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A further improvement of the
Quantitative Subspace Theorem

By J.-H. EVERTSE and R. G. FERRETTI

Abstract

In 2002, Evertse and Schlickewei obtained a quantitative version of the
so-called Absolute Parametric Subspace Theorem. This result deals with
a parametrized class of twisted heights. One of the consequences of this
result is a quantitative version of the Absolute Subspace Theorem, giving an
explicit upper bound for the number of subspaces containing the solutions
of the Diophantine inequality under consideration.

In the present paper, we further improve Evertse’s and Schlickewei’s
quantitative version of the Absolute Parametric Subspace Theorem and
deduce an improved quantitative version of the Absolute Subspace Theo-
rem. We combine ideas from the proof of Evertse and Schlickewei (which
is basically a substantial refinement of Schmidt’s proof of his Subspace
Theorem from 1972), with ideas from Faltings’ and Wiistholz’ proof of the
Subspace Theorem. A new feature is an “interval result,” which gives more
precise information on the distribution of the heights of the solutions of the
system of inequalities considered in the Subspace Theorem.

1. Introduction

1.1. Let K be an algebraic number field. Denote by My its set of places
and by || - |l (v € Mg) its normalized absolute values, i.e., if v lies above
p € Mg = {oo} U {prime numbers}, then the restriction of || - ||, to Q is
|- |LK”:QP]/[K:Q]. Define the norms and absolute height of x = (x1,...,2,) € K"
by ||x||v := maxi<i<p ||zi|o for v € Mg and H(x) := [Toenr [1X]lo-

Next, let S be a finite subset of Mg, n an integer > 2, and {Lgv), e Lq@}
(v € S) linearly independent systems of linear forms from K[X;,..., X,]. The
Subspace Theorem asserts that for every € > 0, the set of solutions of

(1.1) 11 H HL Gl <H(X ™ inxe K"

veS i=1 ”XH”
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lies in a finite union 77 U - -- U T}, of proper linear subspaces of K™. Schmidt
[22] proved the Subspace Theorem in the case that S consists of the archimed-
ean places of K and Schlickewei [17] extended this to the general case. Much
work on the p-adization of the Subspace Theorem was done independently by
Dubois and Rhin [8].

By an elementary combinatorial argument originating from Mahler (see
[11, §21]), inequality (1.1) can be reduced to a finite number of systems of
inequalities

(v)
(1.2) Mgﬂ(x)dw (veS,i=1,...,n) inxe K",

1%
where
n

zz:jz:dw < —n.

veS i=1
Thus, an equivalent formulation of the Subspace Theorem is, that the set
of solutions of (1.2) is contained in a finite union 77 U --- U T}, of proper
linear subspaces of K™. Notice that (1.2) may be viewed as an inequality over
P*"~1(K). Making more precise earlier work of Vojta [30] and Schmidt [25],
Faltings and Wiistholz [14, Th. 9.1] obtained the following refinement: There
exists a single, effectively computable proper linear subspace T of P" 1(K)
such that (1.2) has only finitely many solutions x € P"~1(K)\ T.

(1.2) can be translated into a single twisted height inequality. Put

—1——(22%,) Civp = diy — — Zdﬂ,veSz—l ).

veS i=1 j 1
Thus,

6 >0, Zciv:OforUES.
i=1
For Q > 1, x € K™ define the twisted height
(13) Ho(x) = [T ( max [12{” 1.Q ) - TT Il

1<i<
vES vgS

(To our knowledge, this type of twisted height was used for the first time, but

in a function field setting, by Dubois [7].)
Let x € K™ be a solution to (1.2), and take @ := H(x). Then

(1.4) Ho(x) < Q.

It is very useful to consider (1.4) with arbitrary reals ¢;,,, not just those
arising from system (1.2), and with arbitrary reals @) not necessarily equal to
H(x). As will be explained in Section 2, the definition of Hg can be extended
to Q" (where it is assumed that Q@ D K), hence (1.4) can be considered for
points x € Q". This leads to the following theorem.
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THE ABSOLUTE PARAMETRIC SUBSPACE THEOREM. Let ¢;, (v € S, i =
1,...,m) be any reals with >°7 1 ¢y, = 0 for v € S, and let 6 > 0. Then there
are a real Qo > 1 and a finite number of proper linear subspaces Ty, ..., Ti, of
Q", defined over K, such that for every Q > Qo, there is T; € {Th,...,T},}
with

{(xeQ": Ho(x) <Q°}C T

Recall that a subspace of Q" is defined over K if it has a basis from
K™. In this general form, this result was first stated and proved in [11]. The
nonabsolute version of the Parametric Subspace Theorem, with solutions x €
K™ instead of x € Q", was proved implicitly along with the Subspace Theorem.

1.2. In 1989, Schmidt was the first to obtain a quantitative version of
the Subspace Theorem. In [24] he obtained, in the case K = Q, S = {0}, an
explicit upper bound for the number ¢; of subspaces containing the solutions of
(1.1). This was generalized to arbitrary K, S by Schlickewei [18] and improved
by Evertse [9]. Schlickewei observed that a good quantitative version of the
Parametric Subspace Theorem, that is, with explicit upper bounds for Q)¢ and
t3, would be more useful for applications than the existing quantitative versions
of the basic Subspace Theorem concerning (1.1), and in 1996 he proved a
special case of such a result. Then in 2002, Evertse and Schlickewei [11] proved
a stronger, and fully general, quantitative version of the Absolute Parametric
Subspace Theorem. This led to uniform upper bounds for the number of
solutions of linear equations in unknowns from a multiplicative group of finite
rank [12] and for the zero multiplicity of linear recurrence sequences [26], and
more recently to results on the complexity of b-ary expansions of algebraic
numbers [6], [3], to improvements and generalizations of the Cugiani-Mahler
theorem [2], and approximation to algebraic numbers by algebraic numbers [4].
For an overview of recent applications of the Quantitative Subspace Theorem
we refer to Bugeaud’s survey paper [5].

1.3. In the present paper, we obtain an improvement of the quantitative
version of Evertse and Schlickewei on the Absolute Parametric Subspace The-
orem, with a substantially sharper bound for t3. Our general result is stated
in Section 2. In Section 3 we give some applications to (1.2) and (1.1).

To give a flavour, in this introduction we state special cases of our results.
Let K, S be as above, and let ¢;, (v € S, i =1,...,n) be reals with

n
(1.5) ch =0forves, Z max(Cry, ..., Cny) < 1;
i=1 veS

the last condition is a convenient normalization. Further, let Lgv) (vesS,i=
1,...,n) be linear forms such that for v € S,
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(1 6) {Lgv),...,L%v)}c{Xl,...,Xn, X1+”'+Xn}7
‘ {Lgv)v e ,ngv)} is linearly independent,

and let Hg be the twisted height defined by (1.3) and then extended to Q.
Finally, let 0 < § < 1. Evertse and Schlickewei proved in [11] that in this case,
the above stated Absolute Parametric Subspace Theorem holds with

Qo = TL2/5, t3 < 4(n+9)257n74'
This special case is the basic tool in the work of [12], [26], quoted above. We
obtain the following improvement.
THEOREM 1.1. Assume (1.5), (1.6), and let 0 < § < 1. Then there are
proper linear subspaces 11, ...,Ti, of Q", all defined over K, with
ts < 10622”n10(5_3(log(6n5_1))2,
such that for every Q with Q = n'/° there is T, € {T1,..., Ty, } with
{(xeQ": Ho(x) <Q°}C T
A new feature of our paper is the following interval result.

THEOREM 1.2. Assume again (1.5), (1.6), 0 <6 < 1. Put
m = [10522”11105_2 log(ﬁné_l)] . w:=0 tlog6bn.

Then there are an effectively computable proper linear subspace T of Q" defined
over K, and reals Q1, ..., Qm withn'/? < Q1 < -+ < Qum, such that for every
Q > 1 with

{xcQ": Ho(x)<Q '’} ¢ T,
we have

Q € {lvnl/(s) U [QlaQLiJ) U---u [QmuQ(fn) :

The reals Qq,...,Qm cannot be determined effectively from our proof.
Theorem 1.1 is deduced from Theorem 1.2 and a gap principle. The precise
definition of 7" is given in Section 2. We show that in the case considered here,
i.e., with (1.6), the space T is the set of x = (x1,...,x,) € Q" with

(1.7) d wj=0fori=1,...,p,
JEL;
where I1, ..., I, (p=n—dimT) are certain pairwise disjoint subsets of {1,...,n}

that can be determined effectively.
As an application, we give a refinement of the theorem of Faltings and
Wiistholz on (1.2) mentioned above, again under assumption (1.6).
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COROLLARY 1.3. Let K, S be as above, let LEU) (vesSi=1,...,n) be
linear forms with (1.6), and let d;, (v € S, i =1,...,n) be reals with

n
diy <0 forve S, i=1,...,n, ZZdw:—n—ewz’th0<5<1.
veS i=1

Put
m' = {10622”71125_2 log(6n5_1)] , W = 2ne " logbn.

Then there are an effectively computable linear subspace T' of K™ and reals
Hy,...,Hy with n™¢ < Hy < Hy < --- < H,y such that for every solution
x € K™ of (1.2), we have

xeT orH(x) € [1,n"/s> U {HLHT}/) U---u {HmHH%')-

Corollary 1.3 follows by applying Theorem 1.2 with

n 1 & ,
Cw::n+5(div_n;dﬂ> (UGS,Z:L...,TL),
g
0= .= H(x)'e/m,
. Q=H

The exceptional subspace T" is the set of x € K™ with (1.7) for certain pairwise
disjoint subsets I1,..., I, of {1,...,n}.

It is an open problem to estimate from above the number of solutions
x € P"}(K) of (1.2) outside P(T").

1.4. In Sections 2 and 3 we formulate our generalizations of the above
stated results to arbitrary linear forms. In particular, in Theorem 2.1 we
give our general quantitative version of the Absolute Parametric Subspace
Theorem, which improves the result of Evertse and Schlickewei from [11], and
in Theorem 2.3 we give our general interval result, dealing with points x €
Q" outside an exceptional subspace T. Further, in Theorem 2.2 we give an
“addendum” to Theorem 2.1, where we consider (1.4) for small values of Q). In
Section 3 we give some applications to the Absolute Subspace Theorem; i.e.,
we consider absolute generalizations of (1.2), (1.1) with solutions x taken from
Q" instead of K. Our central result is Theorem 2.3, from which the other
results are deduced.

1.5. We briefly discuss the proof of Theorem 2.3. Recall that Schmidt’s
proof of his 1972 version of the Subspace Theorem [21], [23] is based on geom-
etry of numbers and “Roth machinery,” i.e., the construction of an auxiliary
multi-homogeneous polynomial and an application of Roth’s Lemma. The
proofs of the quantitative versions of the Subspace Theorem and Parametric
Subspace Theorem published since, including that of Evertse and Schlickewei,
essentially follow the same lines. In 1994, Faltings and Wiistholz [14] came
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up with a very different proof of the Subspace Theorem. Their proof is an
inductive argument, which involves constructions of auxiliary global line bun-
dle sections on products of projective varieties of very large degrees, and an
application of Faltings’ Product Theorem. Ferretti observed that with their
method, it is possible to prove quantitative results like ours, but with much
larger bounds, due to the highly nonlinear projective varieties that occur in
the course of the argument.

In our proof of Theorem 2.3 we use ideas from both Schmidt and Faltings
and Wiistholz. In fact, similarly to Schmidt, we pass from Q" to an exterior
power APQ" by means of techniques from the geometry of numbers and apply
the Roth machinery to the exterior power. But there, we replace Schmidt’s
construction of an auxiliary polynomial by that of Faltings and Wiistholz.

A price we have to pay is that our Roth machinery works only in the so-
called semistable case (terminology from [14]) where the exceptional space T in
Theorem 2.3 is equal to {0}. Thus, we need an involved additional argument
to reduce the general case where T' can be arbitrary to the semistable case.

In this reduction we obtain, as a by-product of some independent interest,
a result on the limit behaviour of the successive infima A (Q), ..., A\, (Q) of Hg
as Q — oo; see Theorem 16.1. Here, A\;(Q) is the infimum of all A > 0 such
that the set of x € Q" with Hg(x) < A contains at least ¢ linearly independent
points. Our limit result may be viewed as the “algebraic” analogue of recent
work of Schmidt and Summerer [28].

1.6. Our paper is organized as follows. In Sections 2 and 3 we state
our results. In Sections 4 and 5 we deduce from Theorem 2.3 the other theo-
rems stated in Sections 2 and 3. In Sections 6 and 7 we have collected some
notation and simple facts used throughout the paper. In Section 8 we state
the semistable case of Theorem 2.3. This is proved in Sections 9-14. Here
we follow [11], except that we use the auxiliary polynomial of Faltings and
Wiistholz instead of Schmidt’s. In Sections 15-18 we deduce the general case
of Theorem 2.3 from the semistable case.

2. Results for twisted heights

2.1. All number fields considered in this paper are contained in a given
algebraic closure Q of Q. Given a field F, we denote by F[Xq,..., X, the
F-vector space of linear forms a1 X7 + -+ - + a, X, with aq,...,a, € F.

Let K C Q be an algebraic number field. Recall that the normalized
absolute values || - ||, (v € M) introduced in Section 1 satisfy the Product
Formula

(2.1) H lz|l, =1 for x € K*.
’UGMK
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Further, if F is any finite extension of K and we define normalized absolute
values || - [|w (w € Mg) in the same manner as those for K, we have for every
place v € Mg and each place w € Mg lying above v,

E,: K
(22) el = 2140 for @ € K, where d(w]v) := [[EK]]
and K,, E, denote the completions of K at v, E at w, respectively. Notice
that

(2.3) > d(wlv) =1,

wlv
where ‘w|v’ indicates that w is running through all places of E that lie above v.

2.2. We list the definitions and technical assumptions needed in the state-
ments of our theorems. In particular, we define our twisted heights.

Let again K C Q be an algebraic number field. Further, let n be an
integer, £ = (Lgv) v € Mg,i=1,...,n) a tuple of linear forms, and ¢ =
(Civ: v € Mg,i=1,...,n) a tuple of reals satisfying

(2.4) n =2, LZ(»U) c K[X1,..., X" forve Mg,i=1,...,n,

(2.5) {Lgv), ce LS’)} is linearly independent for v € M,
(2.6) U (. L2} = {L,..., L} is finite,
veEMK
(2.7) Cly =+ = Cpy = 0 for all but finitely many v € Mg,
(2.8) > ciw =0 for v € Mg,
i=1

(2.9) Z max(Ciy, .-+, Cnp) < L.

vEME

In addition, let §, R be reals with

(2.10) 0<d<1, R>r=#< U {L@,...,L;ﬂ}),

’UGMK
and put
(2.11) Ag:= [] Idet(Zt,....L)],,
vEME
(212) H; = H lgilg?,i(ingr”det(lzil,...,Ll‘n)Hv,
vEME

where the maxima are taken over all n-element subsets of {1,...,7}.
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For @) > 1, we define the twisted height Hz . : K™ — R by

(2.13) Heeo() = ] max (1L (). - Q7).

1<i<n
vEMK =T

In case that x = 0, we have H ; o(x) = 0. If x # 0, it follows from (2.4)-(2.7)
that all factors in the product are nonzero and equal to 1 for all but finitely
many v; hence, the twisted height is well defined and nonzero.

Now let x € Q". Then there is a finite extension E of K such that x € E".
For w e Mg, i=1,...,n, define

(2.14) Lz(w) = LZ(»U), Ciw 1= Cip - d(w|v)

if v is the place of K lying below w, and put

(2.15) Heeq(x) = max (HLE“’)(x)Hw : Q_C““).
weMEg

It follows from (2.14), (2.2), (2.3) that this is independent of the choice of E.
Further, by (2.1), we have Hrcg(ax) = Heeg(x) for x €Q", a € Q.

To define Hy ¢, we needed only (2.4)—(2.7); properties (2.8), (2.9) are
merely convenient normalizations.

2.3. Under the above hypotheses, Evertse and Schlickewei [11, Th. 2.1]
obtained the following quantitative version of the Absolute Parametric Sub-
space Theorem.

There is a collection {Ti,...,Ty,} of proper linear subspaces of Q", all
defined over K, with

to < 48’ 5774100 (2R) log log(2R)

such that for every real Q > maX(Hé/R,nQ/‘S), there is T; € {Th,...,Ti,} for
which

(2.16) IxeQ": Heeglx) <A/"Q7%) T
We improve this as follows.

THEOREM 2.1. Let n,L,c,0, R satisfy (2.4)—(2.10), and let Ap, Hy be
given by (2.11), (2.12). Then there are proper linear subspaces 11, ...,Ty, of
Q", all defined over K, with

(2.17) to < 10°22"n'96 3 log(36 ' R) log(6 ' log 3R),
such that for every real Q with

(2.18) Q > Cp := max (H}:/R,nl/‘s),

there is T; € {Th, ..., Ty, } with (2.16).
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Notice that in terms of n,d, our upper bound for ¢y improves that of
Evertse and Schlickewei from ¢7°6~"* to 36 3(log 6~1)2, while it has the
same dependence on R.

The lower bound Cj in (2.18) still has an exponential dependence on 6~ 1.
We do not know of a method to reduce it in our general absolute setting. If
we restrict to solutions x in K™, the following can be proved.

THEOREM 2.2. Let again n, L, c,d, R satisfy (2.4)-(2.10). Assume in ad-
dition that K has degree d. Then there are proper linear subspaces Uy, ..., Uy,
of K™, with

t1 <6 1((90n)" + 3loglog 3H )

such that for every Q with 1 < Q < Cy = maX(HZ/R,nl/é), there is U; €
{Ul, ey Utl} with

{X € K" :Hrco(x) < Alﬁ/nQ_é} c Us.

We mention that in various special cases, by an ad-hoc approach the upper
bound for ¢; can be reduced. Recent work of Schmidt [27] on the number of
“small solutions” in Roth’s Theorem (essentially the case n = 2 in our setting)
suggests that there should be an upper bound for ¢; with a polynomial instead
of exponential dependence on d.

2.4. We now formulate our general interval result for twisted heights.
We first define an exceptional vector space. We may view a linear form L €
Q[X1,...,X,]"™ as a linear function on Q". Then its restriction to a linear
subspace U of Q" is denoted by Liy.
Let n, L, c,d, R satisfy (2.4)—(2.10). Let U be a k-dimensional linear sub-
space of Q". For v € Mk, we define wy(U) = wgcr(U) :=0if k=0 and

(2.19) wy(U) =wg,ep(U) := min {cihv +t e

Lgf)]U, e ,Lg:)] u are linearly independent}

if & > 0, where the minimum is taken over all k-tuples i1,...,4; such that
Lgf) U,y .- ,LE:) |y are linearly independent. Then the weight of U with respect

to (L, c) is defined by

(2.20) wU) =wee(U) = Y wy(U).

vEME

This is well defined since by (2.7), at most finitely many of the quantities
wy(U) are nonzero.
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By theory from, e.g., [14] (for a proof see Lemma 15.2 below), there is a
unique, proper linear subspace T' = T'(L, c) of Q" such that

w(T) _ w(U)
n—dim7T ~ n—dimU B
(2.21) for every proper linear subspace U of Q";

subject to this condition, dim 7" is minimal.

Moreover, this space T is defined over K.
In Proposition 17.5 below, we prove that

471
Hy(T) < (max Hy(L"))

with “Euclidean” heights Hs for subspaces and linear forms defined in Section 6
below. Thus, T is effectively computable and it belongs to a finite collection
depending only on £. In Lemma 15.3 below, we prove that in the special case
considered in Section 1, i.e.,

{Lgv)v'..yLS})}C{Xla"'aXTw X1++Xn} fOI"UGMK,

we have
T={xeQ": Z:cj:Oforjzl,...,p}
JeL;
for certain pairwise disjoint subsets I,...,I, of {1,...,n}.

Now our interval result is as follows.

THEOREM 2.3. Let n,L,c,0, R satisfy (2.4)—(2.10), and let the vector
space T be given by (2.21). Put

(2.22) mo = [10522"n196210g(367'R)], wp:= 0 'log3R.
Then there are reals Q1, ..., Qm, with

(2.23) Co :=max(HY " n'?) < Q1 < -+ < Qg

such that for every Q > 1 for which

(2.24) {(x€Q": Heeox) <AL"Q} £ T,

we have

(2.25) Qe [1,Co)U[Q1, Q") U U[Qmy, @2).
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3. Applications to Diophantine inequalities

3.1. We state some results for “absolute” generalizations of (1.2), (1.1).
We fix some notation. The absolute Galois group Gal(Q/K) of a number field
K c Q is denoted by Gg. The absolute height H(x) of x € Q" is defined by
choosing a number field K such that x € K™ and taking H(x) := [Tpenr, [|%|lo-
The inhomogeneous height of L = a1 X1 + - + a, X, € Q[X1,..., X, is
given by H*(L) := H(a), where a = (1,a1,...,q,). Further, for a number
field K, we define the field K (L) := K(aq,...,ay).

We fix an algebraic number field K C Q. Further, for every place v € Mg,
we choose and then fix an extension of | - ||, to Q. For x = (z1,...,2,) € Q",
o€ Gk, v e Mg, weput 0(x) := (0(21),...,0(x)), ||X|lv := maxi<i<n || Zi|o-

3.2. We list some technical assumptions and then state our results. Let n
be an integer > 2, R a real, S a finite subset of M, LW (veS,i=1,...,n)

)

linear forms from Q[X7i,...,X,)™ and d;, (v € S, = 1,...,n) reals such
that
(3.1) {Lgv), ..., L")} is linearly independent for v € S,

3.2)  H(IY<H, KIY): K|<DforveS, i=1,...,n,

(3.3) # <U L, L&“}) <R,

veS
(3.4) YY) div=-n—ewith0<e<1,
veS i=1
(3.5) diy, <O0forvesS,i=1,...,n.

Further, put

(3.6) Ay = || det(L\, ..., LYY for v € S.

3.3. We consider the system of inequalities

1L ()], d : : a"
3.7 W2 A A H(x) (ve S, i=1,..., cqQ".
(3.7) Jnax ECIR oH (%)% (v i n) inx € Q

According to [11, Th. 20.1], the set of solutions x € Q" of (3.7) with H(x) >
max(H*,n?"/¢) is contained in a union of at most

(3.8) 23(n+9)* c=n~4160(4 R D) log log(4R D)

proper linear subspaces of Q" that are defined over K. We improve this as
follows.
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THEOREM 3.1. Assume (3.1)~(3.6). Then the set of solutions x € Q" of
system (3.7) with

(3.9) H(x) > Cy := max((H*)'/38P pn/e)
is contained in a union of at most
(3.10) 10°22"n14e =3 log (36_1RD) log (6_1 log 3RD>

proper linear subspaces of@n that are all defined over K.

1 in terms of € our upper bound has the same

Apart from a factor loge™
order of magnitude as the best known bound for the number of “large” ap-
proximants to a given algebraic number in Roth’s Theorem (see, e.g., [27]).

Although for applications this seems to be of lesser importance now, for
the sake of completeness we give without proof a quantitative version of an
absolute generalization of (1.1). We keep the notation and assumptions from

(3.1)—(3.6). In addition, we put
si=#S, A= [ IIdet(LY, ..., L.

veES
Consider
4 1L (o ()], e
(3.11 max —————— < AH(x)" """,
) L1 2z ol )

veS i=1
COROLLARY 3.2. The set of solutions x € Q" of (3.11) with H(x) > Hy
is contained in a union of at most
(9712671)715 10192271973 Jog (35*11?) log (5*1 log SD)
proper linear subspaces of@n that are all defined over K.

Evertse and Schlickewei [11, Th. 3.1] obtained a similar result, with an
upper bound for the number of subspaces that is about (9n2€_1>n5 times the
quantity in (3.8). So in terms of n, their bound is of the order ¢ whereas
ours is of the order ¢™°8™. Our Corollary 3.2 can be deduced by following the
arguments of [11, §21], except that instead of Theorem 20.1 of that paper, one
has to use our Theorem 3.1.

We now state our interval result, making more precise the result of Faltings
and Wiistholz on (1.2).

THEOREM 3.3. Assume again (3.1)~(3.6). Put
my = [10822”n14€_2 log (3&7_1RD)} )
w1 := 3ne tlog 3RD.



IMPROVEMENT OF THE QUANTITATIVE SUBSPACE THEOREM 525

There is a proper linear subspace T of Q" defined over K that is effectively
computable and belongs to a finite collection depending only on {Lgv) NS
S,i=1,...,n}, and there are reals Hy, ..., Hp, with

C1 = max((H*)V30P n"ey < H) < -+ < Hyp,
such that for every solution x € Q" of (3.7), we have
xeT or H(x)ec[l,C1)U[H, HY')U---U[Hp,, H).

Our interval result implies that the solutions x € Q" of (3.7) outside
T have bounded height. In particular, (1.2) has only finitely many solutions
x € PPY(K) \ P(T).

4. Proofs of Theorems 2.1 and 2.2

We deduce Theorem 2.1 from Theorem 2.3 and prove Theorem 2.2. For
this purpose, we need some gap principles. We use the notation introduced in
Section 2. In particular, K is a number field, n > 2, £ = (LZ(-v) tv € Mg, i =
1,...,n) a tuple from K[X1,...,X,]", andc= (cjp: vE Mg :i=1,...,n)
a tuple of reals. The linear forms LZ( “) and reals Ciw, Where w is a place on
some finite extension F of K, are given by (2.14).

We start with a simple lemma.

LEMMA 4.1. Suppose that L, c satisfy (2.4)—(2.7). Let x € Q", 0 € Gk,
Q>1. Then Hpcg(0(x)) = Hr c.0(%).

Proof. Let E be a finite Galois extension of K such that x € E". For any
place v of K and any place w of E lying above v, there is a unique place w, of F
lying above v such that ||-||w, = ||o(-)||lw. By (2.14) and [E,,, : K] = [Ey : K],

we have ng”) = ng), Ciw, = Ciw for i =1,...,n. Thus,
Heeqlot) = TT TT (jmax 12”0l )
vEMK wlv

=TT TT(oas 1202 001@ 57 ) = Heogx). O
vEM wlv
We assume henceforth that n, £, c,d, R satisfy (2.4)—(2.10). Let Az, Hp
be given by (2.11), (2.12). Notice that (2.2), (2.3), (2.14) imply that (2.4)-
(2.9) remain valid if we replace K by E and the index v € My by the index
w € Mpg. Likewise, in the definitions of Ay, H, we may replace K by E and
v € Mg by w € Mg. This will be used frequently in the sequel.
We start with our first gap principle. For a = (aq,...,a,) € C", we put
|al| :== max(|a1], ..., |an]|)-
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PROPOSITION 4.2. Let
(4.1) Az=nlld

Then there is a single proper linear subspace Ty of Q", defined over K, such
that for every Q with

A< Q < A1+6/2,
we have {x € Q" : Hco(x) < A}:/HQ_(S} C Tp.

Proof. Let Q € [A, A"79/2) and let x € Q" with x # 0 and Hg ¢ o(x) <
AIE/nQ_‘S. Take a finite extension E of K such that x € E™. For w € Mg, put

0 := max Cjyp-
1<i<n

By (2.14), (2.8), (2.9), we have

(4.2) > cw=0forwe Mg, > 6,<L

=1 weEMEg

Let w € My with 0, > 0. Using A < Q < A'/2 we have

max HLEw)(X)HwQ_CW > | max Hng)(x)HwA_Czw> . A Owd/2

1<i<n <1<i<n
If w € Mg with 8, = 0, then ¢, =0 for i = 1,...,n and so we trivially have
an equality instead of a strict inequality. By taking the product over w and
using (4.2), we obtain
Hpe(x) > He e a(x)A792 if 0, > 0 for some w € M,
Hpeo(x)=Heea(x) > Hpea(x)A™%2 otherwise.

Hence,
(4.3) Hpea(x) < Af"A72,

This is clearly true for x = 0 as well.

Let Tp be the Q-vector space spanned by the vectors x € Q" with (4.3). By
Lemma 4.1, if x satisfies (4.3), then so does o(x) for every o € Gx. Hence T is
defined over K. Our proposition follows once we have shown that Ty # Q", and

for this, it suffices to show that det(xi,...,x,) = 0 for any x1,...,%x, € Q"
with (4.3).

So take x1,...,x, € Q" with (4.3). Let F be a finite extension of K with
X1,...,X, € E™. We estimate from above || det(xy,...,Xy,)|s» for w € Mg.

Forwe Mg, j=1,...,n, put

Ay = |[det (L™, LN |, Hjw := max L) (x;) ]| A~

1<isn
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First, let w be an infinite place of E. Put s(w) := [E, : R]/[E : Q]. Then
there is an embedding o, : F < C such that || - ||, = |00 (-)[*™). Put

(44) gy = (AT oy (L (xy)), . AT e, (L) (%))

for j = 1,...,n. Then Hj, = [laj,|*™). So by Hadamard’s inequality and
(1)
(45)  [ldet(xr,. ., x0) o = Ay det (L (x7)),

— A;1A01w++cnw‘ det(a1w7 . 7anw)’s(w)

< A;lnns(w)/Qle oo Hp

Next, let w be a finite place of E. Then by the ultrametric inequality and
(4.2),

(46) [l det(xr, . xn)l|lw = A" det (L{")(x)), llu

i
<Ay max || Ly (%1)llw -+ 1 Lpm) (%) llw
S A AT L H
=A'Hyy - Hyw,

where the maximum is taken over all permutations p of 1,...,n.

We take the product over w € Mg. Then using [yen, Aw = Az (by
(2.2), (2.14), (2.11)), Yoo 8(w) = 1 (sum of local degrees is global degree),

4.2), (4.3), and lastly our assumption A > nt/% we obtain
(4.2), , y p :

n
IT lldet(xi,....x0)llw < A2 ] Heealx;) < n™2A72 < 1.
weME 7j=1
Now the product formula implies that det(xy,...,x,) = 0, as required. O

For our second gap principle, we need the following lemma.

LEMMA 4.3. Let M > 1. Then C" is a union of at most (20n)"M? subsets

such that for any yi,...,¥n in the same subset,
(4.7) [ det(y1, ..., yn)| < M7yl - [lyall
Proof. [10, Lemma 4.3]. O

PROPOSITION 4.4. Let d := [K : Q] and A > 1. Then there are proper
linear subspaces T1,...,Ty of K™, with

t < (80m)",
such that for every @QQ with
A< Q < 2A1+6/2,
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there is T; € {11, ..., T;} with
{X c K" HL,C,Q(X) < AZ/ané} c1T;.

Proof. We use the notation from the proof of Proposition 4.2. Temporar-
ily, we index places of K also by w. Similarly as in the proof of Proposition 4.2,
we infer that if x € K™ is such that there exists Q with Q € [4,2A4'+9/2) and

Hreq(x) < A/"Q70, then
(4.8) Hpea(x) < 244" A2,

Put M := 2" Let wi,...,w, be the infinite places of K, and for i =
1,...,r take an embedding oy, : K < C such that || - ||w, = |ow, (-)[5®).
For x € K™ with (4.8) and w € {w1,...,w;}, put

ay(x) 1= (A7 Wo, (L1 (x)), ..., A=W, (L) () )
By Lemma 4.3, the set of vectors x € K™ with (4.8) is a union of at most
((20n)"M?)" < (80n)™
classes such that for any n vectors x1,...,X, in the same class,
(4.9) | det(ay(x1), ..., au(x,))| < M7t for w = wy, ..., w,.

We prove that the vectors x € K™ with (4.8) belonging to the same class
lie in a single proper linear subspace of K™, i.e., that any n such vectors have
zero determinant. This clearly suffices.

Let x1,...,%X, be vectors from K" that satisfy (4.8) and lie in the same
class. Let w be an infinite place of K. Then using (4.9) instead of Hadamard’s
inequality, we obtain, instead of (4.5),

| det(x1, ..., xn)|lw < A" M5 Hyy - - Hy.

For the finite places w of K, we still have (4.6). Then by taking the prod-
uct over w € Mg, we obtain, with a similar computation as in the proof of
Proposition 4.2, employing our choice M = 2",

[T lldet(x1,. .., x0)lle < M1 (24792 < 1.

wEM g

Hence det(x1,...,x,) = 0. This completes our proof. O

In the proofs of Theorems 2.1 and 2.3 we keep the assumptions (2.4)-
(2.10).

Deduction of Theorem 2.1 from Theorem 2.3. Define
Soi={x€Q": Heeo(x) <AY"Q}.
Theorem 2.3 implies that if ) is a real such that
Q > Co = max(H)/ " n'/%), So ¢ T,
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then
1+6/2) (1+5/2)
Qe U U Q) Lo
h=1k=1
where s is the integer with (1 4+ 6/2)%! < wp < (1 +§/2). Notice that we
have a union of at most

log wy
log(1+6/2)
intervals. By Proposition 4.2, for each of these intervals I, the set Jgecr Sg

mos < mo (1 + ) < 35_1m0(1 + logwp)

lies in a proper linear subspace of Q", which is defined over K. Taking into
consideration also the exceptional subspace T, it follows that for the number
to of subspaces in Theorem 2.1, we have

<1436 mg(1 + logwy)
<10522"n1% 3 log(36 L R) log(d ' log 3R).
This proves Theorem 2.1. ]
Proof of Theorem 2.2. We distinguish between Q € [n'/%, Cp) and Q €
[1,n1/9).

Completely similarly as above, we have

1/5 , Co) U (146/2)7~ 1/5 (1+5/2)j/5) G=1,...,s1),

where n(1T0/21 716 « 0 < p(IF6/21/8, 4 o

log(dlog Cp/ logn)
log(1+4/2)
By Proposition 4.2, for each of the s; intervals I on the right-hand side, the
set <UQE I SQ) N K™ lies in a proper linear subspace of K.
Next consider Q with 1 < Q < n'/. Define vy := 0, v, := 1+7y4_1(1+6/2)
for k=1,2,...;ie

/R

(4.10) s1=1+ <2+ 35 'loglog3H

(146/2)F -1
= =0,1,2,....
Vk 5/2 or k 07 ) 4y

Then
52
1/5 U [276-1, 2%)

where (1 +6/2)%271 < % < (146/2)%25 ie.,

(4.11) 59 =1 {log (log(2n'/?)/log 2)

1 1/2
Tog(1 1 3/2) ] < 46~ " loglogdn
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Applying Proposition 4.4 with A = 2%-1 (kK =1,...,s9), we see that for each
of the so intervals I on the right-hand side, there is a collection of at most
(80n)™¢ proper linear subspaces of K" such that for every Q € I, the set
Sg N K™ is contained in one of these subspaces.

Taking into consideration (4.10), (4.11), it follows that for the number of
subspaces t1 in Theorem 2.2, we have

t1 < s1+ (80n)"sy < 2+ 361 loglog 3H}:/R + (80n)™ - 46~ log log 4n'/?
<67 1((90n)" + 3loglog 3H ™).

This proves Theorem 2.2. ]

5. Proofs of Theorems 3.1 and 3.3

5.1. We use the notation introduced in Section 3 and keep the assump-
tions (3.1)-(3.6). Further, for L = S-% ; o; X; € Q[X1,..., X,)"™ and o € G,
we put o(L) := Y1 o) X.

Fix a finite Galois extension K’ C Q of K such that all linear forms
Lgv) (vesS,i=1,...,n) have their coefficients in K’. Recall that for every
v € Mg, we have chosen a continuation of ||-||, to Q. Thus, for every v € M,
there is 7, € Gal(K'/K) such that ||all, = \|rv/(a)||ﬁ(”"”) for « € K, where v
is the place of K lying below v’. Put

(5.1) L = X;, dyy:=0forve Mg\ S,i=1,....n
and then,
5.2) L= 1LY, ey o= d ) —— [ diy — lfjd»
. i . ! 7 ) 1,0 n+€ (% nj:1 ]
forv' € Mg, 1=1,...,n,
(5.3) L= (Ll(v/): v e Mg, i=1,...,n),
C = (ciml = MK’; 1= 1,...,n),
and finally,
€
5.4 0:= .
(5:4) n+e
Clearly,
Cly =+ = Cpy = 0 for all but finitely many o' € Mg,

n
chﬂ}/ =0 for v € Mg.
7j=1
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Moreover, by (5.1), (5.2), (3.5), (3.4),

(5.5) ( Z mau%cwo <1

By (5.1), (3.2), we have

(5.6) # | ", LYy < RD +n.

”L)’GMK/

These considerations show that (2.4)—(2.10) are satisfied with K’ in place of
K, with the choices of £, c,d from (5.1)-(5.4), and with RD + n in place of R.
Further,

67 Ac= JI Idet(@ . L&) = T det(LE, ..., L),
V' €M ves

(5.8) o= ]] Lo max,  f[det(Livs oo Lyl
v'EM e

where Uyenr ALY, LYY = {La,... L)
By (3.2) and the fact that conjugate linear forms have the same inhomo-
geneous height, we have

(5.9) max H*(L;) = H*.

1<ir

For v/ € Mg, 1 <1y < --- < i, <r we have, by Hadamard’s inequality if v’ is
infinite and the ultrametric inequality if v/ is finite, that

,

Ildet(Liy, ..., Li))|lv < Dy H max(1, || L;||»),
i=1

where D, := nE RIZZIKEAL g o s infinite and D, :=1if v/ is finite. Taking

the product over v' € My, noting that by (5.1), (5.9), the set {Li,..., L}

contains Xi,...,X,, which have inhomogeneous height 1, and at most DR

other linear forms of inhomogeneous height < H*, we obtain
(5.10) Hp <n™?H*(Ly)--- H*(L,) < n"/?(H*)PE,
The next lemma links system (3.7) to a twisted height inequality.

LEMMA 5.1. Let x € Q" be a solution of (3.7). Then with L, c, 6 as
defined by (5.1)—(5.4) and with

Q= H(x)'*/",

we have
H[,,C,Q(O'(X)) < Az/nQié for o € Gg.
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Proof. Let 0 € Gg. Put A, := 1 for v € Mg \ S. Pick a finite Galois
extension F of K containing K’ and the coordinates of o(x). Let w € Mg
lie above v/ € My and the latter in turn above v € M. In accordance with
(2.14) we define Lz(w) = LEU,), Ciw = d(w|v')¢;, for i =1,...,n. Further, we
put diy := d(w|v)diy, Ay = A1) and we choose 7, € Gal(Q/K) such that

Tw|K’ =Ty and
(5.11) ]l = [|[7w(@)]| 21 for o € E.
Then (5.1), (5.2) imply for i =1,...,n,

(W) _ _—1,7 () _n IS
(5.12) Li = Tw (Li ), Ciw — <diw — ; Zdjw> .

n+¢e

If v € S, then from (3.7) it follows that

sy M) <HL§”)<Tw ()]l ) R~

lo () oo I7wo () lo

while if v & S, we have A, = 1 and L") = X;, diy = 0 for i = 1,...,n, and
so the inequality is trivially true. Finally, (3.5), (3.6), (5.7) imply

10 > S one [ Ao-aln
weEME i=1 weMg
By our choice of @ and by (5.12), (5.13), we have
w s w gl ,
18 (0 (3)) 0@ = [[ LS (0()) [ H (3) ™0t 0 2o i
AZVL diw
<Ay llo(x)||lwH (x)n 20i=1%

By taking the product over w, using H(o(x)) = H(x), (5.14) and again our
choice of () we arrive at

HE,C,Q(O'(X)) < AZ/"H(X)lflfs/n _ Alﬁ/anéi 0

In addition, we need the following easy observation, which is stated as a
lemma for convenient reference.

LEMMA 5.2. Let m,m’ be integers and Ay, By, w,w’ reals with B> Ag>1,

W >w>1andm' > m >0, and let Ay, ..., A, be reals with Ag < A1 <

- < Ap,. Then there are reals Bi,..., B, with By < B1 < -+ < By, such
that

[1, Ag) U <L:J Ah,Ah> [1,Bo) U (@[Bh,B,‘jl)>.
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Proof. Let S := ;" [An, AY) U[A%,, 00). It is easy to see that the lemma
is satisfied with B; the smallest real in S with By > By and B; the smallest
real in S outside U‘}’l;ll [Bh,B}‘L’/) forj=2,...,m. O

Proof of Theorem 3.1. We apply Theorem 2.1 with K’ instead of K and
with £, ¢, as in (5.1)—(5.4); according to (5.6) we could have taken n + DR,
but instead we take 6(DR)? instead of R. Then by (5.10) the quantity Cp in
Theorem 2.1 becomes

2
Gl = max(H O o) e (/2 (p) i) T 100

< (max((H*)l/SRD’nn/a))1+5/" _ H01+6/n
and the upper bound for the number of subspaces tg in Theorem 2.1 becomes
10922"010(1 4+ ne=1)3 x
x log (18(1 + ne™)(RD)?) log (1 + ne ') log(18(RD)?))
< 1072273 log (35_1RD) log (5_1 log 3RD)),

which is precisely the upper bound for the number of subspaces in Theorem 3.1.

Let x € Q" be a solution to (3.7) with H(x) > Hy and put Q :=
H(x)'*¢/". Then Q > C}. Moreover, by Lemma 5.1 and Theorem 2.1 we
have

{0(x): 0 € G} C{y €Q": Heegly) <A/"Q7}C T

for some T; € {T1,...,T},}. But then, in fact, we have that x € T :=
Noecy 0(T;), which is a proper linear subspace of Q" defined over K. We infer
that the solutions x € Q" of (3.7) with H(x) > Hy lie in a union T{U- - -UT}, of
proper linear subspaces of Q", defined over K. This completes our proof. [

Proof of Theorem 3.3. We apply Theorem 2.3 with K’ instead of K, with
L,c,d as in (5.1)—(5.4) and with 6(DR)? instead of R. An easy computation
shows that with these choices, the expressions for mg,wp in Theorem 2.3 are
bounded above by the quantities m,w; from the statement of Theorem 3.3.

Further, Cy becomes a quantity bounded above by Cll te/m Now according to

Theorem 2.3 and Lemmas 5.1, 5.2, there are reals Qq, ..., Qn, with C11+€/n <
Q1 < -+ < Qum, such that if x € Q" is a solution to (3.7) outside the subspace
T =T(L,c) from Theorem 2.3, then
mi
1+
Q= Hx)"m e 1,07 u | [Qu Q5").
h=1
So with H; := QE1+€/R)71 (i=1,...,mq), we have
mi
H(x) € [1,C1) U ] [Hn, Hy").
h=1
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In fact, H(x) belongs to the above union of intervals if o(x) ¢ T for any
o € Gk so, in fact, already if x ¢ T" := \,eq, 0(T). Now T” is a proper Q-
linear subspace of Q" defined over K and T” is effectively determinable in terms
of T. The space T in turn is effectively determinable and belongs to a finite
collection depending only on {LZW) : v € Mg, i = 1,...,n}, so ultimately
only on {LZ(U) :veS, i=1,...,n}. Hence the same must apply to 7”. This
completes our proof. O

6. Notation and simple facts

We have collected some notation and simple facts for later reference. We
fix an algebraic number field K C Q and use v to index places on K. We have
to deal with varying finite extensions E C Q of K and sometimes with varying
towers K C F C E C Q; then places on E are indexed by w and places on F
by u. Completions are denoted by K, E,, F,, etc. We use notation w|u, ulv
to indicate that w lies above u, u above v. If w|v, we put

[Ey : K
d =
(wh) =TT g
6.1. Norms and heights. Let E be any algebraic number field. If w is
an infinite place of E, there is an embedding oy, : E < C such that || - ||, =
| () [P RI/IEQLIf 4 is a finite place of E lying above the prime p, then || -||.

is an extension of | - |£,Ew:meE:Q] to E.

To handle infinite and finite places simultaneously, we introduce

(6.1) s(w) == % if w is infinite, s(w) := 0 if w is finite.

Thus, for z1,...,z, € E, a1,...,a, € Z, w € Mg, we have
n

(62)  farzs+ -+ anallw < (3 Jail) ™ max( s - 2 lw)-
i=1

Let x = (z1,...,2,) € E". Put

1% := max(||z1||lw, - - -, [|[Zn]|w) for w € Mg,

o ())

NE

s = (
1

.
I

for w € Mg, w infinite,
2\s(w)/2
0w (@i)[?)

[M]=

1w,z = (
1

-
Il

1%]|w,1 = [|X|[w,2 == ||X[|w for w € Mg, w finite.
Now for x € Q", we define

Hx) =[] lIxle, Hi(x) =[] lIxlws, Ho(x):= ] [Ixllwe,

weME wEME weME
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where F is any number field such that x € E™. This is independent of the
choice of . Then

(6.3) n Hy(x) < n”Y?Hy(x) < H(x) < Ha(x) < Hi(x) for x € Q"

The standard inner product of x = (z1,...,2,), ¥ = (Y1,--.,Yn) € Q" is
defined by x -y = > i“ z;y;. Let again E/ be an arbitrary number field and
w € Mg. Then by the Cauchy-Schwarz inequality for the infinite places and
the ultrametric inequality for the finite places,

(6.4) 1% Yllw < [1X[w2 - [Iyllwe forx,y e E", we Mg,

If P is a polynomial with coefficients in a number field E or in Q, we define
| Pllws | Pllw,1, || Pllw,2, H(P), Hi(P), H2(P) by applying the above definitions
to the vector x of coefficients of P. Then for Pi,..., P, € E[Xy,...,Xn],
w € Mg, we have

(6.5) {||P1+~-+Pr||w,1<rs<w>max<rPlumh.-.,uprrw,u,

[P Prllwt < |Prllwa - [Pl

6.2. Eaxterior products. Let n be an integer > 2 and p an integer with
I1<p<n. Put N:= (Z) Denote by C(n,p) the sequence of p-element subsets
of {1,...,n}, ordered lexicographically, i.e., C(n,p) = (I1,...,In), where

L={1,....,p}, L=A{l,....p—1,p+1},...,
Ina={n—-pn—p+2,....,n}, In={n—p+1,...,n}.

We use shorthand notation I = {i; < --- < i,} for a set I = {iy,...,4,} with
i1 < e <

We denote by det(aij;)i j=1,..p the p X p-determinant with a;; on the i-th
row and j-th column. The exterior product of x; = (z11,...,%Z1n),..., Xp =
(Tp1,.. ., Tpn) € Q" is given by

XA AXp = (Al,...,AN),

where
Ay = det(zi;)ij=1,...p>
with {i; < --- < ip} = I; the I-th set in the sequence C'(n,p), for [ =1,..., N.
Let x1,...,x, be linearly independent vectors from Q". Forl=1,...,N,
define X; := x;; A---AX;,, where I} = {i; < --- < ip} is the I-th set in C'(n, p).
Then

n—l)
p—1

(6.6) det(R1,. .., Rn) = i(det(xl,...,xn))(

Given a number field F such that x1,...,x, € E" we have, by Hadamard’s
inequality for the infinite places and the ultrametric inequality for the finite
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places,

(6.7) [x1 A Axpllwe < IXallw2 - - [%pllw,2 for w e M.
Hence,

(6.8) Hy(x1 A -+ Axp) < Ha(x1) --- Ha(xp) for xg,...,%, € Q".

The above definitions and inequalities are carried over to linear forms by
identifying a linear form L = 0 a;X; = a- X € Q[X1,..., X,]'™ with its
coefficient vector a = (ay,...,ay); e.g., || L||lv := ||allw, H(L) := H(a). The
exterior product of L; = Y77 1 a;;X; =a; - X € Q[Xy,.... X" (i=1,...,p)
is defined by

LiN---NL, =A1 X1+ -+ Anv X,

where (Ay,...,An) =ajA---Aa,. Analogously to (6.8) we have for any linear
forms Li,...,L, € Q[X1,..., X,]"™ (1 <p < n),

(69) HQ(L]_/\"‘/\LP) <H2(L]_)"'HQ(LP).
Finally, for any Ly, ..., L, € Q[X1,..., X", x1,...,%, € Q", we have
(610) (Ll VANERIVA Lp)(Xl VANERRIVAY Xp) = det(Li(Xj))léi,jép-

6.3. Heights of subspaces. Let T be a linear subspace of Q". The height
Hy(T) of T is given by Hy(T) :=1if T = {0} or Q" and

HQ(T) = HQ(Xl VANIERIA Xp)
if T has dimension p with 0 < p < n and {x1,...,x,} is any basis of 7. This

is independent of the choice of the basis. Thus, by (6.8), if {x1,...,x,} is any
basis of T', then

(611) HQ(T) < H2(X1)“‘H2(Xp).

By a result of Struppeck and Vaaler [29], we have for any two linear subspaces
T1, Tz of Q",

(612) max (HQ(Tl ﬁTg), HQ(Tl +T2)> HQ(Tl ﬂTQ)HQ(Tl +T2)

Hy(T1)H2(T3).

Given a linear subspace V of Q[Xi,..., X,]'", we define Hy(V) := 1 if
V ={0} or Q[X1,...,X,]"" and Ho(V) := Ho(L1 A--- A L,) otherwise, where
{L1,..., Ly} is any basis of V.

Let T be a linear subspace of Q". Denote by TF the Q-vector space of
linear forms L € Q[X7,. .., X,]'™ such that L(x) = 0 for all x € T. Then ([19,
p. 433))

(6.13) Hy(T+) = Ho(T).

<
<

We finish with the following lemma.
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LEMMA 6.1. Let T be a k-dimensional linear subspace of Q". Put p :=
n—k. Let {g1,...,8,} be a basis of Q" such that {g1,...,gx} is a basis of T.
Forj=1,...,N, put g := gi N--- ANgi,, where {iy < --- < ip} = I; is the
j-th set in the sequence C'(n,p). Let T be the linear subspace of @N spanned
by §1, ce 7gN—1- Then

—~

Hy(T) = Hy(T).

Proof. Let L1, ..., L, € Q[Xy,...,X,])"™ such that for i,j = 1,...,n, we
have L;(g;j) = 1 if i = j and 0 otherwise. Then {Ljyi,...,Ly,} is a basis of
T+. Moreover, by (6.10), we have

(L1 Ao A Ly)(85) =0

for j = 1,...,N — 1. Hence Lgy; A --- A L, spans TL. Now a repeated
application of (6.13) gives

Hy(T) = Hy(TY) = Hy(Ljsq A -+ A Ly) = Hy(TH) = Hy(T). O

7. Simple properties of twisted heights

We fix tuples £ = (LZ(»”) c v € Mig,i = 1,...,n), ¢ = (¢jp : v €
Mg, i = 1,...,n) satisfying the minimal requirements needed to define the

twisted height Hp ¢ g; that is, (2.4)—(2.7). Further, Az, Hp are defined by
(2.11), (2.12), respectively. Write Upenr {L\, ..., LY} = {L1,..., L.}, and

let dy,...,d; be the nonzero numbers among
(7.1) det(Lisy .. Li) (1<iy < - <in<7).
Then
(7.2) H max(||di||v, - - -, |dello) = He.
vEME
Clearly,
. [dy -+ dillo
min([|di|v, .. ., [|del[o) = -
UGIEK veng (max([|dylv, - .-, Ideflo))
and so, invoking the product formula and ¢ < (}),
. (7
(7.3) T min(ldlo, .. [dell) > Hp ).

vEMK

Consequently, for the quantity A, given by (2.15), we have

T

(7.4) a0 <Ay < He
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LEMMA 7.1. Put 0 := Y ,enr, max(Ciy, ... o). Let @ > 1, x € Q"
x # 0. Then

Heeq(x) > n_lHZ(”)Q_G-

Proof. Let E be a finite extension of K with x € E™. Assume without
loss of generality that Ly, ..., L, (from {L1,..., L.} defined above) are linearly
independent, and put 0, := det(ng), .. .,Lq(q,w)) for w € Mg. Note that also
Y owe My Max; Ciyy = . We may write

n

Z Yijw ]w forwe Mg,i=1,...,n,
=1
with ;5 € K. By Cramer’s rule, we have 7;ju = 0ijw/0w, Where ;5 is the
determinant obtained from d,, by replacing L§~w) by L;. So d;;,, belongs to the
set of numbers in (7.1). Further, [Tyenr, [[0wllw = Az. Now (7.4) gives

T

| I max 1Vijwllw < AZIHL < H[(:”)
1<,5<n
wEMEg

Put y := (L1(x),...,L,(x)). Then, noting that y # 0,

() w)
1< H(y) < nH} masx 18 (x)
weEMEg
<t TT max L0 1,Q % = nH ) Q He e o(x).
weEME SEsn
This proves our lemma. O

LEMMA 7.2. Let 0, (v € Mg) be reals, at most finitely many of which
are nonzero. Put © := 3", cpr, 0y. Defined = (dy, : vE Mg, i=1,...,n) by
dip :=Cjy — Oy forve Mg, i=1,...,n

(i) Let x € Q", Q > 1. Then
Heaq(x) = Q%Hreq(x).
(ii) Let U be a linear subspace of Q". Then
wed(U) =weo(U) —O©dimU.
(i) T(L,d) =T(L,c).

Proof. (i) Choose a finite extension F of K with x € E™. In accordance
with our conventions, we put 6, := d(w|v)d, if w € Mg lies above v € M;
thus, > enry 0w = Y venmry 0v- The lemma now follows trivially by considering
the factors of the twisted heights for w € Mg and taking the product.

(ii) is obvious, and (iii) is an immediate consequence of (ii). O
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For L € Q[Xy,..., X, and a linear map

0 Qm —>@n (T, ) (Zaljxj,...,Zanjxj),
j=1 j=1
we define Lo ¢ € Q[X1,..., X,,]" by

m m

Lo Y = L(Z alej, ey Z aanj).
j=1 J=1

If L € K[X1,..., X,/ and ¢ is defined over K, i.e., a;; € K for all i,j, we

have Lo € K[Xy,..., X' More generally, for a system of linear forms

L= (L(-U) v € Mg,i=1,...,n), we put Lop:= (L(-U)ocp: v E Mg, i =

K3 K3

1,...,n).

LEMMA 7.3. Let (£, ¢) be a pair satisfying (2.4)~(2.7), and let p : Q" — Q"
be an invertible linear map defined over K.

(i) Let x € Q", Q = 1. Then Hrope(x) = He e o(p(X)).
(ii) Let U be a proper linear subspace of Q. Then wrop.c(U) = we o(p(U)).
(iii) Let T(Log,c) be the subspace defined by (2.21), but with Loy instead
of p. Then T(L o p,c) = p 1 (T(L,c)).

(iv) ALOSO = AL, H[:Ocp =H,.

Proof. (i), (ii) are trivial. (iii) is a consequence of (ii). As for (iv), we
have by the product formula that

Agop =TI (Idet@@)o - [Idet(LS”,..., LE]l,) = A
vEME

and likewise, Hyo, = Hp. ]

Remark. A consequence of this lemma is that in order to prove Theo-
rem 2.3, it suffices to prove it for £ o ¢ instead of £, where ¢ is any linear
transformation of Q" defined over K. For instance, pick any vy € Mg and
choose ¢ such that Lgvo)ogo = X, fori=1,...,n. Thus, we see that in the proof

of Theorem 2.3 we may assume without loss of generality that LEUO) = X, for
i =1,...,n. It will be convenient to choose vy such that v is non-archimedean

and ¢;, =0fori=1,...,n.

8. An interval result in the semistable case

We formulate an interval result like Theorem 2.3, but under some ad-
ditional constraints. We keep the notation and assumptions from Section 2.
Thus K is an algebraic number field, and n, £ = (Lgv) v € Mg,i=1,...,n),

c=(cp:v€Mg,i=1,...,n), 9, R satisfy (2.4)—(2.10). Further, we add the
condition as discussed in the above remark.
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The weight w(U) = wz.¢(U) of a Q-linear subspace U of Q" is defined by
(2.20). In addition to the above, we assume that the pair (£, c) is semistable;
that is, the exceptional space T'= T'(L, ¢) defined by (2.21) is equal to {0}.

For reference purposes, we have listed all our conditions below. Thus, K

is an algebraic number field, n is a positive integer, d, R are reals, £ = (Ll(»v) :

v € Mg,i=1,...,n) is a tuple of linear forms and ¢ = (¢;, : v € Mk, i =
1,...,n) is a tuple of reals satisfying the following conditions:
(8.1) R>n>2 0<d5<1,
(8.2) Cly = -+ = Cpy = 0 for all but finitely many v € Mk,
n
(8.3) Zciv =0 for v € Mg,
i=1
(8.4) Z max(Ciy, .-y Cny) < 1,
vEME
(8.5) L' e K[Xy,..., Xp™ forve Mg, i=1,...,n,
(8.6) {Lgv), ..., LMY} is linearly independent for v € Mg,
vEME

there is a non-archimedean place vg € Mg such that

8.8
(88) Civg =0, L™ = X, fori=1,... n,
(8.9) w(U) < 0 for every proper linear subspace U of Q".

Notice that (8.9) is equivalent to the assumption that the space T" defined by
(2.21) is {0}.

THEOREM 8.1. Assume (8.1)—(8.9). Put

(8.10)

2mg

mo := [61n%22"6~2 log(22n?2"R/J)] ,
wyi=my%, Cy = (2H,)™

Then there are reals Q1,. .., Qm, with

Cr <@ < <Qm,y

such that for every QQ > 1 with
(8.11) {xeQ": Heeox) <Q°} # {0},

we have Q € [1,C2) UUp2, [Qn, Q72)

The factor AIE/ " occurring in (2.24) has been absorbed into Cs. Theo-

rem 8.1 may be viewed as an extension and refinement of a result of Schmidt
on general Roth systems [20, Th. 2].
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Theorem 8.1 is proved in Sections 9-14. In Sections 15-18 we deduce
Theorem 2.3.

We outline how Theorem 2.3 is deduced from Theorem 8.1. Let again
T = T(L,c) be the exceptional subspace for (£,c). Put k := dim7. With
the notation used in Sections 15-18, we construct a surjective homomorphism
¢ Q" — @n_k defined over K with kernel T, a tuple £" := (Lgv)” cv €
Mg,i=1,....,n—k)in K[X1,...,X,_x]"™ and a tuple of reals d = (d;, :
v € Mg,i=1,...,n— k) such that (£"”,d) satisfies conditions analogous to
(8.1)—(8.9) and

Hﬁ”,d,Q’(QPH(X)) < HE,C,Q(X) for x € @n, Q > 027

where Q' = Q™. Then Theorem 8.1 is applied with £” and d.

An important ingredient in the deduction of Theorem 2.3 is an upper
bound for the height Hy(T') of T. In fact, in Sections 15 and 16 we prove
a limit result for the successive infima for Hz ¢ g (Theorem 16.1) where we
need Theorem 8.1. We use this limit result in Section 17 to compute an upper
bound for Hy(T'). In Section 18 we complete the proof of Theorem 2.3.

9. Geometry of numbers for twisted heights

We start with some generalities on twisted heights. Let K be a number
field and n > 2. Let (£, c) be a pair for which for the moment we require only
(2.4)-(2.7).

For A € R, define T(Q,\) = T(L,c,Q,)\) to be the Q-vector space
generated by

{xeQ": Heeqlx) <AL
We define the successive infima A\;(Q) = A\i(L,¢,Q) (¢ =1,...,n) of Hz ¢ g by

)\Z(Q) = inf{)\ S R}O : dim T(Q, )\) = Z}

Since we are working over (Q, the successive infima need not be minima. For
i=1,...,n, we define

A>Ai(Q)

We insert the following simple lemma.

LEMMA 9.1. Let (L,c) be any pair with (2.4)—(2.7), and let Q > 1.

(i) The spaces T1(Q), ..., Tn(Q) are defined over K.

(ii) Let k € {1,...,n — 1}, and suppose that \(Q) < Ag11(Q). Then
dim Ty (Q) = k and T(Q,\) = Ti(Q) for all X with A\(Q) < X <
Me+1(Q)-
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Proof. (i) Lemma 4.1 implies that for any A € Ry and any o € Gk, we
have o(T'(Q,\)) = T(Q, A). Hence T(Q, A) is defined over K. This implies (i)
at once.

(ii) From the definition of the successive infima it follows at once that
dim7(Q,\) = k for all A with A\g(Q) < A < A\g1(Q). Since also T(Q, \) C
T(Q,\) if X < XN, this implies (ii). O

The quantity A. is defined by (2.11). We recall the following analogue of
Minkowski’s Theorem.

PROPOSITION 9.2. Let again (L,c) be any pair with (2.4)—(2.7). Put

o= Y Y e

vEM i=1
Then for Q > 1, we have
(9-1) T PALQTY S M(Q) A (Q) S 2MTVRALQT
In particular, if « = 0, then
(9-2) nTAL <A(Q) - Mn(@Q) < 2 VPAL

Proof. This is a reformulation of [11, Cor. 7.2]. In fact, this result is an
easy consequence of an analogue over Q of Minkowski’s Theorem on successive
minima, due to Roy and Thunder [16]. Using instead an Arakelov type result
of S. Zhang [31], it is possible to improve 2*("~1)/2 to (en)™ for some absolute
constant ¢, but such a strengthening would not have any effect on our final
result. g

From now on, we assume that n, d, R, £, ¢ satisfy (8.1)—(8.9). We consider
reals () with

where Cs is given by (8.10), and with (8.11); i.e.,
(9.4) M(Q) <Q°.

Our assumptions imply o = 0, and so (9.2) holds. We deduce some conse-
quences.

LEMMA 9.3. Suppose n,d, R, L, c satisfy (8.1)—~(8.9) and Q satisfies (9.3),
(9.4). Let iy, ..., 1y, be distinct indices from {1,...,n}. Then

Q72 <A (Q) A (Q) < QU R,
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Proof. Write A; for \;(Q). Lemma 7.1 and the conditions (8.7) (i.e., r < R),
(8.4) and (9.3) imply
R

This implies at once the lower bound for A;, ---A; . Further, by (9.2), the

ip*

upper bound for Az in (9.4) and again (9.3),
1
>\’i1 . )\ip < 27’1(71—1)/2A£>\]1)*TL < 2n(n_1)/2H[,)\11)7n < Qn—p+ Q |:|

LEMMA 9.4. Suppose again that n, R, 0, L, c satisfy (8.1)—(8.9) and that
Q satisfies (9.3), (9.4). Then there is k € {1,...,n — 1} such that

M(Q) < Q"IN (Q).
Proof. Fix Q with (9.3), (9.4). Write \; for \;(Q),
by (9.2), the lower bound for A, in (7.4) and (9.4), (9.3)
e 1/(n 1)
)\n > (nfn/ZALAl—1>1/( 1) > (n*ﬂ/QH ( )Q ) > 1.
Take k € {1,...,n — 1} such that A\x/Ag+1 is minimal. Then
1/(n—1)
e ()\1) <

AN

An

fori=1,...,n. Then

< )\%/(n_l) g Q*&/(nfl)' |:|
Ak41

10. A lower bound for the height of the k-th infimum subspace

Our aim is to deduce a useful lower bound for the height of the vector
space Ty (Q), where k is the index from Lemma 9.4. It is only at this point
where we have to use our semistability assumption (8.9).

We need some lemmas, which are used also elsewhere. In the usual man-
ner, we write

U . LY = {Ly,..., L)
vEME
The quantity H. is given by (2.12).

LEMMA 10.1. Assume that L contains Xy,...,X,. Let {dy,...,dn} be

the set consisting of 1, all determinants det(L;,,...,L;,) (1<i1<---<ip,<r),
and all subdeterminants of order < n of these determinants. Then
H max(||di |y, -, ||dmllv) = Hr.
veEMg

Proof. Pick indices 1 < i1 < --- < i, < r. Each of the subdeter-
minants of det(L;,,...,L;, ) can be expressed as a determinant of n linear
forms from L;,,...,L; ,X1,...,X,. Since Xi,...,X,, € {L1,...,L,}, these
subdeterminants are up to sign in the set of determinants det(L;,,...,L;,)

(1<ip <---<iyp<r). Now the lemma is clear from (2.12). O
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LEMMA 10.2. Let L, ¢ satisfy (2.4)—(2.7), and suppose in addition that
L contains X1,...,X,. Let T be a k-dimensional linear subspace of Q" and
{g1,...,8k} a basis of T. Let E be a finite extension of K such that g; € E™
fori=1,... k.

Let 04, ...,0, be the distinct nonzero numbers among

det(Li, (8))1j=1,.dc (1< i1 <o <ip <7).

Then
n\ /2

01 wax(Onlo ) < () He £l

wEMEg

o\ /2 1-(3)

(10.2) H min(]|601|w, - - - [|Oullw) = <<k) H- HQ(T)> .

weEME

Proof. For w € Mg, put
Guw =g A+ Agillwz, Huw :=max(||di]lw,. .., [ldnlw),

where {dy,...,d} is the set from Lemma 10.1. Thus,

(10.3) [l Gu=HxT), ][] Ho=Hc.
lUGME UJGME

Let {L;,,...,L;,} be a k-element subset of {L, ..., L,}. Then the coeffi-
cients of L;, A+ - -AL;, (being subdeterminants of order k) belong to{dy, ..., dn}.
Now (6.10), (6.4) imply for w € Mg that

|| det (Liz (gj)Kl,jgk llw=1(Liy A+ A Lik) (g1 A A gE)||w
<Liy Ao AL lw2 - 181 A+ A gkllw,2

s(w)/2
n
()"

By taking the maximum over all tuples ¢1,...,7; and then the product over
w € Mg, and using (10.3), inequality (10.1) follows.
By the product formula,

N

min ([0l - -+ [[0ullw) = m
MLIJE N o wg@ max([|01]lw, .- - [|0u]lw)*""
1—u
= II max(I6illw .-, I6ullw) ,
weEMEg
and together with (10.1), u < (}), this implies (10.2). O

We now deduce our lower bound for the height of the vector space Tj(Q).
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LEMMA 10.3. Let n, R, 0, L, c satisfy (8.1)—(8.9), and let Q satisfy (9.3),
(9.4). Further, let k be the index from Lemma 9.4. Then
Hy(Ty(Q)) = Q.

Proof. Put T := Ti(Q) and A\; := \(Q) for i = 1,...,n. Let v € M.
Choose {i1(v),...,ik(v)} C {1,...,n} such that the restrictions to T of the

linear forms Lgf()v), e ,L(Uzv) are linearly independent and

1k

k
= Z Ciy(v),v
=1

Then by assumption (8.9),

k
> Dt =w() <O,

UEMK =1

Given any finite extension E of K and w € Mg, define ij(w) := 4;(v) for
=1,...,k, where v is the place of K below w. Then by (2.3), (2.14), we have

k
(10.4) Z Zcil(w)w

<
weMEg =1
Choose ¢ such that
(10.5) 0<e<l, (I+e)Me < A1
Then there are linearly independent vectors gi,...,gr € T such that
(10.6) Heeo(gj) < (14+¢e)A; forj=1,... k.

Let E be a finite extension of K such that g; € E" for j =1,...,k. Put

Hjw = max || (g;)w@ " for w € Mg, j=1,..., k.
1<i<n

Thus,
10.7) LM (g))|lw < HjwQ for w € Mp,i=1,...,n,j=1,... k.
For w € Mg, put
0, = det ( ( () )(g]))lglngk.

We estimate from above and below [Tyens, [|0wllw- We start with the upper
bound. Let w € Mg. From (10.7), using the triangle inequality if w is infinite
and the ultrametric inequality if w is finite, we deduce

0wl < ()° Hy -+ Hyq @2t oo,
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By taking the product over w € Mg and inserting (10.6), (10.4),

k .
(10.8) H 10w llw < k!HE,c,Q(gl) s HL7C7Q(gk)QZ“’EME D =1 Cigw),w
weEME

SEA+e) A N <2FEIN - N
By Lemma 9.4 and (10.5), we have
(A1 A)/m <Q75/(n71))\k+1>k’(
Q—k(n—k)5/n(n—1) ()\1 . )\n)k/n

)\1)% n—k)/n

NN

Applying (9.2) and using the upper bound in (7.4) for A,, we obtain
Ao < 2k(n71)/2Alz/nka(nfk)(s/n(nf1) < 2k(n71)/2H2/nka(nfk)(S/n(nfl)7

and inserting the latter into (10.8) and using assumption (9.3) leads us to the
upper bound

IT 18wl < Q"

wEMEg
From (10.2) we conclude at once that

) /2
TT 16l > ((k) H,;~H2<T>>

weEMEpg

1=(¥)

A combination with the upper bound just established and again our assumption
(9.3) gives Ho(T) > Q%3R" | as required. O

11. Inequalities in an exterior power

Letting @ be a real with (9.3), (9.4), k the index from Lemma 9.4, and
N := (), we construct N —1 linearly independent vectors h1(Q),...,hy_1(Q)
e \vhQ" @N satisfying an appropriate system of inequalities. The con-
struction is similar to that of [11]; the basic tool is Davenport’s Lemma.

In the subsequent sections, Theorem 8.1 is proved by applying the Roth
machinery to our system of inequalities. More precisely, we recall a nonvan-
ishing result in Section 12, and construct a suitable auxiliary polynomial P in
Section 13. Assuming Theorem 8.1 is false, we show that the nonvanishing re-
sult is applicable to P, and with the inequalities derived in the present section
and the properties of P, we derive a contradiction.

We start with recalling [11, Lemma 6.3].

LEMMA 11.1. Let F be any algebraic number field and A, (v € MFp)
positive reals such that

Ay =1 for all but finitely many u € Mp; H A, > 1.
’LLGMF
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Then there exist a finite extension E of F', and o € E*, such that

||| < Ay for w € Mg,

_ pdCwihn)

where we have written A, : , with u the place of F below w.

We keep the notation and assumptions from Sections 8, 9. Thus, n > 2,
K is an algebraic number field and £, ¢, R, 0 satisfy (8.1)—(8.9). We fix a
real number Q > 1. Temporarily, we write A; for the i-th successive infimum
Ni(Q) of Heeq (i =1,...,n). For a subset S of Q", we denote by span S the
Q-vector space generated by S.

Let vg be the place from (8.7). Given a finite extension E of K, we write
w € Mg, w|vy to indicate that we let w run through all places of E lying above
vo, and we write w € Mpg, w 1 vy to indicate that we let w run through all
places of E not lying above vy.

Choose € > 0 such that

(11 1) (1 + 6)2/\i < Ajy1 for each ¢ with A; < Ajyq,
Then choose linearly independent vectors g1, ..., g, of Q" such that
(11.2) Hreeo(g) < (1+2e)\ fori=1,...,n.

LEMMA 11.2. There exist a finite extension E of K, and scalar multiples
gl,....8, of 81,...,8n, respectively, having their coordinates in E, such that

(11.3) Hng)(g;)Hw < nsWQciv (t,7j=1,...,n, w € Mg, wt ),
(11.4) [ L (@) < (14 2)n)) ™™™ (5 =1,... ., w € Mg, w | vo).

Proof. Choose a finite extension F' of K such that gi,...,g, € F™. For
je{l,...,n}, put

—1
n ) (max |20 () [uQ ) (€ Mp, utvp),

i<i<n
d(ulvo) 1
(5552 Hecaten) (s 161,
(u € Mp, u | vo).

Notice that for j = 1,...,n, at most finitely many among the numbers Aj,
(v € Mp) are # 1, and [Jyensn Aju > 1. So we can apply Lemma 11.1 and
obtain that there are a finite extension F of F, and ay, . ..,a, € E*, such that

ljllw < Ajy for w e Mg, j=1,...,n,
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where we have written A;,, := A?iwm), with u the place of F' below w. As is
easily seen, for j = 1,...,n, we have that

-1
n_s(w) . (max ||L§w) (g‘]>HwQ_Czw) (w S ME7 w T 'UO),

1<i<n
d(w|vo) 1
Ajoy = (L +2) | ( () (g )
( 1+ 1 He,eo(g) nax [1L; () llw
(w € Mp, w | vy).
Together with (11.2) this implies that g; = oyg; (j =1,...,n) satisfies (11.3),
(11.4). O

LEMMA 11.3 (Davenport’s Lemma). There exist a finite extension E of
K, a permutation ™ of {1,...,n}, and vectorsh; =h;(Q) € E™ (j =1,...,n),
with the following properties:

(11.5) span {hi,... h;} =span{gi,...,g;} forj=1,...,n,

11.6) 1L ()]l < n5@QC (i, =1,...,n, w € Mg, w{v),

w n2 . d(wlvo)
(11.7) 28 ()l < (37 min(r, 4))

(t,7j=1,...,n, w € Mg, w | vp).

Proof. The proof is the same as that of [11, Lemma 9.2], except for some
small modifications. In fact, starting with gy, ..., g,, we construct scalar mul-
tiples g},..., g, as in Lemma 11.2. Then [11, (9.17), (9.18)] hold, but with
the vectors gi,...,8, being replaced by gf,...,g, and the numbers Q%
(14 ¢€)A; by n=sW Q% and (1 + e)nAj, respectively, for 4,5 = 1,...,n. We
then copy the proof of [11, Lemma 9.2]. Here we have to use (11.1) instead of
[11, (9.15)]. This yields vectors hy, ..., h, satisfying (11.5), (11.6) and (11.7)
with 2"°n(1 + £)"*! instead of 3"°. Together with our assumption (11.1) this
implies our Lemma 11.3.

In the proof of [11, Lemma 9.2], the tuples £ = (Lgv) v € Mg,i =
1,...,n) under consideration satisfy, in addition to (8.7), (8.8), the following
conditions: || det(Lgv), . ,L,(f))Hv =1 for v € Mg and Lgv) = Xy,..., L) =
X, for all but finitely many v € Mpg. But these conditions are not used
anywhere. O

Let @ be a real with (9.3), (9.4), and let k € {1,...,n — 1} be the index
from Lemma 9.4. That is, ) satisfies
(11.8) Q>0 M(Q) <,
(11.9) (@) < Q7 DN 1(Q).

Put N := (}). Let C(n,n — k) = (I1,...,In) be the sequence of (n — k)-
elements subsets of {1,...,n}, arranged in lexicographical order. Thus, I} =
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{1,....n—k}, Lb={1,....n—k—1n—k+1}, ..., In-1 ={k,k+1,...,n},
IN:{/{?+1,...,7’L}.

Let h; = h;(Q) (j = 1,...,n) be the vectors from Lemma 11.3. For
veE Mg,j=1,...,N, define

70 ._ ()
(1r10) LY =L A ALY |
(11.11)  h;j =hi(Q):=h;(Q)A---Ah;_,(Q),

Cjv *= Cigp + 0+ Cipy v,

(11.12) vj = vi(Q) := A (Q) -+ Ai, . (Q),

where I; = {i; < --+ < ip_g}. The permutation 7 from Lemma 11.3 induces
a permutation 7 of {1,..., N} such that if I; = {iy,...,4,_x}, then Ly =
{m(i1),...,7(in—k)}. In the usual manner, we write

(11.13) LY = IV, 2 = d(wlv)es,

for any place w of any finite extension of K, where v is the place of K below w.
Let E be the finite extension of K from Lemma 11.3. By (6.10), (11.6),

(11.7) we have for w € Mg, i,j=1,...,N,

(1114) L8 ()l = [l det (L (hy,)

ip Hw

1<p,q<n—k
((n — k)!)s(w)n—(n—k)s(w)Qaw < Q/C\iw if w { vy,
<

3n3 min (U;;,l(i), V;r\*l(j)) if w ’ g,

where [; = {il << in—k}; I]‘ = {j1 <A' < ]/n\,k}

Our concern is about the points hi,...,hy_;. Define the quantities
Civ (@) (i=1,...,N) (so depending on Q (!)) by
R 30~ 1 (Q) i 771(i) # N,
(1115) QCZ"UO(Q) — . 1( )( ) ( )
3" un_1(Q) if 771(i) = N.
Next, define
(11.16) Ciw(Q) = d(w|v)E; 0, (Q)

if w is a place of some finite extension of K lying above vyg.
Now (11.14) implies for i =1,...,N,j7=1,...,N — 1,

ﬂ%“@mm<Q%wweMEw+m»

(11.17) e -
IZ;" ()]l < QD (w € Mp, w | vo).

We may take the same finite extension E of K as in (11.14) but, in fact, in
view of (11.13), (11.16), we may take for E any finite extension of K that
contains the coordinates of }A11, e ,ﬁN_l. It is a feature of our new approach,
as opposed to [11], that it allows us to handle exponents ¢;,(Q) that vary
with Q.
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We have collected some properties of the exponents Cj,, C;,(Q).

LEMMA 11.4. Let Q be a real with (11.8), (11.9). Put N := (}). Then

N
(11.18) ZE,;U =0 forve Mg\ {v},
i=1
. < —
(11.19) Jmax |Civ| < (n—1) X Ciy forve Mg\ {vo},
(11.20) > max |G| <n—1,

N
(11.21) D G (Q) < —d/n,
=1

(11.22) max |G ., (Q)] < n.

1<iKN

Proof. (11.18), (11.19) and (11.20) are easy consequences of (11.10), (8.2)—
(8.4) and the choice of vg. (11.18) is immediate. For (11.19), observe that

|¢ju| = max <Z Civ, Z cw> <(n—1) 1121%)% Civ,
ZGLj ZQQ

and for (11.20), take the sum over v and apply (8.4). We prove (11.21).

Write again \;, v; for A\;(Q), v;(Q), and put N’ := (nﬁgil) Notice that by

(11.12), UN—1 = AgAk+2 AN, UN = A\gt1 -+ - An. Together with (11.15), (9.2),

Lemma 9.4, (11.9), and (11.8), this implies

QZL&,UO(Q) =3 Ny oy (vy—1/vN)
=3"N (1 )Y O/ M)
< 3n3N2n(n—1)N'/2Q—§/(n—1) < Q—&/n.

We finish with proving (11.22). Let ¢ € {1,...,N}. By (11.12), (11.15),
we have

Q/C\z’,vo (Q) — 3”3)\11 Y

Tn—k
for certain distinct indices i1, ...,i,—x € {1,...,n}. Together with Lemma 9.3
and (11.8), this implies

. 1
Qleiwo @I < 37° Q"= 2 < Q. 0

Next, we prove some properties of the linear forms f,gv). For v € Mg,
denote by A, the matrix of which the j-th row consists of the coefficients of
£
_J
Q is given by H*(S) := [[wem, max(l, ||a1lw,. .., [|as|lw), where E is any
number field containing S. If A1, ..., A,, are matrices with elements from Q,

for j =1,..., N. The inhomogeneous height of a set S = {a,..., a5} C
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we denote by H*(Aj1, ..., A, ) the inhomogeneous height of the set of elements
OfAl,...,Am.

LEMMA 11.5. Let Zl,...,Zs be the distinct matrices among ZU (v €
Myp). Then
H*(A7Y, ... A;YH < HE

Proof. Write UveMK{LgU),...,LS})} = {Ly,...,L.}; then r < R. For
i=1,...,s8 let B; := (det;l\i)ﬁfl. For v € M, put 6, := det(LgU), . .,L%U)),
and let d1,...,0, be the distinct numbers among 0, (v € M).

Thanks to assumption (8.8), we can apply Lemma 10.1. For v € Mg, the

(v)

elements of the matrix (det Ev);l\; ! are up to sign the coefficients of L;"’ A

A LE:) for all k-element subsets {i; < --- < i} of {1,...,7}, and so are up
to sign among the set {di,...,d;,} from Lemma 10.1. Hence,

H*(By,...,Bs) < Hy.

By (6.6), we have det A, = 6N for v € Mg, where N’ := (nﬁgil) Now a

combination of (7.3) and the inequality just established gives
H (AT A Y <H. - ] max [|6; [
'UEMK

N ((1)-1)

<H, < HF.

This proves our lemma. O

LEMMA 11.6. Suppose Q satisfies (11.8), (11.9), and put N := (}). Let
f(Q) be the Q-vector space spanned by the vectors IAll(Q), .. ,EN_l(Q). Then

Hy(T(Q)) > Q%"

Proof. Put T := T}(Q), T := f(Q) We have seen that T is spanned by
hi(Q),...,hx(Q). So we may apply Lemma 6.1. Now this lemma together
with Lemma 10.3 gives Ha(T ) Hy(T) > QO/3E", O

12. A nonvanishing result

Let N, m be integers > 2. Below, i, j will denote mN-tuples (ip; : h =
L,...,myj=1,...,N),(u: h=1,...,m, j=1,...,N) of integers, and i+
will denote their componentwise sum/difference.

We consider polynomials P € Q[Xq,...,X,;] = Q[X11,..., Xmn] in m
blocks of N variables X = (Xp1,..., Xpn) (h=1,...,m). Such a polynomial
P is expressed as

m N
(12.1) P=>a(j)Xi with XI:= [T [ X%,

j h=11=1
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where the sum is over a finite set of tuples j € Z7¢" and where a(j) € Q. For

a polynomial P as above and for i € Z%V , we define

(i1
- \idiid hl'aXW
Thus, if P is given by (12.1), then

(12.2) P = Z <1+J) i+j)X),  where (IJIFJ) _ hl;[ 1;[ (Zhl +jhz)

We say that P € Q[Xq,...,X,,] is multihomogeneous of degree (r1,...,7y,) if

it is homogeneous of degree 7, in block Xj for h = 1,...,m, i.e., if in (12.1)
the sum is taken over tuples j € Z’%V with Zf\il ju=rpforh=1,....m
We write points in @mN as (X1,...,Xm), where x1,...,%x,, € @N. The

height Hy(P) of P € Q[Xq,...,X,,] is defined as Ha(ap), where ap is a vector
consisting of the nonzero coefficients of P.

Let T be a finite dimensional Q-vector space and B a positive integer. By
a grid of size B in T" we mean a set of the shape

d
{Zmzal:xzel |z;| < Bfori=1,. d},

=1
where d = dim T and {ay,...,ay} is any basis of T
We recall [9, Lemma 26]. We note that this result was deduced from a
sharp version of Roth’s Lemma and ultimately goes back to Faltings’ Product
Theorem [13].

ProrosiTION 12.1. Let m, N be integers > 2, € a real with 0 < € < 1,

and 1, ...,y positive integers such that
9 2
(12.3) T T =1, ,m— 1.
Th+1 €
Next, let P be a nonzero polynomial in Q[Xq,...,X,,] that is homogeneous of

degree Ty, in the block Xy, for h = 1,...,m, and let T1,..., T, be (N — 1)-
dimensional linear subspaces of @N such that

_ m2 m
(12_4) HQ(Th)rh > (er1+---+rmH2(P)>(N 1)(3m?/¢)

Finally, for h =1,...,m, let 'y, be a grid in T}, of size N/e. Then there are
xp € Ty withxp, #£0 forh=1,...,m andiGZQéV with

m

1 (N

(12.5) S =D in ) <2me
" \1=1

such that

(12.6) Pi(x1,...,%Xm) # 0.
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13. Construction of the auxiliary polynomial

We start with recalling our main tools, which are a version of Siegel’s
Lemma due to Bombieri and Vaaler and Hoeffding’s inequality from probability
theory.

For an algebraic number field K, we denote by D the discriminant of K,
and we put

Cr := | Dy |20,
LEMMA 13.1. Let K be a number field, U,V integers with V. > U > 0,

and Ly, ..., Ly nonzero linear forms from K[X1,..., Xy]"™. Then there exists
x € KV'\ {0} such that

(13.1) Li(x)=0,...,Ly(x) =0,
1/(V=U
(13.2) Hy(x) < VY2C - (Hy(Ly) - Hy(Lyy)) ™7,
Proof. This is a consequence of Bombieri and Vaaler [1, Th. 9]. O

In the lemma below, all random variables under consideration are defined
on a given probability space with probability measure Prob. The expectation
of a random variable X is denoted by E(X).

LEMMA 13.2. Let Xq,...,X,, be mutually independent random variables
such that

Prob(Xh € [ah,bh]) =1, EXyp)=un forh=1,...,m,

where ap, by, up € R, ap < by for h=1,...,m. Then for every e > 0, we have

m 2.2
(13.3) Prob <Z(Xh ~ Hn) 2 mg) S e <_ZZ"L12(TZ;L€— ah)2> '

h=1
Proof. See W. Hoeffding [15, Th. 2]. O
For positive integers m, N and a tuple of positive integers r = (71,...,7m),

define U(r) to be the set of tuples
i=0m:h=1,...,m1=1,...,N)ezZy

such that
N

Zjhl:Th forh=1,...,m.
=1

Put

(13.4) V:z#Ll(r)zﬁH( N1 )
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Using the inequality

(1) < R (142 (14 2) < (1)

for positive integers a, b, it follows that

(13.5) V < (eN)ttrm,

We deduce the following combinatorial lemma.

LEMMA 13.3. Let N be a positive integer, v = (r1,...,rn) a tuple of
positive integers, £, reals with 0 < & <1 and v > 0, and ¢, = (€p1,-..,ChN)
(h=1,...,m) tuples of reals such that
(13.6) 6| <v forh=1,...,m, l=1,...,N.

Then the number of tuples j = (jpy: h=1,...,m,l=1,...,N) € U(r) such
that

m 1 N 1 m N

(13.7) Z — (Zjhlahl> Z N (Z ZEM) + mrye
h=1"h \1=1 h=11=1

1S at most

(13.8) e 2y

Proof. We assume without loss of generality that v = 1. We view j as a
uniformly distributed random variable on U(r); i.e., each possible value of j is
given probability 1/V. Define random variables on U(r) by

Notice that Xy,...,X,, are mutually independent, and for h =1,...,m,
Prob (X, € [-1, 1]) =1, (by (13.6) and v = 1),

E(Xp) = Z Chi-

Now the number of tuples j € U (r) with (13.7) is precisely

V'PI‘Ob(ZX}L—,U,h ),

and by Lemma 13.2 this is at most V' - e~me?/2, g

Let K be an algebraic number field and m, N, rq,...,r,, integers > 2. We
keep the notation introduced in Section 12. In particular, by i we denote an
mN-tuple of nonnegative integers i = (i; : h=1,...,m,l=1,...,N), and
similarly for j, k. Further, K[X;,...,X,,] denotes the ring of polynomials
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with coefficients in K in the blocks of variables X;, = (Xp1,...,Xpn) (B =
1,...,m).

We consider polynomials in this ring that are homogeneous of degree ry,
in X for h = 1,...,m. In analogy to (12.1), such a polynomial P can be
expressed as

(13.9) P= " a(j)X with ap := (a(j): jeU(r)) € K.

We prove a simple auxiliary result.

LEMMA 13.4. Let P be a nonzero polynomial with (13.9). Further, let
R N
Li = Zainj (’L = 1,...,N)

be linearly independent linear forms with coefficients in K, and let
-1

-----

be the inverse of the coefficient matriz of f/l, ey EN. Lastly, put

Cv =  1ax ”BZ]HU fOT”U € MK
i 1,...N

J=1,...

Then for every i e Z>O , we have

m N
(13.10) Z le ap) H HE (Xp) Jhl
h=11[1=1

JjeU(r,i)
with U(r,1) :={j € cj+iel(r)},

where d; is a linear form with coefficients in K in V variables satisfying

forjeU(r), v e Mg.

r1te+rm
(13.11) di gl < ((6N?)*)C,)"™

Proof. Define new variables Y}, := El(Xh) forh=1,...,m,l=1,...,N.
Then by (12.2),

jeuU(r,i)
o ZhH‘JhZ Jni
g (e [0
J r,i =1l=
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Let v € Mg. Then by (6.5), we have for j € U(r,i), on noting (lﬂ) <

(shi+int) _ P,
QEh,l hTIRL) — 9ridtr ,

. -\ s(v) .
IDils < (F53) 7 (o) e < e
B 1

Together with (6.5), (13.5), this implies for j € U(r, 1),

HleHUI VS(U) kmzjlx HDI kHUl ( 6N2C )7"1+ +rm

As before, let £, c,n, R, ¢ satisfy (8.1)—(8.9). We fix k € {1,...

and consider all reals () satisfying (11.8), (11.9).

Let vy be the place from (8.8) and Egv) (ve Mg,i=1,...,
linear forms and ¢;, (v € Mg \ {vo}, i =1,...,N), G (Q) (i =1,...

reals from Section 11.

0

,n—1}

N) be the

,N) the

We want to construct a suitable nonzero polynomial P of the shape (13.9).

The next lemma is our first step. For v € Mg, we write

m N
(13.12) P= 3" d"(ap) [T [T L" (Xn)™,
h=11[=1

jelu(r)

where dév) is a linear form with coefficients in K in V variables in the coeflicient

vector ap of P.
LEMMA 13.5. Let Sy be a subset of
S1 = {U € Mk : ¢, := (Clva'--ycm)) # 0}7

and put sg := #Sy. Let € be a real with 0 < & < 1, m an integer with

(13.13) m > 2e % log(2s0 + 2)

and 11,...,Tm positive integers. Lastly, let Q1,...,Qm be reals with (11.8),
(11.9). Then there exists a nonzero polynomial P of the type (13.9) with the

following properties:

(i) For every v € Sy and each j € U(r) with

(13.14) hzl (Z Jhl%) mne - <1D\fl?\>; sz) :
we have
(13.15) " (ap) = 0.

(ii) For each j € U(r) with

mo (&L md
> il (Qn) | = —— tmne,
=1 n

(13.16) > —

h=1"h
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we have
(13.17) di") (ap) = 0.
(iii) For the height of P, we have
(13.18) Hy(P) < C (2" HE )™,

We recall here that by (8.2) the set S is finite and that the place vy given
by (8.8) does not belong to 5.

Proof. We prove that there exists a nonzero polynomial P of the type
(13.9) such that for every v € Sy and each j € Z7J¥ with

m 1 N N
(1319) Z 7 (Zjhlav> Z (z Zav> + mne - <maX Cw) )
=1

1\
h=1 =1 s

we have (13.15), and such that for each j € Z7¥ with

(13.20) i : (chz vo (@ ) > ( ZZa,UO(Qw) + mne,
h=1 h=11=1

we have (13.17). This suffices, since by (11.18), (11.21), the conditions (13.14),
(13.16) imply (13.19), (13.20).

We may view (13.15) with (13.19) and (13.17) with (13.20) as a system
of linear equations in the unknown vector ap € K", where V = #U(r). By
(11.19), (11.22), Lemma 13.3, and assumption (13.13), the number of equa-
tions, i.e., the number of j with (13.19), (13.20), is

U< (so+1)Ve ™21y,
Combining Lemma 11.5 with Lemma 13.4 gives us

v n\ T AT
Hy(d") < (6N2HE")"

for v € SpU{wo}, j € U(r). Now Lemma 13.1 implies that there is a nonzero
ap € KV with

Hy(ap) < Cre VY2 (62 )t vv=u),

By inserting (13.5) and N = (Z) < 271 we arrive at
Hy(P) = Hz(ap) < Ck (661/2N5/2HR">”+“'+%

<CK (23nH£ )7‘1+ +rm‘

Our lemma follows. O
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The next proposition lists the properties of our final auxiliary polynomial.
For v € Mg, i€ Z’%V, we write, analogously to (13.10),

m N
(13.21) P= Y dp) [T T L" (Xn)™,

jeu(ri) h=11=1

where U(r,i) = {j € Z7 : i+j € U(r)} and where di(;f) is a linear form in V'
variables with coefﬁments in K.

PROPOSITION 13.6. Let € be a real with 0 < e < 1, m an integer with
(13.22) m > 2ne 2log(4R/e)

and ri,...,ry positive integers. Further, let Q1,...,Qm be reals with (11.8),
(11.9). Then there exists a nonzero polynomial P of the type (13.9) with the
following properties:

i) For every v € Mg \ {vo}, each tuple i € Z7 with
>0

(13.23) Z (Z w) < 2me

h= 1

and each j € U(r,i) with

1
(1324) Z ™ (Z Clv]hl) > 4mne ma}% Civ,

1<i<

h=1 =1
we have
(13.25) diY (ap) = 0.
(ii) For each i with (13.23) and each j € U(r,i) with
(13.26) i e i o (Qn) —@ + 4dmne
. 2y \ & h)Jni DN )
we have
(13.27) di' (ap) = 0.
(iii) For the height of P, we have
(13.28) Ha(P) < Cg (22" HE )"

(iv) For alli € 273, we have

n\ 1+ +Tm
(13.29) 11 <£?X Hle ap)HU> < Cie (25m 2R )™ :
vEMK
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Proof. We construct a subset Sy of
S1:={ve Mg: c,=(cry,...,Cnp) # 0}

and apply Lemma 13.5 with this set. The set Sy is obtained by dividing S
into subsets and picking one element from each subset. For v € Mg, we put
Yo = maxlgign Cip-
First, we divide S7 into t; subsets S11,...,S1, in such a way that two
places v1, v9 belong to the same subset if and only if
Lgvl) = ng) fori=1,...,n.

By (8.7), we have t; < R™.
We further subdivide the subsets S1;. Let j € {1,...,¢;}. Divide the cube
[—1,1]™ into tg := ([2/5] + 1>n small subcubes of sidelength
_ 2 .
[2/e] +1 °
Now divide 57 ; into t3 subsets Sij1,. .., 51, such that two places v1, v2 belong
to the same subset if the two points

Yoi Yor Yvo Yva
belong to the same small subcube. In this way, we have divided .57 into
tita < R"([2/e] + 1)" < (B3R /e)"
subsets. Let Sy consist of one element from each of the subsets. Thus,
(13.30) s = #S0 < (BR/e)".
Further, for each v € Sy, there is v1 € Sy with

Ll(“):Ll(.vl), Giv _ Giw <eg fori=1,...,n.
v Yv1
This implies that for every v € 51, there is v; € Sy such that
(13.31) LW =L for1=1,...,N,
/C\lv . El,vl

(13.32)

Leforli=1,...,N.

nYw Yoy
We apply Lemma 13.5 with the subset Sy constructed above. Condi-
tion (13.13) of this lemma is satisfied in view of our assumption (13.22) on m
and in view of (13.30). Let P be the nonzero polynomial from Lemma 13.5.
We show that this polynomial has all the properties listed in our proposition.
To prove (i), we first show that for every j € U(r), v € Mg \ {vo} with

(13.33) Z (Z Cw]m) > 2mney,

h=1"h \1=1
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we have

(13.34) d\"(ap) = 0.

For v € Mg \ (51U {vp}), we have ¢, = 0 for ¢ = 1,...,n, whence v, = 0
and ¢, = 0 for [ = 1,..., N, so there are no j with (13.33). For v € Sp, we
have (13.34) for all j with (13.14), and so certainly for all j with the weaker
condition (13.33). Finally, let v € 57 \ Sy and take j € U(r) with (13.33).
Take v1 € Sp with (13.31), (13.32). Condition (13.31) implies that ngv)(ap) =
dgvl)(ap); hence, it suffices to show that djgvl)(ap) = 0. Now condition (13.33)
together with (13.32) implies

m o1 N 5 mooq N 5 m N .
Z(Zl’m'jhz>>z<z - 'jhl>—fzzm > me.

h=1"h \i=1 "o h=1"h \1=1 "M h=11=1 "h

Hence j, v satisfy (13.14), and so d§v1)(ap) = 0 by Lemma 13.5. This shows
(13.34) for v € Mg \ {vo}.

We now prove (i). Let i € ZZ{" be a tuple with (13.23), and let v €
Mg \ {vo}. Using expression (13.12) for P, we infer that P; is a K-linear
combination of polynomials

3 ) o

moq N
(13.35) > <Z khl> < 2me.
j=1

h=1

Hence, if j € U(r, i), then di(g) (ap) is a K-linear combination of terms ngi)k(ap),

over tuples k with (13.35). Now take j € U(r,i) and suppose that j satisfies
(13.24). Then for all k with (13.35), we have j + k € U(r) and moreover, by
(11.19),

moq N
Z — (Z Cro(Jnm + khl)) > dmneyy, — 2mneyy, = 2mnevy;
h=1"h \iz1
i.e., j+k satisfies (13.33). So for all k with (13.35), we have that j+ k satisfies
(13.34); i.e. dj_i_)k(ap) = 0. This implies that di(g) (ap) = 0. This proves (i).
The proof of (ii) follows the same lines, using part (ii) of Lemma 13.5
instead of (13.34). (iii) is merely a copy of part (iii) of Lemma 13.5.
It remains to prove (iv). Let i satisfy (13.23), and let j € U(r,i). Then by

Lemma 13.4,
Hdl_] HU 1 X ( (6N2)S(U)CU>TI+...+7,M7
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and so
14t (ap) o < 114 w1 - lap o < llapll, - (6N?)*®)C,

for v € My, where by Lemma 11.5, we have

II ¢ <HE.

vEME

>T1+"'+T7n

By taking the product over v € M, using (iii), N < 2"~!, we obtain

max ||d (ap)||v<CK(23"Hg".6N2HL

”)T1+“'+7'm
el (i
M I]

< O (20mm2Rm ),
This proves (iv). O

14. Proof of Theorem 8.1

We keep the notation and definitions from the previous sections. Assume
that Theorem 8.1 is false. Define the following parameters:

)
(141) g = W, = [271572 10g(4R/€)} + 1
Notice that
(14.2) nm < n+ 2-11%n%22"725"2log(4 - 11n?2" ' R/6) <

Hence by Lemma 9.4, there exist k € {1,...,n— 1} and reals Q1, ..., @Q,, such
that

(143) Ql 025

(14.4) Qni1 > Q% (h=1,...,m—1),

(14.5)  A(Qn) < Q%) M(@Qn) < Q" I Nsa(@Qn) (h=1,....m).

Put
n
N = .
(+)

For h =1,...,m, let hyp = fll(Qh), . .,ﬁth_l = EN,l(Qh) be linearly in-
dependent vectors from @N satisfying (11.17) with @ = Q. By the remark
following (11.17), we may take for the field E any finite extension of K con-

taining the coordinates of hy; for h =1,...,m, j =1,...,N — 1. Thus, for
h=1,....m,l=1,... N, j5=1,...,N — 1, we have

{Hsz (i)l < @5 (w € Mp, wt o),

(14.6) - on
||Ll (hhj)Hw < lw " o(we Mg, w| vg).
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For h=1,...,m, denote by Th the Q-vector space generated by ﬁhl, . ,ﬁh,N_l,
and define the grid

N
(14.7) Iy = {Zﬂfjﬁhj cx; €L, |rj] < Nfeforj=1,...,N — 1}.
j=1

Now choose a positive integer r; such that

o & los @
log Q1
and then integers ro, ..., 7, such that
1 1
M <rp <1+ % forh=2,...,m.

log Qp, log Qp,
Thus, r1,...,r, are all positive integers with
(14.8) n Q< QM for h=2,...,m.

Further, by choosing rq sufficiently large as we may, we can guarantee that
(14.9) 1.1" > Ck.

With our choice of m in (14.1), there exists a nonzero polynomial P with
the properties listed in Proposition 13.6. We apply our nonvanishing result
Proposition 12.1 to P. We verify the conditions of that proposition. Condi-
tion (12.3) is satisfied since by (14.8), (14.4), (8.10), (14.2),

Th log @
(12.4) follows by combining the lower bound for Hy(T},) from Lemma 11.6 with

the lower bound @; > C3 from (14.3) and the upper bound for Hy(P) from
(13.28). More precisely, we have for h =1,...,m,

> (1 —i—s)*lmg/z > 2m?/e.

Hy(Tp)™" > QZh5/3Rn > QTW?’R” by Lemma 11.6, (14.8)
COBRY _ (9 yrms ™83 1y (14.3), (8.10)
<(2HL)(TLM)2nm5/3mRn)7'1+"'+'f’m by (14.2)

VoWV

WV

YN DEIE ) )

(c-2mHE"
)(1\7—1)(37712/6)m

WV

<€7”1+"'+7”mH2(P) by (1328)7 (149)7

which is condition (12.4).
Now we conclude from Proposition 12.1 that there exist a tuple i € Z%V

such that
N

UL |
Z — (Z ihl> < 2me
h=1"h

=1
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and nonzero points x, € I', (h=1,...,m) such that
Pi(x1,...,%m) # 0.

We finish by showing that [Twenr ||Pi(X1,- -, %m)|lw < 1. Then by the
Product Formula, Pi(x1,...,X,) = 0, which is against what we just proved.
Thus, our assumption that Theorem 8.1 is false leads to a contradiction.

We express P; as in (13.21) for v € Mk. In the usual manner, where in
all cases w € M and v is the place of K below w, we define

L™ .=I" (1=1,...,N),

Cp i =d(w|v)¢y (wive, L=1,...,N),
Clw(Qn) = d(wlvo)Clu, (Qr) (wlvo, 1 =1,...,N),
A% (ap) = dY (ap) (€ U(r.i)),
and also

= IMaxX Ciy-
w ¢ Tw
v 1<i<n

Then 7, = d(w|v) maxj<i<p ¢ip if v is the place of K below w, and moreover,
by (8.4) and },|, d(wlv) =1 for v € Mk,
(14.10) > <L

weMp

Now (13.21), (13.24), (13.26) imply that for w € Mg, we have

m N
(14.11) P=Y d%@p) [T TTL" (Xn),

jEU h=11=1

where for w € Mg with w { v, U,, is the set of j € U(r, 1) with

m o1 N
(14.12) Z — <Z Elehl> < dmnevyy
h="h \i=1
and for w € Mg with w|vg, Uy, is the set of j € U(r, i) with
mo (XL ) md
(14.13) > (S @i ) < dlwleo) (2 4 dmne ).
h=1"h \1=1 niv
Further, by (13.29), (14.9), we have
(1414) H Aw < (27nHan)T1+---+T’m ’
weMpg

with A4,, := max Hd;u-)(ap)Hw for w € Mg.
jEUw )
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Finally, we observe that by (14.6), we have for the points x, € I'y (h =
1,...,N)and fori=1,..., N,
I8 () o < N¥Q (w € Mg, w tvo),
(14.15) ) o
IZE () oo < Q5 (@) (w € Mg, w | wo),

where we have used that w with w|vg is non-archimedean.
First, take w € Mp with w t vg. Then, in view of (14.11), (13.5), (14.8),
(11.19), (14.12), we have

| Pi(x1,. ., %xm)|[w < V? ) 4, maXHHHL (%)%
Y p=11=1

< Aw(€N2)S(w)(T1+--.+rm) ﬁ Qthzl Clwllw

< Ay (eN?pntrm) (o
with

moq N
uy < Z <Z clw]lw> +emmax €10 |

h=1"h \1=1
< Syymne.

So altogether, we have for w € Mg with w { vy,
(14.16) IPi(X1, -+ X)) [ < A (eN?)s@)ritdrm) (@mrysywne,

In a similar fashion, we find for w € Mg with w|vg, using (14.11), (14.8),
(11.22), (14.13), noting that now we do not have a factor (eN?2)s@)(rit-+rm)
since w is non-archimedean,

Hj:)i(xlu o 7xm)Hw < Aw( 71"1)aw
with

m N
<Y — ! (Z Clu Qh)]m) +em maX|Clw(Qh)|

h=1"h \1=1

mo
< d(w|vg) (—m + 5mna> :
This gives for w € Mg with w|vg,

(14.17) | Pi(x1, .. Xm) |l < Aw( qlnrl)d(w\vo)(—(5/nN)+5ns)‘

Now taking the product over w € Mg, combining (14.16), (14.17), (14.14),
(14.10), > juo d(w|vo) = 1, we obtain

H ||Pi(X1a o ,Xm)Hw < (6N2 . 27TZH%R")T1+'-~+7‘m (anm
weME

)10n5—5/nN



IMPROVEMENT OF THE QUANTITATIVE SUBSPACE THEOREM 565

By our choice of € in (14.1), and the inequalities n > 2, N < 2", the exponent
on Q7" is < —§/(11n - 27~ 1). Together with (14.3) this implies

no —6/11np2n 1\ T
T 1Al < (27 HZT - Q7)<
wGME

as required. This completes the proof of Theorem 8.1.

15. Construction of a filtration

We construct a vector space filtration, which is an adaptation of the
Harder-Narasimhan filtration constructed in [14].

Let K C Q be an algebraic number field and n an integer that we now
assume > 1 instead of > 2. Further, let £ = (LEU) :v € Mg,i=1,...,n) be
a tuple of linear forms and ¢ = (¢; : v € Mk, i =1,...,n) a tuple of reals,
satisfying (2.4)—(2.7).

Let wy, = wgcp (v € M) be the local weight functions on the collection
of linear subspaces of Q", defined by (2.19). Then the global weight function
is given by w = wgc = > ey Wo-

We give some convenient expressions for the local weights w,. Forv € Mg,
we reorder the indices 1,...,n in such a way that

(15.1) Cly <+ K ey for v e Mg.

Let U be a k-dimensional linear subspace of Q". Let v € M. Define

(15.2)

L(U) =0 if k=0,
I,(U) :={i1(v),...,ix(v)} if k>0,

where i1(v) is the smallest index i € {1,...,n} such that L ]U # 0, and
for 1 =2,...,k, 4/(v) is the smallest index ¢ > i;_1(v) in {1,...,n} such that

Lgfgv)w, e ,L( V) lu, L L )|U are linearly independent. Then

-1 'U)
(15.3) wy(U) = | > i

It is not difficult to show that I,(Uy) C I,(Uz) if U is a linear subspace of Us.
Define the linear subspaces of Q"

UOU ::@na
U ={xeQ" : I\"x) = =Lx) =0} (ve Mg, i=1,...,n).
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Then

(15.4) wy(U) =" cio(dim(U N Ui_y,,) — dim(U N Ujy,))
=1

=1, dimU + Z(CiJrl,v — Civ) dlm(U N Ui’u)-
=1

LEMMA 15.1. For any two linear subspaces Uy, Uy of Q", we have
w(U1 N UQ) + ’U}(Ul + UQ) > w(Ul) + ’U)(UQ).

Proof. Let Uy, Us be two linear subspaces of Q". Tt clearly suffices to show
that for any v € Mg, we have

(15.5) wv(Ul N UQ) + wv(Ul + UQ) > wv(Ul) + ’LUU(UQ).

But this follows easily by combining (15.4) with ¢j41, — ¢y = 0 for i =
1,...,n—1and

dim(U1 N Uz) + dim(U1 + UQ) = dim U; + dim Uy,
UNUi+Ux) 2(UNU)+ (UNUy)
for any three linear subspaces U, Uy, Us of Q". ]

For any two linear subspaces Uy, Us of V' with dim U; < dim Us, we define
d(UQ, Ul) = dim U2 — dim Ul,

(156) w(U27 Ul) = wﬁ,c(UZa Ul) = wﬁ,c(UQ) - wﬁ,c(U1)7
'lU(UQ,Ul)

Up,Uy) = Uy, Uh) i= ——7F—7—~.
/-’L( 27 1) )u’ﬁ,C( 27 1) d(UQ,Ul)

We prove the following lemma.

LEMMA 15.2. Let V be a linear subspace of Q", defined over K.

(i) There exists a unique proper linear subspace T' of V' such that

w(V,T) < p(V,U) for every proper linear subspace U of V,

subject to this constraint, T has minimal dimension.

This space T is defined over K.
(ii) Let T be as in (i) and let U be any other proper linear subspace of V.
Then j(V,U NT) < p(V,U).

Proof. Obviously, there exists a proper linear subspace T' of V' with (i)
since p(-,-) assumes only finitely many values. We prove first that T satisfies
(ii) and then that T' is uniquely determined and defined over K. Put p :=
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w(V,T). Then by Lemma 15.1 and since u(V, W) > u for any proper linear
subspace W of V,

w(V,UNT)<w(V,U) +w(V,T) —w(V,T + U)
<w(V,U) + pd(V, T) — pd(V,T +U)
= pu(V,U)d(V,U) + pd(T + U, T)
<

n(V,U)
w(V,U)(d(V,U) + d(T + U, T))
u(V.U)d(V,UNT).

This clearly proves (ii).

Now suppose that there exists another subspace 7" with (i), i.e., u(V,T") =
pwand dim7” = dimT. By (ii) we have u(V,TNT') < u(V,T') = pu. By the
definition of x and the minimality of dim 7', we must have TNT' =T =T".

It remains to prove that T is defined over K. Let ¢ € Gg. Since V
is defined over K and all linear forms Lgv) have their coefficients in K, we
have pu(V,o(T)) = u(V,T) = p, while dimo(T) = dimT. So by what we just
proved, o(T) = T'. This holds for arbitrary o; hence, T is defined over K. [

Remark. In the situation of Section 2, we have V = Q", w(@n) =0, and
thus, the subspace T' = T'(L,c) defined by (2.21) is precisely the subspace
from (i). In a special case we can give more precise information about the
subspace T.

LEMMA 15.3. Let V =Q", and let T be the subspace from Lemma 15.2(i).
Suppose that

(15.7) U (. L) C{Xh, e X X+ 4 X
vEMK
Then there are nonempty, pairwise disjoint subsets I, ..., I, of {1,...,n} such
that
(15.8) T:{Xe@n:ijzoforjzl,...,p}.
Jjel;

Proof. Let k :=dimT, p :=n — k. Define the Q-linear subspace of @nﬂ;

n n
H = {u = (ug,...,un) € @nﬂ : Zquj —UOZXj € TJ‘}.
j=1 J=1
Notice that dimH = p+ 1 and (1,...,1) € H. We show that H is closed
under coordinatewise multiplication; i.e., H is a sub-Q-algebra of @nﬂ. This
being done, it is not difficult to show that there are pairwise disjoint subsets
Ip,..., I, 0f{0,...,n} such that H is the set of u € @nH with u; = u; for each
pair 7,7 for which there is [ € {0,...,p} with 4,j € I;. This easily translates
into (15.8).
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Fix a = (ag,...,a,) € H. Choose ¢ € Q such that b; := a; + ¢ # 0 for
i=0,...,n. Then b := (by,...,b,) € H. Define the linear transformation

0: Q"= Q": (x1,...,20) = (b1z1,...,bpzy).
In general, Y>> ; §; X € @(T)* if and only if > i1 68X € T+. Using this
and b € H, it follows that for (ug,...,u,) € @m_l, we have

n n
(15.9) S uiX;—up Y Xj € p(T)*
=1 j=1

n n
< Z bjUij — U Z ijj S TL
j=1 j=1

n n
< Z bjUij — boug ZXj S TL.

j=1 Jj=1
This implies for any v € Mg and any subset {iy,... it} of {1,...,n} that
Lgf) lo(Tys - - - sz(':) lo(7) are linearly independent if and only if LZ(-f) I, ... sz(':) |7
are linearly independent. Consequently, w(¢(T))=w(T) and thus, #(Q", o(T'))

= u(Q",T). Now Lemma 15.2(i) implies that o(T) = T.

Combined with (15.9), this implies that if u € H, then b-u € H. But
then, a-u =b-u—cu € H. This shows that H is closed under coordinatewise
multiplication and proves our lemma. O

For every linear subspace U of Q", we define the point P(U) = P c(U) :=
(dimU,w(U)) € R%. In particular, P({0}) = (0,0). Notice that u(Us,U)
defined by (15.6) is precisely the slope of the line segment from P(U;) to
P(U3).

Let again V' be a linear subspace of Q", defined over K. Denote by
C(V, L,c) the upper convex hull of the points P(U) for all linear subspaces
U of V and by B(V, L, c) the upper boundary of C(V, L, c). Thus, B(V, L, c)
is the graph of a piecewise linear, convex function from [0,dim V] to R, and
C(V, L, c) is the set of points on and below B(V, L, c).

As long as it is clear which are the underlying tuples £, c, we suppress
the dependence on these tuples in our notation; i.e., we write w, u, P for

WL ey UL,co P[,,c-
LEMMA 15.4. There exists a unique filtration
(15.10) {0}§T1§ gTr,l gTT =V

such that

P({0}), P(T1),...,P(T,—1), P(V)
are precisely the vertices of B(V,L,c). The spaces Ty,...,T,—1 are defined
over K.
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P(Ty)

_>.g

P(T,-1)

P({0}) Pv)

Proof. (See the above figure.) The proof is by induction on m := dim V.
The case m = 1 is trivial. Let m > 2. There is only one candidate for the
subspace in the filtration preceding V'; it is the subspace T from Lemma 15.2(i).
This space T is defined over K. By the induction hypothesis applied to T', there
exists a unique filtration

{0})CTC - ST =T

such that P({0}), P(T1),...,P(T,_1) are precisely the vertices of B(T, L, c).
Moreover, T1,...,T,_o are defined over K.

We have to prove that together with P(V') these points are the vertices
of B(V,L,c). We first note that since Tr_ggTr_l, we have pu(V,T,_2) >
u(V,T1); hence,

d(V7 Tr72).u(va Tr72) - d(V7 Trfl).u(va Trfl)
d(Trfla Tr72)

Therefore, P({0}), P(T1),..., P(V) are the vertices of the graph of a piecewise
linear convex function on [0,m]. Let C be the set of points on and below this
graph. To prove that this graph is B(V, £, c¢), we have to show that C' contains
all points P(U) with U a linear subspace of V.

If U C T,_1, we have P(U) € C(T,-1,L,c) C C. Suppose that U ¢
T,—1. Then by Lemma 15.2(ii), we have u(V,U NT,_1) < pu(V,U). Since
PUNT,—1) € C,dimU > dimU NT,_; and C is upper convex, this implies
that P(U) € C. This completes our proof. 0

N(Trfla Tr72) =

> /L(‘/, Trfl).

The filtration constructed above is called the filtration of V with respect
to (£, c).

Remark. The Harder-Narasimhan filtration introduced by Faltings and
Wiistholz in [14] is given by {0} - T, G- G Hom(V, Q), where for a linear
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subspace T of V, we define T' as the set of linear functions from V to Q that
vanish identically on T

16. The successive infima of a twisted height

As before, K C Q is an algebraic number field, n an integer > 1, and £
a tuple of linear forms and c a tuple of reals satisfying (2.4)-(2.7). We denote
as usual by A\(Q), ..., A\, (Q) the successive infima of Hz ¢ . In this section,
we prove a limit result for these successive infima as Q — oo.

Define

(16.1) T:(Q) :== ﬂ span{x € Q" : Hreg(x) <A} (i=1,...,n).
A>Xi(Q)

Let
(O} =SS ST, ST =T

be the filtration of Q" with respect to (L,c), as defined in Lemma 15.4, and
put d; := dim 7} for { = 0,...,r. Given any two linear subspaces U,V of Q"

with dimU < dim V, we define again u(V,U) = pr(V,U) := %.

Our general result on the successive infima of Hy ¢ is as follows.

THEOREM 16.1. For every § > 0, there exists Qo such that for every
Q = Qq, the following holds:
(16.2) Q*N(Tllefl)*a <N(Q) < Q*N(Tllefl)Jr(s
forl=1,....r;i=d;_1+1,...,d,
(16.3) Tq,(Q) =T, forl=1,...,r.
We start with some preparations and lemmas. Fix a linear subspace T

of Q" of dimension k € {1,...,n — 1}, which is defined over K. Choose an
injective linear map

¢ Q Q" with /@) =T
and a surjective linear map
¢ Q" — Q""" with Ker(yp") =T,

both defined over K. Recall that for every linear form L € K[Xq,..., X,]""
vanishing identically on T', there is a unique linear form L” € K[ X1, ..., X,
such that L = L” o ¢”; we denote this L” by Lo " *.

We assume (15.1), which is no loss of generality. For v € M, let the set
I,(T) be given by (15.2), and define a tuple £ from K[Xj,...,X;]"™ and a
tuple of reals ¢’ by
{E’ = (Lgv) oyt ve Mg,ieI,(T)),

(16.4) .
¢ = (cip: v € Mg, i€ L(T)).
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Let v € Mg. Since L |T (j € I,(T)) form a basis of Hom(T, @) and
since T is deﬁned over K, there are unique «;;, € K such that L ]T =
> el (1) Qiju L \T for i € I,(T)° := {1,...,n} \ I,(T). By our definition of
I,(T), we have ajp =0 fori e I,(T)¢, j € I (T), j > i. In other words, there

are unique linear forms

(16.5) IV =1 — 3 ay, Ll (ie L(T))
jG'Iv(T)
1<t

with o;j, € K that vanish identically on 7. These linear forms are linearly
independent, so they may be viewed as a basis of Hom(Q" /T, Q).
We now define a tuple £” in K[X71,..., X,,_x]'"™ and a tuple of reals c” by

(16.6) {D“:(Ewow”lrveﬂboiGIATY%

¢’ = (cip: v € Mg, i € I,(T)°).

Let U be a linear subspace of @k of dimension u, say. Then wer o(U) =
S veMy Wer ot w(U) with, in analogy to (15.3),

0if u=0,
Ciy(v) v —+ -+ Ciy(v) 0 if u> 0,

(16.7) wer e o(U) = {

where i1 (v) is the smallest index i € I,(T) such that LZ(U) o¢|ly # 0 and
for I = 2,...,u, 9/(v) is the smallest index i > i;_1(v) in I,(T) such that

() (v) ()

Lil(v) o |y, Lil,l(v) o |y, L;’ o ¢'|y are linearly independent.

Likewise, if U is an u-dimensional linear subspace of @n_k, then wer o (U)
= ZUEMK wE”,c”,v(U)a with

(168) wﬁ”,c”,v(U) — Iu 9 .
Cii1(v),v + -+ Cip(v) v if u> O’

where i1 (v) is the smallest index i € I,,(T")¢ such that Egv) o Yy # 0 and

for I = 2,...,u, 4/(v) is the smallest index i > 4;_1(v) in I,(T)¢ such that

Lty 0@ s Iy 0 '

U, INLZ(U) o " !y are linearly independent.
LEMMA 16.2. (i) Let U be a linear subspace of@k. Then

we e (U) = wee(@'(U)).
(ii) Let U be a linear subspace of @n_k. Then

wenen(U) = we (9" (U)) — we,o(T).
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Proof. (i) For U = {0} the assertion is true. Suppose U has dimension
u>0. Let v € Mg. The set {i1(v),...,4,(v)} from (16.7) is precisely I, (¢'(U))
since I, (¢'(U)) C I,(T). Therefore, wrr o »(U) = we e (¢’ (U)) for v € Mg.
Now (i) follows by summing over v.

(ii) Suppose U has dimension u > 0. Let v € Mg. Put W := " *(U).
Recall that I,(W) = {j1(v), ..., jm(v)}, where m := dim W, ji(v) is the small-
est index j € {1,...,n} such that Lgv)]W # 0, etc. The indices ji(v), j2(v), ...
do not change if we replace L§U) by Egv) for j € I,(T)¢. This implies that
the set {i1(v),...,in—x(v)} from (16.8) is I,(W) \ I,(T), and so wgr ¢ ,(U) =
we,ew(W) —we o o(T). By summing over v, we get (ii). O

The pair (£, ) gives rise to a class of twisted heights Hzr o/ ¢ @k — Rxo
in the usual manner. That is, if x € E* for some finite extension E of K, then
(16.9) Heeg()= [ max 111 00 (0)u@ ",

weMp i€l (T

where I,,(T) := I,(T) if w lies above v € M.
Likewise, we have twisted heights Hpn o ¢ - @n_k — Ry, defined such
that if x € E"* for some finite extension E of K, then

(1610) Hl:”,c” H Zer?ca(x ”L ’UJ) /l I(X)waQ_Ciwa
weEMEg

where ng) = Egv) if w lies above v € M.
In what follows, constants implied by <, > depend only on £,c and T

LEMMA 16.3. (i) Forx € @k, Q > 1, we have
Hpreq(x) >< He e (¢ (%))
(ii) Forx € Q", Q > 1, we have
Hpnen g (%)) < He,e,(%)-

Proof. (i) The inequality Hpr o (%) < Hreq(¢'(x)) for xe@k, QR>1is
trivial. We prove the reverse inequality. Since the linear forms EZ(U) (1 € I,(T)°)
defined in (16.5) vanish identically on 7', there exist constants C, >0 (ve M),
all but finitely many of which are 1, such that for x € K*, v € My, i € I,(T)¢,

12 (6 () o < Co maxe (15" (' (30)) -
1<t
Taking @ > 1 we obtain, in view of (15.1),
1L ()@ < Oy max 1L (' () o Q 7"

j<t
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This shows that for x € K*, Q > 1, v € Mg, we have

mae |17 00) Q@ < Oy mae (117 (' ()o@

1<i<n

If instead we have x € E* for some finite extension E of K, we have the same
inequalities for w € Mg, but with constants Cy, := Cff(“"”), where v € My is
the place below w. By taking the product over w € Mg, we get (i).

The proof of (ii) is entirely similar. O
LEMMA 16.4. Suppose that
(16.11)  u(Q",U) > u(@Q",{0}) for every proper linear subspace U of Q".
Then for every 6 > 0, there is Qg such that for every Q = Qo,
(16.12) Q1@ {oh-s < A(Q) < - < M(Q) < Q1@ {0h)+s

Proof. We first assume that n = 1. In this case, Lgv) = @, X with o, € K*
for v € Mg, and p(Q,{0}) = Yyemr, civ- By the product formula, we have
for x =x € K*,

HC’CvQ(m) = H x|, Q" = CQf‘“(@’{O})

vEM K

for some nonzero constant C. This is true also for z ¢ K. So for n = 1, our
lemma is trivially true.

Next, we assume n > 2. We first make some reductions and then ap-
ply Theorem 8.1. By Lemma 7.2 there is no loss of generality if in the
proof of our lemma, we replace ¢;, by ¢}, = ¢y — %E?:l cjy for v € Mg,
j = 1,...,n. This shows that there is no loss of generality to assume that
S civ = 0 for v € Mk, i.e., condition (8.3). This being the case, suppose
that 3" e, MaxXigicn Civ < 0 with 6 > 0. Then we can make a reduction to
(8.4) by replacing @ by QY and ¢, by Cin/0 for v € Mg, i=1,...,n. So we
may also assume that (8.4) is satisfied. Finally, by Lemma 7.3 and the subse-
quent remark, there is no loss of generality to assume (8.8). Under assumption
(8.3), condition (16.11) translates into (8.9). So we may assume without loss
of generality that all conditions of Theorem 8.1 are satisfied. Notice that with
these assumptions,

u@'f0) =~ 3 ch—o

vGMK i=1

Let 0 < § < 1. Theorem 8.1 implies that the set of Q with A\ (Q) < Q9"
is bounded. Together with (9.2), this implies that for every sufficiently large

@, we have A\ (Q) > Q7" \,(Q) < @°. O
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Proof of Theorem 16.1. We proceed by induction on r. For r = 1, we can
apply Lemma 16.4. Assume r > 2. We fix § > 0 and then ¢’ > 0, which is a
sufficiently small function of 6. We write w for wg ¢ and p for iz c.

By Lemma 16.2(ii) with ' = T,_1, k = d,—1 = dim T, we have for any
two linear subspaces U g Us of @nid“l that

puenon(Uz, Ur) = u(@" ™ (U2), "~ (TO)).

Thus, the property of T,_; that u(Q",T,_1) < u(Q",U) for any proper linear
subspace U of Q" translates into

—d,_ _
Here! (@n 17 {0}) < e e (@n
@n*dr—l

dv"fl7 U)

for any proper linear subspace U of . So by Lemma 16.4, we have for

every sufficiently large Q,

Henenoly) = Q_”(@H’T’“—l)_‘s/ fory ¢ @nidr_l \ {0}.
Together with Lemma 16.3(ii), this implies for every sufficiently large @,
(16.13) Heeo(x) > Q*“(@n’TT—I)*Z‘S/ for x € Q" \ T,_1.
Consequently, for every sufficiently large @), we have

(16.14) QM@ T2 < X;11(Q) < -+ < M(Q).

Fori=1,...,d,_1, denote by X\;(Q) the i-th successive infimum of H ¢ ¢
restricted to T,_1; i.e., the infimum of all A > 0 such that the set of x €
T,—1 with Hg ¢ g(x) < A contains at least 4 linearly independent points. By
Lemma 16.3(i) with T" = T,_1, k = d,_; this is, apart from bounded mul-
tiplicative factors independent of (), equal to the i-th successive infimum of
Hpr o . Further, by Lemma 16.2(1) with T' = T,_1, k = d,_1, for any two
subspaces U gUg of @dr*l, we have wpr o (U2, Ur) = w(¢'(Uz), ¢'(Uz)). By
applying the induction hypothesis to (£, c¢’) and then carrying it over to T,_1
by means of ¢, we infer that for every sufficiently large @, we have

(16.15) Q*N(Tl,Tlfl)*a/ < N(Q) < Q*u(Tz,TlAHCV

forl=1,...,r—1,i=d;_1+1,...,d; and moreover,

(16.16) (| span{x€T,_1: Hreo(x) <A =T,
)\>)\:il (Q)

for I =1,...,r — 1. Clearly, we have \;(Q) < N\{(Q) fori =1,...,d,_1, and so
)\d-fl(Q) < Qiu(TT—lvTr—Q)Jré’

for @ sufficiently large. Assuming ¢’ is sufficiently small, this is smaller than
the lower bound Q@ Tr-1)=28" in (16.13). Hence for sufficiently large Q and
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sufficiently small ¢, all vectors x € Q" with Hzcg(x) < Ag,_, (Q) + ¢ lie in
T,_1. That is,

Tdr—l(Q) =T, )‘Z(Q) = A;(Q) fori=1,...,d-1.
Together with (16.16), this implies (16.3). Further, (16.15) becomes
(16.17) Q_“(Tllefl)_‘S, <N(Q) < Q_M(Tlvﬂ—l)+5,

forl=1,...,r—1,i=d;_1+1,...,d;. Using subsequently Proposition 9.2, the
lower bounds in (16.17), (16.14), and that the quantity o = > e, doie Civ
from Proposition 9.2 equals

r

W@ {0}) = S w(Th Tiy) = 3 di(Th T,
=1

=1 —

and taking ¢’ sufficiently small, we infer that for every sufficiently large Q,

A(@Q) <22 D2ALQ (M(Q) - At (@)

< QO+ im dn(TLTin)—p(@" T 4208 o =@ Tro1)+3

As a consequence, (16.2) holds as well. This completes our proof. U

17. A height estimate for the filtration subspaces

As before, K is a number field, n an integer > 2, and (£, c) a pair with
(2.4)—(2.7). We derive an upper bound for the heights of the spaces occurring
in the filtration of (£,c) in terms of the heights of the linear forms from L.
We start with some auxiliary results.

Let p be an integer with 1 < p < n. Put N := (Z) Similarly as in
Section 6, let C'(n,p) = (I1,...,In) be the lexicographically ordered sequence
of p-element subsets of {1,...,n}. For j=1,..., N, v € Mk, define
(17.1) L =LA ALY =it oo+ i

where [; = {i; < --- < ip} is the j-th set from C(n,p), and put

L= (W, eEMg,j7=1,...,N),

(172) - (AJ v K, ’ )
c:=(Cp:veMg,j=1,...,N).

Then H+~ . : @N — Ryg is defined in a similar manner as Hycg; i.e., if

L7C7Q
% € EN for some finite extension E of K, then

e ) oyl =5
Maa® = 1 o 11710
weEMpg

where ng) = Eﬁ»v), Cjw = d(w|v)¢jy, if w lies above v € M.
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LEMMA 17.1. Let x1,...,%Xp € Q", Q >1. Then
Hpooxin- Axp) p"PHpeq(x1) - Heeq(Xp):

Proof. Put X :=x1 A--- AXp. Let E be a finite extension of K such that
X1,...,Xp € E™. Let I; = {iy < --- <y} be one of the p-element subsets from
Ii,...,In, and let w € Mg. Then by an argument completely similar to the
proofs of (4.5), (4.6), one shows

IZS”) @)@ = | det (L ><xz>)kl,1,._,7p||wcz—%
<pr) ”H max || L8 () @k

1<k<p

< pps(w)/2 ]‘[ max || L") (x)) || @ .
=

1<i<n

By taking the maximum over j = 1,..., N and then the product over w € Mg,
our lemma follows. O

We keep the notation from above. For @ > 1, let \1(Q), ..., A\ (Q) denote
the successive infima of Hy ¢ ¢. Further, let v1(Q), ..., vn(Q) be the products
Ai (@) -+ i (Q) (1 < iy <--- <ip <n), ordered such that

n(Q) < -+ <wn(Q),

and let A1(Q), ..., An(Q) denote the successive infima of Hx oo

LEMMA 17.2. ForQ>1,j=1,...,N, we have
NTNY(Q) < X(Q) < PP (Q).

Proof. Fix Q > 1, and write )\i,xj,uj for )\Z-(Q),Xj(Q), vj(Q). Let € > 0.
Choose Q-linearly independent vectors g1, ..., g, € Q" such that H, c Q(gi) <

Ai(l+¢) for i =1,...,n. Then the vectors g;; A---Ag;, (1 <ip <+ <ip<
n) are Q-linearly independent. Let j € {1,... N} and let i1,...,i, be the
indices from {1,...,n} such that iy < --- <, and v; = A;; ---A;,. Then by
Lemma 17.1,
(17.3) Hps o8 Ao Agi,) <pP(1+e)y
So Xj < pP2(1+ e)Pv;. This holds for every € > 0; hence,

N
(17.4) 2 < pP? for j=1,...,N.

vj

Put
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Notice that @ = N'a, where a := Y ,cp, >0 v, N' = (z:%) Also, by

(6.6), Ap= Ag/. These facts together with Proposition 9.2 imply
Vi "UN < Zn(n_l)N//2AEQ_a
On the other hand, Proposition 9.2 applied to E,E gives
i A > NN2ALQ,

and so
AEpY :
H 7 > N*N/2277L(TL71)N /2.
j=1"7
Now our lemma follows by combining this with (17.4). O

Let T;(@Q) (i = 1,...,n) be the spaces defined by (16.1). Further, define
the linear subspaces of Q ',

Tj(Q) = () span{xeQ" P Hioo(®) <A} (F=1,...,N).

A>2;(Q)
LEMMA 17.3. Put k:=n—p. Let Q > 1, and suppose that
(17.5) M1 (Q) > 22 A (Q).
Then
(17.6) AN-1Q) gnszn M@)ot
An(Q) Ae1(Q)

(17.7) Hy(Tx-1(Q)) = Ha(Ti(Q)).
Proof. Write again )\i,xj, vj for Xi(Q), Xj(Q), vj(Q). Since
UN—1 = AgAk42° - AN, VN = Akg1 -+ AN,

we have vy_1/vN = Ag/Agr1. Together with Lemma 17.2, N = (;) < 2" and
assumption (17.5), this implies (17.6).

As for (17.7), let ¢ > 0. Put T := Tp(Q), T := fN,l(Q). Choose
Q-linearly independent vectors gy, ..., gy, such that He . o(g:) < (1 +¢)\; for
i=1,...,n. Write g; :=g;; A---Agi,, where I; = {i; <--- <1} is the j-th
set in C'(n,p). Then by (17.3),

Hz: (&) < P21 +ePuy_forj=1,...,N—1.

Assuming ¢ is sufficiently small, {g1,...,gx} is a basis of T. Moreover, by
Lemma 17.2 and (17.6), we have pp/Q(l + €)Puy_1 < An. Hence by (17.3),
{g1,...,8N-1} is a basis of T. Now HQ(T) Hy(T) follows from Lemma 6.1.

]
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We now make a first step towards estimating the heights of the subspaces
in the filtration of (£, c). As usual, n is an integer > 2, K an algebraic number
field, and (£, c¢) a pair satisfying (2.4)—(2.7). Put

Hy = max{Hg(LEv)) cveEMg,i=1,...,n}.

LEMMA 17.4. Assume that the subspace T,_1 preceding Q" in the filtration

of (L,c) has dimension n — 1. Then

12
Hy(T,_1) < HSY
Proof. We assume without loss of generality that c1, < -+ < ¢y for v €
My . Put T :=T,_1. By our choice of T, if T" is any other (n — 1)-dimensional
linear subspace of Q", then u(Q",T) < w(Q",T"), implying w(T") < w(T).
Take v € M. Let i(v) be the smallest index i such that

Up={xecQ": L\"x) = =Lx) =0} CT.

T is given by an up to a constant factor unique linear equation, which we may

express as » ozijgv) (x) = 0, where not all o, are 0. In fact, T is given by

Z;(Q ajULg»v) (x) = 0, where (., # 0. It follows that i(v) is the largest index
i such that {LEU)\T :je{l,...,n}\ {i}} is linearly independent. Hence,

(17.8) wl)= > w,(T)= Y Enj Cju-

vEME vEMpK =1

J#i(v)

Moreover,

(17.9) > Uiy € T.
veEMK

We prove that in (17.9) we have equality. Assume the contrary. Then there is
an (n—1)-dimensional linear subspace T" # T of Q" such that Y veMx Uiw),w C
T'. Then if j(v) denotes the smallest index i such that Uy, C T', we have
j(v) <i(v) for ve Mg. So

contrary to what we observed above.

Knowing that we have equality in (17.9), there is a subset {v1,...,vs} of
My with s <n — 1 such that T' = Uj(y,)0, + + Uj(wy)w,- By (6.13), (6.11),
we have

)

Ha Uity ) = Hg(Ui%vl),vl) <HY ! forl=1,...,s,
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and then by (6.12),
- (n—1)2
T) < [[ H2Uiwy) < Hy'
=1

This completes our proof. ]

Our final result is as follows.

PROPOSITION 17.5. Let T, ..., T,_1 be the subspaces of Q" in the filtra-
tion of (L,c). Put Hy := maX{Hg(LZ(-v)) cv€Mg,i=1,...,n}. Then

Hy(T;) < HY" fori=1,...,r —1.

Proof. Let i € {1,...,7 — 1}, and put T := T}, k := dimT, p := n — k,
N := (7). Further, let £, € be as in (17.1), (17.2). By (6.8), for the linear
v)

forms Lg in £, we have

(17.10) Hy(L) < HY forve My, j=1,...,N.

Let 0 < 0 < w(Tiy1,T;) — w(Tivo, Tiv1). By Theorem 16.1, for every
sufficiently large @), we have that

(17.11) Th(Q) =T

and A\x(Q)/Ms1(Q) < Q9. Together with Lemma 17.3(i), this implies that
for @ sufficiently large, we have XN,l(Q)/XN(Q) < Q792 with a positive
exponent 6/2 independent of @, and so dim fN 1(Q) = N — 1. Again from
Theorem 16.1, but now applied with E ¢, N instead of L, c,n, it follows that
there is a subspace T of dimension N — 1 in the filtration of (L, ), such that

Tna(Q) =T

for every sufficiently large Q.
Now using subsequently (17.11), Lemma 17.3(ii), Lemma 17.4 (with £,¢, N
instead of £,c,n), and (17.10), we obtain for @ sufficiently large,

o~

Hy(T) = Ha(Ty(Q)) = Ha(Tn-1(Q)) = Hao(T) < (HH)WV V" < HY",

where in the last step we have used p(N — 1)? < p(;)2 < 4™. This completes
our proof. O

18. Proof of Theorem 2.3

Let n, L, c, 0, R satisfy (2.4)—(2.10). Let T'= T(L, c¢) be the subspace from
(2.21). Recall that this space is defined over K. The hard core of our proof is
to make explicit Lemma 16.3(ii).
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Put k£ := dim 7. Choose a basis {g1,...,8x} of T, contained in K. Write
in the usual manner J,e s, {Lgv), . ,LS})} ={Li,...,L,}, where r < R, and
let 64, ...,0, be the distinct, nonzero numbers among

(18.1) (det(Li(85)); jor1, gy 1Si1 < <ip<r
For v € My, put
M, = max(||01]v, ..., [|0ullv), My :=min(]|01]v, -, ||0ullv)-
LemMMA 18.1. We have

II

vEME

M, < (2HL>(4R)n ]

Proof. Let ¢ be a linear transformation of Q", defined over K. By Lemma
7.3, replacing £ by Lo has the effect that T = T'(L, c) is replaced by ¢~ 1(T).
Taking the basis o~ 1(g1),...,0 (gr) of ¢ 1(T), we see that the quotients
M, /m, (v € Mg) remain unchanged. This shows that to prove our lemma,
we may replace £ by L o . Now choose linearly independent Ly, ..., L, from
L, and then ¢ such that L; o = X; for ¢ = 1,...,n. Then L o ¢ contains
Xq,..., X,

So we may assume without loss of generality that £ contains X1,..., X,
and then apply Lemma 10.2. Thus, we conclude that

(18.2) I1 My <<Z)1/2H£-H2(T)>

vEME My

(&)

We estimate H2(T") from above by means of Proposition 17.5. The coefficients
of Ly,..., L, belong to the set {d,...,dy} from Lemma 10.1. Hence,

Hy(L;) <n? [ max(||dales - .., |dmlls) < n*/*H,
veEMK
for i = 1,...,r, and so Hy(T) < (n'/?H)*". By inserting this inequality
together with (;;) < R"/n! into (18.2), we infer
R™/n!

1/2

vEM K My

In addition to (2.4)—(2.10), we assume that

(18.3) Clo < -+ < ey forve Mg,

which is no restriction.
By (15.3), we have

w(T) = wﬁc Z Z Civ,

vEMp i€l
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where I, = I,(T) = {i1(v),...,ix(v)} is the set defined by (15.2). Put I :=
{1,...,n}\T.

Let
(18.4) L =L =3 Ll (ve Mg, ieI)
j€ly
j<i

be the linear forms from (16.5). Recall that these linear forms vanish identically
onT. Forv e Mg, ¢ € I,, put E(U) = Lgv), and define the system

L:=I":veMg,i=1,...,n).

i

Clearly, for every v € M, the set {zgu) :i=1,...,n} is linearly independent.
LEMMA 18.2. The system L has the following properties:

(18.5) Hy (%) < (2H)®P " Heeq(x) forxeQ", Q> 1

(18.6) Hz < (nHe)®R",

Proof. Let v € Mg. We find expressions for the coefficients c;;, from the
relations
Zam gn) foriclIs, h=1,....k
JEly
and Cramer’s rule. Recall that a;;, = 0 for j > ¢ by the definition of I,,. In fact,
each «j, is of the shape 6;j,/d,, where ,, = det ((L( v) )(gh))l,h:lw.,@7 and 6;j,

i (v
(v)

is a similar sort of determinant, but with L; replaced by L Z(v). Clearly, 6, and

the numbers d;;,, all occur among the numbers (18.1). Hence

M,
(18.7) levigollor < —

v

forie IS, jel,, v e Mg.

We now prove (18.5). Let x € Q", @ > 1, and choose a finite extension E
of K such that x € E". For w € Mg lying above v € M, define in the usual
manner Ciy, L ( ) by (2.14) and similarly, L( w) . Egv), Qiju = Qiju, Ly = I,
M, = My(wlv), My = mae), Thus, (18.4), (18.7) and Lemma 18.1 hold
with w € Mg instead of v € M. It follows that for w € Mg, we have

e [0 60@ % < nf 2 e 20760

By taking the product over w € Mg, it follows that

HZ,C,Q(X) < n(QHL)(4R)nHE7C7Q(X)7

which implies (18.5).
We next prove (18.6). Let dy, ..., d; be the determinants of the n-element
subsets of UUGMK{LgU)7 ce L;”)}, and let dy, . .., dy be the determinants of the
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n-element subsets of (J,epr, {i(lv), . ,E%U)}. Then each d; is a linear combi-
nation of elements from dy,...,d; with at most n' terms, each coefficient of

which is a product of at most n elements from «;j, (v € Mg, i € I, j € I).
So by (18.7),

M\
mae i, <o ® (20) - max i,
my

1<i<s 1<t

for v € Mg . By taking the product over v € Mk and using Lemma 18.1, we
obtain

Hyz <n"(2H)"*0" - Hp < (2H)BR)",
which is (18.6). O

In the proof of Theorem 2.3, we assume

there is a non-archimedean place vg € Mg such that

18.8 ~
( ) Ci,vozo, LEUO):XZ fOI‘izl,...,n,

(18.9) T={xecQ":2y=-=x,4 =0}

We show that these are no restrictions. Let ¢ be a linear transformation of
Q", defined over K. Lemma 7.3 says that T(L o ¢,c) = ¢ (T). Hence,
if we construct a system of linear forms from £ o and T(L o ¢,c) in the
same way as £ has been constructed from £ and T, we obtain £ o ¢. Now

choose ¢ such that {Lg RS ©0,..., L nv) oy}t = {X1,...,X,} and, moreover,
{Egv) op:ielf} ={X1,...,Xu_1}. Then L o ¢ contains Xi,...,X,, and
T(Lop,c)is given by X1 =--- = X,,_r = 0. Now Lemma 7.3 implies that in

the proof of Theorem 2.3, we may replace £ by L o ¢.

So henceforth, in addition to (2.4)—(2.10) and (18.3), we assume (18.8),
(18.9).

The projection

(18.10) O (1, ) = (T, )
has kernel 7. We now define a tuple in K[X7,..., X,_x]'™,

(18.11) =L ve Mg, i€ I

(18.12) d=(dip: ve Mg,iecl)
—k
with d;p, = i - (Civ —0y), (vE Mg, i €1I),
1
where 0, = m( Z cjv) (v e Mg).

JEIS
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Notice that by Lemma 16.2(ii) and assumption (2.8), we have

(18.13) S 6, w(@) ~w(T) _ _ w(T)

n—k n—=k

vEMK

The tuple £” is precisely that defined in (16.6), while d is a normalization
of the tuple ¢” from (16.6). Eventually, we want to apply Theorem 8.1 to
(L",d), and to this end we have to verify that this pair satisfies the analogues
of (8.2)—(8.9) with £, ¢ replaced by £”,d; in fact, the tuple d has been chosen
to satisfy (8.3), (8.4). Further, we need an estimate for H» in terms of H.
Finally, we have to relate the twisted height Hpr g.¢/(¢"(x)) to Hr e g(x),
where Q' := Q"/("—k),

We start with the verification of (8.2)—(8.9), with n—k,nR", L”,d replac-
ing n, R, £, ¢, and with indices i taken from I¢ instead of {1,...,n} forv € M.
It is clear that d satisfies (8.2), (8.3) and that £” satisfies (8.6). Further, from
(18.8), (18.9) it follows easily that £” satisfies (8.8). In the lemma below we
show that £” d has properties (18.14), (18.15), (18.16), which are precisely
(8.4), (8.7), (8.9) with n — k,nR"™, L",d replacing n, R, L, c. The weight wzr 4
and twisted heights H/» q ¢ are defined similarly as in Section 16, but with
diy in place of ¢, in (16.8), (16.10).

LEMMA 18.3. We have

(18.14) mf}z(dw <1,
vEME €
(18.15) # U L iersy | <ngv
’UEMK
(18.16) wer a(U) <0 for every linear subspace U of @nfk
Proof. We start with (18.14). Put ¢}, := ¢ — %Z?:l cjy for v € Mg,
i=1,...,n. Then Y} ¢j, = 0 for v € Mg, while 3 ,cp, MaxXicicn ¢, < 1
by (2.9).
Consequently,
n—=k 1
max d;, = Z max ¢, — Z c;v
el €15 no S <zelv n—=k jete
T Igéz}zcc k: 2_ o
vEMK JELy

n—=k k
< 11+ maxcv<1.
n—k/ 1<6<n

This proves (18.14).
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Next, we prove (18.15). Let v € Mg. The set {Lgv)” 1 € IS} is deter-
mined by the linear forms Egv) given by (18.4) and the latter by the ordered
tuple (Lgv), e ,L%U)). By (2.6) there are at most R™ distinct tuples among
these as v runs through My. This proves (18.15).

We finish with proving (18.16). Take a linear subspace U of @nik, and

let W := " }(U). By (18.12), (18.13), we have

-k
'LUL”,d(U) = n - (wll”,c”(U) —dimU Z 91,)

vEM g
—k T
= i (wﬁ// C//(U) + dim U - w( )> y
n ’ n—=k
and then by Lemma 16.2(ii),
n—k ) w(T)
” = — T d .
(0 ,d(U) o (w(W) w( )+ imU o k)
—k T
= ”n (w(W) - ;”(_; : (n—dimW)) .
Since this is < 0 by (2.21), this proves (18.16). O
LEMMA 18.4. We have
Hpr < (2Hp)BR"
Proof. Let Jl,...,c?s be the determinants of the n-element subsets of

Uverr, {3, Y = {L1,..., L.}, and let dy”,...,d," be the determi-
nants of the (n — k)-element subsets of UveMK{Ll('U)” 11 € IS}, Pick one of the
determinants d;”. Then for some i1, ..., , by (18.10), (18.11),

di” = det(fil o (p//_l, ceey Zin_k o @//—1) = det(lN}il, L. ,Ez‘n_k,Xn,kJrl, . ,Xn),
and then by (18.8), +d;” € {d1,...,ds}. Consequently,

Hpv = max [[di"ly <[] max |dillo = Hz-
vEMK veMg
Together with (18.6), this implies our lemma. ]
PROPOSITION 18.5. Let Q be a real with
(18.17) Q > (2H)?00BR)"/5
and x € Q" with
(18.18) Heqx) <A["Q7.

Put Q' := QY (™=K Then
(18.19) Hen g.0/(9"(%)) < Q/—%Wn.
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Proof. We need the crucial observation that by (18.13), (2.21), (2.8),

(18.20) S 0, = (T) _w(@) _,

veEMK k n

Let E be a finite extension of K with x € E™. In accordance with our
usual conventions, we put ng)” = Lgv)”, diy = d(w|v)dyy, IS = IS for
places w € Mg lying above v € Mp. Thus, (18.12), (18.13), (18.20) imply
diw = " (cioy — 04) for w € Mp,i € IS with e, 0w < 0, and so

dlUf
Herag(@'(x) = [ max|L{"” )@
el
'LUGME w
=11 Qe“’mz;zllL (%)@
weMpg €
( —Ciw
< max ||L;" ()@
wEMEg
:HZ,C,Q(X)'

Together with (18.5), (7.4), (18.20), this implies

Hera (@' (x) < (2Hz) BB He o o(x)

< (2Hp) SR A H L o (x).
Now (18.19) follows easily from this last inequality and (18.17), (18.18). O

Proof of Theorem 2.3. We assume for the moment that n — k > 2. We
intend to apply Theorem 8.1 with

18.21 —k " (5 L
(18.21) n—k, nR", 100 /n,

replacing n, R, 0, L, c, respectively. Clearly, with these replacements (8.1) holds,
and we verified above that conditions (8.2)—(8.9) are satisfied as well.

Let mb, wh be the quantities ma, ws from Theorem 8.1, with the objects
in (18.21) replacing n, R, d, L, ¢, respectively. Further, let C% be the quantity
obtained by applying the substitutions from (18.21) to Cy, but replacing H»
by the upper bound (2H [;)(8R)n from Lemma 18.4. Then Theorem 8.1 implies
that there exist reals Q1,...,Q;, , with C5 < Q] < --- < @, such that if
Q' > 1is a real with

(18.22) y e Q™" Henaoly) <Q ") 2 {0},
then
(18.23) Q' €[1,C5) U [Qh, ’”2) :

h=1
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We proved (18.23) under the assumption n —k > 2. We now assume that
n —k = 1 and show that (18.23) is valid also in this case. The quantities
mb,wh, C% are defined as above, but with n — k = 1 replacing n. We have
Lgv)” = quX, diy, = 0 for v € Mk, and so for y = y € K*, by the product
formula,

HeraoW) = [ llawyllo= T lowllo.
’UGMK ’UEMK
This is valid also if y € K. Let {a, : v € Mg} = {ai,...,a,}. By (18.15), we
have r < nR™. Moreover, by Lemma 18.4,
H max ||aslly = Her < (2Hz)BP",

1<i<r
vEME

Hence if y # 0, then
Henaq(y) 2 min {|ally

1<i<r
vEM g

llat - - aplo iap2n
> H I 2(2H[;) (8F) .

v, (Maxicicr [laillo)"

Now if y satisfies (18.22), then certainly Q' < C%, and so (18.23) is satisfied.
Let @ be one of the reals being considered in Theorem 2.3, i.e., with
{(x€Q": Hregx) <AY"Q ) ¢ T.

Then by Proposition 18.5, either Q does not satisfy (18.17), or Q' := Q"/(»—F)
satisfies (18.22). The first alternative implies Q < Cb’ n/(n=k) Q6 in either
case,

oc ey () anai).

where Q} = Q’(n R for h=1,...,my.

To prove Theorem 2.3, we have to cut the intervals into smaller pieces. In
general, any interval [4, A?) is contained in a union of at most [log 6/ log wp]+1
intervals of the shape [Q*, Q*“°). It follows that there are reals Q1,...,Qm,
with Cy < Q1 < -+ < @Qm, such that

Qe[1,Co)U | [@Qn Q5"
h=1

/
e )
log wy

To finish our proof, we have to show that m < my.

where

log(log Co'" /™ / 1og Cy)
log wy

m:=1
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We first estimate from above m/,. Taking the definition of mg from (8.10)
and the substitutions from (18.21), and using R > n > 2, we obtain

ml < 61(n — k)522k)(100n,/996)? log(22(n — k)?2"F . nR™ - 100n,/995)
< 62n522"5 % log(23n*2"R"6~ ") < 62n'°22"5 % log (351 R)*")
< 18612226 2log(30 'R) =: m,.

Further,
m log(log Co' ™M/ /10g Cy)
log wo
2m
[log <log (2 X (QHL)(SR)n)m* / log maX(Hz/R, nl/‘;))-‘
<1+
{ log wo J
3m log my
g - = <2 -
log(6—'log 3R)
and )
14 log ws <1 § log m. < 3logmy .
log wo 2 logwy  log(6—'log3R)

So altogether,
614 log My

“log(6-tlog3R)’
Using R > n > 2, 186n722" < 50%", §~210og(36 ' R) < (6 'log 3R)3, this leads
to

m

log (186n°2%"6~210g(36 ' R))
log(6—'log 3R)
2nlog 50
<6m, (2=
S6m (loglogG
<10°22"n19%5 2 10g(36 1 R);

m < 6my X

+ 3) < 100nmy

i.e., m < mg. This completes the proof of Theorem 2.3. [l
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