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Coarse differentiation of quasi-isometries II:
Rigidity for Sol and lamplighter groups

By Alex Eskin, David Fisher, and Kevin Whyte

Abstract

In this paper we prove quasi-isometric rigidity results concerning lattices

in Sol and lamplighter groups. The paper builds in a substantial way on

our earlier paper Coarse differentiation of quasi-isometries I: spaces not

quasi-isometric to Cayley graphs.

1. Introduction and statements of results

This paper continues the work that was announced in [EFW07] and be-

gun in [EFW12]. For a more detailed introduction, we refer the reader to

those papers. As discussed in those papers, all our theorems stated above

are proved using a new technique, which we call coarse differentiation. Even

though quasi-isometries have no local structure and conventional derivatives

do not make sense, we essentially construct a “coarse derivative” that models

the large scale behavior of the quasi-isometry. From this point of view, the

coarse derivatives of maps studied here are constructed in [EFW12] and this

paper consists entirely of a coarse analysis of coarsely differentiable maps.

We now state the main results whose proofs are begun in [EFW12] and

finished here. The group Sol ∼= RnR2 with R acting on R2 via the diagonal

matrix with entries ez/2 and e−z/2. As matrices, Sol can be written as

Sol =


Ö
ez/2 x 0

0 1 0

0 y e−z/2

è∣∣∣∣∣∣∣ (x, y, z) ∈ R3

 .
The metric e−zdx2+ezdy2+dz2 is a left invariant metric on Sol. Any group of

the form ZnTZ2 for T ∈SL(2,Z) with |tr(T )| > 2 is a cocompact lattice in Sol.

The following theorem proves a conjecture of Farb and Mosher.

Theorem 1.1. Let Γ be a finitely generated group quasi-isometric to Sol.

Then Γ is virtually a lattice in Sol.
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We also prove rigidity results for wreath products ZoF where F is a finite

group. The name lamplighter comes from the description ZoF = FZoZ where

the Z action is by a shift. The subgroup FZ is thought of as the states of a line

of lamps, each of which has |F | states. The “lamplighter” moves along this line

of lamps (the Z action) and can change the state of the lamp at her current

position. The Cayley graphs for the generating sets F ∪ {±1} depend only on

|F |, not the structure of F . Furthermore, ZoF1 and ZoF2 are quasi-isometric

whenever there is a d so that |F1| = ds and |F2| = dt for some s, t in Z. The

problem of classifying these groups up to quasi-isometry, and in particular, the

question of whether the 2 and 3 state lamplighter groups are quasi-isometric,

were well-known open problems in the field; see [dlH00].

Theorem 1.2. The lamplighter groups ZoF and ZoF ′ are quasi-isometric

if and only if there exist positive integers d, s, r such that |F | = ds and |F ′| = dr.

For a rigidity theorem for lamplighter groups, see Theorem 1.3 below.

To state Theorem 1.3 we need to describe a class of graphs. These are the

Diestel-Leader graphs, DL(m,n), which can be defined as follows. Let T1 and

T2 be regular trees of valence m+1 and n+1. Choose orientations on the edges

of T1 and T2 so each vertex has n (resp. m) edges pointing away from it. This

is equivalent to choosing ends on these trees. We can view these orientations

at defining height functions f1 and f2 on the trees (the Busemann functions

for the chosen ends). If one places the point at infinity determining f1 at the

top of the page and the point at infinity determining f2 at the bottom of the

page, then the trees can be drawn as

a'

z

b'

c

b

au'

t

u

v

w

Figure 1. The trees for DL(3, 2); figure borrowed from [PPS06].

The graph DL(m,n) is the subset of the product T1×T2 defined by f1+f2 = 0.

The analogy with the geometry of Sol is made clear in [EFW12, §3]. For

n = m, the Diestel-Leader graphs arise as Cayley graphs of lamplighter groups

ZoF for |F | = n. This observation was apparently first made by R. Moeller

and P. Neumann [Moe01] and is described explicitly, from two slightly different

points of view, in [Woe05] and [Wor07]. We prove the following.

Theorem 1.3. Let Γ be a finitely generated group quasi-isometric to the

lamplighter group ZoF . Then there exist positive integers d, s, r such that ds =
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|F |r and an isometric, proper, cocompact action of a finite index subgroup of

Γ on the Diestel-Leader graph DL(d, d).

Remark. The theorem can be reinterpreted as saying that any group quasi-

isometric to DL(|F |, |F |) is virtually a cocompact lattice in the isometry group

of DL(d, d), where d is as above.
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2. Results from [EFW12] and what remains to be done

Remark. All terminology in the following theorems is defined in [EFW12].

Most of it is recalled in Section 3 below. In particular, whenever we wish to

make a statement that refers to either Sol or DL(m,m) we will use the notation

X(m) and refer to the space as the model space. As in [EFW12], Sol(m) denotes

Sol with the dilated metric

ds2 = dz2 + e−2mzdx2 + e2mzdy2.

The main result of this paper is the following. The analogue of this theo-

rem for X(m,n) is proved in [EFW12, §5].

Theorem 2.1. For every δ > 0, κ > 1 and C > 0, there exists a constant

L0 > 0 (depending on δ, κ, C) such that the following holds. Suppose φ :

X(n) → X(n′) is a (κ,C) quasi-isometry. Then for every L > L0 and every

box B(L), there exist a subset U ⊂ B(L) with |U | ≥ (1 − δ)|B(L)| and a

height-respecting map φ̂(x, y, z) = (ψ(x, y, z), q(z)) such that

(i) d(φ|U , φ̂) = O(δL).

(ii) For z1, z2 heights of two points in B(L), we have

(1)
1

2κ
|z1 − z2| −O(δL) < |q(z1)− q(z2)| ≤ 2κ|z1 − z2|+O(δL).

(iii) For all x ∈ U , at least (1− δ) fraction of the vertical geodesics passing

within O(1) of x are (η,O(δL))-weakly monotone.

This theorem, combined with results in [EFW12, §6], proves that any

quasi-isometry φ : X(m)→X(m′) is within bounded distance of a height-

respecting quasi-isometry. This is done in two steps there; the first stated

as [EFW12, Th. 6.1] roughly shows that φ respects height difference to sublin-

ear error. Then in [EFW12, §6.2] we give an argument that shows this implies
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φ is at bounded distance from height respecting. The deduction of Theorem 1.1

from this fact is already given explicitly in [EFW12, §7].

The proof of Theorem 2.1 uses the following consequence of [EFW12,

Th. 4.1].

Theorem 2.2. Suppose ε, θ > 0. Let φ : Sol → Sol be a (κ,C) quasi-

isometry. Then for any L′ sufficiently large (depending on κ, C , θ), there

exist constants R and L with C � R � L � L′ and eεR � L′ such that for

any box B(L′), there exist a collection of disjoint boxes {Bi(R)}i∈I , a subset

Ig of I , and for each i ∈ Ig , a subset Ui ⊂ Bi(R) with |Ui| ≥ (1 − θ)|Bi(R)|
such that the following hold :

(i)
⊔
i∈Ig

Bi(R) ⊂ φ−1(B(L′)) ⊂
⊔
i∈I

Bi(R).

(ii) |
⊔
i∈Ig

Ui| ≥ (1− θ)|φ−1(B(L′))| and

∣∣∣∣∣∣φ
Ñ⊔
i∈Ig

Ui

é∣∣∣∣∣∣ ≥ (1− θ)|B(L′)|.

(iii) For each i ∈ Ig , there exists a product map φ̂i : Bi(R)→ Sol such that

d(φ|Ui , φ̂i) = O(εR).

Proof. Choose L large enough that [EFW12, Th. 4.1] holds with the given

ε and some θ0 < θ for any box of size L. We cover φ−1(B(L′)) by boxes of

size L in the domain. Because φ is a quasi-isometry, φ−1(B(L′)) is a Fölner

set which allows us to cover φ−1(B(L′)) by ∪k∈KBk(L) such that the measure

of ∪k∈KBk(L) − φ−1(B(L′)) is small provided L′ � L. We apply [EFW12,

Th. 4.1] to the finite family of boxes {Bk(L)|k ∈ L} and let Ig be the good

boxes that we index without reference to k. By choosing θ0 small enough and

using the Fölner condition on φ−1(B(L′)), it is easy to see that the conclusions

of the theorem are satisfied. �

Recommendations to the reader. We strongly recommend that the reader

study [EFW12] before this paper. In reading this paper, we recommend that

the reader first assume that the map φ restricted to each Ui ⊂ Bi(R) for i ∈ Ig
is within O(εR) of b-standard map, or better yet, the identity. (Replacing a

b-standard map with the identity amounts to composing with a quasi-isometry

of controlled constants and so has no real effect on our arguments.) This

allows the reader to become familiar with the general outline of our arguments

without becoming too caught up on technical issues.

The reader familiar with [EFW12] can then read Section 3 and essentially

all of Section 5, skipping Section 4 entirely. In first reading Section 3, the

reader might initially read Sections 3.1 through 3.4 and skip Section 3.5. This

last subsection is only required in the case of solvable groups and then only



COARSE DIFFERENTIATION OF QUASI-ISOMETRIES II 873

at the very end of Section 5.4. As remarked there, some of the definitions in

Section 3.3 may also be omitted on first reading.

Remarks on the proof. It is possible to rewrite the arguments here and

first prove that φ restricted to Ui ⊂ Bi(R) for i ∈ Ig is within O(εR) of a

b-standard map. However, the arguments needed to prove this, while not so

different in flavor from the arguments in Section 4, are extremely intricate

and technical. The proof given here, while slightly more difficult in some later

arguments, is essentially the same proof one would give after proving that fact.

See Section 5 for more discussion.

3. Geometric preliminaries

In this section, we describe some key elements of the spaces we consider.

There is some duplication with [EFW12], but the emphasis here is different.

3.1. Boxes, product maps, and almost product maps. We recall the notion

of a box from [EFW12], first in Sol(m). Let

B(L,~0) =

ñ
−e

2mL

2
,
e2nL

2

ô
×
ñ
−e

2mL

2
,
e2nL

2

ô
×
ï
−L

2
,
L

2

ò
.

In our current setting, |B(L,~0)| ≈ Le2L and Area(∂B(L,~0)) ≈ e2L, so B(L) is

a Fölner set.

To define the analogous object in DL(m,m), we look at the set of points

in DL(m,m) and we fix a basepoint (~0) and a height function h with h(~0) = 0.

Let L be an even integer, and let DL(m,m)L be the h−1([−L+1
2 , L+1

2 ]). Then

B(L, ~0)) is the connected component of ~0 in DL(m,m)L. We are assuming

that the top and bottom of the box are midpoints of edges, to guarantee that

they have zero measure.

We call B(L,~0) a box of size L centered at the identity. In Sol, we de-

fine the box of size L centered at a point p by B(L, p) = TpB(L,~0), where

Tp is left translation by p. We frequently omit the center of a box in our

notation and write B(L). For the case of DL(m,m), it is easiest to de-

fine the box B(L, p) directly. That is, let DL(m,m)[h(p)−L+1
2
,h(p)+L+1

2
] =

h
−1

([h(p) − L+1
2 , h(p) + L+1

2 ]) and let B(L,p) be the connected component of

p in DL(m,m)[h(p)−L+1
2
,h(p)+L+1

2
]. It is easy to see that isometries of DL(m,m)

carry boxes to boxes.

For Sol, we write B(R) = SX × SY × SZ . We think of SX as a subset

of the lower boundary, SY as a subset of the upper boundary, and SZ as

a subset of R. In the DL(n, n) case, by SX × SY × SZ we mean the set

{p ∈ DL(n, n) : h(p) ∈ SZ} intersected with the union of all vertical geodesics

connecting points of SX to points of SY . We also write SZ = [hbot, htop]. We

will use the notation ∂+X for the upper boundary and ∂−X for the lower

boundary.
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Definition 3.1 (Product Map, Standard Map). A map φ̂ : Sol → Sol(n′)

is called a product map if it is of the form

(x, y, z)→ (f(x), g(y), q(z)) or (x, y, z)→ (g(y), f(x), q(z)),

where f , g, and q are functions from R → R. A product map φ̂ is called

b-standard if it is the compostion of an isometry with a map of the form

(x, y, z) → (f(x), g(y), z), where f and g are Bilipshitz with the Bilipshitz

constant bounded by b.

The discussion of standard and product maps in the setting of DL(m,m)

is slightly more complicated. We let Qm be the m-adic rationals. The comple-

ment of a point in the boundary at infinity of Tm+1 is easily seen to be Qm.

Let x be a point in Qm viewed as the lower boundary, and let y be a point

in Qm (viewed as the upper boundary). There is a unique vertical geodesic

in DL(m,m) connecting x to y. To specify a point in DL(m,m) it suffices to

specify x, y and a height z. We will frequently abuse notation by referring to

the (x, y, z) coordinate of a point in DL(m,m) even though this representation

is highly nonunique.

We need to define product and standard maps as in the case of solvable

groups, but there is an additional difficulty introduced by the nonuniqueness

of our coordinates. This is that maps of the form (x, y, z)→ (f(x), g(y), q(z)),

even when one assumes they are quasi-isometries, are not well defined; dif-

ferent coordinates for the same points will give rise to different images. We

will say a quasi-isometry ψ is at bounded distance from a map of the form

(x, y, z) → (f(x), g(y), q(z)) if d(ψ(p), (f(x), g(y), q(z))) is uniformly bounded

for all points and all choices p = (x, y, z) of coordinates representing each point.

It is easy to check that (x, y, z) → (f(x), g(y), q(z)) is defined up to bounded

distance if we assume that the resulting map is a quasi-isometry. The bound

depends on κ,C,m, n,m′, and n′.

Definition 3.2 (Product Map, Standard Map). A map φ̂ : DL(m,m) →
DL(m′,m′) is called a product map if it is within bounded distance of the form

(x, y, z) → (f(x), g(y), q(z)) or (x, y, z) → (g(y), f(x), q(z)), where f : Qm →
Qm′ (or Qn′), g : Qn → Qn′ (or Qm′), and q : R → R. A product map φ̂

is called b-standard if it is the compostion of an isometry with a map within

bounded distance of one of the form (x, y, z)→ (f(x), g(y), z), where f and g

are Bilipshitz with the Bilipshitz constant bounded by b.

Definition 3.3. Given a quasi-isometric embedding φ : B(R)→X(n′), we

say φ is an (α, θ) almost a product map if there exist subsets U ⊂ B(R), E1 ⊂
SX , and E2 ⊂ SY of relative measure 1− θ such that U = {(x, y, z) : x ∈ E1,

y ∈ E2, z ∈ SZ} and all geodesics connecting points in E1 to points in E2 have

ε monotone images under φ.
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Remark. We think of f and g as defined only on Ei. So by f(I) we mean

f(I ∩ E1).

Lemma 3.4. Given a (α, θ)-almost product map φ there exist a subset

U∗ ⊂ U with relative measure 1− 128θ
1
2 and a (partially defined) product map

φ̂ : U∗→X(m′) such that

d(φ|U (p), φ̂(p)) ≤ αR

for all p ∈ U .

Proof. This is the content of [EFW12, Lemma 4.11 and Prop. 4.12]. �

Remark. With an appropriate choice of constants, the converse of Lemma

3.4 is also true.

Notation. Using Lemma 3.4, we write an (almost) product map φ̂ : B(R)

⊂ X(n)→ X(n′) as (x, y, z)→ (f(x), g(y), q(z)), so the domain of f is SX , etc.

We will always work with (almost) product maps of this kind; the arguments

for those of the form (x, y, z) → (f(y), g(x), q(z)) are almost identical. One

can also formally deduce any result we need about almost product maps of

the form (x, y, z) → (f(y), g(x), q(z)) from the analogous fact about those of

the form (x, y, z)→ (f(x), g(y), q(z)) by noting that these two forms of almost

product map differ by either pre- or post-composition with an isometry.

3.2. Discretizing Sol. In this subsection, we introduce a discrete model

for Sol(n) that has some technical advantages at some points in the argument.

We will often make arguments for the discrete model instead of for Sol(n)

itself. The discrete model is quasi-isometric to Sol(n) and in fact (1, ρ1) quasi-

isometric for a parameter ρ1, which will we choose so that C � ρ1 � εR.

The basic idea is to take a ρ1 net in Sol(n) and replace Sol(n) by a graph on

this net. It is possible to do this by taking an arithmetic lattice in Sol, taking

a deep enough congruence subgroup, and taking the Cayley graph. More

concretely, we write Sol(n) as RnR2 and consider ρ1Z ⊂ R and ρ1Z2 ⊂ R2.

Here we view R2 ⊂ Sol(n) as the plane at height zero. We then form a ρ1 net

in Sol(n) by taking the union

G =
⋃

a∈ρ1Z
a·ρ1Z2.

To make this a graph, we connect by an edge any pair of points in G whose

heights differ by ρ1 and that are within 10ρ1 of one another. We metrize this

graph by letting lengths of edges be the distance between the corresponding

points in Sol(n), so all edges have length O(ρ1).

We can also replace DL(m,m) with a graph whose edges have length

O(ρ1). For this we assume ρ1 ∈ N. Consider only vertices in DL(m,m) in

h−1(ρ1Z). Join two vertices by an edge of length ρ1 if there is a monotone
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vertical path between them. The resulting graph is clearly quasi-isometric to

DL(m,m) and is in fact DL(mρ1 ,mρ1) but with the edge length fixed as ρ1
instead of 1.

We remark here that constants that are said to depend only on K,C and

the model geometries often also depend on the discretization scale. This is

because the discretization process effectively replaces the model space with a

graph.

3.3. Shadows, slabs, and coarsenings.

Shadows and projections. Let H be a subset of an y-horocycle, and sup-

pose ρ > 1. By the ρ-shadow of H, denoted Sh(H, ρ), we mean the union of

the vertical geodesic rays that start within distance ρ of H and go down. If H

is an x-horocycle, then the we use the same definition except that the geodesic

rays are going up.

Given a subset of a y-horocycle H, we let π−(H) = ∂−X∩Sh(H, ρ1).

We define π+(H) for a subset of an x-horocycle similarly. Note that we are

suppressing ρ1 in the notation. In any context where π+ or π− are used, ρ1
will be fixed in advance.

The number ∆(H). For a horocycle H in a box B(R), let

∆(H) = min(htop − h(H), h(H)− hbot).

Thus, ∆(H) measures how far H ∩B(R) is from the top and bottom of B(R).

The branching numbers BX and B′X . We define BX to be the branching

constant of X. For solvable Lie groups, BX(n) = n. For Diestal-Leader graphs,

BX(n) = log(n). We use the shorthand B′X for BX(n′).

Measures on the boundary at infinity. Note that the boundaries ∂−(X)

and ∂+(X) are homogeneous spaces and thus have a natural Haar measure.

(This measure is Lebesque measure on R if X = Sol and the natural measure

on the Cantor set if X = DL(n, n).) We normalize the measures by requiring

that the shadow of a point at height 0 has measure 1. These measures are all

denoted by the symbol | · |. Note that for any point p ∈ X,

(2) |π−({p})|e−BXh(p) = 1.

The parameter β′′. We choose an arbitrary β′′ with β′′ � 1, with the

understanding that ε and θ will be chosen so that ε � β′′ and θ � β′′. The

parameter β′′ will be fixed until Section 5.5.

Slabs. The objects we refer to as slabs will always be subsets of the part of

the box B(R) that is at least 4κ2β′′R from the boundary of B(R), will always

be defined in reference to a horocycle H in B(R), and are always contained in
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Sh(H, ρ). We give definitions only for slabs in shadows of y horocycles; those for

x horocycles are analogous and can be obtained by applying an appropriate flip.

If we choose h2 < h1 < h(H), a slab in B(R) below H is the subset Sl12(H) that

is defined to be the subset of the shadow of H that is between heights h2 and h1.

Recommendation to the reader. The remainder of this subsection might

be omitted on first reading.

Coarsening. In order to work with more regular sets, we define an opera-

tion to coarsen subsets of either boundary.

Let a1, a2 be two points in a (log model) hyperbolic plane (which we

think of as the xz plane in Sol). Let h+(a1, a2) be the height at which vertical

geodesics leaving a1 and a2 are one unit apart. This function clearly extends to

the lower boundary of the hyperbolic plane. We further extend the function to

Sol by letting h+(p1, p2) = h+(πxz(p1), πxz(p2)), where πxz(x, y, z) = (x, z). If

I = [a, b] is an interval, we write h+(I) for h+(a, b). Note that we can define h−
similarly in a yz plane. For DL(n, n), we define h+(a1, a2) as the height in Tn at

which vertical geodesics leaving a1 and a2 meet. Again h− is defined similarly.

The operation of coarsening replaces any set F by a set Cz(F ) that is a

union of open intervals of a certain size depending on z. For F ⊂ ∂−X and

z ∈ R, let Cz(F ) denote the set of x ∈ ∂−X such that there exists x′ ∈ F with

h+(x, x′) < z. Similarly, for F ⊂ ∂+X and z ∈ R, let Cz(F ) denote the set of

y ∈ ∂+(X) such that there exists y′ ∈ F with h−(y, y′) > z.

Generalized slabs. Given two sets E+⊂∂+X and E−⊂∂−X and two heights

h2 < h1, we define a set

S(E−, E
+, h2, h1) = {(x, y, z) such that h2 < z < h1 and x ∈ E−, y ∈ E+}.

In words, S(E−, E
+, h2, h1) is the set of points on geodesics joining E+ to

E− with height between h1 and h2. We refer to these sets as generalized slabs,

though in general their geometry can be very bad, depending on the geometry

of E+ and E−. Generalized slabs will always be subsets of the part of the box

B(R) which is at least 4κ2β′′R from the boundary of B(R), even if this is not

explicit in our specification of E+ and E−. In particular, slabs as defined above

are special cases of generalized slabs, with SL1
2(H) = S(π−(H), SY , h2, h1),

where h2 < h1 < h(H).

Clearly boxes are very special generalized slabs, and we prefer to work

in general with generalized slabs that are unions of boxes. One can obtain a

generalized slab that is a union of boxes by coarsening E+ and E−. Let h3
and h4 be two additional heights, and consider S(Ch3(E−), Ch4(E+), h2, h1).

Observe that as long as h3 ≤ h2 and h4 ≥ h1, we have

S(E−, E
+, h2, h1) = S(Ch3(E−), Ch4(E+), h2, h1).
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We will need some information concerning the geometry of coarse enough

generalized slabs.

Lemma 3.5. Choose h3 ≥ h1 and h4 ≤ h2. Then any generalized slab of

the form S(Ch3(E−), Ch4(E+), h2, h1) is a union of boxes of size h1−h2. In the

DL(m,m) case, S(Ch3(E−), Ch4(E+), h2, h1) is a disjoint union of boxes of size

h1 − h2. In the Sol case, S(Ch3(E−), Ch4(E+), h2, h1) is not a disjoint union

of boxes, but any such set contains a disjoint union of boxes of height h1 − h2
that contain 1

25 of the volume of S(Ch3(E−), Ch4(E+), h2, h1). Furthermore, the

number of vertical geodesics in S(Ch3(E−), Ch4(E+), h2, h1) is comparable to

Vol((Ch3(E−), Ch4(E+), h2, h1))

h1 − h2
eBX(h1−h2);

i.e., it is comparable to the area of the cross-section times eBX(h1−h2)

Proof. That S(Ch3(E−), Ch4(E+), h2, h1) is a union of boxes is clear from

the definition of coarsening. In the DL(m,m) case, the set between h1 and h2 is

a disjoint union of boxes of size h1−h2, so the result follows. For Sol, one proves

the result by considering the set W = S(Ch3(E−), Ch4(E+), h2, h1)∩h−1(z) for

any z ∈ (h2, h1). It is clear that W is covered by its intersection with boxes

of size h1 − h2, all of which are rectangles of the same size and shape. Using

the Vitali covering lemma, one finds a subset of the boxes that cover a fixed

fraction of the measure of W . Since the volume of S(Ch3(E−), Ch4(E+), h2, h1)

is the area of the cross section times h1 − h2, we are done.

The claim concerning numbers of vertical geodesics is obvious for a box.

The proof, in general, can be reduced to that case using the earlier parts of

this lemma. �

3.4. The trapping lemma. In this subsection we state some results relating

to areas, lengths, and shadows. These are used in the proof of Theorem 5.24.

Some similar statements are contained in [EFW12, §5.2].

Lemma 3.6. Let Q be a subset of an x-horocycle H . Then π−(Q) = π−(H)

and

`(Q) ≈ |π−(H)||π+(Q)|,

where by `(Q) we mean the length of the intersection of the 3ρ neighborhood of

Q with H , and the implied constants depend on ρ.

Proof. This follows from (2). �

Lemma 3.7. Suppose γ ⊂ B(R) is a path. Let L be a Euclidean plane

intersecting B(R), and suppose U ⊂ L ∩B(R). Suppose also that any vertical

geodesic segment from the bottom of B(R) to the top of B(R) that intersects
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U also intersects the ρ-neighborhood of γ. Then,

`(γ) ≥ c(ρ) Area(U).

(In the above, c(ρ) is a constant, and both the length and the area are measured

using the X(n) metric.)

Proof. First note that if L′ is another Euclidean plane, and U ′ is the

(vertical) projection of U on L′, then Area(U ′) = Area(U).

Now subdivide γ into k segments of length ρ. Let xi be the midpoints of

such a segment. Let Ri be a rectangle at the same height as i, such that xi is in

the center of Ri and the sides of the rectangle have length 2ρ. Then the X(n)-

area ofRi is independent of i and the projection of the union of theRi to Lmust

cover U . Therefore k > c2(ρ) Area(U), and hence `(γ) > c1(ρ) Area(U). �

Lemma 3.8 (Trapping Lemma). Suppose ρ1 � C , φ : X(n) → X(n) is

a (κ,C) quasi-isometry and H is a subset (not necessarily connected) of an

x-horocycle in X(n).

Suppose Q is a subset of a finite union of horocycles in X(n) such that

the κρ1-neighborhood of φ(Q) intersects every vertical geodesic starting from

the ρ1-neighborhood of H and going down. Then

`(Q) ≥ c1`(H),

where c1 = c1(ρ1).

Proof. Discretize H on the scale ρ1, and apply Lemma 3.7. �

Lemma 3.8 is sufficient for applications to DL(n, n). For applications to

Sol, we will need a generalization that is stated in the next subsection.

3.5. Tangling and generalized trapping. The following (obvious) result

about DL graphs is used implicitly in the proof of Theorem 5.24.

Lemma 3.9. Suppose ρ > 1 and p and q are two points in DL(n, n).

Suppose also p ∈ Sh(H, ρ), q ∈ Sh(H, ρ)c. Then any path connecting p to q

passes within ρ of H .

Proof. The point is simply that if πT is the projection to the tree Tn+1

transverse to H, then πT (Sh(H, ρ)) is exactly the set directly below the unique

point x which is ρ units above the projection of πT (H). And removing x

disconnects Tn+1. �

The lemma above is false for the case of Sol. We will need the following

variant. Fix an integer ρ > 100 for the remainder of this section.

Definition 3.10 (Tangle). Let H be a horocycles. We say that a path γ̄

tangles with H within distance D if either γ̄ intersects the ρ neighborhood of
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H or

τ(γ̄, H) =

D
ρ∑
j=1

`(γ̄ ∩ {p : ja ≤ d(p,H) ≤ (j + 1)3ρ})
ν(ja)

> 100.

Here ν(r) is the volume of the ball of radius r in the hyperbolic plane. Infor-

mally, in order for the path γ̄ to tangle with the horocycle H, γ̄ has to spend

a lot of time near H, with the closest approaches to H carrying more weight.

We say γ̄ tangles with a finite union of horocycles H within distance D if∑
H∈H

τ(γ̄, H) > 100,

where D is implicit in our definition of τ .

We first state an easy lemma to illustrate situations in which paths can

be forced to tangle with a horocycle.

Lemma 3.11. Let ρ be as above, and let H be horocycle in Sol. Suppose p

and q are two points in Sol such that p ∈ Sh(H, ρ/3) and q ∈ Sh(H, ρ)c. Then

any path from p to q of length less than L tangles with H at distance log(L).

Proof. This is an easy hyperbolic geometry argument applied to the pro-

jection of the path a hyperbolic plane transverse to H. �

For our applications, we require a more technical variant of Lemma 3.11.

In our arguments, we deal with Sh(H, ρ1), where ρ1 is the discretization scale.

For this reason, Sh(H, ρ13 ) is not a good notion and we need to specify the set

we consider differently. Given an horocycle H and constant D′, we say a point

p is D′-deep in Sh(H, ρ) if p is more than D′ below H and more than D
9 from

the edges of the shadow.

Lemma 3.12. Let ρ be as above, and choose constants ρ � D1 � D2.

Let H be a horocycle, and suppose p and q are two points in Sol such that p is

D2-deep in Sh(H, ρ) and q ∈ Sh(H, ρ)c. Then any path from p to q of length

less than eD1 tangles with H within distance D2.

Proof. This is an easy hyperbolic geometry argument applied to the pro-

jection of the path a hyperbolic plane transverse to H. �

For a family F of vertical geodesic segments, we let ‖F‖ denote the area

of F ∩ P , where P is a Euclidean plane intersecting all the segments in F . (If

there is no such plane, we break up F into disjoint subsets Fi for which such

planes exist, and we define ‖F‖ =
∑
i ‖Fi‖.)

Lemma 3.13 (Generalized Trapping Lemma). Let ρ � D2 be constants

as above. Suppose F is a family of vertical geodesic segments, and suppose Q

is a subset of a finite union H of horocycles. Suppose also that for each γ ∈ F ,

γ tangles with H within distance D2 and that γ is contained in N(Qc, D2).
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Then, `(Q) ≥ ω‖F‖, where ω depends only on κ,C, n, and the constants in

the definition of tangle.

Proof. We assume P is a Euclidean plane intersecting all the geodesics in

F ; the general case is not much harder. Let S(r) = {p : r ≤ d(p,Q) ≤ r+a}.
Then, |S(r)| = c `(Q)ν(r), where c depends only on a. Then, we have by

[EFW12, Prop. 5.4],

`(Q) =
|S(r)|
cν(r)

≥ ω1
|(S(r))|
ν(r)

≥ ω1

∫
F∩P

`(γ ∩ (S(r)))

ν(r)
dγ

≥ ω2

∫
F∩P

`(γ) ∩ S(r))

ν(r)
dγ,

where we have identified the space of vertical geodesics with P and ω1 and ω2

depend only on (κ,C, a). After writing r = ja, summing the above equation

over j and using the assumption that γ tangles with H within distance D2 and

is contained in N(Qc, D2) for all γ ∈ F , we obtain that `(Q) ≥ ω|F ∩ P | as

required. �

4. Improving almost product maps

In this section, we make some arguments that improve the information

available concerning φ|Bi(R) where i ∈ Ig. More or less, by throwing away an-

other set of small measure, we show that φ maps many slabs to particular nice

generalized slabs. We also show that the map q can be taken to be a linear map.

Recommendation to the reader. The reader may wish to skip this section

on first reading and continue reading assuming that φ|Ui is b-standard or within

O(εR) of a b-standard map. All the results in this section are somewhat

technical in nature.

4.1. Bilipschitz in measure bounds. It is clear that the image of a slab

under a product map is a generalized slab and that the image of a slab under a

b-standard map is a slab. We need to work instead with images of slabs under

almost product maps. Given an almost product map φ : B(R)→Sol one wants

to understand the image of SL1
2(H). In general, there is not an obvious relation

between φ(Sl12(H)) and S(f(π−(H)), g(SY ), q(h2), q(h1)). We will show that

this is true, at least up to sets of small measure, for appropriately chosen slabs,

once we coarsen the image of the slab. To this end we let h = h(H) and fix a

height h1 < h. We define

(3) ”SL
1

2(H) = S(Cq(h1)(f(π−(H))), Cg(h2)(g(SY )), q(h2), q(h1)).

Note that ”SL
1

2(H) is a union of boxes of size q(h1) − q(h2). When the choice

of H is clear, we suppress reference to H and consider h1, h2. We also write h

for h(H).
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In this section, we prove two lemmas that show we can restrict attention to

SL1
2(H) that are almost entirely in U∗ and whose (coarsened) image is mostly

a collection of boxes contained in (a small neighborhood) of the image of U∗.

Terminology. In order to discuss properties of “Sl
1

2(H) without fixing ei-

ther the orientation of H or the almost product map on Bi(R), we intro-

duce some terminology. This terminology is justified by comparison with the

case where “Sl
1

2(H) is a slab. We refer to the direction in z that goes from

q(h2(H)) to q(h(H)) as towards the horocycle and the opposite direction as

away from the horocycle. Similarly, there is a direction, either x or y, that one

can think of as being along the horocycle where the other direction is transverse

to the horocycle. If H is an x horocycle and our product map is of the form

(x, y, z)→(f(x), g(y), q(z)), then x is along the horocycle and y is transverse

to the horocycle.

Let φ be an (ε,R) almost product map and φ̂ the corresponding (partially

defined) product map. The following equation follows from the definitions. It

says that the image of the intersection of certain slabs with the good set is

essentially contained in a corresponding slab:

(4) φ(Sl12(H) ∩ U∗) ⊂ NO(εR)φ̂(SL1
2(H) ∩ U∗) ⊂ NO(εR)(”SL

1

2(H)).

The following two lemmas yield a strengthening of the equation above. The

first lemma provides a lower bound on the measure of Sl12(H) ∩ U∗ and so on

the measure of NO(εR)(”SL
1

2(H)) for most choices of H. The second lemma

provides an upper bound on NO(εR)(”SL
1

2(H)) and even NO(ρ1)(
”SL

1

2(H)) for a

more restricted set of choices of H. To do this, we actually need to modify”SL
1

2(H) in a way that we describe in Lemma 4.2.

Given any subset A ⊂ B(R) and any constant d < 1, we denote by Ad the

intersection of A with the points in B(R) more than dR of the ∂B(R).

Lemma 4.1. Given β′ � β � α� 1, there exist constants c1, c2 depend-

ing on ε, θ and β′ and a subset E∗∗ of SX with |SX \E∗∗| ≤ c1(θ, ε, β′)|SX | with

the following properties. Given a y-horocycle H intersecting B(R) more than

2κβ′R away from ∂B(R) and with π−(H) containing a point of E∗∗ and any

slab SL1
2(H) such that β′R > |h1(H)−h2(H)| > βR, 4βR > |h(H)−h1(H)| >

2αR, we have

(5) |SL1
2(H) ∩ U∗| ≥ (1− c2(θ, ε))|SL1

2(H)|.

Our current notion of “Sl
1

2(H) is a bit too coarse. In particular, there can

be points in this set that are O(R) away from φ(SL1
2(H)). We introduce some

notations needed to describe a subset of “Sl
1

2(H) that can be controlled more

easily. Given a set D ⊂ B(R), we denote by SY ∩D the set in SY consisting of
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y coordinates of points in D. We then define‹Sl
1

2(H,D) = S(Cq(hc)(f(π−(H))), Cg(h2)(g(SY ∩D)), q(h2), q(h1)).

The fact that we only intersect the y coordinate with D is not an accident; it

is due to the fact that we consider sets that are “large” in the y direction and

“small” in the x direction.

Lemma 4.2. Given β′′ � β′ � β � α � 1, there exist constants c3, c4
depending on ε, θ and β′ and a subset E∗ of SX with |SX \ E∗| ≤ c3(θ, ε)|SX |
with the following properties. For any y-horocycle H0 intersecting B(R) more

than 4κ2β′′R away from ∂B(R) with π−(H0) containing a point of E∗, consider

all horocycles H in S = S(π−(H0), SY , h(H0), h(H0) + β′′R)∩U∗ with π−(H)

containing a point of E∗ and any constants β′R > |h1(H) − h2(H)| > βR,

4βR > |h(H)−h1(H)| > αR such that the slab SL1
2(H) is also contained in S.

Letting ‹Sl
1

2(H) = ‹Sl
1

2(H,φ(S)), we have

(6) |‹Sl
1

2(H) ∩Nρ1(φ(U∗ ∩ SL1
2(H)))| ≥ (1− c4(θ, ε))|‹Sl

1

2(H)|.

For i = 3, 4, we have ci(θ, ε) = ci(θ, ε)→ 0 as ε→ 0 and θ → 0.

Saying H0 intersects B(R) more than 4β′′2R from ∂B(R) is the same as

saying H0 intersects the box B((1 − 2β′′)R) with the same center as B(R).

The point is to stay away from the edge of the box. See the remarks in the

definition of slabs and generalized slabs.

While the proof of Lemma 4.1 is essentially an application of the Vitali cov-

ering lemma, the proof of Lemma 4.2 depends on the fact that quasi-isometries

roughly preserve volume. We will also need this fact to deduce some corollaries

from Lemmas 4.1 and 4.2. We recall a precise statement from [EFW12].

Proposition 4.3. Let φ : X→X ′ be a continuous (κ,C) quasi-isometry.

Then for any a� C , there exists ω1 > 1 with logω1 = O(a) such that for any

U ⊂ X ,

ω−11 |φ(Na(U))| ≤ |Na(U)| ≤ ω1|Na(φ(U))|,
where Na(U) = {x ∈ X : d(x, U) < a}.

As explained in [EFW12], this fact holds much more generally for metric

measure spaces that satisfy relatively mild conditions on the growth of balls.

Before proving the lemma, we state and prove a corollary concerning mea-

sures of cross sections. We note that by the definitions of the measures on the

boundary, for a generalized slab S(E−, E
+, h2, h1), and h1 < z < h2, the

area (or equivalently volume) of the O(1) neighborhood of the cross section at

height z (i.e., of S(E−, E
+, h2, h1) ∩ h−1(z)) is |Cz(E+)||Cz(E−)|.

Corollary 4.4. Assume that H satisfies the hypotheses of Lemmas 4.1

and 4.2. Let w1, w2 be such that 2καR < |h(H) − w1| < 2
κβR and 2κβR <



884 ALEX ESKIN, DAVID FISHER, and KEVIN WHYTE

|w2 − w1| < 1
2κβ

′R. Then

(7) |Cw1(f(π−(H)))||Cw2)(g(SY ∩ S))| ≥ ω|π−(H)||SY |

and

(8) |Cw1(f(π−(H)))||Cw2(g(SY ∩ S))| ≤ b|π−(H)||SY |,

where ω and b depend only on κ and C .

Proof of Corollary. Note that from the structure of U and the fact that φ

is a quasi-isometry, it follows that for z1, z2 ∈ SZ , we have

(9)
1

2κ
|z1 − z2| −O(εR) < |q(z1)− q(z2)| ≤ 2κ|z1 − z2|+O(εR).

In particular, q is essentially monotone (up to O(εR) error).

Given w1, w2 as in the corollary, there exist heights h1(H) and h2(H) satis-

fying the hypotheses of Lemmas 4.1 and 4.2 such that q(h1(H))=w1, q(h2(H))

= w2. We apply those lemmas to the resulting SL1
2(H) and ‹Sl

1

2(H).

Let Vol′(X) = |Nρ1(X)| with εR � ρ1 � C. Recall that |h1 − h2| > βR

for some β � ε. By Lemma 3.5 and the fact that the measure of the O(εR)

neighborhood of a box of size βR is comparable to the measure of a box of size

βR, we have

(10) (1− c) Vol′(NO(εR)(
‹Sl

1

2(H))) ≤ Vol′(‹Sl
1

2(H)),

where c is a constant that depends only on ε
β and that goes to 0 as ε goes to

zero.

Note that (4) continues to hold when we replace “Sl
1

2(H) by ‹Sl
1

2(H). There-

fore, by (4) and (6), we have

(11)

(1− c3)(1− c) Vol′(›SL
1

2(H)) ≤ (1− c) Vol′(φ(Sl12(H) ∩ U∗)) ≤ Vol′(›SL
1

2(H)),

But by Proposition 4.3 and (5),

(12) ω−11 Vol′(SL1
2(H)) ≤ Vol′(φ(Sl12(H) ∩ U∗)) ≤ ω1 Vol′(SL1

2(H)),

where ω1 depends only on (κ,C). Now (7) and (8) follow from (12), (11), (9),

and the fact that the volume of a sufficiently coarsened generalized slab is the

area of the cross section times the difference in height. �

4.2. Proof of Lemmas 4.1 and 4.2. We first prove a preliminary estimate.

Lemma 4.5. Given p1, p2 in U∗, then

h+(φ(p1), φ(p2)) = q(h+(p1, p2)) +O(εR).

Proof. By the definition of U∗ we can find p̃i in U∗ with πxz(p̃i) = πxz(pi)

and vertical geodesic segments γi ⊂ U going up from p̃i, which come within

O(1) at h+(p1, p2). Since each γi is in U , each φ(γi) is within O(εR) of a
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vertical geodesic γ̃i and the γ̃i come within O(εR) of one another only at

h+(φ(p1), φ(p2)) + O(εR). But by the definition of the product map, γ̃1 is

within O(εR) of γ̃2 at q(h+(p1, p2)). �

Proof of Lemma 4.1. Let c2 = c2(ε, θ) be a constant to be chosen later.

Fix i < j. Let E1 ⊂ SX be such that for x ∈ E1, there exists a horocycle

Hx such that x ∈ Ix ≡ π−(Hx) and (5) fails for some slab SL1
2(Hk) as in the

statement of the lemma. Note that by assumption SL1
2(Hk) ⊂ B(R). Thus we

have a cover of E1 by the intervals Ix. Then, by the Vitali covering lemma

there are intervals Ik = π−(Hk) such that the inequality opposite to (5) holds

for Hk,
∑
k |Ik| ≥ (1/5)|E1|, and also the Ik are strongly disjoint, i.e., for j 6= k,

d(Ij , Ik) ≥ (1/2) max(|Ij |, |Ik|). Then the sets SL1
2(Hk) are also disjoint. By

construction, | SL1
2(Hk)∩U c∗ | ≥ c2|Sl12(Hk)|. Summing this over k, we get that

|B(R) ∩ U c∗ | ≥ c2
∑
k

|SL1
2(Hk)| ≥ (c2/2)

∑
k

|h1(Hk)− h2(Hk)||Ik||SY |.

Since |B(R) ∩ U c∗ | ≤ θR|SX ||SY |, we get

|E1| ≤ 5
∑
k

|Ik| ≤
10θ

β′c2
|SX |.

If c1c2β
′ = 20θ, this implies that |E1| < c1

2 |SX |. So letting E∗∗ = SX\E1,

we are done. �

Proof of Lemma 4.2. We construct E∗ as a subset of E∗∗ from Lemma 4.1,

so any H satisfying the hypotheses of Lemma 4.2 satisfies the conclusions of

Lemma 4.1.

We now show that ‹Sl
1

2(H) ⊂ φ(B(R)). Recall that H0 is more than

4κ2β′′R from the edge of B(R). By definition,‹Sl
1

2(H) = S(Cq(hc)(f(π−(H))), Cg(h2)(g(SY ∩S)), q(h2), q(h1)).

Since S ⊂ U∗, for any y ∈ SY ∩S there is a point p = (x, y, z) ∈ S such that φ

maps p to within O(εR) of (f(x), g(y), q(z)) with x in π−(H). The point p is

at most β′′R from H0, and φ(p) is within O(εR) of a vertical geodesic γ that

stays within O(εR) of the image of a vertical geodesic through p. Note that

any point q in S(f(π−(H)), g(SY ∩ S), q(h2), q(h1)) is on a vertical geodesic

γ′ that stays within εR of the image of a geodesic that passes through S and

therefore through H0. The point φ(p) is within κβ′′R of where the geodesics

γ and γ′ come within O(εR) since p is within β′′R of the point where the

corresponding geodesics in the domain come close. This implies that q is

within 3.1κβ′′R of φ(p). By the definition of coarsening, this implies that any

point in S(Cq(hc)(f(π−(H))), Cg(h2)(g(SY ∩S)), q(h2), q(h1)) is within 4κβ′′R of

φ(p). By our assumptions on S and p, this shows that ‹Sl
1

2(H) ⊂ φ(B(R)).
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Let c3 = c3(ε, θ, β
′) be a constant to be chosen later. Let E2 ⊂ SX \E1 be

such that for x ∈ E2, there exists a horocycle Hx such that x ∈ Ix ≡ π−(Hx)

and (6) fails. Thus we have a cover of E1 by the intervals Ix. Then, by the

Vitali covering lemma there are intervals Ik = π−(Hk), such that the inequality

opposite to (6) holds for Hk instead of H,
∑
k |Ik| ≥ (1/5)|E2|, and also the Ik

are strongly disjoint, i.e., for l 6= k, d(Il, Ik) ≥ (1/2) max(|Il|, |Ik|).
We now claim that

(13) φ(Sh(Hk, O(1))c ∩ U∗) ∩ ‹Sl
1

2(Hk) = ∅.

Indeed, suppose p ∈ Sh(Hk, O(1))c ∩ U∗ and φ(p) ∈ ‹Sl
1

2(Hk). By the defini-

tion of “Sl
1

2(Hk), π−(φ(p)) ⊂ Cq(hc(H))(f(π−(Hk))). Hence, by the definition

of coarsening, there exists p′ ∈ Sh(Hk, O(1)) ∩ U∗ such that h+(φ(p), φ(p′)) =

q(hc(H)) + O(1). Since p1 ∈ Sh(Hk, O(1))c and p2 ∈ Sh(Hk, O(1)), we have

h+(p1, p2) > h(Hk) +O(1). This contradicts Lemma 4.5, and thus (13) holds.

The same argument shows that the sets ‹Sl
1

2(Hk) are disjoint.

Suppose p ∈ ‹Sl
1

2(Hk), q(h2(Hk))+O(εR) < h(p) < q(h1(Hk))−O(εR), and

p 6∈ NO(εR)(φ(SL1
2(Hk)∩B(R))). We claim that p 6∈ φ(U∗). Indeed, if p = φ(p′)

where p′ ∈ U∗, then by (13), p′ 6∈ Sh(Hk, O(1))c. But since h2(Hk) < h(p′) <

h1(Hk), we have p′ ∈ SL1
2(Hk) ∩ B(R). This is a contradiction, and hence

p 6∈ φ(U∗). This implies that φ(U∗∩SL1
2(Hk)

c)∩“Sl
1

2(Hk) contributes negligibly

to the measure of “Sl
1

2(Hk); i.e., the contribution goes to zero as ε goes to zero.

So to complete the proof, we need only control Vol′(‹Sl
1

2(Hk) ∩ φ(B(R) ∩ U c∗)).
Thus, since we are assuming the opposite inequality to (6), we have

Vol′(‹Sl
1

2(Hk) ∩ φ(B(R) ∩ U c∗)) ≥ c3|‹Sl
1

2(Hk)|. But then, using the disjointness

of the ‹Sl
1

2(Hk), we get

Vol′(φ(B(R) ∩ U c∗)) ≥ c3
∑
k

|“Sl
1

2(Hk)| ≥ (c3)(1− c) Vol′(φ(SL1
2(Hk) ∩ U∗))

(14)

≥ ω3c3
∑
k

|SL1
2(Hk) ∩ U∗| ≥ ω4c3βR

∑
k

|Ik||SY |.

The first inequality is our assumption. The second uses equation (11). The

third is Proposition 4.3 and also uses the fact that each Ik contains a point of

SX \ E1 to conclude that |SL1
2(Hk) ∩ U∗| ≥ (1/2)|SL1

2(Hk)|.
Since by Proposition 4.3, Vol′(φ(B(R) ∩ U c∗)) ≤ ω5θR|SX ||SY |, we get

|E2| ≤ 5
∑
k

|Ik| ≤
ω6θ

c3β
|SX |.

And so |E2|< c1
2 , provided c3c1β=2ω6θ. So after letting E∗ = SX\E1∪E2,

the proof is complete. �
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4.3. The map on heights. Suppose B(R) ⊂ X(n) is a box, and suppose

φ : B(R) → X(n′) is an (ε, θ) almost-product map. Then by definition, there

exist a partially defined product map φ̂ = (f, g, q) and a subset U ⊂ B(R)

with |U | ≥ (1− θ)|B(R)| such that

(15) d(φ|U , φ̂) = O(εR).

Proposition 4.6 (Map on heights). Let β � β′ � β′′ � 1 be as in

Section 4.1. Write B(R) = SX ×SY × [hbot, htop]. Suppose the following hold :

• hbot < zbot < ztop < htop.

• 4βR ≤ |ztop − zbot| ≤ β′R.

• |htop − ztop| > 4κ2β′′R.

• |zbot − hbot| > 4κ2β′′R.

Then there exists a set S⊂B(R) as in Lemma 4.2 and a function ε′ =

ε′(ε, θ) with ε′ → 0 as ε→ 0 and θ → 0 such that for all z ∈ [zbot, ztop],

q(z) = Az − 1

B′X
log
|Cq(zbot)(g(SY ∩S))|

|SY |
+O(ε′R),

where A = BX(n)/BX(n′) = BX/B
′
X is the ratio of branching constants. In

particular, if n = n′, then A = 1.

Remark. In all applications of Proposition 4.6, we change q by O(ε′R) in

order to have (4.6) hold with no error term.

Remark. For any n, n′ there exists a standard map φ̂ = (f, g, q) : X(n)→
X(n′) with q(z) = Az. For solvable groups, φ̂ is simply a homothety. For

Diestal-Leader graphs, it is given by collapsing levels.

The rest of this subsection will consist of the proof of Proposition 4.6.

Apply Lemmas 4.1 and 4.2 to get a set E∗ ⊂ SX . Let H,H0 be y horocycles

that satisfy the conditions of Lemmas 4.1 and 4.2 with h(H0) > h(H) >

ztop. In particular, π−(H) contains a point of E∗. Choose an arbitrary z ∈
[zbot, ztop], and let h1 = z, h2 = zbot. For the remainder of this subsection we

simplify notation by writing g(SY ) for g(SY ∩S).

Lemma 4.7. There exists a function ε′ = ε′(ε, θ) with ε′ → 0 as ε→ 0 and

θ → 0 such that the following hold. Let F denote the set of vertical geodesic

segments in SL1
2(H), and let F̂ denote the set of vertical geodesic segments in‹Sl

1

2(H). Then there exist a subset F ′ ⊂ F with |F ′| ≥ (1/2)|F| and a map

ψ : F ′ → F̂ that is at most eε
′R to one. Also there exists a subset F̂ ′ ⊂ F̂ with

|F̂ ′| ≥ (1/2)|F̂ | and a map ψ̂ : F̂ ′ → F that is at most eε
′R to one. Hence,

(16) log |F| = log |F̂ |+O(ε′R).

Proof. Let c2 be as in (5). We let F ′ be the set of vertical geodesics in

SL1
2(H) that are more than O(εR) from the edges and that spend at least
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1 − √c2 fraction of their length in U∗. Then, by (5), |F ′| ≥ (1/2)|F|. Now

since φ is an almost-product map, for each γ ∈ F ′ there exists a geodesic γ̂ ∈ F̂
such that φ(γ ∩ U∗) is within O(εR) of γ̂. We define ψ(γ) = γ̂. The map ψ is

at most eO(εR+
√
c2R) to one since two geodesics with the same image must be

within εR of each other whenever they are in U∗. By assumption, there exist

points in U∗ on each geodesic within O(
√
c2R) of htop and hbot.

The construction of the “inverse” map ψ̂ is virtually identical, except that

one uses (6) instead of (5) and c3 instead of c2. In the end, we can choose

ε′ = O(ε+
√
c2 +

√
c3). �

Lemma 4.8. For all z ∈ [zbot, ztop],

q(z)− q(zbot) = A(z − zbot) +O(ε′R)

Proof. We count vertical geodesics using Lemma 4.7. Note that

|F| ∼ |π−(H)||SY |eBX(h1−h2)

and by Lemma 3.5, |F̂ | is comparable to

|Ch1(f(π−(H))||Ch2(g(SY ))|eBX′ (q(h1)−q(h2)),

where as above, h1 = z, h2 = zbot. Then, by (16),

q(h1)−q(h2) = A(h1−h2)+
1

B′X
log
|Cq(h1)(f(π−(H)))||Cq(h2)(g(SY ))|

|π−(H)||SY |
+O(ε′R).

Now by Corollary 4.4, the logarithm is bounded between two constants which

depend only on κ and C. �

Proof of Proposition 4.6. Choose h1 = (ztop + zbot)/2, h2 = zbot. By

Lemma 4.1 there exists a horocycle H ′ with h(H ′) = ztop so that (7) and (8)

hold for H ′. Then

(17) log
|Cq(h1)(f(π−(H ′)))||Cq(zbot)(g(SY ))|

|π−(H ′)||SY |
= O(1).

By Lemma 4.5, equation (2), and the fact that we coarsen below the horocycle,

we see that

log
|Cq(h1)(f(π−(H ′)))|e−B′Xq(h(H′))

|π−(H ′)|e−BXh(H′)
= O(εR).

Since h(H ′) = ztop, after rearranging we get

1

B′X
log
|Cq(h1)(f(π−(H ′)))|

|π−(H ′)|
= q(ztop)−Aztop +O(εR).

Substituting into (17), we get

(18)
1

B′X
log
|Cq(zbot)(g(SY ))|

|SY |
= Aztop − q(ztop) = Azbot − q(zbot),
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where we have used Lemma 4.8 for the last equality. Now Proposition 4.6

follows from (18) and Lemma 4.8. �

5. Proof of Theorem 2.1

In this section we prove Theorem 2.1. The basic strategy is to show that

for most horocycles H intersecting φ−1(B(L′)), the image φ(H) is within εR

of a horocycle, at least for most of its measure. This argument occupies the

first four subsections. Section 5.5 completes the proof in a manner analogous

to [EFW12, §5.4].

A key ingredient in our proofs is Lemma 5.19. The reader should think of

this “illegal circuit lemma” as a generalization or strengthening of the “quadri-

laterals lemma” [EFW12, Lemma 3.1]. The greater generality comes from

making weaker assumptions on the paths forming the “legs” of the “quadrilat-

eral.” Lemma 5.19 is used much like [EFW12, Lemma 3.1] to show that points

along a horocycle must map by φ to points approximately along a horocycle.

Recommendation to the reader. We recommend that the reader read this

section first assuming that, for each i ∈ Ig, the map φ restricted to Ui in Bi(R)

is within O(εR) of a b-standard map. Under this assumption, the construction

of the Ŝ-graph can be omitted since it suffices to consider only the S-graph.

The reader will find that proofs in Sections 5.2 and 5.3 simplify somewhat under

this hypothesis, but the main arguments in Section 5.4 remain essentially the

same.

The primary difficulty that occurs here in dropping the assumption that

φi|Ui is within O(εR) of a b-standard map is in guaranteeing that the map

preserves the “divergence conditions” on pairs of vertical geodesics required to

control paths by the methods of Section 5.3.

5.1. Constructing the Ŝ graph and the H-graph. Given a “good enough”

horocycle H mostly contained in φ−1(B(L′)), in this section we construct a

graph that we use to control φ(H). To begin, we choose constants and make

precise the notion of a “good enough” horocycle.

Choosing constants. Let φ : X(n) → X(n′) be a (κ,C) quasi-isometry.

Choose ρ1 � C, and discretize on scale ρ1 as described in Section 3.2. Let

BX (resp. BX′) be the branching constant of the resulting graph, and let

B = max{BX , BX′}. Let ε > 0 and θ > 0 be constants to be specified below,

let L′ be sufficiently large so that Theorem 2.2 applies, and fix a box B(L′).

We call the graph that is the discretization of B(L′) the S-graph.

We now apply Theorem 2.2 to B(L′). We fix ε� α� β � β′ � β′′ and

apply the arguments described in Section 4 to each box Bi(R) for i ∈ Ig, as in

the conclusion of Theorem 2.2, to obtain sets (E+
∗ )i ⊂ ∂+X and (E−∗ )i ⊂ ∂−X.
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After replacing the set Ui from Theorem 2.2 with a slightly smaller set, we can

make sure that for all (x, y, z) ∈ Ui, x ∈ (E+
∗ )i, y ∈ (E−∗ )i. We still have

|Ui| ≥ (1 − δ0)|Bi(R)|, where δ0 → 0 as ε → 0 and θ → 0. As remarked

following Proposition 4.6, we further modify qi so that it satisfies (4.6) with no

error term. This makes φ̂i within O(ε′R) of φ where ε′ goes to zero as ε → 0

and θ → 0.

We then choose 0 < η � 1 such that ρ1 � 1/η. (We mean that for any

function f(ρ1) and any quantity u which is labeled O(η) in the argument, f(ρ1)

is much less than 1.)

We then choose ρ2 � ρ1 so that f(ρ1)/B
ρ2 � η, where f(ρ1) is any

function of ρ1 that arises during the proof. Now pick ρ3, ρ4, ρ5 so that ρ2 �
ρ3 � ρ4 � ρ5.

Choose 0 < δ0 � 1 so that ρ5 � 1/δ0. The last inequality means that

for any function f(ρ5) and any function g(δ0) going to 0 as δ0 → 0 that arise

during the argument, f(ρ5)g(δ0) � 1. We also assume that 1/η � 1/δ0; i.e.,

for any quantity u labeled O(η) and any function of g(δ0) going to 0 as δ0 → 0

that arises during the proof, we have f(δ0)� u.

Recap. We have

C � ρ1 � ρ2 � ρ3 � ρ4 � ρ5 � (1/δ0).

Also,

ρ1 � 1/η � 1/δ0

and

ρ5 � ε′R� R� L′.

We do not assume, for example, that eε
′Rδ0 is small.

Note. We assume eε
′R � L′. Both of these are consequences of the proof

of Theorem 2.2. We always assume that any path we consider has length O(L′),

which is much smaller then eε
′R.

The sets U ′ and U . Let Ui, i ∈ Ig be as in the second paragraph of this

subsection. Let U ′ =
⋃
i Ui. Then |U ′c ∩ φ−1(B(L′))| ≤ 2δ0|φ−1(B(L′))|.

Let U ′′ denote the subset of φ−1(B(L′)) that is distance at most ρ1 from

U ′. Then |U ′′| ≥ |U ′| ≥ (1 − δ′0)|φ−1(B(L′))|. Also note that since ρ1 � ε′R,

for i ∈ Ig, the restriction of φ to U ∩Bi(R) is an (ε′R+ ρ1, θ)-almost product

map. We define a set U by U c = Nρ5+ρ1(U ′′c). An elementary covering lemma

argument shows that |U | ≥ (1−δ′′0)|φ−1(B(L′))| where δ′′0 goes to zero with δ′0.

Favorable horocycles. We define a horocycle H to be favorable if H does

not stay within β′′R of the walls of the Bi(R), and also

|H ∩ U ′| ≥ (1− δ′′′0 )|H ∩ φ−1(B(L′)).

We call H very favorable if the same holds with U in place of U ′.
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Remark. If a horocycle is very favorable, any horocycle within ρ5 of it is

favorable.

Lemma 5.1. There exists θ̂ > 0 such that the fraction of B(L′) that is

contained in the image of a very favorable x-horocycle, and a very favorable

y-horocycle is at least (1 − θ̂). Here θ̂ is a function of δ0 and β′′ that goes to

0 as δ0 → 0 and β′′ → 0.

Proof. This is immediate from the construction. �

Notation. For most of the argument, we fix a very favorable horocycle

H, whose image φ(H) intersects B(L′). For notational simplicity, we assume

that H is a y-horocycle. We also fix a favorable horocycle H0 so that ρ5/2 <

d(H,H0) < ρ5 and H ⊂ Sh(H0, ρ1).

The sets Ig(H), B̃ and U∗. Let Ig(H) denote the set of indices i ∈ Ig such

that

(19) |H ∩ U ′ ∩Bi(R)| ≥ (1− δ′′0)|H ∩Bi(R)| > 0.

Now let B̃ =
⋃
i∈Ig(H)Bi(R), and let U∗ = U ′ ∩ B̃.

Good and bad boxes. We refer to boxes Bi(R) with i ∈ Ig(H) as “good

boxes”, and to boxes Bi(R) intersecting H with i ∈ I \ Ig(H) as “bad boxes.”

Shadows of H and φ(H). Let h1 = h(H) − (α + β)R and h2 = h(H) −
(α + β + β′

2 )R. For each i ∈ Ig, we let hi0 to be specified below be such that

(α+ β
2 )R < |h(H)−hi0| < (α+β)R. For each B(R)i intersecting H, we denote

W (H)i = h−1(h0)∩Sh(H0, ρ1). For all bad boxes, we fix hi0 = h(H)−(α+β)R.

For good boxes, hi0 will be fixed during the proof of Lemma 5.2 below. For

each Bi(R) intersecting H with i ∈ Ig, we let

Ŵ (H)i = {(x, y, z)|x ∈ Cq(h1)(f(π−(H0)), y ∈ Cq(h2)(g(SY ∩Y ), z = q(h0)}.

Let W (H) = ∪i∈IW (H)i and Ŵ (H) = ∪i∈IgŴ (H)i. We define these sets in

terms of H0 not H so as to be able to consider points above H in certain

arguments below. Recall q is fixed so that the O(ε′R) term in Proposition 4.6

is 0. We let R′i = h(H) − hi0. We frequently suppress reference to i in our

notation for R′ and h0.

Shadow vertices. We now define a set of shadow vertices in the discretiza-

tion of X(n′). By shifting the discretization, we can assume that Ŵ (H) con-

tains a ρ1 net of S-vertices. Every S-vertex in Ŵ (H) is a shadow vertex. If

some vertical geodesic going down β′R from s contains a point of φ(U ′) below

h1 and s is not within 10κε′R of an edge of Ŵ (H), then we call s a good

shadow vertex. Any S-vertex in Ŵ (H) that is not a good shadow vertex is a

bad shadow vertex. We now add additional shadow vertices, not necessarily in
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Ŵ (H). We also make any S vertex in Nρ1φ(U∗
c∩W (H)) a bad shadow ver-

tex, even if it is a good shadow vertex by our previous definition. The bad

shadow vertices in Nρ1φ(U∗
c∩W (H)) are not necessarily close to Ŵ (H), even

if they come from good boxes. While these bad shadow vertices are not well

controlled, they make up a small proportion of all shadow vertices and so do

not interfere with our arguments; see Lemma 5.2.

For either good boxes or bad boxes, the number of shadow vertices coming

from Bi is proportional to the length of H∩Bi. The proportionality constant

depends only on κ,C and the geometry of the model spaces.

Lemma 5.2.There is a constant c4(δ0,ε
′) such that, for appropriate choices

of hi0, only c4 fraction of all shadow vertices are bad and c4 goes to zero as δ0, ε
′

go to zero.

Proof. Bad shadow vertices are defined in two stages. First we have the

set S1 of vertices in Ŵ (H)i not within 10κε′R of an edge and not within βR of

a point in φ(U ′) below h0. That this set has small measure in Ŵ (H)i follows

from two facts. First, the subset within 10κε′R of the boundary has measure

going to zero with ε′. Second, if S1 contains θ fraction of the vertices in Ŵ (H)i,

then the set of points on geodesics going down β′R from S1 contains θ
2 fraction

of the measure of ‹Sl
1

2(H0). But φ(U ′) contains 1−c4 of the measure in ‹Sl
1

2(H0)

by Lemma 4.1, so this implies that θ < 2c4. Since c4 goes to zero with ε′ and

δ0, this implies |S1| goes to zero with them as well.

In the second stage, we enlarge the set of bad vertices in Ŵ (H) by adding

the set Nρ1φ(U ′c∩W (H))) to the set of bad vertices. The fraction of shadow

vertices coming from bad boxes, being proportional the the fraction of the

length of H in bad boxes, clearly goes to zero as δ0 goes to zero. So it suffices

to control the size of Nρ1φ(U c∗∩W (H)i)). To show that W (H)i∩U c∗ contains

a small fraction of the measure of W (H)i, we use the flexibility in our choice

of hi0. Here we make this flexibility explicit by letting W (H)i(h
i
0) be the

set of possible W (H)i’s, parametrized by choices of hi0. Let ρ(hi0) be the

fraction of W (H)i(h
i
0) contained in W (H)i∩U c∗ . Consider the slab SL1

2(H0)

with h1 = (α + β
2 )R and h2 = h(H) − (α + 2β)R. Since all W (H)i(h

i
0) are

contained in SL1
2(H), using Lemma 4.1, we have that

(α+β)R∑
h0=(α+β

2
)R

ρ(h0) ≤ 2c3(ε
′, θ),

which implies that for some hi0, we have ρ(h0) < 2
√
c3. We fix some hi0 with

this property.

Lastly we need to see that this contribution remains small relative to

the number of good shadow vertices coming from Bi(R). To see this, we use
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Corollary 4.4, which implies that |W (H)i| ∼ |Ŵ (H)i| for constants depending

only on κ and C. Combined with Proposition 4.3, this implies that the ratio

of |Nρ1φ(U c∗∩W (H)i))| to the number of good vertices in Ŵ (H)i goes to zero

with ε′ and δ0. �

The Ŝ-graph. It is convenient to modify the S-graph near the image of H.

For x ∈ ∂−X, y ∈ ∂+X, and t ∈ [q(h0), q(h(H0))− ρ5
4 ], let γx,y(t) = (x, y, t) so

that γx,y is a vertical geodesic segment of length q(h(H0))− ρ5
4 − q(h0). Let Ki

be the union of γx,y where x, y, q(h0) ∈ Ŵ (H)i. We begin by replacing Ki as

a subset of the S graph by the disjoint union of the γx,y. We then define the

Ŝ graph by defining a new set of vertices and a new incidence relation on Ki.

For 1 ≤ j ≤ q(h(H0))− ρ5
4 − q(h0)/ρ1, let tj = qi(h0) + jρ1. We introduce pre-

vertices along each γx,y at each tj . An irregular Ŝ-vertex will be an equivalence

class of pre-vertices. Each pre-vertex has coordinates {x, y, tj}. At each height

level tj in X ′(n), we tile the y-horocycle by by disjoint segments Ty of length

10ρ1. At each height level q−1(tj) in X(n), we tile each x horocycle by disjoint

segments Tx of length 10κ2ρ. (These tilings are best thought of as tilings of

horocycles in the corresponding trees or hyperbolic planes.) We identify two

pre-vertices if

(1) their projections to the yt plane are in the same Ty and

(2) the points (fi
−1(x), qi

−1(tj)); (fi
−1(x′), qi

−1(t′j)) are in the same Tx;

(3) π−(Tx) ∩ f((E∗∗−)i) contains at least half the measure in π−(Tx).

Any segment ending at a bad shadow vertex is removed. The Ŝ-vertices

that are S-vertices outside of Ki are called regular.

The cloud of an Ŝ-vertex. Note that for any Ŝ-vertex v, h(v) and the

y-coordinate of v are well defined. For an irregular Ŝ-vertex, the x coordinate

is “fuzzy.” More precisely, the cloud of an Ŝ-vertex v is the set of points

at height h(v) that are on the vertical segments incident to v. Then for a

regular Ŝ-vertex, the cloud is essentially a point (it has size O(ρ1)), whereas

for an irregular Ŝ-vertex, the cloud can have size Dε′R, where D is a constant

depending only on κ,C, and the model geometry.

The set φ̂(H ′). Note that if H ′ is within ρ4 of H, then the set φ̂i(H
′) con-

sisting of the Ŝ-vertices v with qi(h(H ′)) = h(v) +O(ρ1) and the x-coordinate

of H ′ is f−1i (v) +O(ρ1) is well defined. (The notation is explained by the fact

that for any v ∈ φ̂i(H ′), φ̂−1i (v) is within O(ρ1) of H ′.) We then define φ̂(H ′)

to be
⋃
i∈Ig φ̂i(H

′).

Lemma 5.3. There exist constants Ml and Mu depending only on κ,C

such that for any two Ŝ-vertices v1 and v2 in B(L′), the ratio of the number
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of vertical geodesics in B(L′) passing through v1 to the number of vertical

geodesics in B(L′) passing through v2 is bounded between Ml and Mu.

Proof. The proof is mainly a computation of the valence of (i.e., the num-

ber of vertical paths incident to) an irregular vertex. We give the proof in the

DL case first. In the DL case, the valence of a regular vertex is clearly eB
′
XL
′

and we will see that irregular vertices have the same valence. For Sol, the

valence of regular vertices can vary by a factor of 2 due to edge effects. This

same factor of 2 occurs in the first step of the computation below.

Let htop denote the height of the top of B(L′), and let hbot = htop − L′
denote the height of the bottom of B(L′). Suppose v is an irregular vertex in

Ki. We can choose a horocycle H ′ so that v ∈ φ̂i(H ′), hence qi(h(H ′)) = h(v).

Note that by definition, π−(H ′) contains a point in E∗∗. Then the number of

paths going up from v to the height htop is ≈ eB′X(htop−h(v)). Now the number

of paths going down from v to Ŵ (H) (at height h0) is

≈ |Cqi(h0)(fi(π−(H ′)))|e−B′Xqi(h0) by (2),

≈ |Cqi(h0)(fi(π−(H ′)))|e−BXh0
|Cqi(h2)(gi(SY ∩ S))|

|SY |
by Proposition 4.6,

≈ |π−(H ′)|e−BXh0 by Corollary 4.4,

≈ eBX(h(H′)−h0) by (2),

= eB
′
X(h(v)−qi(h0)) by Proposition 4.6.

Thus the total number of paths going down from v to hbot is ≈ eB′X(h(v)−hbot),

and thus the total number of paths incident to v is ≈ eB′XL as required. �

The H-graph. An irregular Ŝ-vertex v ∈ Ki is an H-vertex if and only if

qi(h(H)) = h(v) +O(ρ1) and the x-coordinate of H is f−1i (v) +O(ρ1). These

vertices are called “good.” (Note that for any good H-vertex v ∈ Ki, φ̂
−1
i (v)

is within O(ρ1) of H.)

We also declare the “bad” H-vertices to be the bad shadow vertices. These

are always regular Ŝ-vertices. The “good” and “bad” vertices thus defined com-

prise all the vertices of the H-graph. An edge of the H-graph is a vertical path

in the Ŝ-graph that either connects two H-vertices or connects an H-vertex to

the top or bottom of the box B(L′). An edge with one endpoint at the top or

bottom of the box is called an leaf edge.

We will count edges with multiplicity. An edge has multiplicity equal to

the number of vertical paths in the Ŝ-graph that contain it.

Notation. We denote the H-graph by G(H). Let V denote the set of

vertices of G(H), and let E denote the set of edges. Let V1 ⊂ V denote the

set of “good” vertices as defined above. We call an H vertex y oriented (resp.
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x oriented) if the horocycle segment containing it is a y horocycle (resp. x

horocycle). We also refer to an orientation for Ŝ vertices, which is just the

orientation of H vertices in the same box.

Lemma 5.4. The valence of H vertices is bounded between two constants

Ml and Mu depending only on κ,C and the model geometries. Furthermore

|V1| ≥ (1− c5)|V|, where c5 = c5(ε
′, δ0) goes to zero with δ0 → 0 and ε′ → 0.

Proof. The first statement of the lemma is immediate from Lemma 5.3.

To show the final claim, let F denote the set of vertical paths passing through

the good shadow vertices. By definition, every such path is incident to a good

H-vertex, and also every vertical path incident to a good H-vertex belongs

to F . Thus F is also equal to the set of vertical paths incident to good shadow

vertices. Let A denote the set of good shadow vertices. Since the valence of

each H-vertex is between Ml and Mu times the valence of each good shadow

vertex, we have Ml|A| ≤ |F | ≤ Mu|A| and Ml|V1| ≤ |F | ≤ Mu|V1|. Thus,

|V1| ≥ (Ml/Mu)2|A|. But by Lemma 5.2, |V \ V1| ≤ c4|A|, where c4(ε
′, δ0)→ 0

as ε′ → 0 and δ0 → 0. Thus, |V \ V1| ≤ (Ml/Mu)2c4|V1|. �

5.2. Averaging over the H-graph. In order to make our geometric argu-

ments in the next section, we need to show that the paths and configurations

we consider in the H graph do not involve any bad shadow vertices; i.e., to

show that these paths and configurations only come near the horocycle in the

good set, at places where we have control over the map φ. In this section we use

multiple applications of the Vitali covering lemma in order to guarantee that

“most” configurations in the H-graph avoid bad shadow vertices. A key fact

is that while neither Sol nor DL(m,m) satisfy the sort of doubling condition

needed for the Vitali covering lemma, the space of vertical geodesics does.

Choose 0 < θ3 < θ4 � 1. The θ’s will be functions of δ0 that go to 0 as

δ0 → 0.

Definition 5.5 (Good Edges). The following defines sets of “good” edges.

See also Definition 5.6.

E1: Either connects two vertices in V1 or is a leaf edge based on a vertex of V1.
E3: An E1 edge e such that for for all Ŝ-vertices x ∈ e, 1 − θ3 fraction of the

edges (forward) branching at x are in E1. (Note that x is not supposed to

be a vertex of the H-graph.)

E4: An E3 edge such that for any Ŝ-vertex x ∈ e, 1 − θ4 fraction of the edges

reverse branching from x are in E1.

Remark. There are E2 edges, they will be defined below in Section 5.3.

Choose 1� ν3 > ν2 > 0. The ν’s will be functions of δ0 that tend to 0 as

δ0 → 0.
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Definition 5.6 (Good Vertices). The following defines sets of “good” ver-

tices. See also Definition 5.5.

V1: The set of “good” vertices as defined in the previous section.

V2: In V1 and 1− ν2 fraction of the outgoing edges are in E1.
V3: In V2 and 1− ν3 fraction of the outgoing edges are in E4.
V4: In V3 and is not a strange vertex (see Definition 5.13).

Lemma 5.7. If L′ � L, we can choose a horocycle H such that for the

H-graph G(H), 1− δ1 fraction of vertices are in V1. Here, δ1 is a function of

δ0 that tends to 0 as δ0 → 0.

Proof. Note that φ−1(B(L′)) has small boundary area (compared to the

volume). Now tile φ−1(B(L′)) by boxes B(L). Since L′ � L, most boxes are

completely in the interior of φ−1(B(L′)).

Let U denote the set where we know the map is locally standard (but could

be right side up or upside down). Note that for every box B(L), |U ∩B(L)| ≥
0.999|B(L)|.

This implies that for most H,

|H ∩ φ−1(B(L′)) ∩ U| ≥ 0.99|H ∩ φ−1(B(L′))|.

Then for such H, V1, which consists of vertices on φ(H)∩B(L′)∩φ(U), satisfies

the conditions of the lemma. �

We now fix H such that Lemma 5.7 holds.

Lemma 5.8. At least 1−ε1 fraction of the edges of G(H) are in E1. Here,

ε1 is a function of δ0 that tends to 0 as δ0 → 0.

Proof. Recall that m ≤ M(v) ≤ M , where M(v) is the degree of v. This

implies that
1

m
≤ |V(H)|
|E(H)|

≤ 1

M
.

Since each edge not in E1 must be quasi-incident on a vertex not in V1
and each vertex is incident to at most M edges, we have

|Ec1| ≤ 2M |Vc1|.

Combined with equation (5.2) this implies

|Ec1|
|E(H)|

≤ 2
M

m

|Vc1|
|V(H)|

.

Thus the lemma follows from Lemma 5.7. �

Lemma 5.9. At least 1 − δ2 fraction of the vertices of G(H) are in V2.

Here, δ2 is a function of δ0 that tends to 0 as δ0 → 0.

Proof. This follows immediately from Lemma 5.8. �
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Lemma 5.10. At least 1−ε3 fraction of the edges of G(H) are in E3. Here,

ε3 is a function of δ0 that tends to 0 as δ0 → 0.

Proof. In view of Lemma 5.9, it enough to prove that for any v ∈ V2,
almost all the edges outgoing from v belong to E3.

Suppose v ∈ V2. Let E(v) denote all the edges that are incident to v. We

know that most edges in E(v) belong to E2; i.e.,

(20) |Ec2 ∩ E(v)| ≤ δ2|E(v)|.

Let Av = E(v) ∩ Ec3 denote the edges outgoing from v that are not in E3. We

know that for any e ∈ Av, there exists x ∈ e such that at least θ3 of the edges

branching from e at x are not in E1. Thus there exists a neighborhood U of e

such that

|Ec2 ∩ U ∩ E(v)| ≥ θ3|U ∩ E(v)|.

We thus get a cover of Av by U ’s. Then by Vitali’s covering lemma, there

exists disjoint Uj such that ∑
j=1

|Uj | ≥
1

2
|Av|.

Thus,

|Av| ≤ 2
∑
|Uj | ≤

2

θ3

∑
|Uj ∩ Ec2 ∩ E(v)| ≤ 2

θ3
|Ec2 ∩ E(v)|.

Then, by (20),

|Av| ≤
2δ2
θ3
|E(v)|.

We now choose θ3 = ε3 =
√

2δ2. �

Lemma 5.11. At least 1−ε4 fraction of the edges of G(H) are in E4. Here,

ε4 is a function of δ0 that tends to 0 as δ0 → 0.

Proof. It follows immediately from Lemma 5.10 that 1 − 2ε3 proportion

of the for nonleaf edges have the reverse branching property.

Let α = ε
1/6
1 . If the proportion of the leaf edges is at most α, we are

already done (with ε4 = 2ε3 + α). Thus we may assume that the proportion

of leaf edges is at least α.

Let Y be the set of all vertical paths in B(L) going from top to bottom,

and let Y ′ ⊂ Y be the subset consisting of paths that pass through a vertex

not in V1. Let D(γ) = 1 if γ ∈ Y ′ and D(γ) = 0 otherwise. By Lemma 5.8, we

have

(21)
∑
γ∈Y

D(γ) ≤ 2ε1|E(H)|.
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From (21), ∑
γ∈Y

D(γ) ≤ ε1|E(H)| ≤ ε1
α
|Eleaf |,

where Eleaf ⊂ E(H) denotes the set of leaf edges. For a point v ∈ ∂B(R), let

Yv denote the set of geodesics emanating from v. We get∑
v∈∂B(R)

∑
γ∈Yv

D(γ) ≤
∑

v∈∂B(R)

ε1
α
|Eleaf(v)|,

where Eleaf(v) denotes the set of leaf edges emanating from v. Let θ′ = ε
2/3
1 ,

and let

P =

v ∈ ∂B(R) :
∑
γ∈Yv

D(γ) > θ′|Eleaf(v)|

 .
Note that∑

v∈P
|Eleaf(v)| ≤

∑
v∈P

1

θ′

∑
γ∈Yv

D(γ) ≤ 1

θ′

∑
v∈Y

D(γ) ≤ ε1
αθ′
|Eleaf |.

Thus, since we choose α and θ′ so that ε1
αθ′ � 1, it is enough to prove that for

v 6∈ P , most of the edges in Eleaf(v) are in E4.
Now assume v 6∈ P . Thus, we have∑

γ∈Yv
D(γ) < θ′|Eleaf(v)|.

Choose θ4 = ε
1/12
1 . Let Av = Eleaf(v) ∩ Ec4 denote the leaf edges outgoing

from v that are not in E4. We know that for any e ∈ Av, there exists x ∈ e
such that at least θ4 of the edges branching from e at x are not in E2. Thus

there exists a neighborhood U ⊂ Yv with e ∈ U such that

|Ec2 ∩ U | ≥ θ4|U |.

Hence, using the definition of E2,∑
γ∈U

D(γ) ≥ θ2θ4|U |.

We thus get a cover of Av by U ’s. Then by Vitali, there exists disjoint Uj such

that ∑
j=1

|Uj | ≥
1

2
|Av|.

Thus,

|Av| ≤ 2
∑
j

|Uj | ≤
2

θ2θ4

∑
j

∑
γ∈Uj

D(γ) ≤ 2

θ2θ4

∑
γ∈Yv

D(γ) ≤ 2θ′

θ2θ4
|Eleaf(v)|.

Since θ2 = ε
1/2
1 , 2θ′

θ2θ4
= ε

1
12
1 and the lemma follows. �
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Lemma 5.12. At least 1 − δ4 fraction of the vertices of G(H) are in V3.

Here, δ4 is a function of δ0 that tends to 0 as δ0 → 0.

Proof. This follows from Lemma 5.11. �

Let H∗ be an horocycle intersecting B(L′). We say that an S-vertex on w

on H∗ is marked by a V1 H-vertex v if the cloud of v contains a point of H∗,

and also h(v) = h(H∗) +O(ρ2), and also the coordinates of v and w along H∗
must agree up to O(ρ2). (In particular the orientation of v must be such that

the coordinate of v along H∗ is not “fuzzy.”)

Definition 5.13 (Strange Vertex). An H-vertex v ∈ V3 is called strange if

there is an horizontal segment (i.e., piece of horocycle) K marked by v such

that more then 1−ν4 fraction of the S-vertices on K are marked by H-vertices

that are V1 but not in V3.

Lemma 5.14. At least 1 − δ6 fraction of the vertices of G(H) are in V4
(i.e are in V3 and not strange). Here, δ6 is a function of δ0 that tends to 0 as

δ0 → 0.

Proof. Let v1, . . . , vm be the strange vertices, and let K1, . . . ,Km be horo-

cycle segments marked by the strange vertices. The Ki are not quite uniquely

defined, but we address this issue below.

Note that the number of H-vertices that can mark a given S-vertex is

O(ρ2). Indeed, any two such vertices must be within O(ε′R) of each other,

which means that they must have come from the same good box, which implies

that heights and their transverse coordinates must agree. (Recall that the ver-

tices that come from near the edges of a good box are automatically not in V1.)
The same argument shows that one can choose the horocycle segments Ki

so that for i 6= j, d(Ki,Kj) > 3Dε′R. Now we can apply the Vitali covering

lemma to the Ki. This lemma applies since each Ki is one-dimensional and

the different Ki do not interact with each other. Also, the density of the V1
vertices that are not in V3 is small by Lemma 5.12. This implies that the

strange vertices are a small fraction of all the vertices. �

5.3. Circuits.

The projection πH and the function ρH(·, ·). Let H be a horocycle. Let

πH : Sol→ H2 denote the orthogonal projection to the hyperplane orthogonal

to H. We let ρH(p, q) = (πH(p)|πH(q))πH(H) be the Gromov product of πH(p)

and πH(q) with respect to πH(H) in H2. Recall that for three points x, y, z in

a metric space X, the Gromov product is defined as

(y|z)x =
1

2
{dX(x, y) + dX(x, z)− dX(z, y)}.
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Let γyz be the geodesic joining y to z. In a δ-hyperbolic space, X satisfies

dX(γyz, x)− δ ≤ (y|z)x ≤ dX(γyz, x);

see, e.g., [GdlH90, Lemma 2.17]. We note the following properties of ρH .

Lemma 5.15. (i) Suppose d(p′, p) � d(p,H), d(q′, q) � d(q,H), and

ρH(p, q)� min(d(p,H), d(q,H)). Then,

ρH(p, q) ≈ ρH(p′, q′).

(ii) Suppose h(p′) < h(p), h(q′) < h(q), the points p and p′ can be connected

by a vertical geodesic, and the same for the points q and q′. Suppose also

d(p,H)� ρH(p, q) and d(q,H)� ρH(p, q). Then,

ρH(p, q) ≈ ρH(p′, q′).

(iii) If ρH(p, q) > s and ρH(q, q′) > s, then ρH(p, q′) > s (up to a small error).

Proof. The statements (i), (ii), and (iii) are standard hyperbolic geometry.

In particular, (iii) follows immediately from the “thin triangle” property. �

In the following lemma, the horocycle H is assumed to be a y horocycle.

An analogous lemma, with a few sign changes, holds for x horocycles.

Lemma 5.16. Suppose p, q ∈ X(n) are connected by a path γ̂ such that

(22) h(x) ≤ h(H)− ρ4 for all x ∈ γ.

Further, assume the initial segments of γ at both p and q are vertical geodesics

going down for length at least ε′R, that γ stays below h(H) − R′ except on

these initial segments, and that the length of γ is less than eε
′R. Then, ρH(p, q)

> Ω(ρ4).

Proof. This is standard hyperbolic geometry applied to πH(γ). �

Notation. An E2 edge is a monotone vertical path in the Ŝ-graph that is

a subset of an E1 edge (or possibly a subset the extension of an E1 edge by at

most ρ4 at each end).

Lemma 5.17. Suppose γ = p0q0 is an E2 edge going up from an x-oriented

irregular Ŝ-vertex (or going down from a y-oriented irregular Ŝ-vertex). Sup-

pose p ∈ γ is within the same Bi(R) as p0, and q ∈ γ is within the same Bi′(R)

as q0 and d(p, p0) and d(q, q0) is at least 10ε′R. Then the following hold.

(i) Except near its endpoints, γ never passes through any irregular Ŝ-vertices.

In other words, in its interior, γ never comes within R′ of a good H vertex.

(ii) We have ρH(φ̂−1(p), φ̂−1(q)) > Ω(ρ4).

Remark. In the above, ρH(φ̂−1(p), φ̂−1(q)) is well defined since for an

Ŝ-vertex v, πH(φ̂−1(v)) is well defined (even though φ̂−1(v) may not be).
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Informal outline of proof. We first outline the proof. We then give the

full argument. Consider φ−1(γ). Note that below height h(H) − R′, φ−1(γ)

cannot move transverse to H because it is of length at most O(L). Because of

this, whenever γ attempts to cross above height h(H)−R′ it must does so in

the image of W (H). Consider the point q′ where it does so. Since γ cannot

hit a bad shadow vertex, q′ must be essentially in U ∩ Bi(R) ∩W (H). But

then, by the definition of the Ŝ-graph, γ must hit an H-vertex. Thus, q′ is

near the endpoint of γ, and thus (i) holds. Now (ii) follows from Lemma 5.16

since we know that φ−1(γ) has not passed above height h(H)−R′ except near

the endpoints.

Proof. Let p1 be the first place where γ hits Ŵ (H). Then, since γ cannot

hit a bad shadow vertex, there exists p′1 ∈ U∗ ∩W (H) such that φ̂(p′1) = p1
and d(φ−1(p1), φ̂

−1(p1)) = O(ε′R). Note that p′1 and φ−1(p1) are both Ω(ε′R)

from the sides of W (H).

Let p′2 be the next point after p′1 when φ−1(γ) intersects B̃∩{x : h(x) =

h(H) − R′} at φ−1(p2). Since γ is an E2 edge and, in particular, a vertical

geodesic, we know d(p′1, p
′
2) is Ω(βR). By the choice of p′2 and the definition of

E2 edge, φ−1γ never hits a shadow vertex between p′1 and p′2. This fact and the

fact that |φ−1(γ)| < O(L) imply that p′2 must be in W (H). Since γ is E2, p′2 is

not a bad shadow vertex and, in particular, is away from the edge of W (H).

Together, this implies that p′2 is in W (H)∩B̃ and that the continuation of γ

past p2 = φ̂(p′2) must, by the definition of the Ŝ and H graphs, hit an H-vertex.

Since γ is an E2 edge and does not contain good vertices in its interior, this

implies that p2 and q0 are in the same box and that the segment from p2 to q0
contains q. Now by Lemma 5.15,

ρH(φ̂−1(p), φ̂−1(q)) = ρH(φ̂−1(p1), φ̂
−1(p2)) ≈ ρH(φ−1(p1), φ

−1(p2)) ≥ Ω(ρ4).

�

Lemma 5.18. Suppose p0q0 is an E2 edge (which goes up from an x-

oriented vertex and down from a y-oriented vertex), ρ3 � s � ρ1, and p

(resp. q) is on γ distance s away from p0 (resp. from q0). Then there exists a

horocycle H ′ such that p and q are within O(ρ1) of φ̂(H ′).

Proof. Choose points p′ and q′ on p0q0 close to where p0q0 enters the re-

spective good boxes. Applying Lemma 5.17 we see that ρH(φ̂−1(p′), φ̂−1(q′)) >

Ω(ρ4). By the usual δ-thin triangle properties, this implies that the geodesic

segments πH(φ̂−1(p))πH(H) and πH(φ̂−1(q))πH(H) stay close for roughly ρ4
units from πH(H). Since d(φ̂−1(p), H) � ρ3 < ρ4 and similarly for φ̂−1(q),

this implies that πH(φ̂−1(p)) and πH(φ̂−1(q)) are within 2δ of the same vertical

geodesic through the point πH(H). But since they are at the same height, this

implies that πH(φ̂−1(p)) = πH(φ̂−1(q)). �
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Suppose H ′ is a horocycle obtained by moving up less than ρ3 from H. Re-

call that the set φ̂(H ′) is a well-defined subset of the Ŝ-graph (see Section 5.1).

We always assume that φ̂(H ′) runs along vertices in the Ŝ-graph (or else project

it). By Lemma 5.18, given any collection of E2 edges with (some) endpoints

on H, we may replace them with E2 edges with (some) endpoints on H ′.

Lemma 5.19 (Illegal Circuit). Suppose n is some finite even integer that

is not too large (we will use n = 4 and n = 6), and for 0 ≤ i ≤ n − 1, pi
are Ŝ-vertices. Also suppose that for 0 ≤ i ≤ n − 1, pi−1pi are subsets of E2
edges, where i − 1 is considered mod n. For 1 ≤ i ≤ n, let r±(pi) denote

the maximum distance the geodesic pi±1pi can be continued beyond pi while

remaining a subset of an E2 edge, and let r(pi) = max(r+(pi), r
−(pi)).

Suppose there is an index k such that r(pk) � ρ4, and for all i 6= k,

r(pi) > r(pk) + 2ρ1. Then pk−1pk and pkpk+1 cannot have only the point pk in

common.

Remark. Roughly, the point of the lemma is that one cannot find a loop

of length O(L) through a point on the horocycle that begins by going up in

two distinct directions unless the loop comes back to the original horocycle.

Proof. Without loss of generality, k = 0. Let H ′ be the horocycle passing

thorough φ̂−1(p0). By Lemma 5.18 and the discussion following, we can con-

sider H ′ in place of H; namely, we can replace all H vertices that occur in our

arguments with vertices in H ′. Let p+i−1 be the first time when pi−1pi leaves

φ̂(B̃ ∩W (H)), and let p−i−1 be the last time when pi−1pi enters φ̂(B̃ ∩W (H))

(so d(pi−1, p
+
i−1) ≈ R′ ≤ R and d(p−i , pi) ≈ R′ ≤ R). By applying Lemma 5.17

to each segment p+i−1, p
−
i , we see that ρH′(φ̂

−1(p+i−1), φ̂
−1(p−i )) ≥ Ω(ρ4).

Now, by assumption, for all i ∈ [0, n− 1] except k = 0,

ρH′(φ̂
−1(p−i ), φ̂−1(p+i )) ≥ 2ρ1,

but for i = 0,

ρH′(φ̂
−1(p−0 ), φ̂−1(p+0 )) ≤ ρ1.

This is a contradiction to Lemma 5.15(iii). �

5.4. Families of geodesics. Let B[λ] be a box in X(n′) of combinatorial

size λ; i.e., the number of edges from the top to the bottom is λ, and the

distance from the top to the bottom is ρ1λ. Let b be the branching number

of each vertex; i.e., the valence of each vertex counting both up and down

branching is 2b. Note that b is related to the the constant B′X of Section 3.3

by b2λ = eB
′
Xρ1λ, so log b = B′Xρ1/2.

Thus the number of Ŝ-vertices on the top edge of B[λ] is bλ, and so is

the number of Ŝ-vertices on the bottom edge. The total number of vertical

geodesics in B[λ] is b2λ.



COARSE DIFFERENTIATION OF QUASI-ISOMETRIES II 903

Lemma 5.20. The number of vertices of the H-graph in B[λ] is at most

c9(ρ1)b
λ.

Proof. Apply Lemma 3.8 with Q the union of the top edge and the bottom

edge of the box. �

Given a box B(D) and a vertical geodesic segment γ of length D in B,

we say γ is through if γ does not hit any H vertex in B. The following lemma

applies to families of geodesics in a box. Note that the geodesics are not

assumed to be part of the H-graph. The point of the lemma is that if too

many paths through the box are blocked by good vertices, then some good

vertex must block many paths. This really only depends on the fact that there

are not too many good vertices in the box.

Lemma 5.21. Let B[λ] be a box of combinatorial size λ. Suppose F is a

family of vertical geodesics (actually monotone paths in the modified Ŝ-graph

going from the top of B[λ] to the bottom) with the following properties :

(a) Each geodesic in F does not hit any bad vertices.

(b) |F| (i.e., the number of geodesics in F) is at least σb2λ, where 0 < σ < 1.

(c) For some ρ ∈ N (we will always use ρ = ρ2), fewer than 1 − c9(ρ1)
bρ b2λ of

the geodesics in F are through (i.e., do not contain any H-vertices in their

interior).

Then there exist a vertex v ∈ V1 not on the bottom edge or within ρ of the

top edge of B[λ], and two geodesics in F that pass through v and stay together

for fewer than ρ Ŝ-edges.

Thus, if σ � c9(ρ1)
bρ , almost all of the geodesics in F are through unless we

have a configuration as described in the conclusion of the lemma.

Proof. Let F0 denote the family of all vertical geodesics on the unmodified

Ŝ-graph, passing from the top of B[λ] to the bottom. Clearly |F0| = b2λ. Note

that B[λ] has λbλ Ŝ-vertices, and each geodesic contains λ Ŝ-vertices. This

implies that each Ŝ-vertex lies on M = bλ geodesics in F0.

Now suppose v is an H-vertex in V1 and v is not on the bottom edge or

within ρ of the top edge. Assuming the conclusion of the lemma fails, then v

can belong to at most Mb−ρ geodesics in F . Thus, using Lemma 5.20, we see

that the total number of geodesics in F that pass through a vertex in V1 in B

is at most

Mb−ρc9(ρ1)b
λ =

c9(ρ1)

bρ
b2λ,

which implies that all but c9(ρ1)
bρ b2λ of the geodesics are through, contradict-

ing (c). �
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Convention. For the remainder of this subsection, we assume that we have

an x horocycle H whose image (at least in some initial box) is x-oriented. The

proof proceeds by extending the set on which the image is horocycle, and so

all points in the H graph we consider will be x-oriented.

The intervals Iλ(v) and I ′λ(v). For any Ŝ-vertex v, let Iλ(v) denote the

set of vertices on the same x-horocycle as v that are within combinatorial

distance 2λ. Let I ′λ(v) denote the set of vertices that can be reached from

v by a monotone path going up for exactly λ steps (so I ′λ(v) is a piece of

y-horocycle). Note that for DL graphs, each point of Iλ(v) is connected to

each point of I ′λ(v) by a monotone path of length λ and for any w ∈ Iλ(v),

Iλ(w) = Iλ(v) and I ′λ(w) = I ′λ(v). For Sol slightly more complicated, variants

of these statements hold. For instance, for any w ∈ Iλ(v), Iλ(w) and Iλ(v)

intersect in a set that contains more than half the measure of each, and the

the relative measure of this intersection in each set is close to one, unless w is

close to an edge of Iλ(v).

Let v be any Ŝ-vertex. Let U(v, λ) denote the set of distinct monotone

geodesic segments in the Ŝ graph going up from v for distance exactly λ. Then

U(v, λ) is the is the set of geodesics joining v to I ′λ(v). Similarly, we let D(w, λ)

be the set of distinct monotone geodesics segments in the Ŝ-graph going down

distance λ from w. If w ∈ I ′λ(v), then D(w, λ) is the set of monotone geodesics

joining w to points in Iλ(v)

Proposition 5.22 (Extension of Horocycles I). Suppose v ∈ V3. Suppose

σ � η � c9(ρ1)/b
ρ2 , and suppose λ is such that at least σ-fraction of the edges

going up from v are E4 edges of length at least λ+ ρ2. Then at least 1−O(η)

fraction of the Ŝ-vertices in Iλ(v) are in fact H-vertices.

Proof. We assume that v ∈ V3 and that φ̂(H) is oriented as an x-horocycle

near v. Let E denote the set of E4 edges coming out of v that have length at

least λ + ρ2. Let Eλ be the set of vertices in I ′λ(v) that are on of λ + ρ2
unobstructed geodesics leaving v. By assumption, we have

(23) |Eλ| ≥ σbλ.

We now let F ′0 =
⋃
w∈Eλ Dλ(v) and let F ′ be all the geodesics segments in

F ′0 that do not contain a bad vertex. Assume for a contradiction that many

geodesics in F ′ are not through, i.e., that (c) of Lemma 5.21 holds for F ′. We

verify that Lemma 5.21(a) and (b) hold for F ′. Since v ∈ V3,

(24) (1− θ4)|Eλ|bλ ≤ |F ′| ≤ |Eλ|bλ.

Note that by (23) and (24), we have |F ′| ≥ σb2(λ). Hence Lemma 5.21(b)

holds. Note that all the geodesics in F ′ end at points of Iλ(v).
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Now by Lemma 5.21 there exist w ∈ V1 with h(w) > h(v) and an Ŝ-vertex

w1 with h(w1) > h(w) and d(w,w1) < ρ2 so that at least two geodesics in F ′
meet at w1 and continue to w (see Figure 2). Let x ∈ I ′λ(v) and y ∈ I ′λ(v) be

the starting points of these two geodesics.

z

v

w

w1

x y

Figure 2. Proof of Proposition 5.22. The filled boxes denote H-vertices.

Let z be the last common point of the geodesics vx and vy. We now apply

Lemma 5.19 to the points 〈w1, x, z, y〉. Note that r(w1) < ρ2 (because of w).

Also by assumption, r(x) ≥ ρ2 > r(w1) and r(y) ≥ ρ2 > r(w1). Note that

h(z) = h(w1), hence r(z) = h(z) − h(v) = h(w1) − h(v) > h(w1) − h(w) =

r(w1). Hence we get a contradiction by Lemma 5.19. Hence we cannot have

condition (c) of Lemma 5.21; therefore all but O(η) of the geodesics in F ′ are

unobstructed. Thus the number of unobstructed geodesics in F ′ is at least

(25) (1−O(η))|F ′| ≥ (1−O(η))(1− θ4)|Eλ|bλ

where we have used (24) to get the second estimate.

Now, let U ′ ⊂ Iλ(v) be the set of Ŝ-vertices (at height h(v)) that are the

endpoints of at least two geodesics in F ′. Since every vertex can be reached

by at most |Eλ| geodesics, we have by (25),

(26) |U ′| ≥ (1−O(η))(1− θ4)bλ;

i.e., then U ′ has almost full measure in Iλ(v).

Now suppose w ∈ Iλ(v) is such that two unobstructed geodesics in F ′ end

at w. Let us denote these geodesics by wx and wy where x, y ∈ I ′λ(v). By

definition of F ′, xv and yv are unobstructed. We now apply Lemma 5.19 to

the points 〈w, x, v, y〉. Note that r(v) = 0 (since v is an H-vertex), and also

that r(x) ≥ ρ2, and r(y) ≥ ρ2. Thus, by Lemma 5.19, we get a contradiction

unless r(w) = 0; i.e., w is an H-vertex. �

If v ∈ V4, then the conclusion is strengthened automatically to imply that

most vertices in Iλ(v) are in V3. This is used in the following proposition.
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Proposition 5.23 (Zero-One Law). Suppose v ∈ V4. Suppose λ is such

that the fraction of the edges in U(v, λ) that are in E4 and are unobstructed for

at least length λ+ρ2 is at least σ � c9(ρ1)/b
ρ2 . Let F =

⋃
w∈Iλ(v) U(w). Then

at least 1−O(η) fraction of the edges in F are unobstructed for length λ+ ρ2.

Proof. As in the previous proposition, let Eλ be the set of vertices in I ′λ(v)

that are on of λ + ρ2 unobstructed geodesics leaving v. Also let U ′ ⊂ Iλ(v)

and F ′ be as in Proposition 5.22.

Now since v is not a strange vertex, the subset U ′′ of Iλ(v) consisting of

V3 vertices in U ′ is of almost full measure in Iλ(v). Let

F ′′ =
⋃

w∈U ′′
U(w) ∩ E2.

(Thus F ′′ consists of all the E2 edges coming out of all the “good” H-vertices

on Iλ(v).) We cut off all the geodesics in F ′′ after they cross I ′λ(v).

We want to apply Lemma 5.21 to F ′′ in the box of size λ, but there

are technical difficulties here in verifying Lemma 5.21. To overcome these

difficulties, we look at a horocircle H ′ that is ρ4 units below H with the same

orientation. By a discussion similar to Lemma 5.18 and following and the

fact that F ′′ consists of edges in E2, we can extend every geodesic segment

in F ′′ by ρ4 on top and bottom in all possible ways to obtain a family F ′long.

We will apply Lemma 5.21 to F ′′long instead. If almost all segments in F ′′long
are unobstructed by H ′, it is immediate that almost all segments in F ′′ are

unobstructed by H ′. We let U ′long be the set of H ′ vertices within ρ4 of U ′.

We have that |F ′′long| ≥ (1−O(η))b2(λ+ρ4), so (b) is satisfied. Also, (a) is

satisfied since the relevant edges are in E2. If (c) does not hold, we are done,

so we assume (c) holds. This implies that the conclusion of the lemma is true,

and we show this yields an illegal circuit (see Figure 3).

v′u1 u2

w1
w2

q

q∗

x1 x2

v

Figure 3. Proof of Proposition 5.23. The filled boxes denote H ′-vertices.
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By Lemma 5.21, there exist an H ′-vertex q with h(q) < h(v)+λ+2ρ4 and

an Ŝ-vertex q∗ with h(q)− ρ2 < h(q∗) ≤ h(q) such that at least two geodesics

in F ′′long come together at q∗. Let these geodesics be u1q∗ and u2q∗ where

for i = 1, 2, ui ∈ U ′long. Let wi = u1q∗∩U ′ denote the corresponding point

in U ′. Since wi ∈ U ′, there exists xi ∈ I ′λ+ρ4(v) such that wixi and xiv are

both E2 and unobstructed. Let v′ denote any point on U ′long that is ρ4 units

below v. We now apply Lemma 5.19 to the points 〈q∗, w1, x1, v, x2, w2〉. Note

that by construction, r(q∗) < ρ2 � ρ3, r(v) = ρ4, and for i = 1, 2, r(wi) = ρ4,

r(xi) ≥ ρ2. Thus by Lemma 5.19, q∗w1 and q∗w2 do not diverge at q∗, which

is a contradiction. �

Theorem 5.24 (Extension of Horocycles II). Suppose v∈V4 is x-oriented.

Let s denote the height difference between v and the top of B(L′), and assume

s > 4κ2β′′R. Then, the density of x-oriented V3 H-vertices along Is(v) is

1−O(η).

Remark. The proof of this theorem is considerably simpler in the case of

DL-graphs as boxes in DL graphs have “no sides.” We give the proof first

in this case. The Sol case is complicated by needing to avoid having paths

“escape off the sides of the box.”

Proof for DL graphs. For an x-oriented V4 vertex w, let f(w, λ) denote

the proportion of edges in U(w) which are E4 and unobstructed for length

λ+ ρ2. Let

f∗(v, λ) = sup
w∈Iλ(v)∩V4

f(w, λ).

In view of Proposition 5.23, for any λ for which f∗(v, λ) ≥ O(η), we have

f∗(v, λ) > 1−O(η).

Thus, either for all 1 ≤ λ ≤ s, f∗j (v, λ) ≥ 1 − O(η), in which case The-

orem 5.24 holds in view of Proposition 5.22 and 5.23, or else there exists

minimal λ such that f∗(v, λ) > 1 − O(η), and also f∗(v, λ + 1) < O(η). Note

that λ > Ω(β′′R) by the definition of good vertices and the Ŝ and H-graphs.

Let w ∈ Iλ(v)∩V4 be such that the sup in the definition of f∗(v, λ) is realized

at w. Hence, by Proposition 5.22(i), all but O(η) fractions of the Ŝ-vertices in

Iλ(w) = Iλ(v) are H-vertices. By the choice of w, at least 1 − O(η) fraction

of the geodesics in U(w) are in E4, unobstructed for length λ + ρ2, and hit

an H-vertex (in V1) at length λ + ρ2 + 1. Thus, in particular, the density of

H-vertices on I ′λ+ρ2+1(w) is at least 1−O(η).

Let ‹H = Iλ(w)∩V1. We consider the family E(w) of monotone geodesic

segments “going up” length L′ from points at height h1 in

Sh(N(φ−1(H̃), O(ε′R))∩H, ρ1)
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and use the behavior of this family to derive a contradiction. We first modify

E(w) by throwing away some bad parts of the set. This modification is unnec-

essary if we are assuming that φ|Ui is within O(ε′R) of a b-standard map. We

throw out any geodesic γ in E(w) whose intersection with SL1
2(H) has more

than 100c
1
2
2 of its measure outside SL1

2(H)∩U∗. By Lemma 4.1, this throws

away at most O(c
1
2 ) of the geodesics in E(w). After this modifications, it fol-

lows that each geodesic in E(w) has ε′-monotone image on an initial segment

of length at least Ω(β′R).

Note that N(φ−1(‹H), O(ε′R))∩H contains a set of large measure in H and

that (Iλ(w)∪I ′λ+ρ2+1(w))∩V1 is contained in the O(ε′R) neighborhood of φ(H).

Since every geodesic in E(w) diverges linearly from H and the initial seg-

ments of all E(w) of length Ω(β′R) > Ω(ε′R) have ε′-monotone image for φ,

we have that any quasi-geodesic in φ(E(w)) diverges linearly from φ(H) and,

in particular, never comes within Ω(β′R) of φ(H).

Let Qu ⊂ I ′λ(w) be the subset of vertices v such that all vertices on I ′λ+ρ2+1

within R
100κ3

−ρ2− 1 are not in V1. Since `(Vc1∩I ′λ+ρ2+1) < O(η)`(I ′λ+ρ2+1), we

have `(Qu)� O(η)`(I ′λ(w)) = O(η)bλ. Any quasi-geodesic in φ(E(w)) crossing

I ′λ(w) does so on Qu.

Similarly, let Qd = Iλ(w)∩Vc1. Note that `(Qd)� O(η)`(Iλ(w)) = O(η)bλ

and that any quasi-geodesic in φ(E(w)) crossing Iλ(w) must cross it on Qd.

Now as all quasi-geodesics in φ(E(w)) diverge linearly from φ(H), they

must all eventually leave the box of size λ bounded by Iλ(w) and I ′λ(w). This

implies that every quasi-geodesic in φ(E(w)) eventually crosses Qu∪Qd or that

every geodesic in E(w) eventually crosses φ−1(Qu∪Qd). This is impossible by

Lemma 3.7, since

(27) `(φ−1(Qu ∪Qd)) ≤ O(η)`(H),

and c(ρ1)O(η)� 1. �

Before reading the proof for Sol, the reader should be sure to read Sec-

tion 3.5.

Proof for Sol. We need to modify the proof given above in two ways in or-

der to avoid “escape off the sides” of the box of size λ. As this is a modification

of the previous proof, we only sketch the necessary changes.

We choose w as in the proof for DL graphs. We remark that it is easy to

see that w can be chosen away from the edge of B[λ]. This can be deduced

from Proposition 5.23. We will assume that we have chosen such a w. It is

also possible to work with w near the edge of the box but that one use a more

complicated definition of points deep in the shadow of horocycles.
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As above we consider ‹H = Iλ(w)∩V1. We consider the family E(w) of

monotone geodesics “going up” length L′ from points at height

h1 ∈ Sh(N(φ−1(‹H), O(ε′R))∩H, ρ1)

and use the behavior of this family to derive a contradiction. We first modify

E(w) exactly as before. We now further modify E(w) to only include those

geodesics whose images at the end of the initial segment are β′R-deep in B[λ].

By this we mean that they are β′R deep in the shadows of the top and bottom

of B(R). This subset still contains a large proportion of the original elements

of E(w). Let Q = Qu∪Qd. Then as before, we see that paths in E(w) can only

come near the top and bottom of B[λ] in N(Qc, β
′R
2κ ).

We now apply the results of Section 3.5 with ρ = ρ1, D1 = ε′R,D2 = β′R
2κ ,

and D3 = λ. By Lemma 3.12, if a path γ ∈ φ(E(w)) leaves the box, it

must tangle with the union of the top and the bottom of the box. Since

γ ∈ N(Qc, β
′R
2κ )), Lemma 3.13 implies

`(Qu ∪Qd) = `(Q) ≥ ω‖E(w)‖,

where ω depends only on κ and C. But we have ‖E(w)‖ ≥ ω′`(H), where ω′

depends only on κ and C. This is a contradiction to (27) if η is sufficiently

small. As before, η can be made arbitrarily small by taking ε′ and δ0 sufficiently

small. �

5.5. Completing the proof of Theorem 2.1.

Proof. By Theorem 1.3, φ−1 of any very favorable horocycle in B(L′) is

within O(ε′R) error of a horocycle. Given θ̂ > 0, Lemma 5.1 implies, by

choosing β′′ and δ0 small enough, that 1− θ̂ of the measure of B(L′) consists of

points in the image of both a very favorable x-horocycle and a very favorable

y-horocycle. By an argument from the proof of [EFW12, Lemma 4.11], this

implies that φ−1 respects level sets of height to within O(ε′R) error.

From this, it is not hard to show that φ−1 of most vertical geodesics are

weakly monotone. This is very similar to the proof of [EFW12, Lemma 6.5].

There are some additional difficulties due to the fact that we only control the

map on most of the measure, but these can be handled in a manner similar to

the proofs of [EFW12, Lemma 5.10 and Cor. 5.12].

Once we know φ−1 of most vertical geodesics are weakly monotone, the

conclusion of the theorem follows as in the proof of [EFW12, Th. 5.1]. �
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