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Nodal length fluctuations for
arithmetic random waves

By Manjunath Krishnapur, Pär Kurlberg, and Igor Wigman

Abstract

Using the spectral multiplicities of the standard torus, we endow the

Laplace eigenspaces with Gaussian probability measures. This induces a

notion of random Gaussian Laplace eigenfunctions on the torus (“arith-

metic random waves”). We study the distribution of the nodal length of

random eigenfunctions for large eigenvalues, and our primary result is that

the asymptotics for the variance is nonuniversal. Our result is intimately

related to the arithmetic of lattice points lying on a circle with radius cor-

responding to the energy.

1. Introduction

The purpose of this paper is to investigate the variance of the fluctuations

of nodal lengths of random Laplace eigenfunctions on the standard 2-torus

T := R2/Z2. The nodal set of a function f is simply the zero set of f , and if

f : T→ R is a Laplace eigenfunction, i.e., if f is nonconstant and

(1) ∆f + Ef = 0, E > 0,

then the nodal set of f consists of a union of smooth curves outside a finite

set of singular points (see [12]). Hence length(f−1(0)), the nodal length of f ,

is well defined.

A fundamental conjecture by Yau [29], [30] asserts that for any smooth

compact Riemannian manifold M , there exist constants c2(M) ≥ c1(M) > 0

such that

(2) c1(M) ·
√
E ≤ Vol(f−1(0)) ≤ c2(M) ·

√
E
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for any Laplace eigenfunction f on M with eigenvalue E. By the work of Don-

nelly and Fefferman [15] and Brüning and Gromes [9], [10], Yau’s conjecture is

known to be true for manifolds with real analytic metrics and, in particular,

for M = T.

For T = R2/Z2, the sequence of eigenvalues, or energy levels, are related

to integers expressible as a sum of two integer squares; if we define S := {n : n

= a2 + b2, a, b ∈ Z}, the eigenvalues are all of the form

(3) En := 4π2n, n ∈ S.

For n ∈ S, let

Λn :=
¶
λ ∈ Z2 : ‖λ‖2 = n

©
denote the corresponding frequency set. Using the standard notation e(z) :=

exp(2πiz), the C-eigenspace En corresponding to En is spanned by the L2-ortho-

normal set of functions {e (〈λ, x〉)}λ∈Λn
. The dimension of En, denoted by

Nn := dim En = r2(n) = |Λn|,

is equal to the number r2(n) of different ways n may be expressed as a sum of

two squares.

1.1. Arithmetic random waves. The set Λn can be identified with the set

of lattice points lying on a circle with radius
√
n, and its properties are inti-

mately related to representations of integers by the quadratic form x2+y2. The

frequency set is thus of arithmetic nature. A particular consequence is that

the sequence of spectral multiplicities {Nn}n≥1 is unbounded. It is thus natu-

ral to consider properties of “generic,” or “random,” eigenfunctions fn ∈ En,

and our primary interest is the high energy asymptotics of the distribution of

their nodal length L(fn) as n tends to infinity in such a way that Nn → ∞.

More precisely, let fn : T → R be the random Gaussian field of (real valued)

En-functions with eigenvalue En, i.e.,

(4) fn(x) =
1√
2Nn

∑
λ∈Λn

aλe (〈λ, x〉) ,

where aλ = bλ + icλ are independent standard complex Gaussian random

variables, save for the relations a−λ = aλ. This just means that bλ, cλ ∼ N (0, 1)

are standard real Gaussians satisfying the relation b−λ = bλ, c−λ = −cλ and

otherwise independent. Our object of study is the random variable

Ln := L(fn) = length(f−1
n (0)),

henceforth called the nodal length of fn.
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1.2. Prior work on this model. In this setting, Rudnick and Wigman [24]

computed the expected nodal length of fn to be E[Ln] = 1
2
√

2
·
√
En, in agree-

ment with Yau’s conjecture

(5) Var(Ln) = O

Ç
En√
Nn

å
for the variance, and conjectured that the stronger bound

(6) Var(Ln) = O

Å
En
Nn

ã
holds. A nice consequence of (5) is that L(fn) concentrates around its mean.

More precisely, there is a sequence δn → 0 such that

P

Ç
(1− δn)

√
En

2
√

2
≤ L(fn) ≤ (1 + δn)

√
En

2
√

2

å
→ 1 as Nn →∞.

In this paper we shall determine the leading order asymptotic of Var(Ln)

as Nn → ∞. As consequence we improve on the conjectured bound (6) and

obtain the sharp bounds

En
N 2
n

� Var(Ln)� En
N 2
n

.

It turns out that the asymptotic behaviour of the variance is nonuniversal in the

sense that it depends on the angular distribution of the points in the frequency

set Λn. In the proof, a leading order sum involving many terms of size En/Nn
surprisingly cancels perfectly, and the variance is therefore much smaller than

expected! We may say that T exhibits “arithmetic Berry cancellation” (cf.

Section 1.6.2).

1.3. Our results. In order to describe our results we shall need some fur-

ther notation. The set Λn induces a discrete probability measure µn on the

circle S1 = {z ∈ C : |z| = 1} by defining

(7) µn :=
1

Nn

∑
λ∈Λn

δ λ√
n
,

where δx is the Dirac delta measure supported at x. As usual, the Fourier

transform of µn is, for any k ∈ Z, given by µ̂n(k) :=
∫
S1 z

−kdµn(z). For n ∈ S,

we define

(8) cn :=
1 + µ̂n(4)2

512
;

it is then easy to see that cn is real and that cn ∈ [1/512, 1/256]. (Since Λn is

invariant under the transformations z → z and z → i · z, the same holds for

µn; hence, µ̂n(4) ∈ R. Further, since µn is a probability measure, |µ̂n(4)| ≤ 1,

and consequently µ̂n(4)2 ∈ [0, 1].)

We can now formulate our principal result.
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Theorem 1.1. If (ni)i≥1 is any sequence of elements in S such that

Nni →∞, then

(9) Var (Lni) = cni ·
Eni
N 2
ni

(1 + o(1)).

Further, given any c ∈ [1/512, 1/256], there exists a sequence (ni)i≥1 of ele-

ments in S such that as i→∞, we have Nni→∞ together with cni→c so that

Var (Lni) = c · Eni
N 2
ni

(1 + o(1)).

1.4. Attainable measures. The second part of the theorem, in light of the

first one, amounts to the following. Given any α ∈ [0, 1], there exists a sequence

(ni)i≥1 such that µ̂ni(4)2 → α. We briefly describe the measures µn giving rise

to the extremal points, as well as intermediate values attainable by cn. (See

Section 7 for full details, in particular the precise notions of generic and thin

used below.)

It is well known that the lattice points Λn are equidistributed on S1 along

generic subsequences of energy levels; see, e.g., [16, Prop. 6]. Thus, for (ni)i≥1

a generic sequence of elements in S, the variance is minimal in the limit since

µ̂ni(4) → 0, and thus cni → 1/512. It is also worthwhile mentioning that

the nodal length variance of fn for such generic sequences differs by an order

of magnitude from the corresponding quantity for superposition of random

planar waves with same wavelength and directions chosen uniformly on the

unit circle. (This is especially noteworthy in light of the fact that both have

the same scaling properties. See the last paragraph of Section 1.6.1 for a more

detailed explanation.)

As for the maximum, Cilleruelo [13] has shown that there are thin se-

quences (ni)i≥1, with Nni →∞, such that µni converges weakly to an atomic

probability measure supported at the four symmetric points ±1, ±i; hence,

µ̂ni(4) → 1 and cni → 1/256. For the intermediate values, we construct thin

sequences (ni)i≥1 of elements in S such that µni converges weakly to the uni-

form probability measure supported on a union of four arcs.

More precisely, for a ∈ [0, π4 ], define a probability measure νa on S1 by

(10) νa :=

(
1

4

3∑
k=0

δik

)
? ν̃a,

where ? stands for convolutions of measures and ν̃a is the uniform measure on

[−a, a] (identifying S1 ∼= R/2πZ). More explicitly,

ν̃a(f) =
1

2a

∫ a

−a
f
Ä
eiθ
ä
dθ, νa(f) =

1

8a

3∑
k=0

a+k π
2∫

−a+k π
2

f
Ä
eiθ
ä
dθ.

For a = 0, we shall use the notational convention that ν0 = 1
4

∑3
k=0 δik .



NODAL LENGTH FLUCTUATIONS 703

Proposition 1.2. For every a ∈ [0, π4 ], there exists a sequence Eni of

energy levels such that µni ⇒ νa with νa as in (10). In particular, for every

b ∈ [0, 1], there exists a sequence Eni of energy levels such that cni → 1+b
512 .

Note that the second statement follows from the first because the values

of ν̂a(4) range over the whole of [0, 1] as a ranges over [0, π4 ]. (In fact, an easy

computation shows that ν̂a(4) = sin(4a)
4a .) Further, the extremal values b = 0

and b = 1 are attained by ν = νπ
4
, the uniform measure on S1, and ν = ν0,

the atomic symmetrized measure. The proof of Proposition 1.2 will be given

in Section 7.

1.5. Independence of eigenbasis choice and the covariance function. The

random field (4) is centered, Gaussian and stationary in the sense that for any

x1, . . . , xk ∈ T and y ∈ T, the random vector

(fn(x1 + y), . . . , fn(xk + y)) ∈ Rk

is a mean zero multivariate Gaussian, whose distribution does not depend on y.

The covariance function1 r(x) = rn(x) := E[fn(y)fn(x+ y)] thus depends only

on x, and we may express it explicitly as

(11) rn(x) =
1

Nn

∑
λ∈Λ

e (〈λ, x〉) =
1

Nn

∑
λ∈Λ

cos (2π〈λ, x〉) .

Though the normalizing factor in the definition (4) of fn has no bearing

on the nodal length, it is convenient to work with, and we have chosen to have

rn(0) = 1 or, equivalently, for every x ∈ T, E[fn(x)2] = 1.

The covariance function determines the distribution of a centered Gauss-

ian random field and, in principle, one may express any aspect of the geometry

of fn in terms of rn only (cf. Kolmogorov’s Theorem, [14, Ch. 3.3]). This im-

portant fact also shows that we would get the same random field in (4) had we

chosen a different orthonormal basis of En in the Gaussian linear combination.

1.6. Background and results in related models. The question of distribu-

tion of various local quantities such as the nodal length, or the total curvature

of nodal lines in different settings, has been extensively studied. It is widely

believed [2] that for generic chaotic billiards, one can model the nodal lines for

eigenfunctions of eigenvalue of order ≈ E with nodal lines of planar monochro-

matic random waves of wavenumber
√
E. (This is called Berry’s Random Wave

Model or RWM, see (12) for the definition.) Berry [3] found that the expected

nodal length (per unit area) for the RWM is of size approximately
√
E, and

he argued that the variance should be of order logE.

1The covariance function is widely referred to as the 2-point function in the physics

literature.
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The 2-dimensional unit sphere S2 is another manifold with degenerate

Laplace spectrum. Here the Laplace eigenvalues are all the numbers E =

m(m + 1) with m ≥ 0 an integer, and the corresponding eigenspace is the

space of degree m spherical harmonics; its dimension is 2m + 1. One may

define the random field of degree m spherical harmonics similarly to the torus

(4) with the plane waves (exponentials) replaced by any L2-orthonormal basis

{ηm;1, . . . , ηm;2m+1} of real valued spherical harmonics of degree m:

fS
2

m (x) =
1√

2m+ 1

2m+1∑
k=1

akηm;k(x),

with ak the independent and identically distributed standard Gaussian. Setting

L
Ä
fS

2

m

ä
to be the nodal length of fS

2

m , Berard [1] computed the expected nodal

length

E
î
L
Ä
fS

2

m

äó
=
√

2π ·
√
E.

Wigman [27] found that the nodal length variance is asymptotic to

Var
Ä
L
Ä
fS

2

m

ää
∼ c logm,

which is consistent with Berry’s prediction for the RWM.

1.6.1. Comparing the random wave model to the torus and the sphere.

The logarithmic variance is much smaller than one would expect. Taking into

account that the wavelength for either the sphere or the RWM scales as 1√
E

,

one may rescale them to unit wavelength to argue that the nodal length vari-

ance should be proportional to
√
E. However, a computation reveals that the

coefficient in front of the expected leading term
√
E surprisingly vanishes due

to “Berry’s Cancellation Phenomenon” — the leading term for nodal length

variance is in fact logarithmic. A similar cancellation phenomenon is responsi-

ble for the variance (9) in our situation being of order of magnitude En
N 2
n

, rather

than of order En
Nn as was originally conjectured in [24].

As already remarked, in general, defining a centered (or mean zero) Gauss-

ian random field f on an arbitrary domain T is equivalent to specifying its

covariance function rf (x, y) := E[f(x)f(y)] on T × T . For the planar random

waves (RWM), the covariance function is

(12) rRWM(x, y) = J0(
√
E‖x− y‖),

with J0 the standard Bessel function, and

rS2(x, y) = Pm(cos d(x, y))

for the degree m spherical harmonics, where Pm are the usual Legendre poly-

nomials, and d is the (spherical) distance. The latter scales as

Pm(cos(ψ/m)) ≈ J0(d)



NODAL LENGTH FLUCTUATIONS 705

uniformly for ψ ∈
[
0,m · π2

]
. As the corresponding eigenvalues are m(m + 1),

this is consistent with the RWM scaling. The covariance function rn(x) for

our ensemble fn of random toral eigenfunctions given by (4) is of arithmetic

flavour. It is given by the summation (11) over lattice points Λn lying on a

circle.

The equidistribution of Λn along generic sequences of energy levels on the

torus mentioned earlier implies that for any fixed y ∈ R2, one may approximate

rn(y/(2π
√
ni)) ≈

∫
S1

cos(〈y, z〉)dz = J0(‖y‖)

for a generic sequence {ni} ⊆ S. Although it is the same scaling limit as

before, the latter holds for y of fixed size only, and by no means uniformly for

y ∈ [0, n]2. In particular, as opposed to the other cases, no “intermediate range

asymptotic” for rn(x) is known, i.e., for x ·
√
n → ∞. It is remarkable that

even in this case, in spite of the fact that the covariance function for fn has

the same scaling limit as the RWM and random spherical harmonics random

fields, the nodal length variance (9) of random arithmetic waves is of different

order of magnitude compared to the other cases.

1.6.2. Berry’s cancellation phenomenon and the 2-point correlation func-

tion. In order to evaluate moments of the nodal length of a random field f , we

exploit a suitable Kac-Rice type formula (see Section 2.1). For the variance,

it means that we need to understand the fluctuations of the so called 2-point

correlation function (defined on the domain of f) around its scaled asymptotic

value at infinity. For both R2 (RWM) and S2, the main contribution for the

variance comes from the “intermediate range” (i.e., a few wavelengths away

from the origin), where the asymptotic behaviour of the covariance function

and its first two derivatives translates to asymptotics for the 2-point correlation

function. No analogous asymptotics is known for the torus. The cancellation

phenomenon amounts to the fact that the leading term in the intermediate

range asymptotics for the 2-point correlation function is purely oscilliatory

and its contribution to the integral is negligible. Then, the main contribution

comes from the second term in the asymptotics.

As a substitute for pointwise asymptotics for the 2-point correlation func-

tion, we use an arithmetic formula (see (33)) valid outside a suitably defined

“singular set” (arithmetic in nature; its analogue for R2 and sphere is a neigh-

bourhood of the origin, with radius of order wavelength). Although the arith-

metic formula does not give the pointwise behaviour of the 2-point correlation

function, its arithmetic structure is exploited for averaging over the torus and

is essential for evaluating the variance. The “arithmetic Berry’s cancellation”

amounts to the Fourier expansion of the highest magnitude term of the 2-point
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correlation function vanishing at the origin, an artifact of the seemingly unre-

lated trigonometric identity

4 cos(θ/2)4 = 1 + 2 cos θ + cos(θ)2;

see Section 4.2 for more details.

1.7. Some other related results. For a generic compact manifold M with

no spectral degeneracies, one can also consider random Gaussian linear com-

binations of eigenfunctions with different eigenvalues (sometimes referred to

as “random wave on M”). Berard [1] and Zelditch [31] found that, given a

spectral parameter E, the expected nodal length for random Gaussian super-

positions of eigenfunctions with eigenvalues lying either about E or below2 E

is of order
√
E, consistent with Berry’s RWM. The subtle question of the nodal

length variance in this generic setup is to be addressed in [23].

Some other generic results concerning random waves with spectral pa-

rameter E are the following. Toth and Wigman [26] found that the expected

number of open nodal lines, i.e., the connected component of the zero set that

intersect the boundary, of the random wave with spectral parameter E on a

generic surface with boundary is again of order
√
E. Moreover, Nicolaescu [21]

evaluated the expected number of critical points to be of order E; the latter is

also an upper bound for the number of nodal domains.

For other related or relevant results, we refer the interested reader to

the recent survey [28]. Also, for recent interesting results and conjectures on

nonlocal quantities, such as nodal domains (i.e., the connected components of

the complement M\ f−1(0) of the nodal line), see [4], [20], [6], [8], [7].

1.8. Outline of the paper. The paper is organized as follows. The proof of

Theorem 1.1, assuming certain preparatory results is given in Section 2; this

proof relies on an arithmetic formula (16) in Proposition 2.1, whose proof is

commenced in Section 4. The proof of the formula (16) is based on studying

the behaviour of the so-called 2-point correlation function introduced in Sec-

tion 3; its subtle asymptotic analysis is given in Sections 4, 5 and 8, with the

latter containing a certain technical computation essential for understanding

the asymptotic properties.

Section 6 is dedicated to the proof of Theorem 2.2, an arithmetic bound,

due to Bourgain, needed for the admissability of the error term in (16). In

Section 7, sequences of energy levels with corresponding discrete probability

measures (7) converging to the measures νa as in (10) are constructed to prove

the attainability of the latter.

2Called the short or long energy window random combinations respectively.
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2. Proof of Theorem 1.1

2.1. Kac-Rice formulas. Moments of the nodal length for smooth random

fields can be computed using the Kac-Rice formulas [14]. To state them, we

need some notation. For f = fn, we define its first and second correlations as

follows:

K1 = E
[
‖∇f(y)‖

∣∣ f(y) = 0
]
,(13)

K̃2(x) = E
[
‖∇f(y)‖ · ‖∇f(y + x)‖

∣∣ f(y) = f(y + x) = 0
]
,

K2(x) =
2

En
K̃2(x).

Observe that K1 and K2 are independent of y because fn is stationary. (For

general smooth Gaussian fields, they become K1(y) and K̃2(x, y).) They are

called the first and second correlations of the nodal set f−1
n (0). K2 is just a

scaled version of the second correlation. As we are dealing with Gaussians,

it is possible to write analytical expressions for these as Gaussian integrals in

terms of rn and its derivatives (see (29), (25) and (24)).

Then, the Kac-Rice formulas say that

E[Ln] =

∫
T
K1dy = K1, E[L2

n] =

∫
T

K̃2(x)dx.

The first of these formulas gives E[Ln] = 1
2
√

2
·
√
En, as was quoted earlier.

Using this and the second gives

Var(Ln) =
En
2

∫
T

Å
K2(x)− 1

4

ã
dx.(14)

Full justification of their validity in our context may be found in [24]. For the

Kac-Rice formulas in general, consult [14].

It is instructive to intuitively understand the function K̃2(x) in the fol-

lowing way. Let x ∈ T, and take a small positive number ε > 0. We define the

random variables

Lx,εn = length
Ä
f−1
n (0) ∩B(x, ε)

ä
,
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where B(x, ε) is the disk of radius ε centered at x; Lx,εn measures the nodal

length of fn inside the corresponding disk. Then we have

K̃2(x) =
2

En
lim
ε→0

1

π2ε4
E
î
Lx,εn L0,ε

n

ó
.

2.2. Computing the variance — the Gaussian integral. To understand

Var(Ln), we need to understand the integral in (14). The function K2 may be

implicitly expressed in terms of the covariance function rn of fn as a Gaussian

expectation of a 4-variate centered Gaussian (∇fn(0),∇fn(x)) conditioned on

fn(0) = fn(x) = 0, with 4 × 4 covariance matrix Ωn(x) depending on r and

its derivatives (see (29), (25) and (24)). In our case, the covariance function is

the arithmetic function (11).

In order to study the asymptotic behaviour of the integral above, we use

some ideas from [22], [24] and divide the torus into a singular set B and the

nonsingular complement T \ B; only the latter is convenient to work with, so

it is essential make the former as small as possible. We improve the analysis

of the earlier paper [24] on both B and T \B.

A better upper bound for the measure of B is proved using the sixth

moment of r rather than the fourth one. As an artifact of the definition of

B, one has a lower bound for the values |r(x)| on B; using a Chebyshev-like

inequality on the sixth moment of r(x), we will bound the measure of B so

that its contribution to the variance is negligible.

On T \B, where the main contribution comes from, we establish a precise

asymptotic expression for the 2-point correlation function compared to a par-

tial upper bound as in [24] (see Proposition 4.5). Here the (scaled) covariance

matrix Ωn(x), defined by (25), is a perturbation of the identity matrix. In

order to understand its contribution to the integral, we expand K2(x) as a

function of Ωn into a 4-variate Taylor polynomial around Ωn = I4, the identity

matrix. In principle, this could be performed using brute force; we choose to

work with Berry’s elegant method [3].

The computation above culminates in the “arithmetic formula” given in

the following proposition. It is of arithmetic essence and at the heart of the

variance being nonuniversal, but the derivation itself involves no arithmetic.

Before stating the proposition, we define

(15) Rk(n) :=

∫
T

|rn(x)|kdx.

Proposition 2.1. The nodal length variance is given by the asymptotic

formula

(16) Var(Ln) = cn ·
En
N 2
n

+O (En · R5(n)) ,

where we used the notation (8) for cn.
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The reason we refer to (16) as “arithmetic” is that both the main term and

the error term in (16) are of arithmetic nature: cn is related to the distribution

of lattice points Λn on the circle (see Section 8), and R5 is controlled in terms

of arithmetics of spectrum correlation.

The proof of Proposition 2.1 will commence in Section 4. It is lengthy and

quite technical, so it may be omitted on a first reading of the paper.

In case of random spherical harmonics or the random wave model, one

arrives at analogous propositions for the variance. The proof essentially ends

there as the error term may be checked to be smaller than the main term.

2.3. Computing the variance — the arithmetic part. In our setting how-

ever, the main obstacle is in proving the admissability of the error term. We

will control various error terms in terms of the momentsRk(n) :=
∫
T |rn(x)|kdx

(cf. (15)). The even moments are naturally related to the spectral correlations;

for example, it is straightforward to check that

(17) R6(n) =
1

N 6
n

|S6(n)|,

where S6 is the 6-correlation set of frequencies

(18) S6(n) =

{
(λ1, . . . , λ6) ∈ Λn :

6∑
i=1

λi = 0

}
.

Since for any choice of λ1, . . . , λ4 ∈ Λn there are at most four possible

choices for λ5, λ6 ∈ Λn, it follows that |S6(n)| = O
(
N 4
n

)
or, equivalently,

(19) R6(n) = O

Ç
1

N 2
n

å
.

The latter bound is not quite sufficient for our purposes, but the following

result, due to J. Bourgain, is sufficiently strong for our purposes.

Theorem 2.2. As Nn →∞, we have the following estimate:

(20) |S6(n)| = o
Ä
N 4
n

ä
.

Consequently, R6(n) = o
(

1
N 2
n

)
.

Theorem 2.2 will be proven in Section 6. We give a brief preview of

the proof of Theorem 2.2. To refute the possibility that |S6(n)| � N 4
n , we

invoke some techniques from additive combinatorics (see Section 6). Utilizing

a notion of “additive energy” defined in Section 6, a certain set A related

to the sum set of Λn is shown to contain a large subset A1 with “bounded

doubling.” Using a suitable version of Freiman’s Theorem, this implies that

A1 is essentially a generalized arithmetic progression (GAP; see Theorem 6.3),

i.e., is contained inside a slightly larger GAP. This then leads to a contradiction
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via an application of Chang’s result [11] on the number of representations of a

complex number as a product of elements inside a GAP.

We note that the bound |S6(n)| = o(N 4
n) is quite far from the truth;

Bombieri and Bourgain [5] have recently obtained an exponent savings. We

further remark that a trivial lower bound is that |S6(n)| � N 3
n ; taking any

λ1, λ2, λ3 ∈ Λn and letting λ4 = −λ1, λ5 = −λ2, and λ6 = −λ3 yields |Λn|3 =

N 3
n solutions of “diagonal type.” We believe that essentially all solutions arise

like this, and we conjecture that for every ε > 0,

|S6(n)| = Oε
Ä
N 3+ε
n

ä
.

(Possibly the even stronger bound |S6(n)| = O
(
N 3
n

)
holds.)

2.4. Proof of Theorem 1.1 assuming the preparatory results. Given Propo-

sitions 1.2 and 2.1 and Theorem 2.2, it is now straightforward to deduce Theo-

rem 1.1, our main result. Recall that Rk are the moments (15) of rn. Using the

Cauchy-Schwarz inequality on |r(x)|5 = r2(x) · |r(x)|3 together with the bound

R4 = O
Ä

1
N 2

ä
(which follows from the same argument that yielded (19)), and

the bound R6(n) = o
(

1
N 2
n

)
from Theorem 2.2, we obtain

(21) R5(n) = o

Ç
1

N 2
n

å
.

Now, using (16) together with (21), we obtain (9).

Finally, using the second part of Proposition 1.2 and the definition of cn
(see (7)), we find that any c ∈ [1/512, 1/256] is attainable as a limit.

3. The 2-point correlation function of fn

In this section we use the Kac-Rice formula (14) that expresses Var(Ln)

as an integral of the (scaled) 2-point correlation K2 defined in (13). For this

we will need to study some aspects of the random field fn first. From this

point on we fix n and will usually suppress the n-dependency with no further

note.

3.1. Joint distribution of values and gradients. In order to study the vari-

ance, we shall need to study the random vector

W = Wn;x = (u1, u2, v1, v2) = (fn(0), fn(x),∇fn(0),∇fn(x)) ∈ R6.

Since W is a linear transformation of the standard Gaussian a = (aλ) ∈ RNn ,

its distribution is also centered (or mean zero) Gaussian, and by the station-

arity, 0 and x may be replaced by any y and y + x.

Let

(22) D = D1×2(x) = ∇r(x) =
2πi

Nn

∑
λ∈Λ

e (〈λ, x〉) · λ
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(cf. (11)). The vector W is centered Gaussian with covariance matrix (cf. [24,

§5.1])

Σ =

Ç
A B

Bt C

å
,

where

A(x) =

Ç
1 r(x)

r(x) 1

å
,

B(x) =

Ç
0 D(x)

−D(x) 0

å
and

C(x) =

Ç
E
2 I2 −H(x)

−H(x) E
2 I2

å
,

where H2×2(x) is the Hessian

(23) H(x) =

Ç
∂2r

∂xi∂xj

å
= −4π2

Nn

∑
λ∈Λ

e (〈λ, x〉) · (λtλ),

by (11). (Note that λ is a row vector so that λtλ is a 2× 2 matrix.)

The covariance matrix of (∇f(0),∇f(x)), conditioned on f(0) = f(x) = 0

is

(24) Ω̃4×4 = C −BtA−1B =

Ç
E
2 I2 −H
−H E

2 I2

å
− 1

1− r2

Ç
DtD rDtD

rDtD DtD

å
,

where we write r = r(x) for brevity. Thus, K2(x) = E[‖Ṽ1‖ · ‖Ṽ2‖], where Ṽi
are 2-dimensional random vectors with (Ṽ1, Ṽ2) having Gaussian distribution

with zero mean and covariance matrix Ω̃(x).

3.2. The scaled 2-point correlation function. It is more convenient to work

with the scaled covariance matrix

(25) Ω(x) = Ωn(x) =
2

En
Ω̃n(x).

Then, the scaled 2-point correlation function defined in (13) may be written

as

K2(x) =
1

2π
»

1− rn(x)2
E[‖V1‖ · ‖V2‖],

where V1, V2 are centered Gaussians with covariance matrix Ω(x).

At the origin x = 0 the matrix Ω(x) is singular and hence corresponds to a

covariance matrix of a degenerate Gaussian. However for almost all x ∈ T, Ω(x)

is nonsingular; see [24, Prop. A.1]. We claim that Ω(x) is a small perturbation
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of the 4× 4 identity matrix I4, at least, for “generic” x. To quantify the latter

statement, write

(26) Ω(x) = I +

Ç
X Y

Y X

å
,

where

(27) X = − 2

En(1− r2)
DtD, Y = − 2

En

Å
H +

r

1− r2
DtD

ã
,

and both X = Xn(x) and Y = Yn(x) are small for “typical” x.

With these computations, we may rewrite the Kac-Rice formula (14) as

follows.

Proposition 3.1 (Cf. [24, Prop. 5.2]). The nodal length variance is given

by

(28) Var(Ln) =
En
2

∫
T

Å
K2(x)− 1

4

ã
dx,

where K2 is the scaled 2-point correlation function given by

(29) K2(x) = K2;n(x) =
1

2π
»

1− rn(x)2
E[‖V1‖ · ‖V2‖];

here V1, V2 ∈ R2 are centered Gaussians with covariance matrix given by (26),

with X and Y as in (27).

We shall need the following lemma later.

Lemma 3.2. The matrices Xn and Yn are uniformly bounded (entry-wise);

i.e.,

(30) Xn(x), Yn(x) = O(1),

where the constant involved in the ‘O’-notation is universal. In particular,

(31) K2;n(x)� 1»
1− rn(x)2

.

Proof. To prove that (30) holds it is sufficient to show that the diagonal

entries of X are uniformly bounded, by (26). (The nondiagonal entries of a

covariance matrix are dominated by the diagonal ones, by the Cauchy-Schwarz

inequality.) For the latter, it is sufficient to notice that the diagonal entries of

Ω are positive, and the diagonal entries of X are ≤ 0 (recall (27)).

To prove that the bound in (31) holds, we use (29), the Cauchy-Schwarz

inequality and (30). �
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4. Proof of Proposition 2.1

To find the asymptotics of the integral (28), we will study the pointwise

asymptotic behaviour of K2. Even though we will only be able to determine

the precise asymptotics outside the so-called singular set, already used in [22]

and [24], we will prove that the exceptional singular set is small, so that its

contribution is negligible (see Lemma 4.4). To quantify the last statement,

we will control the contribution using a Chebyshev-like inequality, so that

the corresponding error term will naturally involve the moments (15) of the

covariance function (11). We improve upon the analysis of [22] by working

with the sixth moment R6(n) rather than R4(n).

4.1. The singular set. For r(x) bounded away from 1 we may expand the
1√

1−r2 factor in (29) and related expressions into the Taylor series around r = 0.

Since the moments of r are “small” (by Theorem 2.2, say), a Chebyshev-like

inequality implies that r(x) is small outside a small set. This is the main idea

behind the notion of the singular set to follow. We use a slightly stronger

definition in order to endow the exceptional set with a structure as a union of

squares, necessary in order to find its contribution to the integral (28). The

following definitions are borrowed directly from [22, §6.1].

Definition 4.1. A point x ∈ T is a positive singular point if there is a set

of frequencies Λx ⊆ Λ with density

|Λx|
|Λ|

>
7

8

for which cos(2π〈λ, x〉) > 3/4 for all λ ∈ Λx. Similarly we define a negative

singular point to be a point x where there is a set Λ̃x ⊆ Λ of density > 7
8 for

which cos(2π〈λ, x〉) < −3/4 for all λ ∈ Λ̃x.

Let M ≈
√
En be a large integer. We decompose the torus T as a union

of M2 closed squares I~k of side length 1/M centered at ~k/M , ~k ∈ Z2. The

squares have disjoint interiors.

Definition 4.2. A square I~k is a positive (resp. negative) singular square

if it contains a positive (resp. negative) singular point.

Definition 4.3. The singular set B = Bn is the union of all singular

squares.

Note that, by the definition, each singular square contains a singular point;

however, points in B are not necessarily all singular. Let y ∈ B be a point

lying in a positive singular cube, x be the corresponding positive singular point

lying in the same singular cube and Λx ⊆ Λ the frequency set prescribed by
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the definition of a positive singular point. It is easy to see that

|cos(2π〈λ, y〉)− cos(2π〈λ, x〉)| �
√
En
M

,

where the implied constant is absolute, so that one may choose M ≈
√
En for

which the latter expression is ≤ 1
4 ; it will then imply

cos(2π〈λ, y〉) ≥ 1

2

for every λ ∈ Λx. We then conclude that

r(y) =
1

|Λ|
∑
λ∈Λx

cos(2π〈λ, y〉) +
1

|Λ|
∑

λ∈Λ\Λx

cos(2π〈λ, y〉)

≥ 1

|Λ|
∑
λ∈Λx

1

2
− 1

|Λ|
∑

λ∈Λ\Λx

1 ≥ 7

16
− 1

8
=

5

16

and, similarly, if y is lying in a negative square, then r(y) ≤ − 5
16 . Hence we

have |r(y)| ≥ 5
16 on all of B. We then write

R6(n) ≥ meas(B) ·
Å

5

16

ã4

to obtain the Chebyshev-type inequality

(32) meas(B)� R6(n).

It was proven ([22, §6.5]) that if S is any singular square, then its contri-

bution to the integral (28) is

�
∫
S

|K2(x)|dx� 1

M
√
En

.

Since the number of the singular cubes is

�M2 meas(B),

the total contribution of B to (28) is bounded by∫
B

|K2(x)|dx�M2 meas(B) · 1

M
√
En

= meas(B)
M√
En
� R6(n),

by (32) and M ≈
√
En. The latter is summarized in the following lemma.

Lemma 4.4 (cf. [22, §6.3]). The contribution of the singular set to (28) is

bounded by ∫
B

|K2(x)|dx = O (R6(n)) .
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Lemma 4.4 bounds the contribution of the singular set to the integral

in (28). The main contribution comes from the nonsingular set. In order to

evaluate it, we will need a precise point-wise estimate for K2(x) in this range.

This is given by the following proposition, up to admissible error terms. (To

verify the admissibility, see Lemmas 4.6 and 5.4.)

Proposition 4.5 (“Intermediate range” asymptotics for K2). For x ∈
T \B, we have

(33) K2(x) =
1

4
+ L2(x) + ε(x),

where the main term L2(x) is given by

L2(x) =
1

4

Ç
r2

2
+

trX

2
+

tr(Y 2)

8
+

3

8
r4 − tr(XY 2)

16
− tr(X2)

32
(34)

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32
+

1

4
r2 trX +

1

16
r2 tr(Y 2)

å
with X = Xn(x), Y = Yn(x) and r = rn(x). The error term ε(x) is bounded

by

(35) |ε(x)| = O
Ä
r(x)6 + tr(X3) + tr(Y 6)

ä
.

Proposition 4.5 will be proved in Section 5. Assuming it, we arrive at the

proof of Proposition 2.1.

Proof of Proposition 2.1 assuming Proposition 4.5. To express the nodal

length variance, we invoke Proposition 3.1. Since the contribution of K2(x) to

the integral (28) on B is

O (En · R6(n)) ,

by Lemma 4.4, we have

Var(Ln) =
En
2

 ∫
T\B

Å
K2(x)− 1

4

ã
dx

+O (En · R6(n))(36)

=
En
2

∫
T\B

L2(x)dx+O

Ö
En ·

∫
T\B

|ε(x)|dx

è
+O (En · R6(n)) ,

by Proposition 4.5. Note that∫
T\B
|ε(x)|dx ≤

∫
T
|ε(x)|dx = O (En · R6(n)) ,

by (35) and Lemma 4.6 to follow (see parts 10-11), so that (36) is

(37) Var(Ln) =
En
2

∫
T\B

L2(x)dx+O (En · R6(n)) .
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We further note that, since L2(x) is uniformly bounded thanks to Lemma 3.2,
En
2

∫
B

L2(x)dx = O (En ·meas(B)) = O (En · R6(n)) ,

so that we may rewrite (37) as

(38) Var(Ln) =
En
2

∫
T

L2(x)dx+O (En · R6(n)) ,

the upshot being that we are now able to use the definition (34) of L2 and

integrate the right-hand side of (34) term by term, as in Lemma 4.6 (where

the domain of integration is the whole of torus T rather than T \B). We then

perform the term-wise integration of (34) to obtain (with Lemma 4.6)

4 ·
∫
T

L2(x)dx =
1

Nn

Å
1

2
− 1

2
· 2 +

1

8
· 4
ã

+
1

N 2
n

Ç
− 1

2
· 2− 1

8
· 4 +

3

8
· 3 +

1

16
· 4− 1

32
· 8 +

1

256
· 2(11 + µ̂n(4)2)

+
1

512
· 4(7 + µ̂n(4)2) +

1

32
· 8− 1

4
· 2 +

1

16
· 8
å

+O (R5(n))

=
1

N 2
n

· 1 + µ̂n(4)2

64
+O (R5(n)) .

Collecting all the constants encountered and bearing in mind (38) yields (16),

which is the statement of the present proposition. �

4.2. Some remarks on arithmetic Berry cancellation. While the constant

term 1
4 cancels out with the expectation squared, the leading nonconstant term

of the scaled 2-point correlation function (i.e., the leading term of K2(x)− 1
4) is

1

8

Ç
r2 + trX +

tr(Y 2)

4

å
≈ 1

8

Ç
r2 − 2

En
DDt +

1

E2
n

trH2

å
,

where we neglected some lower-order terms. Denote the expression in paren-

thesis as

(39) v(x) := r2 − 2

En
DDt +

1

E2
n

trH2.

We may substitute (11), (22) and (23) into (39) to rewrite v(x) as

v(x) =
1

N 2

∑
λ1,λ2∈Λn

e (〈λ1 + λ2, x〉) +
2

N 2

∑
λ1,λ2∈Λn

λ1λ
t
2

En/4π2
e (〈λ1 + λ2, x〉)

+
1

N 2

∑
λ1,λ2∈Λn

(λ1λ
t
2)2

(En/4π2)2
e (〈λ1 + λ2, x〉)

=
1

N 2

∑
λ1,λ2∈Λn

Ç
1 + 2

λ1λ
t
2

n
+

(λ1λ
t
2)2

n2

å
e (〈λ1 + λ2, x〉) ,

on recalling (3).
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Note that
λ1λ

t
2

n
= cos θ(λ1, λ2),

where θ(·, ·) is the angle between two vectors in R2. Thus we may write, up to

lower order terms,

v(x) =
1

N 2

∑
λ1,λ2∈Λn

Ä
1 + 2 cos θ(λ1, λ2) + cos (θ(λ1, λ2))2

ä
e (〈λ1 + λ2, x〉)

=
4

N 2

∑
λ1,λ2∈Λn

cos

Ç
θ(λ1, λ2)

2

å4

e (〈λ1 + λ2, x〉) ,

by the usual trigonometric identities. Upon integrating (28), all the summands

vanish except for λ1 + λ2 = 0; the corresponding angle θ is given by

θ = θ(λ1, λ2) = π,

so that cos(θ/2) = 0. Thus the arithmetic cancellation phenomenon in the

length variance amounts to cos(θ/2)4 vanishing at θ = π.

4.3. Integrating matrix elements. We may obtain an asymptotic expres-

sion for the nodal length variance upon using (28) with Proposition 4.5, pro-

vided that we are able to integrate the expressions on the right-hand side of

(33), term-wise. This is done in Lemma 4.6. We choose to control the various

error terms encountered in terms of the moments of r, Rk (recall the notation

(15)). It will turn out that we will be able to control the error terms in terms

of R5 (and R6 ≤ R5), admissible thanks to Theorem 2.2 via a simple Cauchy-

Schwarz argument (see the proof of Theorem 1.1 in Section 2.4). The proof of

Lemma 4.6 is left to Section 5.1.

Lemma 4.6. As Nn →∞, we have the following estimates :

1.
∫
T

trX(x)dx = − 2
Nn −

2
N 2
n

+O (R6(n)) .

2.
∫
T

tr(Y (x)2)dx = 4
Nn −

4
N 2
n

+O (R6(n)) .

3.
∫
T

tr(X(x)Y (x)2)dx = − 4
N 2
n

+O (R5(n)) .

4.
∫
T

tr(X(x)2)dx = 8
N 2
n

+O (R6(n)) .

5.
∫
T

tr(Y (x)4)dx = 2
N 2
n

(11 + µ̂n(4)2) +O (R6(n)) .

6.
∫
T

tr(Y (x)2)2dx = 4
N 2
n

(3 + µ̂n(4)2) +O (R6(n)) .

7.
∫
T

trX(x) tr(Y (x)2)dx = − 8
N 2
n

+O (R6(n)) .

8.
∫
T
r(x)2 trX(x)dx = − 2

N 2
n

+O (R6(n)) .
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9.
∫
T
r(x)2 tr(Y (x)2)dx = 8

N 2
n

+O (R6(n)) .

10.
∫
T

tr(X(x)3)dx = O(R6(n)).

11.
∫
T

tr(Y (x)6)dx = O (R6(n)) .

5. Asymptotics for the 2-point correlation function

The ultimate goal of this section is to prove Proposition 4.5. To establish

the desired asymptotics for (29), one needs to understand the behaviour of

E[‖V1‖ · ‖V2‖] where (V1, V2) is a centered Gaussian with covariance Ωn, the

latter being a small perturbation of the indentity matrix, given by (26), where

both X and Y are small. That is, we expand F (X,Y ) = E[‖V1‖ · ‖V2‖] into a

Taylor polynomial of the entries of X,Y , about X = Y = 0.

The degree of the required Taylor polynomial in each of the variables is

determined according to its (average) order of magnitude and the admissible

error term. In principle, one may compute the polynomial by brute force,

computing each derivative separately, but this approach results in a long and

tedious computation. In this manuscript we employ Berry’s method [3] in order

to compute the nodal length fluctuations for the random monochromatic planar

waves. The following lemma provides the Taylor approximation of F (X,Y ) for

perturbed standard Gaussian.

Lemma 5.1. Let ∆ ∈M4(R) be a positive definite matrix such that

∆ = I +

Ç
X Y

Y X

å
,

where X,Y ∈M2(R) are symmetric, rank(X) = 1. Define

F (X,Y ) = E [‖W1‖ · ‖W2‖] ,

where (W1,W2) ∈ R2 × R2 is centered Gaussian with covariance ∆. Then

F (X,Y ) =
π

2

Ç
1 +

trX

2
+

tr(Y 2)

8
− tr(XY 2)

16
− tr(X2)

32
+

tr(Y 4)

256

+
tr(Y 2)2

512
− trX tr(Y 2)

32

å
+O

Ä
tr(X3) + tr(Y 6)

ä
.

Proof of Proposition 4.5 assuming Lemma 5.1. Note that since DtD is a

rank 1 matrix, it satisfies

tr(DtD) = DDt.

A straightforward application of Lemma 5.1 with X and Y given by (27)

yields (for x ∈ T \ B, r is bounded away from ±1, so we may write 1√
1−r2 =

1 + 1
2r

2 + 3
8r

4 +O(r6)) the following:
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K2(x) =
1

2π
√

1− r2
· F (X,Y )

=
1

4
√

1− r2

Ç
1 +

trX

2
+

tr(Y 2)

8
− tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32

å
+O

Ä
tr(X3) + tr(Y 6)

ä
=

1

4

Ç
1 +

r2

2
+

trX

2
+

tr(Y 2)

8
+

3

8
r4 − tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32
+

1

4
r2 trX +

1

16
r2 tr(Y 2)

å
+O

Ä
r6 + tr(X3) + tr(Y 6)

ä
. �

To present the proof of Lemma 5.1, we need some notation.

Notation 5.2. For a matrix A and a number a, we write A = O(a) if the

corresponding inequality holds entry-wise.

Notation 5.3. For t ∈ 0, we denote m(t) := min{t, 1}, and for t, s ∈ R,

m(t, s) := m(t) ·m(s).

Proof of Lemma 5.1. Following Berry (see [3, eq. (24)]),

√
α =

1√
2π

∞∫
0

(1− e−
αt
2 )

dt

t3/2
,

and we have

(40) E[‖W1‖ · ‖W2‖] =
1

2π

∫∫
R2
+

[f(0, 0)− f(t, 0)− f(0, s) + f(t, s)]
dtds

(ts)3/2
,

where

(41) fX,Y (t, s) = f(x, y) := E
ï
exp

Å
−1

2

Ä
‖W1‖2 + ‖W2‖2

äãò
=

1

det(I +M)
,

with

M =

Ç√
tI 0

0
√
sI

å
∆

Ç√
tI 0

0
√
sI

å
.

Now by the well-known formula for the determinant of a block matrix (see,

e.g., [14, p. 210]), we have

det(I+M) = det ((1+ t)I+ tX) · det
Ä
(1+s)I+sX − stY ((1+ t)I+ tX)−1Y

ä
,

so that

det(I +M)−1/2 = det ((1 + t)I + tX)−1/2×(42)

× det
Ä
(1 + s)I + sX − stY ((1 + t)I + tX)−1Y

ä−1/2
.
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Now we compute each of the two factors of the right-hand side of (42), up

to the admissible error terms X3 and Y 6, as in the formulation of Lemma 5.1:

(43) det(I +A)−1/2 = 1− 1

2
trA+

1

4
tr(A2) +

1

8
(trA)2 +O(A3),

so that the first factor in the right-hand side of (42) is

det ((1+ t)I+ tX)−1/2 =
1

1+ t
det

Å
I+

t

1+ t
X

ã−1/2

=
1

1+ t
·
Ç

1− t

2(1+ t)
trX+

t2

4(1+ t)2
tr(X2)+

t2

8(1+ t)2
(trX)2 +O(X3)

å
.

(44)

To compute the second factor in the right-hand side of (42), we write

(I +A)−1 = I −A+O(A2),

and we have

1

1 + s
det

Ç
I +

s

1 + s
X − st

(1 + s)(1 + t)
Y

Å
I +

t

1 + t
X

ã−1

Y

å−1/2

(45)

=
1

1 + s
det

Ç
I +

s

1 + s
X − st

(1 + s)(1 + t)
Y 2

+
st2

(1 + s)(1 + t)2
Y XY +O(Y X2Y )

å−1/2

=
1

1 + s

Ç
1− 1

2

s

1 + s
trX +

1

2

st

(1 + s)(1 + t)
tr(Y 2)

− 1

2

st2

(1 + s)(1 + t)2
tr(Y XY ) +

1

4

s2

(1 + s)2
tr(X2)

+
1

4

s2t2

(1 + s)2(1 + t)2
tr(Y 4)− 1

2

s2t

(1 + s)2(1 + t)
tr(XY 2)

+
1

8

s2

(1 + s)2
tr(X)2 +

1

8

s2t2

(1 + s)2(1 + t)2
tr(Y 2)2

− 1

4

s2t

(1 + s)2(1 + t)
trX tr(Y 2) +O(tr(X3) + tr(Y 6))

å
upon using (43) with

A =
s

1 + s
X − st

(1 + s)(1 + t)
Y 2 +

st2

(1 + s)(1 + t)2
Y XY +O(Y X2Y ).
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Cross multiplying (44) and (45) and substituting into (42) and finally into

(41), we obtain an asymptotic expression for fX,Y (t, s) of the form

fX,Y (t, s) =
1

(1 + t)(1 + s)

Ç
1− 1

2

s

1 + s
trX +

1

2

st

(1 + s)(1 + t)
tr(Y 2)

(46)

− 1

2

st2

(1 + s)(1 + t)2
tr(Y XY ) +

1

4

s2

(1 + s)2
tr(X2)

+
1

4

s2t2

(1 + s)2(1 + t)2
tr(Y 4)− 1

2

s2t

(1 + s)2(1 + t)
tr(XY 2)

+
1

8

s2

(1 + s)2
(trX)2 +

1

8

s2t2

(1 + s)2(1 + t)2
tr(Y 2)2

− 1

4

s2t

(1 + s)2(1 + t)
trX tr(Y 2)− t

2(1 + t)
trX

+
t2

4(1 + t)2
tr(X2) +

t2

8(1 + t)2
(trX)2

+
1

4

ts

(1 + t)(1 + s)
(trX)2 − 1

4

st2

(1 + s)(1 + t)2
trX tr(Y 2)

+O((tr(X3) + tr(Y 6))

å
=

1

(1+ t)(1+s)

Ç
1− 1

2

Å
s

1 + s
+

t

1 + t

ã
trX+

1

2

st

(1+s)(1+ t)
tr(Y 2)

− 1

2

Ç
st2

(1 + s)(1 + t)2
+

s2t

(1 + s)2(1 + t)

å
tr(XY 2)

+

Ç
3

8

s2

(1 + s)2
+

3

8

t2

(1 + t)2
+

1

4

ts

(1 + t)(1 + s)

å
tr(X2)

+
1

4

s2t2

(1 + s)2(1 + t)2
tr(Y 4) +

1

8

s2t2

(1 + s)2(1 + t)2
tr(Y 2)2

− 1

4

Ç
s2t

(1 + s)2(1 + t)
+

st2

(1 + s)(1 + t)2

å
trX tr(Y 2)

+O(tr(X3) + tr(Y 6))

å
,

where we used

(47) tr(Y XY ) = tr(XY 2), tr(X2) = (trX)2,

the latter thanks to rkX = 1.

It is important to identify (46) as the Taylor expansion of fX,Y (t, s) for

fixed t, s, as a function of X,Y around X = Y = 0 (i.e., a Taylor polynomial in
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terms of the entries of X and Y ). In the next step we perform the integration

in (40) by integrating the various terms in (46). The main problem is that

the error term does not depend on t, s, so that its integral against 1
t3/2s3/2

is

divergent at the origin. We improve the error term in the following way. Define

(48) gX,Y (t, s) := f(0, 0)− f(t, 0)− f(0, s) + f(t, s),

so that under the new notation, (40) is

(49) E[‖W1‖ · ‖W2‖] =
1

2π

∫∫
R2
+

gX,Y (t, s)
dtds

(ts)3/2
.

It is evident that for every X,Y the function gX,Y vanishes if either t = 0 or

s = 0, so that for t, s ≥ 0,

gX,Y (t, s) = OX,Y (ts).

We now substitute (46) into (48) in order to expand gX,Y (t, s) into a Taylor

polynomial around X = Y = 0; by the latter observation, the remainder term

may be improved from O
(
tr(X3) + tr(Y 6)

)
to

O
Ä
m(t, s)(tr(X3) + tr(Y 6))

ä
(recall Notation 5.3). To compute the contribution of each of the summands in

(46), we notice that each summand splits into a product φ(t)ψ(s) for some φ

and ψ (which are read off directly, for example, for the constant term 1
(1+t)(1+s) ,

φ(t) = 1
1+t and ψ(s) = 1

1+s), so that the corresponding term of gX,Y (t, s) in

(48) is

φ(t)ψ(s)− φ(t)ψ(0)− φ(0)ψ(s) + φ(0)ψ(0) = (φ(t)− φ(0))(ψ(s)− ψ(0)).

Therefore, the corresponding term in the integral (49) splits as well. We then

finally obtain

gX,Y (t, s) =
ts

(1 + t)(1 + s)
+

1

2

Ç
t

1 + t

s

(1 + s)2
+

t

(1 + t)2

s

1 + s

å
trX(50)

+
1

2

t

(1 + t)2

s

(1 + s)2
tr(Y 2)

− 1

2

Ç
t2

(1 + t)3

s

(1 + s)2
+

t

(1 + t)2

s2

(1 + s)3

å
tr(XY 2)

−
Ç

3

8

t

1 + t

s2

(1 + s)3
+

3

8

t2

(1 + t)3

s

1 + s
− 1

4

t

(1 + t)2

s

(1 + s)2

å
tr(X2)

+
1

4

t2

(1 + t)3

s2

(1 + s)3
tr(Y 4) +

1

8

t2

(1 + t)3

s2

(1 + s)3
tr(Y 2)2

− 1

4

Ç
t2

(1 + t)3

s

(1 + s)2
+

t

(1 + t)2

s2

(1 + s)3

å
trX tr(Y 2)

+O
Ä
m(t, s)(tr(X3) + tr(Y 6))

ä
.
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Note that rather than improving the error term in the last step, we may incor-

porate the improvement into more precise versions of (44) and (45) and then

carry the improved error term along; it would result in the same formula (50).

Inserting (50) into (49) yields

E[‖W1‖ · ‖W2‖] =
π

2

Ç
1 +

trX

2
+

tr(Y 2)

8
− tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32

å
+O

Ä
tr(X3) + tr(Y 6)

ä
,

using the elementary integrals

∞∫
0

Å
t

1 + t

ã
dt

t3/2
= π;

∞∫
0

dt

(1 + t)2
√
t

=
π

2
;

∞∫
0

√
tdt

(1 + t)3
=
π

8
,

which is the statement of the present lemma. �

5.1. Proof of Lemma 4.6. To prove Lemma 4.6 we will need the following

lemma (which establishes the asymptotics for some expressions involved in X

and Y ; see (27)), whose proof is relegated to Section 8.

Lemma 5.4. We have the following estimates :

1.
∫
T
r(x)2dx = 1

Nn .
∫
T
r(x)4dx = 3

N 2
n

Ä
1 +O

Ä
1
Nn

ää
.

2.
∫
T
D(x)D(x)tdx = En

Nn .
∫
T

(
D(x)D(x)t

)2
dx = 2 · E

2
n
N 2
n

Ä
1 +O

Ä
1
Nn

ää
.

3.
∫
T
r(x)2D(x)D(x)tdx = En

N 2
n

Ä
1 +O

Ä
1
Nn

ää
.

4.
∫
T

tr(H(x)2)dx = E2
n
Nn .

∫
T
r(x)2 tr(H(x)2)dx = 2 · E

2
n
N 2
n

Ä
1 +O

Ä
1
Nn

ää
.

5.
∫
T

tr(H(x)4)dx = E4
n

8N 2
n

(11 + µ̂n(4)2) +O
(
E4
n
N 3
n

)
.∫

T
tr(H(x)2)2dx = E4

n
4N 2

n
(7 + µ̂n(4)2) +O

(
E4
n
N 3
n

)
.

6.
∫
T
D(x)D(x)t tr(H(x)2)dx = E3

n
N 2
n

Ä
1 +O

Ä
1
Nn

ää
.

7.
∫
T
r(x)D(x)H(x)D(x)tdx = −1

2 ·
E2
n
N 2
n

Ä
1 +O

Ä
1
Nn

ää
.

8.
∫
T
D(x)H(x)2D(x)tdx = 1

2 ·
E3
n
N 2
n

Ä
1 +O

Ä
1
Nn

ää
.
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9.
∫
T

(D(x)D(x)t)3dx = O
(
E3
nR6(n)

)
.

10.
∫
T
r(x)4D(x)D(x)tdx = O (EnR6(n)) .

11.
∫
T

tr(H6)dx = O
(
E6
nR6(n)

)
.

Proof of Lemma 4.6 assuming Lemma 5.4. In this proof we will suppress

the dependence on x (and n), i.e., use the shortcuts r = rn(x), X = Xn(x),

Y = Yn(x), D = Dn(x), H = Hn(x). We have∫
T

trXdx =

∫
T\B

trXdx+O(meas(B))

by the uniform boundedness (30) of X. On T \B we use the approximation

1

1− r2
= 1 + r2 +O(r4),

and since meas(B) is small (32), we have∫
T

trXdx = − 2

En

Ñ∫
T

DDtdx+

∫
T

r2DDtdx

é
+O (R6(n))

= − 2

Nn
− 2

N 2
n

+O (R6(n))

by parts 10, 2 and 3 of Lemma 5.4. Arguing in a similar fashion, we obtain∫
T

tr(Y 2)dx ∼ 4

E2
n

∫
T

î
tr(H2) + 2rDHDt

ó
dx =

4

Nn
− 4

N 2
n

+O (R6(n)) ,

∫
T

tr(XY 2)dx ∼ − 8

E3
n

∫
T

DH2Dtdx = − 4

N 2
n

+O(R5(n)),

∫
T

tr(Y 4)dx ∼ 16

E4
n

∫
T

tr(H4) +O (R6(n)) ,

∫
T

tr(Y 2)2dx =
16

E4
n

∫
T

tr(H2)2dx+O (R6(n)) =
4

N 2
n

(7 + µ̂n(4)2) +O (R6(n)) .

This shows parts 1, 2, 3, 5 and 6, parts 4, 7, 8 and 9 being similar.

To see part 10, we notice that as X is uniformly bound (30) and meas(B)

is small (32), it is sufficient to bound the contribution on T \ B only, so that

we may assume that r is bounded away from ±1:

(51)

∫
T

tr(X3)dx� 1

E3

∫
T

(DDt)3dx+R6(n).
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Part 10 of Lemma 4.6 then follows upon applying part 9 of Lemma 5.4 with

(51). The proof for part 11 is very similar, using part 11 of Lemma 5.4, and

we omit it here. �

6. Proof of Theorem 2.2

We begin by recalling some needed results from additive combinatorics.

An additive set is a finite and nonempty subset of an ambient (additive) abelian

group Z. Given an additive set A, we define E(A,A), the additive energy of

A, by

E(A,A) :=
∣∣∣¶(y1, y2, y3, y4) ∈ A4 : y1 + y2 = y3 + y4

©∣∣∣ .
We shall use the following “large energy version” of the Balog-Szemeredi-

Gowers theorem (see [25, Chs. 2.4–5]).

Theorem 6.1 (BSG). Let A be an additive set, and let K ≥ 1. There

exists an absolute constant C with the following property. If E(A,A) ≥ |A|3/K ,

then there exists a subset A1 ⊆ A satisfying

(52) |A1| > K−C |A|

and

(53) |A1 +A1| < KC |A|.

Remark 6.2. Theorem 6.1 can easily be deduced from Proposition 2.26

and Theorem 2.31 of [25] as follows. By Theorem 2.31, E(A,A) ≥ |A|3/K
implies that there exist subsets A1 ⊆ A, A2 ⊆ A with |A1| > K−C

′ |A|, |A2| >
K−C

′ |A| satisfying d(A1, A2) ≤ C ′ logK (where d(A1, A2) denotes the Rusza

distance between A1, A2, and C ′ is an absolute constant.) By Proposition 2.26,

d(A1, A2) ≤ C ′ logK implies that |A1 + A1| ≤ KC′′ |A1| for some C ′′ only

depending on C ′. Taking C = max(C ′, C ′′), the result follows.

If G is a (torsion free) abelian group, a Generalized Arithmetic Progression

(GAP) of dimension d is a subset P ⊆ G of the form

(54) P =

{
ξ0 +

d∑
k=1

jkξk : 0 ≤ jk < Jk for k = 1, . . . , d

}
,

with ξ0, . . . , ξd ∈ G. A GAP P is called proper if |P | =
∏d
k=1 Jk (i.e., all

elements in the sum ξ0 +
∑d
k=1 jkξk are distinct). It is easy to see that a

GAP has “bounded doubling,” i.e., that |A + A|/|A| is “small.” A surprising

converse is Freiman’s celebrated structure theorem — an additive set with

small doubling is essentially a proper GAP.
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Theorem 6.3 ([25, Th. 5.33]). Let A be an additive set in a torsion free

group G such that |A + A| ≤ K|A|. Then there exists a proper generalized

arithmetic progression P , of rank at most K − 1, that contains A such that

|P | ≤ exp
Ä
O
Ä
KO(1)

ää
|A|.

If A ⊂ C and z ∈ C, let r2(z,A) denote the number of representations of

z as a product of two elements from A. The following result by Chang shows

that r2(z,A) is quite small when A is a GAP.

Proposition 6.4 ([11, Prop. 3]). Let P ⊆ C be a GAP of the form (54),

where ξ0, . . . , ξd ∈ C. Then, for all z ∈ C,

(55) r2(z, P ) < exp

Å
Cd

log J

log log J

ã
,

where J = max1≤k<d Jk and the constant Cd only depends on the dimension d

of P .

Proof of Theorem 2.2. Assume that |Sn| = o(N 4
n) does not hold, i.e., that

there exists some δ > 0 such that

(56) |S6(n)| > δN 4
n

for Nn arbitrarily large. Using sum-product type estimates, we will show that

this leads to a contradiction.

To simplify the notation, let S = S6(n) and N = Nn. From this point

on in this proof we assume that δ is fixed; we will write F . G for some

expressions F , G (resp. F & G), if there exists a constant C (which may

depend on δ only), such that F ≤ C ·G (resp. F ≥ C ·G).

Define

(57) A = An := (Λn + Λn) \ {0}.

Note that A then consists of elements that have two (or exactly one for elements

of the form 2λ, λ ∈ Λn) representations as sums of elements of Λn. Also also

note that A is symmetric around the origin. Thus

(58) |A| = N2/2 +O(N),

and (56) implies

(59) |{(y1, y2) ∈ A×A : y1 + y2 ∈ A}| & N4.

(Note that the number of solutions to
∑6
i=1 λi = 0 with the additional con-

straint that one of λ1 + λ2, λ3 + λ4, λ5 + λ6 equals zero is O(N3); this follows

immediately on noting that λi + λj = z has at most four solutions if z 6= 0.)

Letting 1A denote the characteristic function of the set A ⊆ Z2, we have

(60) |{(y1, y2) ∈ A×A : y1 + y2 ∈ A}| = 〈1A ? 1A,1A〉,
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where we understand both the inner product and the convolution as defined

on L2(Z2). Together with (59) and the Cauchy-Schwarz inequality, the obser-

vation (60) yields

N4 . 〈1A ? 1A,1A〉 ≤ ‖1A ? 1A‖2 · |A|1/2 ∼
1√
2
‖1A ? 1A‖2 ·N.

We may hence estimate the additive energy of A as

E(A,A) = |{(y1, y2, y3, y4) ∈ A4 : y1 + y2 = y3 + y4}|

= ‖1A ? 1A‖22 & N6 & |A|3.

We now apply Theorem 6.1 on A with K = K(δ) constant to construct

a large subset A1 ⊆ A having the “bounded doubling” property (53) and, in

addition, (52). Together with (58), the latter implies

(61) |A1| & N2.

Hence, by applying Theorem 6.3 with G = Z2 and A1 ⊂ G, there exists a

proper GAP

(62) P =

{
ξ0 +

d∑
k=1

jkξk : 0 ≤ jk < Jk for k = 1, . . . , d

}
,

as in (54), of bounded dimension (depending on δ only)

(63) d(δ) = d(K(δ)),

so that A ⊆ P and

|P | ≤ exp
Ä
O
Ä
KO(1)

ää
|A1| . |A1|.

We then have

|A1| = |P ∩A1| ≤ |P ∩A| ≤
∑
x∈Λn

|(P − x) ∩ Λn|,

where for the latter inequality we used the definition (57) of A. Hence, by (61),

N2 .
∑
x∈Λn

|(P − x) ∩ Λn|,

and therefore (the length of summation being N)

|(P − x) ∩ Λn| & N

for some x ∈ Λn. Replacing P by P − x if necessary, we may assume that

(64) |P ∩ Λn| & N.
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Using Chang’s Proposition 6.4 the latter leads to a contradiction as fol-

lows. If P =
¶
ξ0 +

∑d
k=1 jkξk : 0 ≤ jk < Jk for k = 1, . . . , d

©
, then P ∪ P is

contained in a GAP, of dimension 2d+ 1, of the form

P ′ =

ξ0 + j0(ξ0 − ξ0) +
d∑

k=1

jkξk +
2d∑

k=d+1

jkξk−d

 ,
where 0 ≤ j0 < 2, 0 ≤ jk < Jk for k = 1, . . . , d and 0 ≤ jk < Jk−d for

k = d+ 1, . . . , 2d.

Considering P ′ as a subset of Z + iZ, it is clear (since for every z ∈ Λn,

z · z = n) that

(65) r2(n, P ′) ≥ |P ′ ∩ Λn| & N,

by (64). On the other hand, Proposition 6.4 applied on P ′ implies that

r2(n, P ′) < exp

Å
C2d+1

log J

log log J

ã
,

where

J = max
1≤k≤d

Jk ≤ |P | . N2,

with Jk as in (62), and thus

r2(n, P ′) < exp

Å
C2d+1

logN

log logN

ã
.

Combined with (65) the latter estimate implies

N . exp

Å
C2d+1

logN

log logN

ã
or, taking logarithm of both sides,

logN ≤ C logN

log logN

for some C = C(δ) that may depend on δ only (by (63)). This is clearly

impossible for N arbitrarily large, and the desired contradiction concludes the

proof. �

7. Probability measures on S1 arising from Λn

Recalling that S = {n ∈ Z : n = a2 + b2, a, b ∈ Z}, define

S(x) := {n ∈ S : n ≤ x},

and for a subset S′ ⊆ S, similarly define S′(x) := {n ∈ S′ : n ≤ x}. We say that

a set S′ ⊆ S has asymptotic density s ∈ [0, 1] if lim
x→∞

S′(x)
S(x) = s. Further, we say

that a subsequence (ni)i≥1 of elements in S is thin if the subset {ni}i≥1 ⊂ S

has asymptotic density zero.
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It is known [19] that as x → ∞, S(x) ∼ cx√
log x

, where c > 0 is known

as the Landau-Ramanujan constant. In particular, Nn grows as ∼ c
√

log x on

average for n ≤ x. Moreover, a straightforward modification of an Erdös-Kac

type argument to the set S shows that

|{n ∈ S(x) : logNn � log logn}| = |S(x)| · (1 + o(1))

as x → ∞, and consequently there exists a density one subset S′ ⊂ S such

that Nn →∞ if n ∈ S′ and n→∞.

Further, the lattice points Λn are equidistributed on S1 along generic

subsequences of energy levels (see, e.g., [16, Prop. 6]) in the following sense.3

There exists a density 1 subsequence S′′ ⊆ S so that µn ⇒
n∈S′′

ν, where ν is

the uniform probability measure dν(θ) = 1
2πdθ on S1 ∼= R/2πZ. (As usual, the

notation υi ⇒ υ stands for weak convergence of probability measures on S1,

i.e., that
∫
fdυi →

∫
fdυ for every continuous bounded test function f .) In

particular, for a generic sequence of elements n ∈ S, Nn → ∞ and the points

in Λn are equidistributed in S1.

In the other direction, Cilleruelo [13] has shown that there are thin se-

quences (Eni)i≥1 with Nni →∞ such that µni converges to the atomic proba-

bility measure supported at the 4 symmetric points ±1, ±i:

(66) µni ⇒ ν0 :=
1

4

3∑
k=0

δik .

7.1. Some number theoretic prerequisites on Gaussian integers. Before

proceeding with the proof of Proposition 1.2, we begin with some number

theoretic preliminaries on µn (see, e.g., [13]).

To describe µn we recall some basic facts about Gaussian integers. Given

a prime p ≡ 1 mod 4, the equation x2 + y2 = p has exactly eight solutions in

integers x, y, and there is a unique solution satisfying 0 ≤ yp ≤ xp. We can

hence attach an angle θp ∈ [0, π/4] to each such p by writing xp+ iyp =
√
peiθp .

On the other hand, given a prime q ≡ 3 mod 4, the equation x2 + y2 = q has

no solutions, whereas x2 + y2 = 2 has exactly four solutions. Moreover, the

following holds for the ring of Gaussian integers: the units are given by ik for

k ∈ {0, 1, 2, 3}, the set of Gaussian primes are, up to units, given by 1+i, primes

q ∈ Z+ with q ≡ 3 mod 4, and to each prime p ≡ 1 mod 4 there correspond

two Gaussian primes, namely xp + iyp =
√
peiθp and xp − iyp =

√
pe−iθp .

3Proposition 6 in [16] implies that all the exponential sums are o(1) for a density one

sequence of energy levels. The equidistribution follows from the Weyl’s criterion.
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The elements of Λn can then be parametrized as follows. Let

n = 2e2 ·
∏
pep ||n

p
ep
i ·

∏
q
2eq
i ||n

q
2eq
i ,

where pi and qi are all the primes satisfying pi ≡ 1 mod 4 and q ≡ 3 mod 4.

Each pair (x, y) arises as follows. With z = x+ iy, we have

z = x+ iy = ik · (1 + i)e2 ·
∏
pep ||n

(
√
pepei(ep−2lp)θp) ·

∏
q
2eq
i ||n

q
eq
i ,

where k ∈ {0, 1, 2, 3} and 0 ≤ lp ≤ ep for each p|n.

We can now describe µn as convolutions over prime powers. Define

µ1 :=
1

4

3∑
k=0

δik

(µ1 = ν0 as in (66)), µ̃2e2 := δ((1+i)/
√

2)e2 , and

µ̃pep :=
1

ep + 1

ep∑
lp=0

δei(ep−2lp)θp ,

(the “desymmetrized” version of µn). Then

µn = µ1 ? (?p|nµ̃pep ),

where the convolution of two measures µ, µ′ on S1 is given by

(µ ? µ′)(z) =

∫
S1
µ(w)µ′(z/w)dw.

7.2. Proof of Proposition 1.2.

Proof. That ν0 and νπ/4 arise as weak limits of (µni)i≥1 was already noted

in the introduction of Section 7. To show that the same is true for νa for

a ∈ (0, π/4), we argue as follows. An easy consequence of Gaussian primes

being equidistributed in sectors (cf. [17], [18]) is that there exists an infinite

sequence of primes p1 < p2 < · · · such that θpj → 0, where each pj ≡ 1 mod 4.

(Also see [13].) To proceed we construct a sequence of integers nj such that

(67) µ̃nk → ν̃a;

this will immediately imply that µnk → νa since µnk and νa are the sym-

metrized versions of µ̃nk and ν̃a respectively.

Thus, let ek = [a/θpk ], where [a/θpk ] denotes the integer part of a/θpk ,

and define

nk = pekk .

Then, for f any continuous function on S1,

(68)

∫
S1
f(θ)dµ̃nk(θ) =

1

ek + 1

ek∑
l=0

f(ei(ek−2l)θpk ).
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The latter is the 2θpk -spaced Riemann sum for the integral

1

2αk

αk∫
−αk

f(eiθ)dθ

with

αk = θpk · [a/θpk ] = a− θpk · {a/θpk},
where {·} is the fractional part of a real number.

Note that since θpk → 0 (so that the Riemann sum spacing vanishes),

|θpk · {a/θpk}| ≤ θpk → 0,

and so αk → a. Therefore, as k →∞, we have∫
S1

f(θ)dµ̃nk(θ) =
1

ek + 1

ek∑
l=0

f(ei(ek−2l)θpk )→ 1

2a

a∫
−a

f(eiθ)dθ

for any continuous test function f . Thus all νa are attainable as limiting

measures, and the proof of the first statement is concluded.

To see that the Fourier coefficient ν̂a(4), for a ∈ [0, π4 ], attains all values

in [0, 1], it is sufficient to notice that

ν̂0(4) = µ̂1(4) = 1, ‘νπ/4(4) = 0,

and clearly the function a 7→ ν̂a(4) is continuous. Therefore, by the interme-

diate value theorem, given any value b ∈ [0, 1], there exists a number a = a(b)

so that νa(4) = b. Since νa is attainable for all a, the second statement of

Proposition 1.2 follows. �

8. Proof of Lemma 5.4

For a probability measure µ on S1, we define

B4(µ) :=

∫
z1,z2∈S1

〈z1, z2〉4dµ(z1)dµ(z2),

the fourth moment of cosine of the angle between two random points on S1

drawn independently according to µ. For instance, if µ = µn are the atomic

measures in (7), then

(69) B4(µn) =
1

N 2
nn

4

∑
λ1,λ2∈Λn

〈λ1, λ2〉4 =
1

N 2
n

∑
λ1,λ2∈Λn

cos(θ(λ1, λ2))4

is the fourth moment of cosine of the angle θ(λ1, λ2) between two random uni-

formly and independently drawn Λn-points λ1, λ2. While the expression B4(n)

comes up naturally from some of the expressions evaluated in Lemma 5.4, it

is simply related to µ̂n(4) as in the following lemma.
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Lemma 8.1. For any probability measure µ on S1, invariant with respect

to x 7→ ix and x 7→ x̄, we have

B4(µ) =
3

8
+

1

8
µ̂(4)2.

Proof. For z1, z2 ∈ S1, use

〈z1, z2〉 =
z1z̄2 + z̄1z2

2

together with the binomial formula for 〈z1, z2〉4 or, alternatively, the standard

identity

cos(θ)4 =
3

8
+

1

8
cos(4θ) +

1

2
cos(2θ),

to rewrite B4(µ) as

B4(µ) =
3

8
+

∫
z1,z2∈S1

Å
1

8
<
Ä
z4

1 z̄2
4
ä

+
1

2
<
Ä
z2

1 z̄2
2
äã
dµ(z1)dµ(z2).

The statement of the present lemma follows upon noting that
∫
S
z4dµ(z) =∫

S
z̄4dµ(z) = µ̂(4) ∈ R and

∫
S
z2dµ(z) =

∫
S
z̄2dµ(z) vanish by the symmetry

assumptions. �

Proof of Lemma 5.4. In order to evaluate the integrals we will use (11),

(22) and (23), and the orthogonality relations of the exponentials

(70)

∫
T

e (〈λ, x〉) dx =

1 λ = 0,

0 otherwise.

Most of the computations are similar in nature, and we will only show a few

examples in detail, omitting the rest.

The statement of part 1 of the present lemma concerning the second mo-

ment of r is evident in light of (11) and (70). For the fourth moment, we

have

(71)

∫
T

r(x)4dx =
1

N 4
n

|S4(n)|,

where

S4(n) =

{
(λ1, . . . , λ4) ∈ Λn :

4∑
i=1

λi = 0

}
is the length-4 correlation set of frequencies (cf. (18)). Note that since two

circles may have at most two intersections (i.e., circles of radius
√
n centered
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at 0 and λ1 + λ2), (λ1, . . . , λ4) ∈ S4(n) implies that either of the following

holds:

(λ1 = −λ2 and λ3 = −λ4) or(72)

(λ1 = −λ3 and λ2 = −λ4) or

(λ1 = −λ4 and λ2 = −λ3).

Conversely, every tuple of either of the forms above is lying inside S4(4). In

particular,

|S4(n)| = 3N 2
n

Å
1 +O

Å
1

Nn

ãã
,

the error term being an artifact of the existence of degenerate tuples of the

form

(±λ,±λ,±λ,±λ) ∈ S4(4)

(with precisely two plus and two minus signs). Part 1 of the present lemma then

follows upon substituting the latter into (71). We will use the fine structure

(72) of S4(n) in the course of the proof of most of the other statements of the

present lemma.

Now we turn to part 2 of the present lemma. While the first statement

is clear from (22) and (70), to show the other statement, we invoke the fine

structure (72) of S4(n). We have∫
T

(D(x)D(x)t)2dx =
(2π)4

N 4
n

∑
(λ1,...,λ4)∈S4(n)

λ1λ
t
2λ3λ

t
4

=
(2π)4

N 4
n

ñ
N 2
nn

2 +
∑

λ1,λ2∈Λn

〈λ1, λ2〉2 +
∑

λ1,λ2∈Λn

λ1λ
t
2λ2λ1 +O

Ä
Nn2

ä ô
.

The result of the present computation then follows upon making the simple

observations ∑
λ∈Λn

〈λ, ξ〉2 =
1

2
Nnn‖ξ‖2

for every ξ ∈ R2 (see [22, Lemma 5.2]) and∑
λ∈Λn

λtλ =
1

2
Nnn · I2.

To show part 3, we note∫
T

r(x)2D(x)D(x)tdx = −(2π)2

N 4

∑
(λ1,...,λ4)∈S4(n)

λ3λ
t
4,

and only tuples with λ3 = −λ4 contribute to the latter summation, i.e., those

of the first type in (72). The computation for part 4 is very similar to what we

encountered before, using (23) with (70) for the first statement and exploiting

the fine structure (72) of S4(n) for the second one:
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∫
T

tr(H(x)2)dx =
(4π2)2

N 2

∑
(λ1,...,λ4)∈S4(n)

λt3λ3λ
t
4λ4.

To compute the integrals in part 5, we exploit Lemma 8.1. Similarly to

the previous computations, by (23) and (70), we have∫
T

tr(H(x)4)dx =
(4π2)4

N 4
n

∑
(λ1,...,λ4)∈S4(n)

tr(λt1λ1λ
t
2λ2λ

t
3λ3λ

t
4λ4)

=
(4π2)4

N 4
n

ñ ∑
λ1,λ2∈Λn

tr
Ä
λt1λ1λ

t
1λ1λ

t
2λ2λ

t
2λ2

ä
+

∑
λ1,λ2∈Λn

tr
Ä
λt1λ1λ

t
2λ2λ

t
1λ1λ

t
2λ2

ä
+

∑
λ1,λ2∈Λn

tr
Ä
λt1λ1λ

t
2λ2λ

t
2λ2λ

t
1λ1

ä ô
+O

Ç
E4
n

N 3
n

å
=

(4π2)4

N 4
n

ñ
n2

∑
λ1,λ2∈Λn

〈λ1, λ2〉2 +
∑

λ1,λ2∈Λn

〈λ1, λ2〉4

+ n2
∑

λ1,λ2∈Λn

〈λ1, λ2〉2
ô

+O

Ç
E4
n

N 3
n

å
=
E4
n

N 2
n

(1 +B4(n)) +O

Ç
E4
n

N 3
n

å
,

where we used sums as above and the definition (69) ofB4(n).Using Lemma 8.1,

we may then rewrite the latter expression in terms of µ̂n(4), as in the statement

of the present lemma.

A similar computation shows that the second integral in part 5 is given by∫
T

tr(H(x)2)2dx =
E4
n

N 2
n

(1 + 2B4(n)) +O

Ç
E4
n

N 3
n

å
,

and using Lemma 8.1 again yields the result given. Evaluating the integrals

for parts 6–8 of the present lemma is straightforward and very similar to the

above computations, and we omit it here.

We now prove part 9 of the present lemma. By symmetry, we have

(73)

∫
T

(D(x)D(x)t)3dx =

∫
T

‖D(x)‖6dx�
∫
T

Å
∂r

∂x1

ã6

dx,

whence ∫
T

Å
∂r

∂x1

ã6

dx =
(2π)6

N 6
n

∫
T

Ñ ∑
λ=(λ1,λ2)∈Λ

λ1 sin(2π〈λ, x〉)

é6

dx(74)

=
(2π)6

N 6
n

∑
λ1,...,λ6∈Λ

6∑
i=1

λi=0

λ1
1 · . . . · λ1

6 �
E3

N 6
n

· |S6(n)| = E3
∫
T

r(x)6dx,



NODAL LENGTH FLUCTUATIONS 735

by (17), where we used the uniform bound

|λ1
i | ≤

√
n�

√
E.

The present statement of Lemma 5.4 then follows upon substituting (74) into

(73). The proofs for the last parts 10 and 11 of the present lemma are very

similar, and we omit them here. �
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