of B′.

It follows that the weight of (Z ′,B′) is indeed smaller than the weight of (Z,B),

and this completes the induction and the proof. �

Proof of Proposition 5.1. Suppose we have a sequence of log pairs (Xi,∆i)

∈ D, such that vi ≥ vi+1, where vi := vol(Xi,KXi + ∆i). We will show that

the sequence v1, v2, . . . is eventually constant; to this end, we are free to pass

to a subsequence. Replacing I by Ī ∪{1}, we may assume that I is closed and

1 ∈ I.

By assumption there are projective birational morphisms fi : Xi −→ Z

such that Φi = fi∗∆i ≤ B. Note that if ν is a valuation such that M∆i(ν) /∈
{0, 1}, then the centre of ν is a component of ∆i. On the other hand, if
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M∆i(ν) = 1 and M∆j (ν) = 0 and the centre of ν is not a component of ∆i,

then the centre of ν is not a divisor on Xi and it is a divisor on Xj . Therefore

there are only countably many valuations ν such that M∆i(ν) 6= M∆j (ν) for

some i and j. Therefore, as I satisfies the DCC, by a standard diagonalisation

argument, after passing to a subsequence, we may assume that M∆i(ν) is

eventually a nondecreasing sequence for all valuations ν. In particular, we

may define a b-divisor B by putting

B(ν) = lim
i→∞

M∆i(ν).

Note that the coefficients of B belong to I. Let Φ = BZ .

Suppose that (Z ′,B′) is a cut of (Z,B) associated to a birational morphism

Z ′ −→ Z and a set of valuations Σ. Let f ′i : Xi 99K Z ′ be the induced birational

map. Note that if X ′i −→ Xi is a birational morphism and (X ′i,∆
′
i = M∆i,X′

i
)

has simple normal crossings, then vol(X ′i,KX′
i
+∆′i) = vi and the coefficients of

∆′i belong to I, so that (X ′i,∆
′
i) ∈ D. Therefore, we are free to replace (Xi,∆i)

by (X ′i,∆
′
i). In particular, we may assume that f ′i is a birational morphism.

Given σ ∈ Σ, let Γi,σ = (LΦi ∧ B)Yσ , where Yσ −→ Z is defined in

Definition 5.4. Suppose we define a sequence of divisors

Θi =
∧
σ∈Σ

LΓi,σ ,Z′ ,

as in Definition 5.6. Suppose that B is a prime divisor on Z ′ that is exceptional

over Z. Then the coefficient of B in Θi is the minimum of finitely many affine

linear functions of the coefficients of ∆i. It follows that the coefficients of

Θ1,Θ2, . . . belong to a set I ′ ⊃ I that satisfies the DCC. Finally, let

∆′i = ∆i ∧MΘi,Xi ,

so that we only change the coefficients of divisors that are exceptional for

Z ′ → Z. In particular, the coefficients of ∆′i belong to I ′. On the other hand,

∆i ∧ LΘi,Xi ≤ ∆′i = ∆i ∧MΘi,Xi ≤ ∆i,

so that
vi = vol(Xi,KXi + ∆′i),

by (2) of Lemma 5.3. Finally, note that M∆′
i
(ρ) is eventually a nondecreasing

sequence for any valuation ρ. In particular, we may define a b-divisor B′ by

putting
B′(ρ) = lim

i→∞
M∆′

i
(ρ),

as before.

Hence, Lemma 5.7 implies that we may find a reduction (Z ′,B′), of (Z,B)

and pairs (X ′i,∆
′
i), whose coefficients belong to a set I ′ that satisfies the DCC,

such that vi = vol(X ′i,KX′
i

+ ∆′i), there is a birational morphism X ′i −→ Z ′,

and moreover LΦ′ ≤ B′. Replacing (Xi,∆i) by (X ′i,∆
′
i), I by I ′, and Z by Z ′,

we may therefore assume that LΦ ≤ B.
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Note that

vi = vol(Xi,KXi + ∆i)

≤ vol(Z,KZ + Φi)

≤ lim vol(Z,KZ + Φi)

= vol(Z,KZ + Φ),

as lim Φi = Φ.

On the other hand, if we fix ε > 0, then (Z, (1 − ε)Φ) is kawamata log

terminal. In particular, we may pick a birational morphism f : Y −→ Z such

that (Y,Ψ = L(1−ε)Φ,Y ) is terminal. If we let Θ = LΦ,Y and Γ = BY , then

Ψ ≤ (1− η)Θ ≤ Θ ≤ Γ

for some η > 0. As Γ is the limit of Γi = M∆i,Y , it follows that we may find i

such that Ψ ≤ Γi. As (Y,Ψ) is terminal, we have Ψi = LΨ,Xi ≤ ∆i. But then,

vol(Z,KZ + (1− ε)Φ) = vol(Y,KY + Ψ)

≤ vol(Xi,KXi + Ψi)

≤ vol(Xi,KXi + ∆i) = vi.

Taking the limit as ε goes to zero, we get

vol(Z,KZ + Φ) ≤ vi ≤ vol(Z,KZ + Φ),

so that vi = vol(Z,KZ + Φ) is constant. �

Proof of Theorem 1.9. We may assume that 1 ∈ I. By assumption, there

is a log pair (Z,B) and a projective morphism Z −→ T , where T is of finite

type, such that if (X,∆) ∈ D, then there is a closed point t ∈ T and a birational

map f : X 99K Zt such that the support of Bt contains the support of the strict

transform of ∆t and any f−1-exceptional divisor.

Suppose that p : Y −→ X is a birational morphism. Then the coefficients

of Γ = M∆,Y belong to I and

vol(X,KX + ∆) = vol(Y,KY + Γ),

by (1) of Lemma 5.3. Replacing (X,∆) by (Y,Γ), we may assume that f is a

morphism, and we are free to replace Z and B by higher models.

We may assume that T is reduced. Blowing up and decomposing T into

a finite union of locally closed subsets, we may assume that (Z,B) has simple

normal crossings; passing to an open subset of T , we may assume that the

fibres of Z −→ T are log pairs, so that (Z,B) has simple normal crossings

over T ; passing to a finite cover of T , we may assume that every stratum

of (Z,B) has irreducible fibres over T ; decomposing T into a finite union of

locally closed subsets, we may assume that T is smooth; finally passing to a

connected component of T , we may assume that T is integral.
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Let Z0 and B0 be the fibres over a fixed closed point 0 ∈ T . Let D0 ⊂ D

be the set of simple normal crossings pairs (Y,Γ), where the coefficients of Γ

belong to I, Y is a projective variety of dimension n, and there is a birational

morphism g : Y −→ Z0 with g∗Γ ≤ B0.

Pick (X,∆) ∈ D. Let Φ = f∗∆. Let Σ be the set of all valuations ν whose

centre on X is a divisor that is exceptional over Zt such that LΦ(ν) > 0. We

may find a birational morphism f ′ : X ′ −→ Zt such that the centre of every

element of Σ is a divisor on X ′, whilst f ′ only blows up strata of (Zt,Φ).

Suppose that g : W −→ X is a log resolution that resolves the indeterminacy

locus of the induced birational map X 99K X ′. If we set ∆′ = M∆,X′ , then the

coefficients of ∆′ belong to I and

vol(X,KX + ∆) = vol(W,KW + M∆,W ) ≤ vol(X ′,KX′ + ∆′),

by (1) of Lemma 5.3. If ν is any valuation whose centre is an exceptional divisor

for W −→ X ′ but not for W −→ X, then the centre of ν is an exceptional

divisor for X −→ Zt, and so LΦ(ν) = 0, by choice of f ′. It follows that

M∆,W ≥M∆′,W ∧ LΦ,W ,

and so Lemma 5.3 implies that

vol(W,KW + M∆,W ) ≥ vol(W,KW + M∆′,W ∧ LΦ,W ) = vol(X ′,KX′ + ∆′).

Hence the inequalities above are equalities. In particular,

vol(X,KX + ∆) = vol(X ′,KX′ + ∆′).

Replacing (X,∆) by (X ′,∆′), we may assume that f only blow ups strata of Φ.

As (Z,B) has simple normal crossings over T and the strata of (Z,B)

have irreducible fibres, we may find a sequence of blow ups g : Z ′ −→ Z of

strata of B, which induces the sequence of blow ups determined by f , so that

X = Z ′t. There is a unique divisor Ψ supported on the strict transform of B

and the exceptional locus of g such that ∆ = Ψt. If Y = Z ′0 is the fibre over 0

of Z ′ −→ T and Γ is the restriction of Ψ to Y , then (Y,Γ) ∈ D0. Theorem 1.8

implies that vol(Y,KY + Γ) = vol(X,KX + ∆).

It follows that

{vol(X,KX + ∆) | (X,∆) ∈ D} = {vol(X,KX + ∆) | (X,∆) ∈ D0}.

Now apply Proposition 5.1. �

6. Birational geometry of global quotients

Theorem 6.1 (Tsuji). Assume Theorem 1.4n−1. Then there is a constant

C = C(n) > 2 such that if (X,∆) is a global quotient, where X is projective of

dimension n, and KX +∆ is big, then φm(KX+∆) is birational for every integer

m ≥ C + 1 such that

vol(X, (m− 1)(KX + ∆)) > (Cn)n.
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Proof. First note that Lemma 2.2.2 implies that

KX + d(m− 1)(KX + ∆)e = bm(KX + ∆)c.

As we are assuming Theorem 1.4n−1, there is a constant ε > 0 such that if

(U,Θ) is a global quotient, where KU+Θ is big and U is projective of dimension

k at most n− 1, then vol(U,KU + Θ) > εk. Let

C = 2(1 + γ)n−1, where γ =
4n

ε
.

By assumption there is a smooth projective variety Y of dimension n and a

finite group G ⊂ Aut(Y ) such that X = Y/G and if π : Y −→ X is the quotient

morphism, then KY = π∗(KX + ∆). As KX + ∆ is big, Y is of general type.

Replacing (X,∆) and Y by their log canonical models, which exist by [7], we

lose the fact that X and Y are smooth, gain the fact that KX + ∆ and KY are

ample, and retain the condition that KX + ∆ is kawamata log terminal and

KY is canonical.

We check the hypotheses of Theorem 2.3.6, applied to the ample divisor

KX + ∆ and the constants ε/2 and γ0 = m−1
C ≥ 1. Clearly,

vol(X, γ0(KX + ∆)) > nn.

Suppose that V is a minimal non-kawamata log terminal centre of a log pair

(X,∆ + ∆0), which is log canonical at the generic point of V . Further suppose

that V passes through a very general point of X and 0 ≤ ∆0 ∼Q λ(KX + ∆)

for some rational number λ ≥ 1.

If Γ0 = π∗∆0, then every irreducible component of π−1(V ) is a non-

kawamata log terminal centre of (Y,Γ0). Let V ′ be the normalisation of

π−1(V ). As H = KY +Γ0 is ample, Kawamata’s subadjunction formula implies

that for every η > 0, there is a divisor Φ ≥ 0 on V ′ such that

(KY + Γ0 + ηH)|V ′ = KV ′ + Φ.

Let W −→ V ′ be a G-equivariant resolution. As V passes through a very

general point of X, W is a union of irreducible varieties of general type. If

U = W/G is the quotient, then U is irreducible and we may find a Q-divisor

Θ such that KW = ψ∗(KU + Θ), where ψ : W −→ U is the quotient map.

As (U,Θ) is a global quotient, vol(U,KU + Θ) > εk, where k is the dimen-

sion of V . Therefore,

|G| vol(V, (KX + ∆ + ∆0)|V ) = vol(V ′, (KY + Γ0)|V ′)

≥ vol(V ′,KV ′)

≥ vol(W,KW )

= |G| vol(U,KU + Θ)

≥ |G|εk.
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Thus

vol(V, (1 + λ)(KX + ∆)|V ) > εk,

and so

vol(V, λ(KX + ∆)|V ) >

Å
ε

2

ãk
.

Theorem 2.3.6 implies that (m−1)(KX+∆) is potentially birational. Condition

(1) of Lemma 2.3.4 implies that φKX+d(m−1)(KX+∆)e is birational. �

7. Proof of (1.4) and (1.1)

Proof of Theorem 1.4. By induction on n. Assume Theorem 1.4n−1. By

Theorem 6.1 there is a constant C = C(n) > 2 depending only on the di-

mension n such that if (X,∆) is a global quotient, where X is projective of

dimension n and KX+∆ is big, then φm(KX+∆) is birational for any m ≥ C+1

such that

vol(X, (m− 1)(KX + ∆)) > (Cn)n.

Note that the right-hand side does not depend on m.

Fix a constant V > nn, and let

DV = {(X,∆) ∈ D | 0 < vol(X,KX + ∆) ≤ V }.

Note that if k is a positive integer such that vol(X, k(KX + ∆)) ≤ CnV , then

vol(X, (k + 1)(KX + ∆)) ≤ 2nCnV . It follows that there is a positive integer

m ≥ C + 1 such that if (X,∆) ∈ DV , then

(Cn)n < vol(X, (m− 1)(KX + ∆)) ≤ 2nCnV,

so that φm(KX+∆) is birational. Condition (2) of Lemma 2.3.4 implies that

φKX+(2n+1)m(KX+∆) is birational. But then Theorem 3.1 implies that DV is

log birationally bounded, and so Theorem 1.9 implies that the set

{vol(X,KX + ∆) | (X,∆) ∈ DV }

satisfies the DCC, which implies that (1) and (2) of Theorem 1.4 hold in

dimension n.

In particular, there is a constant δ > 0 such that if (X,∆) ∈ D, and

KX+∆ is big, then vol(X,KX+∆) ≥ δ. It follows that φM(KX+∆) is birational

for any

M >
Cn

δ
+ 1,

and this completes the induction and the proof. �

Proof of Theorem 1.1. By condition (2) of Theorem 1.4, there is a con-

stant δ > 0 such that if (X,∆) is a global quotient, where X is projective of

dimension n and KX + ∆ is big, then vol(X,KX + ∆) ≥ δ. Let c = 1
δ .

Let Y be a projective variety of dimension n of general type. By [7], there

is a log canonical model Y 99K Y ′. If G is the birational automorphism group
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of Y , then G is the automorphism group of Y ′. Replacing Y by a G-equivariant

resolution of Y ′, we may assume that G is the automorphism group of Y . Let

π : Y −→ X = Y/G be the quotient of Y . Then there is a divisor ∆ on X

such that KY = π∗(KX + ∆). By definition, (X,∆) is a global quotient, X is

projective, and KX + ∆ is big. It follows that vol(X,KX + ∆) ≥ δ. As

vol(Y,KY ) = |G| vol(X,KX + ∆),

it follows that

|G| ≤ c · vol(Y,KY ). �
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