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Log minimal model program for the
moduli space of stable curves:

the first flip

By Brendan Hassett and Donghoon Hyeon

Abstract

We give a geometric invariant theory (GIT) construction of the log

canonical model Mg(α) of the pairs (Mg, αδ) for α ∈ (7/10 − ε, 7/10] for

small ε ∈ Q+. We show that Mg(7/10) is isomorphic to the GIT quotient

of the Chow variety of bicanonical curves; Mg(7/10−ε) is isomorphic to the

GIT quotient of the asymptotically-linearized Hilbert scheme of bicanon-

ical curves. In each case, we completely classify the (semi)stable curves

and their orbit closures. Chow semistable curves have ordinary cusps and

tacnodes as singularities but do not admit elliptic tails. Hilbert semistable

curves satisfy further conditions; e.g., they do not contain elliptic chains.

We show that there is a small contraction Ψ : Mg(7/10 + ε) → Mg(7/10)

that contracts the locus of elliptic bridges. Moreover, by using the GIT in-

terpretation of the log canonical models, we construct a small contraction

Ψ+ : Mg(7/10− ε)→Mg(7/10) that is the Mori flip of Ψ.
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1. Introduction

Our inspiration is to understand the canonical model of the moduli space

Mg of stable curves of genus g. This is known to be of general type for g = 22

and g ≥ 24 [HM82], [EH86], [Far09]. In these cases, we can consider the

canonical ring1

⊕n≥0Γ(Mg, nKMg
),

which is finitely generated by a fundamental conjecture of birational geometry,

recently proven in [BCHM10]. Then the corresponding projective variety

Proj ⊕n≥0 Γ(Mg, nKMg
)

is birational to Mg and is called its canonical model.

There has been significant recent progress in understanding canonical

models of moduli spaces. For moduli spaces Ag of principally polarized abelian

varieties of dimension g ≥ 12, the canonical model exists and is equal to the

first Voronoi compactification [SB06]. Unfortunately, no analogous results are

known for Mg, even for g � 0.

Our approach is to approximate the canonical model with log canonical

models. Consider α ∈ [0, 1]∩Q so that KMg
+αδ is an effective Q-divisor. We

have the graded ring

⊕n≥0Γ(Mg, n(KMg
+ αδ))

and the corresponding projective variety

Mg(α) := Proj ⊕n≥0 Γ(Mg, n(KMg
+ αδ)).

Our previous paper [HH09] describes Mg(α) explicitly for large values

of α. For simplicity, we assume that g ≥ 4. Small genera cases have been

considered in [Has05], [HL07], [HL10]. For 9/11 < α ≤ 1, KMg
+ αδ is ample

and Mg(α) is equal to Mg. The first critical value is α = 9/11. Mg(9/11)

is the coarse moduli space of the moduli stack Mps
g of pseudostable curves

[Sch91]. A pseudostable curve may have cusps but they are not allowed to

have elliptic tails; i.e., genus one subcurves meeting the rest of the curve in

one point. There is a divisorial contraction

T : Mg →Mg(9/11)

induced by the morphism T : Mg → M
ps
g of moduli stacks that replaces an

elliptic tail with a cusp. Furthermore, Mg(α) ' Mg(9/11) provided 7/10 <

α ≤ 9/11.

1Note that we are using the canonical line bundle KMg
on the moduli stack. Throughout

the paper, we shall interchangeably use the divisor classes on the moduli stackMg and those

on the moduli space Mg via the identification Pic(Mg)⊗Q ' Pic(Mg)⊗Q.
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This paper addresses what happens when α = 7/10. Given a sufficiently

small positive ε ∈ Q, we construct a small contraction and its flip:

Mg(
7
10 + ε)

Ψ

&&

Mg(
7
10 − ε)

Ψ+

xx
Mg(

7
10).

The resulting spaces arise naturally as geometric invariant theory (GIT) quo-

tients and admit partial modular descriptions. We construct Mg(7/10) as a

GIT quotient of the Chow variety of bicanonical curves; it parametrizes equiv-

alence classes of c-semistable curves. We defer the formal definition, but these

have nodes, cusps, and tacnodes as singularities. The flip Mg(7/10 − ε) is

a GIT quotient of the Hilbert scheme of bicanonical curves; it parametrizes

equivalence classes of h-semistable curves, which are c-semistable curves not

admitting certain subcurves composed of elliptic curves (see Definition 2.7).

Ψ Ψ+

D

E

p

q

C ′

Figure 1. Geometry of the first flip.

We may express the flip in geometric terms (Figure 1): Let C = D ∪p,q E
denote an elliptic bridge, where D is smooth of genus g − 2, E is smooth

of genus one, and D meets E at two nodes p and q. Let C ′ be a tacnodal

curve of genus g, with normalization D and conductor {p, q}. In passing from

Mg(7/10 + ε) to Mg(7/10 − ε), we replace C with C ′. Note that the descent

data for C ′ includes the choice of an isomorphism of tangent spaces

ι : TpD
∼ // TqD;

the collection of such identifications is a principal homogeneous space for Gm.

When C is a generic elliptic bridge, the fiber (Ψ+)−1(Ψ(C)) ' P1; see Propo-

sition 4.1 for an explicit interpretation of the endpoints.

Here we offer a brief summary of the contents of this paper. Section 2

has the statements of the main theorems and a roadmap for their proofs.

Section 3 discusses, in general terms, how to obtain contractions of the moduli

space of stable curves from GIT quotients of Hilbert schemes. The resulting

models of the moduli space depend on the choice of linearization; we express
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the polarizations in terms of tautological classes. Section 4 summarizes basic

properties of c-semistable curves: embedding theorems and descent results

for tacnodal curves. Section 5 offers a preliminary analysis of the GIT of the

Hilbert scheme and the Chow variety of bicanonically embedded curves of genus

g ≥ 4. Then in Section 6 we enumerate the curves with positive-dimensional

automorphism groups. Section 7 applies this to give a GIT construction of

the flip Ψ+ : Mg(7/10 − ε) → Mg(7/10). Section 8 offers a detailed orbit

closure analysis, using basins of attraction and a careful analysis of the action

of the automorphism group on tangent spaces. The main application is a

precise description of the semistable and stable bicanonical curves, proven in

Section 9.

Throughout, we work over an algebraically closed field k, generally of

characteristic zero. However, Section 4 is valid in positive characteristic.
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dation, and the Institute of Mathematical Sciences of the Chinese University
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We are also grateful to D. Abramovich, Y. Kawamata, I. Morrison, B. P. Pur-

naprajna, M. Simpson, D. Smyth, and D. Swinarski for useful conversations.
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2. Statement of results and strategy of proof

2.1. Stability notions for algebraic curves. In this paper, we will use four

stability conditions: Deligne-Mumford stability [DM69], Schubert pseudosta-

bility [Sch91], c-(semi)stability, and h-(semi)stability. The latter two condi-

tions are newly introduced in this paper. We recall the definition of pseudosta-

bility, which is obtained from Deligne-Mumford stability by allowing ordinary

cusps and prohibiting elliptic tails.

Definition 2.1. [Sch91] A complete curve is pseudostable if

(1) it is connected, reduced, and has only nodes and ordinary cusps as singu-

larities;

(2) admits no elliptic tails, i.e., connected subcurves of arithmetic genus one

meeting the rest of the curve in one node;

(3) the canonical sheaf of the curve is ample.
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The last condition means that each subcurve of genus zero meets the rest

of the curve in at least three points.

Before formulating the notions of c- and h-(semi)stability, we need the

following technical definitions.

Definition 2.2. An elliptic bridge is a connected subcurve of arithmetic

genus one meeting the rest of the curve in two nodes.

(T0) (Ti)

1

g − 2

1

i g − i− 1

Figure 2. Generic elliptic bridges.

Definition 2.3. An open elliptic chain of length ` is a two-pointed curve

(C ′, p, q) such that

• C ′ = E1 ∪a1 · · · ∪a`−1
E` consists of connected genus-one curves E1, . . . , E`

such that Ei meets Ei+1 in a node ai, i = 1, 2, . . . , `− 1;

• Ei ∩ Ej = ∅ if |i− j| > 1;

• p ∈ E1 and q ∈ E` are smooth points.

An elliptic bridge is an elliptic chain of length one. Actually, elliptic chains

of higher length do not play any role in the stability conditions to come below.

Rather, their significance is in the proof of semistability in Section 9.1.

C1 C2

1 1 1

Figure 3. Generic open elliptic chain of length three.

Definition 2.4. An open tacnodal elliptic chain of length ` is a two-pointed

projective curve (C ′, p, q) such that

(i) C ′ = E1 ∪a1 · · · ∪a`−1
E` where each Ei is connected of genus one, with

nodes, cusps, or tacnodes as singularities;

(ii) Ei intersects Ei+1 at a single tacnode ai for i = 1, . . . , `− 1;

(iii) Ei ∩ Ej = ∅ if |i− j| > 1;
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1 1

1 1
1

1

Figure 4. Generic closed elliptic chain of length six and genus seven.

(iv) p, q ∈ C ′ are smooth points with p ∈ E1 and q ∈ E`;
(v) ωC′(p+ q) is ample.

Note that an open tacnodal elliptic chain of length ` has arithmetic genus

2`− 1. A length-one open tacnodal chain by definition has no tacnode and is

the same as an open elliptic chain of length one (i.e. an elliptic bridge), but

we slightly abuse terminology and still call it a tacnodal elliptic chain.

C1 C2

1 1 1

Figure 5. Generic tacnodal elliptic chain of length three.

C1 C2

1 1 1

Figure 6. Generic weak tacnodal elliptic chain of length three.

Definition 2.5. Let C be a projective connected curve of arithmetic genus

g ≥ 3, with nodes, cusps, and tacnodes as singularities. We say C admits

an open (tacnodal) elliptic chain if there is an open (tacnodal) elliptic chain

(C ′, p, q) and a morphism ι : C ′ → C such that

(i) ι is an isomorphism over C ′ \ {p, q} onto its image.

(ii) ι(p), ι(q) are nodes of C; we allow the case ι(p) = ι(q), in which case

C is said to be a closed (tacnodal) elliptic chain.
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C admits a weak tacnodal elliptic chain if there exists ι : C ′ → C as above

with the second condition replaced by

(ii′) ι(p) is a tacnode of C and ι(q) is a node of C; or

(ii′′) ι(p) = ι(q) is a tacnode of C, in which case C is said to be a closed

weak tacnodal elliptic chain.

In an elliptic chain, an elliptic component may be a union of two smooth

rational curves meeting in one tacnode. Such elliptic chains, called rosaries

(Definition 6.1), will play a special role in the stability analysis in later sections.

Now we are in position to formulate our main stability notions.

Definition 2.6. A complete curve C is said to be c-semistable if

(1) C has nodes, cusps, and tacnodes as singularities;

(2) ωC is ample;

(3) a connected genus one subcurve meets the rest of the curve in at least

two points (not counting multiplicity).

It is said to be c-stable if it is c-semistable and has no tacnodes or elliptic

bridges.

Definition 2.7. A complete curve C of genus g is said to be h-semistable

if it is c-semistable and admits no tacnodal elliptic chains. It is said to be

h-stable if it is h-semistable and admits no weak tacnodal elliptic chains.

Remark 2.8. A curve is c-stable if and only if it is pseudostable and has

no elliptic bridges.

Table 1 summarizes the defining characteristics of the stability notions.

2.2. Construction of the small contraction Ψ. We start with some prelim-

inary results. Recall from [HH09] the functorial contraction T : Mg → M
ps
g

and the induced morphism T : Mg → M
ps
g = Mg(9/11) on coarse moduli

spaces, which contracts the divisor ∆1.

Lemma 2.9. For α < 9/11, (Mps
g , αδ

ps) and (M
ps
g , α∆ps) are log terminal

and
Mg(α) ' Proj ⊕n≥0 Γ(n(KMps

g
+ αδps)).

Proof. Since g > 3, the locus in M
ps
g parametrizing curves with nontrivial

automorphisms has codimension ≥ 2 [HM82, §2]. (Of course, we have already

collapsed δ1.) Thus the coarse moduli map q : Mps
g → M

ps
g is unramified in

codimension one and

(2.1) q∗(KM
ps
g

+ α∆ps) = KMps
g

+ αδps

for each α. We have the log discrepancy equation [HH09, §4]

(2.2) KMg
+ αδ = T ∗(KMps

g
+ αδps) + (9− 11α)δ1
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Table 1. Stability notions.

singularity

genus zero
subcurve

meets
the rest in ...

genus one
subcurve

meets
the rest in ...

tacnodal
elliptic
chain

weak
tacnodal
elliptic
chain

stable nodes ≥ 3 points – – –

pseudostable
nodes,
cusps

≥ 3 points ≥ 2 points – –

c-semistable
nodes,
cusps,

tacnodes

≥ 3 points
counting

multiplicity
≥ 2 points – –

c-stable
nodes,
cusps

≥ 3 points ≥ 3 points – –

h-semistable
nodes,
cusps,

tacnodes

≥ 3 points
counting

multiplicity

≥ 3 points
counting

multiplicity

not
admitted

–

h-stable
nodes
cusps,

tacnodes

≥ 3 points
counting

multiplicity

≥ 3 points
counting

multiplicity

not
admitted

not
admitted

and the pull-back

T ∗(KMps
g

+ 7/10δps) = KMg
+ 7/10δ − 13/10δ1 ∼ 10λ− δ − δ1,

where ∼ designates proportionality.

Since Mg is smooth and δ is normal crossings, the pair

(Mg, αδ + (11α− 9)δ1)

is log terminal. The discrepancy equation implies that (Mps
g , αδ

ps) is log ter-

minal for α ∈ [7/10, 9/11). Applying the ramification formula [KM98, 5.20] to

(2.1) (or simply applying [HH09, A.13]), we find that (M
ps
g , α∆ps) is also log

terminal.

Since ∆1 is T -exceptional, for each Cartier divisor L on M
ps
g and m ≥ 0

we have Γ(Mg, T
∗L+m∆1) ' Γ(M

ps
g , L). This implies that

Mg(α) = Proj ⊕n≥0 Γ(Mg, n(KMg
+ αδ))

= Proj ⊕n≥0 Γ
(
Mg, n(T ∗(KMps

g
+ αδps) + (9− 11α)δ1)

)
' Proj ⊕n≥0 Γ

(
M

ps
g , n(KMps

g
+ αδps)

)
. �
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We shall construct the contractions by using the powerful results of Gib-

ney, Keel, and Morrison [GKM02].

Proposition 2.10. For α ∈ (7/10, 9/11] ∩ Q, there exists a birational

contraction

Ψ : Mg(α)→Mg(7/10).

It contracts the codimension-two strata Ti, i = 0, 2, 3, . . . , b(g − 1)/2c, where

(1) T0 = {E ∪p,q D | g(E) = 1, g(D) = g − 2, D connected};

(2) Ti = {C1 ∪p E ∪q C2 | g(C1) = i, g(E) = 1, g(C2) = g − 1 − i},
2 ≤ i ≤ b(g − 1)/2c,

by collapsing the loci M1,2 ⊂ Ti corresponding to varying (E, p, q).

Remark 2.11. We shall see in Corollary 2.18 that Ψ is an isomorphism

away from T• := ∪Ti.

Proof. Recall that KM
ps
g

+ α∆ps is ample provided 7/10 < α ≤ 9/11;

this is part of the assertion that Mg(α) = M
ps
g for 7/10 < α ≤ 9/11 [HH09,

Th. 1.2]. However, KM
ps
g

+7/10∆ps is nef but not ample [HH09, §4]. Indeed, its

pull-back to Mg is a positive rational multiple of 10λ−δ−δ1, whose numerical

property can be analyzed using the classification of one-dimensional boundary

strata by Faber [Fab96] and Gibney-Keel-Morrison [GKM02]. It is ‘F-nef’, in

the sense that it intersects all these strata nonnegatively, and is therefore nef

by [GKM02, 6.1]. Later on, we will list the strata meeting it with degree zero.

We apply Kawamata basepoint freeness [KM98, Th. 3.3]:

Let (X,D) be a proper Kawamata log terminal pair with D

effective. Let M be a nef Cartier divisor such that aM−KX−D
is nef and big for some a > 0. Then |bM | has no basepoint for

all b� 0.

For our application, M is a Cartier multiple of KM
ps
g

+ 7/10∆ps and D =

(7/10− ε)∆ps for small positive ε ∈ Q. The resulting morphism is denoted Ψ.

We claim that Ψ is birational. To establish the birationality, we show that

each curve B ⊂Mg meeting the interior satisfies

B.(10λ− δ − δ1) > 0.

The Moriwaki divisor

A := (8g + 4)λ− gδ0 −
bg/2c∑
i=1

4i(g − i)δi
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meets each such curve nonnegatively [Mor98, Th. B]. We can write

10λ− δ − δ1 = (1/g)A+ (2− 4/g)λ+ (2− 4/g)δ1 +

bg/2c∑
i=2

(−1 + 4i(g − i)/g)δi.

Each of these coefficients is positive. Clearly 1/g, 2−4/g>0, and since 2i/g≤1,

−1 + 4i(g − i)/g = −1 + 4i− (2i/g)2i ≥ −1 + 4i− 2i > 0.

Thus we have

B.(10λ− δ − δ1) ≥ (2− 4/g)λ.B > 0,

where the last inequality reflects the fact that the Torelli morphism is noncon-

stant along B.

We verify that the image of Ψ equals Mg(7/10). The log discrepancy

formula (2.2) implies

Image(Ψ) = Proj ⊕n≥0 Γ(n(KMg
+ 7/10δ − 13/10δ1)).

However, since ∆1 is (Ψ ◦ T )-exceptional, adding it does not change the space

of global sections, whence

Image(Ψ) = Proj ⊕n≥0 Γ(n(KMg
+ 7/10δ)) = Mg(7/10).

Finally, we offer a preliminary analysis of the locus contracted by Ψ.

The main ingredient is the enumeration of one-dimensional boundary strata in

[GKM02] (see also [HH09, §4]). We list the ones orthogonal to 10λ − δ − δ1;

any stratum swept out by these classes is necessarily contracted by Ψ. In the

second and third cases, X0 denotes a varying four-pointed curve of genus zero

parametrizing the stratum.

(1) Families of elliptic tails, which sweep out δ1 and correspond to the

extremal ray contracted by T .

(2) Attach a two-pointed curve of genus 0 and a two-pointed curve (D, p, q)

of genus g−2 to X0 and stabilize. Contracting this and the elliptic tail

stratum collapses T0 along the M1,2’s corresponding to fixing (D, p, q)

and varying the other components.

(3) Attach a one-pointed curve (C1, p) of genus i > 1, a one-pointed curve

(C2, q) of genus g−1− i > 1, and a two-pointed curve of genus 0 to X0

and stabilize. Contracting this and the elliptic tail stratum collapses

Ti along the M1,2’s corresponding to fixing (C1, p), (C2, q) and varying

the other components.

Thus the codimension-two strata T0, T2, T3, . . . , Tb(g−1)/2c are all contracted

by Ψ. �
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2.3. Construction of the flip Ψ+. For c-semistable curves (including, in

particular, smooth curves), ω⊗2
C is very ample and has no higher cohomology

(Proposition 4.3). The image in P3g−4 is said to be bicanonically embedded.

Consider the Chow variety of degree 4g − 4 curves of genus g in P3g−4. Let

Chowg,2 denote the closure of the locus of bicanonically embedded smooth

curves of genus g. Similarly, let Hilbg,2 denote the closure of the locus of these

curves in the suitable Hilbert scheme. The Chow variety comes with a canon-

ical ample linearization, but the Hilbert scheme has infinitely many ample

linearizations according to the degree used to embed it into a Grassmannian.

Hence we need to clarify which linearization is being used in our GIT analysis,

and we shall do this in Section 2.4, where we describe the stability results of

bicanonically embedded curves.

Proposition 2.12. The cycle class map

(2.3) $ : Hilbg,2 → Chowg,2

induces a morphism of GIT quotients

Hilbss
g,2//SL3g−3 → Chowss

g,2//SL3g−3,

where the Hilbert scheme has the asymptotic linearization introduced in Sec-

tion 2.4.

This is a special case of [Mor80, Cor. 3.5], which applies quite generally

to cycle-class maps from Hilbert schemes to Chow varieties. Let M
hs
g and M

cs
g

denote the resulting GIT quotients Hilbss
g,2//SL3g−3 and Chowss

g,2//SL3g−3, and

(2.4) Ψ+ : M
hs
g →M

cs
g

the morphism of Proposition 2.12.

Theorem 2.13. Let ε ∈ Q be a small positive number. There exist iso-

morphisms

(2.5) Mg(7/10) 'M cs
g and Mg(7/10− ε) 'Mhs

g

such that the induced morphism

Ψ+ : Mg(7/10− ε)→Mg(7/10)

is the flip of Ψ.

We thus obtain a modular/GIT interpretation of the flip:

Mg(
7
10 + ε) 'Mps

g

Ψ

((

Mg(
7
10 − ε) 'M

hs
g

Ψ+

vv
Mg(

7
10) 'M cs

g .
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2.4. GIT setup and stability results on bicanonical curves. Fix a vector

space V of dimension N + 1, an isomorphism P(V ) ' PN , and a rational

polynomial P . Let HilbPP(V ) denote the Hilbert scheme of closed subschemes

of P(V ) whose Hilbert polynomial is P . Recall from [Got78] that there is a

number σ(P ) such that for m ≥ σ(P ), there exist embeddings of HilbPP(V )

into the Grassmannian that associates to a Hilbert point [X] ∈ HilbPP(V ) the

natural map SymmV ∗ → Γ(OX(m)):

φm : HilbPP(V )→ Gr(P (m), SymmV ∗)→ P

Ñ
P (m)∧

SymmV ∗

é
.

Although φm is defined for m ≥ σ(P ), for individual [X] ∈ Hilb, [SymmV ∗ →
Γ(OX(m))] defines a point in Gr(P (m),SymmV ∗) as long as it is surjective

and OX(m) has no higher cohomology. Note that these conditions are met

precisely when m is greater than or equal to the Castelnuovo-Mumford regu-

larity reg(OX) of OX .

Definition 2.14. Let X ⊂ P(V ) be a closed subscheme with Hilbert poly-

nomial P . For m ≥ reg(OX), the m-th Hilbert point [X]m of X is defined to

be the point in P
Ä∧P (m) SymmV ∗

ä
corresponding to [SymmV ∗ → Γ(OX(m))]

in Gr(P (m), SymmV ∗). It is equal to φm([X]) for m ≥ σ(P ). X is said to be

m-Hilbert stable (resp. semistable, unstable) if [X]m is GIT stable (resp. semi-

stable, unstable) with respect to the natural SL(V ) action on

P

Ñ
P (m)∧

SymmV ∗

é
.

It is Hilbert stable (resp. semistable, unstable) if it is m-Hilbert stable (resp.

semistable, unstable) for all m� 0.

The definition of Hilbert (semi)stability needs to be justified. The ample

cone of the Hilbert scheme admits a finite decomposition into locally-closed

cells such that the semistable locus is constant for linearizations taken from a

given cell [DH98, Th. 0.2.3(i)]. In particular, the locus Hilbs,m (resp. Hilbss,m)

of m-Hilbert stable points (resp. semistable points) is constant for m � 0,

and we will denote them by Hilbs and Hilbss respectively. These are the loci of

stable and semistable points with respect to the asymptotic linearization. While

the linearization is not well defined, the locus of (semi)stable points is!

Let X ⊂ P(V ) be a closed subvariety of dimension r and degree d, and let

x0, . . . , xN be homogeneous coordinates of P(V ). Then there exists a multiho-

mogeneous form ΦX , called the Chow form of X, such that

X ∩H(0) ∩H(1) ∩ · · · ∩H(r) 6= ∅
if and only if ΦX(u(0), u(1), . . . , u(r)) = 0, where H(i) =

∑N
j=0 u

(i)
j xj are hyper-

planes and u(i) = (u
(i)
0 , . . . , u

(i)
N ). The Chow point Ch(X) of X is defined to
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be the class of ΦX in P
Ä
⊗r+1SymdV ∗

ä
, and the Chow points form the Chow

variety that parametrizes cycles of degree d and dimension r. Since the Chow

variety is defined as a closed subscheme of P
Ä
⊗r+1SymdV ∗

ä
, the GIT of the

Chow variety is set up clearly once you pick d and r. We point the readers to

[Kol96, §I.3] for a detailed account of the Chow variety in a setting of great

generality and to [Mum77, §2] for the Chow stability criterion and its geometric

meaning.

In analyzing the GIT semistability of Hilbert and Chow points of bi-

canonical curves, we shall employ the numerical criterion [MFK94, Ch. 2, §1]

that entails computing or estimating the Hilbert-Mumford index; see [MFK94,

Def. 2.2] or [HHL10, p.1, §1] for the definition. For Hilbert points, there is an

efficient Gröbner basis algorithm for computing the Hilbert-Mumford index.

Since it will be our main tool in Section 8, we reproduce it here for the reader’s

convenience and for the necessary introduction of notations.

Proposition 2.15 ([HHL10, Prop. 1]). Let X ⊂ P(V ) be a closed sub-

scheme of Hilbert polynomial P , and let IX be its saturated homogeneous ideal.

Let ρ : Gm → GL(V ) be a 1-ps, and let ρ′ be the associated 1-ps of SL(V ).

Let {x0, . . . , xN} be a basis of V ∗ diagonalizing the ρ-action, and let r0, · · · , rN
be the weights of ρ; i.e., ρ(t).xi = trixi for all t ∈ Gm. The Hilbert-Mumford

index of [X]m with respect to ρ′ is then given by

µ([X]m, ρ
′) = −(N + 1)

P (m)∑
i=1

wtρ(x
a(i)) +m · P (m) ·

N∑
i=0

ri,

where xa(1), . . . , xa(P (m)) are the degree m monomials not in the initial ideal of

IX with respect to the ρ-weighted GLex order.

Details, including a proof and a Macaulay 2 implementation, can be found

in [HHL10].

Theorem 2.16. The semistable locus Chowss
g,2 (resp. stable locus Chows

g,2)

corresponds to bicanonically embedded c-semistable (resp. c-stable) curves.

Unlike in Mg and M
ps
g , nonisomorphic curves may be identified in the

quotient Chowss
g,2//SL3g−3. For example, if a c-semistable curve C = D ∪p,q E

consists of a genus g − 2 curve D meeting in two nodes p, q with an elliptic

curve E, then it is identified with any tacnodal curve obtained by replacing E

with a tacnode. In Section 8, we shall give a complete classification of strictly

semistable curves and the curves in their orbit closures.

Theorem 2.17. The semistable locus Hilbss
g,2 (resp. stable locus Hilbs

g,2)

with respect to the asymptotic linearization corresponds to bicanonically em-

bedded h-semistable (resp. h-stable) curves.
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One difference from the case of Chow points is that tacnodal curves may

well be Hilbert stable. For instance, when g ≥ 4, irreducible bicanonical h-semi-

stable curves are necessarily h-stable. When g = 3, a bicanonical h-semistable

curve is Hilbert strictly semistable if and only if it has a tacnode [HL10].

When g = 4, every h-semistable curve is h-stable and the moduli functor is

thus separated.

Since c-stable curves are h-stable and pseudostable (see Remark 2.8), we

have

Corollary 2.18. Ψ and Ψ+ are isomorphisms over the locus of c-stable

curves. Thus Ψ is a small contraction with exceptional locus T• and Ψ+ is

a small contraction with exceptional locus Tac, the h-semistable curves with

tacnodes.

Thus the geometry of the flip is as indicated in Figure 1: Ψ+(C ′) = Ψ(C)

precisely when C is the ‘pseudostable reduction’ of C ′.

2.5. Detailed roadmap for the GIT analysis. The proof of Theorems 2.16

and 2.17 is rather intricate, so we give a bird’s eye view for the reader’s con-

venience.

(1) The following implications are straightforward:

• From the definitions, it follows that

h-semistable ⇒ c-semistable.

• General results on linearizations of Chow and Hilbert schemes imply

Hilbert semistable ⇒ Chow semistable

and

Chow stable ⇒ Hilbert stable.

(See [Mor80, Cor. 3.5] for a proof.)

(2) We first prove that non c-semistable (resp. non h-semistable) curves

are Chow unstable (resp. Hilbert unstable). The main tool is the stability

algorithm Proposition 2.15.

• Non c-semistable curves can be easily destabilized by one-parameter sub-

groups (Section 5). We obtain

Chow semistable ⇒ c-semistable.

• We show that if a curve C admits an open rosary of even length (see

Definition 6.1), then there is a 1-ps ρ coming from the automorphism

group of the rosary such that the m-th Hilbert point [C]m is unstable with

respect to ρ for all m ≥ 2 (Propositions 8.1 and 8.7).
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• If C admits a tacnodal elliptic chain, then for all m ≥ 2, it is contained

in the basin of attraction Aρ([C0]m) (see Definition 5.2) of a curve C0

admitting an open rosary of even length such that µ([C0]m, ρ) < 0. Hence

such curves are Hilbert unstable (Propositions 8.3 and 8.8) and we obtain

Hilbert semistable ⇒ h-semistable.

(3) We prove “c-semistable ⇒ Chow semistable” and use it to establish

“h-semistable ⇒ Hilbert semistable.”

• The only possible Chow-semistable replacement of a c-stable curve is itself

(see Theorem 7.1). Thus c-stable curves are Chow stable and hence Hilbert

stable.

• We show that any strictly c-semistable curve C is contained in a basin

of attraction Aρ(Ch(C?)) of a distinguished c-semistable curve C? with

one-parameter automorphism such that µ(Ch(C?), ρ) = 0 (see Proposi-

tion 9.6). Indeed, we choose C? so that it has a closed orbit in the locus

of c-semistable points (cf. Proposition 9.7).

• If C is strictly c-semistable, its pseudo-stabilization D has elliptic bridges.

For any such D, there is a distinguished strictly c-semistable curve C?

such that its basins of attraction contain every c-semistable replacement

for D. Furthermore, every possible Chow-semistable replacement for D

is contained in some basin of attraction Aρ′(Ch(C?)) with µ(Ch(C?), ρ′)

= 0. Since one of these must be Chow semistable, all of them are Chow

semistable (see Lemma 5.3).

• The Hilbert semistable curves form a subset of the set of Chow semistable

curves. We first identify the Chow semistable curves admitting one-para-

meter subgroups that are Hilbert-destabilizing. Then we show that any

curve that is Hilbert unstable but Chow semistable arises in the basin of

attraction of such a curve. These basins of attraction consist of the curves

that are c-semistable but not h-semistable. Thus the h-semistable curves

are Hilbert semistable (Section 9.3).

3. Computations over the moduli space of stable curves

Let π : Cg →Mg denote the universal curve over the moduli stack of stable

curves of genus g. For each n ≥ 1, we have the vector bundle En = π∗ω
n
π of

rank r(n) that equals g if n = 1 and (2n−1)(g−1) if n > 1. Write λn = c1(En)

and use λ to designate λ1.

Let Hilb denote the Hilbert scheme of degree 2n(g− 1), genus g curves in

Pr(n)−1. Let C ⊂ Pr(n)−1 × Hilb be the universal family and $ : C → Hilb be

the natural projection. For each m ∈ Z, we define

Λm = det(R•$∗OC(m)) = L0 +mL1 +

Ç
m

2

å
L2,
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where Li are the tautological divisor classes developed in [Fog69] and [KM76,

Th. 4]. An elementary divisor class computation shows that Λm descends to a

multiple of r(n)λmn − r(mn)mλn on the locus of m-Hilbert semistable curves

in Mg, which is ample on the locus of m-Hilbert stable curves. In the Chow

case, by taking m→∞, we find that the polarization descends to (4g+2)λ− g
2δ

if n = 1 and to (6n− 2)λ− n
2 δ if n > 1.

We are primarily interested in situations where not all Deligne-Mumford

stable curves have stable Hilbert/Chow points. Here GIT yields alternate

birational models of the moduli space. Consider the open subsets

V s,m
g,n ⊂ Hilbs,m

g,n ⊂ Hilbg,n, V ss,m
g,n ⊂ Hilbss,m

g,n ⊂ Hilbg,n

corresponding to n-canonically embedded Deligne-Mumford stable curves that

are GIT stable and semistable with respect to Λm. Let U s,m
g,n ⊂ U ss,m

g,n ⊂ Mg

denote their images in moduli. When m =∞, they denote the corresponding

loci obtained by using the Chow variety in place of the Hilbert scheme.

Theorem 3.1. Suppose that

• the complement to the Deligne-Mumford stable curves in the GIT-semistable

locus Hilbss,m
g,n (resp. Chowss

g,n) has codimension ≥ 2;

• there exist Deligne-Mumford stable curves in the GIT-stable locus Hilbs,m
g,n

(resp Chows
g,n).

Then there exists a birational contraction

F : Mg 99K Hilbss,m
g,n //SLr(n) (resp. Chowss

g,n//SLr(n))

regular along the Deligne-Mumford stable curves with GIT-semistable Hilbert

(resp. Chow) points.

If Lm is the polarization on the GIT quotient induced by Λm, then the

moving divisor satisfies the proportionality equation

(3.1) F ∗Lm ∼ r(n)λmn − r(mn)mλn (mod Exc(F )),

where Exc(F ) ⊂ Pic(Mg) is the subgroup generated by F -exceptional divisors.

A rational map of proper normal varieties is said to be a birational con-

traction if it is birational and its inverse has no exceptional divisors.

Proof. Our assumptions can be written as:

• V ss,m
g,n ⊂ Hilbss,m

g,n (resp. V ss,∞
g,n ⊂ Chowss

g,n) has codimension ≥ 2;

• V s,m
g,n 6= ∅.

The GIT quotient morphism V s,m
g,n → U s,m

g,n identifies the stack-theoretic

quotient [V s,m
g,n /SLr(n)] with U s,m

g,n . This gives a birational map

Hilbss,m
g,n //SLr(n) (resp. Chowss

g,n//SLr(n)) 99KMg;

we define F as its inverse.
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We establish that F is regular along U ss,m
g,n , the coarse moduli space for

U ss,m
g,n . We have an SLr(n)-equivariant morphism Hilbss,m

g,n → Hilbss,m
g,n //SLr(n),

which descends to

U ss,m
g,n → Hilbss,m

g,n //SLr(n).

Recall the universal property of the coarse moduli space: any morphism from

a stack to a scheme factors through its coarse moduli space. In our context,

this gives

U ss,m
g,n → Hilbss,m

g,n //SLr(n) and U ss,∞
g,n → Chowss

g,n//SLr(n).

Furthermore, the total transform of Mg \U ss,m
g,n is contained in the complement

Hilbss,m
g,n \ V ss,m

g,n (resp. Chowss
g,n \ V ss,∞

g,n ), which has codimension ≥ 2. Thus

any divisorial components of Mg \U ss,m
g,n are F -exceptional divisors. Similarly,

F−1 has no exceptional divisors. These would give rise to divisors in the

complement to V ss,m
g,n in the semistable locus.

We now analyze F ∗Lm in the rational Picard group of Mg. (Since Mg

has finite quotient singularities, its Weil divisors are all Q-Cartier.) If Lam is

very ample on the GIT quotient, then F ∗Lam induces F ; i.e., F ∗Lam has no

fixed components and is generated by global sections over U ss,m
g,n . Now F ∗Lm

is proportional to r(n)λmn − r(mn)mλn over U ss,m
g,n , and the formula (3.1)

follows. �

4. Properties of c-semistable and h-semistable curves

4.1. Basic properties of tacnodal curves. Let C be a curve with a tacn-

ode r, i.e., a singularity with two smooth branches intersecting with simple

tangency. Its local equation is y2 = x4 if the characteristic is not equal to two.

Let ν : D → C be the partial normalization of C at r and ν−1(r) = {p, q} ⊂ D
be the conductor. The descent data from (D, p, q) to (C, r) consists of a choice

of isomorphism

ι : TpD
∼ // TqD

identifying the tangent spaces to the branches. Functions on C pull back to

functions f on D satisfying f(p) = f(q) and ι∨(dfq) = dfp, where ι∨ is the dual

isomorphism.

Varying the descent data gives a one-parameter family of tacnodal curves.

Proposition 4.1. Let D be a reduced curve, and let p, q ∈ D be dis-

tinct smooth points with local parameters σp and σq . Each invertible linear

transformation TpD → TqD can be expressed as

ι(t) :
∂

∂σp

� // t
∂

∂σq
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for some t 6= 0; let Gm ' Isom(TpD,TqD) denote the corresponding identi-

fication. Then there exist a family C → Gm, a section r : Gm → C, and a

morphism

D ×Gm
ν //

$$

C

~~
Gm

such that

(1) ν restricts to an isomorphism

D \ {p, q} ×Gm
∼ // C \ r;

(2) for each t ∈ Gm, rt ∈ Ct is a tacnode and νt its partial normalization ;

(3) the descent data from (D, p, q) to (Ct, rt) is given by ι(t).

Every tacnodal curve normalized by (D, p, q) occurs as a fiber of C → Gm.

If D is projective of genus g − 2, then each Ct has genus g.

We sketch the construction of C: ι(t) tautologically yields an identification

over Gm,

(4.1) ι : Tp×Gm(D ×Gm)/Gm
∼ // Tq×Gm(D ×Gm)/Gm,

which is the descent data fromD×Gm to C. Fiber-by-fiber, we get the universal

family of tacnodal curves normalized by (D, p, q).

We will extend C → Gm to a family of tacnodal curves C′ → P1. First,

observe that the graph construction gives an open embedding

Gm ' Isom(TpD,TqD) ⊂ P(TpD ⊕ TqD) ' P1,

where t = 0 corresponds to [1, 0] and t =∞ corresponds to [0, 1]. However, the

identification (4.1) fails to extend over all of P1; indeed, it is not even defined

at p× [0, 1] and its inverse is not defined at q × [1, 0]. We therefore blow up

D′ = Blp×[0,1],q×[1,0](D × P1)

and consider the sections

p, q : P1 → D′

extending p×Gm and q ×Gm. Now (4.1) extends to an identification

ι′ : TpD′/P1 ∼ // TqD′/P1.
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Proposition 4.2. Retain the notation of Proposition 4.1. There exists

an extension

C

��

� � // C′

��
Isom(TpD,TqD)

' // Gm
� � // P1 ' // P(TpD ⊕ TqD),

where C′ → P1 denotes the family of curves obtained from D′ and ι′ by descent,

r′ : P1 → C′ the tacnodal section, and ν ′ : D′ → C′ the resulting morphism. The

new fiber (C′0, r′(0)) (resp. (C′∞, r′(∞))) is normalized by (D′0 = D∪qP1, p, q(0))

(resp. (D′∞ = D ∪p P1, p(∞), q).)

We say that the tacnodes in the family {C′t, rt}t∈P1 are compatible and that

two curves are compatible if one can be obtained from the other by replacing

some tacnodes by compatible tacnodes.

4.2. Embedding c-semistable curves.

Proposition 4.3. If g ≥ 3 and C is a c-semistable curve of genus g

over k, then H1(C,ω⊗nC ) = 0 and ω⊗nC is very ample for n ≥ 2.

Remark 4.4. For the rest of this paper, when we refer to the Chow or

Hilbert point of a c-semistable curve C, it is with respect to its bicanonical

embedding in P(Γ(C,ω⊗2
C )∗).

Proof. Our argument follows [DM69, Th. 1.2]. By Serre Duality, we see

that H1(C,ω⊗nC ) vanishes if H0(C,ω⊗1−n
C ) vanishes. The restriction of ω⊗1−n

C

to each irreducible component D ⊂ C has negative degree because ωC is ample.

It follows that Γ(D,ω⊗1−n
C |D) = 0, hence Γ(C,ω⊗1−n

C ) = 0.

To show that ω⊗nC is very ample for n ≥ 2, it suffices to prove for all

x, y ∈ C that

(4.2) Hom(mxmy, ω
⊗(−n)
C ) = 0, n ≥ 1.

Let π : C ′ → C denote the partial normalization of any singularities at x and y.

When x is singular, a local computation gives

Hom(mx,L) ' Γ(C ′, π∗L).

If x is a cusp (resp. a node or tacnode) and x′ ∈ C ′ its preimage (resp. x1, x2 ∈
C ′ the preimage points), then

Hom(m2
x,L) ' Γ(C ′, π∗L(2x′)) (resp. Γ(C ′, π∗L(x1 + x2))).

Thus in each case we can express Hom(mxmy, ω
−n
C ) = Γ(C ′,M) for a suitable

invertible sheaf M on C ′. Moreover, we have an inclusion π∗ω−nC ↪→M with

cokernel Q supported in π−1{x, y} of length `(Q) ≤ 2. For instance, if both
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x and y are smooth, then M = ω−nC (x + y); if both x and y are singular and

x 6= y, then M = π∗ω−nC .

Suppose that for each irreducible component D′ ⊂ C ′, degM|D′ is neg-

ative. Then Γ(C ′,M) = 0 and the desired vanishing follows. We therefore

classify situations where

degM|D′ = −n degπ∗ωC |D′ + `(Q|D′) ≥ 0,

which divide into the following cases:

(a) degπ∗ωC |D′ = 1, n = 1, `(Q|D′) = 1;

(b) degπ∗ωC |D′ = 1, n = 1, 2, `(Q|D′) = 2;

(c) degπ∗ωC |D′ = 2, n = 1, `(Q|D′) = 2.

We write D = π(D′) ⊂ C.

We enumerate the various possibilities. We use the assumption that C is

c-semistable and thus has no elliptic tails. In cases (a) and (b), D is necessarily

isomorphic to P1 and meets the rest of C in either three nodes or in one node

and one tacnode. After reordering x and y, we have the following subcases:

(a1) x = y ∈ D a node or tacnode of C;

(a2) x ∈ D a node or tacnode of C and y ∈ D a smooth point of C;

(a3) x ∈ D a smooth point of C and y 6∈ D;

(b1) x, y ∈ D smooth points of C.

In case (c), D may have arithmetic genus zero or one:

(c1) D ' P1 with x, y ∈ D smooth points of C;

(c2) D of arithmetic genus one with x, y ∈ D smooth points of C;

(c3) D of arithmetic genus one, x = y a node or cusp of D, and D′ ' P1.

In subcase (c1), D meets the rest of C in either four nodes, or in two nodes

and one tacnode, or in two tacnodes. In subcases (c2) and (c3), D meets the

rest of C in two nodes. Except in case (c3), π : D′ → D is an isomorphism.

For subcases (b1), (c1), and (c2), π is an isomorphism. Moreover, Q

is supported along D so M has negative degree along any other irreducible

components of C. There are other components because the genus of C is at

least three. Thus elements of Γ(C,M) restrict to elements of Γ(D,M|D) that

vanish at the points where D meets the other components, i.e., in at least two

points. Since degM|D = 0 or 1, we conclude that Γ(C,M) = 0.

For subcase (c3), π is not an isomorphism but Q is still supported along

D′. As before, M has negative degree along other irreducible components of

C ′, and elements of Γ(C ′,M) restrict to elements of Γ(D′,M|D′) vanishing

where D′ meets the other components. There are at least two such points but

degM|D′ = 0, 1, so we conclude that Γ(C ′,M) = 0.

In case (a), we have degM|D = 0. Subcases (a1) and (a2) are similar

to (b1) and (c1): Q is supported along D′ so elements in Γ(C ′,M) restrict
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to elements of Γ(D′,M|D′) vanishing at the points where D′ meets the other

components. There is at least one such point, e.g., the singularity not lying

over x; hence, Γ(C ′,M) = 0.

Subcase (a3) is more delicate. If D′ is the unique component such that

deg (M|D′) ≥ 0, then the arguments of the previous cases still apply. How-

ever, the support of Q might not be confined to a single component. We

suppose there are two components, D′1 and D′2, as described in (a3), such that

deg (M|D′i) ≥ 0. Since the genus of C is > 2, C cannot just be the union

of D′1 and D′2; there is at least one additional component meeting each D′i at

some point zi, and the restriction ofM to this component has negative degree.

Thus elements of Γ(C ′,M) restrict to elements of Γ(D′i,M|D′i) vanishing at

zi, which are necessarily zero. �

Corollary 4.5. Let C ⊂ P3g−4 be a c-semistable bicanonical curve.

• OC is 2-regular.

• The Hilbert scheme is smooth at [C].

• Let p1, . . . , pn denote the singularities of C and Def(C, pi), i = 1, . . . , n

denote their versal deformation spaces. Then there exists a neighbor-

hood U of [C] in the Hilbert scheme such that

U →
∏
i

Def(C, pi)

is smooth.

Proof. Proposition 4.3 yields H1(C,OC(1)) = H1(C,ω⊗2
C ) = 0, which

gives the regularity assertion. This vanishing also implies [Kol96, I.6.10.1]

H1(C,Hom(IC/I
2
C ,OC)) = 0;

since the singularities of C are local complete intersections, we have

Ext1(IC/I
2
C ,OC) = H1(C,Hom(IC/I

2
C ,OC)) = 0.

Thus the Hilbert scheme is unobstructed at [C] (see [Kol96, I.2.14.2]). The

assertion about the map onto the versal deformation spaces is [Kol96, I.6.10.4].

�

5. Unstable bicanonical curves

In this section, we show that if a curve is not c-semistable, then it has

unstable Chow point.

Proposition 5.1. If Ch(C)∈Chowg,2 is GIT semistable, then C⊂P3g−4

is c-semistable.

We prove this by finding one-parameter subgroups (1-ps) destabilizing

curves that are not c-semistable. Many statements in this section are fairly
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direct generalizations of results in [Mum77] and [Sch91] to which we point

the readers for the definition of the multiplicity eρ(C) and its basic properties

(especially [Sch91, Lemmas 1.2–1.4]).

5.1. Basin of attraction.

Definition 5.2. Let X be a variety on which Gm acts via ρ : Gm → Aut(X)

with fixed points Xρ. For each x? ∈ Xρ, the basin of attraction is defined

Aρ(x
?) :=

ß
x ∈ X | lim

t→0
ρ(t).x = x?

™
.

The importance of the basin of attraction for the analysis of semistable

points is clear from the following lemma, which says that as far as stability is

concerned, the points in a basin of attraction are all equivalent if the attracting

point is strictly semistable with respect to the 1-ps. Its proof is immediate from

the definition of semistability and [MFK94, Prop. 2.3].

Lemma 5.3. Suppose that G is a reductive linear algebraic group acting on

a projective variety X and L is a G-linearized ample line bundle. Let x ∈ X ,

and suppose x ∈ Aρ(x?) for some x? ∈ X and a 1-ps ρ. If µL(x, ρ) = 0, then x?

is semistable with respect to L if and only if x is semistable with respect to L.

We shall use Lemma 5.3 to analyze the stability of Hilbert points of bi-

canonically embedded curves, and the Bia lynicki-Birula decomposition [BB73,

Th. 4.3] can be used to effectively compute the basin of attraction of Hilbert

points. Indeed, assuming that the Hilbert scheme is smooth at the Hilbert

point [C] of C (this holds for the curves that we care about; see Corollary 4.5),

the basic properties of the Bia lynicki-Birula decomposition imply that we only

need to find the nonnegative weight space of the tangent space at [C]. Luna’s

étale slice theorem then allows us to étale locally identify the tangent space

with the space of the first order deformations. See [AH12, §5.1] for more de-

tails.

5.2. Elliptic subcurves meeting the rest of the curve in one point. Let C

be a Deligne-Mumford stable curve with an elliptic tail E ⊂ C. Then ω⊗2
C

fails to be very ample along E, and thus C does not admit a bicanonical

embedding. In particular, due to Proposition 5.9 in the ensuing section, we

know that the bicanonical image of C does not arise in GIT quotients of the

Chow variety/Hilbert scheme of bicanonical curves.

Here, we focus on curves with an elliptic tacnodal tail, i.e., an elliptic

subcurve meeting the rest of the curve in a tacnode.

Proposition 5.4. Let C = E∪pR∪qD be a bicanonical curve consisting

of a rational curve E with one cusp, a rational curve R and a genus g−2 curve

D such that R meets E in a tacnode p and D in a node q (Figure 7). Then
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E R D

p
q

Figure 7. Degenerate elliptic tacnodal tail.

C is Chow unstable with respect to a one-parameter subgroup coming from its

automorphism group.

Proof. Restricting ω⊗2
C , we get

ω⊗2
C |E ' OE(4p), ω⊗2

C |R ' OR(2), ω⊗2
C |D ' ω

⊗2
D (2q).

Since h0(ω⊗2
C |D) = 3(g−2)−3+2 = 3g−7, we can choose coordinates so that

E ∪p R ⊂ {x5 = x6 = · · · = x3g−4 = 0}

and D ⊂ {x0 = x1 = x2 = x3 = 0}. E and R can be parametrized by

[s, t] 7→ [s4, s2t2, st3, t4, 0, . . . , 0]

and

[u, v] 7→ [0, 0, uv, u2, v2, 0, . . . , 0].

The cusp is at [1, 0, . . . , 0], p = [0, 0, 0, 1, 0, . . . , 0], and q = [0, 0, 0, 0, 1, 0, . . . , 0].

Let ρ be the 1-ps with weight (0, 2, 3, 4, 2, . . . , 2). We have

eρ(C) ≥ eρ(E)p + eρ(R)p + eρ(R)q + eρ(D).

On E (and R), we have vp(xi) + ri ≥ 4 for all i, where vp is the valuation of

OE,p (and OR,p respectively) and ri are weights of ρ. By [Sch91, Lemma 1.4],

eρ(E)p ≥ 42 and eρ(R)p ≥ 42. On R, vq(xi) + ri ≥ 2 and eρ(R)q ≥ 22. Since ρ

acts trivially on D with weight 2, we use [Sch91, Lemma 1.2] and obtain

eρ(D) = 2 · 2 · degD = 4(4g − 10).

Combining them all, we obtain

eρ(C) ≥ 36 + 16g − 40 > 2 · 4

3

3g−4∑
i=0

ri = 16g − 40

3
. �

Corollary 5.5. Let C ′ = E′ ∪p D be a bicanonical curve consisting of

a genus one curve E′ and a genus g − 2 curve D meeting in one tacnode p.

Then C ′ is Chow unstable.

Proof. In view of Proposition 5.4, it suffices to show that C ′ is in the basin

of attraction of E ∪p R ∪q D with respect to ρ (the 1-ps used in the proof of

Proposition 5.4). We retain the coordinates from the proof of Proposition 5.4.
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Consider the induced action on the local versal deformation space of the cusp

[1, 0, . . . , 0] that is given by

y2 = x3 + ax+ b,

where y = x2/x0 and x = x1/x0. The Gm action is given by

t.(a, b) = (t4a, t6b),

and the basin of attraction contains arbitrary smoothing of the cusp. On the

other hand, the local versal deformation space of the tacnode p is given by

y2 = x4 + ax2 + bx+ c,

where x = x2/x3 so that Gm acts on (a, b, c) with weight (−2,−3,−4) and the

basin of attraction does not contain any smoothings of the tacnode. At the

node q = [0, 0, 0, 0, 1, 0, . . . , 0], the local versal deformation space is xy = c0

where x may be taken to be x2/x4 and Gm acts with weight +1 on the branch

of R and trivially on D. Thus the induced action on the deformation space

has weight +1, and the basin of attraction contains arbitrary smoothing of the

node. �

5.3. Badly singular curves are Chow unstable. We first note that a Chow

semistable bicanonical curve C cannot have a triple point in view of Proposition

3.1 of [Mum77]. We need to show that among the double points, only nodes,

ordinary cusps, and tacnodes are allowed. Throughout this section, a curve C

is assumed to be bicanonically embedded, and since we are dealing with the

bicanonical model C ⊂ P(H0(C,ω⊗2
C )∗), choosing homogeneous coordinates

means choosing a basis for the bicanonical series.

Lemma 5.6. If C has a nonordinary cusp, then it is Chow unstable.

Proof. Suppose that C has a nonordinary cusp at p. Let ν : ‹C → C be

the normalization, p′ = ν−1(p), and assume p = [1, 0, . . . , 0]. Recall that the

singularity at p is determined by the vanishing sequence
Ä
ai(ν

∗|ω⊗2
C |, p′)

äN+1

i=1
,

which is the strictly increasing sequence determined by the condition

{ai(ν∗|ω⊗2
C |, P ) | i = 1, 2, . . . , N + 1} = {ord p′(σ) | σ 6= 0 ∈ ν∗|ω⊗2

C |}.

C has a cusp at p if and only if the vanishing sequence (ai(ν
∗|ω⊗2

C |, p′)) is of

the form (0, 2,≥ 3), and it has an ordinary cusp if it is of the form (0, 2, 3,≥ 4).

Hence if C has a nonordinary cusp at p, then we can choose homogeneous

coordinates x0, . . . , xN such that ord p′x0 = 0, ord p′x1 = 2, ord p′x2 = 4, and

ord p′xi ≥ 5, i = 3, 4, . . . , N. Let ρ : Gm → GLN+1(k) be the one-parameter

subgroup such that ρ(t).xi = trixi, where the weights are

(r0, r1, . . . , rN ) = (5, 3, 1, 0, . . . , 0).
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Then ord p′xi + ri ≥ 5 for all i, and it follows from [Sch91, Lemma 1.4] that

eρ(C) = eρ(‹C) ≥ eρ(‹C)p′ ≥ 52 = 25,

while 2d
N+1

∑
ri = 2·4(g−1)

3(g−1) · 9 = 24. The assertion now follows from [Mum77,

Th. 2.9]. �

Lemma 5.7. Suppose C has a singularity at p such that“OC,p ' k[x, y]/(y2 − x2s), s ≥ 3.

Then C is Chow unstable.

Proof. Let ν : ‹C → C be the normalization ν−1(p) = {p1, p2}. Since the

two branches of C agree to order s at p, we may choose coordinates x0, . . . , xN
such that

(ord pix0, . . . , ord pixN ) = (0, 1, 2,≥ 3), i = 1, 2.

Let ρ be the one-parameter subgroup of GLN+1(k) with weights (r0, . . . , rN )

= (3, 2, 1, 0, . . . , 0). Then we have

ord pixj + rj ≥ 3, i = 1, 2 and j = 0, 1, . . . , N,

and by [Sch91, Lemma 1.4],

eρ(C) = eρ(‹C) ≥ eρ(‹C)p1 + eρ(‹C)p2 ≥ 2 · 32 = 18,

which is strictly greater than 2d
N+1

∑
ri = 2·4(g−1)

3(g−1) · 6 = 16. �

Lemma 5.8. If C has a multiple component, then C is Chow unstable.

Proof. Let C1 be a component of C with multiplicity n ≥ 2. Choose a

smooth nonflex point p ∈ Cred
1 such that p does not lie in any other component.

Since p is smooth on Cred
1 , we may choose coordinates x0, . . . , xN such that

(ord px0, . . . , ord pxN ) = (0, 1, 2,≥ 3).

Let ρ be the one-parameter subgroup of GLN+1(k) with weights (r0, . . . , rN ) =

(3, 2, 1, . . . , 0). Then we have ord pxi + ri ≥ 3. This yields the inequality

eρ(C) ≥ n · eρ(C1) ≥ 2 · 32 = 18

whereas 2d
N+1

∑
ri = 8

3 · 6 = 16. �

5.4. Polarizations on semistable limits of bicanonical curves. We prove

that the semistable limit of a one-parameter family of smooth bicanonical

curves is bicanonical.

Proposition 5.9. Let C → Spec k[[t]] be a family of Chow semistable

curves of genus g such that the generic fibre Cη is smooth. If Φ : C → P3g−4
k[[t]] is

an embedding such that Φ∗η(O(1)) = ω⊗2
Cη/k[[t]], then OC(1) = ω⊗2

C/k[[t]].
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By [Mum77, 4.15], nonsingular bicanonical curves are Chow stable. Hence

any Chow semistable curve is a limit of nonsingular bicanonical curves and

Proposition 5.9 implies that if C is not bicanonical, then Ch(C) 6∈ Chowss
g,2.

In particular, a Chow semistable curve does not have a smooth rational com-

ponent meeting the rest of the curve in < 3 points. Mumford proved the

statement for the n-canonical curves for n ≥ 5, and his argument can be easily

modified to suit our purpose. It is an easy consequence of (ii) of the following

proposition, which, in Mumford’s words, says that the degrees of the compo-

nents of C are roughly in proportion to their natural degrees.

Proposition 5.10 (Proposition 5.5, [Mum77]). Let C ⊂ P3g−4 be a con-

nected curve of genus g and degree 4g − 4. Then

(i) C is embedded by a nonspecial complete linear system.

(ii) Let C = C1 ∪ C2 be a decomposition of C into two sets of components

such that W = C1∩C2 and w = #W (counted with multiplicity). Then

|degC1 − 2 deg C1ωC | ≤
w

2
.

Mumford’s argument goes through in the bicanonical case except for the

proof of H1(C1,OC1(1)) = 0. If H1(C1,OC1(1)) 6= 0, then by Clifford’s theo-

rem, we have

h0(C1,OC1(1)) ≤ deg (C1)

2
+ 1

and the Chow semistability of C forces

w + 2 degC1 ≤
2 degC

3g − 3
h0(C1,OC1(1)).

Combining the two, we obtain

degC1 ≤ 4− 3

2
w.

If w 6= 0, then degC1 ≤ 2; hence, C1 is rational and H1(C1,OC1(1)) = 0. If

w = 0, then degC1 ≤ 4, which is absurd since C1 = C and degC1 = 4g − 4.

We need to justify our use of Clifford’s theorem here, as Chow semistable

bicanonical curves have cusps and tacnodes. We shall sketch the proof of

Gieseker and Morrison [Gie82] and highlight the places where modifications

are required to accommodate the worse singularities. ([Gie82] assumes that C

has only nodes.)

Theorem 5.11 (Clifford’s Theorem). Let C ⊂ PN be a reduced curve with

nodes, cusps, and tacnodes. Let L be a line bundle generated by sections. If

H1(C,L) 6= 0, then there is a subcurve C1 ⊂ C such that

h0(C,L) ≤ deg C1L

2
+ 1.
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Sketch of proof. Suppose that H1(C,L) 6= 0 and ϕ 6= 0 ∈ Hom(L, ωC).

Let C1 be the union of components where ϕ does not vanish entirely, and let

p1, . . . , pw be the intersection points of C1 and C − C1. Assume that pi’s are

ordered so that p1, . . . , p` are tacnodes. Then we have

ωC |C1

Ä
−2Σ`

i=1pi − Σw
i=`+1pi

ä
= ωC1 .

We claim that ϕ restricts to give a homomorphism from LC1 to ωC1 . Let pi
be a tacnode and let D 6⊂ C1 be the irreducible component containing pi.

Since ϕ vanishes entirely on D, ϕ must vanish to order ≥ 2 at pi on C1.

Likewise, ϕ must vanish at each node. It follows that ϕ|C1 factors through

ωC |C1(−2
∑`
i=1 pi −

∑w
i=`+1 pi). Let s1, . . . , sr be a basis of Hom(LC1 , ωC1)

such that s1 = ϕ, and let t1, . . . , tp be a basis for H0(C,L) such that t1 does

not vanish at the support of s1 and at any singular points. It is shown in

[Gie82] that
[s1, t1], [s1, t2], [s1, t3], . . . , [s1, tp],

[s2, t1], [s3, t1], . . . , [sr, t1]

are linearly independent sections of H0(C1, ωC1), which implies that p+r−1 ≤
pa(C1) + 1. Combining it with the Riemann-Roch gives the desired inequality.

�

5.5. Hilbert unstable curves. Let C be a bicanonical curve. By [Mor80,

Cor. 3.5], C is Chow semistable if it is Hilbert semistable. Note that by defi-

nition, if C does not admit a tacnodal elliptic chain, then C is c-semistable if

and only if it is h-semistable. Combining this with Proposition 5.1, we obtain

Proposition 5.12. If a bicanonical curve is Hilbert semistable and does

not admit a tacnodal elliptic chain, then it is h-semistable.

We shall have completed the implication

Hilbert semistable⇒ h-semistable

once we prove that a Hilbert semistable curve does not admit a tacnodal elliptic

chain. We accomplish this in Proposition 8.4 and Corollary 8.9.

6. Classification of curves with automorphisms

In this section, we classify c-semistable curves with infinite automor-

phisms.

6.1. Rosaries.

Definition 6.1. An open rosary2 Rr of length r is a two-pointed connected

curve (Rr, p, q) such that

2This name was suggested to us by Jamie Song.
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• Rr = L1 ∪a1 L2 ∪a2 · · · ∪ar−1 Lr where Li is a smooth rational curve,

i = 1, . . . , r;

• Li and Li+1 meet each other in a single tacnode ai, for i = 1, . . . , r−1;

• Li ∩ Lj = ∅ if |i− j| > 1;

• p ∈ L1 and q ∈ Lr are smooth points.

D D
0 0 0

p q

a1 a2

Figure 8. Open rosary of length three.

Remark 6.2. An open rosary of length r has arithmetic genus r− 1. Note

that an open rosary of length r = 2r′ is naturally an open tacnodal elliptic

chain of length r′.

Definition 6.3. We say that a curve C admits an open rosary or length

r if there is a two-pointed open rosary (Rr, p, q) and a morphism ι : Rr → C

such that

• ι is an isomorphism onto its image over Rr \ {p, q}.
• ι(p), ι(q) are nodes of C; we allow the case ι(p) = ι(q).

A closed rosary C is a curve admitting ι : C ′ → C as above with the second

condition replaced by

• ι(p) = ι(q) at a tacnode of C.

0 0

0 0

0

Figure 9. Closed rosary of genus six.

Remark 6.4. If C admits an open rosary of length r ≥ 2, then C admits

a weak tacnodal elliptic chain. If r is even, then C admits a tacnodal elliptic

chain. Thus a closed rosary of even length is also a closed weak tacnodal elliptic

chain.
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Proposition 6.5. Consider the closed rosaries of genus r + 1. If the

genus is even, then there is a unique closed rosary C (of the given genus) and

the automorphism group Aut(C) is finite. If the genus is odd, then the closed

rosaries depend on one modulus and the connected component of the identity

Aut(C)◦ is isomorphic to Gm.

There is a unique open rosary (R, p, q) of length r. If Aut(R, p, q) denotes

the automorphisms fixing p and q, then

Aut(R, p, q)◦ ' Gm.

It acts on tangent spaces of the endpoints with weights satisfying

wtGm(TpR) = (−1)rwtGm(TqR).

Proof. Let C be a closed r-rosary obtained by gluing r smooth rational

curves {[si, ti]} so that

∂

∂(sr/tr)
= αr

∂

∂(t1/s1)
;

∂

∂(si/ti)
= αi

∂

∂(ti+1/si+1)
, i = 1, 2, . . . , r − 1.

Let C ′ be another such rosary with the gluing data

∂

∂(s′r/t
′
r)

= α′r
∂

∂(t′1/s
′
1)

;
∂

∂(s′i/t
′
i)

= α′i
∂

∂(t′i+1/s
′
i+1)

, i = 1, 2, . . . , r − 1.

Consider the morphism f : ‹C → ‹C ′ between the normalizations of C and

C ′ given by [si, ti] 7→ [βis
′
i, t
′
i]. For f to descend to an isomorphism from C to

C ′, the following is necessary and sufficient:

df

Ç
∂

∂(si/ti)

å
=

∂

βi∂(s′i/t
′
i)

=
α′i
βi

∂

∂(t′i+1/s
′
i+1)

= αiβi+1
∂

∂(t′i+1/s
′
i+1)

= df

Ç
αi

∂

∂(ti+1/si+1)

å
.

This gives rise to βiβi+1 = α′i/αi and βrβ1 = α′r/αr. Solving for βi, we get

βi =


α′iαi+1α

′
i+2 · · ·αr

αiα′i+1αi+2 · · ·α′r
β1 if r − i is odd,

α′iαi+1α
′
i+2 · · ·α′r

αiα′i+1αi+2 · · ·αr
β−1

1 if r − i is even

When r is odd, there is no constraint and all r-rosaries are isomorphic.

When r = 2k,

(β1β2)(β3β4) · · · (β2k−1β2k) = (β2β3)(β4β5) · · · (β2kβ1)

forces the condition

(6.1)
α′1α

′
3 · · ·α′2k−1

α1α3 · · ·α2k−1
=
α′2α

′
4 · · ·α′2k

α2α4 · · ·α2k
.
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This means that the 2k-rosaries are parametrized by

α1α3 · · ·α2k−1

α2α4 · · ·α2k
∈ Gm.

To describe the automorphisms we take C ′ = C. When r is odd we get

βi = β−1
i for each i, which implies that Aut(C)◦ is trivial. When r = 2k we

get a unique solution

β1 = β−1
2 = β3 = . . . = β−1

2k ,

and thus Aut(C)◦ ' Gm.

The open rosary case entails exactly the same analysis, except that we

omit the gluing datum
∂

∂(sr/tr)
= αr

∂

∂(t1/s1)

associated with the end points. Thus we get a Gm-action regardless of the

parity of r. Our assertion on the weights at the distinguished points p and q

follows from the computation above of the action on tangent spaces. �

Definition 6.6. By breaking the i-th bead of a rosary (open or closed), we

mean replacing Li with a union L′i ∪ L′′i of smooth rational curves meeting in

a node such that L′i meets Li−1 in a tacnode ai−1 and L′′i meets Li+1 in a

tacnode ai+1 (Figure 10).

L1 L2 L3 L1 L′2 L′′2 L3

Figure 10. Breaking a bead of a rosary.

0 0

0 0

0 0

Figure 11. A closed rosary of genus six with one broken bead.
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6.2. Classification of automorphisms.

Proposition 6.7. A c-semistable curve C of genus ≥ 4 has infinite au-

tomorphisms if and only if

(1) C admits an open rosary of length ≥ 2, or

(2) C is a closed rosary of odd genus (possibly with broken beads).

Proof. We have already seen in Proposition 6.5 that closed rosaries of odd

genus have infinite automorphisms.

Let C be a c-semistable curve of genus g ≥ 4 that is not a closed rosary.

For C to have infinitely many automorphisms, it must have a smooth rational

component, say C1. To satisfy the stability condition and still give rise to

infinite automorphisms, C1 has to meet the rest of the curve in one node and

a tacnode, or in two tacnodes. We examine each case below.

(1) C1 meets the rest in one node a0 and in a tacnode a1. For the auto-

morphisms of C1 to extend to automorphisms of C, the irreducible component

C2(6= C1) containing a1 must be a smooth rational component; this follows

easily from that an automorphism of C lifts to an automorphism of its nor-

malization. Also, C2 has to meet the rest of the curve in one point a2 other

than a1 since otherwise C1 ∪ C2 would be an elliptic tail (or a1 = a0 and C is

of genus two).

(2) C1 meets the rest in two tacnodes a0 and a1. For the automorphisms

to extend to C, the components C0 6= C1 containing a0 and C2 6= C1 containing

a1 must be smooth rational curves. Hence C contains C0 ∪C1 ∪C2, which is a

rosary of length three. Moreover, C0 and C2 do not intersect. If they do meet,

say at a2, then either C = C0 ∪ C1 ∪ C2 and the genus of C is of genus three

(if a2 is a node) or C is a closed rosary if a2 is a tacnode.

Iterating, we eventually produce an open rosary ι : Rr → C of length

r ≥ 2 containing C1 as a bead. �

Corollary 6.8. An h-semistable curve C of genus ≥ 4 has infinite au-

tomorphisms if and only if

(1) C admits an open rosary of odd length ≥ 3, or

(2) C is a closed rosary of odd genus (possibly with broken beads).

Let C be a c-semistable curve and suppose D is a Deligne-Mumford sta-

bilization of C. In other words, there exists a smoothing of C

$ : C → T

such that D = limt→t0 Ct in the moduli space of stable curves. Here, a smooth-

ing is a flat proper morphism to a smooth curve with distinguished point (T, t0)

such that $−1(t0) = C and the generic fiber is smooth.
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Our classification result (Proposition 6.7) has the following immediate

consequence.

Corollary 6.9. Suppose C is a c-semistable curve with infinite auto-

morphism group. Then the Deligne-Mumford stabilization and the pseudo-

stabilization of C admit an elliptic bridge.

Indeed, C necessarily admits a tacnode, which means that its stabilization

contains a connected subcurve of genus one meeting the rest of the curve in

two points.

7. Interpreting the flip via GIT

We will eventually give a complete description of the semistable and stable

points of Chowg,2 and Hilbg,2. For our immediate purpose, the following partial

result will suffice.

Theorem 7.1. If C is c-stable, i.e., a pseudostable curve admitting no

elliptic bridges, then Ch(C) ∈ Chows
g,2. Thus the Hilbert point [C]m ∈ Hilbs,m

g,2

for m� 0.

Proof. The GIT-stable loci Chows
g,2 and Hilbs,m

g,2 ,m� 0, contain the non-

singular curves by [Mum77, 4.15]. Recall that Proposition 4.3 guarantees that

c-semistable curves admit bicanonical embeddings. In particular, this applies

to pseudostable curves without elliptic bridges.

Suppose that C is a singular pseudostable curve without elliptic bridges.

Assume that Ch(C) is not in Chows
g,2. If Ch(C) is strictly semistable, then

it is c-equivalent to a semistable curve C ′ with infinite automorphism group.

It follows that C is a pseudo-stabilization of C ′, and we get a contradiction

to Corollary 6.9. Suppose Ch(C) is unstable, and let C ′ denote a semistable

replacement. By uniqueness of the pseudo-stabilization, C ′ is not pseudostable

but has C as its pseudo-stabilization. It follows that C ′ has a tacnode. How-

ever, the pseudo-stabilization of such a curve necessarily contains an elliptic

bridge. �

With our current partial understanding of the GIT of bicanonical curves,

we are ready to prove Theorem 2.13. Our main task is to establish isomor-

phisms (2.5). Proposition 2.10 established the existence of a birational con-

traction morphism Ψ : M
ps
g → Mg(7/10). The first step here is to show that

M
cs
g and M

hs
g are birational contractions of Mg and small contractions of M

ps
g .

In particular, we may identify the divisor class groups of these GIT quotients

with the divisor class group of M
ps
g (which in turn is a subgroup of the divisor
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class group of Mg). Furthermore, we obtain

Γ(M
ps
g , n(KMps

g
+αδps)) ' Γ(M

hs
g , n(K

M
hs
g

+αδhs)) ' Γ(M
cs
g , n(KM

cs
g

+αδcs))

and Lemma 2.9 gives

Mg(7/10) ' Proj ⊕n≥0 Γ(n(KM
cs
g

+ 7/10δcs)),(7.1)

Mg(7/10− ε) ' Proj ⊕n≥0 Γ(n(K
M

hs
g

+ (7/10− ε)δhs)).

The second step is to compute the induced polarizations of M
cs
g and

M
hs
g in the divisor class group of M

ps
g . This will show that KM

cs
g

+ 7/10δcs

(resp. K
M

hs
g

+ (7/10− ε)δhs) is ample on M
cs
g (resp. M

hs
g ). Isomorphisms (2.5)

then follow from (7.1).

To realize our GIT quotients as contractions of Mg, we apply Theorem 3.1

in the bicanonical case. Consider the complement of the Deligne-Mumford sta-

ble curves V ss,∞
g,2 in the GIT-semistable locus Chowss

g,2; we must show this has

codimension ≥ 2. Since $(Hilbss,m
g,2 ) ⊂ Chowss

g,2 and $|Hilbs,m
g,2 is an isomor-

phism where $ denotes the cycle class map from the Hilbert scheme to the

Chow variety, the analogous statement for the Hilbert scheme follows immedi-

ately.

Proposition 5.1 implies that Chowss
g,2 \ V

ss,∞
g,2 parametrizes

• pseudostable curves that are not Deligne-Mumford stable, i.e., those

with cusps; and

• c-semistable curves with tacnodes.

The cuspidal pseudostable curves have codimension two in moduli; the tac-

nodal curves have codimension three. Indeed, a generic tacnodal curve of

genus g is determined by a two-pointed curve (C ′, p, q) of genus g − 2 and

an isomorphism TpC
′ ' TqC

′. We conclude there exist rational contractions

F cs : Mg 99KM
cs
g and F hs : Mg 99KM

hs
g .

It remains to show that we have small contractions Gcs : M
ps
g 99KM

cs
g and

Ghs : M
ps
g 99K M

hs
g . To achieve this, we must establish that ∆1 is the unique

exceptional divisor of F cs (resp. F hs). The exceptional locus of F cs (resp. F hs)

lies in the complement to the GIT-stable curves in the moduli space

Mg \ U s,∞g,2 (resp. Mg \ U s,m
g,2 ).

Chow stable points are asymptotically Hilbert stable (cf. [Mor80, Cor. 3.5]);

i.e., U s,∞g,2 ⊂ U
s,m
g,2 when m� 0. It suffices then to observe that ∆1 is the unique

divisorial component of Mg \ U s,∞g,2 , which is guaranteed by Theorem 7.1.
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Theorem 3.1 gives moving divisors on Mg inducing the contractions F cs

and F hs. Due to [Mum77, Th. 5.10], we have

r(2)λm2− r(2m)mλ2 = (m−1)(g−1)((20m−3)λ−2mδ) ∼
Å

10− 3

2m

ã
λ− δ;

this approaches 10λ− δ as m→∞. Thus, we have

(F hs)∗Lm ∼
Å

10− 3

2m

ã
λ− δ (mod δ1), m� 0

and

(F cs)∗L∞ ∼ 10λ− δ (mod δ1).

Using the identity KMg
= 13λ− 2δ, we obtain (for m� 0)

(F hs)∗Lm ∼ KMg
+ (7/10− ε(m)))δ (mod δ1), ε(m) = 39/(200m− 30)

and

(F cs)∗L∞ ∼ KMg
+ 7/10δ (mod δ1).

It follows then that

(Ghs)∗Lm ∼ KMps
g

+ (7/10− ε(m)))δps

and

(Gcs)∗L∞ ∼ KMps
g

+ 7/10δps.

The proof of Theorem 2.13 will be complete if we can show that Ψ+ is the

flip of Ψ. More precisely, for small positive ε ∈ Q, Ψ+ is a small modification

of M
ps
g with K

M
hs
g

+ (7/10− ε)δhs ample. Since M
cs
g and M

hs
g are both small

contractions of M
ps
g , Ψ+ is small as well. Furthermore, the polarization we

exhibited on M
hs
g gives the desired positivity, which completes the proof of

Theorem 2.13.

8. Stability under one-parameter subgroups

In this section, we analyze whether c-semistable curves are GIT-semistable

with respect to the one-parameter subgroups of their automorphism group. We

shall also use deformation theory to classify the curves that belong to basins

of attraction of such curves.

Our analysis will focus primarily on the Hilbert points, and our main tool

for computing their Hilbert-Mumford indices is Proposition 2.15. Note that

[HHL10, Cor. 4] shows that we can recover the sign of the Hilbert-Mumford

index of the Chow point from the indices of the Hilbert points. Also, in view

of the cycle map $ : Hilbg,2 → Chowg,2, if [C]m ∈ Aρ([C?]m) for m� 0, then

Ch(C) ∈ Aρ(Ch(C?)).
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8.1. Stability analysis : Open rosaries.

Proposition 8.1. Let C = D∪a0,ar+1 R be a c-semistable curve of genus

g consisting of a genus g − r − 1 curve D meeting the genus r curve R in two

nodes a0 and ar+1 where

R := L1 ∪a1 L2 ∪a2 · · · ∪ar Lr+1

is a rosary of length r+ 1, and D ∩L1 = {a0} and D ∩Lr+1 = {ar+1}. There

is a one-parameter subgroup ρ coming from the automorphisms of the rosary

R such that for all m ≥ 2,

(1) µ([C]m, ρ) = 0 if r is even ;

(2) µ([C]m, ρ) = −m+ 1 if r is odd.

In particular, C is Hilbert unstable if R is of even length and strictly semistable

with respect to ρ otherwise.

An application of [HHL10, Cor. 4] then yields

Corollary 8.2. Let C and ρ be as in Proposition 8.1. Then C is Chow

strictly semistable with respect to ρ and ρ−1.

Proof of Proposition 8.1. Upon restricting ωC to D and each component

of L, we get

• ωC |D ' ωD(a0 + ar+1);

• ωC |L1 ' ωL1(a0 + 2a1);

• ωC |Lr+1 ' ωLr+1(ar+1 + 2ar);

• ωC |Li ' ωLi(2ai−1 + 2ai), 2 ≤ i ≤ r.
Hence we may choose coordinates x0, . . . , xN , N = 3g − 4 such that

(1) L1 is parametrized by

[s1, t1] 7→ [s2
1, s1t1, t

2
1, 0, . . . , 0].

(2) Lr+1 is parametrized by

[sr+1, tr+1] 7→ [0, . . . , 0︸ ︷︷ ︸
3r−2

, sr+1tr+1, s
2
r+1, t

2
r+1, 0, . . . , 0].

(3) For 2 ≤ j ≤ r, Lj is parametrized by

[sj , tj ] 7→ [0, . . . , 0︸ ︷︷ ︸
3j−5

, s3
j tj , s

4
j , s

2
j t

2
j , sjt

3
j , t

4
j , 0, . . . , 0].

(4) D is contained in the linear subspace

x1 = x2 = · · · = x3r−1 = 0,

and a0 = [1, 0, . . . , 0] and ar+1 = [0, . . . , 0︸ ︷︷ ︸
3r

, 1, 0, . . . , 0].
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From the parametrization, we obtain a set of generators for the ideal of L:

x2
1 − x0x2 − x2x3, x0x3, x0x4, . . . , x0x3r,(8.1)

xixi+5, xixi+6, . . . , xix3r, i = 1, 2, . . . , 3r − 5,

and for j = 1, 2, . . . , r − 1,

x3j−1x3j+3, x3jx3j+3, x3jx3j+4, x
2
3j+1 − x3jx3j+2 − x3j+2x3j+3,(8.2)

x2
3j − x3j−1x3j+2, x3j−2x3j+1 − x3j−1x3j+2,

x3j−2x3j − x3j−1x3j+1, x3j−2x3j+2 − x3jx3j+1.

In Proposition 6.5 we showed that Gm acts on the open rosary via automor-

phisms. With respect to our coordinates, this is the one-parameter subgroup

ρ with weights
(2, 1, 0, 2, 3, 4, 2, 1, 0, . . . , 2, 3, 4, 2, 2, 2, . . . , 2︸ ︷︷ ︸

N−3r

) if r is even,

(2, 1, 0, 2, 3, 4, 2, 1, 0, . . . , 2, 1, 0, 2,
︷ ︸︸ ︷
2, 2, . . . , 2) if r is odd.

By considering the parametrization, it is easy to see that C is stable under the

action of ρ.

Now we shall enumerate the degree two monomials in the initial ideal of C.

From (8.1) and (8.2), we get the following monomials in x0, . . . , x3r:

x0x2, x0x3, x0x4, . . . , x0x3r,(8.3)

xixi+5, xixi+6, . . . , xix3r, i = 1, 2, . . . , 3r − 5,

x3j−1x3j+3, x3jx3j+3, x3jx3j+4, x3jx3j+2,

x3j−1x3j+2, x3j−2x3j+1, x3j−2x3j , x3j−2x3j+2, j = 1, 2, . . . , r − 1.

The weights of these (9r2 − 5r)/2 monomials sum up to give18r2 − 10r if r is even,

18r2 − 19r + 7 if r is odd.

The total weight
∑

i≤j, 0≤i,j≤3r

wtρ(xixj) of all degree two monomials in x0, . . . , x3r

is (3r + 2)(6r + 2) if r is even,

(3r + 2)(6r − 1) if r is odd.

Hence the degree two monomials in x0, . . . , x3r that are not in the initial ideal

contributes, to the total weight,

(8.4)

(3r + 2)(6r + 2)− (18r2 − 10r) = 28r + 4 if r is even,

(3r + 2)(6r − 1)− (18r2 − 19r + 7) = 28r − 9 if r is odd.
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The rest of the contribution comes from the monomials supported on the com-

ponent D. These are the degree two monomials in x0, x3r, x3r+1, . . . , xN that

vanish at a0 and ar+2. The number of such monomials is, by Riemann-Roch,

(8.5) h0(D,OD(2)(−a0 − ar+2)) = 7(g − r − 1)− 1.

Since wtρ(xi) = 2 for all i = 0, 3r, 3r + 1, . . . , N , these monomials contribute

28g − 28r− 32 to the sum. Combining (8.4) and (8.5), we find the sum of the

weights of the degree two monomials not in the initial ideal to be28g − 28 if r is even,

28g − 41 if r is odd.

On the other hand, the average weight is

2 · P (2)

N + 1

N∑
i=0

wtρ(xi) =

28g − 28 if r is even,

28g − 42 if r is odd.

Hence by Proposition 2.15, we find that

µ([C]2, ρ) =

0 if r is even,

−1 if r is odd.

We enumerate the degree three monomials in the same way: The degree

three monomials in x0, . . . , x3r that are in the initial ideal are the multiples of

(8.3) together with

(8.6) x3j−1x
2
3j+1, j = 1, 2, . . . , r − 1,

which come from the linear relation

x3j−1(x2
3j+1 − x3jx3j+2 − x3j+2x3j+3) + x3j(x

2
3j − x3j−1x3j+2),

which is in the ideal of C since x2
3j+1 − x3jx3j+2 − x3j+2x3j+3 and x2

3j −
x3j−1x3j+2 are in the ideal of C.

From this, we find that the degree three monomials in x0, . . . , x3r that are

not in the initial ideal contribute66r + 6 if r is even,

66r − 25 if r is odd.

The contribution from D is

6h0(D,OD(3)(−a0 − ar+2)) = 6(11g − 11r − 12) = 66g − 66r − 72.

Hence the grand total of the degree three monomials xa(1), . . . , xa(P (3)) not in

the initial ideal is
P (3)∑
j=1

wtρ(x
a(j)) =

66g − 66 if r is even,

66g − 97 if r is odd.
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On the other hand, the average weight is

3P (3)

N + 1

N∑
i=0

wtρ(xi) =

66g − 66 if r is even,

66g − 99 if r is odd.

Using Proposition 2.15, we compute

µ([C]3, ρ) =

0 if r is even,

−2 if r is odd.

[HHL10, Cor. 4] implies

µ([C]m, ρ) =

0 if r is even,

−m+ 1 if r is odd

for each m ≥ 2. �

8.2. Basin of attraction : Open rosaries. Let C and R be as in the previous

section. Let xi, yi be homogeneous coordinates on Li. We may assume that

a0 = [0, 1], ar+1 = [1, 0], ai =

[1, 0] =∞ on Li,

[0, 1] = 0 on Li+1.

Consider the Gm action associated to ρ. The action on R is given by

(t, [xi, yi]) 7→ [xi, t
(−1)i−1

yi]

on each Li. Hence it induces an action on the tangent space TaiLi given byÇ
t,

∂

∂(yi/xi)

å
7→ ∂

∂
Ä
t(−1)i−1yi/xi

ä = t(−1)i ∂

∂(yi/xi)
.

There is an induced Gm action on the Hilbert scheme and Hilbg,2. Corol-

lary 4.5 asserts that a neighborhood of [C] in the Hilbert scheme dominates

the product of the versal deformation spaces. These inherit a Gm action as

well, which we shall compute explicitly.

(A) Gm action on the versal deformation spaces of nodes a0 and ar. Let

z be a local parameter at a0 on D. We have x1/y1 as a local parameter at a0

on L0, and the local equation at a0 on C is z · (x1/y1) = 0. Hence the action

on the node a0 is given by (z, x1/y1) 7→ (z, t−1x1/y1), and the action on the

versal deformation space is c0 7→ t−1c0. Likewise, at ar+1, the action on the

node is

(yr+1/xr+1, z
′) 7→ (t(−1)r+1

yr+1/xr+1, z
′),

where z′ is a local parameter at ar+1 on D, and the action on the versal

deformation space is c0 7→ t(−1)rc0.

(B) Gm action on the versal deformation space of a tacnode ai. At ai,

the local analytic equation is of the form y2 = x4 where x := (yi/xi, xi+1/yi+1)
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and y := ((yi/xi)
2,−(xi+1/yi+1)2) in k[[yi/xi]] ⊕ k[[xi+1/yi+1]], and the Gm

action at the tacnode is given by

t.x = (t(−1)i−1
yi/xi, xi+1/(t

(−1)iyi+1)) = t(−1)i−1
x

t.y = t2(−1)i−1
y.

Therefore the action on the versal deformation space is

(c0, c1, c2) 7→ (t4(−1)i−1
c0, t

3(−1)i−1
c1, t

2(−1)i−1
c2).

From these observations, we conclude that the basin of attraction of C

with respect to ρ contains arbitrary smoothings of a2k+1 but no smoothing of

a2k for all 0 ≤ k < d(r + 1)/2e. We have established

Proposition 8.3. Retain the notation of Proposition 8.1 and assume

that m� 0.

(1) If r is even (i.e., the length of the rosary is odd), then Aρ([C]m) (resp.

Aρ−1([C]m)) parametrizes the curves consisting of D and a weak tacn-

odal elliptic chain C ′ of length r/2 meeting D in a node at a0 and in a

tacnode at ar+1 (resp. in a tacnode at a0 and in a node at ar+1).

(2) If r is odd (i.e., the length of the rosary is even), then Aρ([C]m) (resp.

Aρ−1([C]m)) parametrizes the curves consisting of D and a tacnodal

elliptic chain C ′ of length (r + 1)/2 (resp. length (r − 1)/2) meeting

D in a node (resp. tacnode) at a0 and ar+1. When r = 1, Aρ([C]m)

consists of tacnodal curves normalized by D.

D D D D

D D
a0

1 1 1 1

a0 a0a5
a5

a5

a1 a2 a3 a4

ρ ρ−1

Figure 12. Basin of attraction of an open rosary of length five.

It follows from Propositions 8.3 and 8.1 that

Proposition 8.4. If a bicanonical curve admits an open tacnodal elliptic

chain, then it is Hilbert unstable. In particular, a bicanonical curve with an

elliptic bridge is Hilbert unstable.
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1 1 1D D D D

D D
a0

a1 a2 a3

a4

a0 a4
a0 a4

ρ ρ−1

Figure 13. Basin of attraction of an open rosary of length four.

The closed case can be found in Proposition 8.8 and Corollary 8.9.

8.3. Stability analysis : Closed rosaries.

Proposition 8.5. Let C be a bicanonical closed rosary of even length r.

Then C is Hilbert strictly semistable with respect to the one-parameter subgroup

ρ : Gm → SL3r arising from Aut(C).

The relevant one-parameter subgroup was introduced in Proposition 6.5.

Proof. Restricting ω⊗2
C to each component Li, we find that each Li is a

smooth conic in P3g−4. We can choose coordinates x0, . . . , xN such that Li is

parametrized by

• [si, ti] 7→ [0, . . . , 0︸ ︷︷ ︸
3(i−1)

, s3
i ti, s

4
i , s

2
i t

2
i , sit

3
i , t

4
i , 0, . . . , 0], i = 1, . . . , r − 1;

• [sr, tr] 7→ [srt
3
r , t

4
r , 0, . . . , 0, s

3
rtr, s

4
r , s

2
rt

2
r ].

The normalization of C admits the automorphisms given by

[si, ti] 7→ [αsgn(i)si, α
1−sgn(i)ti], sgn(i) := i− 2bi/2c

for i = 1, . . . , r − 1 and [sr, tr] 7→ [sr, αtr]. The one-parameter subgroup ρ

associated to this automorphism has weights

(3, 4, 2, 1, 0, 2, · · · , 3, 4, 2, 1, 0, 2).

The sum of the weights
∑N
i=1 wtρ(xi) is 6r if r is even and 6r + 3 if r is odd.
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From the parametrization, we obtain a set of generators for the ideal of C:

x0x5, x0x6, . . . , x0x3r−4, x1x5, x1x6, . . . , x1x3r−4,(8.7)

xixi+5, xixi+6, . . . , xix3r−1, i = 2, . . . , 3r − 6;

x3j−2x3j+2, x3j−1x3j+2, x3j−1x3j+3, x3jx3j+2,

x2
0 − x1x2 − x1x3r−1, x

2
3j − x3j−1x3j+1 − x3j+1x3j+2,

x2
3r−1 − x1x3r−2, x

2
3j−1 − x3j−2x3j+1,

x0x3r−3 − x1x3r−2, x3j−3x3j − x3j−2x3j+1,

x0x3r−1 − x1x3r−3, x0x3r−2 − x3r−3x3r−1, x3j−3x3j−1 − x3j−2x3j ,

j = 1, 2, . . . , r − 1;

x3jx3j+3, x3jx3j+4, j = 1, 2, . . . , r − 2.

We have the following (9r2 − 11r)/2 degree two monomials that are in the

initial ideal:

x2
0, x0x5, x0x6, . . . , x0x3r−1, x1x5, x1x6, . . . , x1x3r−4, x1x3r−2,(8.8)

xixi+5, xixi+6, . . . , xix3r−1, i = 2, . . . , 3r − 6;

x3j−3x3j−1, x3j−3x3j , x3j−2x3j+1, x3j−2x3j+2, x3j−1x3j+1, x3j−1x3j+2,

j = 1, 2, . . . , r − 1;

x3j−1x3j+3, x3jx3j+4, j = 1, 2, . . . , r − 2.

The sum of the weights of these monomials is 34r − 18r2. It follows that the

sum of the weights of the monomials not in the initial ideal is

(3r − 1)6r − (34r − 18r2) = 28r,

which is precisely 2P (2)
N+1

∑N
i=0 wtρ(xi). Hence µ([C]2, ρ) = 0.

We shall now enumerate the degree three monomials in the initial ideal

of C. Together with the monomials divisible by the monomials from (8.8), we

have the initial terms

(8.9) x2
3r−3x3r−1, x1x

2
3r−3, x3j−2x

2
3j , j = 1, 2, . . . , r − 1

that come from the Gröbner basis members

x1x
2
3r−3−x3

3r−1, x
2
3r−3x3r−1−x3r−2x

2
3r−1, x3j−2x

2
3j−x3

3j−1, j = 1, 2, . . . , r−1.

The degree three monomials in (8.9) and the degree three monomials divisible

by monomials in (8.8) have total weight 66r. This agrees with the average

weight 3P (3)
N+1

∑N
i=0 wtρ(xi) = 3·11(g−1)

3g−3
3g−3

6 (3+4+2+1+0+2) = 66(g−1) = 66r.

Therefore, µ([C]2, ρ) = 0 = µ([C]3, ρ) and C is m-Hilbert strictly semistable

for all m ≥ 2 by [HHL10, Cor. 4].

Since Aut(C)◦ ' Gm, a one-parameter subgroup coming from Aut(C) is

of the form ρa for some a ∈ Z, and we have

µ([C]m, ρ
a) = aµ([C]m, ρ) = 0. �
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1

1 1
0 0

0 0

0 0

Figure 14. Basin of attraction of a closed rosary.

8.4. Basin of attraction : Closed rosaries.

Proposition 8.6. Retain the notation of Proposition 8.5. Then the basin

of attraction Aρ([C]m) parametrizes the closed weak tacnodal elliptic chains of

length r/2.

Proof. We use the parametrization from the proof of Proposition 8.5. C

has tacnodes ai = [0, . . . , 0︸ ︷︷ ︸
3i+1

, 1, 0, . . . , 0], i = 1, . . . , k. From the parametrization,

we find that the local parameters x3i/x3i+1 at ai to the two branches is acted

upon by ρ with weight (−1)i−1. It follows that ρ acts on the versal deformation

space (c0, c1, c2) of the tacnode ai with weights (4(−1)i−1, 3(−1)i−1, 2(−1)i−1).

Hence the basin of attraction Aρ([C]) has arbitrary smoothings of ai for odd i

but no nontrivial deformations of ai for even i. �

8.5. Stability analysis : Closed rosaries with a broken bead. Closed rosaries

with broken beads of even genus are unstable.

Proposition 8.7. Let r ≥ 3 be an odd number and Cr be the curve

obtained from a closed rosary of length r by breaking a bead. Then there exists

a one-parameter subgroup ρ of Aut(Cr) with µ([Cr]m, ρ) = 1 − m for each

m ≥ 2, so [Cr]m is unstable. Furthermore, Ch(Cr) is strictly semistable with

respect to ρ.

Proof. Note that Cr is unique up to isomorphism and can be parametrized

by

•(s0, t0) 7→ (s0t0, s
2
0, t

2
0, 0, . . . , 0);(8.10)

•(s1, t1) 7→ (0, 0, s2
1, s1t1, t

2
1, 0, . . . , 0);

• (si, ti) 7→ (0, . . . , 0︸ ︷︷ ︸
3(i−1)

, s3
i ti, s

4
i , s

2
i t

2
i , sit

3
i , t

4
i , 0, . . . , 0), i = 2, . . . , r − 1;

•(sr, tr) 7→ (srt
3
r , t

4
r , 0, . . . , 0, s

3
rtr, s

4
r , s

2
rt

2
r).
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We give the set of monomials the graded ρ-weighted lexicographic order, where

ρ is the one-parameter subgroup with the weight vector

(8.11) (1, 0, 2, 1, 0, 2, 3, 4, 2, 1, 0, 2, 3, 4, 2, . . . , 1, 0, 2, 3, 4, 2).

A Gröbner basis for Cr is

x0x3, x0x4, . . . , x0x3r−4; x1x3, x1x4, . . . , x1x3r−4; x2x5, x2x6, . . . , x2x3r−1;

x0x3r−2 − x3r−3x3r−1, x
2
3r−1 − x1x3r−2, x

2
3r−1 − x0x3r−3,

x2
0 − x1x2 − x1x3r−1, x0x3r−1 − x1x3r−3;

x6j+2x6j+4 − x2
6j+3 + x6j+4x6j+5, j = 0, 1, . . . ,

r

2
− 1;

and for j = 1, 2, . . . , r − 2,

x3jx3j+2 − x3j+1x3j+3; x2
3j+2 − x3j+1x3j+4; x2

3j+2 − x3jx3j+3;

x3jx3j+4 − x3j+2x3j+3; x3j+2x3j+4 − x2
3j+3 + x3j+4x3j+5;

x3jx3j+5, x3jx3j+6, . . . , x3jx3r−1; x3j+1x3j+5, x3jx3j+6, . . . , x3j+1x3j−1;

x3j+2x3j+5, x3j+2x3j+6, . . . , x3j+2x3j−1,

together with the following degree three polynomials:

x1x
2
3r−3 − x3

3r−1, x2
3r−3x3r−1 − x3r−2x

2
3r−1,(8.12)

x3j+1x
2
3j+3 − x3

3j+2; j = 1, 2, . . . , r − 2.

The degree two initial monomials are

x2
0, x0x3, x0x4, . . . , x0x3r−1;x1x3, x1x4, . . . , x1x3r−4, x1x3r−2;(8.13)

x2x4, x2x5, x2x6, . . . , x2x3r−1

and for j = 1, 2, . . . , r − 2,

x3jx3j+2, x3jx3j+3, . . . , x3jx3r−1;(8.14)

x3j+1x3j+4, x3jx3j+5, . . . , x3j+1x3r−1;

x3j+2x3j+4, x3j+2x3j+5, . . . , x3j+2x3r−1.

The sum of the weights of the monomials in (8.13) is 27r − 33, whereas the

monomials in (8.14) contribute 18r2 − 58r + 43 to the total weight of the

monomials in the initial ideal.

The total weight of all degree two monomials is 18r2 − 3r − 3. Hence the

weights of all degree two monomials not in the initial ideal sum up to

18r2 − 3r − 3− (18r2 − 58r + 43)− (27r − 33) = 28r − 13.

On the other hand, the average weight
2P (2)

∑
ri

N+1 is 28r − 14. It follows from

Proposition 2.15 that µ([Cr]2, ρ) = −(28r − 13) + 28r − 14 = −1.
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1 1

1

0

0

0

0

0

0

Figure 15. Basin of attraction of a closed rosary of with a bro-

ken bead.

The degree three monomials divisible by the ones in the lists (8.13), (8.14)

contribute 27r3 + 27
2 r

2− 159
2 r2 + 26 to the total weight of the monomials in the

initial ideal. On the other hand, the monomials

(8.15) x1x
2
3r−3, x

2
3r−3x3r−1; x3

3j+2, j = 1, 2, . . . , r − 2

coming from the degree three Gröbner basis members (8.12) contribute 6r+ 2.

The sum of the weights of all degree three monomials is 27r3 + 27
2 r

2− 15
2 r− 3.

Hence the total weight of the degree three monomials not in the initial ideal is

27r3 +
27

2
r2 − 15

2
r − 3−

Å
27r3 +

27

2
r2 − 159

2
r2 + 26

ã
− (6r + 2) = 66r − 31.

On the other hand, the average weight is

3P (3)

N + 1
(6r − 3) = 66r − 33.

By Proposition 2.15, the Hilbert-Mumford index is µ([Cr]3, ρ) = −(66r−31)+

66r − 33) = −2. Since µ([Cr]2, ρ) = 2µ([Cr]3, ρ) < 0, it follows from [HHL10,

Cor. 4] that Cr is m-Hilbert unstable for all m ≥ 2. Indeed, we find that

µ([Cr]m, ρ) = 1−m

for each m ≥ 2 and µ(Ch(Cr), ρ) = 0. �

8.6. Basin of attraction : Closed rosary with a broken bead.

Proposition 8.8. Let Cr and ρ be as in Proposition 8.7. Then the basin

of attraction Aρ([C]m) parametrizes closed tacnodal elliptic chains (C ′, p, q) of

length (r + 1)/2 such that ι(p) = ι(q).

Corollary 8.9. A closed tacnodal elliptic chain is Hilbert unstable.

Proof. At the node, the local analytic equation is given by

x0

x2
· x3

x2
= 0
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and Gm acts on the local parameters x :=x0/x2 and y :=x3/x2 with weight −1.

Hence Gm acts on the local versal deformation space (defined by xy = c0)

with weight −2. At the adjacent tacnode, Gm acts on the tangent space

to the two branches with positive weights. The tangent lines are traced by

x3/x4 and x6/x4. In fact, Gm acts on the local versal deformation of the

tacnode (defined by y2 = x4 + c2x
2 + c1x + c0) with a positive weight vector

(2, 3, 4). Similar analysis reveals that Gm acts on the subsequent tacnode with

a negative weight vector (−2,−3,−4). Using the symmetry of the rosary,

we can conclude that Gm acts on the local versal deformation space of the

tacnodes with weight vector alternating between (2, 3, 4) and (−2,−3,−4).

The assertion now follows. �

9. Proofs of semistability and applications

Our main goal of this section is a complete description of orbit closure

equivalences.

Definition 9.1. Two c-semistable curves C1 and C2 are said to be c-equi-

valent, denoted C1 ∼c C2, if there exists a curve C? (which we may assume

has reductive automorphism group) and one-parameter subgroups ρ1, ρ2 of

Aut(C?) with µ(Ch(C?), ρi) = 0, i = 1, 2, such that the basins of attraction

Aρ1(Ch(C?)) and Aρ2(Ch(C?)) contain Chow-points of curves isomorphic to

C1 and C2 respectively.

We define h-equivalence, denoted ∼h, in an analogous way. Lemma 5.3

shows that these equivalence relations respect the semistable and unstable

loci. It is well known (cf. [Muk03, Th. 5.3]) that for GIT-semistable curves,

C1 ∼c C2 if and only if Ch(C1) and Ch(C2) yield the same point of M
cs
g ; the

analogous statement holds for h-equivalence.

Throughout, each c-semistable curve C is embedded bicanonically (cf.

Proposition 4.3) C ↪→ P3g−4, and we consider the corresponding Chow points

Ch(C) ∈ Chowg,2 and Hilbert points [C]m ∈ Hilbg,2,m� 0. To summarize,

• If C is c-stable (resp. h-stable), then the equivalence class of C is trivial.

It coincides with the SL3g−3 orbit of Ch(C) (resp. [C]m for m� 0).

• If C is strictly c- or h-semistable, its equivalence class is nontrivial. We

shall identify the unique closed orbit curve and describe all equivalent

curves.

• Since closed orbit curves are separated in a good quotient [Ses72, 1.5],

we have a complete classification of curves identified in the quotient

spaces Hilbg,2//SL3g−3 and Chowg,2//SL3g−3.
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9.1. Elliptic chains and their replacements. Let C be a strictly c-semi-

stable curve that is pseudostable; i.e., C has no tacnodes. Let E1, . . . , E` be

the genus-one subcurves of C arising as components of elliptic chains.

Lemma 9.2. Every c-semistable curve C ′ admitting C as a pseudostable

reduction can be obtained from the following procedure:

(1) Fix a subset

{Ei}i∈I ⊂ {E1, . . . , E`}

of the genus-one subcurves arising in elliptic chains.

(2) Choose a subset of the nodes of C lying on ∪i∈IEi consisting of points

of the following types :

• If Ei∩Ei′ 6= ∅ for some distinct i, i′ ∈ I , then the node where they

intersect must be included.

• Nodes where the Ei, i ∈ I meet other components may be included.

(3) Replace each of these nodes by a smooth P1 (for any point of our subset)

or by a chain of two smooth P1’s (only for points of the first type).

Precisely, let Z denote the curve obtained by normalizing our set of

nodes and then joining each pairs of glued points with a P1 or a chain

of two P1’s with one component meeting each glued point.

(4) Let E′i denote the proper transform of Ei, i ∈ I , which are pairwise

disjoint in Z . Replace each E′i with a tacnode. Precisely, write

D = Z \ ∪i∈IE′i

and consider a morphism ν : Z → C ′ such that

• ν|D is an isomorphism and ν|D → C ′ is the normalization ;

• for i ∈ I , ν contracts E′i to a tacnode of C ′.

The generic curve C ′ produced by this procedure does not admit compo-

nents isomorphic to P1 containing a node of C ′. We introduce P1’s in Step (3)

only to separate two adjacent contracted elliptic components.

Definition 9.3. We shall use dual graphs to schematically describe these

curves. In the dual graph, a vertex represents a connected subcurve, and it

will be depicted by a number corresponding to the genus or the name of the

subcurve. Two vertices are connected by n (thickened) edges if the subcurves

they represent meet in n nodes (tacnodes). The name of the node or tac-

node, if any, will be inscribed below the corresponding edge. For example,

the dual graph of Figure 16 is C1 p
P1

a
P1

b
E

q
C2 or it may also be

C1 p
0

a
0

b
1

q
C2 .
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C1

0 0
1

C2

p q

a b

Figure 16.

Example 9.4. Let C be the elliptic chain of length one

C1 E C2.

The possible Z are C itself and

C1 P1 E C2 C1 E P1 C2 C1 P1 E P1 C2,

and the possible C ′ are C itself and

C1 C2 C1 P1 C2 C1 P1 C2 C1 P1 P1 C2.

Here, the first configuration and C are the generic c-semistable configurations.
If C is an elliptic chain of length two

C1 E1 E2 C2,

then the possible Z are C itself and the curves obtained from C by inserting

(1) a length-one chain of smooth rational curves:

C1 P1 E1 E2 C2 C1 E1 P1 E2 C2

C1 E1 E2 P1 C2;

(2) two length-one chains or one length two chain:

C1 P1 E1 P1 E2 C2 C1 E1 P1 P1 E2 C2

C1 E1 P1 E2 P1 C2;

(3) one length-one chain and one length-two chain:

C1 P1 E1 P1 P1 E2 C2

C1 E1 P1 P1 E2 P1 C2;

(4) two length-one chains and one length-two chain:

C1 P1 E1 P1 P1 E2 P1 C2.

The generic c-semistable configurations are C itself and

C1 E2 C2 C1 E1 C2 C1 P1 C2.
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Proof (of Lemma 9.2). Our hypotheses give a flat family

(†) C′ → B := Spec k[[t]]

whose generic fibre C′η is smooth, and the special fibre C′0 is C ′. Furthermore,

after a base change

B ← B1 = Spec k[[t1]],

t 7→ ts1,

there exists a birational modification over B1

ψ : C 99K C′ ×B B1

such that C0 is C. In other words, C → B1 is the pseudostable reduction of

C′ → B; we replace each tacnode by an elliptic bridge and contract any rational

component that meets the rest of the curve in fewer than three points.

Let Z be the normalization of the graph of ψ, with π1 and π2 the projec-

tions to C and C′ ×B B1 respectively:

Z
π1

��

π2

$$
C C′ ×B B1.

By [Sch91, 4.4], Z is flat over B and Z = Z0 is reduced. An argument similar

to [Sch91, 4.5-4.8] yields

• The exceptional locus of π2 is a disjoint union of connected genus-one

subcurves

ti∈IE′i ⊂ Z

that arise as proper transforms of components of elliptic chains in C.

Each component is mapped to a tacnode of C ′.

• The exceptional locus of π1 is a union of chains of rational curves of

length one or two

tP1 t (P1 ∪ P1) ⊂ Z

that arise as proper transforms of rational components of C ′ meeting

the rest of the curve in two points (either two tacnodes or one node and

one tacnode). Each component is mapped to a node of C contained in

an elliptic chain.

This yields the schematic description for the possible combinatorial types of C ′.

We analyze the generic curves arising from our procedure. Suppose there

is a component isomorphic to P1 meeting the rest of the curve in a node and a

tacnode. Corollary 4.5 implies we can smooth the node to get a c-semistable

curve. The smoothed curve also arises from our procedure. �
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Remark 9.5. Lemma 9.2 yields a bijection between subsets

{Ei}i∈I ⊂ {E1, . . . , E`}

and generic configurations of the locus of curves arising from our procedure.

Indeed, there is a unique generic configuration contracting the curves {Ei}i∈I .

Proposition 9.6. Let C be strictly c-semistable without tacnodes, and let

E1, . . . , E` be the genus-one subcurves of C arising as components of elliptic

chains. Let C? be the curve obtained from C by replacing each Ei with an open

rosary (Ri, pi, qi) of length two. Then there exists a one-parameter subgroup

ρ : Gm → Aut(C?)

such that Ch(C) ∈ Aρ(Ch(C?)) and µ(Ch(C?), ρ) = 0.

If C ′ is another c-semistable curve with pseudostable reduction C , then

there exists a one-parameter subgroup

%′ : Gm → Aut(C?)

such that Ch(C ′) ∈ A%′(Ch(C?)) and µ(Ch(C?), %′) = 0.

Proof. The assumption that C is strictly c-semistable without tacnodes

ensures it contains an elliptic chain of length one, i.e., an elliptic bridge.

The analysis of Proposition 6.5 makes clear that our description of C?

determines it uniquely up to isomorphism. Furthermore, we have

Aut(C?)◦ ' G`
m

with basis {ρ1, . . . , ρ`}; here ρi denotes the one-parameter subgroup acting

trivially on Rj , j 6= i and with weight 1 on the tangent spaces TpiRi and

TqiRi. As explained in Section 8.2, it acts with negative weights on the versal

deformation space of the tacnode of Ri.

Consider the one-parameter subgroup ρ =
∏`
i=1 ρ

−1
i , which acts with posi-

tive weights on each of the tacnodes. The basin of attraction analysis of Propo-

sition 8.3 shows that Aρ(Ch(C)) parametrizes those curves obtained from C?

by replacing each open rosary of length two with an elliptic chain of length

one. This includes our original curve C.

Now for any one-parameter subgroup %′ =
∏`
i=1 ρ

−ei
i , we can compute

µ(Ch(C?), ρ′) = −
∑̀
i=1

ei µ(Ch(C?), ρi) = 0

using Corollary 8.2. In particular, we have

µ(Ch(C?), ρ) = 0.

Section 8.2 gives the action of ρ′ on the versal deformations of the sin-

gularities of C?. It acts with weights (2ei, 3ei, 4ei) on the versal deformation

space of the tacnode on Ri. At a node (pi or qi) lying on a single open rosary
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Ri of length two, it acts with weight −ei. For nodes on two open rosaries Ri
and Rj , it acts with weight −(ei + ej).

Restrict attention to one-parameter subgroups with weights ei 6= 0 for each

i, j = 1, . . . , `. These naturally divide up into 2` equivalence classes, depending

on the signs of the ei. Let I ⊂ {1, . . . , `} denote those indices with ei < 0.

Just as in the proof of Proposition 8.3, the basin of attraction A%′(Ch(C?))

does not contain smoothings of the tacnodes in Ri, i ∈ I but does contain all

smoothings of the remaining tacnodes. Choosing the negative ei suitably large

in absolute value, we can assume each −(ei + ej) > 0, so the nodes where two

rosaries meet are smoothed provided at least one of the adjacent tacnodes is

not smoothed.

Thus A%′(Ch(C?)) consists of the c-semistable curves obtained by smooth-

ing all the tacnodes not indexed by I as well as the nodes on the rosaries

containing one of the remaining tacnodes (indexed by I). The generic mem-

ber of the basin equals the generic configuration indexed by I, as described

in Remark 9.5. It follows that each curve C ′ enumerated in Lemma 9.2 ap-

pears in the the basin of attraction of Ch(C?) for a suitable one-parameter

subgroup %′. �

9.2. Chow semistability of c-semistable curves. Here we prove that bi-

canonical c-semistable curves are Chow semistable. By Theorem 7.1, it suffices

to consider curves that are not c-stable.

Let C ′ denote a strictly c-semistable curve, with tacnodes and/or elliptic

bridges. Assume that C ′ is Chow unstable, and let

C′ → B := Spec k[[t]]

be a smoothing. Let C ′′ be a Chow semistable reduction of this family and C,

the pseudostable reduction.

Reversing the steps outlined in Lemma 9.2, we see that C is obtained by

replacing each tacnode of C ′ (or C ′′) with an elliptic bridge and then pseudo-

stabilizing. Let C? denote the curve obtained from C in Proposition 9.6,

which guarantees that Ch(C ′) and Ch(C ′′) are contained in basins of attraction

Aρ′(Ch(C?)) and Aρ′′(Ch(C?)) respectively. Moreover, since

µ(Ch(C?), ρ′) = µ(Ch(C?), ρ′′) = 0,

Lemma 5.3 implies that C ′ (resp. C ′′) is Chow semistable if and only if C is

Chow semistable. This contradicts our assumption that C ′ is Chow unstable.

Next, we give a characterization of the closed orbit curves in c-equivalence

classes of strictly semistable curves.

Proposition 9.7. A strictly c-semistable curve has a closed orbit if and

only if
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• each tacnode is contained in an open rosary ;

• each open rosary has length two; and

• there are no elliptic bridges other than length-two rosaries.

Since each length-two rosary has one tacnode and contributes a Gm-factor

to Aut(C), we have

Corollary 9.8. If C is a strictly c-semistable curve with closed orbit,

then

Aut(C)◦ ' Gτ
m,

where τ is the number of tacnodes. The superscript ◦ denotes the connected

component of the identity.

Proof of Proposition 9.7. Assume that C ′ is a strictly c-semistable curve

with closed orbit. Let C be a pseudostable reduction and C? be the curve

specified in Proposition 9.6, so the Chow point of C ′ is in the basin of attraction

of the Chow point of C?. Since C? is Chow semistable, we conclude that

C ′ = C?.

Conversely, suppose C ′ is a curve satisfying the three conditions of Propo-

sition 9.7. Again, let C be a pseudostable reduction of C ′ and C? be the curve

obtained in Proposition 9.6, so that C ′ is in the basin of attraction of C? for

some one-parameter subgroup ρ′. Note that C? also satisfies the conditions of

Proposition 9.7. The basin of attraction analysis in Section 8.2 implies that any

nontrivial deformation of C? in Aρ′(Ch(C?)) induces a nontrivial deformation

of at least one of the singularities of C? sitting in an open rosary.

There are three cases to consider. First, we could deform the tacnode on

one of the rosaries Ri. However, then the rosary Ri deforms to an elliptic bridge

in C ′ that is not a length-two rosary, which yields a contradiction. Therefore,

we may assume that none of the tacnodes in C? is deformed in C ′. Second,

we could smooth a node where length-two rosaries meet. However, this would

yield a rosary in C ′ of length > 2. Finally, we could smooth a node where a

length-two rosary Ri meets a component not contained in an rosary. However,

the tacnode of Ri then deforms to a tacnode of C ′ not on any length-two

rosary. �

9.3. Hilbert semistability of h-semistable curves. Suppose that C is an

h-semistable bicanonical curve. By definition it is also c-semistable and thus

Chow-semistable by the analysis of Section 9.2. Of course, strictly Chow-

semistable points can be Hilbert unstable, and we classify these in two steps.

First, we enumerate the curves C0 with strictly semistable Chow point such

that there exists a one-parameter subgroup ρ : Gm ↪→ Aut(C0) destabilizing

the Hilbert point of C0, i.e., with µ([C0]m, ρ) < 0 for m � 0. Second, we

list the curves that are in the basins of attraction Aρ([C0]m), which are also
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guaranteed to be Hilbert unstable by the Hilbert-Mumford numerical criterion.

We claim that these are all the Hilbert unstable curves with strictly semistable

Chow point. To see this, let C be such a curve and let ρ be the one-parameter

subgroup destabilizing [C]m for m � 0; i.e., µ([C]m, ρ) < 0. Due to the

relation between the linearizations of the Hilbert scheme and the Chow variety,

µ(Ch(C), ρ) ≤ 0 (cf. [HHL10, Cor. 5]). On the other hand, since C is Chow

strictly semistable, µ(Ch(C), ρ) ≥ 0. Therefore µ(Ch(C), ρ) = 0, and the limit

curve C0 determined by limt→0 ρ(t).Ch(C) in the Chow variety is the desired

curve.

If the genus is odd and C0 is a closed rosary (without broken beads),

then C0 is Hilbert semistable with respect to any 1-ps coming from Aut(C0)

(Proposition 8.5).

Suppose that C0 has open rosaries S1, . . . , S`. Each contributes Gm to the

automorphism group of C0 and Aut(C0)◦ ' G×`m . Let pi, qi denote the nodes

in the intersection Si ∩ C0 − Si. The automorphism coming from Si gives rise

to a one-parameter subgroup

ρi : Gm
'−→ {1} × · · · × Gm︸︷︷︸

i-th

× · · · × {1} ↪→ G×`m ' Stab(Ch(C0)),

where the second Gm means the i-th copy in the product G×`m and Stab(Ch(C0))

is the stabilizer group. We assume that S1, . . . , Sk are open rosaries of even

length and Sk+1, . . . , S` are of odd length. For i ≤ k, the weights of ρi on the

versal deformation spaces of pi and qi have the same sign (see Section 8.2). We

normalize ρi so that this weight is negative.

Given one-parameter subgroups ρ : Gm → Aut(C0)◦ with negative Hilbert-

Mumford index µ([C0]m, ρ), we can expand

ρ =
k∏
i=1

ρaii ×
∏̀

i=k+1

ρbii , ai, bi ∈ Z

so that

µ([C0]m, ρ) =
k∑
i=1

ai µ([C0]m, ρi) +
∑̀
i=k+1

bi µ([C0]m, ρi) < 0.

We have already computed these terms. Proposition 8.1 implies that

µ([C0]m, ρi) =

1−m, i = 1, . . . , k,

0, i = k + 1, . . . , `.

Thus, in order for the sum to be negative, we must have ai > 0 for some

i = 1, . . . , k. In particular, there is at least one rosary of even length. Propo-

sition 8.3 implies that the basin of attraction Aρ([C0]m) contains curves with

tacnodal elliptic chains, which are not h-semistable.
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We are left with the case of a closed rosary Cr of even genus with one

broken bead. There is a unique one-parameter subgroup ρ of the automorphism

group, and we choose the sign so that it destabilizes Cr (cf. Proposition 8.7).

The basin of attraction analysis in Proposition 8.8 again shows that the curves

with unstable Hilbert points admit tacnodal elliptic chains.

Thus curves with unstable Hilbert points are not h-semistable, which com-

pletes our proof that h-semistable curves are Hilbert semistable.

We shall now prove that if C is h-stable, then it is Hilbert stable. If C is

Hilbert strictly semistable, then it belongs to a basin of attraction Aρ([C0]m),

where C0 is a Hilbert semistable curve with infinite automorphisms and ρ is

a 1-ps coming from Aut(C0). By Corollary 6.9, C0 admits an open rosary of

odd length ≥ 3 or is a closed rosary of even length ≥ 4. But we showed in

Propositions 8.3 and 8.6 that any curve in the basin of such C0 has a weak

tacnodal elliptic chain and hence is not h-stable.

Finally, we characterize the closed orbits of strictly h-semistable curves.

These do not admit tacnodal elliptic chains and, in particular, do not admit

open rosaries of even length (see Remark 6.4).

Proposition 9.9. A strictly h-semistable curve has a closed orbit if and

only if

• it is a closed rosary of odd genus ; or

• each weak tacnodal elliptic chain is contained in a chain of open rosaries

of length three.

Since each length-three open rosary has two tacnodes and contributes Gm

many automorphisms to Aut(C),

Corollary 9.10. If C is a strictly h-semistable curve with closed orbit,

then

Aut(C)◦ ' Gτ/2
m ,

where τ is the number of tacnodes.

Proof of Proposition 9.9. Suppose C ′ is strictly h-semistable. We shall

show that there exists a curve C∗ satisfying the conditions of Proposition 9.9

and a one-parameter subgroup ρ′ of Aut(C∗) such that [C ′]m ∈ Aρ′([C∗]m) for

m� 0 and µ([C∗]m, ρ
′) = 0.

Assume first that C ′ is a closed weak tacnodal elliptic chain with r compo-

nents, with arithmetic genus 2r+ 1. Let C∗ denote a closed rosary with beads

L1, . . . , L2r and tacnodes a1, . . . , a2r. Proposition 6.5 implies Aut(C∗)◦ ' Gm,

generated by a one-parameter subgroup ρ acting on the versal deformation

spaces of the a2j with positive weights and the a2j−1 with negative weights.

Proposition 8.6 implies Aρ([C
∗]m) contains the closed weak elliptic chains of

length r.
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Now assume that C ′ is not a closed weak tacnodal elliptic chain but con-

tains maximal weak tacnodal elliptic chains C ′′1 , . . . , C
′′
s of lengths `1, . . . , `s.

Let pj (resp. qj) denote the node (resp. tacnode) where C ′′j meets the rest of

the curve. Let C∗ be the curve obtained from C ′ by replacing each C ′′j with a

chain of `j open rosaries of length three. Precisely, write

D = C ′ \
( s⋃
j=1

C ′′j \ {pj , qj}
)

and let Sj , j = 1, . . . , s denote a chain of `j open rosaries of length three

joined end-to-end. Then C∗ is obtained by gluing Sj to D via nodes at pj and

qj . One special case requires further explanation: If C ′ admits an irreducible

component' P1 meeting the rest of C ′ at two points qi and qj , then we contract

this component in C∗.

Example 9.11. There are examples where the construction of C∗ involves
components being contracted. Let C1 and C2 be smooth and connected of
genus ≥ 2, and let E1 and E2 be elliptic. Consider the curve C ′:

C1 p1
E1 q1

P1
q2

E2 p2
C2.

Replacing the weak tacnodal elliptic chains with rosaries of length three
yields

C1 p1
P1 P1 P1

q1
P1

q2
P1 P1 P1

p2
C2,

which is not h-semistable. Contracting the middle P1, we obtain C∗:

C1 p1
P1 P1 P1 P1 P1 P1

p2
C2.

There are examples where D fails to be pure-dimensional. Start with the
curve C ′:

C1 q1
E1 p

E2 q2
C2,

where the Ci and Ei are as above and p is the node at which p1 and p2 are
identified. Then C∗ is equal to

C1 q1
P1 P1 P1

p
P1 P1 P1

q2
C2.

We return to our proof. The curve C∗ has

Aut(C∗)◦ ' G`
m, ` =

s∑
j=1

`j .

Essentially repeating the argument of Proposition 9.6, using the one-parameter

subgroup analysis of Proposition 8.1 and the basin-of-attraction analysis of

Proposition 8.3 (or Propositions 8.7 and 8.8 in the degenerate case), we obtain

a one-parameter subgroup ρ′ in the automorphism group such that [C ′]m ∈
Aρ′([C

∗]m) for m� 0 and µ([C∗]m, ρ
′) = 0.
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We now show that the curves enumerated in Proposition 9.9 all have closed

orbits. Due to [Kem78, Th. 1.4], it suffices to show none of these are contained

in the basin of attraction of any other. Suppose that C∗1 and C∗2 are such that

[C∗2 ]m ∈ Aρ([C∗1 ]m)

for some one-parameter subgroup ρ of Aut(C∗1 )◦. A nontrivial deformation

of C∗1 necessarily deforms one of the singularities of C∗1 . If the singularity is

a tacnode on a length-three open rosary, the resulting deformation admits a

weak tacnodal elliptic chain that is not contained in a chain of length-three

rosaries. If the singularity is a node where two length-three open rosaries meet,

then the deformation admits a weak tacnodal elliptic chain not contained in a

chain of length-three open rosaries.

However, there is one case that requires special care: Suppose that C∗1 is

a closed chain of r rosaries R1, . . . , Rr of length three:

R1 p12
R2 p23

· · ·
pr−1r

Rr pr1
R1,

where Ri and Ri+1 (resp. R1 and Rr) meet at a node pi i+1 (resp. pr1); this

has arithmetic genus 2r + 1. Let C∗2 denote a closed rosary of genus 2r + 1,

which is a deformation of C∗1 . We need to insure that

(9.1) [C∗2 ]m 6∈ Aρ([C∗1 ]m)

for any one-parameter subgroup ρ of Aut([C∗1 ]m)◦. We can express

ρ =
r∏
j=1

ρ
ej
j ,

where ρj acts trivially except on Rj and has weights +1 and −1 on Tpj−1jRj
and Tpjj+1Rj . (Here ρr acts with weights +1 and −1 on Tpr−1rRr and Tpr,1Rr.)

However, assuming ρ is nontrivial, one of the following differences

e1 − e2, . . . , er − e1

is necessarily negative; for simplicity, assume e1 − e2 < 0. It follows that

ρ acts with negative weight on the versal deformation of the node p12; thus

deformations in Aρ([C
∗
1 ]m) cannot smooth p12. We conclude that deformations

in the basin of attraction of C∗1 cannot smooth each node, which yields (9.1) �
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