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A further improvement of the
Quantitative Subspace Theorem

By J.-H. Evertse and R. G. Ferretti

Abstract

In 2002, Evertse and Schlickewei obtained a quantitative version of the

so-called Absolute Parametric Subspace Theorem. This result deals with

a parametrized class of twisted heights. One of the consequences of this

result is a quantitative version of the Absolute Subspace Theorem, giving an

explicit upper bound for the number of subspaces containing the solutions

of the Diophantine inequality under consideration.

In the present paper, we further improve Evertse’s and Schlickewei’s

quantitative version of the Absolute Parametric Subspace Theorem and

deduce an improved quantitative version of the Absolute Subspace Theo-

rem. We combine ideas from the proof of Evertse and Schlickewei (which

is basically a substantial refinement of Schmidt’s proof of his Subspace

Theorem from 1972), with ideas from Faltings’ and Wüstholz’ proof of the

Subspace Theorem. A new feature is an “interval result,” which gives more

precise information on the distribution of the heights of the solutions of the

system of inequalities considered in the Subspace Theorem.

1. Introduction

1.1. Let K be an algebraic number field. Denote by MK its set of places

and by ‖ · ‖v (v ∈ MK) its normalized absolute values, i.e., if v lies above

p ∈ MQ := {∞} ∪ {prime numbers}, then the restriction of ‖ · ‖v to Q is

| · |[Kv :Qp]/[K:Q]
p . Define the norms and absolute height of x = (x1, . . . , xn) ∈ Kn

by ‖x‖v := max16i6n ‖xi‖v for v ∈MK and H(x) :=
∏
v∈MK

‖x‖v.
Next, let S be a finite subset of MK , n an integer > 2, and {L(v)

1 , . . . , L
(v)
n }

(v ∈ S) linearly independent systems of linear forms from K[X1, . . . , Xn]. The

Subspace Theorem asserts that for every ε > 0, the set of solutions of

(1.1)
∏
v∈S

n∏
i=1

‖L(v)
i (x)‖v
‖x‖v

6 H(x)−n−ε in x ∈ Kn
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lies in a finite union T1 ∪ · · · ∪ Tt1 of proper linear subspaces of Kn. Schmidt

[22] proved the Subspace Theorem in the case that S consists of the archimed-

ean places of K and Schlickewei [17] extended this to the general case. Much

work on the p-adization of the Subspace Theorem was done independently by

Dubois and Rhin [8].

By an elementary combinatorial argument originating from Mahler (see

[11, §21]), inequality (1.1) can be reduced to a finite number of systems of

inequalities

(1.2)
‖L(v)

i (x)‖v
‖x‖v

6 H(x)div (v ∈ S, i = 1, . . . , n) in x ∈ Kn,

where ∑
v∈S

n∑
i=1

div < −n.

Thus, an equivalent formulation of the Subspace Theorem is, that the set

of solutions of (1.2) is contained in a finite union T1 ∪ · · · ∪ Tt2 of proper

linear subspaces of Kn. Notice that (1.2) may be viewed as an inequality over

Pn−1(K). Making more precise earlier work of Vojta [30] and Schmidt [25],

Faltings and Wüstholz [14, Th. 9.1] obtained the following refinement: There

exists a single, effectively computable proper linear subspace T of Pn−1(K)

such that (1.2) has only finitely many solutions x ∈ Pn−1(K) \ T .

(1.2) can be translated into a single twisted height inequality. Put

δ := −1− 1

n

Ä∑
v∈S

n∑
i=1

div
ä
, civ := div −

1

n

n∑
j=1

djv (v ∈ S, i = 1, . . . , n).

Thus,

δ > 0,
n∑
i=1

civ = 0 for v ∈ S.

For Q > 1, x ∈ Kn define the twisted height

(1.3) HQ(x) :=
∏
v∈S

(
max
16i6n

‖L(v)
i (x)‖vQ−civ

)
·
∏
v 6∈S
‖x‖v.

(To our knowledge, this type of twisted height was used for the first time, but

in a function field setting, by Dubois [7].)

Let x ∈ Kn be a solution to (1.2), and take Q := H(x). Then

(1.4) HQ(x) 6 Q−δ.

It is very useful to consider (1.4) with arbitrary reals civ, not just those

arising from system (1.2), and with arbitrary reals Q not necessarily equal to

H(x). As will be explained in Section 2, the definition of HQ can be extended

to Qn
(where it is assumed that Q ⊃ K), hence (1.4) can be considered for

points x ∈ Qn
. This leads to the following theorem.
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The Absolute Parametric Subspace Theorem. Let civ (v ∈ S, i =

1, . . . , n) be any reals with
∑n
i=1 civ = 0 for v ∈ S, and let δ > 0. Then there

are a real Q0 > 1 and a finite number of proper linear subspaces T1, . . . , Tt3 of

Qn
, defined over K , such that for every Q > Q0, there is Ti ∈ {T1, . . . , Tt3}

with

{x ∈ Qn
: HQ(x) 6 Q−δ} ⊂ Ti.

Recall that a subspace of Qn
is defined over K if it has a basis from

Kn. In this general form, this result was first stated and proved in [11]. The

nonabsolute version of the Parametric Subspace Theorem, with solutions x ∈
Kn instead of x ∈ Qn

, was proved implicitly along with the Subspace Theorem.

1.2. In 1989, Schmidt was the first to obtain a quantitative version of

the Subspace Theorem. In [24] he obtained, in the case K = Q, S = {∞}, an

explicit upper bound for the number t1 of subspaces containing the solutions of

(1.1). This was generalized to arbitrary K,S by Schlickewei [18] and improved

by Evertse [9]. Schlickewei observed that a good quantitative version of the

Parametric Subspace Theorem, that is, with explicit upper bounds for Q0 and

t3, would be more useful for applications than the existing quantitative versions

of the basic Subspace Theorem concerning (1.1), and in 1996 he proved a

special case of such a result. Then in 2002, Evertse and Schlickewei [11] proved

a stronger, and fully general, quantitative version of the Absolute Parametric

Subspace Theorem. This led to uniform upper bounds for the number of

solutions of linear equations in unknowns from a multiplicative group of finite

rank [12] and for the zero multiplicity of linear recurrence sequences [26], and

more recently to results on the complexity of b-ary expansions of algebraic

numbers [6], [3], to improvements and generalizations of the Cugiani-Mahler

theorem [2], and approximation to algebraic numbers by algebraic numbers [4].

For an overview of recent applications of the Quantitative Subspace Theorem

we refer to Bugeaud’s survey paper [5].

1.3. In the present paper, we obtain an improvement of the quantitative

version of Evertse and Schlickewei on the Absolute Parametric Subspace The-

orem, with a substantially sharper bound for t3. Our general result is stated

in Section 2. In Section 3 we give some applications to (1.2) and (1.1).

To give a flavour, in this introduction we state special cases of our results.

Let K,S be as above, and let civ (v ∈ S, i = 1, . . . , n) be reals with

(1.5)
n∑
i=1

civ = 0 for v ∈ S,
∑
v∈S

max(c1v, . . . , cnv) 6 1;

the last condition is a convenient normalization. Further, let L
(v)
i (v ∈ S, i =

1, . . . , n) be linear forms such that for v ∈ S,
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(1.6)

{L
(v)
1 , . . . , L

(v)
n } ⊂ {X1, . . . , Xn, X1 + · · ·+Xn},

{L(v)
1 , . . . , L

(v)
n } is linearly independent,

and let HQ be the twisted height defined by (1.3) and then extended to Q.

Finally, let 0 < δ 6 1. Evertse and Schlickewei proved in [11] that in this case,

the above stated Absolute Parametric Subspace Theorem holds with

Q0 := n2/δ, t3 6 4(n+9)2δ−n−4.

This special case is the basic tool in the work of [12], [26], quoted above. We

obtain the following improvement.

Theorem 1.1. Assume (1.5), (1.6), and let 0 < δ 6 1. Then there are

proper linear subspaces T1, . . . , Tt3 of Qn
, all defined over K , with

t3 6 10622nn10δ−3
Ä

log(6nδ−1)
ä2
,

such that for every Q with Q > n1/δ , there is Ti ∈ {T1, . . . , Tt3} with

{x ∈ Qn
: HQ(x) 6 Q−δ} ⊂ Ti.

A new feature of our paper is the following interval result.

Theorem 1.2. Assume again (1.5), (1.6), 0 < δ 6 1. Put

m :=
î
10522nn10δ−2 log(6nδ−1)

ó
, ω := δ−1 log 6n.

Then there are an effectively computable proper linear subspace T of Qn
, defined

over K , and reals Q1, . . . , Qm with n1/δ 6 Q1 < · · · < Qm, such that for every

Q > 1 with

{x ∈ Qn
: HQ(x) 6 Q−δ} 6⊂ T,

we have

Q ∈
î
1, n1/δ

ä
∪ [Q1, Q

ω
1 ) ∪ · · · ∪ [Qm, Q

ω
m) .

The reals Q1, . . . , Qm cannot be determined effectively from our proof.

Theorem 1.1 is deduced from Theorem 1.2 and a gap principle. The precise

definition of T is given in Section 2. We show that in the case considered here,

i.e., with (1.6), the space T is the set of x = (x1, . . . , xn) ∈ Qn
with

(1.7)
∑
j∈Ii

xj = 0 for i = 1, . . . , p,

where I1, . . . , Ip (p=n−dimT ) are certain pairwise disjoint subsets of {1, . . . , n}
that can be determined effectively.

As an application, we give a refinement of the theorem of Faltings and

Wüstholz on (1.2) mentioned above, again under assumption (1.6).
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Corollary 1.3. Let K,S be as above, let L
(v)
i (v ∈ S, i = 1, . . . , n) be

linear forms with (1.6), and let div (v ∈ S, i = 1, . . . , n) be reals with

div 6 0 for v ∈ S, i = 1, . . . , n,
∑
v∈S

n∑
i=1

div = −n− ε with 0 < ε 6 1.

Put

m′ :=
î
10622nn12ε−2 log(6nε−1)

ó
, ω′ := 2nε−1 log 6n.

Then there are an effectively computable linear subspace T ′ of Kn and reals

H1, . . . ,Hm′ with nn/ε 6 H1 < H2 < · · · < Hm′ such that for every solution

x ∈ Kn of (1.2), we have

x ∈ T ′ or H(x) ∈
î
1, nn/ε

ä
∪
î
H1, H

ω′
1

ä
∪ · · · ∪

î
Hm′ , H

ω′
m′

ä
.

Corollary 1.3 follows by applying Theorem 1.2 with

civ :=
n

n+ ε

(
div −

1

n

n∑
j=1

djv
)

(v ∈ S, i = 1, . . . , n),

δ :=
ε

n+ ε
, Q := H(x)1+ε/n.

The exceptional subspace T ′ is the set of x ∈ Kn with (1.7) for certain pairwise

disjoint subsets I1, . . . , Ip of {1, . . . , n}.
It is an open problem to estimate from above the number of solutions

x ∈ Pn−1(K) of (1.2) outside P(T ′).

1.4. In Sections 2 and 3 we formulate our generalizations of the above

stated results to arbitrary linear forms. In particular, in Theorem 2.1 we

give our general quantitative version of the Absolute Parametric Subspace

Theorem, which improves the result of Evertse and Schlickewei from [11], and

in Theorem 2.3 we give our general interval result, dealing with points x ∈
Qn

outside an exceptional subspace T . Further, in Theorem 2.2 we give an

“addendum” to Theorem 2.1, where we consider (1.4) for small values of Q. In

Section 3 we give some applications to the Absolute Subspace Theorem; i.e.,

we consider absolute generalizations of (1.2), (1.1) with solutions x taken from

Qn
instead of Kn. Our central result is Theorem 2.3, from which the other

results are deduced.

1.5. We briefly discuss the proof of Theorem 2.3. Recall that Schmidt’s

proof of his 1972 version of the Subspace Theorem [21], [23] is based on geom-

etry of numbers and “Roth machinery,” i.e., the construction of an auxiliary

multi-homogeneous polynomial and an application of Roth’s Lemma. The

proofs of the quantitative versions of the Subspace Theorem and Parametric

Subspace Theorem published since, including that of Evertse and Schlickewei,

essentially follow the same lines. In 1994, Faltings and Wüstholz [14] came
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up with a very different proof of the Subspace Theorem. Their proof is an

inductive argument, which involves constructions of auxiliary global line bun-

dle sections on products of projective varieties of very large degrees, and an

application of Faltings’ Product Theorem. Ferretti observed that with their

method, it is possible to prove quantitative results like ours, but with much

larger bounds, due to the highly nonlinear projective varieties that occur in

the course of the argument.

In our proof of Theorem 2.3 we use ideas from both Schmidt and Faltings

and Wüstholz. In fact, similarly to Schmidt, we pass from Qn
to an exterior

power ∧pQn
by means of techniques from the geometry of numbers and apply

the Roth machinery to the exterior power. But there, we replace Schmidt’s

construction of an auxiliary polynomial by that of Faltings and Wüstholz.

A price we have to pay is that our Roth machinery works only in the so-

called semistable case (terminology from [14]) where the exceptional space T in

Theorem 2.3 is equal to {0}. Thus, we need an involved additional argument

to reduce the general case where T can be arbitrary to the semistable case.

In this reduction we obtain, as a by-product of some independent interest,

a result on the limit behaviour of the successive infima λ1(Q), . . . , λn(Q) of HQ

as Q → ∞; see Theorem 16.1. Here, λi(Q) is the infimum of all λ > 0 such

that the set of x ∈ Qn
with HQ(x) 6 λ contains at least i linearly independent

points. Our limit result may be viewed as the “algebraic” analogue of recent

work of Schmidt and Summerer [28].

1.6. Our paper is organized as follows. In Sections 2 and 3 we state

our results. In Sections 4 and 5 we deduce from Theorem 2.3 the other theo-

rems stated in Sections 2 and 3. In Sections 6 and 7 we have collected some

notation and simple facts used throughout the paper. In Section 8 we state

the semistable case of Theorem 2.3. This is proved in Sections 9–14. Here

we follow [11], except that we use the auxiliary polynomial of Faltings and

Wüstholz instead of Schmidt’s. In Sections 15–18 we deduce the general case

of Theorem 2.3 from the semistable case.

2. Results for twisted heights

2.1. All number fields considered in this paper are contained in a given

algebraic closure Q of Q. Given a field F , we denote by F [X1, . . . , Xn]lin the

F -vector space of linear forms α1X1 + · · ·+ αnXn with α1, . . . , αn ∈ F .

Let K ⊂ Q be an algebraic number field. Recall that the normalized

absolute values ‖ · ‖v (v ∈ MK) introduced in Section 1 satisfy the Product

Formula

(2.1)
∏

v∈MK

‖x‖v = 1 for x ∈ K∗.
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Further, if E is any finite extension of K and we define normalized absolute

values ‖ · ‖w (w ∈ME) in the same manner as those for K, we have for every

place v ∈MK and each place w ∈ME lying above v,

(2.2) ‖x‖w = ‖x‖d(w|v)
v for x ∈ K, where d(w|v) :=

[Ew : Kv]

[E : K]

and Kv, Ew denote the completions of K at v, E at w, respectively. Notice

that

(2.3)
∑
w|v

d(w|v) = 1,

where ‘w|v’ indicates that w is running through all places of E that lie above v.

2.2. We list the definitions and technical assumptions needed in the state-

ments of our theorems. In particular, we define our twisted heights.

Let again K ⊂ Q be an algebraic number field. Further, let n be an

integer, L = (L
(v)
i : v ∈ MK , i = 1, . . . , n) a tuple of linear forms, and c =

(civ : v ∈MK , i = 1, . . . , n) a tuple of reals satisfying

n > 2, L
(v)
i ∈ K[X1, . . . , Xn]lin for v ∈MK , i = 1, . . . , n,(2.4)

{L(v)
1 , . . . , L

(v)
n } is linearly independent for v ∈MK ,(2.5) ⋃

v∈MK

{L(v)
1 , . . . , L(v)

n } =: {L1, . . . , Lr} is finite,(2.6)

c1v = · · · = cnv = 0 for all but finitely many v ∈MK ,(2.7)
n∑
i=1

civ = 0 for v ∈MK ,(2.8)

∑
v∈MK

max(c1v, . . . , cnv) 6 1.(2.9)

In addition, let δ,R be reals with

(2.10) 0 < δ 6 1, R > r = #

Ñ ⋃
v∈MK

{L(v)
1 , . . . , L(v)

n }

é
,

and put

∆L :=
∏

v∈MK

‖ det(L
(v)
1 , . . . , L(v)

n )‖v,(2.11)

HL :=
∏

v∈MK

max
16i1<···<in6r

‖ det(Li1 , . . . , Lin)‖v,(2.12)

where the maxima are taken over all n-element subsets of {1, . . . , r}.
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For Q > 1, we define the twisted height HL,c,Q : Kn → R by

(2.13) HL,c,Q(x) :=
∏

v∈MK

max
16i6n

(
‖L(v)

i (x)‖v ·Q−civ
)
.

In case that x = 0, we have HL,c,Q(x) = 0. If x 6= 0, it follows from (2.4)–(2.7)

that all factors in the product are nonzero and equal to 1 for all but finitely

many v; hence, the twisted height is well defined and nonzero.

Now let x ∈ Qn
. Then there is a finite extension E of K such that x ∈ En.

For w ∈ME , i = 1, . . . , n, define

(2.14) L
(w)
i := L

(v)
i , ciw := civ · d(w|v)

if v is the place of K lying below w, and put

(2.15) HL,c,Q(x) :=
∏

w∈ME

max
16i6n

(
‖L(w)

i (x)‖w ·Q−ciw
)
.

It follows from (2.14), (2.2), (2.3) that this is independent of the choice of E.

Further, by (2.1), we have HL,c,Q(αx) = HL,c,Q(x) for x ∈ Qn
, α ∈ Q∗.

To define HL,c,Q, we needed only (2.4)–(2.7); properties (2.8), (2.9) are

merely convenient normalizations.

2.3. Under the above hypotheses, Evertse and Schlickewei [11, Th. 2.1]

obtained the following quantitative version of the Absolute Parametric Sub-

space Theorem.

There is a collection {T1, . . . , Tt0} of proper linear subspaces of Qn
, all

defined over K , with

t0 6 4(n+8)2δ−n−4 log(2R) log log(2R)

such that for every real Q > max(H
1/R
L , n2/δ), there is Ti ∈ {T1, . . . , Tt0} for

which

(2.16)
¶
x ∈ Qn

: HL,c,Q(x) 6 ∆
1/n
L Q−δ

©
⊂ Ti.

We improve this as follows.

Theorem 2.1. Let n,L, c, δ, R satisfy (2.4)–(2.10), and let ∆L, HL be

given by (2.11), (2.12). Then there are proper linear subspaces T1, . . . , Tt0 of

Qn
, all defined over K , with

(2.17) t0 6 10622nn10δ−3 log(3δ−1R) log(δ−1 log 3R),

such that for every real Q with

(2.18) Q > C0 := max
Ä
H

1/R
L , n1/δ

ä
,

there is Ti ∈ {T1, . . . , Tt0} with (2.16).
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Notice that in terms of n, δ, our upper bound for t0 improves that of

Evertse and Schlickewei from cn
2

1 δ−n−4 to cn2δ
−3(log δ−1)2, while it has the

same dependence on R.

The lower bound C0 in (2.18) still has an exponential dependence on δ−1.

We do not know of a method to reduce it in our general absolute setting. If

we restrict to solutions x in Kn, the following can be proved.

Theorem 2.2. Let again n,L, c, δ, R satisfy (2.4)–(2.10). Assume in ad-

dition that K has degree d. Then there are proper linear subspaces U1, . . . , Ut1
of Kn, with

t1 6 δ
−1
Ä
(90n)nd + 3 log log 3H

1/R
L
ä

such that for every Q with 1 6 Q < C0 = max(H
1/R
L , n1/δ), there is Ui ∈

{U1, . . . , Ut1} with {
x ∈ Kn : HL,c,Q(x) 6 ∆

1/n
L Q−δ

}
⊂ Ui.

We mention that in various special cases, by an ad-hoc approach the upper

bound for t1 can be reduced. Recent work of Schmidt [27] on the number of

“small solutions” in Roth’s Theorem (essentially the case n = 2 in our setting)

suggests that there should be an upper bound for t1 with a polynomial instead

of exponential dependence on d.

2.4. We now formulate our general interval result for twisted heights.

We first define an exceptional vector space. We may view a linear form L ∈
Q[X1, . . . , Xn]lin as a linear function on Qn

. Then its restriction to a linear

subspace U of Qn
is denoted by L|U .

Let n,L, c, δ, R satisfy (2.4)–(2.10). Let U be a k-dimensional linear sub-

space of Qn
. For v ∈MK , we define wv(U) = wL,c,v(U) := 0 if k = 0 and

wv(U) = wL,c,v(U) := min
{
ci1,v + · · ·+ cik,v :(2.19)

L
(v)
i1
|U , . . . , L(v)

ik
|U are linearly independent

}
if k > 0, where the minimum is taken over all k-tuples i1, . . . , ik such that

L
(v)
i1
|U , . . . , L(v)

ik
|U are linearly independent. Then the weight of U with respect

to (L, c) is defined by

(2.20) w(U) = wL,c(U) :=
∑
v∈MK

wv(U).

This is well defined since by (2.7), at most finitely many of the quantities

wv(U) are nonzero.



522 J.-H. EVERTSE and R. G. FERRETTI

By theory from, e.g., [14] (for a proof see Lemma 15.2 below), there is a

unique, proper linear subspace T = T (L, c) of Qn
such that

(2.21)


w(T )

n− dimT
>

w(U)

n− dimU
for every proper linear subspace U of Qn

;

subject to this condition, dimT is minimal.

Moreover, this space T is defined over K.

In Proposition 17.5 below, we prove that

H2(T ) 6
Å

max
v,i

H2(L
(v)
i )

ã4n

with “Euclidean” heights H2 for subspaces and linear forms defined in Section 6

below. Thus, T is effectively computable and it belongs to a finite collection

depending only on L. In Lemma 15.3 below, we prove that in the special case

considered in Section 1, i.e.,

{L(v)
1 , . . . , L(v)

n } ⊂ {X1, . . . , Xn, X1 + · · ·+Xn} for v ∈MK ,

we have

T = {x ∈ Qn
:
∑
j∈Ii

xj = 0 for j = 1, . . . , p}

for certain pairwise disjoint subsets I1, . . . , Ip of {1, . . . , n}.
Now our interval result is as follows.

Theorem 2.3. Let n,L, c, δ, R satisfy (2.4)–(2.10), and let the vector

space T be given by (2.21). Put

m0 :=
[
10522nn10δ−2 log(3δ−1R)

]
, ω0 := δ−1 log 3R.(2.22)

Then there are reals Q1, . . . , Qm0 with

(2.23) C0 := max(H
1/R
L , n1/δ) 6 Q1 < · · · < Qm0

such that for every Q > 1 for which

(2.24) {x ∈ Qn
: HL,c,Q(x) 6 ∆

1/n
L Q−δ} 6⊂ T,

we have

(2.25) Q ∈ [1, C0) ∪ [Q1, Q
ω0
1 ) ∪ · · · ∪ [Qm0 , Q

ω0
m0

).



IMPROVEMENT OF THE QUANTITATIVE SUBSPACE THEOREM 523

3. Applications to Diophantine inequalities

3.1. We state some results for “absolute” generalizations of (1.2), (1.1).

We fix some notation. The absolute Galois group Gal(Q/K) of a number field

K ⊂ Q is denoted by GK . The absolute height H(x) of x ∈ Qn
is defined by

choosing a number field K such that x ∈ Kn and taking H(x) :=
∏
v∈MK

‖x‖v.
The inhomogeneous height of L = α1X1 + · · · + αnXn ∈ Q[X1, . . . , Xn]lin is

given by H∗(L) := H(a), where a = (1, α1, . . . , αn). Further, for a number

field K, we define the field K(L) := K(α1, . . . , αn).

We fix an algebraic number field K ⊂ Q. Further, for every place v ∈MK ,

we choose and then fix an extension of ‖ · ‖v to Q. For x = (x1, . . . , xn) ∈ Qn
,

σ ∈ GK , v ∈MK , we put σ(x) := (σ(x1), . . . , σ(xn)), ‖x‖v := max16i6n ‖xi‖v.

3.2. We list some technical assumptions and then state our results. Let n

be an integer > 2, R a real, S a finite subset of MK , L
(v)
i (v ∈ S, i = 1, . . . , n)

linear forms from Q[X1, . . . , Xn]lin, and div (v ∈ S, i = 1, . . . , n) reals such

that

{L(v)
1 , . . . , L(v)

n } is linearly independent for v ∈ S,(3.1)

H∗(L
(v)
i ) 6 H∗, [K(L

(v)
i ) : K] 6 D for v ∈ S, i = 1, . . . , n,(3.2)

#

(⋃
v∈S
{L(v)

1 , . . . , L(v)
n }

)
6 R,(3.3)

∑
v∈S

n∑
i=1

div = −n− ε with 0 < ε 6 1,(3.4)

div 6 0 for v ∈ S, i = 1, . . . , n.(3.5)

Further, put

(3.6) Av := ‖ det(L
(v)
1 , . . . , L(v)

n )‖1/nv for v ∈ S.

3.3. We consider the system of inequalities

(3.7) max
σ∈GK

‖L(v)
i (σ(x))‖v
‖σ(x)‖v

6 AvH(x)div (v ∈ S, i = 1, . . . , n) in x ∈ Qn
.

According to [11, Th. 20.1], the set of solutions x ∈ Qn
of (3.7) with H(x) >

max(H∗, n2n/ε) is contained in a union of at most

(3.8) 23(n+9)2ε−n−4 log(4RD) log log(4RD)

proper linear subspaces of Qn
that are defined over K. We improve this as

follows.
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Theorem 3.1. Assume (3.1)–(3.6). Then the set of solutions x ∈ Qn
of

system (3.7) with

(3.9) H(x) > C1 := max((H∗)1/3RD, nn/ε)

is contained in a union of at most

(3.10) 10922nn14ε−3 log
Ä
3ε−1RD

ä
log
Ä
ε−1 log 3RD

ä
proper linear subspaces of Qn

that are all defined over K .

Apart from a factor log ε−1, in terms of ε our upper bound has the same

order of magnitude as the best known bound for the number of “large” ap-

proximants to a given algebraic number in Roth’s Theorem (see, e.g., [27]).

Although for applications this seems to be of lesser importance now, for

the sake of completeness we give without proof a quantitative version of an

absolute generalization of (1.1). We keep the notation and assumptions from

(3.1)–(3.6). In addition, we put

s := #S, ∆ :=
∏
v∈S
‖ det(L

(v)
1 , . . . , L(v)

n )‖v.

Consider

(3.11)
∏
v∈S

n∏
i=1

max
σ∈GK

‖L(v)
i (σ(x))‖v
‖σ(x)‖v

6 ∆H(x)−n−ε.

Corollary 3.2. The set of solutions x ∈ Qn
of (3.11) with H(x) > H0

is contained in a union of at mostÄ
9n2ε−1

äns · 101022nn15ε−3 log
Ä
3ε−1D

ä
log
Ä
ε−1 log 3D

ä
proper linear subspaces of Qn

that are all defined over K .

Evertse and Schlickewei [11, Th. 3.1] obtained a similar result, with an

upper bound for the number of subspaces that is about
Ä
9n2ε−1

äns
times the

quantity in (3.8). So in terms of n, their bound is of the order cn
2

whereas

ours is of the order cn logn. Our Corollary 3.2 can be deduced by following the

arguments of [11, §21], except that instead of Theorem 20.1 of that paper, one

has to use our Theorem 3.1.

We now state our interval result, making more precise the result of Faltings

and Wüstholz on (1.2).

Theorem 3.3. Assume again (3.1)–(3.6). Put

m1 :=
î
10822nn14ε−2 log

Ä
3ε−1RD

äó
,

ω1 := 3nε−1 log 3RD.
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There is a proper linear subspace T of Qn
defined over K that is effectively

computable and belongs to a finite collection depending only on {L(v)
i : v ∈

S, i = 1, . . . , n}, and there are reals H1, . . . ,Hm1 with

C1 := max((H∗)1/3RD, nn/ε) 6 H1 < · · · < Hm1

such that for every solution x ∈ Qn
of (3.7), we have

x ∈ T or H(x) ∈ [1, C1) ∪ [H1, H
ω1
1 ) ∪ · · · ∪ [Hm1 , H

ω1
m1

).

Our interval result implies that the solutions x ∈ Qn
of (3.7) outside

T have bounded height. In particular, (1.2) has only finitely many solutions

x ∈ Pn−1(K) \ P(T ).

4. Proofs of Theorems 2.1 and 2.2

We deduce Theorem 2.1 from Theorem 2.3 and prove Theorem 2.2. For

this purpose, we need some gap principles. We use the notation introduced in

Section 2. In particular, K is a number field, n > 2, L = (L
(v)
i : v ∈ MK , i =

1, . . . , n) a tuple from K[X1, . . . , Xn]lin, and c = (civ : v ∈MK : i = 1, . . . , n)

a tuple of reals. The linear forms L
(w)
i and reals ciw, where w is a place on

some finite extension E of K, are given by (2.14).

We start with a simple lemma.

Lemma 4.1. Suppose that L, c satisfy (2.4)–(2.7). Let x ∈ Qn
, σ ∈ GK ,

Q > 1. Then HL,c,Q(σ(x)) = HL,c,Q(x).

Proof. Let E be a finite Galois extension of K such that x ∈ En. For any

place v of K and any place w of E lying above v, there is a unique place wσ of E

lying above v such that ‖·‖wσ = ‖σ(·)‖w. By (2.14) and [Ewσ : Kv] = [Ew : Kv],

we have L
(wσ)
i = L

(w)
i , ci,wσ = ciw for i = 1, . . . , n. Thus,

HL,c,Q(σ(x)) =
∏

v∈MK

∏
w|v

Å
max
16i6n

‖L(w)
i (σ(x))‖wQ−ciw

ã
=

∏
v∈MK

∏
w|v

Å
max
16i6n

‖L(wσ)
i (x)‖wQ−ci,wσ

ã
= HL,c,Q(x). �

We assume henceforth that n,L, c, δ, R satisfy (2.4)–(2.10). Let ∆L, HL
be given by (2.11), (2.12). Notice that (2.2), (2.3), (2.14) imply that (2.4)–

(2.9) remain valid if we replace K by E and the index v ∈ MK by the index

w ∈ ME . Likewise, in the definitions of ∆L, HL we may replace K by E and

v ∈MK by w ∈ME . This will be used frequently in the sequel.

We start with our first gap principle. For a = (a1, . . . , an) ∈ Cn, we put

‖a‖ := max(|a1|, . . . , |an|).
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Proposition 4.2. Let

(4.1) A > n1/δ.

Then there is a single proper linear subspace T0 of Qn
, defined over K , such

that for every Q with

A 6 Q < A1+δ/2,

we have {x ∈ Qn
: HL,c,Q(x) 6 ∆

1/n
L Q−δ} ⊂ T0.

Proof. Let Q ∈ [A,A1+δ/2), and let x ∈ Qn
with x 6= 0 and HL,c,Q(x) 6

∆
1/n
L Q−δ. Take a finite extension E of K such that x ∈ En. For w ∈ME , put

θw := max
16i6n

ciw.

By (2.14), (2.8), (2.9), we have

(4.2)
n∑
i=1

ciw = 0 for w ∈ME ,
∑

w∈ME

θw 6 1.

Let w ∈ME with θw > 0. Using A 6 Q < A1+δ/2, we have

max
16i6n

‖L(w)
i (x)‖wQ−ciw >

Å
max
16i6n

‖L(w)
i (x)‖wA−ciw

ã
·A−θwδ/2.

If w ∈ ME with θw = 0, then ciw = 0 for i = 1, . . . , n and so we trivially have

an equality instead of a strict inequality. By taking the product over w and

using (4.2), we obtain

HL,c,Q(x)>HL,c,A(x)A−δ/2 if θw > 0 for some w ∈ME ,

HL,c,Q(x) =HL,c,A(x) > HL,c,A(x)A−δ/2 otherwise.

Hence,

(4.3) HL,c,A(x) < ∆
1/n
L A−δ/2.

This is clearly true for x = 0 as well.

Let T0 be the Q-vector space spanned by the vectors x ∈ Qn
with (4.3). By

Lemma 4.1, if x satisfies (4.3), then so does σ(x) for every σ ∈ GK . Hence T0 is

defined over K. Our proposition follows once we have shown that T0 6= Qn
, and

for this, it suffices to show that det(x1, . . . ,xn) = 0 for any x1, . . . ,xn ∈ Qn

with (4.3).

So take x1, . . . ,xn ∈ Qn
with (4.3). Let E be a finite extension of K with

x1, . . . ,xn ∈ En. We estimate from above ‖ det(x1, . . . ,xn)‖w for w ∈ ME .

For w ∈ME , j = 1, . . . , n, put

∆w := ‖ det(L
(w)
1 , . . . , L(w)

n )‖w, Hjw := max
16i6n

‖L(w)
i (xj)‖wA−ciw .
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First, let w be an infinite place of E. Put s(w) := [Ew : R]/[E : Q]. Then

there is an embedding σw : E ↪→ C such that ‖ · ‖w = |σw(·)|s(w). Put

(4.4) ajw :=
(
A−c1w/s(w)σw(L

(w)
1 (xj)), . . . , A

−cnw/s(w)σw(L(w)
n (xj))

)
for j = 1, . . . , n. Then Hjw = ‖ajw‖s(w). So by Hadamard’s inequality and

(4.2),

‖ det(x1, . . . ,xn)‖w = ∆−1
w ‖ det

Ä
L

(w)
i (xj)

ä
i,j
‖w(4.5)

= ∆−1
w Ac1w+···+cnw |det(a1w, . . . ,anw)|s(w)

6∆−1
w nns(w)/2H1w · · ·Hnw.

Next, let w be a finite place of E. Then by the ultrametric inequality and

(4.2),

‖det(x1, . . . ,xn)‖w = ∆−1
w ‖ det

Ä
L

(w)
i (xj)

ä
i,j
‖w(4.6)

6∆−1
w max

ρ
‖Lρ(1)(x1)‖w · · · ‖Lρ(n)(xn)‖w

6∆−1
w Ac1w+···+cnwH1w · · ·Hnw

= ∆−1
w H1w · · ·Hnw,

where the maximum is taken over all permutations ρ of 1, . . . , n.

We take the product over w ∈ ME . Then using
∏
w∈ME

∆w = ∆L (by

(2.2), (2.14), (2.11)),
∑
w|∞ s(w) = 1 (sum of local degrees is global degree),

(4.2), (4.3), and lastly our assumption A > n1/δ, we obtain∏
w∈ME

‖ det(x1, . . . ,xn)‖w 6 ∆−1
L nn/2

n∏
j=1

HL,c,A(xj) < nn/2A−nδ/2 6 1.

Now the product formula implies that det(x1, . . . ,xn) = 0, as required. �

For our second gap principle, we need the following lemma.

Lemma 4.3. Let M > 1. Then Cn is a union of at most (20n)nM2 subsets

such that for any y1, . . . ,yn in the same subset,

(4.7) |det(y1, . . . ,yn)| 6M−1‖y1‖ · · · ‖yn‖.

Proof. [10, Lemma 4.3]. �

Proposition 4.4. Let d := [K : Q] and A > 1. Then there are proper

linear subspaces T1, . . . , Tt of Kn, with

t 6 (80n)nd,

such that for every Q with

A 6 Q < 2A1+δ/2,
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there is Ti ∈ {T1, . . . , Tt} with

{x ∈ Kn : HL,c,Q(x) 6 ∆
1/n
L Q−δ} ⊂ Ti.

Proof. We use the notation from the proof of Proposition 4.2. Temporar-

ily, we index places of K also by w. Similarly as in the proof of Proposition 4.2,

we infer that if x ∈ Kn is such that there exists Q with Q ∈ [A, 2A1+δ/2) and

HL,c,Q(x) 6 ∆
1/n
L Q−δ, then

(4.8) HL,c,A(x) < 2∆
1/n
L A−δ/2.

Put M := 2n. Let w1, . . . , wr be the infinite places of K, and for i =

1, . . . , r take an embedding σwi : K ↪→ C such that ‖ · ‖wi = |σwi(·)|s(wi).
For x ∈ Kn with (4.8) and w ∈ {w1, . . . , wr}, put

aw(x) :=
(
A−c1w/s(w)σw(L

(w)
1 (x)), . . . , A−cnw/s(w)σw(L(w)

n (x))
)
.

By Lemma 4.3, the set of vectors x ∈ Kn with (4.8) is a union of at most

((20n)nM2)r 6 (80n)nd

classes such that for any n vectors x1, . . . ,xn in the same class,

(4.9) |det(aw(x1), . . . ,aw(xn))| 6M−1 for w = w1, . . . , wr.

We prove that the vectors x ∈ Kn with (4.8) belonging to the same class

lie in a single proper linear subspace of Kn, i.e., that any n such vectors have

zero determinant. This clearly suffices.

Let x1, . . . ,xn be vectors from Kn that satisfy (4.8) and lie in the same

class. Let w be an infinite place of K. Then using (4.9) instead of Hadamard’s

inequality, we obtain, instead of (4.5),

‖ det(x1, . . . ,xn)‖w 6 ∆−1
w M−s(w)H1w · · ·Hnw.

For the finite places w of K, we still have (4.6). Then by taking the prod-

uct over w ∈ MK , we obtain, with a similar computation as in the proof of

Proposition 4.2, employing our choice M = 2n,∏
w∈MK

‖ det(x1, . . . ,xn)‖w < M−1(2A−δ/2)n 6 1.

Hence det(x1, . . . , xn) = 0. This completes our proof. �

In the proofs of Theorems 2.1 and 2.3 we keep the assumptions (2.4)–

(2.10).

Deduction of Theorem 2.1 from Theorem 2.3. Define

SQ := {x ∈ Qn
: HL,c,Q(x) 6 ∆

1/n
L Q−δ}.

Theorem 2.3 implies that if Q is a real such that

Q > C0 = max(H
1/R
L , n1/δ), SQ 6⊂ T,
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then

Q ∈
m0⋃
h=1

s⋃
k=1

[
Q

(1+δ/2)k−1

h , Q
(1+δ/2)k

h

)
,

where s is the integer with (1 + δ/2)s−1 < ω0 6 (1 + δ/2)s. Notice that we

have a union of at most

m0s 6 m0

Ç
1 +

logω0

log(1 + δ/2)

å
6 3δ−1m0(1 + logω0)

intervals. By Proposition 4.2, for each of these intervals I, the set
⋃
Q∈I SQ

lies in a proper linear subspace of Qn
, which is defined over K. Taking into

consideration also the exceptional subspace T , it follows that for the number

t0 of subspaces in Theorem 2.1, we have

t06 1 + 3δ−1m0(1 + logω0)

6 10622nn10δ−3 log(3δ−1R) log(δ−1 log 3R).

This proves Theorem 2.1. �

Proof of Theorem 2.2. We distinguish between Q ∈ [n1/δ, C0) and Q ∈
[1, n1/δ).

Completely similarly as above, we have

[n1/δ, C0) ⊆
s1⋃
j=1

[n(1+δ/2)j−1/δ, n(1+δ/2)j/δ) (j = 1, . . . , s1),

where n(1+δ/2)s1−1/δ < C0 6 n(1+δ/2)s1/δ; i.e.,

(4.10) s1 = 1 +

ñ
log(δ logC0/ log n)

log(1 + δ/2)

ô
6 2 + 3δ−1 log log 3H

1/R
L .

By Proposition 4.2, for each of the s1 intervals I on the right-hand side, the

set
Ä⋃

Q∈I SQ
ä
∩Kn lies in a proper linear subspace of Kn.

Next consider Q with 1 6 Q < n1/δ. Define γ0 := 0, γk := 1+γk−1(1+δ/2)

for k = 1, 2, . . .; i.e.,

γk :=
(1 + δ/2)k − 1

δ/2
for k = 0, 1, 2, . . . .

Then

[1, n1/δ) ⊆
s2⋃
k=1

[2γk−1 , 2γk)

where (1 + δ/2)s2−1 < log(2n1/2)
log 2 6 (1 + δ/2)s2 ; i.e.,

(4.11) s2 = 1 +

 log
Ä

log(2n1/2)/ log 2)

log(1 + δ/2)

 < 4δ−1 log log 4n1/2.
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Applying Proposition 4.4 with A = 2γk−1 (k = 1, . . . , s2), we see that for each

of the s2 intervals I on the right-hand side, there is a collection of at most

(80n)nd proper linear subspaces of Kn such that for every Q ∈ I, the set

SQ ∩Kn is contained in one of these subspaces.

Taking into consideration (4.10), (4.11), it follows that for the number of

subspaces t1 in Theorem 2.2, we have

t16 s1 + (80n)nds2 6 2 + 3δ−1 log log 3H
1/R
L + (80n)nd · 4δ−1 log log 4n1/2

<δ−1
Ä
(90n)nd + 3 log log 3H

1/R
L
ä
.

This proves Theorem 2.2. �

5. Proofs of Theorems 3.1 and 3.3

5.1. We use the notation introduced in Section 3 and keep the assump-

tions (3.1)–(3.6). Further, for L =
∑n
i=1 αiXi ∈ Q[X1, . . . , Xn]lin and σ ∈ GK ,

we put σ(L) :=
∑n
i=1 σ(αi)Xi.

Fix a finite Galois extension K ′ ⊂ Q of K such that all linear forms

L
(v)
i (v ∈ S, i = 1, . . . , n) have their coefficients in K ′. Recall that for every

v ∈MK , we have chosen a continuation of ‖·‖v to Q. Thus, for every v′ ∈MK′ ,

there is τv′ ∈ Gal(K ′/K) such that ‖α‖v′ = ‖τv′(α)‖d(v′|v)
v for α ∈ K ′, where v

is the place of K lying below v′. Put

(5.1) L
(v)
i := Xi, div := 0 for v ∈MK \ S, i = 1, . . . , n

and then,

L
(v′)
i := τ−1

v′ (L
(v)
i ), ci,v′ := d(v′|v) · n

n+ ε

Ñ
div −

1

n

n∑
j=1

djv

é
(5.2)

for v′ ∈MK′ , i = 1, . . . , n,

(5.3)

L := (L
(v′)
i : v′ ∈MK′ , i = 1, . . . , n),

c := (ci,v′ : v′ ∈MK′ , i = 1, . . . , n),

and finally,

(5.4) δ :=
ε

n+ ε
.

Clearly,

c1,v′ = · · · = cn,v′ = 0 for all but finitely many v′ ∈MK′ ,
n∑
j=1

cj,v′ = 0 for v ∈MK′ .
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Moreover, by (5.1), (5.2), (3.5), (3.4),

(5.5)
( ∑
v′∈MK′

max
16i6n

ci,v′
)
6 1.

By (5.1), (3.2), we have

(5.6) #
⋃

v′∈MK′

{L(v′)
1 , . . . , L(v′)

n } 6 RD + n.

These considerations show that (2.4)–(2.10) are satisfied with K ′ in place of

K, with the choices of L, c, δ from (5.1)–(5.4), and with RD+n in place of R.

Further,

∆L =
∏

v′∈MK′

‖ det(L
(v′)
1 , . . . , L(v′)

n )‖v′ =
∏
v∈S
‖det(L

(v)
1 , . . . , L(v)

n )‖v,(5.7)

HL =
∏

v′∈MK′

max
16i1<···<in6r

‖det(Li1 , . . . , Lin)‖v′ ,(5.8)

where
⋃
v′∈MK′

{L(v′)
1 , . . . , L

(v′)
n } =: {L1, . . . , Lr}.

By (3.2) and the fact that conjugate linear forms have the same inhomo-

geneous height, we have

(5.9) max
16i6r

H∗(Li) = H∗.

For v′ ∈MK′ , 1 6 i1 < · · · < in 6 r we have, by Hadamard’s inequality if v′ is

infinite and the ultrametric inequality if v′ is finite, that

‖ det(Li1 , . . . , Lin)‖v′ 6 Dv′

r∏
i=1

max(1, ‖Li‖v′),

where Dv′ := nn[K′
v′ :R]/2[K′:Q] if v′ is infinite and Dv′ := 1 if v′ is finite. Taking

the product over v′ ∈ MK′ , noting that by (5.1), (5.9), the set {L1, . . . , Lr}
contains X1, . . . , Xn, which have inhomogeneous height 1, and at most DR

other linear forms of inhomogeneous height 6 H∗, we obtain

(5.10) HL 6 n
n/2H∗(L1) · · ·H∗(Lr) 6 nn/2(H∗)DR.

The next lemma links system (3.7) to a twisted height inequality.

Lemma 5.1. Let x ∈ Qn
be a solution of (3.7). Then with L, c, δ as

defined by (5.1)–(5.4) and with

Q := H(x)1+ε/n,

we have

HL,c,Q(σ(x)) 6 ∆
1/n
L Q−δ for σ ∈ GK .
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Proof. Let σ ∈ GK . Put Av := 1 for v ∈ MK \ S. Pick a finite Galois

extension E of K containing K ′ and the coordinates of σ(x). Let w ∈ ME

lie above v′ ∈ MK′ and the latter in turn above v ∈ MK . In accordance with

(2.14) we define L
(w)
i := L

(v′)
i , ciw := d(w|v′)ci,v′ for i = 1, . . . , n. Further, we

put diw := d(w|v)div, Aw := A
d(w|v)
v , and we choose τw ∈ Gal(Q/K) such that

τw|K′ = τv and

(5.11) ‖α‖w = ‖τw(α)‖d(w|v)
v for α ∈ E.

Then (5.1), (5.2) imply for i = 1, . . . , n,

(5.12) L
(w)
i = τ−1

w (L
(v)
i ), ciw =

n

n+ ε

Ñ
diw −

1

n

n∑
j=1

djw

é
.

If v ∈ S, then from (3.7) it follows that

(5.13)
‖L(w)

i (σ(x))‖w
‖σ(x)‖w

=

(
‖L(v)

i (τwσ(x))‖v
‖τwσ(x)‖v

)d(w|v)

6 AwH(x)diw ,

while if v 6∈ S, we have Aw = 1 and L
(w)
i = Xi, diw = 0 for i = 1, . . . , n, and

so the inequality is trivially true. Finally, (3.5), (3.6), (5.7) imply

(5.14)
∑

w∈ME

n∑
i=1

diw = −n− ε,
∏

w∈ME

Aw = ∆
1/n
L .

By our choice of Q and by (5.12), (5.13), we have

‖L(w)
i (σ(x))‖wQ−ciw = ‖L(w)

i (σ(x))‖wH(x)−diw+ 1
n

∑n
j=1

djw

6Aw‖σ(x)‖wH(x)
1
n

∑n
j=1

djw .

By taking the product over w, using H(σ(x)) = H(x), (5.14) and again our

choice of Q we arrive at

HL,c,Q(σ(x)) 6 ∆
1/n
L H(x)1−1−ε/n = ∆

1/n
L Q−δ. �

In addition, we need the following easy observation, which is stated as a

lemma for convenient reference.

Lemma 5.2. Let m,m′ be integers and A0, B0, ω, ω
′ reals with B0>A0>1,

ω′ > ω > 1 and m′ > m > 0, and let A1, . . . , Am be reals with A0 6 A1 <

· · · < Am. Then there are reals B1, . . . , Bm′ with B0 6 B1 < · · · < Bm′ such

that

[1, A0) ∪
(

m⋃
h=1

[Ah, A
ω
h)

)
⊆ [1, B0) ∪

Ñ
m′⋃
h=1

î
Bh, B

ω′
h

äé
.
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Proof. Let S :=
⋃m
h=1 [Ah, A

ω
h)∪ [Aωm,∞). It is easy to see that the lemma

is satisfied with B1 the smallest real in S with B1 > B0 and Bj the smallest

real in S outside
⋃j−1
h=1

î
Bh, B

ω′
h

ä
for j = 2, . . . ,m′. �

Proof of Theorem 3.1. We apply Theorem 2.1 with K ′ instead of K and

with L, c, δ as in (5.1)–(5.4); according to (5.6) we could have taken n+DR,

but instead we take 6(DR)2 instead of R. Then by (5.10) the quantity C0 in

Theorem 2.1 becomes

C ′0 := max(H
1/6(RD)2

L , n1/δ)6max

ÅÄ
nn/2(H∗)RD

ä1/6(RD)2

, n1/δ
ã

6
Ä
max((H∗)1/3RD, nn/ε)

ä1+ε/n
= H

1+ε/n
0

and the upper bound for the number of subspaces t0 in Theorem 2.1 becomes

10622nn10(1 + nε−1)3 ×
× log

Ä
18(1 + nε−1)(RD)2

ä
log
Ä
(1 + nε−1) log(18(RD)2)

ä
6 10922nn14ε−3 log

Ä
3ε−1RD

ä
log
Ä
ε−1 log 3RD)

ä
,

which is precisely the upper bound for the number of subspaces in Theorem 3.1.

Let x ∈ Qn
be a solution to (3.7) with H(x) > H0 and put Q :=

H(x)1+ε/n. Then Q > C ′0. Moreover, by Lemma 5.1 and Theorem 2.1 we

have

{σ(x) : σ ∈ GK} ⊆ {y ∈ Qn
: HL,c,Q(y) 6 ∆

1/n
L Q−δ} ⊂ Ti

for some Ti ∈ {T1, . . . , Tt0}. But then, in fact, we have that x ∈ T ′i :=⋂
σ∈GK σ(Ti), which is a proper linear subspace of Qn

defined over K. We infer

that the solutions x ∈ Qn
of (3.7) with H(x) > H0 lie in a union T ′1∪· · ·∪T ′t0 of

proper linear subspaces of Qn
, defined over K. This completes our proof. �

Proof of Theorem 3.3. We apply Theorem 2.3 with K ′ instead of K, with

L, c, δ as in (5.1)–(5.4) and with 6(DR)2 instead of R. An easy computation

shows that with these choices, the expressions for m0, ω0 in Theorem 2.3 are

bounded above by the quantities m1, ω1 from the statement of Theorem 3.3.

Further, C0 becomes a quantity bounded above by C
1+ε/n
1 . Now according to

Theorem 2.3 and Lemmas 5.1, 5.2, there are reals Q1, . . . , Qm1 with C
1+ε/n
1 6

Q1 < · · · < Qm1 such that if x ∈ Qn
is a solution to (3.7) outside the subspace

T = T (L, c) from Theorem 2.3, then

Q := H(x)1+ε/n ∈
[
1, C

1+ε/n
1

)
∪

m1⋃
h=1

[
Qh, Q

ω1
h

)
.

So with Hi := Q
(1+ε/n)−1

i (i = 1, . . . ,m1), we have

H(x) ∈ [1, C1) ∪
m1⋃
h=1

[
Hh, H

ω1
h

)
.
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In fact, H(x) belongs to the above union of intervals if σ(x) 6∈ T for any

σ ∈ GK so, in fact, already if x 6∈ T ′ :=
⋂
σ∈GK σ(T ). Now T ′ is a proper Q-

linear subspace of Qn
defined over K and T ′ is effectively determinable in terms

of T . The space T in turn is effectively determinable and belongs to a finite

collection depending only on {L(v′)
i : v′ ∈ MK′ , i = 1, . . . , n}, so ultimately

only on {L(v)
i : v ∈ S, i = 1, . . . , n}. Hence the same must apply to T ′. This

completes our proof. �

6. Notation and simple facts

We have collected some notation and simple facts for later reference. We

fix an algebraic number field K ⊂ Q and use v to index places on K. We have

to deal with varying finite extensions E ⊂ Q of K and sometimes with varying

towers K ⊂ F ⊂ E ⊂ Q; then places on E are indexed by w and places on F

by u. Completions are denoted by Kv, Ew, Fu, etc. We use notation w|u, u|v
to indicate that w lies above u, u above v. If w|v, we put

d(w|v) :=
[Ew : Kv]

[E : K]
.

6.1. Norms and heights. Let E be any algebraic number field. If w is

an infinite place of E, there is an embedding σw : E ↪→ C such that ‖ · ‖w =

|σw(·)|[Ew:R]/[E:Q]. If w is a finite place of E lying above the prime p, then ‖·‖w
is an extension of | · |[Ew:Qp]/[E:Q]

p to E.

To handle infinite and finite places simultaneously, we introduce

(6.1) s(w) := [Ew:R]
[E:Q] if w is infinite, s(w) := 0 if w is finite.

Thus, for x1, . . . , xn ∈ E, a1, . . . , an ∈ Z, w ∈ME , we have

(6.2) ‖a1x1 + · · ·+ anxn‖w 6
Ä n∑
i=1

|ai|
äs(w) ·max(‖x1‖w, . . . , ‖xn‖w).

Let x = (x1, . . . , xn) ∈ En. Put

‖x‖w := max(‖x1‖w, . . . , ‖xn‖w) for w ∈ME ,

‖x‖w,1 :=
Ä n∑
i=1

|σw(xi)|
äs(w)

‖x‖w,2 :=
Ä n∑
i=1

|σw(xi)|2
äs(w)/2

 for w ∈ME , w infinite,

‖x‖w,1 = ‖x‖w,2 := ‖x‖w for w ∈ME , w finite.

Now for x ∈ Qn
, we define

H(x) :=
∏

w∈ME

‖x‖w, H1(x) :=
∏

w∈ME

‖x‖w,1, H2(x) :=
∏

w∈ME

‖x‖w,2,
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where E is any number field such that x ∈ En. This is independent of the

choice of E. Then

(6.3) n−1H1(x) 6 n−1/2H2(x) 6 H(x) 6 H2(x) 6 H1(x) for x ∈ Qn
.

The standard inner product of x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Qn
is

defined by x · y =
∑n
i=1 xiyi. Let again E be an arbitrary number field and

w ∈ ME . Then by the Cauchy-Schwarz inequality for the infinite places and

the ultrametric inequality for the finite places,

(6.4) ‖x · y‖w 6 ‖x‖w,2 · ‖y‖w,2 for x,y ∈ En, w ∈ME .

If P is a polynomial with coefficients in a number field E or in Q, we define

‖P‖w, ‖P‖w,1, ‖P‖w,2, H(P ), H1(P ), H2(P ) by applying the above definitions

to the vector x of coefficients of P . Then for P1, . . . , Pr ∈ E[X1, . . . , Xm],

w ∈ME , we have

(6.5)

‖P1 + · · ·+ Pr‖w,1 6 rs(w) max(‖P1‖w,1, . . . , ‖Pr‖w,1),

‖P1 · · ·Pr‖w,1 6 ‖P1‖w,1 · · · ‖Pr‖w,1.

6.2. Exterior products. Let n be an integer > 2 and p an integer with

1 6 p < n. Put N :=
(n
p

)
. Denote by C(n, p) the sequence of p-element subsets

of {1, . . . , n}, ordered lexicographically, i.e., C(n, p) = (I1, . . . , IN ), where

I1 = {1, . . . , p}, I2 = {1, . . . , p− 1, p+ 1}, . . . ,
IN−1 = {n− p, n− p+ 2, . . . , n}, IN = {n− p+ 1, . . . , n}.

We use shorthand notation I = {i1 < · · · < ip} for a set I = {i1, . . . , ip} with

i1 < · · · < ip.

We denote by det(aij)i,j=1,...,p the p× p-determinant with aij on the i-th

row and j-th column. The exterior product of x1 = (x11, . . . , x1n), . . . , xp =

(xp1, . . . , xpn) ∈ Qn
is given by

x1 ∧ · · · ∧ xp := (A1, . . . , AN ),

where

Al := det(xi,ij )i,j=1,...,p,

with {i1 < · · · < ip} = Il the l-th set in the sequence C(n, p), for l = 1, . . . , N .

Let x1, . . . ,xn be linearly independent vectors from Qn
. For l = 1, . . . , N ,

define “xl := xi1 ∧ · · · ∧xip , where Il = {i1 < · · · < ip} is the l-th set in C(n, p).

Then

(6.6) det(x̂1, . . . , x̂N ) = ±
(

det(x1, . . . ,xn)
)(n−1

p−1)
.

Given a number field E such that x1, . . . ,xp ∈ En we have, by Hadamard’s

inequality for the infinite places and the ultrametric inequality for the finite
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places,

(6.7) ‖x1 ∧ · · · ∧ xp‖w,2 6 ‖x1‖w,2 · · · ‖xp‖w,2 for w ∈ME .

Hence,

(6.8) H2(x1 ∧ · · · ∧ xp) 6 H2(x1) · · ·H2(xp) for x1, . . . ,xp ∈ Qn
.

The above definitions and inequalities are carried over to linear forms by

identifying a linear form L =
∑n
j=1 ajXj = a ·X ∈ Q[X1, . . . , Xn]lin with its

coefficient vector a = (a1, . . . , an); e.g., ‖L‖w := ‖a‖w, H(L) := H(a). The

exterior product of Li =
∑n
j=1 aijXj = ai ·X ∈ Q[X1, . . . , Xn]lin (i = 1, . . . , p)

is defined by

L1 ∧ · · · ∧ Lp := A1X1 + · · ·+ANXN ,

where (A1, . . . , AN ) = a1∧· · ·∧ap. Analogously to (6.8) we have for any linear

forms L1, . . . , Lp ∈ Q[X1, . . . , Xn]lin (1 6 p 6 n),

(6.9) H2(L1 ∧ · · · ∧ Lp) 6 H2(L1) · · ·H2(Lp).

Finally, for any L1, . . . , Lp ∈ Q[X1, . . . , Xn]lin, x1, . . . ,xp ∈ Qn
, we have

(6.10) (L1 ∧ · · · ∧ Lp)(x1 ∧ · · · ∧ xp) = det(Li(xj))16i,j6p.

6.3. Heights of subspaces. Let T be a linear subspace of Qn
. The height

H2(T ) of T is given by H2(T ) := 1 if T = {0} or Qn
and

H2(T ) := H2(x1 ∧ · · · ∧ xp)

if T has dimension p with 0 < p < n and {x1, . . . ,xp} is any basis of T . This

is independent of the choice of the basis. Thus, by (6.8), if {x1, . . . ,xp} is any

basis of T , then

(6.11) H2(T ) 6 H2(x1) · · ·H2(xp).

By a result of Struppeck and Vaaler [29], we have for any two linear subspaces

T1, T2 of Qn
,

max
Ä
H2(T1 ∩ T2), H2(T1 + T2)

ä
6H2(T1 ∩ T2)H2(T1 + T2)(6.12)

6H2(T1)H2(T2).

Given a linear subspace V of Q[X1, . . . , Xn]lin, we define H2(V ) := 1 if

V = {0} or Q[X1, . . . , Xn]lin and H2(V ) := H2(L1 ∧ · · · ∧Lp) otherwise, where

{L1, . . . , Lp} is any basis of V .

Let T be a linear subspace of Qn
. Denote by T⊥ the Q-vector space of

linear forms L ∈ Q[X1, . . . , Xn]lin such that L(x) = 0 for all x ∈ T . Then ([19,

p. 433])

(6.13) H2(T⊥) = H2(T ).

We finish with the following lemma.



IMPROVEMENT OF THE QUANTITATIVE SUBSPACE THEOREM 537

Lemma 6.1. Let T be a k-dimensional linear subspace of Qn
. Put p :=

n− k. Let {g1, . . . ,gn} be a basis of Qn
such that {g1, . . . ,gk} is a basis of T .

For j = 1, . . . , N , put ĝj := gi1 ∧ · · · ∧ gip , where {i1 < · · · < ip} = Ij is the

j-th set in the sequence C(n, p). Let “T be the linear subspace of QN
spanned

by ĝ1, . . . , ĝN−1. Then

H2(“T ) = H2(T ).

Proof. Let L1, . . . , Ln ∈ Q[X1, . . . , Xn]lin such that for i, j = 1, . . . , n, we

have Li(gj) = 1 if i = j and 0 otherwise. Then {Lk+1, . . . , Ln} is a basis of

T⊥. Moreover, by (6.10), we have

(Lk+1 ∧ · · · ∧ Ln)(ĝj) = 0

for j = 1, . . . , N − 1. Hence Lk+1 ∧ · · · ∧ Ln spans “T⊥. Now a repeated

application of (6.13) gives

H2(“T ) = H2(“T⊥) = H2(Lk+1 ∧ · · · ∧ Ln) = H2(T⊥) = H2(T ). �

7. Simple properties of twisted heights

We fix tuples L = (L
(v)
i : v ∈ MK , i = 1, . . . , n), c = (civ : v ∈

MK , i = 1, . . . , n) satisfying the minimal requirements needed to define the

twisted height HL,c,Q; that is, (2.4)–(2.7). Further, ∆L, HL are defined by

(2.11), (2.12), respectively. Write
⋃
v∈MK

{L(v)
1 , . . . , L

(v)
n } = {L1, . . . , Lr}, and

let d1, . . . , dt be the nonzero numbers among

(7.1) det(Li1 , . . . , Lin) (1 6 i1 < · · · < in 6 r).

Then

(7.2)
∏

v∈MK

max(‖d1‖v, . . . , ‖dt‖v) = HL.

Clearly, ∏
v∈MK

min(‖d1‖v, . . . , ‖dt‖v) >
∏

v∈MK

‖d1 · · · dt‖v
(max(‖d1‖v, . . . , ‖dt‖v))t−1

and so, invoking the product formula and t 6
(r
n

)
,

(7.3)
∏

v∈MK

min(‖d1‖v, . . . , ‖dt‖v) > H
1−(rn)
L .

Consequently, for the quantity ∆L given by (2.15), we have

(7.4) H
1−(rn)
L 6 ∆L 6 HL.
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Lemma 7.1. Put θ :=
∑
v∈MK

max(c1v, . . . , cnv). Let Q > 1, x ∈ Qn
,

x 6= 0. Then

HL,c,Q(x) > n−1H
−(rn)
L Q−θ.

Proof. Let E be a finite extension of K with x ∈ En. Assume without

loss of generality that L1, . . . , Ln (from {L1, . . . , Lr} defined above) are linearly

independent, and put δw := det(L
(w)
1 , . . . , L

(w)
n ) for w ∈ ME . Note that also∑

w∈ME
maxi ciw = θ. We may write

Li =
n∑
j=1

γijwL
(w)
j for w ∈ME , i = 1, . . . , n,

with γijw ∈ K. By Cramer’s rule, we have γijw = δijw/δw, where δijw is the

determinant obtained from δw by replacing L
(w)
j by Li. So δijw belongs to the

set of numbers in (7.1). Further,
∏
w∈ME

‖δw‖w = ∆L. Now (7.4) gives∏
w∈ME

max
16i,j6n

‖γijw‖w 6 ∆−1
L HL 6 H

(rn)
L .

Put y := (L1(x), . . . , Ln(x)). Then, noting that y 6= 0,

16H(y) 6 nH
(rn)
L

∏
w∈ME

max
16i6n

‖L(w)
i (x)‖w

6 nH
(rn)
L Qθ

∏
w∈ME

max
16i6n

‖L(w)
i (x)‖wQ−ciw = nH

(rn)
L QθHL,c,Q(x).

This proves our lemma. �

Lemma 7.2. Let θv (v ∈ MK) be reals, at most finitely many of which

are nonzero. Put Θ :=
∑
v∈MK

θv . Define d = (div : v ∈MK , i = 1, . . . , n) by

div := civ − θv for v ∈MK , i = 1, . . . , n.

(i) Let x ∈ Qn
, Q > 1. Then

HL,d,Q(x) = QΘHL,c,Q(x).

(ii) Let U be a linear subspace of Qn
. Then

wL,d(U) = wL,c(U)−Θ dimU.

(iii) T (L,d) = T (L, c).

Proof. (i) Choose a finite extension E of K with x ∈ En. In accordance

with our conventions, we put θw := d(w|v)θv if w ∈ ME lies above v ∈ MK ;

thus,
∑
w∈ME

θw =
∑
v∈MK

θv. The lemma now follows trivially by considering

the factors of the twisted heights for w ∈ME and taking the product.

(ii) is obvious, and (iii) is an immediate consequence of (ii). �
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For L ∈ Q[X1, . . . , Xn]lin and a linear map

ϕ : Qm → Qn
: (x1, . . . , xm) 7→ (

m∑
j=1

a1jxj , . . . ,
m∑
j=1

anjxj),

we define L ◦ ϕ ∈ Q[X1, . . . , Xm]lin by

L ◦ ϕ := L(
m∑
j=1

a1jXj , . . . ,
m∑
j=1

anjXj).

If L ∈ K[X1, . . . , Xn]lin and ϕ is defined over K, i.e., aij ∈ K for all i, j, we

have L ◦ ϕ ∈ K[X1, . . . , Xm]lin. More generally, for a system of linear forms

L = (L
(v)
i : v ∈ MK , i = 1, . . . , n), we put L ◦ ϕ := (L

(v)
i ◦ ϕ : v ∈ MK , i =

1, . . . , n).

Lemma 7.3. Let (L, c) be a pair satisfying (2.4)–(2.7), and let ϕ : Qn→Qn

be an invertible linear map defined over K .

(i) Let x ∈ Qn
, Q > 1. Then HL◦ϕ,c,Q(x) = HL,c,Q(ϕ(x)).

(ii) Let U be a proper linear subspace of Qn
. Then wL◦ϕ,c(U) = wL,c(ϕ(U)).

(iii) Let T (L◦ϕ, c) be the subspace defined by (2.21), but with L◦ϕ instead

of ϕ. Then T (L ◦ ϕ, c) = ϕ−1(T (L, c)).

(iv) ∆L◦ϕ = ∆L, HL◦ϕ = HL.

Proof. (i), (ii) are trivial. (iii) is a consequence of (ii). As for (iv), we

have by the product formula that

∆L◦ϕ =
∏

v∈MK

(
‖ det(ϕ)‖v · ‖ det(L

(v)
1 , . . . , L(v)

n ‖v
)

= ∆L

and likewise, HL◦ϕ = HL. �

Remark. A consequence of this lemma is that in order to prove Theo-

rem 2.3, it suffices to prove it for L ◦ ϕ instead of L, where ϕ is any linear

transformation of Qn
defined over K. For instance, pick any v0 ∈ MK and

choose ϕ such that L
(v0)
i ◦ϕ = Xi for i = 1, . . . , n. Thus, we see that in the proof

of Theorem 2.3 we may assume without loss of generality that L
(v0)
i = Xi for

i = 1, . . . , n. It will be convenient to choose v0 such that v0 is non-archimedean

and ci,v0 = 0 for i = 1, . . . , n.

8. An interval result in the semistable case

We formulate an interval result like Theorem 2.3, but under some ad-

ditional constraints. We keep the notation and assumptions from Section 2.

Thus K is an algebraic number field, and n, L = (L
(v)
i : v ∈MK , i = 1, . . . , n),

c = (civ : v ∈MK , i = 1, . . . , n), δ,R satisfy (2.4)–(2.10). Further, we add the

condition as discussed in the above remark.
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The weight w(U) = wL,c(U) of a Q-linear subspace U of Qn
is defined by

(2.20). In addition to the above, we assume that the pair (L, c) is semistable;

that is, the exceptional space T = T (L, c) defined by (2.21) is equal to {0}.
For reference purposes, we have listed all our conditions below. Thus, K

is an algebraic number field, n is a positive integer, δ,R are reals, L = (L
(v)
i :

v ∈ MK , i = 1, . . . , n) is a tuple of linear forms and c = (civ : v ∈ MK , i =

1, . . . , n) is a tuple of reals satisfying the following conditions:

R > n > 2, 0 < δ 6 1,(8.1)

c1v = · · · = cnv = 0 for all but finitely many v ∈MK ,(8.2)
n∑
i=1

civ = 0 for v ∈MK ,(8.3)

∑
v∈MK

max(c1v, . . . , cnv) 6 1,(8.4)

L
(v)
i ∈ K[X1, . . . , Xn]lin for v ∈MK , i = 1, . . . , n,(8.5)

{L(v)
1 , . . . , L(v)

n } is linearly independent for v ∈MK ,(8.6)

#
⋃

v∈MK

{L(v)
1 , . . . , L(v)

n } 6 R,(8.7)

there is a non-archimedean place v0 ∈MK such that

ci,v0 = 0, L
(v0)
i = Xi for i = 1, . . . , n,

(8.8)

w(U) 6 0 for every proper linear subspace U of Qn
.(8.9)

Notice that (8.9) is equivalent to the assumption that the space T defined by

(2.21) is {0}.

Theorem 8.1. Assume (8.1)–(8.9). Put

(8.10)

m2 :=
[
61n622nδ−2 log(22n22nR/δ)

]
,

ω2 := m
5/2
2 , C2 := (2HL)m

2m2
2 .

Then there are reals Q1, . . . , Qm2 with

C2 6 Q1 < · · · < Qm2

such that for every Q > 1 with

(8.11)
¶
x ∈ Qn

: HL,c,Q(x) 6 Q−δ
©
6= {0},

we have Q ∈ [1, C2) ∪⋃m2
h=1

[
Qh, Q

ω2
h

)
.

The factor ∆
1/n
L occurring in (2.24) has been absorbed into C2. Theo-

rem 8.1 may be viewed as an extension and refinement of a result of Schmidt

on general Roth systems [20, Th. 2].
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Theorem 8.1 is proved in Sections 9–14. In Sections 15–18 we deduce

Theorem 2.3.

We outline how Theorem 2.3 is deduced from Theorem 8.1. Let again

T = T (L, c) be the exceptional subspace for (L, c). Put k := dimT . With

the notation used in Sections 15–18, we construct a surjective homomorphism

ϕ′′ : Qn → Qn−k
defined over K with kernel T , a tuple L′′ := (L

(v)
i
′′ : v ∈

MK , i = 1, . . . , n − k) in K[X1, . . . , Xn−k]
lin and a tuple of reals d = (div :

v ∈ MK , i = 1, . . . , n − k) such that (L′′,d) satisfies conditions analogous to

(8.1)–(8.9) and

HL′′,d,Q′(ϕ
′′(x))� HL,c,Q(x) for x ∈ Qn

, Q > C2,

where Q′ = Qn. Then Theorem 8.1 is applied with L′′ and d.

An important ingredient in the deduction of Theorem 2.3 is an upper

bound for the height H2(T ) of T . In fact, in Sections 15 and 16 we prove

a limit result for the successive infima for HL,c,Q (Theorem 16.1) where we

need Theorem 8.1. We use this limit result in Section 17 to compute an upper

bound for H2(T ). In Section 18 we complete the proof of Theorem 2.3.

9. Geometry of numbers for twisted heights

We start with some generalities on twisted heights. Let K be a number

field and n > 2. Let (L, c) be a pair for which for the moment we require only

(2.4)–(2.7).

For λ ∈ R>0, define T (Q,λ) = T (L, c, Q, λ) to be the Q-vector space

generated by

{x ∈ Qn
: HL,c,Q(x) 6 λ}.

We define the successive infima λi(Q) = λi(L, c, Q) (i = 1, . . . , n) of HL,c,Q by

λi(Q) := inf{λ ∈ R>0 : dimT (Q,λ) > i}.

Since we are working over Q, the successive infima need not be minima. For

i = 1, . . . , n, we define

Ti(Q) = Ti(L, c, Q) =
⋂

λ>λi(Q)

T (Q,λ).

We insert the following simple lemma.

Lemma 9.1. Let (L, c) be any pair with (2.4)–(2.7), and let Q > 1.

(i) The spaces T1(Q), . . . , Tn(Q) are defined over K .

(ii) Let k ∈ {1, . . . , n − 1}, and suppose that λk(Q) < λk+1(Q). Then

dimTk(Q) = k and T (Q,λ) = Tk(Q) for all λ with λk(Q) < λ <

λk+1(Q).
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Proof. (i) Lemma 4.1 implies that for any λ ∈ R>0 and any σ ∈ GK , we

have σ(T (Q,λ)) = T (Q,λ). Hence T (Q,λ) is defined over K. This implies (i)

at once.

(ii) From the definition of the successive infima it follows at once that

dimT (Q,λ) = k for all λ with λk(Q) < λ < λk+1(Q). Since also T (Q,λ) ⊆
T (Q,λ′) if λ 6 λ′, this implies (ii). �

The quantity ∆L is defined by (2.11). We recall the following analogue of

Minkowski’s Theorem.

Proposition 9.2. Let again (L, c) be any pair with (2.4)–(2.7). Put

α :=
∑
v∈MK

n∑
i=1

civ.

Then for Q > 1, we have

(9.1) n−n/2∆LQ
−α 6 λ1(Q) · · ·λn(Q) 6 2n(n−1)/2∆LQ

−α.

In particular, if α = 0, then

(9.2) n−n/2∆L 6 λ1(Q) · · ·λn(Q) 6 2n(n−1)/2∆L.

Proof. This is a reformulation of [11, Cor. 7.2]. In fact, this result is an

easy consequence of an analogue over Q of Minkowski’s Theorem on successive

minima, due to Roy and Thunder [16]. Using instead an Arakelov type result

of S. Zhang [31], it is possible to improve 2n(n−1)/2 to (cn)n for some absolute

constant c, but such a strengthening would not have any effect on our final

result. �

From now on, we assume that n, δ,R,L, c satisfy (8.1)–(8.9). We consider

reals Q with

(9.3) Q > C2,

where C2 is given by (8.10), and with (8.11); i.e.,

(9.4) λ1(Q) 6 Q−δ.

Our assumptions imply α = 0, and so (9.2) holds. We deduce some conse-

quences.

Lemma 9.3. Suppose n, δ,R,L, c satisfy (8.1)–(8.9) and Q satisfies (9.3),

(9.4). Let i1, . . . , ip be distinct indices from {1, . . . , n}. Then

Q−p−
1
2 6 λi1(Q) · · ·λip(Q) 6 Qn−p+

1
2 .
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Proof. Write λi for λi(Q). Lemma 7.1 and the conditions (8.7) (i.e., r6R),

(8.4) and (9.3) imply

λ1 > n
−1H

−(Rn)
L Q−1 > Q−1−1/(3n).

This implies at once the lower bound for λi1 · · ·λip . Further, by (9.2), the

upper bound for ∆L in (9.4) and again (9.3),

λi1 · · ·λip 6 2n(n−1)/2∆Lλ
p−n
1 6 2n(n−1)/2HLλ

p−n
1 6 Qn−p+

1
2 . �

Lemma 9.4. Suppose again that n,R, δ,L, c satisfy (8.1)–(8.9) and that

Q satisfies (9.3), (9.4). Then there is k ∈ {1, . . . , n− 1} such that

λk(Q) 6 Q−δ/(n−1)λk+1(Q).

Proof. Fix Q with (9.3), (9.4). Write λi for λi(Q), for i = 1, . . . , n. Then

by (9.2), the lower bound for ∆L in (7.4) and (9.4), (9.3),

λn >
Ä
n−n/2∆Lλ

−1
1

ä1/(n−1)
>
Å
n−n/2H

1−(Rn)
L Qδ

ã1/(n−1)

> 1.

Take k ∈ {1, . . . , n− 1} such that λk/λk+1 is minimal. Then

λk
λk+1

6
Å
λ1

λn

ã1/(n−1)

6 λ1/(n−1)
1 6 Q−δ/(n−1). �

10. A lower bound for the height of the k-th infimum subspace

Our aim is to deduce a useful lower bound for the height of the vector

space Tk(Q), where k is the index from Lemma 9.4. It is only at this point

where we have to use our semistability assumption (8.9).

We need some lemmas, which are used also elsewhere. In the usual man-

ner, we write ⋃
v∈MK

{L(v)
1 , . . . , L(v)

n } = {L1, . . . , Lr}.

The quantity HL is given by (2.12).

Lemma 10.1. Assume that L contains X1, . . . , Xn. Let {d1, . . . , dm} be

the set consisting of 1, all determinants det(Li1 , . . . , Lin) (16 i1< · · ·<in6r),
and all subdeterminants of order 6 n of these determinants. Then∏

v∈MK

max(‖d1‖v, . . . , ‖dm‖v) = HL.

Proof. Pick indices 1 6 i1 < · · · < in 6 r. Each of the subdeter-

minants of det(Li1 , . . . , Lin) can be expressed as a determinant of n linear

forms from Li1 , . . . , Lin , X1, . . . , Xn. Since X1, . . . , Xn ∈ {L1, . . . , Lr}, these

subdeterminants are up to sign in the set of determinants det(Li1 , . . . , Lin)

(1 6 i1 < · · · < in 6 r). Now the lemma is clear from (2.12). �
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Lemma 10.2. Let L, c satisfy (2.4)–(2.7), and suppose in addition that

L contains X1, . . . , Xn. Let T be a k-dimensional linear subspace of Qn
and

{g1, . . . ,gk} a basis of T . Let E be a finite extension of K such that gi ∈ En
for i = 1, . . . , k.

Let θ1, . . . , θu be the distinct nonzero numbers among

det(Lil(gj))l,j=1,...,k (1 6 i1 < · · · < ik 6 r).

Then ∏
w∈ME

max(‖θ1‖w, . . . , ‖θu‖w) 6

Ç
n

k

å1/2

HL ·H2(T ),(10.1)

∏
w∈ME

min(‖θ1‖w, . . . , ‖θu‖w) >

(Ç
n

k

å1/2

HL ·H2(T )

)1−(rk)

.(10.2)

Proof. For w ∈ME , put

Gw := ‖g1 ∧ · · · ∧ gk‖w,2, Hw := max(‖d1‖w, . . . , ‖dm‖w),

where {d1, . . . , dm} is the set from Lemma 10.1. Thus,

(10.3)
∏

w∈ME

Gw = H2(T ),
∏

w∈ME

Hw = HL.

Let {Li1 , . . . , Lik} be a k-element subset of {L1, . . . , Lr}. Then the coeffi-

cients of Li1∧· · ·∧Lik (being subdeterminants of order k) belong to {d1, . . . , dm}.
Now (6.10), (6.4) imply for w ∈ME that

‖ det (Lil(gj)16l,j6k ‖w = ‖(Li1 ∧ · · · ∧ Lik) · (g1 ∧ · · · ∧ gk)‖w
6 ‖Li1 ∧ · · · ∧ Lik‖w,2 · ‖g1 ∧ · · · ∧ gk‖w,2

6

Ç
n

k

ås(w)/2

HwGw.

By taking the maximum over all tuples i1, . . . , ik and then the product over

w ∈ME , and using (10.3), inequality (10.1) follows.

By the product formula,∏
w∈ME

min(‖θ1‖w, . . . , ‖θu‖w)>
∏

w∈ME

‖θ1 · · · θu‖w
max(‖θ1‖w, . . . , ‖θu‖w)u−1

=

Ñ ∏
w∈ME

max(‖θ1‖w, . . . , ‖θu‖w)

é1−u

,

and together with (10.1), u 6
(r
k

)
, this implies (10.2). �

We now deduce our lower bound for the height of the vector space Tk(Q).
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Lemma 10.3. Let n,R, δ,L, c satisfy (8.1)–(8.9), and let Q satisfy (9.3),

(9.4). Further, let k be the index from Lemma 9.4. Then

H2(Tk(Q)) > Qδ/3R
n
.

Proof. Put T := Tk(Q) and λi := λi(Q) for i = 1, . . . , n. Let v ∈ MK .

Choose {i1(v), . . . , ik(v)} ⊂ {1, . . . , n} such that the restrictions to T of the

linear forms L
(v)
i1(v), . . . , L

(v)
ik(v) are linearly independent and

wv(T ) =
k∑
l=1

cil(v),v.

Then by assumption (8.9),

∑
v∈MK

k∑
l=1

cil(v),v = w(T ) 6 0.

Given any finite extension E of K and w ∈ ME , define il(w) := il(v) for

l = 1, . . . , k, where v is the place of K below w. Then by (2.3), (2.14), we have

(10.4)
∑

w∈ME

k∑
l=1

cil(w),w 6 0.

Choose ε such that

(10.5) 0 < ε < 1, (1 + ε)λk < λk+1.

Then there are linearly independent vectors g1, . . . ,gk ∈ T such that

(10.6) HL,c,Q(gj) 6 (1 + ε)λj for j = 1, . . . , k.

Let E be a finite extension of K such that gj ∈ En for j = 1, . . . , k. Put

Hjw := max
16i6n

‖L(w)
i (gj)‖wQ−ciw for w ∈ME , j = 1, . . . , k.

Thus,

(10.7) ‖L(w)
i (gj)‖w 6 HjwQ

ciw for w ∈ME , i = 1, . . . , n, j = 1, . . . , k.

For w ∈ME , put

θw := det
Ä
L

(w)
il(w)(gj)

ä
16l,j6k

.

We estimate from above and below
∏
w∈ME

‖θw‖w. We start with the upper

bound. Let w ∈ME . From (10.7), using the triangle inequality if w is infinite

and the ultrametric inequality if w is finite, we deduce

‖θw‖w 6 (k!)s(w)H1w · · ·HkwQ
∑k

l=1
cil(w),w .
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By taking the product over w ∈ME and inserting (10.6), (10.4),∏
w∈ME

‖θw‖w 6 k!HL,c,Q(g1) · · ·HL,c,Q(gk)Q
∑

w∈ME

∑k
l=1

cil(w),w(10.8)

6 k!(1 + ε)kλ1 · · ·λk 6 2kk!λ1 · · ·λk.

By Lemma 9.4 and (10.5), we have

λ1 · · ·λk 6 (λ1 · · ·λk)k/n
Ä
Q−δ/(n−1)λk+1

äk(n−k)/n

6Q−k(n−k)δ/n(n−1)(λ1 · · ·λn)k/n.

Applying (9.2) and using the upper bound in (7.4) for ∆L, we obtain

λ1 · · ·λk 6 2k(n−1)/2∆
k/n
L Q−k(n−k)δ/n(n−1) 6 2k(n−1)/2H

k/n
L Q−k(n−k)δ/n(n−1),

and inserting the latter into (10.8) and using assumption (9.3) leads us to the

upper bound ∏
w∈ME

‖θw‖w 6 Q−δ/2n.

From (10.2) we conclude at once that

∏
w∈ME

‖θw‖w >
(Ç

n

k

å1/2

HL ·H2(T )

)1−(Rk)

.

A combination with the upper bound just established and again our assumption

(9.3) gives H2(T ) > Qδ/3R
n
, as required. �

11. Inequalities in an exterior power

Letting Q be a real with (9.3), (9.4), k the index from Lemma 9.4, and

N :=
(n
k

)
, we construct N−1 linearly independent vectors ĥ1(Q), . . . , ĥN−1(Q)

∈ ∧n−kQn ∼= QN
satisfying an appropriate system of inequalities. The con-

struction is similar to that of [11]; the basic tool is Davenport’s Lemma.

In the subsequent sections, Theorem 8.1 is proved by applying the Roth

machinery to our system of inequalities. More precisely, we recall a nonvan-

ishing result in Section 12, and construct a suitable auxiliary polynomial P in

Section 13. Assuming Theorem 8.1 is false, we show that the nonvanishing re-

sult is applicable to P , and with the inequalities derived in the present section

and the properties of P , we derive a contradiction.

We start with recalling [11, Lemma 6.3].

Lemma 11.1. Let F be any algebraic number field and Au (u ∈ MF )

positive reals such that

Au = 1 for all but finitely many u ∈MF ;
∏

u∈MF

Au > 1.
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Then there exist a finite extension E of F , and α ∈ E∗, such that

‖α‖w 6 Aw for w ∈ME ,

where we have written Aw := A
d(w|u)
u , with u the place of F below w.

We keep the notation and assumptions from Sections 8, 9. Thus, n > 2,

K is an algebraic number field and L, c, R, δ satisfy (8.1)–(8.9). We fix a

real number Q > 1. Temporarily, we write λi for the i-th successive infimum

λi(Q) of HL,c,Q (i = 1, . . . , n). For a subset S of Qn
, we denote by spanS the

Q-vector space generated by S.

Let v0 be the place from (8.7). Given a finite extension E of K, we write

w ∈ME , w|v0 to indicate that we let w run through all places of E lying above

v0, and we write w ∈ ME , w - v0 to indicate that we let w run through all

places of E not lying above v0.

Choose ε > 0 such that

(11.1)

(1 + ε)2λi < λi+1 for each i with λi < λi+1,

(1 + ε)n+1 · n · 2n2
< 3n

2
.

Then choose linearly independent vectors g1, . . . ,gn of Qn
such that

(11.2) HL,c,Q(gi) 6 (1 + 1
2ε)λi for i = 1, . . . , n.

Lemma 11.2. There exist a finite extension E of K , and scalar multiples

g′1, . . . ,g
′
n of g1, . . . ,gn, respectively, having their coordinates in E, such that

‖L(w)
i (g′j)‖w 6 n−s(w)Qciw (i, j = 1, . . . , n, w ∈ME , w - v0),(11.3)

‖L(w)
i (g′j)‖w 6

Ä
(1 + ε)nλj

äd(w|v0)
(i, j = 1, . . . , n, w ∈ME , w | v0).(11.4)

Proof. Choose a finite extension F of K such that g1, . . . ,gn ∈ Fn. For

j ∈ {1, . . . , n}, put

Aju :=



n−s(u) ·
Å

max
16i6n

‖L(u)
i (gj)‖uQ−ciu

ã−1

(u ∈MF , u - v0),Ç
n(1 + ε)

1 + 1
2ε
·HL,c,Q(gj)

åd(u|v0)

·
Å

max
16i6n

‖L(u)
i (gj)‖u

ã−1

(u ∈MF , u | v0).

Notice that for j = 1, . . . , n, at most finitely many among the numbers Aju
(u ∈ MF ) are 6= 1, and

∏
u∈MF

Aju > 1. So we can apply Lemma 11.1 and

obtain that there are a finite extension E of F , and α1, . . . , αn ∈ E∗, such that

‖αj‖w 6 Ajw for w ∈ME , j = 1, . . . , n,
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where we have written Ajw := A
d(w|u)
ju , with u the place of F below w. As is

easily seen, for j = 1, . . . , n, we have that

Ajw :=



n−s(w) ·
Å

max
16i6n

‖L(w)
i (gj)‖wQ−ciw

ã−1

(w ∈ME , w - v0),Ç
n(1 + ε)

1 + 1
2ε
·HL,c,Q(gj)

åd(w|v0)

·
Å

max
16i6n

‖L(w)
i (gj)‖w

ã−1

(w ∈MF , w | v0).

Together with (11.2) this implies that g′j := αjgj (j = 1, . . . , n) satisfies (11.3),

(11.4). �

Lemma 11.3 (Davenport’s Lemma). There exist a finite extension E of

K , a permutation π of {1, . . . , n}, and vectors hj = hj(Q) ∈ En (j = 1, . . . , n),

with the following properties :

span {h1, . . . ,hj} = span {g1, . . . ,gj} for j = 1, . . . , n,(11.5)

‖L(w)
i (hj)‖w 6 n−s(w)Qciw (i, j = 1, . . . , n, w ∈ME , w - v0),(11.6)

‖L(w)
π(i)(hj)‖w 6

Ä
3n

2
min(λi, λj)

äd(w|v0)
(11.7)

(i, j = 1, . . . , n, w ∈ME , w | v0).

Proof. The proof is the same as that of [11, Lemma 9.2], except for some

small modifications. In fact, starting with g1, . . . ,gn, we construct scalar mul-

tiples g′1, . . . ,g
′
n as in Lemma 11.2. Then [11, (9.17), (9.18)] hold, but with

the vectors g1, . . . ,gn being replaced by g′1, . . . ,g
′
n and the numbers Qciw ,

(1 + ε)λj by n−s(w)Qciw and (1 + ε)nλj , respectively, for i, j = 1, . . . , n. We

then copy the proof of [11, Lemma 9.2]. Here we have to use (11.1) instead of

[11, (9.15)]. This yields vectors h1, . . . ,hn satisfying (11.5), (11.6) and (11.7)

with 2n
2
n(1 + ε)n+1 instead of 3n

2
. Together with our assumption (11.1) this

implies our Lemma 11.3.

In the proof of [11, Lemma 9.2], the tuples L = (L
(v)
i : v ∈ MK , i =

1, . . . , n) under consideration satisfy, in addition to (8.7), (8.8), the following

conditions: ‖ det(L
(v)
1 , . . . , L

(v)
n )‖v = 1 for v ∈ MK and L

(v)
1 = X1, . . . , L

(v)
n =

Xn for all but finitely many v ∈ MK . But these conditions are not used

anywhere. �

Let Q be a real with (9.3), (9.4), and let k ∈ {1, . . . , n − 1} be the index

from Lemma 9.4. That is, Q satisfies

Q > C2, λ1(Q) 6 Q−δ,(11.8)

λk(Q) 6 Q−δ/(n−1)λk+1(Q).(11.9)

Put N :=
(n
k

)
. Let C(n, n− k) = (I1, . . . , IN ) be the sequence of (n− k)-

elements subsets of {1, . . . , n}, arranged in lexicographical order. Thus, I1 =
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{1, . . . , n− k}, I2 = {1, . . . , n− k − 1, n− k + 1}, . . . ,IN−1 = {k, k + 1, . . . , n},
IN = {k + 1, . . . , n}.

Let hj = hj(Q) (j = 1, . . . , n) be the vectors from Lemma 11.3. For

v ∈MK , j = 1, . . . , N , define

L̂
(v)
j := L

(v)
i1
∧ · · · ∧ L(v)

in−k
, ĉjv := ci1,v + · · ·+ cin−k,v,(11.10)

ĥj = ĥj(Q) := hi1(Q) ∧ · · · ∧ hin−k(Q),(11.11)

νj = νj(Q) := λi1(Q) · · ·λin−k(Q),(11.12)

where Ij = {i1 < · · · < in−k}. The permutation π from Lemma 11.3 induces

a permutation π̂ of {1, . . . , N} such that if Ij = {i1, . . . , in−k}, then Iπ̂(j) =

{π(i1), . . . , π(in−k)}. In the usual manner, we write

(11.13) L̂
(w)
j = L̂

(v)
j , ĉjw = d(w|v)ĉjv

for any place w of any finite extension of K, where v is the place of K below w.

Let E be the finite extension of K from Lemma 11.3. By (6.10), (11.6),

(11.7) we have for w ∈ME , i, j = 1, . . . , N ,

‖L̂(w)
i (ĥj)‖w = ‖ det

Ä
L

(w)
ip

(hjq)
ä

16p,q6n−k‖w(11.14)

6

((n− k)!)s(w)n−(n−k)s(w)Qĉiw 6 Qĉiw if w - v0,

3n
3

min
Ä
νπ̂−1(i), νπ̂−1(j)

ä
if w | v0,

where Ii = {i1 < · · · < in−k}, Ij = {j1 < · · · < jn−k}.
Our concern is about the points ĥ1, . . . , ĥN−1. Define the quantities

ĉi,v0(Q) (i = 1, . . . , N) (so depending on Q (!)) by

(11.15) Qĉi,v0 (Q) :=

3n
3
νπ̂−1(i)(Q) if π̂−1(i) 6= N,

3n
3
νN−1(Q) if π̂−1(i) = N.

Next, define

(11.16) ĉiw(Q) := d(w|v0)ĉi,v0(Q)

if w is a place of some finite extension of K lying above v0.

Now (11.14) implies for i = 1, . . . , N , j = 1, . . . , N − 1,

(11.17)

‖L̂
(w)
i (ĥj)‖w 6 Qĉiw (w ∈ME , w - v0),

‖L̂(w)
i (ĥj)‖w 6 Qĉiw(Q) (w ∈ME , w | v0).

We may take the same finite extension E of K as in (11.14) but, in fact, in

view of (11.13), (11.16), we may take for E any finite extension of K that

contains the coordinates of ĥ1, . . . , ĥN−1. It is a feature of our new approach,

as opposed to [11], that it allows us to handle exponents ĉiw(Q) that vary

with Q.
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We have collected some properties of the exponents ĉiv, ĉi,v0(Q).

Lemma 11.4. Let Q be a real with (11.8), (11.9). Put N :=
(n
k

)
. Then

N∑
i=1

ĉiv = 0 for v ∈MK \ {v0},(11.18)

max
16i6N

|ĉiv| 6 (n− 1) max
16i6n

civ for v ∈MK \ {v0},(11.19) ∑
v∈MK\{v0}

max
16i6N

|ĉiv| 6 n− 1,(11.20)

N∑
i=1

ĉi,v0(Q) 6 −δ/n,(11.21)

max
16i6N

|ĉi,v0(Q)| 6 n.(11.22)

Proof. (11.18), (11.19) and (11.20) are easy consequences of (11.10), (8.2)–

(8.4) and the choice of v0. (11.18) is immediate. For (11.19), observe that

|ĉjv| = max

Ñ∑
i∈Ij

civ,
∑
i 6∈Ij

civ

é
6 (n− 1) max

16i6n
civ,

and for (11.20), take the sum over v and apply (8.4). We prove (11.21).

Write again λi, νj for λi(Q), νj(Q), and put N ′ :=
( n−1
n−k−1

)
. Notice that by

(11.12), νN−1 = λkλk+2 · · ·λN , νN = λk+1 · · ·λN . Together with (11.15), (9.2),

Lemma 9.4, (11.9), and (11.8), this implies

Q
∑N

i=1
ĉi,v0 (Q) = 3n

3Nν1 · · · νN (νN−1/νN )

= 3n
3N (λ1 · · ·λn)N

′
(λk/λk+1)

6 3n
3N2n(n−1)N ′/2Q−δ/(n−1) 6 Q−δ/n.

We finish with proving (11.22). Let i ∈ {1, . . . , N}. By (11.12), (11.15),

we have

Qĉi,v0 (Q) = 3n
3
λi1 · · ·λin−k

for certain distinct indices i1, . . . , in−k ∈ {1, . . . , n}. Together with Lemma 9.3

and (11.8), this implies

Q|̂ci,v0 (Q)| 6 3n
3
Qn−

1
2 6 Qn. �

Next, we prove some properties of the linear forms L̂
(v)
i . For v ∈ MK ,

denote by “Av the matrix of which the j-th row consists of the coefficients of

L̂
(v)
j for j = 1, . . . , N . The inhomogeneous height of a set S = {α1, . . . , αs} ⊂

Q is given by H∗(S) :=
∏
w∈ME

max(1, ‖α1‖w, . . . , ‖αs‖w), where E is any

number field containing S. If A1, . . . , Am are matrices with elements from Q,



IMPROVEMENT OF THE QUANTITATIVE SUBSPACE THEOREM 551

we denote by H∗(A1, . . . , Am) the inhomogeneous height of the set of elements

of A1, . . . , Am.

Lemma 11.5. Let “A1, . . . , “As be the distinct matrices among “Av (v ∈
MK). Then

H∗(“A−1
1 , . . . , “A−1

s ) 6 HRn

L .

Proof. Write
⋃
v∈MK

{L(v)
1 , . . . , L

(v)
n } = {L1, . . . , Lr}; then r 6 R. For

i = 1, . . . , s, let Bi := (det “Ai)“A−1
i . For v ∈MK , put δv := det(L

(v)
1 , . . . , L

(v)
n ),

and let δ1, . . . , δu be the distinct numbers among δv (v ∈MK).

Thanks to assumption (8.8), we can apply Lemma 10.1. For v ∈MK , the

elements of the matrix (det “Av)“A−1
v are up to sign the coefficients of L

(v)
i1
∧

· · · ∧ L(v)
ik

for all k-element subsets {i1 < · · · < ik} of {1, . . . , r}, and so are up

to sign among the set {d1, . . . , dm} from Lemma 10.1. Hence,

H∗(B1, . . . , Bs) 6 HL.

By (6.6), we have det “Av = δN
′

v for v ∈ MK , where N ′ :=
( n−1
n−k−1

)
. Now a

combination of (7.3) and the inequality just established gives

H∗(“A−1
1 , . . . , “A−1

s )6HL ·
∏

v∈MK

max
i6i6u

‖δi‖−N
′

v

6H
1+N ′((rn)−1)

L 6 HRn

L .

This proves our lemma. �

Lemma 11.6. Suppose Q satisfies (11.8), (11.9), and put N :=
(n
k

)
. Let“T (Q) be the Q-vector space spanned by the vectors ĥ1(Q), . . . , ĥN−1(Q). Then

H2(“T (Q)) > Qδ/3R
n
.

Proof. Put T := Tk(Q), “T := “T (Q). We have seen that T is spanned by

h1(Q), . . . ,hk(Q). So we may apply Lemma 6.1. Now this lemma together

with Lemma 10.3 gives H2(“T ) = H2(T ) > Qδ/3R
n
. �

12. A nonvanishing result

Let N,m be integers > 2. Below, i, j will denote mN -tuples (ihl : h =

1, . . . ,m, j = 1, . . . , N), (jhl : h = 1, . . . ,m, j = 1, . . . , N) of integers, and i± j

will denote their componentwise sum/difference.

We consider polynomials P ∈ Q[X1, . . . ,Xm] = Q[X11, . . . , XmN ] in m

blocks of N variables Xh = (Xh1, . . . , XhN ) (h = 1, . . . ,m). Such a polynomial

P is expressed as

(12.1) P =
∑
j

a(j)Xj with Xj :=
m∏
h=1

N∏
l=1

Xjhl
hl ,
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where the sum is over a finite set of tuples j ∈ ZmN>0 and where a(j) ∈ Q. For

a polynomial P as above and for i ∈ ZmN>0 , we define

Pi :=

(
m∏
h=1

N∏
l=1

1

ihl!

∂ihl

∂Xihl
hl

)
P.

Thus, if P is given by (12.1), then

(12.2) Pi =
∑
j

Ç
i + j

i

å
a(i + j)Xj, where

Ç
i + j

i

å
:=

m∏
h=1

N∏
l=1

Ç
ihl + jhl
ihl

å
.

We say that P ∈ Q[X1, . . . ,Xm] is multihomogeneous of degree (r1, . . . , rm) if

it is homogeneous of degree rh in block Xh for h = 1, . . . ,m, i.e., if in (12.1)

the sum is taken over tuples j ∈ ZmN>0 with
∑N
l=1 jhl = rh for h = 1, . . . ,m.

We write points in QmN
as (x1, . . . ,xm), where x1, . . . ,xm ∈ QN

. The

height H2(P ) of P ∈ Q[X1, . . . ,Xm] is defined as H2(aP ), where aP is a vector

consisting of the nonzero coefficients of P .

Let T be a finite dimensional Q-vector space and B a positive integer. By

a grid of size B in T we mean a set of the shape{
d∑
i=1

xiai : xi ∈ Z, |xi| 6 B for i = 1, . . . , d

}
,

where d = dimT and {a1, . . . ,ad} is any basis of T .

We recall [9, Lemma 26]. We note that this result was deduced from a

sharp version of Roth’s Lemma and ultimately goes back to Faltings’ Product

Theorem [13].

Proposition 12.1. Let m,N be integers > 2, ε a real with 0 < ε 6 1,

and r1, . . . , rm positive integers such that

(12.3)
rh
rh+1

>
2m2

ε
for h = 1, . . . ,m− 1.

Next, let P be a nonzero polynomial in Q[X1, . . . ,Xm] that is homogeneous of

degree rh in the block Xh for h = 1, . . . ,m, and let T1, . . . , Tm be (N − 1)-

dimensional linear subspaces of QN
such that

(12.4) H2(Th)rh >
Ä
er1+···+rmH2(P )

ä(N−1)(3m2/ε)m

.

Finally, for h = 1, . . . ,m, let Γh be a grid in Th of size N/ε. Then there are

xh ∈ Γh with xh 6= 0 for h = 1, . . . ,m and i ∈ ZmN>0 with

(12.5)
m∑
h=1

1

rh

(
N∑
l=1

ihl

)
6 2mε

such that

(12.6) Pi(x1, . . . ,xm) 6= 0.



IMPROVEMENT OF THE QUANTITATIVE SUBSPACE THEOREM 553

13. Construction of the auxiliary polynomial

We start with recalling our main tools, which are a version of Siegel’s

Lemma due to Bombieri and Vaaler and Hoeffding’s inequality from probability

theory.

For an algebraic number field K, we denote by DK the discriminant of K,

and we put

CK := |DK |1/2[K:Q].

Lemma 13.1. Let K be a number field, U, V integers with V > U > 0,

and L1, . . . , LU nonzero linear forms from K[X1, . . . , XV ]lin. Then there exists

x ∈ KV \ {0} such that

L1(x) = 0, . . . , LU (x) = 0,(13.1)

H2(x) 6 V 1/2CK ·
Ä
H2(L1) · · ·H2(LU )

ä1/(V−U)
.(13.2)

Proof. This is a consequence of Bombieri and Vaaler [1, Th. 9]. �

In the lemma below, all random variables under consideration are defined

on a given probability space with probability measure Prob. The expectation

of a random variable X is denoted by E(X).

Lemma 13.2. Let X1, . . . ,Xm be mutually independent random variables

such that

Prob
Ä
Xh ∈ [ah, bh]

ä
= 1, E(Xh) = µh for h = 1, . . . ,m,

where ah, bh, µh ∈ R, ah < bh for h = 1, . . . ,m. Then for every ε > 0, we have

(13.3) Prob

(
m∑
h=1

(Xh − µh) > mε

)
6 exp

Ç
− 2m2ε2∑m

h=1(bh − ah)2

å
.

Proof. See W. Hoeffding [15, Th. 2]. �

For positive integers m,N and a tuple of positive integers r = (r1, . . . , rm),

define U(r) to be the set of tuples

j = (jhl : h = 1, . . . ,m, l = 1, . . . , N) ∈ ZmN>0

such that
N∑
l=1

jhl = rh for h = 1, . . . ,m.

Put

(13.4) V := #U(r) =
m∏
h=1

N∏
l=1

Ç
rh +N − 1

N − 1

å
.
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Using the inequalityÇ
a+ b

b

å
6

(a+ b)a+b

aabb
=

Å
1 +

b

a

ãa Å
1 +

a

b

ãb
6
Å
e
(
1 +

b

a

)ãa
for positive integers a, b, it follows that

(13.5) V 6 (eN)r1+···+rm .

We deduce the following combinatorial lemma.

Lemma 13.3. Let N be a positive integer, r = (r1, . . . , rm) a tuple of

positive integers, ε, γ reals with 0 < ε 6 1 and γ > 0, and ĉh = (ĉh1, . . . , ĉhN )

(h = 1, . . . ,m) tuples of reals such that

(13.6) |ĉhl| 6 γ for h = 1, . . . ,m, l = 1, . . . , N.

Then the number of tuples j = (jhl : h = 1, . . . ,m, l = 1, . . . , N) ∈ U(r) such

that

(13.7)
m∑
h=1

1

rh

(
N∑
l=1

jhlĉhl

)
>

1

N

(
m∑
h=1

N∑
l=1

ĉhl

)
+mγε

is at most

(13.8) e−mε
2/2V.

Proof. We assume without loss of generality that γ = 1. We view j as a

uniformly distributed random variable on U(r); i.e., each possible value of j is

given probability 1/V . Define random variables on U(r) by

Xh :=
1

rh

N∑
l=1

jhlĉhl (h = 1, . . . ,m).

Notice that X1, . . . ,Xm are mutually independent, and for h = 1, . . . ,m,

Prob
Ä
Xh ∈ [−1, 1]

ä
= 1, (by (13.6) and γ = 1),

E(Xh) = µh :=
1

N

N∑
l=1

ĉhl.

Now the number of tuples j ∈ U(r) with (13.7) is precisely

V · Prob

(
m∑
h=1

(Xh − µh) > mε

)
,

and by Lemma 13.2 this is at most V · e−mε2/2. �

Let K be an algebraic number field and m,N, r1, . . . , rm integers > 2. We

keep the notation introduced in Section 12. In particular, by i we denote an

mN -tuple of nonnegative integers i = (ihl : h = 1, . . . ,m, l = 1, . . . , N), and

similarly for j, k. Further, K[X1, . . . ,Xm] denotes the ring of polynomials
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with coefficients in K in the blocks of variables Xh = (Xh1, . . . , XhN ) (h =

1, . . . ,m).

We consider polynomials in this ring that are homogeneous of degree rh
in Xh for h = 1, . . . ,m. In analogy to (12.1), such a polynomial P can be

expressed as

(13.9) P =
∑

j∈U(r)

a(j)Xj with aP :=
Ä
a(j) : j ∈ U(r)

ä
∈ KV .

We prove a simple auxiliary result.

Lemma 13.4. Let P be a nonzero polynomial with (13.9). Further, let

L̂i =
N∑
j=1

αijXj (i = 1, . . . , N)

be linearly independent linear forms with coefficients in K , and letÄ
βij
ä
i,j=1,...,N

=
(Ä
αij
ä
i,j=1,...,N

)−1

be the inverse of the coefficient matrix of L̂1, . . . , L̂N . Lastly, put

Cv := max
i,j=1,...,N

‖βij‖v for v ∈MK .

Then for every i ∈ ZmN>0 , we have

Pi =
∑

j∈U(r,i)

di,j(aP )
m∏
h=1

N∏
l=1

L̂l(Xh)jhl(13.10)

with U(r, i) := {j ∈ ZmN>0 : j + i ∈ U(r)},

where di,j is a linear form with coefficients in K in V variables satisfying

(13.11) ‖di,j‖v,1 6
Ä
(6N2)s(v)Cv

är1+···+rm
for j ∈ U(r), v ∈MK .

Proof. Define new variables Yhl := L̂l(Xh) for h = 1, . . . ,m, l = 1, . . . , N .

Then by (12.2),

Pi =
∑

j∈U(r,i)

Ç
i + j

i

å
a(i + j)Xj

=
∑

j∈U(r,i)

a(i + j)
m∏
h=1

N∏
l=1

ÑÇ
ihl + jhl
ihl

å( N∑
j=1

βljYlj
)jhlé

=:
∑

j∈U(r,i)

a(i + j)Di,j(Y).
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Let v ∈ MK . Then by (6.5), we have for j ∈ U(r, i), on noting
(i+j

i

)
6

2
∑

h,l
(ihl+jhl) = 2r1+···+rm ,

‖Di,j‖v,1 6
Ç

i + j

i

ås(v)Ä
N s(v)Cv

ä∑
h,l
jhl 6 (2NCv)

r1+···+rm .

Together with (6.5), (13.5), this implies for j ∈ U(r, i),

‖di,j‖v,1 6 V s(v) max
k∈U(r)

‖Di,k‖v,1 6 (6N2Cv)
r1+···+rm . �

As before, let L, c, n,R, δ satisfy (8.1)–(8.9). We fix k ∈ {1, . . . , n − 1}
and consider all reals Q satisfying (11.8), (11.9).

Let v0 be the place from (8.8) and L̂
(v)
i (v ∈ MK , i = 1, . . . , N) be the

linear forms and ”civ (v ∈MK \ {v0}, i = 1, . . . , N), ĉi,v0(Q) (i = 1, . . . , N) the

reals from Section 11.

We want to construct a suitable nonzero polynomial P of the shape (13.9).

The next lemma is our first step. For v ∈MK , we write

(13.12) P =
∑

j∈U(r)

d
(v)
j (aP )

m∏
h=1

N∏
l=1

L̂
(v)
l (Xh)jhl ,

where d
(v)
j is a linear form with coefficients in K in V variables in the coefficient

vector aP of P .

Lemma 13.5. Let S0 be a subset of

S1 := {v ∈MK : cv := (c1v, . . . , cnv) 6= 0},

and put s0 := #S0. Let ε be a real with 0 < ε < 1, m an integer with

(13.13) m > 2ε−2 log(2s0 + 2)

and r1, . . . , rm positive integers. Lastly, let Q1, . . . , Qm be reals with (11.8),

(11.9). Then there exists a nonzero polynomial P of the type (13.9) with the

following properties :

(i) For every v ∈ S0 and each j ∈ U(r) with

(13.14)
m∑
h=1

1

rh

(
N∑
l=1

jhlĉlv

)
> mnε ·

Å
max
16i6n

civ

ã
,

we have

(13.15) d
(v)
j (aP ) = 0.

(ii) For each j ∈ U(r) with

(13.16)
m∑
h=1

1

rh

(
N∑
l=1

jhlĉl,v0(Qh)

)
> −mδ

nN
+mnε,
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we have

(13.17) d
(v0)
j (aP ) = 0.

(iii) For the height of P , we have

(13.18) H2(P ) 6 CK
Ä
23nHRn

L
är1+···+rm

.

We recall here that by (8.2) the set S1 is finite and that the place v0 given

by (8.8) does not belong to S1.

Proof. We prove that there exists a nonzero polynomial P of the type

(13.9) such that for every v ∈ S0 and each j ∈ ZmN>0 with

(13.19)
m∑
h=1

1

rh

(
N∑
l=1

jhlĉlv

)
>

(
m

N

N∑
l=1

ĉlv

)
+mnε ·

Å
max
16i6n

civ

ã
,

we have (13.15), and such that for each j ∈ ZmN>0 with

(13.20)
m∑
h=1

1

rh

(
N∑
l=1

jhlĉl,v0(Qh)

)
>

(
1

N

m∑
h=1

N∑
l=1

ĉl,v0(Qh)

)
+mnε,

we have (13.17). This suffices, since by (11.18), (11.21), the conditions (13.14),

(13.16) imply (13.19), (13.20).

We may view (13.15) with (13.19) and (13.17) with (13.20) as a system

of linear equations in the unknown vector aP ∈ KV , where V = #U(r). By

(11.19), (11.22), Lemma 13.3, and assumption (13.13), the number of equa-

tions, i.e., the number of j with (13.19), (13.20), is

U 6 (s0 + 1)V e−mε
2/2 6 1

2V.

Combining Lemma 11.5 with Lemma 13.4 gives us

H2(d
(v)
j ) 6

Ä
6N2HRn

L
är1+···+rm

for v ∈ S0 ∪ {v0}, j ∈ U(r). Now Lemma 13.1 implies that there is a nonzero

aP ∈ KV with

H2(aP ) 6 CKV
1/2
Ä
6N2HRn

L
ä(r1+···+rm)U/(V−U)

.

By inserting (13.5) and N =
(n
k

)
6 2n−1 we arrive at

H2(P ) = H2(aP )6CK
Ä
6e1/2N5/2HRn

L
är1+···+rm

6CK
Ä
23nHRn

L
är1+···+rm

.

Our lemma follows. �
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The next proposition lists the properties of our final auxiliary polynomial.

For v ∈MK , i ∈ ZmN>0 , we write, analogously to (13.10),

(13.21) Pi =
∑

j∈U(r,i)

d
(v)
i,j (aP )

m∏
h=1

N∏
l=1

L̂
(v)
l (Xh)jhl ,

where U(r, i) = {j ∈ ZmN>0 : i + j ∈ U(r)} and where d
(v)
i,j is a linear form in V

variables with coefficients in K.

Proposition 13.6. Let ε be a real with 0 < ε 6 1, m an integer with

(13.22) m > 2nε−2 log(4R/ε)

and r1, . . . , rm positive integers. Further, let Q1, . . . , Qm be reals with (11.8),

(11.9). Then there exists a nonzero polynomial P of the type (13.9) with the

following properties :

(i) For every v ∈MK \ {v0}, each tuple i ∈ ZmN>0 with

(13.23)
m∑
h=1

1

rh

(
N∑
l=1

ihl

)
6 2mε

and each j ∈ U(r, i) with

(13.24)
m∑
h=1

1

rh

(
N∑
l=1

ĉlvjhl

)
> 4mnε max

16i6n
civ,

we have

(13.25) d
(v)
i,j (aP ) = 0.

(ii) For each i with (13.23) and each j ∈ U(r, i) with

(13.26)
m∑
h=1

1

rh

(
N∑
l=1

ĉl,v0(Qh)jhl

)
> −mδ

nN
+ 4mnε,

we have

(13.27) d
(v0)
i,j (aP ) = 0.

(iii) For the height of P , we have

(13.28) H2(P ) 6 CK
Ä
23nHRn

L
är1+···+rm

.

(iv) For all i ∈ ZmN>0 , we have

(13.29)
∏

v∈MK

Ç
max

j∈U(r,i)
‖d(v)

i,j (aP )‖v
å
6 CK

Ä
26nH2Rn

L
är1+···+rm

.
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Proof. We construct a subset S0 of

S1 := {v ∈MK : cv = (c1v, . . . , cnv) 6= 0}

and apply Lemma 13.5 with this set. The set S0 is obtained by dividing S1

into subsets and picking one element from each subset. For v ∈ MK , we put

γv := max16i6n civ.

First, we divide S1 into t1 subsets S11, . . . , S1,t1 in such a way that two

places v1, v2 belong to the same subset if and only if

L
(v1)
i = L

(v2)
i for i = 1, . . . , n.

By (8.7), we have t1 6 Rn.

We further subdivide the subsets S1j . Let j ∈ {1, . . . , t1}. Divide the cube

[−1, 1]n into t2 :=
Ä
[2/ε] + 1

än
small subcubes of sidelength

2

[2/ε] + 1
6 ε.

Now divide S1,j into t2 subsets S1j1, . . . , S1j,t2 such that two places v1, v2 belong

to the same subset if the two pointsÇ
c1,v1

γv1
, . . . ,

cn,v1
γv1

å
,

Ç
c1,v2

γv2
, . . . ,

cn,v2
γv2

å
belong to the same small subcube. In this way, we have divided S1 into

t1t2 6 R
n ([2/ε] + 1)n 6 (3R/ε)n

subsets. Let S0 consist of one element from each of the subsets. Thus,

(13.30) s0 := #S0 6 (3R/ε)n.

Further, for each v ∈ S1, there is v1 ∈ S0 with

L
(v)
i = L

(v1)
i ,

∣∣∣∣∣civγv − ci,v1
γv1

∣∣∣∣∣ 6 ε for i = 1, . . . , n.

This implies that for every v ∈ S1, there is v1 ∈ S0 such that

L̂
(v)
l = L̂

(v1)
l for l = 1, . . . , N,(13.31) ∣∣∣∣∣ ĉlvnγv − ĉl,v1
nγv1

∣∣∣∣∣ 6 ε for l = 1, . . . , N.(13.32)

We apply Lemma 13.5 with the subset S0 constructed above. Condi-

tion (13.13) of this lemma is satisfied in view of our assumption (13.22) on m

and in view of (13.30). Let P be the nonzero polynomial from Lemma 13.5.

We show that this polynomial has all the properties listed in our proposition.

To prove (i), we first show that for every j ∈ U(r), v ∈MK \ {v0} with

(13.33)
m∑
h=1

1

rh

(
N∑
l=1

ĉlvjhl

)
> 2mnεγv,
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we have

(13.34) d
(v)
j (aP ) = 0.

For v ∈ MK \ (S1 ∪ {v0}), we have civ = 0 for i = 1, . . . , n, whence γv = 0

and ĉlv = 0 for l = 1, . . . , N , so there are no j with (13.33). For v ∈ S0, we

have (13.34) for all j with (13.14), and so certainly for all j with the weaker

condition (13.33). Finally, let v ∈ S1 \ S0 and take j ∈ U(r) with (13.33).

Take v1 ∈ S0 with (13.31), (13.32). Condition (13.31) implies that d
(v)
j (aP ) =

d
(v1)
j (aP ); hence, it suffices to show that d

(v1)
j (aP ) = 0. Now condition (13.33)

together with (13.32) implies

m∑
h=1

1

rh

(
N∑
l=1

ĉl,v1
nγv1

· jhl

)
>

m∑
h=1

1

rh

(
N∑
l=1

ĉlv
nγv
· jhl

)
− ε

m∑
h=1

N∑
l=1

jhl
rh

> mε.

Hence j, v1 satisfy (13.14), and so d
(v1)
j (aP ) = 0 by Lemma 13.5. This shows

(13.34) for v ∈MK \ {v0}.
We now prove (i). Let i ∈ ZmN>0 be a tuple with (13.23), and let v ∈

MK \ {v0}. Using expression (13.12) for P , we infer that Pi is a K-linear

combination of polynomials

∑
j∈U(r)

d
(v)
j (aP )

Ç
j

k

å M∏
h=1

N∏
l=1

L̂l(Xh)jhl−khl

taken over tuples k ∈ ZmN>0 with

(13.35)
m∑
h=1

1

rh

Ñ
N∑
j=1

khl

é
6 2mε.

Hence, if j ∈ U(r, i), then d
(v)
i,j (aP ) is a K-linear combination of terms d

(v)
j+k(aP ),

over tuples k with (13.35). Now take j ∈ U(r, i) and suppose that j satisfies

(13.24). Then for all k with (13.35), we have j + k ∈ U(r) and moreover, by

(11.19),

m∑
h=1

1

rh

(
N∑
l=1

ĉlv(jhl + khl)

)
> 4mnεγv − 2mnεγv = 2mnεγv;

i.e., j+k satisfies (13.33). So for all k with (13.35), we have that j+k satisfies

(13.34); i.e., d
(v)
j+k(aP ) = 0. This implies that d

(v)
i,j (aP ) = 0. This proves (i).

The proof of (ii) follows the same lines, using part (ii) of Lemma 13.5

instead of (13.34). (iii) is merely a copy of part (iii) of Lemma 13.5.

It remains to prove (iv). Let i satisfy (13.23), and let j ∈ U(r, i). Then by

Lemma 13.4,

‖d(v)
i,j ‖v,1 6

Ä
(6N2)s(v)Cv

är1+···+rm
,
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and so

‖d(v)
i,j (aP )‖v 6 ‖d(v)

i,j ‖v,1 · ‖aP ‖v 6 ‖aP ‖v ·
Ä

(6N2)s(v)Cv
är1+···+rm

for v ∈MK , where by Lemma 11.5, we have∏
v∈MK

Cv 6 H
Rn

L .

By taking the product over v ∈MK , using (iii), N 6 2n−1, we obtain∏
v∈MK

max
j∈U(r,i)

‖d(v)
i,j (aP )‖v 6CK

Ä
23nHRn

L · 6N2HRn

L
är1+···+rm

6CK
Ä
26nH2Rn

L
är1+···+rm

.

This proves (iv). �

14. Proof of Theorem 8.1

We keep the notation and definitions from the previous sections. Assume

that Theorem 8.1 is false. Define the following parameters:

(14.1) ε :=
δ

11n22n−1
, m :=

î
2nε−2 log(4R/ε)

ó
+ 1.

Notice that

(14.2) nm 6 n+ 2 · 112n622n−2δ−2 log(4 · 11n22n−1R/δ) 6 m2.

Hence by Lemma 9.4, there exist k ∈ {1, . . . , n− 1} and reals Q1, . . . , Qm such

that

Q1 > C2,(14.3)

Qh+1 > Qω2
h (h = 1, . . . ,m− 1),(14.4)

λ1(Qh) 6 Q−δh , λk(Qh) 6 Q−δ/(n−1)
h λk+1(Qh) (h = 1, . . . ,m).(14.5)

Put

N :=

Ç
n

k

å
.

For h = 1, . . . ,m, let ĥh1 := ĥ1(Qh), . . . , ĥh,N−1 := ĥN−1(Qh) be linearly in-

dependent vectors from QN
satisfying (11.17) with Q = Qh. By the remark

following (11.17), we may take for the field E any finite extension of K con-

taining the coordinates of ĥhj for h = 1, . . . ,m, j = 1, . . . , N − 1. Thus, for

h = 1, . . . ,m, l = 1, . . . , N , j = 1, . . . , N − 1, we have

(14.6)

‖L̂
(w)
l (ĥhj)‖w 6 Qĉlwh (w ∈ME , w - v0),

‖L̂(w)
l (ĥhj)‖w 6 Q

ĉlw(Qh)
h (w ∈ME , w | v0).
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For h=1, . . . ,m, denote by “Th the Q-vector space generated by ĥh1, . . . ,ĥh,N−1,

and define the grid

(14.7) Γh :=


N∑
j=1

xjĥhj : xj ∈ Z, |xj | 6 N/ε for j = 1, . . . , N − 1

 .
Now choose a positive integer r1 such that

r1 >
ε−1 logQm

logQ1

and then integers r2, . . . , rm such that

r1 logQ1

logQh
6 rh < 1 +

r1 logQ1

logQh
for h = 2, . . . ,m.

Thus, r1, . . . , rm are all positive integers with

(14.8) Qr11 6 Q
rh
h < Q

r1(1+ε)
1 for h = 2, . . . ,m.

Further, by choosing r1 sufficiently large as we may, we can guarantee that

(14.9) 1.1r1 > CK .

With our choice of m in (14.1), there exists a nonzero polynomial P with

the properties listed in Proposition 13.6. We apply our nonvanishing result

Proposition 12.1 to P . We verify the conditions of that proposition. Condi-

tion (12.3) is satisfied since by (14.8), (14.4), (8.10), (14.2),

rh+1

rh
> (1 + ε)−1 logQh+1

logQh
> (1 + ε)−1m

5/2
2 > 2m2/ε.

(12.4) follows by combining the lower bound for H2(“Th) from Lemma 11.6 with

the lower bound Q1 > C2 from (14.3) and the upper bound for H2(P ) from

(13.28). More precisely, we have for h = 1, . . . ,m,

H2(“Th)rh >Qrhδ/3R
n

h > Qr1δ/3R
n

1 by Lemma 11.6, (14.8)

>Cr1δ/3R
n

2 = (2HL)r1·m
2m2
2 δ/3Rn by (14.3), (8.10)

>
Ä
(2HL)(nm)2nmδ/3mRn

är1+···+rm
by (14.2)

>
Ä
e · 24nHRn

L
ä(N−1)(3m2/ε)m(r1+···+rm)

by (14.1)

>
Ä
er1+···+rmH2(P )

ä(N−1)(3m2/ε)m

by (13.28), (14.9),

which is condition (12.4).

Now we conclude from Proposition 12.1 that there exist a tuple i ∈ ZmN>0

such that
m∑
h=1

1

rh

(
N∑
l=1

ihl

)
6 2mε
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and nonzero points xh ∈ Γh (h = 1, . . . ,m) such that

Pi(x1, . . . ,xm) 6= 0.

We finish by showing that
∏
w∈ME

‖Pi(x1, . . . ,xm)‖w < 1. Then by the

Product Formula, Pi(x1, . . . ,xm) = 0, which is against what we just proved.

Thus, our assumption that Theorem 8.1 is false leads to a contradiction.

We express Pi as in (13.21) for v ∈ MK . In the usual manner, where in

all cases w ∈ME and v is the place of K below w, we define

L̂
(w)
l := L̂

(v)
l (l = 1, . . . , N),

ĉlw := d(w|v)ĉlv (w - v0, l = 1, . . . , N),

ĉlw(Qh) := d(w|v0)ĉl,v0(Qh) (w|v0, l = 1, . . . , N),

d
(w)
i,j (aP ) := d

(v)
i,j (aP ) (j ∈ U(r, i)),

and also

γw := max
16i6n

ciw.

Then γw = d(w|v) max16i6n civ if v is the place of K below w, and moreover,

by (8.4) and
∑
w|v d(w|v) = 1 for v ∈MK ,

(14.10)
∑

w∈ME

γw 6 1.

Now (13.21), (13.24), (13.26) imply that for w ∈ME , we have

(14.11) Pi =
∑
j∈Uw

d
(w)
i,j (aP )

m∏
h=1

N∏
l=1

L̂
(w)
l (Xh)jhl ,

where for w ∈ME with w - v0, Uw is the set of j ∈ U(r, i) with

(14.12)
m∑
h=1

1

rh

(
N∑
l=1

ĉlwjhl

)
6 4mnεγw

and for w ∈ME with w|v0, Uw is the set of j ∈ U(r, i) with

(14.13)
m∑
h=1

1

rh

(
N∑
l=1

ĉl,w(Qh)jhl

)
6 d(w|v0)

Å
−mδ
nN

+ 4mnε

ã
.

Further, by (13.29), (14.9), we have∏
w∈ME

Aw 6
Ä
27nH2Rn

L
är1+···+rm

,(14.14)

with Aw := max
j∈Uw

‖dw)
i,j (aP )‖w for w ∈ME .
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Finally, we observe that by (14.6), we have for the points xh ∈ Γh (h =

1, . . . , N) and for l = 1, . . . , N ,

(14.15)

‖L̂
(w)
l (xh)‖w 6 N s(w)Qĉlwh (w ∈ME , w - v0),

‖L̂(w)
l (xh)‖w 6 Qĉlw(Qh)

h (w ∈ME , w | v0),

where we have used that w with w|v0 is non-archimedean.

First, take w ∈ ME with w - v0. Then, in view of (14.11), (13.5), (14.8),

(11.19), (14.12), we have

‖Pi(x1, . . . ,xm)‖w 6 V s(w)Aw ·max
j∈Uw

m∏
h=1

N∏
l=1

‖L̂(w)
l (xh)jhl‖w

6 Aw(eN2)s(w)(r1+···+rm)
m∏
h=1

Q
∑N

l=1
ĉlwjlw

h

6 Aw(eN2)s(w)(r1+···+rm)(Qr11 )αw

with

αw 6
m∑
h=1

1

rh

(
N∑
l=1

ĉlwjlw

)
+ εmmax

l
|ĉlw|

6 5γwmnε.

So altogether, we have for w ∈ME with w - v0,

(14.16) ‖Pi(x1, . . . ,xm)‖w 6 Aw(eN2)s(w)(r1+···+rm)(Qmr11 )5γwnε.

In a similar fashion, we find for w ∈ ME with w|v0, using (14.11), (14.8),

(11.22), (14.13), noting that now we do not have a factor (eN2)s(w)(r1+···+rm)

since w is non-archimedean,

‖Pi(x1, . . . ,xm)‖w 6 Aw(Qr11 )αw

with

αw 6
m∑
h=1

1

rh

(
N∑
l=1

ĉlw(Qh)jlw

)
+ εmmax

h,l
|ĉlw(Qh)|

6 d(w|v0)

Å
−mδ
nN

+ 5mnε

ã
.

This gives for w ∈ME with w|v0,

(14.17) ‖Pi(x1, . . . ,xm)‖w 6 Aw
Ä
Qmr11

äd(w|v0)(−(δ/nN)+5nε)
.

Now taking the product over w ∈ ME , combining (14.16), (14.17), (14.14),

(14.10),
∑
w|v0 d(w|v0) = 1, we obtain∏

w∈ME

‖Pi(x1, . . . ,xm)‖w 6 (eN2 · 27nH2Rn

L )r1+···+rm
Ä
Qmr11

ä10nε−δ/nN
.
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By our choice of ε in (14.1), and the inequalities n > 2, N 6 2n−1, the exponent

on Qmr11 is 6 −δ/(11n · 2n−1). Together with (14.3) this implies

∏
w∈ME

‖Pi(x1, . . . ,xm)‖w 6
(
29nH2Rn

L ·Q−δ/11n·2n−1

1

)mr1
< 1,

as required. This completes the proof of Theorem 8.1.

15. Construction of a filtration

We construct a vector space filtration, which is an adaptation of the

Harder-Narasimhan filtration constructed in [14].

Let K ⊂ Q be an algebraic number field and n an integer that we now

assume > 1 instead of > 2. Further, let L = (L
(v)
i : v ∈ MK , i = 1, . . . , n) be

a tuple of linear forms and c = (civ : v ∈ MK , i = 1, . . . , n) a tuple of reals,

satisfying (2.4)–(2.7).

Let wv = wL,c,v (v ∈MK) be the local weight functions on the collection

of linear subspaces of Qn
, defined by (2.19). Then the global weight function

is given by w = wL,c =
∑
v∈MK

wv.

We give some convenient expressions for the local weights wv. For v ∈MK ,

we reorder the indices 1, . . . , n in such a way that

(15.1) c1v 6 · · · 6 cnv for v ∈MK .

Let U be a k-dimensional linear subspace of Qn
. Let v ∈MK . Define

(15.2)

Iv(U) := ∅ if k = 0,

Iv(U) := {i1(v), . . . , ik(v)} if k > 0,

where i1(v) is the smallest index i ∈ {1, . . . , n} such that L
(v)
i |U 6= 0, and

for l = 2, . . . , k, il(v) is the smallest index i > il−1(v) in {1, . . . , n} such that

L
(v)
i1(v)|U , . . . , L

(v)
il−1(v)|U , L

(v)
i |U are linearly independent. Then

(15.3) wv(U) =
∑

i∈Iv(U)

civ.

It is not difficult to show that Iv(U1) ⊆ Iv(U2) if U1 is a linear subspace of U2.

Define the linear subspaces of Qn
,

U0v := Qn
,

Uiv := {x ∈ Qn
: L

(v)
1 (x) = · · · = L

(v)
i (x) = 0} (v ∈MK , i = 1, . . . , n).
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Then

wv(U) =
n∑
i=1

civ
Ä

dim(U ∩ Ui−1,v)− dim(U ∩ Uiv)
ä

(15.4)

= c1v dimU +
n∑
i=1

(ci+1,v − civ) dim(U ∩ Uiv).

Lemma 15.1. For any two linear subspaces U1, U2 of Qn
, we have

w(U1 ∩ U2) + w(U1 + U2) > w(U1) + w(U2).

Proof. Let U1, U2 be two linear subspaces of Qn
. It clearly suffices to show

that for any v ∈MK , we have

(15.5) wv(U1 ∩ U2) + wv(U1 + U2) > wv(U1) + wv(U2).

But this follows easily by combining (15.4) with ci+1,v − civ > 0 for i =

1, . . . , n− 1 and

dim(U1 ∩ U2) + dim(U1 + U2) = dimU1 + dimU2,

U ∩ (U1 + U2) ⊇ (U ∩ U1) + (U ∩ U2)

for any three linear subspaces U,U1, U2 of Qn
. �

For any two linear subspaces U1, U2 of V with dimU1 < dimU2, we define

(15.6)


d(U2, U1) := dimU2 − dimU1,

w(U2, U1) = wL,c(U2, U1) := wL,c(U2)− wL,c(U1),

µ(U2, U1) = µL,c(U2, U1) :=
w(U2, U1)

d(U2, U1)
.

We prove the following lemma.

Lemma 15.2. Let V be a linear subspace of Qn
, defined over K .

(i) There exists a unique proper linear subspace T of V such that

µ(V, T ) 6 µ(V,U) for every proper linear subspace U of V ,

subject to this constraint, T has minimal dimension.

This space T is defined over K .

(ii) Let T be as in (i) and let U be any other proper linear subspace of V .

Then µ(V,U ∩ T ) 6 µ(V,U).

Proof. Obviously, there exists a proper linear subspace T of V with (i)

since µ(·, ·) assumes only finitely many values. We prove first that T satisfies

(ii) and then that T is uniquely determined and defined over K. Put µ :=
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µ(V, T ). Then by Lemma 15.1 and since µ(V,W ) > µ for any proper linear

subspace W of V ,

w(V,U ∩ T )6w(V,U) + w(V, T )− w(V, T + U)

6w(V,U) + µd(V, T )− µd(V, T + U)

= µ(V,U)d(V,U) + µd(T + U, T )

6 µ(V,U)(d(V,U) + d(T + U, T ))

= µ(V,U)d(V,U ∩ T ).

This clearly proves (ii).

Now suppose that there exists another subspace T ′ with (i), i.e., µ(V, T ′) =

µ and dimT ′ = dimT . By (ii) we have µ(V, T ∩ T ′) 6 µ(V, T ′) = µ. By the

definition of µ and the minimality of dimT , we must have T ∩ T ′ = T = T ′.

It remains to prove that T is defined over K. Let σ ∈ GK . Since V

is defined over K and all linear forms L
(v)
i have their coefficients in K, we

have µ(V, σ(T )) = µ(V, T ) = µ, while dimσ(T ) = dimT . So by what we just

proved, σ(T ) = T . This holds for arbitrary σ; hence, T is defined over K. �

Remark. In the situation of Section 2, we have V = Qn
, w(Qn

) = 0, and

thus, the subspace T = T (L, c) defined by (2.21) is precisely the subspace

from (i). In a special case we can give more precise information about the

subspace T .

Lemma 15.3. Let V = Qn
, and let T be the subspace from Lemma 15.2(i).

Suppose that

(15.7)
⋃

v∈MK

{L(v)
1 , . . . , L(v)

n } ⊆ {X1, . . . , Xn, X1 + · · ·+Xn}.

Then there are nonempty, pairwise disjoint subsets I1, . . . , Ip of {1, . . . , n} such

that

(15.8) T = {x ∈ Qn
:
∑
j∈Ii

xj = 0 for j = 1, . . . , p}.

Proof. Let k := dimT , p := n− k. Define the Q-linear subspace of Qn+1
:

H :=
{
u = (u0, . . . , un) ∈ Qn+1

:
n∑
j=1

ujXj − u0

n∑
j=1

Xj ∈ T⊥
}
.

Notice that dimH = p + 1 and (1, . . . , 1) ∈ H. We show that H is closed

under coordinatewise multiplication; i.e., H is a sub-Q-algebra of Qn+1
. This

being done, it is not difficult to show that there are pairwise disjoint subsets

I0, . . . , Ip of {0, . . . , n} such that H is the set of u ∈ Qn+1
with ui = uj for each

pair i, j for which there is l ∈ {0, . . . , p} with i, j ∈ Il. This easily translates

into (15.8).
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Fix a = (a0, . . . , an) ∈ H. Choose c ∈ Q such that bi := ai + c 6= 0 for

i = 0, . . . , n. Then b := (b0, . . . , bn) ∈ H. Define the linear transformation

ϕ : Qn → Qn
: (x1, . . . , xn) 7→ (b1x1, . . . , bnxn).

In general,
∑n
j=1 ξjXj ∈ ϕ(T )⊥ if and only if

∑n
j=1 bjξjXi ∈ T⊥. Using this

and b ∈ H, it follows that for (u0, . . . , un) ∈ Qn+1
, we have

n∑
j=1

ujXj − u0

n∑
j=1

Xj ∈ ϕ(T )⊥(15.9)

⇐⇒
n∑
j=1

bjujXj − u0

n∑
j=1

bjXj ∈ T⊥

⇐⇒
n∑
j=1

bjujXj − b0u0

n∑
j=1

Xj ∈ T⊥.

This implies for any v ∈ MK and any subset {i1, . . . , ik} of {1, . . . , n} that

L
(v)
i1
|ϕ(T ), . . . , L

(v)
ik
|ϕ(T ) are linearly independent if and only if L

(v)
i1
|T , . . . , L(v)

ik
|T

are linearly independent. Consequently, w(ϕ(T ))=w(T ) and thus, µ(Qn
, ϕ(T ))

= µ(Qn
, T ). Now Lemma 15.2(i) implies that ϕ(T ) = T .

Combined with (15.9), this implies that if u ∈ H, then b · u ∈ H. But

then, a ·u = b ·u− cu ∈ H. This shows that H is closed under coordinatewise

multiplication and proves our lemma. �

For every linear subspace U of Qn
, we define the point P (U) = PL,c(U) :=

(dimU,w(U)) ∈ R2. In particular, P ({0}) = (0, 0). Notice that µ(U2, U1)

defined by (15.6) is precisely the slope of the line segment from P (U1) to

P (U2).

Let again V be a linear subspace of Qn
, defined over K. Denote by

C(V,L, c) the upper convex hull of the points P (U) for all linear subspaces

U of V and by B(V,L, c) the upper boundary of C(V,L, c). Thus, B(V,L, c)

is the graph of a piecewise linear, convex function from [0,dimV ] to R, and

C(V,L, c) is the set of points on and below B(V,L, c).

As long as it is clear which are the underlying tuples L, c, we suppress

the dependence on these tuples in our notation; i.e., we write w, µ, P for

wL,c, µL,c, PL,c.

Lemma 15.4. There exists a unique filtration

(15.10) {0}⊂
6=
T1⊂6= · · · ⊂6= Tr−1⊂6= Tr = V

such that

P ({0}), P (T1), . . . , P (Tr−1), P (V )

are precisely the vertices of B(V,L, c). The spaces T1, . . . , Tr−1 are defined

over K .
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Proof. (See the above figure.) The proof is by induction on m := dimV .

The case m = 1 is trivial. Let m > 2. There is only one candidate for the

subspace in the filtration preceding V ; it is the subspace T from Lemma 15.2(i).

This space T is defined over K. By the induction hypothesis applied to T , there

exists a unique filtration

{0}⊂
6=
T1⊂6= · · · ⊂6= Tr−1 = T

such that P ({0}), P (T1), . . . , P (Tr−1) are precisely the vertices of B(T,L, c).

Moreover, T1, . . . , Tr−2 are defined over K.

We have to prove that together with P (V ) these points are the vertices

of B(V,L, c). We first note that since Tr−2⊂6= Tr−1, we have µ(V, Tr−2) >

µ(V, Tr−1); hence,

µ(Tr−1, Tr−2) =
d(V, Tr−2)µ(V, Tr−2)− d(V, Tr−1)µ(V, Tr−1)

d(Tr−1, Tr−2)
> µ(V, Tr−1).

Therefore, P ({0}), P (T1), . . . , P (V ) are the vertices of the graph of a piecewise

linear convex function on [0,m]. Let C be the set of points on and below this

graph. To prove that this graph is B(V,L, c), we have to show that C contains

all points P (U) with U a linear subspace of V .

If U ⊆ Tr−1, we have P (U) ∈ C(Tr−1,L, c) ⊂ C. Suppose that U 6⊆
Tr−1. Then by Lemma 15.2(ii), we have µ(V,U ∩ Tr−1) 6 µ(V,U). Since

P (U ∩ Tr−1) ∈ C, dimU > dimU ∩ Tr−1 and C is upper convex, this implies

that P (U) ∈ C. This completes our proof. �

The filtration constructed above is called the filtration of V with respect

to (L, c).

Remark. The Harder-Narasimhan filtration introduced by Faltings and

Wüstholz in [14] is given by {0}⊂
6=
T ′r−1

⊂
6=
· · · ⊂

6=
Hom(V,Q), where for a linear
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subspace T of V , we define T ′ as the set of linear functions from V to Q that

vanish identically on T .

16. The successive infima of a twisted height

As before, K ⊂ Q is an algebraic number field, n an integer > 1, and L
a tuple of linear forms and c a tuple of reals satisfying (2.4)–(2.7). We denote

as usual by λ1(Q), . . . , λn(Q) the successive infima of HL,c,Q. In this section,

we prove a limit result for these successive infima as Q→∞.

Define

(16.1) Ti(Q) :=
⋂

λ>λi(Q)

span {x ∈ Qn
: HL,c,Q(x) 6 λ} (i = 1, . . . , n).

Let

{0} =: T0⊂6= T1⊂6= · · · ⊂6= Tr−1⊂6= Tr := Qn

be the filtration of Qn
with respect to (L, c), as defined in Lemma 15.4, and

put dl := dimTl for l = 0, . . . , r. Given any two linear subspaces U, V of Qn

with dimU < dimV , we define again µ(V,U) = µL,c(V,U) := w(V )−w(U)
dimV−dimU .

Our general result on the successive infima of HL,c,Q is as follows.

Theorem 16.1. For every δ > 0, there exists Q0 such that for every

Q > Q0, the following holds :

Q−µ(Tl,Tl−1)−δ 6 λi(Q) 6 Q−µ(Tl,Tl−1)+δ(16.2)

for l = 1, . . . , r, i = dl−1 + 1, . . . , dl,

Tdl(Q) = Tl for l = 1, . . . , r.(16.3)

We start with some preparations and lemmas. Fix a linear subspace T

of Qn
of dimension k ∈ {1, . . . , n − 1}, which is defined over K. Choose an

injective linear map

ϕ′ : Qk
↪→ Qn

with ϕ′(Qn
) = T

and a surjective linear map

ϕ′′ : Qn
� Qn−k

with Ker(ϕ′′) = T,

both defined over K. Recall that for every linear form L ∈ K[X1, . . . , Xn]lin

vanishing identically on T , there is a unique linear form L′′∈K[X1, . . . , Xn−k]
lin

such that L = L′′ ◦ ϕ′′; we denote this L′′ by L ◦ ϕ′′−1.

We assume (15.1), which is no loss of generality. For v ∈MK , let the set

Iv(T ) be given by (15.2), and define a tuple L′ from K[X1, . . . , Xk]
lin and a

tuple of reals c′ by

(16.4)

L′ := (L
(v)
i ◦ ϕ′ : v ∈MK , i ∈ Iv(T )),

c′ := (civ : v ∈MK , i ∈ Iv(T )).
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Let v ∈ MK . Since L
(v)
j |T (j ∈ Iv(T )) form a basis of Hom(T,Q), and

since T is defined over K, there are unique αijv ∈ K such that L
(v)
i |T =∑

j∈Iv(T ) αijvL
(v)
i |T for i ∈ Iv(T )c := {1, . . . , n} \ Iv(T ). By our definition of

Iv(T ), we have αijv = 0 for i ∈ Iv(T )c, j ∈ Iv(T ), j > i. In other words, there

are unique linear forms

(16.5) L̃
(v)
i = L

(v)
i −

∑
j∈Iv(T )

j<i

αijvL
(v)
j (i ∈ Iv(T )c)

with αijv ∈ K that vanish identically on T . These linear forms are linearly

independent, so they may be viewed as a basis of Hom(Qn
/T,Q).

We now define a tuple L′′ in K[X1, . . . , Xn−k]
lin and a tuple of reals c′′ by

(16.6)

L′′ := (L̃
(v)
i ◦ ϕ′′

−1 : v ∈MK , i ∈ Iv(T )c),

c′′ := (civ : v ∈MK , i ∈ Iv(T )c).

Let U be a linear subspace of Qk
of dimension u, say. Then wL′,c′(U) =∑

v∈MK
wL′,c′,v(U) with, in analogy to (15.3),

(16.7) wL′,c′,v(U) =

0 if u = 0,

ci1(v),v + · · ·+ ciu(v),v if u > 0,

where i1(v) is the smallest index i ∈ Iv(T ) such that L
(v)
i ◦ ϕ′|U 6= 0 and

for l = 2, . . . , u, il(v) is the smallest index i > il−1(v) in Iv(T ) such that

L
(v)
i1(v) ◦ ϕ

′|U , . . . , L(v)
il−1(v) ◦ ϕ

′|U , L
(v)
i ◦ ϕ′|U are linearly independent.

Likewise, if U is an u-dimensional linear subspace of Qn−k
, then wL′′,c′′(U)

=
∑
v∈MK

wL′′,c′′,v(U), with

(16.8) wL′′,c′′,v(U) =

0 if u = 0,

ci1(v),v + · · ·+ ciu(v),v if u > 0,

where i1(v) is the smallest index i ∈ Iv(T )c such that L̃
(v)
i ◦ ϕ′′

−1|U 6= 0 and

for l = 2, . . . , u, il(v) is the smallest index i > il−1(v) in Iv(T )c such that

L̃
(v)
i1(v) ◦ ϕ

′′−1|U , . . . , L̃(v)
il−1(v) ◦ ϕ

′′−1|U , L̃
(v)
i ◦ ϕ′′

−1|U are linearly independent.

Lemma 16.2. (i) Let U be a linear subspace of Qk
. Then

wL′,c′(U) = wL,c(ϕ′(U)).

(ii) Let U be a linear subspace of Qn−k
. Then

wL′′,c′′(U) = wL,c(ϕ′′
−1

(U))− wL,c(T ).
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Proof. (i) For U = {0} the assertion is true. Suppose U has dimension

u>0. Let v ∈MK . The set {i1(v), . . . , iu(v)} from (16.7) is precisely Iv(ϕ
′(U))

since Iv(ϕ
′(U)) ⊆ Iv(T ). Therefore, wL′,c′,v(U) = wL,c,v(ϕ

′(U)) for v ∈ MK .

Now (i) follows by summing over v.

(ii) Suppose U has dimension u > 0. Let v ∈ MK . Put W := ϕ′′−1(U).

Recall that Iv(W ) = {j1(v), . . . , jm(v)}, where m := dimW , j1(v) is the small-

est index j ∈ {1, . . . , n} such that L
(v)
j |W 6= 0, etc. The indices j1(v), j2(v), . . .

do not change if we replace L
(v)
j by L̃

(v)
j for j ∈ Iv(T )c. This implies that

the set {i1(v), . . . , in−k(v)} from (16.8) is Iv(W ) \ Iv(T ), and so wL′′,c′′,v(U) =

wL,c,v(W )− wL,c,v(T ). By summing over v, we get (ii). �

The pair (L′, c′) gives rise to a class of twisted heights HL′,c′,Q : Qk → R>0

in the usual manner. That is, if x ∈ Ek for some finite extension E of K, then

(16.9) HL′,c′,Q(x) =
∏

w∈ME

max
i∈Iw(T )

‖L(w)
i ◦ ϕ′(x)‖wQ−ciw ,

where Iw(T ) := Iv(T ) if w lies above v ∈MK .

Likewise, we have twisted heights HL′′,c′′,Q : Qn−k → R>0, defined such

that if x ∈ En−k for some finite extension E of K, then

(16.10) HL′′,c′′,Q(x) =
∏

w∈ME

max
i∈Icw(T )

‖L̃(w)
i ◦ ϕ′′−1

(x)‖wQ−ciw ,

where L̃
(w)
i := L̃

(v)
i if w lies above v ∈MK .

In what follows, constants implied by �, � depend only on L, c and T .

Lemma 16.3. (i) For x ∈ Qk
, Q > 1, we have

HL′,c′,Q(x)�� HL,c,Q(ϕ′(x)).

(ii) For x ∈ Qn
, Q > 1, we have

HL′′,c′′,Q(ϕ′′(x))� HL,c,Q(x).

Proof. (i) The inequality HL′,c′,Q(x) 6 HL,c,Q(ϕ′(x)) for x∈Qk
, Q>1 is

trivial. We prove the reverse inequality. Since the linear forms L̃
(v)
i (i ∈ Iv(T )c)

defined in (16.5) vanish identically on T , there exist constants Cv>0 (v∈MK),

all but finitely many of which are 1, such that for x ∈ Kk, v ∈MK , i ∈ Iv(T )c,

‖L(v)
i (ϕ′(x))‖v 6 Cv max

j∈Iv(T )

j<i

‖L(v)
j (ϕ′(x))‖v.

Taking Q > 1 we obtain, in view of (15.1),

‖L(v)
i (ϕ′(x))‖vQ−civ 6 Cv max

j∈Iv(T )

j<i

‖L(v)
j (ϕ′(x))‖vQ−cjv .
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This shows that for x ∈ Kk, Q > 1, v ∈MK , we have

max
16i6n

‖L(v)
i (ϕ′(x))‖vQ−civ 6 Cv max

j∈Iv(T )
‖L(v)

j (ϕ′(x))‖vQ−cjv .

If instead we have x ∈ Ek for some finite extension E of K, we have the same

inequalities for w ∈ ME , but with constants Cw := C
d(w|v)
v , where v ∈ MK is

the place below w. By taking the product over w ∈ME , we get (i).

The proof of (ii) is entirely similar. �

Lemma 16.4. Suppose that

(16.11) µ(Qn
, U) > µ(Qn

, {0}) for every proper linear subspace U of Qn
.

Then for every δ > 0, there is Q0 such that for every Q > Q0,

(16.12) Q−µ(Qn,{0})−δ 6 λ1(Q) 6 · · · 6 λn(Q) 6 Q−µ(Qn,{0})+δ.

Proof. We first assume that n = 1. In this case, L
(v)
1 = αvX with αv ∈ K∗

for v ∈ MK , and µ(Q, {0}) =
∑
v∈MK

c1v. By the product formula, we have

for x = x ∈ K∗,

HL,c,Q(x) =
∏

v∈MK

‖αvx‖vQ−c1v = CQ−µ(Q,{0})

for some nonzero constant C. This is true also for x 6∈ K. So for n = 1, our

lemma is trivially true.

Next, we assume n > 2. We first make some reductions and then ap-

ply Theorem 8.1. By Lemma 7.2 there is no loss of generality if in the

proof of our lemma, we replace civ by c′iv := civ − 1
n

∑n
j=1 cjv for v ∈ MK ,

j = 1, . . . , n. This shows that there is no loss of generality to assume that∑n
i=1 civ = 0 for v ∈ MK , i.e., condition (8.3). This being the case, suppose

that
∑
v∈MK

max16i6n civ 6 θ with θ > 0. Then we can make a reduction to

(8.4) by replacing Q by Qθ and civ by civ/θ for v ∈ MK , i = 1, . . . , n. So we

may also assume that (8.4) is satisfied. Finally, by Lemma 7.3 and the subse-

quent remark, there is no loss of generality to assume (8.8). Under assumption

(8.3), condition (16.11) translates into (8.9). So we may assume without loss

of generality that all conditions of Theorem 8.1 are satisfied. Notice that with

these assumptions,

µ(Qn
, {0}) =

1

n

∑
v∈MK

n∑
i=1

civ = 0.

Let 0 < δ 6 1. Theorem 8.1 implies that the set of Q with λ1(Q) 6 Q−δ/2n

is bounded. Together with (9.2), this implies that for every sufficiently large

Q, we have λ1(Q) > Q−δ/2n, λn(Q) 6 Qδ. �
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Proof of Theorem 16.1. We proceed by induction on r. For r = 1, we can

apply Lemma 16.4. Assume r > 2. We fix δ > 0 and then δ′ > 0, which is a

sufficiently small function of δ. We write w for wL,c and µ for µL,c.

By Lemma 16.2(ii) with T = Tr−1, k = dr−1 = dimT , we have for any

two linear subspaces U1⊂6= U2 of Qn−dr−1 that

µL′′,c′′(U2, U1) = µ(ϕ′′
−1

(U2), ϕ′′
−1

(U1)).

Thus, the property of Tr−1 that µ(Qn
, Tr−1) 6 µ(Qn

, U) for any proper linear

subspace U of Qn
translates into

µL′′,c′′(Q
n−dr−1 , {0}) 6 µL′′,c′′(Q

n−dr−1 , U)

for any proper linear subspace U of Qn−dr−1 . So by Lemma 16.4, we have for

every sufficiently large Q,

HL′′,c′′,Q(y) > Q−µ(Qn,Tr−1)−δ′ for y ∈ Qn−dr−1 \ {0}.

Together with Lemma 16.3(ii), this implies for every sufficiently large Q,

(16.13) HL,c,Q(x) > Q−µ(Qn,Tr−1)−2δ′ for x ∈ Qn \ Tr−1.

Consequently, for every sufficiently large Q, we have

(16.14) Q−µ(Qn,Tr−1)−2δ′ 6 λdr−1+1(Q) 6 · · · 6 λn(Q).

For i = 1, . . . , dr−1, denote by λ′i(Q) the i-th successive infimum of HL,c,Q
restricted to Tr−1; i.e., the infimum of all λ > 0 such that the set of x ∈
Tr−1 with HL,c,Q(x) 6 λ contains at least i linearly independent points. By

Lemma 16.3(i) with T = Tr−1, k = dr−1 this is, apart from bounded mul-

tiplicative factors independent of Q, equal to the i-th successive infimum of

HL′,c′,Q. Further, by Lemma 16.2(i) with T = Tr−1, k = dr−1, for any two

subspaces U1⊂6= U2 of Qdr−1 , we have wL′,c′(U2, U1) = w(ϕ′(U2), ϕ′(U2)). By

applying the induction hypothesis to (L′, c′) and then carrying it over to Tr−1

by means of ϕ′, we infer that for every sufficiently large Q, we have

(16.15) Q−µ(Tl,Tl−1)−δ′ 6 λ′i(Q) 6 Q−µ(Tl,Tl−1)+δ′

for l = 1, . . . , r − 1, i = dl−1 + 1, . . . , dl and moreover,

(16.16)
⋂

λ>λ′
dl

(Q)

span {x ∈ Tr−1 : HL,c,Q(x) 6 λ} = Tl

for l = 1, . . . , r− 1. Clearly, we have λi(Q) 6 λ′i(Q) for i = 1, . . . , dr−1, and so

λdr−1(Q) 6 Q−µ(Tr−1,Tr−2)+δ′

for Q sufficiently large. Assuming δ′ is sufficiently small, this is smaller than

the lower bound Q−µ(Qn,Tr−1)−2δ′ in (16.13). Hence for sufficiently large Q and
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sufficiently small ε, all vectors x ∈ Qn
with HL,c,Q(x) 6 λdr−1(Q) + ε lie in

Tr−1. That is,

Tdr−1(Q) = Tr−1, λi(Q) = λ′i(Q) for i = 1, . . . , dr−1.

Together with (16.16), this implies (16.3). Further, (16.15) becomes

(16.17) Q−µ(Tl,Tl−1)−δ′ 6 λi(Q) 6 Q−µ(Tl,Tl−1)+δ′

for l = 1, . . . , r−1, i = dl−1+1, . . . , dl. Using subsequently Proposition 9.2, the

lower bounds in (16.17), (16.14), and that the quantity α =
∑
v∈MK

∑n
i=1 civ

from Proposition 9.2 equals

w(Qn
, {0}) =

r∑
l=1

w(Tl, Tl−1) =
r∑
l=1

dlµ(Tl, Tl−1),

and taking δ′ sufficiently small, we infer that for every sufficiently large Q,

λn(Q)6 2n(n−1)/2∆LQ
−α
Ä
λ1(Q) · · ·λn−1(Q)

ä−1

6Q−α+
∑r

l=1
dlµ(Tl,Tl−1)−µ(Qn,Tr−1)+2nδ′ 6 Q−µ(Qn,Tr−1)+δ.

As a consequence, (16.2) holds as well. This completes our proof. �

17. A height estimate for the filtration subspaces

As before, K is a number field, n an integer > 2, and (L, c) a pair with

(2.4)–(2.7). We derive an upper bound for the heights of the spaces occurring

in the filtration of (L, c) in terms of the heights of the linear forms from L.

We start with some auxiliary results.

Let p be an integer with 1 < p < n. Put N :=
(n
p

)
. Similarly as in

Section 6, let C(n, p) = (I1, . . . , IN ) be the lexicographically ordered sequence

of p-element subsets of {1, . . . , n}. For j = 1, . . . , N , v ∈MK , define

(17.1) L̂
(v)
j := L

(v)
i1
∧ · · · ∧ L(v)

ip
, ĉjv := ci1,v + · · ·+ cip,v,

where Ij = {i1 < · · · < ip} is the j-th set from C(n, p), and put

(17.2)

L̂ := (L̂
(v)
j : v ∈MK , j = 1, . . . , N),

ĉ := (ĉjv : v ∈MK , j = 1, . . . , N).

Then HL̂,̂c,Q : QN → R>0 is defined in a similar manner as HL,c,Q; i.e., if

x̂ ∈ EN for some finite extension E of K, then

HL̂,̂c,Q(x̂) :=
∏

w∈ME

max
16j6N

‖L̂(w)
j (x̂)‖wQ−ĉjw ,

where L̂
(w)
j := L̂

(v)
j , ĉjw := d(w|v)ĉjv if w lies above v ∈MK .
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Lemma 17.1. Let x1, . . . ,xp ∈ Qn
, Q > 1. Then

HL̂,̂c,Q(x1 ∧ · · · ∧ xp) 6 p
p/2HL,c,Q(x1) · · ·HL,c,Q(xp).

Proof. Put x̂ := x1 ∧ · · · ∧ xp. Let E be a finite extension of K such that

x1, . . . ,xp ∈ En. Let Ij = {i1 < · · · < ip} be one of the p-element subsets from

I1, . . . , IN , and let w ∈ ME . Then by an argument completely similar to the

proofs of (4.5), (4.6), one shows

‖L̂(w)
j (x̂)‖wQ−ĉjw = ‖ det

Ä
L

(w)
ik

(xl)
ä
k,l=1,...,p

‖wQ−ĉjw

6 pps(w)/2
p∏
l=1

max
16k6p

‖L(w)
ik

(xl)‖wQ−cik,w

6 pps(w)/2
p∏
l=1

max
16i6n

‖L(w)
i (xl)‖wQ−ciw .

By taking the maximum over j = 1, . . . , N and then the product over w ∈ME ,

our lemma follows. �

We keep the notation from above. For Q > 1, let λ1(Q), . . . , λn(Q) denote

the successive infima of HL,c,Q. Further, let ν1(Q), . . . , νN (Q) be the products

λi1(Q) · · ·λip(Q) (1 6 i1 < · · · < ip 6 n), ordered such that

ν1(Q) 6 · · · 6 νN (Q),

and let λ̂1(Q), . . . , λ̂N (Q) denote the successive infima of HL̂,̂c,Q.

Lemma 17.2. For Q > 1, j = 1, . . . , N , we have

N−npNνj(Q) 6 λ̂j(Q) 6 pp/2νj(Q).

Proof. Fix Q > 1, and write λi, λ̂j , νj for λi(Q), λ̂j(Q), νj(Q). Let ε > 0.

Choose Q-linearly independent vectors g1, . . . ,gn ∈ Qn
such that HL,c,Q(gi) 6

λi(1 + ε) for i = 1, . . . , n. Then the vectors gi1 ∧ · · · ∧ gip (1 6 i1 < · · · < ip 6
n) are Q-linearly independent. Let j ∈ {1, . . . , N}, and let i1, . . . , ip be the

indices from {1, . . . , n} such that i1 < · · · < ip and νj = λi1 · · ·λip . Then by

Lemma 17.1,

(17.3) HL̂,̂c,Q(gi1 ∧ · · · ∧ gip) 6 p
p/2(1 + ε)pνj .

So λ̂j 6 pp/2(1 + ε)pνj . This holds for every ε > 0; hence,

(17.4)
λ̂j
νj
6 pp/2 for j = 1, . . . , N.

Put

α̂ :=
∑
v∈MK

N∑
j=1

ĉjv.
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Notice that α̂ = N ′α, where α :=
∑
v∈MK

∑n
j=1 civ, N

′ :=
(n−1
p−1

)
. Also, by

(6.6), ∆L̂ = ∆N ′
L . These facts together with Proposition 9.2 imply

ν1 · · · νN 6 2n(n−1)N ′/2∆L̂Q
−α̂.

On the other hand, Proposition 9.2 applied to L̂, ĉ gives

λ̂1 · · · λ̂N > N−N/2∆L̂Q
−α̂,

and so
N∏
j=1

λ̂j
νj
> N−N/22−n(n−1)N ′/2.

Now our lemma follows by combining this with (17.4). �

Let Ti(Q) (i = 1, . . . , n) be the spaces defined by (16.1). Further, define

the linear subspaces of QN
,“Tj(Q) :=

⋂
λ>λ̂j(Q)

span {x̂ ∈ QN
: HL̂,̂c,Q(x̂) 6 λ} (j = 1, . . . , N).

Lemma 17.3. Put k := n− p. Let Q > 1, and suppose that

(17.5) λk+1(Q) > 22n32nλk(Q).

Then

λ̂N−1(Q)

λ̂N (Q)
6 2n

32n λk(Q)

λk+1(Q)
< 2−n

32n ,(17.6)

H2(“TN−1(Q)) = H2(Tk(Q)).(17.7)

Proof. Write again λi, λ̂j , νj for λi(Q), λ̂j(Q), νj(Q). Since

νN−1 = λkλk+2 · · ·λN , νN = λk+1 · · ·λN ,

we have νN−1/νN = λk/λk+1. Together with Lemma 17.2, N =
(n
p

)
6 2n and

assumption (17.5), this implies (17.6).

As for (17.7), let ε > 0. Put T := Tk(Q), “T := “TN−1(Q). Choose

Q-linearly independent vectors g1, . . . ,gn such that HL,c,Q(gi) 6 (1 + ε)λi for

i = 1, . . . , n. Write ĝj := gi1 ∧ · · · ∧ gip , where Ij = {i1 < · · · < ip} is the j-th

set in C(n, p). Then by (17.3),

HL̂,̂c,Q(ĝj) 6 p
p/2(1 + ε)pνN−1 for j = 1, . . . , N − 1.

Assuming ε is sufficiently small, {g1, . . . ,gk} is a basis of T . Moreover, by

Lemma 17.2 and (17.6), we have pp/2(1 + ε)pνN−1 < λ̂N . Hence by (17.3),

{ĝ1, . . . , ĝN−1} is a basis of “T . Now H2(“T ) = H2(T ) follows from Lemma 6.1.

�
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We now make a first step towards estimating the heights of the subspaces

in the filtration of (L, c). As usual, n is an integer > 2, K an algebraic number

field, and (L, c) a pair satisfying (2.4)–(2.7). Put

H2 := max{H2(L
(v)
i ) : v ∈MK , i = 1, . . . , n}.

Lemma 17.4. Assume that the subspace Tr−1 preceding Qn
in the filtration

of (L, c) has dimension n− 1. Then

H2(Tr−1) 6 H(n−1)2

2 .

Proof. We assume without loss of generality that c1v 6 · · · 6 cnv for v ∈
MK . Put T := Tr−1. By our choice of T , if T ′ is any other (n−1)-dimensional

linear subspace of Qn
, then µ(Qn

, T ) < µ(Qn
, T ′), implying w(T ′) < w(T ).

Take v ∈MK . Let i(v) be the smallest index i such that

Uiv := {x ∈ Qn
: L

(v)
1 (x) = · · · = L

(v)
i (x) = 0} ⊆ T.

T is given by an up to a constant factor unique linear equation, which we may

express as
∑n
j=1 αjvL

(v)
j (x) = 0, where not all αjv are 0. In fact, T is given by∑i(v)

j=1 αjvL
(v)
j (x) = 0, where αi(v),v 6= 0. It follows that i(v) is the largest index

i such that {L(v)
i |T : j ∈ {1, . . . , n} \ {i}} is linearly independent. Hence,

(17.8) w(T ) =
∑
v∈MK

wv(T ) =
∑
v∈MK

n∑
j=1

j 6=i(v)

cjv.

Moreover,

(17.9)
∑
v∈MK

Ui(v),v ⊆ T.

We prove that in (17.9) we have equality. Assume the contrary. Then there is

an (n−1)-dimensional linear subspace T ′ 6= T of Qn
such that

∑
v∈MK

Ui(v),v ⊂
T ′. Then if j(v) denotes the smallest index i such that Uiv ⊆ T ′, we have

j(v) 6 i(v) for v ∈MK . So

w(T ′) =
∑
v∈MK

n∑
j=1

j 6=j(v)

cjv > w(T ),

contrary to what we observed above.

Knowing that we have equality in (17.9), there is a subset {v1, . . . , vs} of

MK with s 6 n− 1 such that T = Ui(v1),v1 + · · ·+ Ui(vs),vs . By (6.13), (6.11),

we have

H2(Ui(vl),vl) = H2(U⊥i(vl),vl) 6 H
n−1
2 for l = 1, . . . , s,
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and then by (6.12),

H2(T ) 6
s∏
l=1

H2(Ui(vl),vl) 6 H
(n−1)2

2 .

This completes our proof. �

Our final result is as follows.

Proposition 17.5. Let T1, . . . , Tr−1 be the subspaces of Qn
in the filtra-

tion of (L, c). Put H2 := max{H2(L
(v)
i ) : v ∈MK , i = 1, . . . , n}. Then

H2(Ti) 6 H
4n

2 for i = 1, . . . , r − 1.

Proof. Let i ∈ {1, . . . , r − 1}, and put T := Ti, k := dimT , p := n − k,

N :=
(n
p

)
. Further, let L̂, ĉ be as in (17.1), (17.2). By (6.8), for the linear

forms L̂
(v)
j in L̂, we have

(17.10) H2(L̂
(v)
j ) 6 Hp

2 for v ∈MK , j = 1, . . . , N.

Let 0 < θ < µ(Ti+1, Ti) − µ(Ti+2, Ti+1). By Theorem 16.1, for every

sufficiently large Q, we have that

(17.11) Tk(Q) = T

and λk(Q)/λk+1(Q) 6 Q−θ. Together with Lemma 17.3(i), this implies that

for Q sufficiently large, we have λ̂N−1(Q)/λ̂N (Q) 6 Q−θ/2, with a positive

exponent θ/2 independent of Q, and so dim “TN−1(Q) = N − 1. Again from

Theorem 16.1, but now applied with L̂, ĉ, N instead of L, c, n, it follows that

there is a subspace “T of dimension N − 1 in the filtration of (L̂, ĉ), such that“TN−1(Q) = “T
for every sufficiently large Q.

Now using subsequently (17.11), Lemma 17.3(ii), Lemma 17.4 (with L̂, ĉ, N
instead of L, c, n), and (17.10), we obtain for Q sufficiently large,

H2(T ) = H2(Tk(Q)) = H2(“TN−1(Q)) = H2(“T ) 6 (Hp
2 )(N−1)2 6 H4n

2 ,

where in the last step we have used p(N − 1)2 6 p
(n
p

)2 6 4n. This completes

our proof. �

18. Proof of Theorem 2.3

Let n,L, c, δ, R satisfy (2.4)–(2.10). Let T = T (L, c) be the subspace from

(2.21). Recall that this space is defined over K. The hard core of our proof is

to make explicit Lemma 16.3(ii).
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Put k := dimT . Choose a basis {g1, . . . ,gk} of T , contained in Kn. Write

in the usual manner
⋃
v∈MK

{L(v)
1 , . . . , L

(v)
n } = {L1, . . . , Lr}, where r 6 R, and

let θ1, . . . , θu be the distinct, nonzero numbers among

(18.1) (det(Lil(gj))l,j=1,...,k , 1 6 i1 < · · · < ik 6 r.

For v ∈MK , put

Mv := max(‖θ1‖v, . . . , ‖θu‖v), mv := min(‖θ1‖v, . . . , ‖θu‖v).

Lemma 18.1. We have∏
v∈MK

Mv

mv
6 (2HL)(4R)n .

Proof. Let ϕ be a linear transformation of Qn
, defined over K. By Lemma

7.3, replacing L by L◦ϕ has the effect that T = T (L, c) is replaced by ϕ−1(T ).

Taking the basis ϕ−1(g1), . . . , ϕ−1(gk) of ϕ−1(T ), we see that the quotients

Mv/mv (v ∈ MK) remain unchanged. This shows that to prove our lemma,

we may replace L by L ◦ ϕ. Now choose linearly independent L1, . . . , Ln from

L, and then ϕ such that Li ◦ ϕ = Xi for i = 1, . . . , n. Then L ◦ ϕ contains

X1, . . . , Xn.

So we may assume without loss of generality that L contains X1, . . . , Xn

and then apply Lemma 10.2. Thus, we conclude that

(18.2)
∏

v∈MK

Mv

mv
6

(Ç
n

k

å1/2

HL ·H2(T )

)(rk)

.

We estimate H2(T ) from above by means of Proposition 17.5. The coefficients

of L1, . . . , Lr belong to the set {d1, . . . , dm} from Lemma 10.1. Hence,

H2(Li) 6 n
1/2

∏
v∈MK

max(‖d1‖v, . . . , ‖dm‖v) 6 n1/2HL

for i = 1, . . . , r, and so H2(T ) 6 (n1/2HL)4n . By inserting this inequality

together with
(r
k

)
6 Rn/n! into (18.2), we infer

∏
v∈MK

Mv

mv
6

(Ç
n

k

å1/2

n4n/2 ·H4n+1
L

)Rn/n!

6 (2HL)(4R)n . �

In addition to (2.4)–(2.10), we assume that

(18.3) c1v 6 · · · 6 cnv for v ∈MK ,

which is no restriction.

By (15.3), we have

w(T ) = wL,c(T ) =
∑
v∈MK

∑
i∈Iv

civ,
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where Iv = Iv(T ) = {i1(v), . . . , ik(v)} is the set defined by (15.2). Put Icv :=

{1, . . . , n} \ T .

Let

(18.4) L̃
(v)
i := L

(v)
i −

∑
j∈Iv
j<i

αijvL
(v)
j (v ∈MK , i ∈ Icv)

be the linear forms from (16.5). Recall that these linear forms vanish identically

on T . For v ∈MK , i ∈ Iv, put L̃
(v)
i := L

(v)
i , and define the system

L̃ := (L̃
(v)
i : v ∈MK , i = 1, . . . , n).

Clearly, for every v ∈MK , the set {L̃(v)
i : i = 1, . . . , n} is linearly independent.

Lemma 18.2. The system L̃ has the following properties :

HL̃,c,Q(x) 6 (2HL)(8R)nHL,c,Q(x) for x ∈ Qn
, Q > 1,(18.5)

HL̃ 6 (nHL)(8R)n .(18.6)

Proof. Let v ∈MK . We find expressions for the coefficients αijv from the

relations

L
(v)
i (gh) =

∑
j∈Iv

αijvL
(v)
j (gh) for i ∈ Icv, h = 1, . . . , k

and Cramer’s rule. Recall that αijv = 0 for j > i by the definition of Iv. In fact,

each αijv is of the shape δijv/δv, where δv = det
(
(L

(v)
il(v)(gh))l,h=1,...,k

)
, and δijv

is a similar sort of determinant, but with L
(v)
j replaced by L

(v)
i . Clearly, δv and

the numbers δijv all occur among the numbers (18.1). Hence

(18.7) ‖αijv‖v′ 6
Mv′

mv′
for i ∈ Icv, j ∈ Iv, v′ ∈MK .

We now prove (18.5). Let x ∈ Qn
, Q > 1, and choose a finite extension E

of K such that x ∈ En. For w ∈ME lying above v ∈MK , define in the usual

manner ciw, L
(w)
i by (2.14) and similarly, L̃

(w)
i := L̃

(v)
i , αijw := αijv, Iw := Iv,

Mw := M
d(w|v)
v , mw := m

d(w|v)
v . Thus, (18.4), (18.7) and Lemma 18.1 hold

with w ∈ME instead of v ∈MK . It follows that for w ∈ME , we have

max
16i6n

‖L̃(w)
i (x)‖wQ−ciw 6 ns(w)Mw

mw
· max

16i6n
‖L(w)

i (x)‖wQ−ciw .

By taking the product over w ∈ME , it follows that

HL̃,c,Q(x) 6 n(2HL)(4R)nHL,c,Q(x),

which implies (18.5).

We next prove (18.6). Let d1, . . . , dt be the determinants of the n-element

subsets of
⋃
v∈MK

{L(v)
1 , . . . , L

(v)
n }, and let d̃1, . . . , d̃s be the determinants of the
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n-element subsets of
⋃
v∈MK

{L̃(v)
1 , . . . , L̃

(v)
n }. Then each d̃i is a linear combi-

nation of elements from d1, . . . , dt with at most nn terms, each coefficient of

which is a product of at most n elements from αijv (v ∈ MK , i ∈ Iv, j ∈ Icv).
So by (18.7),

max
16i6s

‖d̃i‖v 6 nns(v)
Å
Mv

mv

ãn
· max

16i6t
‖di‖v

for v ∈ MK . By taking the product over v ∈ MK and using Lemma 18.1, we

obtain

HL̃ 6 n
n(2HL)n(4R)n ·HL 6 (2HL)(8R)n ,

which is (18.6). �

In the proof of Theorem 2.3, we assume

there is a non-archimedean place v0 ∈MK such that

ci,v0 = 0, L̃
(v0)
i = Xi for i = 1, . . . , n,

(18.8)

T = {x ∈ Qn
: x1 = · · · = xn−k = 0}.(18.9)

We show that these are no restrictions. Let ϕ be a linear transformation of

Qn
, defined over K. Lemma 7.3 says that T (L ◦ ϕ, c) = ϕ−1(T ). Hence,

if we construct a system of linear forms from L ◦ ϕ and T (L ◦ ϕ, c) in the

same way as L̃ has been constructed from L and T , we obtain L̃ ◦ ϕ. Now

choose ϕ such that {L̃(v)
1 ◦ ϕ, . . . , L̃(v)

n ◦ ϕ} = {X1, . . . , Xn} and, moreover,

{L̃(v)
i ◦ ϕ : i ∈ Icv} = {X1, . . . , Xn−k}. Then L̃ ◦ ϕ contains X1, . . . , Xn, and

T (L ◦ ϕ, c) is given by X1 = · · · = Xn−k = 0. Now Lemma 7.3 implies that in

the proof of Theorem 2.3, we may replace L by L ◦ ϕ.

So henceforth, in addition to (2.4)–(2.10) and (18.3), we assume (18.8),

(18.9).

The projection

(18.10) ϕ′′ : (x1, . . . , xn) 7→ (x1, . . . , xn−k)

has kernel T . We now define a tuple in K[X1, . . . , Xn−k]
lin,

L′′ = (L
(v)
i
′′ : v ∈MK , i ∈ Icv)(18.11)

with L
(v)
i
′′ := L̃

(v)
i ◦ ϕ

′′−1
(v ∈MK , i ∈ Icv)

and a tuple of reals

d = (div : v ∈MK , i ∈ Icv)(18.12)

with div :=
n− k
n

(civ − θv) , (v ∈MK , i ∈ Icv),

where θv :=
1

n− k

( ∑
j∈Icv

cjv
)

(v ∈MK).
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Notice that by Lemma 16.2(ii) and assumption (2.8), we have

(18.13)
∑
v∈MK

θv =
w(Qn

)− w(T )

n− k
= − w(T )

n− k
.

The tuple L′′ is precisely that defined in (16.6), while d is a normalization

of the tuple c′′ from (16.6). Eventually, we want to apply Theorem 8.1 to

(L′′,d), and to this end we have to verify that this pair satisfies the analogues

of (8.2)–(8.9) with L, c replaced by L′′,d; in fact, the tuple d has been chosen

to satisfy (8.3), (8.4). Further, we need an estimate for HL′′ in terms of HL.

Finally, we have to relate the twisted height HL′′,d,Q′(ϕ
′′(x)) to HL,c,Q(x),

where Q′ := Qn/(n−k).

We start with the verification of (8.2)–(8.9), with n−k, nRn,L′′,d replac-

ing n,R,L, c, and with indices i taken from Icv instead of {1, . . . , n} for v ∈MK .

It is clear that d satisfies (8.2), (8.3) and that L′′ satisfies (8.6). Further, from

(18.8), (18.9) it follows easily that L′′ satisfies (8.8). In the lemma below we

show that L′′,d has properties (18.14), (18.15), (18.16), which are precisely

(8.4), (8.7), (8.9) with n− k, nRn,L′′,d replacing n,R,L, c. The weight wL′′,d
and twisted heights HL′′,d,Q are defined similarly as in Section 16, but with

div in place of civ in (16.8), (16.10).

Lemma 18.3. We have ∑
v∈MK

max
i∈Icv

div 6 1,(18.14)

#

Ñ ⋃
v∈MK

{L(v)
i
′′ : i ∈ Icv}

é
6 nRn,(18.15)

wL′′,d(U) 6 0 for every linear subspace U of Qn−k
.(18.16)

Proof. We start with (18.14). Put c′iv := civ − 1
n

∑n
j=1 cjv for v ∈ MK ,

i = 1, . . . , n. Then
∑n
i=1 c

′
iv = 0 for v ∈ MK , while

∑
v∈MK

max16i6n c
′
iv 6 1

by (2.9).

Consequently,

∑
v∈MK

max
i∈Icv

div =
n− k
n

∑
v∈MK

Ñ
max
i∈Icv

c′iv −
1

n− k
∑
j∈Icv

c′jv

é
=
n− k
n
·
∑
v∈MK

Ñ
max
i∈Icv

c′iv +
1

n− k
∑
j∈Iv

c′jv

é
6
n− k
n
·
Å

1 +
k

n− k

ã
max
16i6n

c′iv 6 1.

This proves (18.14).
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Next, we prove (18.15). Let v ∈ MK . The set {L(v)
i
′′ : i ∈ Icv} is deter-

mined by the linear forms L̃
(v)
i given by (18.4) and the latter by the ordered

tuple (L
(v)
1 , . . . , L

(v)
n ). By (2.6) there are at most Rn distinct tuples among

these as v runs through MK . This proves (18.15).

We finish with proving (18.16). Take a linear subspace U of Qn−k
, and

let W := ϕ′′−1(U). By (18.12), (18.13), we have

wL′′,d(U) =
n− k
n

Ñ
wL′′,c′′(U)− dimU

∑
v∈MK

θv

é
=
n− k
n

Ç
wL′′,c′′(U) + dimU · w(T )

n− k

å
,

and then by Lemma 16.2(ii),

wL′′,d(U) =
n− k
n

Ç
w(W )− w(T ) + dimU · w(T )

n− k

å
=
n− k
n

Ç
w(W ) − w(T )

n− k
· (n− dimW )

å
.

Since this is 6 0 by (2.21), this proves (18.16). �

Lemma 18.4. We have

HL′′ 6 (2HL)(8R)n .

Proof. Let d̃1, . . . , d̃s be the determinants of the n-element subsets of⋃
v∈MK

{L̃(v)
1 , . . . , L̃

(v)
n } =: {L̃1, . . . , L̃r}, and let d1

′′, . . . , du
′′ be the determi-

nants of the (n− k)-element subsets of
⋃
v∈MK

{L(v)
i
′′ : i ∈ Icv}. Pick one of the

determinants di
′′. Then for some i1, . . . , in−k, by (18.10), (18.11),

di
′′ = det(L̃i1 ◦ ϕ′′

−1
, . . . , L̃in−k ◦ ϕ

′′−1
) = det(L̃i1 , . . . , L̃in−k , Xn−k+1, . . . , Xn),

and then by (18.8), ±di′′ ∈ {d̃1, . . . , d̃s}. Consequently,

HL′′ =
∏

v∈MK

max
16i6u

‖di′′‖v 6
∏

v∈MK

max
16i6s

‖d̃i‖v = HL̃.

Together with (18.6), this implies our lemma. �

Proposition 18.5. Let Q be a real with

(18.17) Q > (2HL)200(8R)n/δ

and x ∈ Qn
with

(18.18) HL,c,Q(x) 6 ∆
1/n
L Q−δ.

Put Q′ := Qn/(n−k). Then

(18.19) HL′′,d,Q′(ϕ
′′(x)) 6 Q′−

99
100

δ/n
.
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Proof. We need the crucial observation that by (18.13), (2.21), (2.8),

(18.20)
∑
v∈MK

θv = − w(T )

n− k
< − w(Qn

)

n
= 0.

Let E be a finite extension of K with x ∈ En. In accordance with our

usual conventions, we put L
(w)
i
′′ := L

(v)
i
′′, diw := d(w|v)div, I

c
w := Icv for

places w ∈ ME lying above v ∈ MK . Thus, (18.12), (18.13), (18.20) imply

diw := n−k
n (ciw − θw) for w ∈ME , i ∈ Icw with

∑
w∈ME

θw < 0, and so

HL′′,d,Q′(ϕ
′′(x)) =

∏
w∈ME

max
i∈Icw
‖L̃(w)

i (x)‖wQ′−diw

=
∏

w∈ME

Qθw max
i∈Icw
‖L̃(w)

i (x)‖wQ−ciw

6
∏

w∈ME

max
16i6n

‖L̃(w)
i (x)‖wQ−ciw

=HL̃,c,Q(x).

Together with (18.5), (7.4), (18.20), this implies

HL′′,d,Q′(ϕ
′′(x))6 (2HL)(8R)nHL,c,Q(x)

6 (2HL)(8R)n+Rn ·∆−1/n
L HL,c,Q(x).

Now (18.19) follows easily from this last inequality and (18.17), (18.18). �

Proof of Theorem 2.3. We assume for the moment that n − k > 2. We

intend to apply Theorem 8.1 with

(18.21) n− k, nRn, 99

100
δ/n, L′′, d

replacing n,R,δ,L,c, respectively. Clearly, with these replacements (8.1) holds,

and we verified above that conditions (8.2)–(8.9) are satisfied as well.

Let m′2, ω′2 be the quantities m2, ω2 from Theorem 8.1, with the objects

in (18.21) replacing n,R, δ,L, c, respectively. Further, let C ′2 be the quantity

obtained by applying the substitutions from (18.21) to C2, but replacing HL′′

by the upper bound (2HL)(8R)n from Lemma 18.4. Then Theorem 8.1 implies

that there exist reals Q′1, . . . , Q
′
m2
′ with C ′2 6 Q′1 < · · · < Q′m2

′ such that if

Q′ > 1 is a real with

(18.22) {y ∈ Qn−k
: HL′′,d,Q′(y) 6 Q′−

99
100

δ/n} 6= {0},

then

(18.23) Q′ ∈
[
1, C ′2

)
∪

m2
′⋃

h=1

[
Q′h, Q

′
h
ω2
′)
.
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We proved (18.23) under the assumption n− k > 2. We now assume that

n − k = 1 and show that (18.23) is valid also in this case. The quantities

m′2, ω
′
2, C

′
2 are defined as above, but with n − k = 1 replacing n. We have

L
(v)
1
′′ = αvX, d1v = 0 for v ∈ MK , and so for y = y ∈ K∗, by the product

formula,

HL′′,d,Q′(y) =
∏

v∈MK

‖αvy‖v =
∏

v∈MK

‖αv‖v.

This is valid also if y 6∈ K. Let {αv : v ∈MK} = {α1, . . . , αr}. By (18.15), we

have r 6 nRn. Moreover, by Lemma 18.4,∏
v∈MK

max
16i6r

‖αi‖v = HL′′ 6 (2HL)(8R)n .

Hence if y 6= 0, then

HL′′,d,Q′(y)>
∏

v∈MK

min
16i6r

‖αi‖v

>
∏

v∈MK

‖α1 · · ·αr‖v
(max16i6r ‖αi‖v)r−1

> (2HL)−(8R)2n .

Now if y satisfies (18.22), then certainly Q′ 6 C ′2, and so (18.23) is satisfied.

Let Q be one of the reals being considered in Theorem 2.3, i.e., with

{x ∈ Qn
: HL,c,Q(x) 6 ∆

1/n
L Q−δ} 6⊂ T.

Then by Proposition 18.5, either Q does not satisfy (18.17), or Q′ := Qn/(n−k)

satisfies (18.22). The first alternative implies Q < C2
′n/(n−k). So in either

case,

Q ∈
[
1, C ′2

(n−k)/n
)
∪

m2
′⋃

h=1

[
Q∗h, Q

∗
h
ω2
′)
,

where Q∗h := Q′h
(n−k)/n for h = 1, . . . ,m2

′.

To prove Theorem 2.3, we have to cut the intervals into smaller pieces. In

general, any interval [A,Aθ) is contained in a union of at most [log θ/ logω0]+1

intervals of the shape [Q∗, Q∗ω0). It follows that there are reals Q1, . . . , Qm,

with C0 6 Q1 < · · · < Qm, such that

Q ∈ [1, C0) ∪
m⋃
h=1

[
Qh, Q

ω0
h

)
,

where

m := 1 +

[
log(logC2

′(n−k)/n/ logC0)

logω0

]
+ m′2

Ç
1 +

ñ
logω′2
logω0

ôå
.

To finish our proof, we have to show that m 6 m0.
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We first estimate from above m′2. Taking the definition of m2 from (8.10)

and the substitutions from (18.21), and using R > n > 2, we obtain

m′26 61(n− k)622(n−k)(100n/99δ)2 log(22(n− k)22n−k · nRn · 100n/99δ)

6 62n822nδ−2 log(23n42nRnδ−1) 6 62n1022nδ−2 log
Ä
(3δ−1R)3n

ä
6 186n922nδ−2 log(3δ−1R) =: m∗.

Further,

1 +

[
log(logC2

′(n−k)/n/ logC0)

logω0

]

6 1 +

 log
(

log
Ä
2× (2HL)(8R)n

äm2m∗
∗

/ log max(H
1/R
L , n1/δ)

)
logω0


6

3m∗ logm∗
log(δ−1 log 3R)

and

1 +

ñ
logω′2
logω0

ô
6 1 +

5

2
· logm∗

logω0
6

3 logm∗
log(δ−1 log 3R)

.

So altogether,

m 6
6m∗ logm∗

log(δ−1 log 3R)
.

Using R > n > 2, 186n922n 6 502n, δ−2 log(3δ−1R) 6 (δ−1 log 3R)3, this leads

to

m6 6m∗ ×
log
Ä
186n922nδ−2 log(3δ−1R)

ä
log(δ−1 log 3R)

6 6m∗

Å
2n log 50

log log 6
+ 3

ã
6 100nm∗

6 10522nn10δ−2 log(3δ−1R);

i.e., m 6 m0. This completes the proof of Theorem 2.3. �
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Acad. Sci. Paris Sér. A-B 284 (1977), A1527–A1530. MR 0441886. Zbl 0354.

10029.

[8] E. Dubois and G. Rhin, Approximations rationnelles simultanées de nombres
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France, Paris, 1975, pp. 211–227. MR 0374042. Zbl 0305.10031.

[9] J.-H. Evertse, An improvement of the quantitative subspace theorem, Com-

positio Math. 101 (1996), 225–311. MR 1394517. Zbl 0856.11030. Available at

http://www.numdam.org/item?id=CM 1996 101 3 225 0.

[10] J.-H. Evertse, On the quantitative subspace theorem, Zap. Nauchn. Sem.

S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 217–240, 245.

MR 2753657. http://dx.doi.org/10.1007/s10958-010-0185-6.

[11] J.-H. Evertse and H. P. Schlickewei, A quantitative version of the absolute

subspace theorem, J. Reine Angew. Math. 548 (2002), 21–127. MR 1915209.

Zbl 1026.11060. http://dx.doi.org/10.1515/crll.2002.060.

[12] J.-H. Evertse, H. P. Schlickewei, and W. M. Schmidt, Linear equations in

variables which lie in a multiplicative group, Ann. of Math. 155 (2002), 807–836.

MR 1923966. Zbl 1026.11038. http://dx.doi.org/10.2307/3062133.

[13] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math.

133 (1991), 549–576. MR 1109353. Zbl 0734.14007. http://dx.doi.org/10.2307/

2944319.
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