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Recurrence of planar graph limits

By Ori Gurel-Gurevich and Asaf Nachmias

Abstract

We prove that any distributional limit of finite planar graphs in which

the degree of the root has an exponential tail is almost surely recurrent.

As a corollary, we obtain that the uniform infinite planar triangulation and

quadrangulation (UIPT and UIPQ) are almost surely recurrent, resolving

a conjecture of Angel, Benjamini and Schramm.

We also settle another related problem of Benjamini and Schramm. We

show that in any bounded degree, finite planar graph the probability that

the simple random walk started at a uniform random vertex avoids its

initial location for T steps is at most C
log T

.

1. Introduction

A distributional limit of finite graphs Gn is a random rooted infinite graph

(U, ρ) with the property that neighborhoods ofGn around a random vertex con-

verge in distribution to neighborhoods of U around ρ; see precise definitions

below. This limit was defined by Benjamini and Schramm [9]. Their motiva-

tion was the study of infinite random planar maps, a widely studied model in

the probability, combinatorics and statistical physics communities for generic

two-dimensional geometries and quantum gravity. (See [21], [3], [15], [5] and

the references within.) The canonical example of such a limit is Angel and

Schramm’s [5] uniform infinite planar triangulation (UIPT) and is obtained

by taking the distributional limit of a uniform random triangulation on n ver-

tices. Here a triangulation is a simple planar graph in which every face has

three edges.

These authors conjectured that the UIPT is almost surely recurrent (see

[5, Conj. 1.12] and [9, p. 3]). It is shown in [9] that a distributional limit

of uniformly bounded degree finite planar graphs is almost surely recurrent.

However, the degrees of random planar maps and the UIPT are unbounded so

one cannot appeal to this result. In this paper we prove this conjecture.

Theorem 1.1. Let (U, ρ) be a distributional limit of planar graphs such

that the degree of ρ has an exponential tail. Then U is almost surely recurrent.
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Corollary 1.2. The UIPT is almost surely recurrent.

The UIPT’s recurrence conjecture has had strong circumstantial evidence

supporting it. One such evidence is the recent result of Gill and Rohde [17] as-

serting that the natural Riemann surface associated with the UIPT (obtained

by gluing equilateral triangles together according to the combinatorics of the

graph) is almost surely parabolic; that is, Brownian motion on this surface

is recurrent. Another such evidence, found by Benjamini and Curien [6], is

that the UIPT is Liouville; that is, every bounded harmonic function on it is

constant. Every recurrent graph is Liouville, and when G is a bounded de-

gree planar graph the Liouville property implies recurrence [8]. (The bounded

degree condition in the last statement is necessary.)

A popular variation of the UIPT is the uniform infinite planar quadrangu-

lation (UIPQ) and is defined similarly with the role of triangulations replaced

by quadrangulations. This model was constructed by Krikun [18] (see also

[14]) and has received special attention since it is appealing to study it using

bijections with random labeled trees.

Corollary 1.3. The UIPQ is almost surely recurrent.

Our approach allows us to answer another problem posed by Benjamini

and Schramm (Problem 1.3 in [9]). Let G be a finite graph, and consider the

simple random walk on it, (Xt)t≥0, where X0 is a uniform random vertex of

G. Let φ(T,G) be the probability that Xt 6= X0 for all t = 1, . . . , T . For any

D ≥ 1, define

φD(T ) = sup
¶
φ(T,G) : G is planar with degrees bounded by D

©
.

The almost sure recurrence of a distributional limit of planar graphs of bounded

degree (the main result of [9]) is equivalent to φD(T ) → 0 as T → ∞ for any

fixed D. In [9] it is asked “what is the rate of decay of this function?” The

probability of avoiding the starting point for T steps on Z2 is of order 1
log T ,

so this lower bounds φD(T ) since Z2 is a distributional limit of finite planar

graphs. Here we provide a matching upper bound.

Theorem 1.4. For any D ≥ 1, there exists C < ∞ such that for any

T ≥ 2,

φD(T ) ≤ C

log T
.

Our results are related to two active research areas: graph limits and

random planar maps. Let us briefly expand on each in order to introduce

some definitions and background.

1.1. Distributional graph limits. The notion of the distributional limit of

a sequence of graphs was introduced by Benjamini and Schramm [9]. With
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slightly different generality this was studied by Aldous and Steele [2] under

the name “local weak limit” and by Aldous and Lyons [1] under the name

“random weak limit.” This limiting procedure is best suited for graphs with

bounded average degree and is hence natural in the setting of finite planar

graphs. Convergence of sequences of dense graphs requires quite a different

treatment (see [22], [11]) though some interesting connections between the two

are emerging (see [10]).

A rooted graph is a pair (G, ρ), where G is a graph and ρ is a vertex of G.

For any integer r ≥ 0, we write BG(ρ, r) for the ball around ρ of radius r in the

graph distance. The space of rooted graphs is endowed with a natural metric:

the distance between (G, ρ) and (G′, ρ′) is 1
α+1 , where α is the supremum

over all r such that BG(ρ, r) and BG′(ρ
′, r) are isomorphic as rooted graphs.

Let Gn be a sequence of finite graphs, and let ρn be a random vertex of Gn
drawn according to some probability measure on the vertices of Gn. We say

that (Gn, ρn) has distributional limit (U, ρ), where (U, ρ) is a random rooted

graph, if for every fixed r > 0, the random variable BGn(ρn, r) converges in

distribution to BU (ρ, r).

It makes sense to choose the random root according to the stationary

distribution in Gn (in which the probability of choosing a vertex is proportional

to its degree) because then the resulting limit (U, ρ) is invariant under the

random walk measure; that is, (U, ρ) has the same distribution as (U,X1),

where X1 is a uniform random neighbor of ρ. It is also common to choose the

root according to the uniform distribution on the vertices of Gn. This may lead

to a different distributional limit. However, in our setting this does not matter,

as we now explain. Let ρπn and ρun be random roots of Gn drawn according to

the stationary and uniform distributions, respectively. If the average degree of

Gn is bounded by some number D and Gn has no isolated vertices, then it is

immediate that for any event A on rooted graphs, we have P((Gn, ρ
u
n) ∈ A) ≤

DP((Gn, ρ
π
n) ∈ A). Hence, the distributional limit of (Gn, ρ

u
n) is absolutely

continuous with respect to the limit of (Gn, ρ
π
n). In fact, an appeal to Hölder’s

inequality shows that if the degree distribution of Gn has a bounded (1 + ε)-

moment, then the two limits are mutually absolutely continuous with respect

to each other. (However, we do not use this fact in this paper.)

1.2. Random planar maps. Random planar maps is a widely studied topic

at the intersection of probability, combinatorics and statistical physics. We give

here a very brief account of this topic and refer the interested reader to [5],

[21] and the many references within. The enumerative study of planar maps

was initiated by Tutte [30] who counted the number of planar graphs of a

given size of various classes, including triangulations. Cori and Vauquelin [13],
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Schaeffer [28] and Chassaing and Schaeffer [12] provided robust bijections be-

tween planar maps and labeled trees — the specifics of these bijections change

depending on the class of the planar maps considered, and many variations

and extensions are known. The common theme to all of these is that random

planar maps can be constructed from random labeled trees. This approach

has shed a new light on the asymptotic geometry of random maps and spurred

a new line of research: limits of large planar random maps. There are two

natural notions of limits of random planar maps: the scaling limit and the

aforementioned distributional limit.

In the study of scaling limits of random planar maps, one considers the

random finite map Tn on n vertices as a random metric space induced by

the graph distance, scales the distances properly (it turns out that n−1/4 is

the correct scaling) and studies its limit in the Gromov-Hausdorff sense. The

existence of such a limit was first suggested by Chassaing and Schaefer [12],

Le Gall [19], and Marckert and Mokkadem [24], who named it the Brownian

map. The challenges involved in this line of research are substantial. Existence

and uniqueness of the limit are the first step, but even more challenging is the

issue of universality; that is, that random planar maps of different classes

exhibit the same limit, up to parametrization. For the case of random p-

angulations, this research has recently culminated in the work of Le Gall [20],

who established this for p = 3 and all even p, and independently by Miermont

[25] for the case p = 4. It remains open to prove this for all p.

The study of distributional limits, while bearing some similarities, is inde-

pendent of the scaling limit questions. Let Gn be a random planar triangula-

tion and ρn a random vertex chosen uniformly (or according to the stationary

measure, as mentioned above). Angel and Schramm [5] showed that a distribu-

tional limit exists and that it is a one-ended infinite triangulation of the plane

almost surely. They termed this limit as the uniform infinite planar triangu-

lation (UIPT). The uniform infinite planar quadrangulation (UIPQ) was later

constructed by Krikun [18].

The research in this area is focused on almost sure geometric properties

of this limiting geometry. It is an interesting geometry and the comparison

of it with the usual Euclidean geometry is especially striking. It is invariant,

planar and polynomially growing, yet very fractal. Angel [4] showed that a

ball of radius r has volume r4+o(1) and the boundary component, separating

this ball from infinity, has size r2+o(1) (see also [12]). This suggests that the

random walk on the UIPT/UIPQ should be subdiffusive; that is, that the

typical distance of the random walk from the origin after t steps is tβ+o(1) for

some β ∈ [0, 1/2). Benjamini and Curien [7] show that β ≤ 1/3 in the UIPQ;

however, it is believed that the correct value is β = 1/4.
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1.3. Sharpness. Theorem 1.1 is sharp in the following sense. For any

α ∈ (0, 1), there exists a distributional limit of planar graphs (U, ρ) such that

P(deg(ρ) ≥ k) ≤ Ce−ckα for some C, c that is transient almost surely. Indeed,

let Th be a binary tree of height h and replace each edge at height k = 1, . . . , h

from the leaves by a disjoint union of k1/α paths of length 2 (or parallel edges).

In the distributional limit of Th as h → ∞, almost surely, the effective re-

sistance from the root to infinity is at most 2
∑∞
k=1 k

−1/α < ∞; hence, it is

transient. Furthermore, the probability that the degree of a uniformly chosen

vertex of Th is at least k can easily be computed to be of order e−ck
α
.

2. Preliminaries on circle packing and electric networks

2.1. Circle packing. Our proof relies, as in [9], on the theory of circle

packing, which we briefly describe below. We refer the reader to [29] and

[27] for further information on this fascinating topic. A circle packing is a

collection of circles in the plane with disjoint interiors. The tangency graph of

a circle packing is a planar graph G = (V,E) in which the vertex set V is the

set of circles and two circles are neighbors if they are tangent in the packing.

The degree of a circle in the packing is its degree in the tangency graph. See

Figure 1. The Koebe-Andreev-Thurston Circle Packing Theorem (see [29])

asserts that for any finite planar graph G = (V,E), there exists a circle packing

in the plane that has a tangency graph isomorphic to G. Furthermore, if G is a

triangulation, then this packing is unique up to Möbius transformations of the

plane and reflections along lines. We will frequently use a simple but important

fact known as the Ring Lemma [26]. If a circle C is completely surrounded

by D other circles C0, . . . , CD−1 (that is, Ci is tangent to Ci+1 mod D and to

C), then the ratio r/ri between the radius of C and Ci is bounded above by a

constant depending only on D. Thus, in a circle packing of a bounded degree

triangulation (every inner circle is completely surrounded), the ratio of radii of

Figure 1. A circle packing and its tangency graph.
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every two tangent circles is bounded above and below by a constant depending

only on D, with the possible exception of the three boundary circles. The

Circle Packing Theorem and the Ring Lemma are the only facts about circle

packing that we will use in this paper.

2.2. Electric networks. We use some classical facts about electric networks

and their connections to random walks; we refer the reader to [23] for further

information. Let G = (V,E) be a finite graph with nonnegative edge weights

{ce}e∈E . We call these weights conductances, and their inverses, Re = c−1
e ,

are called resistances. (By convention, 0−1 = ∞.) For any two vertices a 6=z,

define the effective resistance Reff(a ↔ z; {Re}) between a and z as the mini-

mum energy E(θ) =
∑
e∈E Re[θ(e)]

2 of any unit flow θ from a to z. The unit

flow attaining this minimum is called the unit current flow. We often write

Reff(a↔ z) when all the conductances are 1.

Given two disjoint sets of vertices A and Z, the effective resistance

Reff(A↔ Z; {Re})

between A and Z is the effective resistance between the two corresponding

vertices in the graph obtained from G by contracting the sets A and Z into

single vertices and retaining the same resistances on the remaining edges. For

convenience, if either A or Z are empty sets, then Reff(A ↔ Z; {Re}) = ∞.

Now we may define effective resistances on infinite graphs — in this case we

will only compute effective resistances between disjoint sets A and Z such that

V \ (A ∪ Z) is finite. A typical example is the effective resistance between a

chosen vertex ρ and the complement of a finite set containing ρ. When G is

infinite, we define the effective resistance from a to ∞ as

Reff(a↔∞; {Re}) = lim
n→∞

Reff(a↔ G \Bn; {Re}),

where {Bn} is any sequence of finite vertex sets that exhaust G. (The limit

does not depend on the choice of exhausting sequence.)

For a function g : V → R, the Dirichlet energy is defined as

E(g) =
∑

e=(x,y)∈E
ce
î
g(x)− g(y)

ó2
.

We will use the dual definition of effective resistance; that is, the discrete

Dirichlet principle (see Exercise 2.13 of [23]) stating that

1

Reff(A↔ Z; {Re})
= min

¶
E(g) : g : V → R, g|A = 0, g|Z = 1

©
.(2.1)

Consider the network random walk (Xn)n≥0 on G with transition prob-

abilities p(x, y) = c(x,y)[
∑
y:(x,y)∈E c(x,y)]

−1, and write Px for the probability

measure of a network random walk started at X0 = x. Write τ for the stopping

time τ = min{n ≥ 1 : Xn ∈ {a, z}}. It is classical (stemming from the fact that
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the minimizer of (2.1) is the unique harmonic function with the corresponding

boundary values; see [23]) that

Reff(a↔ z; {Re}) =
1

Pa(Xτ = z)
∑

y:(a,y)∈E
c(a,y)

.(2.2)

This gives a useful electrical interpretation of recurrence. An infinite net-

work (G; {Re}) is recurrent if and only if Reff(a ↔ ∞; {Re}) = ∞. It is not

too hard to see that this implies the following two useful criteria for recur-

rence/transience. First, an infinite graph is G is recurrent if and only if for

some vertex a there exists c > 0 such that for any integer m ≥ 0, there exists

a finite vertex set B such that

Reff(BG(a,m)↔ G \B; {Re}) ≥ c;(2.3)

see [23, Lemma 9.22]. Secondly, a network is transient if and only if there

exists a unit flow from some vertex a to ∞ with finite energy.

Another classical connection between random walks and effective resis-

tances is known as the commute time identity [23], stating that

Eaτz + Ezτa = 2Reff(a↔ z)
∑
e∈E

ce,(2.4)

where τv is the hitting time of v and Ex is the corresponding expectation

operator of Px. We will also use the following bound, which is an immediate

consequence of (2.2). Given a finite network and three vertices x, y, z, we have

1

Reff(x↔ {y, z})
≤ 1

Reff(x↔ y)
+

1

Reff(x↔ z)
.(2.5)

Finally, we will use the following easy bound.

Lemma 2.1. Let G = (V,E) be a finite network with resistances {Re}
and two vertices a and z. Let A ⊂ V such that a ∈ A and z 6∈ A, and define

RAe = Re for each edge e that has both endpoints in A and RAe =∞ otherwise.

Then

Reff(a↔ z; {Re}) ≤ Reff(A↔ z; {Re}) + max
v∈A

Reff(a↔ v; {RAe }).

Proof. Assume without loss of generality that maxv∈AReff(a ↔ v; {RAe })
< ∞. Consider the unit current flow θA from A to z in (G,Re), and for each

v ∈ A \ {a}, let θv,A be the unit current flow in (G, {RAe }) from a to v. For

each v ∈ A, write

αv =
∑

u:u6∈A,u∼v
θA(v, u).

Since θA is the unit current flow, we have that
∑
v∈A αv = 1 and αv ≥ 0 for all

v ∈ A. We define a new flow θ from a to z in (G,Re) by setting θ(e) = θA(e)
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for any edge e that has at least one endpoint not in A. If e has both endpoints

in A, we set θ(e) =
∑
v∈A\{a} αvθ

v,A(e). This defines a unit flow from a to

z. The contribution to the energy of θ coming from edges having at least one

endpoint not in A is the energy of θA that equals Reff(A ↔ z; {Re}), and the

contribution coming from edges with two endpoints in A is at most∑
e

Re
î ∑
v∈A\{a}

αvθ
v,A(e)

ó2 ≤ ∑
v∈A\{a}

αv
∑
e

Re[θ
v,A(e)]2

=
∑

v∈A\{a}
αvReff(a↔ v; {RAe })

≤ max
v∈A

Reff(a↔ v; {RAe }),

where the first inequality is by Jensen’s inequality. �

3. Distributional limits of bounded degree graphs

and circle packing

Let Gn be a sequence of finite planar graphs of bounded degree, and

assume that it has distributional limit (U, ρ). The main result of [9] is that U

is almost surely recurrent. Our goal in this section is to prove the following

theorem, providing a quantitative bound on the growth of the resistance.

Theorem 3.1. Let (U, ρ) be the distributional limit of finite planar graphs

of bounded degree. Then (U, ρ) almost surely satisfies the following. There

exists c > 0 such that for any k ≥ 0, there exist a finite set Bk ⊂ U with

|Bk| ≤ c−1k and

Reff(ρ↔ U \Bk) ≥ c log k.

We begin with some basic estimates relating circle packing and resistances.

3.1. Circle packing and resistance. Given a circle packing P ={Cv : v∈G}
of a planar graph G = (V,E) and a domain D ⊂ R2, we write VD ⊂ V for the

set of vertices such that their corresponding circles have centers in D. We also

write Beuc(p, r) for the Euclidean ball of radius r around p.

Lemma 3.2. Let P = {Cv : v ∈ G} be a circle packing of a finite planar

graph G = (V,E) such that the ratio of radii of two tangent circles is bounded

by K . Then for any α > 1, there exists c = c(K,α) > 0 such that for all r > 0

and all p ∈ R2,

Reff

Ä
VBeuc(p,r) ↔ VR2\Beuc(p,αr)

ä
≥ c,

provided that both sets VBeuc(p,r) and VR2\Beuc(p,αr) are nonempty.

Proof. In the case where |VBeuc(p,r)| = 1, the resistance is at least the

inverse of the degree of the vertex. Since the ratio between the radii of tangent

circles is bounded, the degrees of G are bounded by some D = D(K) < ∞,
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and so the resistance is at least D−1 in this case. Thus, let us assume that

|VBeuc(p,r)| > 1. Define a function f : R2 → R by

f(x) =


0 if x ∈ Beuc(p, r),
||x−p||−r
(α−1)r if x ∈ Beuc(p, αr) \Beuc(p, r),

1 if x ∈ R2 \Beuc(p, αr).

Note that f is ((α− 1)r)−1-Lipschitz. We define g : V → R by setting g(v) =

f(ρv), where ρv is the center of Cv, and we bound its Dirichlet energy. For

every edge (u, v),

||g(u)− g(v)|| ≤ ||ρu − ρv||
(α− 1)r

=
(ru + rv)

(α− 1)r
≤ (K + 1)ru

(α− 1)r
.

Edges for which both ρu and ρv are not in Beuc(p, αr) contribute 0 to the

energy. Since |VBeuc(p,r)| > 1, for every edge (u, v) that has one of ρu or ρv in

Beuc(p, αr) the circles Cu and Cv are both contained in Beuc(p,K2r) for some

K2(K,α) < ∞. Since the interiors of the circles {Cv}v∈V are disjoint, the

contribution to the energy is at most

∑
(u,v)∈E

||g(u)− g(v)||2 ≤
D · (K + 1)2 ·Area

î
Beuc(p,K2r)

ó
((α− 1)r)2

≤ K3,

where K3 = K3(K,α) <∞, concluding our proof by (2.1). �

Corollary 3.3. Let P be a finite circle packing in R2 such that the

ratio of radii of two tangent circles is bounded by K and such that there exists

a circle in P entirely contained in Beuc(0, 1). Then there exists a constant

c = c(K) > 0 such that for all radii r ≥ 2, we have

Reff

Ä
VBeuc(0,1) ↔ VR2\Beuc(0,r)

ä
≥ c log r,

provided that VR2\Beuc(0,r) is nonempty.

Proof. Since there is a circle entirely contained in Beuc(0, 1), using the

bounded ratio assumption, we get that there exists C = C(K) ∈ (1,∞) such

that for all r′ ≥ 1, there is no edge between VBeuc(0,r′) and VR2\Beuc(0,Cr′).

Assume that r ≥ C, and consider the k disjoint annuli A1, . . . , Ak where

k = blogC rc and Aj = Beuc(0, C
j) \ Beuc(0, C

j−1) so that Aj is contained

in Beuc(0, r) \ Beuc(0, 1) for all j. There are no edges in G between VAj
and VA` for 1 ≤ j ≤ ` − 2 ≤ k − 2; hence, each VAj is a cut-set separat-

ing VAj−1 from VAj+1 . By Lemma 3.2, we have Reff(VAj ↔ VAj+2) ≥ c for some

c = c(K) > 0. Summing these resistances using the series law (see [23]) yields

that Reff(VA0 ↔ VAk) ≥ ck/2. Finally, if 2 ≤ r ≤ C, then the resistance is

bounded below by another constant using Lemma 3.2. �
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3.2. Finite planar graphs. We recall the key lemma of [9]. Let C ⊂ R2 be

a finite set of points. For each w ∈ C, we write ρw for its isolation radius; that

is, ρw = inf{|v − w| : v ∈ C \ {w}}. Given δ > 0, s > 0 and w ∈ C, we say that

w is (δ, s)-supported if in the disk of radius δ−1ρw around w there are at least

s points of C outside of any disk of radius δρw; in other words, if

inf
p∈R2

∣∣∣C ∩B(w, δ−1ρw) \B(p, δρw)
∣∣∣ ≥ s.

Benjamini and Schramm [9, Lemma 2.3] prove that for all δ ∈ (0, 1), there is

a constant c = c(δ) such that for every finite C ⊂ R2 and every s ≥ 2, the set

of (δ, s)-supported points in C has cardinality at most c|C|/s. In the following

we bound c(δ).

Lemma 3.4. There exists a universal constant A > 0 such that for all

δ ∈ (0, 1/2) and s ≥ 2 and any finite set C ⊂ R2, the number of (δ, s)-supported

points in C is at most A|C|δ−2 log(δ−1)
s .

Proof. To understand the proof of this one must first read [9, Lemma 2.3].

Our lemma is a straightforward calculation of the constants appearing in the

last paragraph of the proof of [9, Lemma 2.3]. Indeed, in the notation of [9],

c = c(δ) is c = 2c−1
0 c1. We estimate these constants below. Given δ, c1(δ) is

the number of cities in any square S and is at most A0δ
−2 for some universal

A0 <∞. The probability c0(δ) that there exists a square that has edge length

in the range [4δ−1ρw, 5δ
−1ρw] is readily seen to be at least A1 log−1(δ) for some

universal A1 > 0. �

Corollary 3.5. Let G be a finite planar triangulation, and let P = {Cv :

v ∈ G} be an arbitrary circle packing of G. Let ρ be a random uniform vertex

of G, and let “P = {“Cv : v ∈ G} be the circle packing obtained from P by

translating and dilating so that “Cρ has radius 1 and is centered around the

origin. Then there exists a universal constant A > 0 such that for any r ≥ 2

and any s ≥ 2,

P
Ä
∀p ∈ R2 |VBeuc(0,r)\Beuc(p,r−1)| ≥ s

ä
≤ Ar2 log r

s
.

Proof. Apply Lemma 3.4 with C being the set of centers of P and δ = r−1

and s. We deduce that the number of centers of P that are (r−1, s)-supported

is at most As−1|G|r2 log r. Since “P is a triangulation, any circle Cw with radius

rw not in the boundary (the boundary has three circles, which contributes a

negligible 3|G|−1 to the probability) has rw ≤ ρw ≤ Crw for some universal

constant C > 0, concluding the proof. �

Lemma 3.6. Let G = (V,E) be a finite planar graph with degrees at most

D, and let ρ be a random uniform vertex. Then there exists c = c(D) > 0 such
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that for all k ≥ 1,

P
(
∃B ⊂ V with |B| ≤ c−1k and Reff(ρ↔ V \B) ≥ c log k

)
≥ 1− c−1k−1/3 log k,

where we interpret Reff(ρ↔ V \B) =∞ when B = V .

Proof. Without loss of generality it is enough to prove this for k large

enough. Assume first that G is a triangulation, and consider the circle pack-

ing “P from Corollary 3.5. Apply this corollary with r = k1/3 and s = k.

We get that with probability at least 1 − Ak−1/3 log k there exists p ∈ R2

such that |VBeuc(0,r)\Beuc(p,r−1)| ≤ k. We proceed by analyzing two cases. If

|VBeuc(p,r−1)| ≤ 1, then we set B = VBeuc(0,r) so that |B| ≤ k + 1. In this

scenario, if VR2\Beuc(0,r) = ∅, then B = V and the assertion holds trivially. If

VR2\Beuc(0,r) 6= ∅, then by Corollary 3.3, we have

Reff(ρ↔ U \B) ≥ c log k,

where c = c(D) > 0.

In the case where |VBeuc(p,r−1)| ≥ 2, we take B = VBeuc(0,r)\Beuc(p,r−1).

Since G is a triangulation and Cρ is a circle at the origin of radius 1, by the

Ring Lemma we deduce that there exists some c′ = c′(D) > 0 such that the

center of any circle other than Cρ is of distance at least 1 + c′ from the origin.

Hence, when r is large enough we must have that ||p|| ≥ 1 + c′/2. Clearly,

one of the circles with centers in Beuc(p, r
−1) must have radius at most r−1.

Hence, Beuc(p, 2r
−1) entirely contains a circle, and so we may scale and dilate

so that Corollary 3.3 gives

Reff(VBeuc(p,2r−1) ↔ VR2\Beuc(p,c′/2)) ≥ c log r;

therefore,

Reff(ρ↔ VBeuc(p,2r−1)) ≥ c log r.(3.1)

Also, by Corollary 3.3, we have

Reff(ρ↔ VR2\Beuc(0,r)) ≥ c log r.(3.2)

Inequalities (3.1) and (3.2) together with (2.5) conclude the proof when G is

a triangulation.

If G is not a triangulation, then we add edges and vertices to extend

G into a finite planar triangulation T in the zigzag fashion as in [9, Proof

of Theorem 1.1]. After this procedure the maximal degree and the number

of vertices have multiplied by at most a universal constant K. Let ρT be a

uniform random vertex of T , by the proof in the case of triangulations, with

probability at least 1−Ak−1/3 log k there exists B′ ⊂ T with |B′| ≤ c−1k and

Reff(ρT ↔ U \ B′) ≥ c log k. We take B = B′ ∩ V (G). Obviously |B| ≤ c−1k,
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and by Rayleigh’s monotonicity the effective resistance only grew. Lastly,

P(ρT ∈ V (G)) ≥ 1/K, so by incorporating K into the constant A, we conclude

the proof. �

Proof of Theorem 1.4. Let G = (V,E) be a finite planar graph with degree

bounded by D, and let T ≥ 2 be an arbitrary integer. Assume without loss of

generality that G is connected. Let X0 be a uniform random vertex. Apply

Lemma 3.6 with k = T 1/3 so that with probability at least 1− c−1T−1/9 log T

there exists B ⊂ V with |B| ≤ c−1T 1/3 and

Reff(X0 ↔ V \B) ≥ c log T.

If this event occurred, by the commute time identity (2.4) and the fact that

Reff(a↔ z) is at most the graph distance between a and z, we have that

EX0τV \B ≤ 2D|B|Reff(X0 ↔ V \B) ≤ 2Dc−2T 2/3,

where τV \B is the hitting time of the random walk at V \B. If τX0 ≥ T , then

either τV \B ≥ T or τX0 > τV \B. Hence, by Markov’s inequality and (2.2),

PX0

Ä
τX0 ≥ T

ä
≤ 2Dc−2T 2/3

T
+

1

cD log T
.

Putting all these together gives that

ϕD(T ) ≤ c−1T−1/9 log T +
c−2DT 2/3

T
+

1

cD log T
≤ C

log T

for some C = C(D) > 0. �

Proof of Theorem 3.1. For any k = 1, 2, . . . , write Ak for the complement

of the event¶
∃B ⊂ U with |B| ≤ c−1k and Reff(ρ↔ U \B) ≥ c log k

©
.

Lemma 3.6 gives that P(Ak) ≤ c−1k−1/3 log k since (U, ρ) is a distributional

limit of finite planar graphs of bounded degree. Borel-Cantelli implies that

A2j occurs for only finitely many values of j. If A2j does not occur, then for

all 2j−1 ≤ k ≤ 2j there exists B ⊂ U with |B| ≤ 2c−1k and Reff(ρ↔ U \B) ≥
c log k. �

4. Reducing to bounded degrees

4.1. Bounded degree distributional limits with markings.

Lemma 4.1. Let G = (V,E) be a finite network with two distinguished

vertices a 6= z. Let {Re} and {R′e} be two sets of resistances on E(G), and let

S ⊂ V \ {a, z} be such that Re = R′e for any e 6∈ S × S. Then∣∣∣Pa(τz < τa)−P′a(τz < τa)
∣∣∣ ≤ Pa(τS < τ{a,z}),
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where P and P′ are the network random walks with resistances R and R′,

respectively.

Proof. The proof is immediate by coupling the two random walks until

they hit S ∪ {a, z}. �

Next, we consider a triplet (U, ρ,M), where (U, ρ) is a random rooted

graph as before and M is a marking function M : E(U) → R+. Conditioned

on (U, ρ,M), consider the simple random walk (Xn)n≥0 where X0 = ρ. We say

that (U, ρ,M) is stationary if (U, ρ,M) has the same distribution as (U,X1,M)

in the space of isomorphism classes of rooted graphs with markings. (This

concept is described with more details in [1].) Given a marking M , we extend

it to M : E(U) ∪ V (U)→ R by putting M(v) = maxe:v∈eM(e) for v ∈ V (U).

We say that (U, ρ,M) has an exponential tail with exponent β > 0 if P(M(ρ) ≥
s) ≤ 2e−βs for all s ≥ 0.

Lemma 4.2. Let (U, ρ,M) be a stationary, bounded degree random rooted

graph with markings that has an exponential tail with exponent β > 0. Then

almost surely there exists K < ∞ such that for any finite subset B ⊂ V (U)

containing ρ, of size at least K , we have∣∣∣∣∣Pρ(τU\B < τρ)−P′ρ(τU\B < τρ)

∣∣∣∣∣ ≤ 1

|B|
,

where P and P′ are the network random walk with resistances R and R′, re-

spectively, where Re = 1 for all e ∈ E(U) and R′ are any resistances satisfying

R′e = 1 whenever M(e) ≤ 30β−1 log |B|.

Proof. For any two integers T, s ≥ 1, let AT,s denote the event

AT,s =
{
Pρ

Ä
∃t ≤ T : M(Xt) ≥ s

ä
≤ T 3e−βs/2

}
,

and note that this event is measurable with respect to (U, ρ,M). Stationarity

together with exponential tail implies that for any integer t ≥ 0,

E(U,ρ,M)

î
Pρ(M(Xt) ≥ s)

ó
≤ 2e−βs;

hence, the union bound gives

E(U,ρ,M)

î
Pρ(∃t ≤ T : M(Xt) ≥ s)

ó
≤ 2Te−βs.

By Markov’s inequality,

P(AcT,s) ≤
2e−βs/2

T 2
.

Borel-Cantelli implies that almost surely AT,s occurs for all but finitely many

values of T ∈ N and s ∈ N. For any finite set B ⊂ U that contains ρ, by
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Figure 2. The star-tree transform. Stage 1 (top): subdividing

edges. Stage 2 (bottom): replacing stars with binary trees.

the commute time identity (2.4), the fact that Reff(ρ↔ U \B) is at most the

graph distance between ρ and U \B and Markov’s inequality

Pρ(τU\B ≥ T ) ≤ 2D|B|2

T
,

where D is the degree bound. Write S = {v : v ∈ V (U) and M(v) ≥ s}. Then

for any T, s such that AT,s occurs, we have

Pρ(τS < τ{ρ}∪(U\B)) ≤
2D|B|2

T
+ T 3e−βs/2.

Now, take T = 4D|B|3 and s = 30β−1 log |B| so that the right-hand side is at

most |B|−1 when |B| is large enough, and apply Lemma 4.1. �

4.2. The star-tree transform. Let G be a graph. We define the star-tree

transform G∗ of G as the graph of maximal degree at most 3 obtained by the

following operations (see Figure 2).

(1) We subdivide each edge e of G by adding a new vertex we of degree 2.

Denote the resulting intermediate graph by G′.

(2) Replace each vertex v of G and its incident edges in G′ by a balanced

binary tree Tv with deg(v) leaves, which we identify with v’s neighbors

in G′. When G is planar we choose this identification so as to preserve

planarity; otherwise, this is an arbitrary identification. We denote by

wv the root of Tv. Denote the resulting graph by G∗.
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Lemma 4.3. Let G be an infinite connected graph, and let G∗ be its star-

tree transform and equip G∗ with edge resistances R as follows. On each edge

e of the binary tree Tv we put Re = 1/deg(v), where deg(v) is the degree of v

in G. Then if (G∗, R) is recurrent, G is recurrent.

Proof. Assume that G is transient. Equivalently, assume that there is a

unit flow θ on G, from some a ∈ V (G) to infinity, with E(θ) < ∞. Given

this flow we will construct a unit flow θ∗ on G∗, from wa to infinity, such that

E(θ∗) ≤ 4E(θ), thus showing that G∗ is also transient.

First we define a flow θ′ from a to infinity in G′ in the natural manner:

for each edge e = (x, y) of G, we set θ′(x,we) = θ′(we, y) = θ(x, y). Obviously

E(θ′) = 2E(θ). Next we introduce some notation. Let v be some vertex of G.

Put k = deg(v), and note that the height of Tv is h = dlog2 ke and that some

leaves may occur at height h − 1. Recall that at stage 2 of the transform we

obtain a correspondence between the k leaves of the tree and the neighbors

of v in G′. Denote the latter vertices by v1, . . . , vk, and let e1, . . . , ek be the

unique incident edges in Tv, respectively. Associate with each edge e ∈ Tv of

the tree a string M(e) ∈ {0, 1}≤h of 0’s and 1’s of length at most h. The string

M(e) “codes” the location of the edge in Tv by recording left turns with 0 and

right turns with 1 so that the height of e is |M(e)|. (Edges touching the root

wv have height 1.)

We now construct the flow θ∗. For each edge e = (x, y) of Tv, assume that

(x, y) points towards the root wv (recall that θ∗ should be antisymmetric), and

set

θ∗(e) =
∑

j:M(e)�M(ej)

θ′(vj , v),(4.1)

where two strings S1 and S2 satisfy S1 � S2 if S1 is a prefix of S2. Let us first

verify that this is a unit flow from a to ∞. Indeed, let u be a vertex in the

tree that is not a leaf or the root, and denote its two children by u1, u2 and its

father by u+. By our construction, we have θ∗(u1, u) + θ∗(u2, u) = θ∗(u, u+).

If u = wv and v 6= a, then θ∗(u1, u) + θ∗(u2, u) = 0 since θ′ was a flow. If

u = wa, then θ∗(u1, u) + θ∗(u2, u) = −1. Lastly, when u is a leaf of Tv, the

corresponding vertex vj has degree 2 and the flow passing through it is precisely

the same as in θ′.

Next we bound the energy E(θ∗) in terms of E(θ′). By (4.1) and Cauchy-

Schwarz inequality, for any edge e of Tv at height `, the contribution to E(θ∗)

from e is

Re
î
θ∗(e)

ó2
=

1

k

[ ∑
j:M(e)�M(ej)

θ′(vj , v)
]2
≤ 2h−`

k

∑
j:M(e)�M(ej)

[θ′(vj , v)]2.
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When summing the right-hand side over all edges of Tv, the term [θ′(vj , v)]2

appears once for each level ` = 1, . . . , h with coefficient k−12h−`. Hence, the

total contribution of the edges of Tv to E(θ∗) is at most
h∑
`=1

k∑
j=1

2h−`

k
[θ′(vj , v)]2 ≤ 2

k∑
j=1

[θ′(vj , v)]2.

Thus, when summing over all v, we obtain that

E(θ∗) ≤ 2E(θ′) = 4E(θ),

concluding the proof. �

5. Proof of main results

We begin by fixing some notation. Recall that we are given finite graphs

Gn, that ρn is a randomly chosen vertex drawn from the stationary measure

on Gn and that (U, ρ) is the distributional limit of this sequence. We write

(G∗n, ρ
∗
n) and (U∗, ρ∗) for the result of the star-tree transform on Gn and U with

the roots ρ∗n and ρ∗ chosen to be uniform vertices of the trees Tρn (in G∗n) and

Tρ (in U∗). We also set markings on G∗n and U∗ by putting M(e) = deg(v)

for any edge e in the tree Tv, where deg(v) is the degree of v in Gn or U ,

respectively.

Lemma 5.1. The triplet (U∗, ρ∗,M) has an exponential tail.

Proof. Note that M(ρ∗) = deg(v), where v is either ρ or one of its neigh-

bors. Hence it suffices to show that if (U, ρ) is a distributional limit in which

deg(ρ) has an exponential tail, then D(ρ) = maxu:(u,ρ)∈E deg(u) also has an

exponential tail. Indeed,

P(D(ρ) ≥ k) ≤ P(deg(ρ) ≥ k) + P(deg(ρ) ≤ k and D(ρ) ≥ k).

The probability of the first term on the right-hand side decays exponentially.

For the second term, we have

P
Ä
deg(X1) ≥ k

∣∣∣ deg(ρ) ≤ k and D(ρ) ≥ k
ä
≥ k−1,

where X1 is a random uniform neighbor of ρ. By stationarity, P(deg(X1) ≥ k)

decays exponentially, concluding the proof. �

We now provide a proof for the intuitive fact that (U∗, ρ∗) is the distribu-

tional limit of (G∗n, ρ
∗
n); see Figure 3.

Lemma 5.2. The star-tree transform is continuous on the space of distri-

butions on rooted graphs.

Proof. Let (H∗, h∗) be the star-tree transform of (H,h) as defined above.

Then for any fixed m > 0, the distribution of BH∗(h
∗,m) is determined by the

distribution of BH(h,m) since the star-tree transform only increases distances.

�
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(Gn, ρn) (U, ρ)

(G∗n, ρ
∗
n) (U∗, ρ∗)

(G∗n, ρ
π
n) (U∗, ρπ)

dist. limit

star-tree

dist. limit

star-tree

asymp. contiguous

dist. limit

abs. continuous

Figure 3. Commutative diagram.

Corollary 5.3. (U∗, ρ∗) is the distributional limit of (G∗n, ρ
∗
n).

Note that (G∗n, ρ
∗
n) and (U∗, ρ∗) are not stationary with respect to the

simple random walk. To overcome this small technicality, let ρπn be a random

root chosen from the stationary distribution on G∗n and write (U∗, ρπ) for an

arbitrary subsequential distributional limit. Note that both (G∗n, ρ
π
n,M) and

(U∗, ρπ,M) are stationary.

Lemma 5.4. There exists a universal constant C > 0 such that for any n,

C−1 ≤
P(G∗n,ρ

∗
n)(A)

P(G∗n,ρ
π
n)(A)

≤ C

for any event A on random rooted graphs.

Proof. Since G∗n has bounded degree, the probability that ρπn = v for

any vertex v is, up to a multiplicative constant, 1
|G∗n|

. The same holds for

(G∗n, ρ
∗
n) because ρ∗n was chosen uniformly from Tρn , which has size propor-

tional to deg(ρn), and ρn was chosen with probability proportional to deg(ρn).

Hence, for any fixed n and an event A of random rooted graphs, we have that

P(G∗n,ρ
∗
n)(A) and P(G∗n,ρ

π
n)(A) are the same up to a multiplicative constant. �

Corollary 5.5. There exists a universal constant C > 0 such that for

any event A,

C−1 ≤
P(U∗,ρ∗)(A)

P(U∗,ρπ)(A)
≤ C.

In particular, (U∗, ρ∗) and (U∗, ρπ) are absolutely continuous with respect to

each other.

Proof. Immediate from Lemma 5.4 and Corollary 5.3. �
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Proof of Theorem 1.1. For convenience, we use the standard O-notation.

Given two sequences of nonnegative numbers f(k), g(k), we write f = O(g) or

g = Ω(f) if there exists C < ∞ such that f(k) ≤ Cg(k) for sufficiently large

k. We write f = Θ(g) if f = O(g) and g = O(f).

By definition, (U∗, ρπ,M) is a distributional limit of bounded degree finite

planar graph. By Lemma 5.1 and Corollary 5.5, it has an exponential tail.

Apply Theorem 3.1 to get that almost surely there exist subsets Bk ⊂ U∗ with

|Bk| = O(k) such that

Reff(ρπ ↔ U∗ \Bk) ≥ Ω(log k).(5.1)

Assume without loss of generality that |Bk| = Θ(k). (Otherwise we can always

add vertices and the resistance above only grows.) We define three different

networks with underlying graph U∗ by specifying the edge resistances for each

edge e as follows,

Runit
e = 1 and Rmark

e = M(e)−1.

Given some s > 0, we define

Rse =

1 if M(e) ≤ s,
M(e)−1 otherwise.

Now, since |Bk| = Θ(k) and (5.1), Lemma 4.2 together with (2.2) gives

Reff

Ä
ρπ ↔ U∗ \Bk ; {RC log k

e }
ä
≥ Ω(log k)

for some C <∞ depending only on the exponential decay rate. For any m ≥ 0,

by Lemma 2.1 with A = BU∗(ρ
π,m), we have

Reff

Ä
BU∗(ρ

π,m)↔ U∗ \Bk ; {RC log k
e }

ä
≥ Ω(log k)−m

since RC log k
e ≤ 1 for all e; hence, Reff(ρπ ↔ v) ≤ m for all v ∈ BU∗(ρπ,m).

We have Rmark
e ≥ [C log k]−1RC log k

e for all e. Hence,

Reff

Ä
∂BU∗(ρ

π,m)↔ U∗ \Bk ; {Rmark
e }

ä
≥ Ω(1)−O(m/ log k).

All this occurs almost surely in (U∗, ρπ). Corollary 5.5 shows that almost

surely

Reff

Ä
∂BU∗(ρ

∗,m)↔ U∗ \Bk ; {Rmark
e }

ä
≥ Ω(1)−O(m/ log k)

for any fixed m ≥ 0. By (2.3) we deduce that the network (U∗, ρ∗) with edge

resistances {Rmark
e } is almost surely recurrent. Lemma 4.3 implies that U is

almost surely recurrent, concluding our proof. �

Proof of Corollaries 1.2 and 1.3. Follows immediately since the UIPT and

UIPQ are distributional limits of finite planar graphs and it is known that the

degree of the root has an exponential tail; see [5, Lemma 4.1, 4.2] and [16] for

the UIPT and [7, Prop. 9] for the UIPQ. �
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