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The lens space realization problem

By Joshua Evan Greene

Dedicated to the memory of Professor Michael Moody

Abstract

We determine the lens spaces that arise by integer Dehn surgery along

a knot in the three-sphere. Specifically, if surgery along a knot produces a

lens space, then there exists an equivalent surgery along a Berge knot with

the same knot Floer homology groups. This leads to sharp information

about the genus of such a knot. The arguments rely on tools from Floer

homology and lattice theory. They are primarily combinatorial in nature.

1. Introduction

What are all the ways to produce the simplest closed 3-manifolds by the

simplest 3-dimensional topological operation? From the cut-and-paste point

of view, the simplest 3-manifolds are the lens spaces L(p, q), these being the

spaces (besides S3 and S1 × S2) that result from identifying two solid tori

along their boundaries, and the simplest operation is Dehn surgery along a

knot K ⊂ S3. With these meanings in place, the opening question goes back

forty years to Moser [35], and its definitive answer remains unknown.

By definition, a lens space knot is a knot K ⊂ S3 that admits a lens space

surgery. Moser observed that all torus knots are lens space knots and classified

their lens space surgeries. Subsequently, Bailey-Rolfsen [1] and Fintushel-Stern

[14] gave more examples of lens space knots. The production of examples

culminated in an elegant construction due to Berge that at once subsumed

all the previous ones and generated many more classes [6]. Berge’s examples

are the knots that lie on a Heegaard surface Σ of genus two for S3 and that

represent a primitive element in the fundamental group of each handlebody.

For this reason, such knots are called doubly primitive. Berge observed that

performing surgery along such a knot K, with (integer) framing specified by a

push-off of K on Σ, produces a lens space. Furthermore, he enumerated several

different types of doubly primitive knots. By definition, the Berge knots are
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the doubly primitive knots that Berge specifically enumerated in [6]. They are

reproduced in Section 1.2. (More precisely, the dual Berge knots are reported

there.)

The most prominent question concerning lens space surgeries is the Berge

conjecture.

Conjecture 1.1 ([28, Prob. 1.78]). If integer surgery along a knot K⊂S3

produces a lens space, then it arises from Berge’s construction.

Complementing Conjecture 1.1 is the cyclic surgery theorem of Culler-

Gordon-Luecke-Shalen [10], which implies that if a lens space knot K is not a

torus knot, then the surgery coefficient is an integer. Therefore, an affirmative

answer to the Berge conjecture would settle Moser’s original question. We

henceforth restrict attention to integer slope surgeries as a result. The sign

of integral surgery along a knot K in an arbitrary 3-manifold Y is the sign

of the intersection pairing on the associated 2-handle cobordism from −Y to

the surgered manifold. In the case at hand, we may assume that the slope is

positive by reflecting the knot, if necessary. Thus, in what follows, we attach

to every lens space knot K a positive integer p for which p-surgery along K

produces a lens space, and we denote the surgered manifold by Kp.

Using monopole Floer homology, Kronheimer-Mrowka-Ozsváth-Szabó re-

lated the knot genus and the surgery slope via the inequality

(1) 2g(K)− 1 ≤ p

[29, Cor. 8.5]. Their argument utilizes the fact that the Floer homology of a

lens space is as simple as possible: rk ‘HF (Y ) = |H1(Y ;Z)|. A space with this

property is called an L-space, and a knot with a positive L-space surgery is an

L-space knot. Their proof adapts to the setting of Heegaard Floer homology

as well [38], the framework in place for the remainder of this paper. Ozsváth-

Szabó established a significant constraint on the knot Floer homology groups÷HFK(K) and hence the Alexander polynomial ∆K [39, Th. 1.2 and Cor. 1.3].

Utilizing this result, Ni proved that K is fibered [36, Cor. 1.3].

As indicated by Berge, it is often preferable to take the perspective of

surgery along a knot in a lens space. Corresponding to a lens space knot

K ⊂ S3 is a dual knot K ′ ⊂ Kp, the core of the surgery solid torus. Reversing

the surgery, it follows that K ′ has a negative integer surgery producing S3.

Following custom, we refer to the dual of a Berge knot as a Berge knot as well,

and we stress the ambient manifold to prevent confusion. As demonstrated

by Berge [6, Th. 2], the dual to a doubly primitive knot takes a particularly

pleasant form: it is an example of a simple knot, of which there is a unique

one in each homology class in L(p, q). Thus, each Berge knot in a lens space

is specified by its homology class, and this is what we report in Section 1.2.
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This point of view is taken up by Baker-Grigsby-Hedden [4] and J. Rasmussen

[40], who have proposed programs to settle Conjecture 1.1 by studying knots

in lens spaces with simple knot Floer homology.

1.1. Results. A derivative of the Berge conjecture is the realization prob-

lem, which asks for those lens spaces that arise by integer surgery along a knot

in S3. Closely related is the question of whether the Berge knots account for all

the doubly primitive knots. Furthermore, the Berge conjecture raises the issue

of tightly bounding the knot genus g(K) from above in terms of the surgery

slope p. The present work answers these three questions.

Theorem 1.2. Suppose that negative integer surgery along a knot K ⊂
L(p, q) produces S3. Then K lies in the same homology class as a Berge knot

B ⊂ L(p, q).

The resolution of the realization problem follows at once. As explained in

Section 10, the same result holds with S3 replaced by any L-space homology

sphere with d-invariant 0. As a corollary, we obtain the following result, the

last part of which has been independently obtained by Berge [7].

Theorem 1.3. Suppose that K ⊂ S3, p is a positive integer, and Kp is

a lens space. Then there exists a Berge knot B ⊂ S3 such that Bp ∼= Kp and÷HFK(B) ∼= ÷HFK(K). Furthermore, every doubly primitive knot in S3 is a

Berge knot.

Based on well-known properties of the knot Floer homology groups, it

follows that K and B have the same Alexander polynomial, genus, and four-

ball genus. Furthermore, the argument used to establish Theorem 1.2 leads to

a tight upper bound on the knot genus g(K) in relation to the surgery slope.

Theorem 1.4. Suppose that K ⊂ S3, p is a positive integer, and Kp is a

lens space. Then

(2) 2g(K)− 1 ≤ p− 2
»

(4p+ 1)/5,

unless K is the right-hand trefoil and p = 5. Moreover, this bound is attained

by the type VIII Berge knots specified by the pairs (p, k) = (5n2+5n+1, 5n2−1).

Theorem 1.4 was announced without proof in [23, Th. 1.2] (cf. [43]). As

indicated in [23], for p� 0, Theorem 1.4 significantly improves on the bound

2g(K)−1 ≤ p−9 conjectured by Goda-Teragaito [21] for a hyperbolic knot K,

and it can be used to show that the conjectured bound holds for all but at most

two values p ∈ {14, 19}. In addition, one step involved in both approaches

to the Berge conjecture outlined in [4, 40] is to argue the nonexistence of

a nontrivial knot K for which K2g(K)−1 is a lens space. This fact follows

immediately from Theorem 1.4.
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1.2. Berge knots in lens spaces. J. Rasmussen concisely tabulated the

Berge knots B ⊂ L(p, q) [40, §6.2]. To describe those with a negative S3

surgery, select a positive integer k and produce a positive integer p in terms of

it according to the table below. The value k (mod p) represents the homology

class of B in H1(L(p, q)) ∼= Z/pZ, q ≡ −k2 (mod p), as described at the end

of Section 2. We reproduce the tabulation here.

Berge Type I±: p = ik ± 1, gcd(i, k) = 1;

Berge Type II±: p = ik ± 1, gcd(i, k) = 2, i, k ≥ 4;

Berge Type III:

(a)± p ≡ ±(2k − 1)d (mod k2), d | k + 1, k+1
d odd;

(b)± p ≡ ±(2k + 1)d (mod k2), d | k − 1, k−1
d odd;

Berge Type IV:

(a)± p ≡ ±(k − 1)d (mod k2), d | 2k + 1;

(b)± p ≡ ±(k + 1)d (mod k2), d | 2k − 1;

Berge Type V:

(a)± p ≡ ±(k + 1)d (mod k2), d | k + 1, d odd;

(b)± p ≡ ±(k − 1)d (mod k2), d | k − 1, d odd;

Berge Type VII: k2 + k + 1 ≡ 0 (mod p);

Berge Type VIII: k2 − k − 1 ≡ 0 (mod p);

Berge Type IX: p = 1
11(2k2 + k + 1), k ≡ 2 (mod 11);

Berge Type X: p = 1
11(2k2 + k + 1), k ≡ 3 (mod 11).

As indicated by J. Rasmussen, type VI occurs as a special case of type V

and types XI and XII result from allowing negative values for k in IX and X,

respectively.

1.3. Overview and organization. We now provide a detailed overview of

the general strategy we undertake to establish the main results. We hope that

this account will satisfy the interests of most readers and clarify the intricate

combinatorial arguments that occupy the main body of the text.

Our approach draws inspiration from a remarkable pair of papers by

Lisca [31], [32], in which he classified the sums of lens spaces that bound a

smooth, rational homology ball. Lisca began with the observation that the lens

space L(p, q) naturally bounds a smooth, negative definite plumbing 4-manifold

X(p, q) (Section 2). If L(p, q) bounds a rational ball W , then the 4-manifold

Z := X(p, q) ∪ −W is a smooth, closed, negative definite 4-manifold with

b2(Z) = b2(X) =: n. According to Donaldson’s celebrated “Theorem A,” the

intersection pairing on H2(Z;Z) is isomorphic to minus the standard Euclidean

integer lattice −Zn [12]. As a result, it follows that the intersection pairing on

X(p, q), which we henceforth denote by −Λ(p, q), embeds as a full-rank sublat-

tice of −Zn. Lisca solved the combinatorial problem of determining the pairs

(p, q) for which there exists an embedding Λ(p, q) ↪→ Zn, subject to a certain



THE LENS SPACE REALIZATION PROBLEM 453

additional constraint on the pair (p, q). By consulting an earlier tabulation

of Casson-Gordon [9, p. 188], he observed that the embedding exists if and

only if ±L(p, q) belongs to a family of lens spaces already known to bound a

special type of rational ball (cf. Section 1.6). The classification of lens spaces

that bound rational balls follows at once. Pushing this technique further, Lisca

obtained the classification result for sums of lens spaces as well.

In our situation, we seek the pairs (p, q) for which L(p, q) arises as positive

integer surgery along a knot K ⊂ S3. Thus, suppose that Kp
∼= L(p, q),

and form a smooth 4-manifold Wp(K) by attaching a p-framed 2-handle to

D4 along K ⊂ ∂D4. This space has boundary Kp, so we obtain a smooth,

closed, negative definite 4-manifold by setting Z = X(p, q) ∪ −Wp(K), where

b2(Z) = n + 1. By Donaldson’s theorem, it follows that Λ(p, q) embeds as a

codimension one sublattice of Zn+1. However, this restriction is too weak: it

is easy to produce pairs (p, q) that fulfill this condition, while L(p, q) does not

arise as a positive integer knot surgery (for example, L(10, 1) and L(17, 15);

cf. Section 1.6).

Thankfully, we have another tool to work with: the correction terms in

Heegaard Floer homology ([23, §2]). Ozsváth-Szabó defined these invariants

and subsequently used them to phrase a necessary condition on the pair (p, q)

in order for L(p, q) to arise as a positive integer surgery [38, Cor. 7.5]. Using a

computer, they showed that this condition is actually sufficient for p ≤ 1500:

every pair that fulfills it appears on Berge’s list [39, Prop. 1.13]. Later, J.

Rasmussen extended this result to all p ≤ 100, 000 [40, end of Section 6].

Following their work, it stood to reason that the Ozsváth-Szabó condition is

both necessary and sufficient for all (p, q). However, it remained unclear how

to manipulate the correction terms effectively towards this end.

The key idea here is to use the correction terms in tandem with Donald-

son’s theorem, in the form of an obstruction already extracted in [23, Th. 3.3].

The result is an enhanced lattice embedding condition (cf. [22], [25]). In order

to state it, we first require a combinatorial definition.

Definition 1.5. A vector σ = (σ0, . . . , σn) ∈ Zn+1 with 1 = σ0 ≤ σ1 ≤
· · · ≤ σn is a changemaker if, for all 0 ≤ k ≤ σ0 + · · ·+σn, there exists a subset

A ⊂ {0, . . . , n} such that
∑
i∈A σi = k. Equivalently, σi ≤ σ0 + · · · + σi−1 + 1

for all 1 ≤ i ≤ n.

The reader may find it amusing to establish the equivalence stated in

Definition 1.5; its proof appears in both [8] and [23, Lemma 3.2]. If we imagine

the σi as values of coins, then this equivalence asserts a necessary and sufficient

condition under which one can make exact change from the coins in any amount

up to their total value. Note that Definition 1.5 differs slightly from the one

used in [23], since here we require that σ0 = 1.
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Our lattice embedding condition now reads as follows. Again, we phrase

it from the perspective of surgery along a knot in a lens space.

Theorem 1.6. Suppose that negative integer surgery along a knot K ⊂
L(p, q) produces S3. Then Λ(p, q) embeds as the orthogonal complement to a

changemaker σ ∈ Zn+1, n = b2(X).

Our strategy is now apparent: determine the list of pairs (p, q) that pass

this refined embedding obstruction, and check that it coincides with Berge’s

list. Indeed, this is the case.

Theorem 1.7. At least one of the pairs (p, q), (p, q′), where qq′ ≡ 1

(mod p), appears on Berge’s list if and only if Λ(p, q) embeds as the orthogonal

complement to a changemaker in Zn+1.

Furthermore, when Λ(p, q) embeds, we recover a value k (mod p) that

represents the homology class of a Berge knot K ⊂ L(p, q) (Proposition 2.2).

Theorem 1.2 follows easily from this result.

To give a sense of the proof of Theorem 1.7, we first reflect on the lattice

embedding problem that Lisca solved. He made use of the fact that Λ(p, q)

admits a special basis; in our language, it is a linear lattice with a distinguished

vertex basis (Section 3.3). He showed that any embedding of a linear lattice

as a full-rank sublattice of Zn (subject to the extra constraint he posited)

can be built from one of a few small embeddings by repeatedly applying a

basic operation called expansion. Following this result, the identification of the

relevant pairs (p, q) follows from a manipulation of continued fractions. The

precise details of Lisca’s argument are involved, but ultimately elementary and

combinatorial in nature.

One is tempted to carry out a similar approach to Theorem 1.7. Thus, one

might first attempt to address the problem of embedding Λ(p, q) as a codimen-

sion one sublattice of Zn and then analyze which of these are complementary

to a changemaker. However, getting started in this direction is difficult, since

Lisca’s techniques do not directly apply.

More profitable, it turns out, is to turn this approach on its head. Thus,

we begin with a study of the lattices of the form (σ)⊥ ⊂ Zn for some change-

maker σ; by definition, these are the changemaker lattices. A changemaker lat-

tice is best presented in terms of its standard basis (Section 3.4). The question

then becomes: when is a changemaker lattice isomorphic to a linear lattice?

That is, how do we recognize whether there exists a change of basis from its

standard basis to a vertex basis?

The key notion in this regard is that of an irreducible element in a lattice L.

By definition, an element x ∈ L is reducible if x = y + z, where y, z ∈ L are

nonzero and 〈y, z〉 ≥ 0; it is irreducible otherwise. Here 〈 , 〉 denotes the pairing

on L. As we show, the standard basis elements of a changemaker lattice are
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irreducible (Lemma 3.13), as are the vertex basis elements of a linear lattice.

Furthermore, the irreducible elements in a linear lattice take a very specific

form (Corollary 3.5). This leads to a variety of useful lemmas, collected in

Section 4.2. For example, if a changemaker lattice is isomorphic to a linear

lattice, then its standard basis does not contain three elements, each of norm

≥ 3, such that any two pair together nontrivially (Lemma 4.10).

Thus, we proceed as follows. First, choose a standard basis S ⊂ Zn for

a changemaker lattice L and suppose that L is isomorphic to a linear lattice.

Then apply the combinatorial criteria of Section 4.2 to deduce the specific

form that S must take. Standard basis elements come in three distinct flavors –

gappy, tight, and just right (Definition 3.11) – and our case analysis decomposes

according to whether S contains no gappy or tight vectors (Section 6), a gappy

vector but not a tight one (Section 7), or a tight vector (Section 8). In addition,

Section 5 addresses the case in which L is isomorphic to a (direct) sum of

linear lattices. This case turns out the easiest to address, and the subsequent

Sections 6–8 rely on it, while increasing in order of complexity.

The net result of Sections 5–8 is a collection of several structural propo-

sitions that enumerate the possible standard bases for a changemaker lattice

isomorphic to a linear lattice or a sum thereof. Section 9 takes up the problem

of converting these standard bases into vertex bases, extracting the relevant

pairs (p, q) for each family of linear lattices, as well as the value k (mod p) of

Proposition 2.2. Here, as in Lisca’s work, we make some involved calculations

with continued fractions. Table 1 gives an overview of the correspondence

between the structural propositions and the Berge types. Lastly, Section 10

collects the results of the earlier sections to prove the theorems stated above.

The remaining introductory sections discuss various related topics.

1.4. Related progress. A number of authors have recently addressed both

the realization problem and the classification of doubly primitive knots in S3.

S. Rasmussen established Theorem 1.2 under the constraint that k2 < p [41,

Th. 1.0.3]. This condition is satisfied precisely by Berge types I–V. Tange

established Theorem 1.2 under a different constraint relating the values k and

p [45, Th. 6]. The two constraints are not complementary, however, so the full

statement of Theorem 1.2 does not follow on combination of these results. Also,

as we indicated before Theorem 1.3, Berge has shown by direct topological

methods that all doubly primitive knots are Berge knots; equivalently, a simple

knot in a lens space has an S3 surgery if and only if it is a (dual) Berge knot [7].

1.5. Comparing Berge’s and Lisca’s lists. Lisca’s list of lens spaces that

bound rational balls bears a striking resemblance to the list of Berge knots

of type I–V (Section 1.2). J. Rasmussen has explained this commonality by

way of the knots K in the solid torus S1 × D2 that possess integer S1 × D2
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surgeries. The classification of these knots is due to Berge and Gabai [5],

[18]. Given such a knot, we obtain a knot K ′ ⊂ S1 × S2 via the standard

embedding S1 × D2 ⊂ S1 × S2. Performing the induced surgery along K ′

produces a lens space L(p, q), which we can effect by attaching a 2-handle

along K ′ ⊂ ∂(S1 ×D3). The resulting 4-manifold is a rational ball built from

a single 0-, 1-, and 2-handle, and it has boundary L(p, q).

As observed by J. Rasmussen, every lens space on Lisca’s list actually

arises in this way.1 On the other hand, we obtain a knot K ′′ ⊂ S3 from K via

the standard embedding S1×D2 ⊂ S3. Performing the induced surgery along

K ′′ produces a lens space L(r, s) and a dual knot representing some homology

class k (mod r) . The Berge knots of type I–V arise in this way. The pair

(p, q) comes from setting p = k2 and q = r; in this way, we reconstruct Lisca’s

list (but not his result!) from Berge’s.

Analogous to the Berge conjecture, Lisca’s theorem raises the following

conjecture.

Conjecture 1.8. If a knot in S1 × S2 admits an integer lens space

surgery, then it arises from a knot in S1×D2 with an integer S1×D2 surgery.

Since this paper first appeared as a preprint, Baker produced counterex-

amples to Conjecture 1.8 [3]. The natural revision to Conjecture 1.8 reads as

follows.

Conjecture 1.9 (Baker-Greene). If a knot in S1×S2 admits an integer

lens space surgery, then it is doubly-primitive with respect to the standard genus

two Heegaard splitting of S1×S2. Equivalently, a knot in a lens space with an

integer S1 × S2 surgery is simple.

Baker’s examples indicate that although it is known, following Lisca and

J. Rasmussen, which lens spaces contain a knot with an integer S1×S2 surgery,

it remains unknown which homology classes in these spaces contain such knots.

Thus, it remains unknown which simple knots in lens spaces admit an integer

S1 × S2 surgery, in contrast with the situation described by Theorem 1.2.

1.6. 4-manifolds with small b2. Which lens spaces bound a smooth 4-mani-

fold W with b1(W ) = 0 and b2(W ) = b+2 (W ) = 1? What if we ask that

π1(W ) = 1? What if we ask that W be built from a single 0- and 2-handle?

These requirements are increasingly stringent, and indeed these questions have

different answers, as the following examples illustrate. Note that Theorem 1.2

can be read as an answer to the third question, while the answers to the first

two remain unknown.

1To be accurate, Lisca’s list R should include the case gcd(m, k) = 2 in type (1) of [31,

Def. 1.1]. This oversight was already reported in another footnote [30, p. 247].
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First we argue that L(10, 1) bounds a 4-manifold of the first type, but

not the second. This space is surgery along a nine-component link L as in

Figure 1, with all framings equal to +2. By attaching a +2-framed 2-handle

along an unknot linking the third component of L, we obtain a positive def-

inite cobordism from L(10, 1) to the Brieskorn sphere Σ(2, 3, 7). Fintushel-

Stern showed that this space, in turn, bounds a rational homology ball [15],

so its union with the 2-handle cobordism provides a smooth 4-manifold W

with b1(W ) = 0, b2(W ) = b+2 (W ) = 1, and boundary L(10, 1). On the other

hand, W cannot be chosen simply-connected, thanks to the following argu-

ment due to Fintushel-Stern [16]. If such a manifold W existed, then we

could glue it along its boundary to the disk bundle of Euler number 10 over

S := S2. The result is a smooth, closed, simply-connected 4-manifold Z with

b2(Z) = b+2 (Z) = 2 that contains a sphere S of self-intersection 10. By Don-

aldson’s theorem, the intersection pairing on Z is isomorphic to Z2, and using

this it follows that [S] = 3e1 + e2 for a suitable choice of orthonormal basis

{e1, e2} for H2(Z;Z). Thus, S represents a characteristic element in H2(Z;Z).

On the other hand, Kervaire-Milnor showed that if a characteristic element for

a smooth, simply-connected 4-manifold Z is represented by a sphere S, then

σ(Z) ≡ [S]2 (mod 16) [27]. As σ(Z) = 2 and [S]2 = 10 in the present case, we

obtain the desired contradiction.

Next we note that L(17, 15) bounds a manifold of the second type, but not

the third. Indeed, Tange has exhibited many examples of lens spaces that arise

by positive surgery along a knot in the boundary of a contractible 4-manifold,

but not along any knot in S3 [46]. For the case of L(17, 15), Tange exhibits a

positive definite 2-handle cobordism to the Brieskorn sphere Σ(2, 3, 11), which

is known to bound a contractible 4-manifold. On the other hand, an applica-

tion of Theorem 1.6 shows that L(17, 15) does not bound a 4-manifold of the

third type.

We reiterate that Donaldson’s theorem places a restriction on which lens

spaces may bound either of the first two types of 4-manifolds, and the Kervaire-

Milnor result places an additional restriction in the second case. We do not

know whether these conditions are sufficient in either case.

By contrast, the situation in the topological category is much simpler: a

lens space L(p, q) bounds a topological 4-manifold W with b2(W ) = b+2 (W ) = 1

if and only if W can be chosen simply-connected and if and only if −q is a

square (mod p).

Similarly, we ask: which lens spaces bound a smooth rational homology

ball W? What if we ask that W be built from a single 0-, 1-, and 2-handle? As

addressed in Section 1.5, the answers to these two questions are the same and

are settled. Furthermore, Lisca showed that a two-bridge knot is smoothly slice

if and only if its branched double-cover (a lens space) bounds a smooth rational



458 JOSHUA EVAN GREENE

homology ball. Donald-Owens extended this result to the case of two-bridge

links using their notion of χ-sliceness [11].

Which lens spaces bound a topological rational homology ball? The an-

swer to this question remains unknown. For that matter, it remains unknown

which two-bridge links L are topologically χ-slice. Note that if L is topo-

logically χ-slice, then the lens space that arises as its branched double-cover

bounds a topological rational homology ball [11]. However, the converse is un-

known: is it the case that a lens space bounds a topological rational homology

ball if and only if the corresponding two-bridge link is topologically χ-slice?

Are the answers to these questions the same as in the smooth category?

1.7. The Poincaré sphere. Tange constructed several families of simple

knots in lens spaces with integer surgeries producing the Poincaré sphere P 3

[44, §5]. J. Rasmussen verified that Tange’s knots account for all such simple

knots in L(p, q) with |p| ≤ 100, 000 and 2g(K) − 1 < p [40, end of Section 6].

Furthermore, he observed that in the homology class of each type VII Berge

knot, there exists a (1, 1)-knot TL with 2g(TL)−1 = p as constructed by Hedden

[26, Fig. 3], and it admits an integer P 3-surgery for values p ≤ 39 [40, end of §5].

Baker subsequently succeeded in showing that this is the case for all p [2]. Com-

bining conjectures of Hedden [26, Conj. 1.7] and J. Rasmussen [40, Conj. 1],

it would follow that Tange’s knots and the knots TL homologous to type VII

Berge knots are precisely the knots in lens spaces with an integer P 3-surgery.

Conjecture 1.10 is the analogue to the realization problem in this setting.

Conjecture 1.10. Suppose that integer surgery along a knot K ⊂ L(p, q)

produces P 3.2 Then either 2g(K) − 1 < p, and K lies in the same homology

class as a Tange knot, or else 2g(K)−1 = p, and K lies in the same homology

class as a Berge knot of type VII.

Tange has obtained partial progress on Conjecture 1.10 [45]. The method-

ology developed here to establish Theorem 1.2 suggests a similar approach to

Conjecture 1.10, making use of an unpublished variant on Donaldson’s the-

orem due to Frøyshov [17, Prop. 2 and the remark thereafter]. Lastly, we

remark that the determination of nonintegral P 3-surgeries along knots in lens

spaces seems tractable, although it falls outside the scope of the cyclic surgery

theorem.

Acknowledgments. Thanks to John Baldwin for sharing the meal of pa-

neer bhurji that kicked off this project, and to him, Ken Baker, Ron Fintushel,

Cameron Gordon, Matt Hedden, John Luecke, Brendan Owens, Jake Ras-

mussen, and Motoo Tange for helpful conversations. Paolo Lisca’s papers [31],

2Or, more generally, any L-space homology sphere with d-invariant −2.



THE LENS SPACE REALIZATION PROBLEM 459

[32] and Dusa McDuff’s lecture on her joint work with Felix Schlenk [33] were

especially influential along the way. The bulk of this paper was written at the

Mathematical Sciences Research Institute in Spring 2010. Thanks to everyone

connected with that institution for providing an ideal working environment.

2. Topological preliminaries

Given relatively prime integers p > q > 0, the lens space L(p, q) is the ori-

ented manifold obtained from −p/q Dehn surgery along the unknot. It bounds

a plumbing manifold X(p, q), which has the following familiar description. Ex-

pand p/q in a Hirzebruch-Jung continued fraction

p/q = [a1, a2, . . . , an]− = a1 −
1

a2 −
1

. . . −
1

an
,

with each ai an integer ≥ 2. Form the disk bundle Xi of Euler number −ai
over S2, plumb together Xi and Xi+1 for i = 1, . . . , n − 1, and let X(p, q)

denote the result. The manifold X(p, q) is sharp [23, §2]. It also admits a

Kirby diagram given by the framed chain link L = L1 ∪ · · · ∪ Ln ⊂ S3, in

which each Li is a planar unknot framed by coefficient −ai, oriented so that

consecutive components link once positively (Figure 1).

−a1 −a2 −an

Figure 1. The oriented, framed link L.

To describe the intersection pairing on X(p, q), we make a definition.

Definition 2.1. The linear lattice Λ(p, q) is the lattice freely generated by

elements x1, . . . , xn with inner product given by

〈xi, xj〉 =


ai, if i = j;

−1, if |i− j| = 1;

0, if |i− j| > 1.

A more detailed account about lattices (in particular, the justification for call-

ing Λ(p, q) a lattice) appears in Section 3. It follows at once that the inner prod-

uct space H2(X(p, q), QX) equals minus Λ(p, q); here and throughout, we take

homology groups with integer coefficients. We note that p/q′ = [an, . . . , a1]
−,
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where 0 < q′ < p and qq′ ≡ 1 (mod p) (Lemma 9.4(4)). Thus, we obtain

Λ(p, q) ∼= Λ(p, q′) on the algebraic side and L(p, q) ∼= L(p, q′) on the topologi-

cal side (cf. Proposition 3.6).

Now suppose that negative integer surgery along a knot K ⊂ L(p, q) pro-

duces S3. Let W denote the associated 2-handle cobordism from L(p, q) to

S3, capped off with a 4-handle. Orienting K produces a canonical generator

[Σ] ∈ H2(−W ) defined by the condition that 〈[C], [Σ]〉 = +1, where C denotes

the core of the 2-handle attachment. Form the closed, oriented, smooth, neg-

ative definite 4-manifold Z = X(p, q) ∪ −W . By [23, Th. 3.3], it follows that

Λ(p, q) embeds in the orthogonal complement (σ)⊥ ⊂ Zn+1, where the change-

maker σ corresponds to the class [Σ]. A priori σ could begin with a string of

zeroes as in [23], but Theorem 1.6 rules this out and, moreover, shows that

Λ(p, q) ∼= (σ)⊥. We establish Theorem 1.6 once we develop a bit more about

lattices (cf. Section 3.4), and we make use of it in the remainder of this section.

We now focus on the issue of recovering the homology class [K]∈H1(L(p, q))

from this embedding. Regard L as a surgery diagram for L(p, q), and let

µi, λi ⊂ ∂(nd(Li)) denote a meridian, Seifert-framed longitude pair for Li,

oriented so that µi · λi = +1. Let Ti denote the ith surgery solid torus. The

boundary of Tn is a Heegaard torus for L(p, q); denote by a the core of Tn
and by b the core of the complementary solid torus T ′n. We compute the

self-linking number of b as −q′/p (mod 1). (Cf. [40, §2], bearing in mind the

opposite orientation convention in place there.) Thus, if [K] = ±k[b], then

the self-linking number of K is −k2q′/p (mod 1). The condition that K has

a negative integer homology sphere surgery amounts to the condition that

−k2q′ ≡ 1 (mod p) (ibid.), from which we derive q ≡ −k2 (mod p).

Define

(3) x :=
n∑
i=1

pi−1xi ∈ Λ(p, q),

where the values pi are inductively defined by p−1 = 0, p0 = 1, and pi =

aipi−1 − pi−2 (cf. Definition 9.3 and Lemma 9.4(1)). We identify the elements

xi and x with their images under the embedding Λ(p, q) ⊕ (σ) ↪→ Zn+1. We

denote by {e0, . . . , en} the orthonormal basis of Zn+1 with respect to which

σ =
∑n
i=0 σiei.

Proposition 2.2. Suppose that negative integer surgery along the ori-

ented knot K ⊂ L(p, q) produces S3, let Λ(p, q) ⊕ (σ) ↪→ Zn+1 denote the

corresponding embedding, and set k = 〈e0, x〉. Then

[K] = k [b] ∈ H1(L(p, q)).

Proof. (I) We first express the homology class of a knot κ ⊂ L(p, q) from

the 3-dimensional point of view. To this end, we construct a compressing
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−µi−1

−µi+1

λi

Pi

nd(Li−1) nd(Li) nd(Li+1)

Figure 2. An oriented, twice-punctured disk Pi in S3 − nd(L),

0 < i < n.

Figure 3. The oriented cut-and-paste of a pair of co-oriented,

properly embedded surfaces nearby a transverse intersection.

disk D ⊂ T ′n that is related to the class x. Let Pi denote an oriented, twice-

punctured disk in S3−nd(L) with [∂Pi] = [λi]−[µi−1]−[µi+1] ∈ H1(∂(nd(Ln))),

as in Figure 2 (taking µ0, µn+1 = ∅). For i = 0, . . . , n, form pi−1 parallel,

disjoint copies of Pi. We may arrange the surfaces so that any two in this

collection intersect transversely and so that any three have empty intersection.

Furthermore, each surface comes with a natural co-orientation induced by the

given orientations of Pi and S3. Thus, we may form the oriented cut-and-paste

P of all these surfaces, as indicated by the local model in Figure 3.

We calculate

[∂P ] =
n∑
i=1

pi−1[∂Pi] =
n∑
i=1

pi−1([λi]− [µi−1]− [µi+1])

=
n−1∑
i=1

(pi−1[λi]− (pi−2 + pi)[µi]) + (pn−1[λn]− pn−2[µn])

=
n−1∑
i=1

pi−1[λi − aiµi] + (pn−1[λn]− pn−2[µn]).
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Let Di denote a compressing disk for Ti. Since [∂Di] = [λi − aiµi], it follows

that we can form the union of P with pi−1 copies of −Di for i = 1, . . . , n − 1

to produce a properly embedded, oriented surface D ⊂ T ′n. The boundary ∂D

represents pn−1[λn]−pn−2[µn] ∈ H1(∂(nd(Ln))), and since gcd(pn−1, pn−2)=1,

it follows that ∂D has a single component. Furthermore, a simple calculation

shows that χ(D) = 1. Therefore, D provides the desired compressing disk.

Since b ·D = 1, we calculate

(4) [κ] = (κ ·D)[b] ∈ H1(L(p, q))

for an oriented knot κ ⊂ L(p, q) supported in T ′n and transverse to D.

(II) Now we pull in the 4-dimensional point of view. Given α ∈ H2(X, ∂X),

represent the class ∂∗α by a knot κ ⊂ L(p, q), isotop it into the complement of

the surgery tori T1 ∪ · · · ∪ Tn, and regard it as knot in ∂D4. Choose a Seifert

surface for it, and push its interior slightly into D4, producing a surface F .

Consider the Kirby diagram of X. We can represent the class x by the

sphere S obtained by pushing the interior of P slightly into D4, producing a

surface P ′, and capping off ∂P ′ with pi−1 copies of the core of handle attach-

ment along Li, for i = 1, . . . , n. It is clear that

(5) κ ·D = κ · P = F · P ′ = F · S = 〈[F ], x〉.

Since ∂∗α = ∂∗[F ] = [κ], it follows that α−[F ] represents an absolute class

in H2(X). Since the pairing H2(X)⊗H2(X)→ Z takes values in |H1(∂X)| ·Z,

it follows that 〈α, x〉 ≡ 〈[F ], x〉 (mod p). Comparing with (4) and (5), we

obtain

(6) ∂∗α = 〈α, x〉[b].

(III) At last we use the 2-handle cobordism W and the closed manifold Z.

Given β ∈ H2(−W,−∂W ), write β = n[C], where C denotes the core of the

handle attachment along K. Since ∂∗[C] = [K], it follows that

(7) ∂∗β = 〈β, [Σ]〉[K].

Finally, consider the commutative diagram

H2(Z,−W )
∼
exc.

// H2(X, ∂X)
∂∗
++

H2(Z)

44

**
H1(L(p, q)).

H2(Z,X)
∼
exc.

// H2(−W,−∂W )

∂∗ 33

Proceeding along the top, the image of a class γ ∈ H2(Z) in H1(L(p, q)) is

given by 〈γ, x〉[b] according to (6). Similarly, proceeding along the bottom, its



THE LENS SPACE REALIZATION PROBLEM 463

image in H1(L(p, q)) is given by 〈γ, σ〉[K] according to (7), switching to the

use of σ for [Σ]. Thus, taking γ = e0, we have

k[b] = 〈e0, x〉[b] = 〈e0, σ〉[K] = [K],

using the fact that σ0 = 1. This completes the proof of the proposition. �

Thus, for an unoriented knot K ⊂ L(p, q), we obtain a pair of values ±k
(mod p) that specify a pair of homology classes in H1(L(p, q)), one for each

orientation on K. Note that had we used the reversed basis {xn, . . . , x1}, we

would have expressed [K] as a multiple k′[a] ∈ H1(L(p, q)). Since [a] = q[b], we

obtain k′ ≡ kq′ ≡ −k−1 (mod p), which is consistent with q′ ≡ −(k′)2 (mod p)

and L(p, q′) ∼= L(p, q). Thus, given a value k (mod p), we represent equivalent

(unoriented) knots by choosing any of the values {±k,±k−1} (mod p). For

the latter Berge types listed in Section 1.2, we use a judicious choice of k. For

example, Berge types IX and X involve a concise quadratic expression for p in

terms of k, but there does not exist such a nice expression for it in terms of

the least positive residue of −k or k−1 (mod p).

3. Lattices

3.1. Generalities. A lattice L consists of a finitely-generated free abelian

group equipped with a positive-definite, symmetric bilinear pairing 〈 , 〉 :

L× L → R. It is integral if the image of its pairing lies in Z. In this case, its

dual lattice is the lattice

L∗ := {x ∈ L⊗ R | 〈x, y〉 ∈ Z for all y ∈ L},

and its discriminant disc(L) is the index [L∗ : L]. All lattices will be assumed

integral henceforth.

Given a vector v ∈ L, its norm is the value |v| := 〈v, v〉. It is reducible if

v = x+ y for some nonzero x, y ∈ L with 〈x, y〉 ≥ 0, and irreducible otherwise.

It is breakable if v = x+ y for some x, y ∈ L with |x|, |y| ≥ 3 and 〈x, y〉 = −1,

and unbreakable otherwise. A lattice L is decomposable if it is an orthogonal

direct sum L = L1 ⊕ L2 with L1, L2 6= (0), and indecomposable otherwise.

Suppose that a lattice L has a basis S = {v1, . . . , vn} of irreducible vectors.

We then define the pairing graph of S by“G(S) = (S,E), E = {(vi, vj) | i 6= j and 〈vi, vj〉 6= 0}.3

Let Gk denote a connected component of “G(S) and Lk ⊂ L the sublattice

spanned by V (Gk). If Lk = L′ ⊕ L′′, then each vector in V (Gk) must belong

to one of L′ or L′′ by irreducibility. Since Gk is connected, it follows that

they must all belong to the same summand, whence Lk is indecomposable.

3More on graph notation in Section 3.2.
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A basic result, due to Eichler, asserts that this decomposition L ∼=
⊕

k Lk
into indecomposable summands is unique up to reordering of its factors [34,

Th. II.6.4].

3.2. Graph lattices. Let G = (V,E) denote a finite, loopless, undirected

graph. Write v ∼ w to denote (v, w) ∈ E. A subgraph of G takes the form

H = (V ′, E′), where V ′ ⊂ V and E′ ⊂ {(v, w) ∈ E | v, w ∈ V ′}; it is induced

if “=” holds in place of “⊂,” in which case we write H = G|V ′. For a pair of

disjoint subsets T, T ′ ⊂ V , write E(T, T ′) for the set of edges between T and

T ′, e(T, T ′) for its cardinality, and set d(T ) = e(T, V − T ). In particular, the

degree of a vertex v ∈ V is the value d(v).

Form the abelian group Γ(G) freely generated by elements [v], v ∈ V , and

define a symmetric, bilinear pairing by

〈[v], [w]〉 =

d(v), if v = w;

−e(v, w), if v 6= w.

Let

[T ] :=
∑
v∈T

[v],

and note that

〈[T ], [T ′]〉 = e(T ∩ T ′, V − (T ∪ T ′))− e(T − T ′, T ′ − T ).

In particular, 〈[T ], [T ]〉 = d(T ), and 〈[T ], [T ′]〉 = −e(T, T ′) for disjoint T, T ′.

Given x∈Γ(G), write x=
∑
v∈V xv[v]. Observe that |x|=∑

e∈E(xv−xw)2,

where v and w denote the endpoints of the edge e. It follows that |x| ≥ 0, so

the pairing on Γ(G) is positive semi-definite. Let V1, . . . , Vk denote the vertex

sets of the connected components of G. It easy to see that |x| = 0 if and only

if x belongs to the span of [V1], . . . , [Vk] and, moreover, that these elements

generate Z(G) := {x ∈ Γ(G) | 〈x, y〉 = 0 for all y ∈ Γ(G)}. It follows that the

quotient Γ(G) := Γ(G)/Z(G) is a lattice.

Definition 3.1. The graph lattice associated to G is the lattice Γ(G).

Now assume that G is connected. For a choice of root r ∈ V , every element

in Γ(G) is equivalent (mod Z(G)) to a unique element in the subspace of Γ(G)

spanned by the set {[v] | v ∈ V − r}. In what follows, we keep a choice of root

fixed and identify Γ(G) with this subspace. We reserve the notation [T ] for

T ⊂ V − r.

Definition 3.2. The set {[v] | v ∈ V − r} constitutes a vertex basis for

Γ(G).

Proposition 3.3. The irreducible elements of Γ(G) take the form ±[T ],

where T and V − T induce connected subgraphs of G.
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Proof. Suppose that 0 6= x =
∑
v∈V−r cv[v] ∈ Γ(G) is irreducible. Re-

placing x by −x if necessary, we may assume that c := maxv cv ≥ 1. Let

T = {v | cv = c}; then

〈[T ], x− [T ]〉= 〈[T ], (c− 1)[T ]〉+ 〈[T ],
∑

v∈V−T
cv[v]〉

= (c− 1) · d(T )−
∑

v∈V−T
cv · e(v, T )

=
∑

v∈V−T
(c− 1− cv) · e(v, T ) ≥ 0.

Since x is irreducible, it follows that x = [T ].

Next, we argue that [T ] is irreducible if and only if the induced subgraphs

G|T and G|(V − T ) are connected. Write y =
∑
v∈V yv[v] ∈ Γ(G). Then

(8) 〈y, y− [T ]〉 =
∑
C

∑
(u,v)∈E(C)

(yu−yv)2 +
∑

(u,v)∈E(T,V−T )
(yu−yv)(yu−yv−1),

where C ranges over the connected components of G|T and G|(V − T ). Each

summand appearing in (8) is nonnegative. It follows that (8) vanishes iden-

tically if and only if (a) yu is constant on each component C and (b) if a

component C1 ⊂ G|T has an edge (u, v) to a component C2 ⊂ G|(V − T ),

then yu = yv or yv + 1. Now pass to the quotient Γ(G). This has the effect

of setting yr = 0 in (8). If G|(V − T ) is disconnected, then we can choose a

component C such that r /∈ V (C) and set yu = −1 for all u ∈ V (C) and 0

otherwise. Then y and [T ]− y are nonzero, orthogonal, and sum to [T ], so [T ]

is reducible. Similarly, if G|T is disconnected, then we can choose an arbitrary

component C and set yu = 1 if u ∈ V (C) and 0 otherwise, and conclude once

more that [T ] is reducible. Otherwise, both G|T and G|(V −T ) are connected,

and y vanishes on G|(V − T ) and equals 0 or 1 on G|T . Thus, y = 0 or [T ],

and it follows that [T ] is irreducible. �

Proposition 3.4. Suppose that G does not contain a cut-edge, and sup-

pose that [T ] = y + z with 〈y, z〉 = −1. Then either

(1) G|T contains a cut-edge e, V (G|T − e) = T1 ∪ T2, and {y, z} =

{[T1], [T2]}; or

(2) G(V − T ) contains a cut-edge e, V (G|(V − T )− e) = T1 ∪ T2, r ∈ T2,

and {y, z} = {[T1 ∪ T ],−[T1]}.

Proof. Reconsider (8). In the case at hand, the inner product is 1. Each

term (yu − yv)(yu − yv − 1) is either 0 or ≥ 2, so it must be the case that

each such term vanishes and there exists a unique edge e ∈ E(T ) ∪E(V − T ),

e = (u, v), for which (yu − yv)2 = 1 and all other terms vanish. In particular,

it follows that e is a cut-edge in either (a) G|T or (b) G|(V − T ).
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In case (a), write T1 and T2 for the vertex sets of the components of

G|T − e. Then y is constant on T1, T2, and V − T ; furthermore, it vanishes

on V − T and its values on T1 and T2 differ by one. Since e is not a cut-edge

in G, it follows that E(V − T, T1), E(V − T, T2) 6= ∅, so the values on T1 and

T2 differ from the value on V − T by at most one. It follows that these values

are 0 and 1 in some order. This results in (1).

In case (b), write T1 and T2 for the vertex sets of the components of

G|(V −T )−e with r ∈ T2. Now y is constant on T1, T2, and T ; furthermore, it

vanishes on T2 and its values on T1 and T2 differ by one. Hence the value on T2
is 1 or −1. Since e is not a cut-edge in G, it follows that E(T, T1), E(T, T2) 6= ∅,

so the value on T is 0 or 1 more than the values on T1 and T2. Thus, either

the value on T1∪T is 1, or the value on T1 is −1 and the value on T is 0. This

results in (2). �

3.3. Linear lattices. Observe that a sum of linear lattices L =
⊕

k Lk
occurs as a special case of a graph lattice. Indeed, construct a graph G whose

vertex set consists of one vertex for each generator xi of Lk (Definition 2.1),

as well as one additional vertex r. For a pair of generators xi, xj , declare

(xi, xj) ∈ E if and only if 〈xi, xj〉 = −1, and define as many parallel edges

between r and xi as necessary so that d(xi) = ai. It is clear that Γ(G) ∼= L,

and this justifies the term linear lattice. Furthermore, the xi comprise a vertex

basis for L.

Given a linear lattice L and a subset of consecutive integers {i, . . . , j} ⊂
{1, . . . , n}, we obtain an interval {xi, . . . , xj}. Two distinct intervals T =

{xi, . . . , xj} and T ′ = {xk, . . . , xl} share a common endpoint if i = k or j = l

and are distant if k > j+ 1 or i > l+ 1. If T and T ′ share a common endpoint

and T ⊂ T ′, then write T ≺ T ′. If i = l + 1 or k = j + 1, then T and T ′ are

consecutive and write T † T ′. They abut if they are either consecutive or share

a common endpoint. Write T t T ′ if T ∩ T ′ 6= ∅ and T and T ′ do not share

a common endpoint. Observe that if T t T ′, then the symmetric difference

(T − T ′) ∪ (T ′ − T ) is the union of a pair of distant intervals.

Corollary 3.5. Let L =
⊕

k Lk denote a sum of linear lattices.

(1) The irreducible vectors in L take the form ±[T ], where T is an interval

in some Lk;

(2) each Lk is indecomposable;

(3) if T t T ′, then [T − T ′]± [T ′ − T ] is reducible;

(4) [T ] is unbreakable if and only if T contains at most one vertex of degree

≥ 3.

Proof. (1) follows from Proposition 3.3, noting that for T ⊂ V − {r}, if

T and V − T induce connected subgraphs of the graph G corresponding to L,

then T is an interval in some Lk. (2) follows since the elements of the vertex
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basis for Lk are irreducible and their pairing graph is connected. For item

(3), write (T − T ′) ∪ (T ′ − T ) = T1 ∪ T2 as a union of distant intervals. Then

[T − T ′] ± [T ′ − T ] = ε1[T1] + ε2[T2] for suitable signs ε1, ε2 ∈ {±1}, and

〈ε1[T1], ε2[T2]〉 = 0. For (4), we establish the contrapositive in two steps.

( =⇒ ) If an interval T contains a pair of vertices xi, xj of degree ≥ 3,

then it breaks into consecutive intervals T = Ti ∪ Tj with xi ∈ Ti and xj ∈ Tj .
It follows that [T ] is breakable, since [T ] = [Ti]+ [Tj ] with 〈[Ti], [Tj ]〉 = −1 and

d(Ti), d(Tj) ≥ 3.

(⇐= ) If [T ] = y + z is breakable, then Proposition 3.4 applies. Observe

that case (2) does not hold since breakability entails |z| ≥ 3, while a cut-edge

in G(V − T ) separates it into T1 ∪ T2 with d(T1) = 2 and r ∈ T2. Thus, case

(1) holds, and it follows that d(T1), d(T2) ≥ 3, so both T1 and T2 contain a

vertex of degree ≥ 3, which shows that T contains at least two such. �

Next we turn to the question of when two linear lattices are isomorphic.

Let I denote the set of irreducible elements in L, and given y ∈ I, let

I(y) = {z ∈ I | 〈y, z〉 = −1, y + z ∈ I}.

To unpack the meaning of this definition, suppose that y ∈ I, |y| ≥ 3, and

write y = εy[Ty]. If z ∈ I(y) with z = εz[Tz], then either εy = εz and Ty † Tz,
or else |z| = 2, εy = −εz, and Tz ≺ Ty. Now suppose that z ∈ I(y) with

|z| = 3. Choose elements xi ∈ Ty and xj ∈ Tz of norm ≥ 3 so that the open

interval (xi, xj) contains no vertex of degree ≥ 3. If w ∈ I(y) ∩ (−I(z)) with

w = εw[Tw], then Tw ⊂ (xi, xj), and either Tw ≺ Ty and εw = −εy, or else

Tw ≺ Tz and εw = εz. It follows that |I(y) ∩ (−I(z))| = |(xi, xj)| = |i− j| − 1.

The following is the main result of [19]. An alternative proof follows from

the results of [24] (notably Theorems 1.1, 1.2, and Proposition 4.6 there).

Proposition 3.6 (Gerstein). If Λ(p, q) ∼= Λ(p′, q′), then p = p′, and

q = q′ or qq′ ≡ 1(mod p).

Proof. Let L denote a linear lattice with standard basis S = {x1, . . . , xn}.
The proposition follows once we show that L uniquely determines the sequence

of norms x = (|x1|, . . . , |xn|) up to reversal, noting that if p/q = [a1, . . . , an]−

and p/q′ = [an, . . . , a1]
−, then qq′ ≡ 1 (mod p) (Lemma 9.4(4)).

Suppose that I contains an element of norm ≥ 3. In this case, select

y1 ∈ I with minimal norm ≥ 3 subject to the condition that there does not

exist a pair of orthogonal elements in I(y1). It follows that y1 = ε[T1], where

T1 contains exactly one element xj1 ∈ S of norm ≥ 3, and j1 is the smallest or

largest index of an element in S with norm ≥ 3. Inductively select yi ∈ I(yi−1)

with minimal norm ≥ 3 subject to the condition that 〈yi, yj〉 = 0 for all j < i,

until it is no longer possible to do so, terminating in some element yk. It follows

that yi = ε[Ti] for all i, where ε ∈ {±1} is independent of i; each Ti contains a
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unique xji ∈ S of norm ≥ 3; Ti † Ti+1 for i < k; and each xj ∈ S of norm ≥ 3

occurs as some xji . Therefore, up to reversal, the (possibly empty) sequence

(|y1|, . . . , |yk|) = (|xj1 |, . . . , |xjk |) coincides with x with every occurrence of 2

omitted.

To recover x completely, assume for notational convenience that j1 <

· · · < jk. Set ni := |I(yi) ∩ (−I(yi+1))| for i = 1, . . . , k − 1, so that ni =

ji+1−ji−1. If k ≥ 2, then set n0 = |I(y1)−(−I(y2)), nk = |I(yk)−(−I(yk−1))|,
and observe that n0 = j1 − 1 and nk = n − jk. If k = 1, then decompose

I(y) = I0 ∪ I1, where 〈zi, z′i〉 6= 0 for all zi, z
′
i ∈ Ii, i = 0, 1. In this case, set

ni = |Ii|, and observe that {n0, n1} = {j1 − 1, n − j1}. Lastly, if k = 0, then

set n0 = n. Letting 2[t] denote the sequence of 2’s of length t, it follows that

x = (2[n0], |y1|, 2[n1], . . . , 2[nk−1], |yk|, 2[nk]).
Since the elements y1, . . . , yk and the values n0, . . . , nk depend solely on

L for their definition, it follows that x is determined uniquely up to reversal,

and the proposition follows. �

The following definition and lemma anticipate our discussion of the inter-

section graph in Section 4.2 (especially Lemma 4.11).

Definition 3.7. Given a collection of intervals T = {T1, . . . , Tk} whose

classes are linearly independent, define a graph

G(T ) = (T , E), E = {(Ti, Tj) | Ti abuts Tj}.

Lemma 3.8. Given a cycle C ⊂ G(T ), the intervals in V (C) abut pairwise

at a common end. That is, there exists an index j such that each Ti ∈ V (C)

has left endpoint xj+1 or right endpoint xj . In particular, V (C) induces a

complete subgraph of G(T ).

Proof. Relabeling as necessary, write V (C)={T1, . . . , Tk}, where (Ti, Ti+1)

∈ E(C) for i = 1, . . . , k, subscripts (mod k). We proceed by induction on the

number of edges n ≥ k in the subgraph induced on V (C).

When n = k, C is an induced cycle. In this case, if three of the intervals

abut at a common end, then they span a cycle, k = 3, and we are done. If not,

then define a sign εi = ±1 by the rule that εi = 1 if and only if Ti † Ti−1 and

Ti lies to the right of Ti−1, or if Ti and Ti−1 share a common left endpoint.

Fix a vertex xj , suppose that xj ∈ Ti for some i, and choose the next index l

(mod k) for which xj ∈ Tl. Observe, crucially, that εi = −εl. It follows that

〈xj ,
∑k
i=1 εi[Ti]〉 = 0. As xj was arbitrary, we obtain the linear dependence∑k

i=1 εi[Ti] = 0, a contradiction. It follows that if n = k, then k = 3 and the

three intervals abut at a common end.

Now suppose that n > k. Thus, there exists an edge (Ti, Tj) ∈ E(C) for

some pair of nonconsecutive indices i, j (mod k). Split C into two cycles C1
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and C2 along (Ti, Tj). By induction, every interval in V (C1) and V (C2) abuts

at the same end as Ti and Tj , so the same follows at once for V (C). �

3.4. Changemaker lattices. Fix an orthonormal basis {e0, . . . , en} for Zn+1.

Lemma 3.9. Suppose that L = (σ)⊥ ⊂ Zn+1 and σ0 := 〈e0, σ〉 = 1. Then

disc(L) = |σ|.

Proof. (cf. [34, proof of Lemma II.1.6]) Consider the map

ϕ : Zn+1 → Z/|σ|Z, ϕ(x) = 〈x, σ〉 (mod |σ|).

As σ0=1, the map ϕ is onto, so K :=ker(ϕ) has discriminant [Zn+1 : K]2= |σ|2.
On the other hand, K = L⊕ (σ), so disc(L) = disc(K)/|σ| = |σ|. �

Proof of Theorem 1.6. We invoke [23, Th. 3.3] with X = X(p, q). It fol-

lows that Λ(p, q) embeds as a full-rank sublattice of (σ)⊥ ⊂ Zn+1, where |σ| = p

and σ is a changemaker according to the convention of [23, Lemma 3.2], which

relaxes the condition that σ0 = 1 to σ0 ≥ 0. It stands to verify that σ0 = 1,

so that σ is a changemaker according to the present convention, and further-

more that Λ(p, q) actually equals (σ)⊥ on the nose. First, if σ0 = 0, then

Λ(p, q) would have a direct summand isomorphic to (e0) ∼= Z, in contra-

diction to its indecomposability (Corollary 3.5(2)). Hence σ0 = 1. Second,

disc(Λ(p, q)) = p = |σ| = disc((σ)⊥), using Lemma 3.9 at the last step. Since

rk Λ(p, q) = rk (σ)⊥, the two lattices coincide. �

Definition 3.10. A changemaker lattice is any lattice isomorphic to (σ)⊥ ⊂
Zn+1 for some changemaker σ (Definition 1.5).

We construct a basis for a changemaker lattice L as follows. Fix an index

1 ≤ j ≤ n, and suppose that σj = 1 +
∑j−1
i=0 σi. In this case, set vj =

−ej + 2e0 +
∑j−1
i=1 ei ∈ L. Otherwise, σj ≤

∑j−1
i=0 σi. It follows that there

exists a subset A ⊂ {0, . . . , j − 1} such that σj =
∑
i∈A σi. Amongst all

such subsets, choose the one maximal with respect to the total order < on

subsets of {0, 1, . . . , n} defined by declaring A′ < A if the largest element in

(A ∪ A′) \ (A ∩ A′) lies in A; equivalently,
∑
i∈A′ 2

i <
∑
i∈A 2i. Then set

vj = −ej +
∑
i∈A ei ∈ L. If v = −ej +

∑
i∈A′ ei for some A′ < A, then write

v � vj .

The vectors v1, . . . , vn are clearly linearly independent. The fact that they

span L is straightforward to verify, too: given w ∈ L, add suitable multiples of

vn, . . . , v1 to w in turn to produce a sequence of vectors with support decreasing

to ∅. Recall that the support of a vector v ∈ Zn+1 is the set supp(v) =

{i | 〈v, ei〉 6= 0}. For future reference, we also define

supp+(v) = {i | 〈v, ei〉 > 0} and supp−(v) = {i | 〈v, ei〉 < 0}.
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Definition 3.11. The set S = {v1, . . . , vn} constitutes the standard basis

for L. A vector vj ∈ S is

• tight, if vj = −ej + 2e0 +
∑j−1
i=1 ei;

• gappy, if vj = −ej +
∑
i∈A ei and A does not consist of consecutive

integers; and

• just right, if vj = −ej +
∑
i∈A ei and A consists of consecutive integers.

A gappy index for a gappy vector vj is an index k ∈ A such that k+1 /∈ A∪{j}.

Thus, every element of S belongs to exactly one of these three types.

We record a few basic observations before proceeding to some more sub-

stantial facts about changemaker lattices. Write vjk = 〈vj , ek〉.

Lemma 3.12. The following hold :

(1) vjj = −1 for all j, and vj,j−1 = 1 unless j = 1 and v1,0 = 2;

(2) for any pair vi, vj , we have 〈vi, vj〉 ≥ −1;

(3) if k is a gappy index for some vj , then |vk+1| ≥ 3;

(4) given z =
∑n
i=0 ziei ∈ L with |z| ≥ 3, supp−(z) = {j}, and zj = −1, it

follows that j = max(supp(z)).

Proof. (1) is clear, using the maximality of A for the second part. (2) is

also clear. (3) follows from maximality, as otherwise vj � vj − vk+1. For (4),

suppose not, and select k > j for which zk > 0. We obtain the contradiction

0 = 〈z, σ〉 > σk − σj ≥ 0, where the inequality is strict because |z| ≥ 3. �

Lemma 3.13. The standard basis elements of a changemaker lattice are

irreducible.

Proof. Choose a standard basis element vj ∈ S, and suppose that vj =

x + y for x, y ∈ L with 〈x, y〉 ≥ 0. In order to prove that vj is irreducible,

it stands to show that one of x and y equals 0. Write x =
∑n
i=0 xiei and

y =
∑n
i=0 yiei.

Case 1. vj is not tight. In this case, |vji| ≤ 1 for all i. We claim that

xiyi = 0 for all i. For suppose not. Since 〈x, y〉 ≥ 0, there exists an index i

so that xiyi > 0. Then |vji| = |xi + yi| ≥ 2, a contradiction. Since all but

one coordinate of vj is nonnegative, it follows that one of x and y has all its

coordinates nonnegative. But the only such element in L is 0. It follows that

vj is irreducible. Notice that this same argument applies to any vector of the

form −ej +
∑
i∈A ei.

Case 2. vj is tight. We repeat the previous argument up to the point

of locating an index i such that xiyi > 0. Now, however, we conclude that

x0 = y0 = 1, and xiyi ≤ 0 for all other indices i. In particular, there is at

most one index k for which xkyk = −1, and xiyi = 0 for i 6= 0, k. If there is no
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such k, then we conclude as above that one of x and y has all its coordinates

nonnegative, and vj is irreducible as before. Otherwise, we may assume that

xk = 1. Then supp−(y) = {k} and supp−(x) = {j}. Since xi+ yi = vji 6= 0 for

all i ≤ j, it follows that k > j. But then |x| ≥ 3 and k = max(supp(x)) > j,

in contradiction to Lemma 3.12(4). Again it follows that vj is irreducible. �

We collect a few more useful cases of irreducibility (cf. Lemma 4.2).

Lemma 3.14. Suppose that vt ∈ L is tight.

(1) If vj is tight, j 6= t, then vj − vt is irreducible.

(2) If vj = −ej + ej−1 + et, j > t, then vj + vt is irreducible.

(3) If vt+1 = −et+1 + et + · · ·+ e0, then vt+1 − vt is irreducible.

Proof. In each case, we assume that the vector in question is expressed as

a sum of nonzero vectors x and y with 〈x, y〉 ≥ 0. Recall that both x and y

have entries of both signs.

(1) Assume without loss of generality that j > t. Thus, vj − vt = −ej +

2et +
∑j−1
i=t+1 ei, where the summation could be empty. As in the proof of

Lemma 3.13, it quickly follows that xt = yt = 1, xkyk = −1 for some k, and

otherwise xiyi = 0. Without loss of generality, xk = 1. Thus, supp−(x) = {j}
and supp−(y)={k}. By Lemma 3.12(4), it follows that j=max(supp(x))>k.

As xk + yk = 0, it follows that k < t. Now 0 = 〈y, σ〉 ≥ σt − σk > 0, a

contradiction. Therefore, vj − vt is irreducible.

(2) It follows that x0 = y0 = 1, xk = −yk = ±1 for some value k ≥ t, and

otherwise xiyi=0. Without loss of generality, say xk=1. Thus, supp−(x)={j}
and supp−(y) = {k}. By Lemma 3.12(4), j = max(supp(x)). In particular, it

follows that k < j. Another application of Lemma 3.12(4) implies that k =

max(supp(y)). It follows that y = −ek +
∑
i∈A ei for some A ⊂ {0, . . . , t− 1}.

But then 0 = 〈y, σ〉 = −σk +
∑
i∈A σi < −σk + 1 +

∑t−1
i=0 σi = −σk + σt ≤ 0, a

contradiction. Therefore, vj + vt is irreducible.

(3) We have vt+1 − vt = −et+1 + 2et − e0. It follows that xt = yt = 1.

If xiyi = 0 for every other index i, then {x, y} = {−et+1 + et, et − e0}, but

〈et−e0, σ〉 = σt−σ0 > 0, a contradiction. It follows that there is a unique index

k for which xkyk = −1, and otherwise xiyi = 0. Without loss of generality,

say xk = 1. Hence y = et −
∑
i∈A ei for some A ⊂ {0, k, t+ 1}. But A cannot

contain an index > t, for then 0 = 〈y, σ〉 ≤ σt−σt+1 < 0, nor can it just contain

indices < t, for then 0 = 〈y, σ〉 ≥ σt −
∑t−1
i=0 σi = 1. Therefore, vt+1 − vt is

irreducible. �

Lemma 3.15. If vj ∈ S is not tight, then it is unbreakable.

Proof. Suppose that vj is breakable and choose x and y accordingly. From

the conditions that 〈x, y〉 = −1 and vj0 6= 2, it follows that xkyk = −1 for a
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single index k, and otherwise xiyi = 0. Without loss of generality, say xk = −1.

Then supp−(x) = {k} and supp−(y) = {j}. By Lemma 3.12(4), it follows that

k = max(supp(x)) and j = max(supp(y)). In particular, it follows that k < j,

and that yi = vji for all i > j. On the other hand, j ∈ supp+(y)−supp+(vi). It

follows that vj � y, a contradiction. Hence vi is unbreakable, as claimed. �

4. Comparing linear lattices and changemaker lattices

In this section we collect some preparatory results concerning when a

changemaker lattice is isomorphic to a sum of one or more linear lattices.

Thus, for the entirety of this section, let L denote a changemaker lattice with

standard basis S = {v1, . . . , vn}, and suppose that L is isomorphic to a linear

lattice or a sum thereof. By Corollary 3.5 and Lemma 3.13, it follows that

vi = εi[Ti] for some sign εi = ±1 and interval Ti. Let T = {T1, . . . , Tn}. If

vi is not tight, then Corollary 3.5 and Lemma 3.15 imply that Ti contains at

most one vertex of degree ≥ 3. If [Ti] is unbreakable and d(Ti) ≥ 3, then let zi
denote its unique vertex of degree ≥ 3.

4.1. Standard basis elements and intervals. Tight vectors, especially break-

able ones, play an involved role in the analysis (Section 8). We begin with some

basic observations about them.

Lemma 4.1. Suppose that vt is tight, j 6= t, and |vj | ≥ 3. Then 〈vt, vj〉
equals

(1) |vj | − 1, if and only if Tj ≺ Tt;
(2) |vj | − 2, if and only if zj ∈ Tt and Tj t Tt, or |vj | = 3, Tj † Tt, and

εj 6= εt;

(3) ε ∈ {±1}, if and only if Tj † Tt and εjεt 6= ε, or |vj | = 3, zj ∈ Tt,

Tj t Tt, and εjεt = ε; or

(4) 0, if and only if zj /∈ Tt and either Tj and Tt are distant or Tj t Tt.

If |vj | = 2, then |〈vt, vj〉| ≤ 1, with equality if and only if Tt and Tj abut.

Proof sketch. Observe that −1 ≤ 〈vi, vj〉 ≤ |vj | − 1 for any pair of dis-

tinct i, j. Assuming that |vj | ≥ 3, the result follows by using the fact that Tj
is unbreakable and by conditioning on how Tj meets Tt and whether or not

d(Tj) > 3. �

Lemma 4.2. Suppose that vt ∈ S is tight.

(1) No other standard basis vector is tight.

(2) If vj = −ej + ej−1 + et, j > t+ 1, then Tt † Tj .
(3) If vt+1 = −et+1 + et + · · ·+ e0, then t = 1 and T1 † T2.

Proof. We apply each case of Lemma 3.14 in turn.
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(1) Suppose that there is another index j for which vj is tight. Without

loss of generality, we may assume that j > t. Then 〈vt, vj〉 = |vt| − 2 ≥ 3. It

follows that εj = εt and Tj t Tt. Thus, [Tj − Tt]− [Tt− Tj ] is reducible, but it

also equals εj(vj − vt), which is irreducible according to Lemma 3.14(1). This

yields the desired contradiction.

(2) We have 〈vt, vj〉 = −1 and |vj | = 3, so either the desired conclusion

holds, or else zj ∈ Tt, Tt t Tj , and εtεj = −1. If the latter possibility holds,

then [Tj−Tt]− [Tt−Tj ] is reducible, but it also equals εjvj−εtvt = εj(vj +vt),

which is irreducible according to Lemma 3.14(2). It follows that Tt † Tj .
(3) We have 〈vt, vt+1〉 = |vt+1| − 2, so either the desired conclusion holds,

or else zt+1 ∈ Tt, Tt t Tt+1, and εt = εt+1. If the latter possibility holds,

then again [Tt+1−Tt]− [Tt−Tt+1] is reducible, but it also equals εt(vt+1− vt),
which is irreducible according to Lemma 3.14(3). It follows that t = 1 and

T1 † T2. �

Lemmas 3.15 and 4.2(1) immediately imply the following result.

Corollary 4.3. A standard basis S contains at most one breakable vec-

tor, and it is tight. �

The following important lemma provides essential information about when

two standard basis elements can pair nontrivially together; unless one is break-

able or has norm 2, then they correspond to consecutive intervals.

Lemma 4.4. Given a pair of unbreakable vectors vi, vj ∈ S with |vi|, |vj |
≥ 3, we have |〈vi, vj〉| ≤ 1, with equality if and only if Ti † Tj and εiεj =

−〈vi, vj〉.

Proof. The lemma follows easily once we establish that 〈[Ti], [Tj ]〉 ≤ 0.

Thus, we assume that 〈[Ti], [Tj ]〉 ≥ 1 and derive a contradiction. Since these

classes are unbreakable and they pair positively, it follows that zi = zj . In

particular, d := |vi| = d(Ti) = d(Tj) = |vj |. Now, either Ti t Tj , in which case

〈[Ti], [Tj ]〉 = d− 2, or else Ti and Tj share a common endpoint, in which case

〈[Ti], [Tj ]〉 = d− 1.

Let us first treat the case in which i = t and vt is tight. By Corollary 4.3,

it follows that vj is not tight. Thus, d = t+ 4, and supp(vj) contains at least

three values > t. If vjt = 1, then 〈vt, vj〉 ≤ d−3, while if vjt = 0, then supp(vj)

contains at least four values > t, and again 〈vj , vt〉 ≤ d − 3. As 〈vt, vj〉 ≥ −1

and d ≥ 5, we have |〈vt, vj〉| ≤ d− 3, whereas |〈[Tt], [Tj ]〉| ≥ d− 2. This yields

the desired contradiction to the assumption that 〈[Tt], [Tj ]〉 ≥ 1 in this case.

Thus, we may assume that neither vi nor vj is tight, and without loss of

generality that j > i. Suppose that ε := εj = εi. Thus 〈vi, vj〉= 〈[Ti], [Tj ]〉≥ 1.

If vji = 1, then 〈vj , vi〉 ≤ d − 2, with equality possible if and only if vjk = 1
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whenever vik = 1. But then |vj | > |vi|, a contradiction. Hence vji = 0. If

〈vj , vi〉 = d − 1, then again vjk = 1 whenever vik = 1. But then vj − vi =

−ej + ei � vj , a contradiction.

Still assuming that εj = εi, we are left to consider the case that vji = 0

and 〈vj , vi〉 = d− 2, and therefore Ti t Tj . In this case, supp(vj)− supp(vi) =

{j, k} and supp(vi) − supp(vj) = {i, l} for some indices k, l. If σj = σk, then

vj = −ej + ek, in contradiction to |vj | ≥ 3. If σj = σi, then either i < k, in

which case we derive the contradiction vj = −ej + ek again, or else k < i, in

which case we derive the contradiction −ej + ei � vj . Therefore, σj 6= σi, σk.

It easily follows that vj − vi = −ej + ek + ei − el is irreducible. On the other

hand, vj−vi = ε([Tj ]−[Ti]) = ε[Tj−Ti]−ε[Ti−Tj ] is reducible, a contradiction.

It follows that ε := εj = −εi. Hence 〈[Ti], [Tj ]〉 = −〈vi, vj〉 ≤ 1. In case of

equality, we have d = 3 and Ti t Tj . So on the one hand, vj = −ej+ei+ep and

vi = −ei+eq+es for distinct indices i, j, p, q, s, whence vj+vi = −ej+ep+eq+es
is irreducible (cf. the proof of Lemma 3.13, Case 1). On the other hand, it

equals ε([Tj ]− [Ti]) = ε[Tj−Ti]−ε[Ti−Tj ], which is reducible, a contradiction.

In total, 〈[Ti], [Tj ]〉 ≤ 0 in every case, and the lemma follows. �

Corollary 4.5. If Ti and Tj are distinct unbreakable intervals with d(Ti),

d(Tj) ≥ 3, then zi 6= zj .

4.2. The intersection graph. This subsection defines the key notion of the

intersection graph and establishes the most important properties about it that

are necessary to carry out the combinatorial analysis of Sections 5–8.

Recall that from the standard basis S, we obtain a collection of intervals

T . Let S ⊂ S denote the subset of unbreakable elements of S; thus, S = S−vt
if S contains a breakable element vt, and S = S otherwise. For an index

1 ≤ i ≤ n, let Si = {v1, . . . , vi}.

Definition 4.6 (Compare Definition 3.7).The intersection graph is the

graph

G(S) = (S,E), E = {(vi, vj) | Ti abuts Tj}.

Write G(S′) to denote the subgraph induced by a subset S′ ⊂ S. If (vi, vj) ∈ E
with i < j, then vi is a smaller neighbor of vj .

Observe that G(S) is a subgraph of the pairing graph “G(S) (Section 3.1)

and Lemma 4.4 implies that they coincide unless S contains a breakable el-

ement vt. Furthermore, if vt ∈ S is breakable, then Lemma 4.1 implies that

(vt, vj) ∈ E if and only if 〈vt, vj〉 ∈ {|vj | − 1, 1,−1}, except in the special

case that |vj | = 3, zj ∈ Tt, Tj t Tt, and εjεt = 〈vt, vj〉. Therefore, G(S) is

determined by the pairings of vectors in S except in this special case, which

fortunately arises just once in our analysis (Proposition 8.8).
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We now collect several fundamental properties about the intersection

graph G(S).

Definition 4.7. The claw (i; j, k, l) is the graph Y = (V,E) with

V = {i, j, k, l} and E = {(i, j), (i, k), (i, l)}.

A graph G is claw-free if it does not contain an induced subgraph isomorphic

to Y .

Equivalently, if three vertices in G neighbor a fourth, then some two of

them neighbor.

Lemma 4.8. G(S) is claw-free.

Proof. If Ti abuts three intervals Tj , Tk, Tl, then it abuts some two at the

same end, and then those two abut. �

Definition 4.9. A heavy triple (vi, vj , vk) consists of distinct vectors of

norm ≥ 3 contained in the same component of G(S), none of which separates

the other two in G(S). In particular, if (vi, vj , vk) spans a triangle, then it

spans a heavy triangle.

Lemma 4.10. G(S) does not contain a heavy triple.

Proof. Since vi, vj , vk belong to the same component of G(S), the intervals

Ti, Tj , Tk are subsets of some path P ⊂ G−r. Assume without loss of generality

that zi lies between zj and zk on P . Every unbreakable interval in P that avoids

zi lies to one side of it, and Tj and Tk lie to opposite sides by assumption. As

each element in S is unbreakable and Ti is the unique interval containing zi, it

follows that vj and vk lie in separate components of G(S)− vi. �

Lemma 4.11. Every cycle in G(S) has length 3 and contains a unique

vector vi of norm 2. Furthermore, if (vi, vj , vk) is a cycle with i < j < k and

vk is not gappy, then |vl| = 2 for all l ≤ i if S = S, or for all t < l ≤ i

otherwise.

Proof. Choose a cycle C ⊂ G(S). By Lemma 3.8, it follows that V (C)

induces a complete subgraph. Thus, V (C) cannot contain three vectors of

norm ≥ 3, for then they would span a heavy triangle, in contradiction to

Lemma 4.10. Note also that the vectors of norm 2 in S induce a union of

paths in G(S). Therefore, V (C) cannot contain more than two such vectors.

If it did contain two, then they must take the form vi+1 = −ei+1 + ei and

vi = −ei + ei−1. Choose any other vj ∈ V (C). Then either vj,i = 0 and

vj,i±1 = 0, or else vj,i = 0 and vj,i±1 = 1. In the first case, vj � vj − vi+1,

and in the second, vj � vj − vi, both of which entail contradictions. It follows

that V (C) contains at most two vectors of norm ≥ 3 and at most one vector
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of norm 2, hence exactly that many of each. This establishes the first part of

the lemma.

For the second part, it follows at once that min(supp(vk)) = i and |vi| = 2.

If |vl| ≥ 3 for some largest value l < i and l 6= t, then (vl, vl+1, . . . , vi) induces

a path in G(S), and then (vl, vj , vk) forms a heavy triple. The second part now

follows as well. �

Corollary 4.12. If C ⊂ S spans a cycle in G(S), then it induces a

complete subgraph and |V (C)| ≤ 4, with equality if and only if C contains a

breakable vector vt.

Definition 4.13. If (vi, vj , vk) spans a triangle in G(S), then it is positive

or negative according to the sign of 〈vi, vj〉 · 〈vj , vk〉 · 〈vk, vi〉.

Lemma 4.14. If (vi, vj , vk) spans a triangle in G(S) and some pair of

Ti, Tj , Tk are consecutive, then the triangle is positive.

Proof. Observe that 〈vi, vj〉 · 〈vj , vk〉 · 〈vk, vi〉 = (εiεjεk)
2 · 〈[Ti], [Tj ]〉 ·

〈[Tj ], [Tk]〉 · 〈[Tk], [Ti]〉. Two pairs of Ti, Tj , Tk are consecutive and the other

pair shares a common endpoint, so the right-hand side of this equation is pos-

itive. �

Most of the case analysis to follow in Sections 5–8 involves arguing that

elements of S must take a specific form, for otherwise we would obtain a

contradiction to one of the preceding lemmas. In such cases, we typically just

state something to the effect of “(vi, vj , vk) forms a negative triple” without

the obvious conclusion “a contradiction,” to spare the use of this phrase several

dozen times.

We conclude with one last basic observation.

Lemma 4.15. Suppose that vs ∈ S has norm ≥ 3 with s chosen smallest

and that it is not tight. Then vs is just right, and |vs| ∈ {s, s+ 1}.

Proof. Recall that if vg is gappy, then |vk+1| ≥ 3 for a gappy index k.

By minimality of s, it follows that vs is just right. If |vs| < s, then vs =

−es + es−1 + · · ·+ ek for some 2 ≤ k ≤ s− 2, and (vk; vk−1, vk+1, vs) induces a

claw, a contradiction. �

5. A decomposable lattice

The goal of this section is to classify the changemaker lattices isomorphic

to a sum of more than one linear lattice (Proposition 5.7). We begin with a

basic result.

Lemma 5.1. A changemaker lattice has at most two indecomposable sum-

mands. If it has two indecomposable summands, then there exists an index
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s > 1 for which vs = −es +
∑s−1
i=0 ei, |vi| = 2 for all 1 ≤ i < s, and vs and v1

belong to separate summands.

Proof. For the first statement, it suffices to show that “G(S) has at most

two connected components (cf. Section 3.1). Thus, suppose that “G(S) has more

than one component, fix a component C that does not contain v1, and choose

s > 1 smallest such that vs ∈ V (C). Thus, vs 6∼ vi for all 1 ≤ i < s. Let k =

min(supp(vs)). Then k = 0, since otherwise vs ∼ vk. Furthermore, vs is not

gappy, for if l is a gappy index, then vs ∼ vl+1. Therefore, vs = −es +
∑s−1
i=0 ei.

If |vi| ≥ 3 for some i < s, then vs ∼ vi. It follows that |vi| = 2 for all i < s. As

s is uniquely determined, it follows that C is as well, so “G(S) contains exactly

two components. The statement of the lemma now follows. �

For the remainder of the section, suppose that L is a changemaker lattice

isomorphic to a sum of two linear lattices.

Lemma 5.2. All elements of S are just right.

Thus, G(S) = “G(S).

Proof. Suppose that vt ∈ S is tight. Then 〈vt, v1〉 = 1 and 〈vt, vs〉 ≥ 1

implies that v1 and vs belong to the same component of “G(S), a contradiction.

Next, suppose that vg ∈ S is gappy with g chosen minimal. Note that

|vg| ≥ 3. Let k denote the minimal gappy index for vg. Since vk+1 is not gappy,

it follows that vk+1,k−1 6= 0. Since 〈vg, vk+1〉 ≤ 1 by Lemma 4.4, it follows

that vg,k−1 = 0, and now minimality of k implies that k = min(supp(vg)).

This implies that vg ∼ vk. We cannot have vk+1 ∼ vk, since this forces

|vk| ≥ 3, and then (vk, vk+1, vj) forms a heavy triangle, in contradiction to

Lemma 4.10. Hence vk 6∼ vk+1. As G(S) does not contain a cycle of length

> 3, it follows that vk and vk+1 belong to separate components of G(Sg−1).

(Recall from Section 4.2 that Si := {v1, . . . , vi} ⊂ S.) Since G(Sg−1) has at

most two components, it follows that G(Sg) is connected; hence G(S) is as

well, a contradiction. �

We define a few important families of basis sets.

Definition 5.3. Given positive integers 1<s<m−1, letAs,m={v1, . . . , vm},
where

• vm = −em + em−1 + · · ·+ es−1,

• vs+1 = −es+1 + es + es−1,

• vs = −es + es−1 + · · ·+ e0, and

• vk = −ek + ek−1 for all other k < m, k 6= s, s+ 1.

Given a positive integer m ≥ 3, let Bm = {v1, . . . , vm}, where

• vm = −em + em−1 + · · ·+ e0,



478 JOSHUA EVAN GREENE

• v2 = −e2 + e1 + e0, and

• vk = −ek + ek−1 for all other k < m, k 6= 2.

Given positive integers 1 < s < m, let Cs,m = {v1, . . . , vm}, where

• vm = −em + em−1 + · · ·+ es,

• vs = −es + es−1 + · · ·+ e0, and

• vk = −ek + ek−1 for all other k < m, k 6= s.

Lemma 5.4. Suppose that vm has multiple smaller neighbors. Then m >

s+ 1 and Sm = As,m.

Proof. Suppose that vm ∼ vi, vj with i < j < m. As in the proof of

Lemma 5.2, the vectors vi and vj cannot belong to separate components of

G(Sm−1), for then G(S) would be connected. Furthermore, vi ∼ vj , since

otherwise G(Sm) would contain a cycle of length > 3. By Lemma 4.11, it

follows that |vl| = 2 for all l ≤ i. Hence s ≥ i + 1. From vj ∼ vi, it follows

that j ≥ s+ 1 and vj = −ej + ej−1 + · · ·+ ei. As 〈vj , vm〉 ≤ 1, it follows that

j = i+ 2. Thus, s = i+ 1. As i and j are uniquely determined, it follows that

vm 6∼ vk for all s+ 2 < k < m, so |vk| = 2 for all such k. Hence Sm = As,m, as

claimed. �

The following definition is essential to describe the way in which we build

families of standard bases. The terminology borrows from [31, Def. 3.4], al-

though its meaning differs somewhat.

Definition 5.5. We call Sm an expansion of Sm−1 if vm = −em + em−1 +

· · · + ek for some k, |vi| = 2 for all k + 1 < i < m, and |vk+1| ≥ 3 in case

m > k + 1.

Lemma 5.6. Suppose that vm has a single smaller neighbor. Then Sm is

either Bm, Cs,m, or an expansion of Sm−1.

Proof. Suppose first that vm0 = 1. It follows by assumption on vm that

|vk| = 2 for all 1 ≤ k < n except for a single vi, for which |vi| = 3. On the

other hand, |vs| = s+ 1. It follows that s = 2 and Sm = Bm.

Thus, we may assume that vm = −em + em−1 + · · · + ei for some i > 0.

Now vm ∼ vi, so |vk| = 2 for all i + 1 < k < m. Suppose that i + 1 < m

and |vi+1| = 2. If vi ∼ vl with l < i, then (vi; vl, vi+1, vm) induces a claw, in

contradiction to Lemma 4.8. It follows that i = s and Sm = Cs,m.

The remaining cases that m = i + 1, or that m > i + 1 and |vi+1| > 2,

both imply that Sm is an expansion of Sm−1. �

Combining Lemmas 5.4 and 5.6 and induction, we obtain the following

structural result.
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Proposition 5.7. Suppose that a changemaker lattice is isomorphic to

a sum of more than one linear lattice. Then its standard basis is built by

a sequence of (possibly zero) expansions to As,m, Bm, Cs,m, or ∅ for some

m > s ≥ 2.

In fact, we have established somewhat more: if a changemaker lattice is

isomorphic to a linear lattice or a sum thereof, and G(Sn′) is disconnected for

some n′ ≤ n, then Sn′ takes the form appearing in Proposition 5.7. We will uti-

lize Proposition 5.7 in this stronger form on several occasions in Sections 6–8.

We obtain vertex bases for the families in Proposition 5.7 as follows:

As,m: {vm−1, . . . , vs+1, vs−1, . . . , v1,−(vm + v1 + · · ·+ vs−1)} ∪ {vs};
Bm: {vm−1 . . . , v2,−vm} ∪ {v1};
Cs,m: {v1, . . . , vs−1} ∪ {vm−1, . . . , vs, vm}.

For expansion on ∅, the standard basis is, up to reordering, a vertex basis (cf.

Proposition 9.2).

6. All vectors just right

Before proceeding further, we briefly comment on the purpose of this and

the next two sections and establish some notation. Just as Proposition 5.7

describes the structure of the standard basis for a changemaker lattice isomor-

phic to a sum of more than one linear lattice, our goal in Sections 6–8 is to

produce a comprehensive collection of structural propositions that do the same

thing for the case of a single linear lattice. In each proposition we enumerate

a specific family of standard bases, and in Section 9 we verify that each basis

does, in fact, span a linear lattice by converting it into a vertex basis.

A posteriori, each standard basis S = {v1, . . . , vn} contains at most one

tight vector and two gappy vectors. We always denote the tight vector by vt.

We denote the gappy vector with the smaller index by vg, which always takes

the form ek + ej + ej+1 + · · ·+ eg−1 − eg with k < j + 1. When there are two

gappy vectors (8.6(1), 8.7(2), 8.8(1,2)), we specifically notate the one with the

larger index. We write s = min{i | |vi| > 2} when there is no tight vector and

s = min{i > t | |vi| > 2} when there is one. Otherwise, every standard basis

element vi is just right, so it is completely determined by i and its norm, which

we report if and only if |vi| ≥ 3. In 7.5(2) and 8.6–8.8 we report some families

of standard bases up to truncation. Thus in 7.5(2), we may truncate by taking

n = g and disregarding vi for i ≥ g + 1.

Example. The first structural Proposition 6.2(1) reports the family of

standard bases parametrized by s ≥ 2, where

• vi = ei−1 − ei for i = 1, . . . , s− 1;

• vs = e0 + · · ·+ es−1 − es;
• vs+1 = es−1 + es − es+1;
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• vs+2 = es + es+1 − es+2; and

• vn = vs+3 = es−1 + es + es+1 + es+2 − es+3.
For the remainder of this section, assume that L is a changemaker lattice

isomorphic to a linear lattice and that every element of S is just right (hence

also unbreakable).

6.1. G(S) contains a triangle. A sun is a graph consisting of a triangle

∆ on vertices {a1, a2, a3} together with three vertex-disjoint paths P1, P2, P3

such that ai is an endpoint of Pi, i = 1, 2, 3. The other endpoints of the Pi are

the extremal vertices of the graph.

Lemma 6.1. If G(S) contains a triangle ∆, then G(S) is a sun and

V (∆) = {vi, vi+2, vm} for some i + 2 < m. Furthermore, |vl| = 2 for all

vl along the path containing vi.

Proof. Choose a triangle ∆ ⊂ G(S) with V (∆) = {vi, vj , vm}, i < j < m.

By Lemma 4.11, |vl| = 2 for all l ≤ i and |vj |, |vm| ≥ 3. Since vj and vm
are just right, we have vj = −ej + · · · + ei and vm = −em + · · · + ei. Since

〈vm, vj〉 ≤ 1, it follows that j = i+ 2.

Suppose by way of contradiction that ∆′ ⊂ G(S) is another triangle with

V (∆′) = {vi′ , vj′ , vm′}, i′ < j′ < m′. Then |vl| = 2 for all l ≤ i′ and j′ = i′+ 2,

so i′ ∈ {i− 1, i, i+ 1}. If i′ = i, then 〈vm′ , vm〉 ≥ 2, which cannot occur. If i′ =

i+ 1, then (vi+3, vi+1, vi) is a path in G(S), which implies that (vi+2, vi+3, vm)

forms a heavy triple, a contradiction. By symmetry, i = i′ + 1 cannot occur

either.

Consequently, G(S) contains a unique triangle ∆. Furthermore, G(S) is

claw-free by Lemma 4.8. It follows that G(S) is a sun. If some vector vl on

the path containing vi had norm ≥ 3, then (vl, vk, vm) forms a heavy triple, so

this does not occur. �

Proposition 6.2. Suppose that every element in S is just right and that

G(S) contains a triangle. Then either

(1) n = s+ 3, |vs| = s+ 1, |vs+1| = |vs+2| = 3, and |vs+3| = 5;

(2) n = s+ 3, |vs| = s+ 1, |vs+1| = 3, and |vs+2| = |vs+3| = 4; or

(3) |vs| = s = 3, |vm| = m for some m > 3, |vi| = 2 for all i < m, i 6= 3,

and S is built from Sm by a sequence of expansions.

Proof. We apply Lemma 6.1, keeping the notation therein.

(I) Suppose that |vi+1| > 2. In this case, s = i + 1 and vs has no smaller

neighbor, so |vs| = s + 1. Since G(S) is connected, vs has some neighbor

vj = −ej + · · ·+ el. Note that vs 6∼ vs+1, vm, so j 6= s+ 1,m. If l < s, then in

fact l < s−1 and (vs+1, vj , vm) forms a heavy triangle, so it follows that l = s.

Since 1 ≥ 〈vj , vm〉 = min{m, j}−(s+1) ≥ 1, it follows that min{m, j} = s+2.

(I.1) Suppose that j = s + 2. The subgraph H of G(S) induced on
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{v1, . . . , vs+2, vm} is a sun with extremal vertices v1, vs, vs+1. We claim that

G(S) = H. For if not, then there exists some vector vl = −el + · · ·+ ek with a

single edge to H, meeting it in an extremal vertex. This forces k ≤ s+ 1, but

then 〈vl, vm〉 ≥ 1, a contradiction. It follows that n = m = s+ 3, and case (1)

results.

(I.2) Suppose that m = s+2. The subgraphH induced on {v1, . . . , vs+2, vj}
is a sun with extremal vertices v1, vs, vs+1 like before. The argument just given

(with vj in place of vm) applies to show that G(S) = H. It follows that

n = j = s+ 3, and case (2) results.

(II) Suppose that |vi+1| = 2. In this case, s = i + 2 = 3 and |v3| = 3. If

|vj | ≥ 3 for some 3 < j < m chosen smallest, then the subgraph induced on

V ′ = {v1, . . . , vj−1, vm} is a sun in which vj has multiple neighbors, which can-

not occur in the sun G(S). Thus, |vj | = 2 for all 3 < j < m. Next, choose any

vj = −ej + · · ·+ ek with j > m. Then G(Sj−1) is a sun, so vj has exactly one

smaller neighbor. It easily follows that k ≥ 2, vj ∼ vk, and vk has some smaller

neighbor vl. If |vj | ≥ 3, then |vk+1| ≥ 3, since otherwise (vk; vl, vk+1, vj) in-

duces a claw. It follows that G(Sj) is an expansion of G(Sj−1). By induction,

G(S) is a sequence of expansions applied to G(Sm), and case (3) results. �

6.2. G(S) does not contain a triangle. In this case, G(S) is a path.

6.2.1. Some vertex has multiple smaller neighbors. Suppose that vm ∈ S
has multiple smaller neighbors. Since G(S) is a path, it follows that G(Sm−1)

consists of a union of two paths and that vm is adjacent precisely to one end-

point of each. Therefore, m is the minimal index for which G(Sm) is connected,

which establishes that m is unique.

Lemma 6.3. Suppose that every element in S is just right, G(S) does not

contain a triangle, vm ∈ S has multiple smaller neighbors, and vm−1 is not an

endpoint of G(S). Then m = n.

Proof. Suppose by way of contradiction that n > m, and consider vm+1.

Its unique smaller neighbor vj is an endpoint of the path G(Sm), and j < m−1

by hypothesis. Therefore, |vm+1| ≥ 4, but this implies that 〈vm+1, vm〉 ≥ 1, a

contradiction. �

Proposition 6.4. Suppose that every element in S is just right, G(S)

does not contain a triangle, and some vector vm ∈ S has multiple smaller

neighbors. Then either

(1) m = n = 4, |v2| = |v3| = 3, and |v4| = 5;

(2) m = n = 4, |v2| = 3, and |v3| = |v4| = 4;

(3) m = n = s+ 3, |vs| = s+ 1, |vs+2| = 3, and |vs+3| = 5;

(4) m = n = s+ 3, |vs| = s+ 1, and |vs+2| = |vs+3| = 4; or

(5) s = 3, |v3| = 4, |vm| = m > 3, and |vm+1| = 3 in case n > m.
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Proof. Write vm = −em + · · ·+ ek.

(I) Suppose that k = 0. Then 〈vm, vs〉 = s − 1 ≥ 1 forces s = 2. Further,

vm is not adjacent to v1, but as vm has a neighbor in the component of G(Sm−1)

containing it, v1 must have some neighbor vi = −ei+ · · ·+e1 with i ≥ 3. Then

〈vm, vi〉 ≥ i− 2 ≥ 1, so i = 3. Hence vm neighbors v2 and v3 but no other vj ,

j < m. It follows that |vj | = 2 for 3 < j < m. If m > 4, then (v3; v1, v4, vm)

induces a claw. Hence m = 4. By Lemma 6.3, it follows that m = n, and case

(1) results.

(II) Suppose that k > 0. Hence vm ∼ vk, vj for some j ≥ k + 2.

(II.1) Suppose that j > k+ 2. In this case, |vj | = 3 and |vj−1| = 2, so vj−2
neighbors vj and vj−1 and no other vector. It follows that j − 2 ∈ {1, s}. But

1 = j − 2 > k > 0 cannot occur, so j − 2 = s. Since 0 = 〈vm, vs〉 = s− k − 1,

it follows that s = k + 1. Moreover, since vj is an endpoint of its path in

G(Sm−1), it follows that m = j + 1. By Lemma 6.3, it follows that m = n,

and case (3) results.

(II.2) Suppose that j = k + 2. Since vj and vk belong to different compo-

nents of G(Sm−1), it follows that |vk| = 2 and |vk+2| ≥ 4.

(II.2.i) Suppose that vk+2 has no smaller neighbor. In this case, |vk+1| = 2

and k + 2 = s. As vk ∼ vk+1 and vk is an endpoint of its path in G(Sm−1),

it follows that vk has no smaller neighbor; hence k = 1. It follows that s = 3,

|v3| = 4, |vm| = m, and |vi| = 2 for all other i < m. If n = m, then we land

in case (5). If n > m, then consider vm+1. Its unique smaller neighbor vj is

an endpoint of G(Sm). It follows that j = m− 1 and |vm+1| = 3. By a similar

argument, it follows that |vi| = 2 for all i > m+ 1. Therefore, case (5) results.

(II.2.ii) Suppose that vk+2 has a smaller neighbor. Thus, it has no larger

neighbor in G(Sm) besides vm, so m = k + 3.

(II.2.ii′) Suppose that |vk+1| ≥ 3. It follows that vk+1 ∼ vk+2, and vk+2

cannot have any other smaller neighbor. Hence min(supp(vk+2)) = 0, s = k+1,

and 1 ≥ |〈vk+1, vk〉| = k, so k = 1. By Lemma 6.3, it follows that m = n, and

case (2) results.

(II.2.ii′′) Suppose that |vk+1| = 2. In this case, vk ∼ vk+1, so vk has no

smaller neighbor. Hence k ∈ {1, s}. However, if k = 1, then vk+2 would not

have a smaller neighbor. Hence k = s, and as 〈vk+2, vs〉 = 0 but vk+2 has a

smaller neighbor, it follows that |vk+2| = 4. By Lemma 6.3, it follows that

m = n, and case (4) results. �

6.2.2. No vector has multiple smaller neighbors.

Proposition 6.5. Suppose that every element in S is just right, G(S)

does not contain a triangle, and no vector in S has multiple smaller neighbors.
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Then either

(1) |vi| = 2 for all i;

(2) s = 3, |v3| = 3, |v4| = 5; or

(3) |vs| = s and S is built from Ss by a sequence of expansions.

Proof. It must be the case that G(Sj) is connected for all j, since G(S)

is connected, and if G(Sm−1) is disconnected for some m > 0, then vm would

have multiple smaller neighbors. Thus, unless case (1) occurs, it follows that

|vs| = s ≥ 3.

(I) Suppose that there exists an index m > s for which min(supp(vm)) = 0.

In this case, 〈vm, vs〉 = s − 2 ≥ 1. It follows that s = 3 and v3 is the unique

smaller neighbor of vm. If m > 4, then (v3; v2, v4, vm) induces a claw. Hence

m = 4. If n > 4, then choose j maximal for which |v5| = · · · = |vj | = 2. Thus,

G(Sj) has endpoints vj and v2. If n > j, then vj+1 must neighbor one of vj
and v2. However, vj+1 ∼ v2 implies that 〈vj+1, v4〉 ≥ 1, while vj+1 ∼ vj implies

that |vj+1| = 2. Both result in contradictions, so it follows that n = j, and

case (2) results.

(II) Suppose that min(supp(vm)) > 0 for all m > s. Consider vm =

−em + · · ·+ ek with m > s and k > 0. Thus, vk is the unique smaller neighbor

of vm, so it is an endpoint of G(Sm−1), and |vi| = 2 for all k + 1 < i < m. If

m > k + 1 and |vk+1| = 2, then vk ∼ vk+1. As vk is an endpoint of G(Sm−1),

it follows that vk has no smaller neighbor. But then k = 1 and |vi| = 2 for

all i < m, in contradiction to the assumption that m > s. It follows that

|vk+1| ≥ 3, or else m = k + 1 and |vm| = 2. Hence Sm is an expansion on

Sm−1. By induction on m, it follows that case (3) results. �

7. A gappy vector, but no tight vector

In this section, assume that L is a changemaker lattice isomorphic to a

linear lattice, S does not contain a tight vector, and it does contain a gappy

vector vg. We keep the notation introduced in the second paragraph of Sec-

tion 6. Again, every vector in S is unbreakable, and G(S) = “G(S). For use in

Section 8, the following lemma allows the possibility that S contains a tight,

unbreakable vector.

Lemma 7.1. Suppose that vg ∈ S is gappy and that S contains no break-

able vector. Then vg is the unique gappy vector, vg = −eg +eg−1 + · · ·+ej +ek
for some k + 1 < j < g, and vk and vk+1 belong to distinct components of

G(Sg−1).

Proof. Choose vg with g minimal, and choose a minimal gappy index k for

vg. Then |vk+1| ≥ 3, and since vk+1 is not gappy, it follows that vk+1,k−1 = 1.

Thus, vg,k−1 = 0, since otherwise 〈vg, vk+1〉 ≥ 2. It follows that vg ∼ vk+1, vk.
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If vk ∼ vk+1, then either |vk| ≥ 3, or else k = 1 and v2 is tight. In the first

case, the triangle (vk, vk+1, vg) is heavy, and in the second case, it is negative.

Hence |vk| = 2 and vk 6∼ vk+1. If vk and vk+1 are in the same component of

G(Sg−1), then a shortest path between them, together with vg, spans a cycle

of length > 3 in G(S). It follows that G(Sg−1) has two components, and vk
and vk+1 belong to separate components.

Suppose by way of contradiction that l > k is another gappy index. Then

|vl+1| ≥ 3, so vk+1 6∼ vl+1, since otherwise (vk+1, vl+1, vg) forms a heavy tri-

angle. Furthermore, vl+1,k = 0, since otherwise 〈vg, vl+1〉 ≥ 2. It follows that

vl+1 6∼ vk, too. But then (vg; vk, vk+1, vl+1) induces a claw. Hence, no other

index l exists, and vg takes the stated form.

Lastly, suppose by way of contradiction that vh is another gappy vector,

with h > g chosen smallest. Note that G(Sh−1) is connected. It follows that vh
has at most two smaller neighbors and that they are adjacent, since otherwise

there would exist a cycle of length > 3 in G(S). Choose a minimal gappy index

k′ for vh and let l = min(supp(vh)). Then |vk′+1| ≥ 3, and since 〈vg, vk′+1〉 ≤ 1,

it follows that vk′+1,i = 0 for i = l, . . . , k′− 1. Thus, vk′+1,i = 1 for some i < l,

whence l > 0. Thus, vh ∼ vk′+1, vl, so vk′+1 ∼ vl. However, |vl| = 2, so it

follows that vk′+1,l−1 = 1; but then vk′+1 � vk′+1 − vl, a contradiction. It

follows that vg is the unique gappy vector, as claimed. �

By Lemma 7.1, it follows that G(Sg−1) is disconnected, so Sg−1 must take

one of the forms described by Proposition 5.7. Lemmas 7.2 and 7.3 condition

on these possible forms to determine the structure of Sg.

Lemma 7.2. Suppose that Sg−1 is built from ∅ by a sequence of expan-

sions. Then Sg takes one of the following forms :

(1) k = s− 1, j = s+ 1, |vs| = s+ 1, and |vs+2| = 4;

(2) j = k + 2, |vi| = 2 for all i > k + 1, and otherwise Sg−1 is arbitrary ;

(3) k = s, j = s+ 2, |vs| = s+ 1, |vs+1| = 3, and |vs+2| = 3;

(4) k = 1, s = 2, |v2| = 3, |vj | = j, and |vj+1| = 3; or

(5) k = 1, s = 2, |v2| = 3, and |vj | = j.

Proof. (I) Suppose that vg ∼ vj . Thus, vjk = 0. If vj 6∼ vk+1, then

(vg; vk, vk+1, vj) induces a claw. Hence vj ∼ vk+1. If |vj | ≥ 3, then (vk+1, vj , vg)

forms a heavy triangle. Hence |vj | = 2 and j = k + 2.

(I.1) Suppose that vl ∼ vk with k < l < g. Thus, vl = −el + · · ·+ ek. Then

l > k + 2 and 〈vg, vl〉 ≤ 1, which implies that l = k + 3 and |vk+3| = 4. If

|vi| ≥ 3 for some largest value i ≤ k, then (vi, vk+3, vg) forms a heavy triple.

Hence |vi| = 2 for all i ≤ k, and s = k+ 1. If vl ∼ vs+1 for some s+ 1 < l < g,

then (vg; vs−1, vs, vl) induces a claw. It follows that |vl| = 2 for all s+1 < l < g,

and case (1) results.
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(I.2) Suppose that vl 6∼ vk for all k+ 1 < l < g. It follows that |vl| = 2 for

all such l, and case (2) results.

(II) Suppose that vg 6∼ vj . Thus, vjk = 1. Furthermore, the assumption

on Sg−1 implies that k = min(supp(vj)) and that |vi| = 2 for all k+ 1 < i < j.

If vk has a smaller neighbor vl, then (vk; vl, vj , vg) induces a claw. It follows

that k ∈ {1, s}.
(II.1) Suppose that k = s. Since |vs| ≥ 3, it follows that |vs+1| = 3. If

j > s + 2, then |vs+2| = 2 and (vs+1; vs−1, vs+2, vg) induces a claw. Hence

j = s + 2. If vs+1 ∼ vl for some s + 2 < l < g, then either l = s + 3, in

which case (vs, vl, vg) forms a heavy triangle, or else l > s + 3, in which case

〈vg, vl〉 ≥ 2. It follows that |vl| = 2 for all s+ 2 < l < g, and case (3) results.

(II.2) Suppose that k = 1. It follows that s = 2.

(II.2′) Suppose that vl ∼ vj−1 for some j < l < g. If vg ∼ vl, then

(vj−1, vl, vg) forms a heavy triple. Hence vg 6∼ vl, so l = j + 1 and |vj+1| = 3.

If vi ∼ vj for some j < i < g, then (vj , vi, vg) forms a heavy triple. Hence

|vi| = 2 for all j + 1 < i < g, and case (4) results.

(II.2′′) Suppose that vl 6∼ vj−1 for all j < l < g. It follows that |vl| = 2 for

all j < l < g, and case (5) results. �

Lemma 7.3. Suppose that Sg−1 is not built from ∅ by a sequence of ex-

pansions. Then Sg takes one of the following forms :

(1) k = s, j = s+ 2, |vs| = s+ 1, |vs+1| = 3, and |vs+2| = 4;

(2) k = 1, j = 3, s = 2, |v2| = 3, and |v3| = 4; or

(3) k = s− 1, j = s+ 1, |vs| = s+ 1, and |vs+2| = 3.

Proof. Since Sg−1 is not obtained from ∅ by a sequence of expansions,

Proposition 5.7 implies that Sg−1 is built by applying a sequence of expansions

to As,m, Bm, or Cs,m, for some m > s ≥ 2. We consider these three possibilities

in turn.

(I) Sm = As,m. In this case, vs is a singleton in G(Sg−1). It follows

that s ∈ {k, k + 1}. If s = k + 1, then since (vs−1, vs, vm) spans a triangle

and vs−1 ∼ vg, it follows that (vs, vm, vg) forms a heavy triple. Therefore,

s = k. If m 6= j, then (vs+1, vm, vg) forms a heavy triangle. Therefore,

m = j. If m > s+ 2, then |vs+1| = 2, and (vs+1; vs−1, vs+2, vg) induces a claw.

Therefore, m = s+ 2. It follows that Sg−1 is built from As,s+2 by a sequence

of expansions. If vl ∼ vk+1 for some s+2 < l ≤ g−1, then either l = s+3 and

(vs+1, vs−1, vs+3, vg) induces a claw, or else l > s + 3 and (vs+1, vl, vg) forms

a heavy triple. Consequently, no such l exists, and therefore |vi| = 2 for all

s+ 2 < i ≤ g − 1. This results in case (1).

(II) Sm = Bm. In this case, v1 is a singleton in G(Sg−1), so k = 1. If

m 6= j, then (v2, vm, vg) forms a heavy triangle. Therefore, m = j. If m > 3,
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then (v2; v3, vm, vg) induces a claw. Hence m = 3. It follows that Sg−1 is built

from B4 by a sequence of expansions. If vl ∼ v2 for some 3 < l ≤ g − 1, then

either (v3, vl, vg) forms a heavy triangle, or (v3; v4, vl, vg) induces a claw. It

follows that |vi| = 2 for all 4 < i ≤ g − 1. This results in case (2).

(III) Sm=Cs,m. In this case, (v1, . . . , vs−1) spans a component of G(Sg−1).

It follows that k = s− 1. If vm ∼ vg, then (vs, vm, vg) forms a heavy triangle.

Hence vm 6∼ vg. If j > s + 1, then (vs; vs+1, vm, vg) induces a claw. Hence

j = s + 1. Since vm 6∼ vg, it follows that m = s + 2. Therefore, Sg−1 is built

from Cs,s+2 by a sequence of expansions. If vl ∼ vs+1 for some s+2 < l ≤ g−1,

then l = s+ 3 since 〈vg, vl〉 ≤ 1, and then (vg; vs−1, vs, vs+3) induces a claw. It

follows that |vl| = 2 for all s+ 2 < l < g. This results in case (3). �

Lemma 7.4. Suppose that there exists vm ∈ S with multiple smaller

neighbors and that m > g. Then m = g + 1, g = s + 2, |vs| = s + 1,

vs+2 = −es+2 + es+1 + es−1, |vs+3| = 5, and |vi| = 2 for i = 1, . . . , s− 1, s+ 1.

Proof. Since G(Sm−1) is connected and G(Sm) does not contain a cycle of

length > 3, it follows that vm has precisely two smaller neighbors va, vb with

a < b, and (va, vb, vm) spans a triangle. By Lemma 4.11, it follows that vm =

−em + · · ·+ ea, |vl| = 2 for all l ≤ a, and |vb|, |vm| ≥ 3. Furthermore, |vl| = 2

for all l < m, l 6= s, b. As |vs|, |vg| ≥ 3, it follows that s = a + 1 and b = g;

since |vk+1| ≥ 3, it follows that k = s; and since 〈vm, vg〉 ≤ 1, it follows that

vg = −eg+eg−1+es−1 for some g ≥ s+2. If g < m−1, then (vg; vg−1, vg+1, vm)

induces a claw, and if g > s+2, then (vg; vs, vg−1, vm) induces a claw. It follows

that m = g + 1, g = s+ 2, and Sm takes the stated form. �

Proposition 7.5. Suppose that S contains a gappy vector vg but no tight

vector. Then S takes one of the following forms :

(1) n = g and S is as in Lemma 7.2(2);

(2) n ≥ g, and up to truncation, |vg+1| = 3, |vi| = 2 for all g + 1 < i ≤ n,

and Sg is as in Lemmas 7.2 or 7.3, except for Lemma 7.2(2);

(3) Sg+1 is as in Lemma 7.4, and |vi| = 2 for all g + 1 < i ≤ n.

Proof. If n = g, then the result is immediate. Thus, suppose that n > g,

and select any g < m ≤ n. If vm has multiple smaller neighbors, then m = g+1

and Sg+1 takes the form stated in Lemma 7.4. Assuming this is not the case, vm
has a unique smaller neighbor. If l := min(supp(vm)) = 0, then vm ∼ vs, vg,

a contradiction. Hence l > 0, and vl is the unique smaller neighbor of vm.

Observe that l 6= g, since then (vg; vk, vk+1, vm) induces a claw. It follows that

vg has no larger neighbor. If |vl+1| = 2, then s < g ≤ l, so vl has a smaller

neighbor vi, and then (vl; vi, vl+1, vg) induces a claw. It follows that |vl+1| ≥ 3.

Consequently, if m > g is chosen minimal with |vm| ≥ 3, then m = g + 1

and either Sg+1 is as in Lemma 7.4, or else |vg+1| = 3. Furthermore, there does
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not exist any m′ > m with |vm′ | ≥ 3, since then min(supp(vm′)) = g and vm′ ∼
vg, which does not occur. Therefore, |vi| = 2 for all g + 1 < i ≤ n. Finally, Sg
cannot take the form stated in Lemma 7.2(2), for then (vk+1, vg, vg+1) forms a

heavy triple. The statement of the proposition now follows. �

8. A tight vector

Suppose that S contains a tight vector vt. By Lemma 4.2(1), the index

t is unique. The arguments in this section reach slightly beyond the criteria

laid out in Section 4.2 that sufficed to carry out the analysis in Sections 5–

7. Nevertheless, the basic ideas are the same as before. Again, we keep the

notation introduced in the second paragraph of Section 6.

8.1. All vectors unbreakable. Propositions 8.2 and 8.3 describe the struc-

ture of a standard basis that contains a tight, unbreakable element. However,

we do not make any assumption on vt just yet, as these results will apply in

Section 8.2.

Lemma 8.1. St−1 is built from ∅ by a sequence of expansions.

Proof. If |vi| = 2 for all i < t, then the result is immediate, so suppose

that |vs| ≥ 3 with s < t chosen smallest. Thus, |vs| = s or s + 1. Let us rule

out the first possibility. If |vs| = s, then s ≥ 3 and 〈vt, vs〉 = s− 2 ≥ 1. Hence

either Ts t Tt, or else s = 3 and Ts †Tt. In the first case, (v1; v2, vs, vt) induces

claw, and in the second case, (v1, vs, vt) forms a negative triangle. Therefore,

|vs| = s+ 1.

It follows that 〈vt, vs〉 = |vs| − 1 ≥ 2, so that Ts ≺ Tt. As 〈v1, vs〉 = 0, it

follows that T1 and Ts abut Tt at opposite ends. We claim that v1 and vs belong

to separate components of G(St−1). For suppose the contrary, and choose a

shortest path between them. Together with vt they span a cycle of length ≥ 4

in G(S) that is missing the edge (v1, vs), contradicting Corollary 4.12.

Therefore, G(St−1) is disconnected. It follows by Proposition 5.7 that

St−1 is built from As,m, Bm, Cs,m, or ∅ by a sequence of expansions. Let us

rule out the first three possibilities in turn.

(a) As,m. Since |vm| ≥ 4 and 〈vt, vm〉 = |vm| − 2, it follows that Tm t Tt.
Since vs+1 ∼ vm, it follows that Ts+1 † Tm, whence Ts+1 ��† Tt since otherwise

Tm † Tt. Hence Ts+1 t Tt as well. In particular, zs+1, zm ∈ Tt. On the other

hand, (v1, . . . , vs−1, vs+1, vm) induces a sun, with |vs+1|, |vm| ≥ 3. It follows

that T1 is contained in the open interval with endpoints zs+1 and zm, so that

T1 and Tt do not abut, in contradiction to v1 ∼ vt.
(b) Bm. In this case, T2 and Tm both abut Tt, and at the opposite end as

T1. As |v2|, |vm| ≥ 3, it follows that both T2, Tm ≺ Tt. Hence one of T2, Tm
contains the other, in contradiction to their unbreakability.
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(c) Cs,m. Now Ts ≺ Tt. If Tm t Tt, then Tm and Tt abut Ts at opposite

ends. However, Ts+1 abuts Ts as well, but vs 6∼ vt, vs+1. It follows that

m = s + 2 and Tm † Tt. But then (vs, vm, vt) forms a negative triangle. It

follows that St−1 is built from ∅ by a sequence of expansions, as desired. �

Proposition 8.2. Suppose that |vi| 6= 2 for some i < t. Then S = St.

Proof. We proceed by way of contradiction. Thus, suppose that S 6=
St, and consider vt+1. Since G(St) is a path, Lemma 7.1 implies that vt+1

is not gappy. Set k := min(supp(vt+1)). By Lemma 4.2(3), it follows that

k > 0. Hence 〈vt, vt+1〉 ≤ |vt+1| − 3, so |vt+1| ∈ {2, 3, 4}. If |vt+1| = 2, then

(vt; v1, vs, vt+1) induces a claw. Similarly, if |vt+1| = 4, then (vt; v1, vs, vt+1)

induces a claw unless k ∈ {1, s}; but if k ∈ {1, s}, then (vk, vt, vt+1) forms a

negative triangle.

It remains to consider the case that |vt+1| = 3. In this case, vt−1 is the

unique smaller neighbor of vt+1, and vt 6∼ vt+1, so zt+1 /∈ Tt. Let P ⊂ G(S)

denote the induced path with consecutive vertices (vi1 , . . . , vil), where i1 = t

and il = t + 1. Thus, i2 ∈ {1, s} and il−1 = t − 1. Observe that if m < t is

maximal with the property that |vm| ≥ 3, then vm ∈ V (P ); in fact, ij = m,

where j + m = t + 1. Note that zij /∈ Tih for all h 6= 1, j. Let x denote the

endpoint of Tt at which Ti1 = Tt and Ti2 abut. Without loss of generality,

suppose that y is the left endpoint of Tt. Thus, Tij−1 abuts the left endpoint

of Tm. It follows that Tij+1 abuts the right endpoint of Tij , since otherwise

(vij−1 , vij , vij+1) induces a triangle, while P is a path. Hence zm separates x

from all Tih with h > j. In particular, zm separates x from zt+1 ∈ Tt+1 = Til .

As zt+1 /∈ Tt, it follows that zt+1 lies to the right of Tt. Hence Tt ⊂ T :=⋃l
h=2 Tih . However, d(Tt) = t + 4 > t + 1 ≥ d(T ), a contradiction. It follows

that vt+1 cannot exist, so S = St, as desired. �

Henceforth we assume that |vi| = 2 for all i < t.

Proposition 8.3. Suppose that zi /∈ Tt for all i ≤ n′ ≤ n with |vi| ≥ 3.

Then Sn′ takes one of the following forms :

(1) t = 1, |vs| = s + 1 for some s > 1, |vi| = 2 for all 1 < i < s, and Sn′

is built from Ss by a sequence of expansions ;

(2) t = 1, |vs| = s for some s > 1, |vi| = 2 for all 1 < i < s, and Sn′ is

built from Ss by a sequence of expansions ; or

(3) t > 1, |vi| = 2 for all i < t, and Sn′ is built from St by a sequence of

expansions.

Notice that Proposition 8.3(1) allows the possibility that s = 2, a slight

divergence from our convention on the use of s stated at the outset of Sec-

tion 6. Under the assumption that n = n′, Proposition 8.3 produces three
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broad families of examples. Assuming instead that n > n′, Propositions 8.6,

8.7, and 8.8 utilize this result to produce even more.

Proof. By Lemma 7.1, Sn′ does not contain a gappy vector. Choose any

m > t, and suppose by way of contradiction that vm has multiple smaller

neighbors. Since G(Sm−1) is connected and G(Sm) does not contain a cycle

of length > 3, it follows that vm has exactly two smaller neighbors vk and vj ,

k < j, and vk ∼ vj . Therefore, |vi| = 2 for all k + 1 < i < m, i 6= j, and

since G(Sm) does not contain a heavy triple, it follows that |vi| = 2 for all

i ≤ k. Hence t ∈ {k + 1, j}. However, if t = k + 1, then (vt, vj , vm) forms a

heavy triple, while if t = j, then k = 1, t = 3, and (vk, vt, vm) forms a negative

triangle. Therefore, vm has exactly one smaller neighbor.

Set k := min(supp(vm)), and suppose that k = 0. Then 〈vt, vm〉 = t,

so it follows that t = 1. Since vm has no other smaller neighbor, it follows

that |vi| = 2 for all 1 < i < m. Thus, Sm takes the form stated in (2) with

m = s. Suppose instead that |vk+1| = 2. Then vk has no smaller neighbor vi,

since then (vk; vi, vk+1, vm) induces a claw. As t ≤ k, G(Sk) is connected, so

k = t = 1. Thus, Sm takes the form stated in (3) with m = s. If neither k = 0

nor |vk+1| = 2, then it follows that Sm is an expansion on Sm−1. By induction,

it follows that S takes one of the forms stated in the lemma. �

8.2. A tight, breakable vector. Now we treat the case that vt is break-

able. This is the final and most arduous step in the case analysis, resulting in

Propositions 8.6, 8.7, and 8.8.

Lemma 8.4. Suppose that vt is breakable, g 6= t, |vg| ≥ 3, and zg ∈ Tt.
Then g > t+ 1 and either t > 1, vg = −eg + eg−1 + et−1, and Tg t Tt, or else

vg = −eg + eg−1 + et−1 + · · ·+ e0 and Tg ≺ Tt.

Note that we do not assume a priori that vg is gappy.

Proof. (a) g > t + 1. Otherwise, 〈vt, vg〉 ∈ {|vg| − 3, |vg| − 2}, with the

second possibility if and only if min(supp(vg)) = 0. Lemma 4.1 rules out the

first possibility and Lemma 4.2(3) the second.

It follows that supp(vg) contains at least two values > t.

(b) vgt = 0. Otherwise, 1 ≤ 〈vt, vg〉 ≤ |vg| − 3. By Lemma 4.1, we must

have 〈vt, vg〉 = 1 and |vg| = 3, so vg = −eg + eg−1 + et. Now Lemma 4.2(2)

implies that zg /∈ Tt, a contradiction.

As zg ∈ Tt, it follows that 〈vt, vg〉 > 0, so vg is gappy and there exists a

gappy index k < t. Since |vk+1| ≥ 3, it follows that k = t− 1, and supp(vg) ∩
{0, . . . , t− 1} consists of consecutive integers.

(c) supp(vg) contains exactly two values > t. Otherwise, 0 ≤ 〈vt, vg〉 ≤
|vg| − 2, where the latter inequality is attained precisely when vg = −eg +

eg−1 + em + et−1 + · · · + e0 for some t < m < g − 1. Thus, Tg t Tt, εg = εt,
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and εg([Tg − Tt] − [Tt − Tg]) is reducible. However, this equals vg − vt =

−eg + eg−1 + em + et − e0. Since every nonzero entry in this vector is ±1, a

decomposition vg − vt = x + y with 〈x, y〉 = 0 satisfies xiyi = 0 for all i, and

both x and y have a negative coordinate. Without loss of generality, xg = −1

and y0 = −1. Then 0 = 〈y, σ〉 ≥ −1 + σi for some i ∈ {t,m, g − 1}; but

σi ≥ σt = t+ 1 > 1, a contradiction.

It follows that vg = −eg+eg−1+et−1+ · · ·+el for some 0 ≤ l ≤ t−1. Sup-

pose by way of contradiction that 0 < l < t−1. Then (vl; vi, vl+1, vg) induces a

claw in G(S), where i = l−1 if l > 1 and i = t if l = 1. Therefore, l ∈ {0, t−1},
and the statement of the lemma follows on consideration of 〈vt, vg〉. �

Observe that if vt is breakable, zi /∈ Tt for all i < t, and g is chosen

minimally as in Lemma 8.4, then Sg−1 takes one of the forms stated in Propo-

sition 8.3. We assume henceforth that this is the case, and g > t+ 1 is chosen

minimally with zg ∈ Tt.

Lemma 8.5. Suppose that Tt is breakable, Ti ≺ Tt, and let C = {vt} ∪
{vj | Tj † Ti, Tt}. Then C separates vi in G(S) from every other vl of norm

≥ 3 for which zl /∈ Tt.

Proof. For suppose the contrary, and choose an induced path P in G(S)

− C with distinct endpoints vi, vl such that |vl| ≥ 3 and every vector interior

to P has norm 2. Set T =
⋃
vk∈V (P ) Tk. Since V (P ) ∩ C = ∅ and zl /∈ Tt, it

follows that Tt ⊂ T and Tt − Tj contains no vertex of degree ≥ 3. But then Tt
is unbreakable, a contradiction. �

Proposition 8.6. Suppose that Sg−1 is as in Proposition 8.3(1). Then

s = 2, n ≥ g = 3, and S takes one of the following forms (up to truncation):

(1) |vm| = m− 1 for some m ≥ 4; or

(2) v4 = −e4 + e3 + e0 and |vm| = m− 1 for some m ≥ 5.

Proof. Lemma 8.4 implies that vg = −eg+eg−1+e0, Tg ≺ Tt, and further-

more that G(S) = “G(S) in this case. (See the end of the paragraph following

Definition 4.6.)

(a) g = s + 1, and s = 2. If g > s + 1, then G(Sg−1) is a path, and vg
neighbors v1, vs, and vg−1, so (v1, . . . , vg) spans a cycle in G(S) missing the

edge (v1, vg−1), in contradiction to Lemma 3.8. If s > 2, then (v1; v2, vs, vg)

induces a claw.

Let h denote the maximum index of a vector vh for which |vh| ≥ 3 and

zh ∈ T1.
(b) vh = −eh + eh−1 + e0 and h ∈ {3, 4}. The first statement follows from

Lemma 8.4, which also implies that εh = ε1 = εg. If h > 4, then 〈vg, vh〉 = 1.

But both vg and vh are unbreakable, so 〈vg, vh〉 = εgεh〈[Tg], [Th]〉 = 〈[Tg], [Th]〉
≤ 0, a contradiction.
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(c) vm0 = 1 for all m > h. For suppose that vm0 = 1 for some m > h.

Then vm1 = 1 by Lemma 8.4 and the definition of h, which implies that

〈vm, v2〉 ≥ 1. It follows that T1, T2, Tm abut in pairs. But this cannot occur,

since Tm 6≺ T1 by assumption, and T2 and Tm are both unbreakable.

(d) vm1 = 0 for all m > h. For suppose that vm1 = 1 for some m > h.

Thus, Tm † T1. If vm2 = 0, then (v1, v2, vm) forms a negative triangle. If

vm2 = 1, then Tm abuts T1 at the same end as T3, so vm3 = 0, and then

(v1, v3, vm) forms a negative triangle.

It follows that min(supp(vm))≥2 for all m>h. In particular, 〈vt, vm〉=0.

(e) There is no m > h for which vm is gappy. Suppose by way of con-

tradiction that vm is gappy for some smallest m > h, and choose a minimal

gappy index k for vm. Take i = 3 in Lemma 8.5. Then C = {v1}, vk 6∼ v3,

and so k > 2. If h = 4, then take i = 4 in Lemma 8.5. Then C = {v1, v2},
vk 6∼ vh, and so k > 3. In any event, it follows that k > h − 1, so vk+1 is

not gappy. It follows as in the proof of Lemma 7.1 that vm ∼ vk, vk+1. Now

either vk ∼ vk+1, in which case (vk, vk+1, vm) forms a heavy triangle, or else

vk 6∼ vk+1, and then the connectivity of G(Sm−1) implies that G(Sm) contains

an induced cycle of length > 3. Either case results in a contradiction.

Thus, if |vm| ≥ 3 for some m > h, then Lemma 8.5 implies that vm does

not lie in the same component of G(S)−{v1, v2} as vg or vh. It quickly follows

that there is at most one index m > h for which |vm| ≥ 3, and if so, then vm ∼
v2. It then follows that S takes one of the forms stated in the proposition. �

Proposition 8.7. Suppose that Sg−1 is as in Proposition 8.3(2). Then

n ≥ g = s+ 1, and S takes one of the following forms (up to truncation):

(1) s = 2, v4 = −e4 + e3 + e0, and |vm| = m− 1 for some m ≥ 5;

(2) |vm| = m− g + 2 for some m ≥ g; or

(3) |vm| = m− g + 3 for some m ≥ g.

Proof. As in Proposition 8.6, Lemma 8.4 implies that G(S) = “G(S). In

particular, if 〈vj , vt〉 = ±1, then Tj abuts Tt. Observe that v1 ∼ v2, vs, but

v2 6∼ vs. It follows that T1 † T2, Ts, and T2 and Ts are distant. If g > s + 1,

then (v1; v2, vs, vg) induces a claw. Hence g = s+ 1, Tg ≺ T1, and Tg abuts T1
at the same end as Ts.

(I) Suppose that vj0 = 1 for some j > g.

(a) vj1 = 0. If vj1 = 1, then Tj † T1. As Ts and Tg abut T1 at the same

end, it follows that either vj 6∼ vs, vg, or else vj ∼ vs, vg and s = |vs| = 2.

Furthermore, vji = 1 for all 1 ≤ i ≤ s − 1, since otherwise vj � vj − vi for

any such i with vji = 0. Now, if vj 6∼ vg, then vjs = 0, which implies that

〈vs, vj〉 = s− 1 ≥ 1 and vj ∼ vs, a contradiction. If instead vj ∼ vs and s = 2,

then (v1, v2, vj) forms a negative triangle. Therefore, vj1 = 0.
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It follows that Tj ≺ T1, so vj = −ej + ej−1 + e0 according to Lemma 8.4.

Now, Tj and Tg abut T1 at opposite ends, so vj 6∼ vg. It follows that j = g+ 1.

Furthermore, s = 2, since otherwise T2 abuts T1 at the same end as Tj , but

vj 6∼ v2. In summary, s = 2, g = 3, j = 4, v4 = −e4 + e3 + e0, T4 ≺ T1, and T4
abuts T1 at the opposite end as do T2 and T3. In particular, vm0 = 0 for all

m > 4.

Now suppose that there exists m > 4 with |vm| ≥ 3.

(b) vm1 = 0, and vm2 = vm3 = vm4. For suppose that vm1 = 1. Then

vm2 = 1 since |v2| = 2. Thus, vm ∼ v1 and vm 6∼ v2. It follows that Tm abuts

T1 at the same end as T4. Thus, vm 6∼ v3, so vm3 = 1, and vm ∼ v4, so vm4 = 0.

But now (v1, v4, vm) forms a negative triangle, a contradiction. Thus, vm1 = 0.

It follows that vm 6∼ v1, so vm 6∼ v3, v4. Thus, vm4 = vm3 = vm2.

Let us further suppose that m > 4 is minimal subject to |vm| ≥ 3. If

k := min(supp(vm)) > 4, then (vk; vk−1, vk+1, vm) induces a claw. Hence

k = 2. Since |vi| = 2 for 4 < i < m, it follows that vm is not gappy, and

vm = −em + em−1 + · · ·+ e2.

(c) There does not exist m′ > m such that |vm′ | ≥ 3. For suppose oth-

erwise, and choose m′ minimal with this property. Thus, (b) implies that

vm′1 = 0 and vm′2 = vm′3 = vm′4. If these values all equal 1, then 〈vm, vm′〉 ≥ 2,

a contradiction. Hence k′ := min(supp(vm′)) > 4. Now, Lemma 8.5 implies

that k′ ≥ m, taking i = 4 and l = m′ therein. But now |vk′+1| = 2 and

vk′ has a smaller neighbor vi, so (vk′ ; vi, vk′+1, vm′) induces a claw. This is a

contradiction.

In summary, (I) leads to case (1) of the proposition.

(II) Suppose that vm0 = 0 for all m > g.

(d) If s > 2, then vm1 = 0 for all m > g. Assume the contrary, and

choose m accordingly. It follows that vm ∼ v1, and moreover that Tm † T1.
Since vs is unbreakable, it follows that Tm abuts T1 at the same end as T2.

Thus, vm 6∼ vs, vg. From vm 6∼ vs it follows that vm2 = · · · = vm,s−1 = 0 and

vms = 1, and from vm 6∼ vg it subsequently follows that vm0 = 0 and vmg = 1.

But then (v1, v2, vm) forms a negative triangle.

It follows that if vm1 = 1, then s = 2 and Tm † T1; otherwise vm 6∼ v1. We

henceforth drop any assumption about s.

(e) vm is not gappy for any m > g. For suppose some vm is, choose m

minimal with this property, and choose a minimal gappy index k for vm. If

g = k + 1, then vm ∼ vg. If vm1 = 0, then Lemma 8.5 implies a contradiction

with i = g and l = m, while if vm1 = 1, then s = 2, 〈v3, vm〉 ≥ 0 and Tm † T1
implies that (v1, v3, vm) is a negative triangle. It follows in either case that

g 6= k + 1, and since m is chosen minimal, it follows that vk+1 is not gappy.

It follows at once that vm,k−1 = 0, whence vm ∼ vk, vk+1. Furthermore, k 6= 1
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since |vk+1| ≥ 3. Since k ≥ 2, both vk and vk+1 are unbreakable. Now, if

vk ∼ vk+1, then |vk| ≥ 3, and (vk, vk+1, vm) forms a heavy triangle. Hence

vk 6∼ vk+1; but then a shortest path between them in G(Sk+1), together with

vm, results in an induced cycle of length > 3, a contradiction. It follows that

vm is not gappy.

(f) vm does not have multiple smaller neighbors for any m > g. For

suppose that vm ∼ vj for some j > k := min(supp(vm)) ≥ 1. Note that

j 6= g because of the form vg takes, so vj is not gappy, and it follows that

j = k + 2 is uniquely determined. In particular, it follows that k > 1. Hence

vj ∼ vk, since otherwise G(S) contains an induced cycle of length > 3. As

|vj | ≥ 3, it follows that |vi| = 2 for all 1 < i ≤ k, since otherwise (vi, vj , vm)

forms a heavy triple for some such i. Moreover, |vk+1| ≥ 3, since otherwise

(vk; vk−1, vk+1, vm) induces a claw. It follows that k = s − 1, but then j = g

and vj 6∼ vm. Therefore, vm does not have multiple smaller neighbors.

Thus, vm ∼ vk and vm has no other smaller neighbor. Furthermore,

|vk+1| ≥ 3, as argued in the last paragraph. If |vm|≥3 for some smallest m>g,

then k ∈ {s−1, s}, and vm−1 lies in the same component ofG(S)−{v1, vs} as vg.

Suppose by way of contradiction that there exists some smallest m′ > m for

which |vm′ |≥3. It follows from the foregoing that min(supp(vm′))+1=m. But

then vm′ lies in the same component of G(S)− {v1, vs} as vg, in contradiction

to Lemma 8.5.

Therefore, |vm| ≥ 3 for at most one value m > g, and in this case, vm is

not gappy, and min(supp(vm)) ∈ {s− 1, s}. The two possibilities lead to cases

(2) and (3), respectively. �

Proposition 8.8. Suppose that Sg−1 is as in Proposition 8.3(3). Then

n ≥ g = t + 2, vt+2 = −et+2 + et+1 + et−1 + · · · + e0, and S takes one of the

following forms (up to truncation):

(1) |vt+1| = 2, vt+3 = −et+3 + et+2 + et−1, and |vm| = m − t for some

m ≥ t+ 4;

(2) |vt+1| = 3, vt+3 = −et+3 + et+2 + et−1, and |vm| = m − t for some

m ≥ t+ 4;

(3) |vt+1| = 2 and |vm| = m− t for some m ≥ t+ 3.

(4) |vt+1| = 3 and |vm| = m− t for some m ≥ t+ 3.

Proof. (a) vg = −eg + eg−1 + et−1 + · · · + e0 for some g ≥ t + 2. By

Lemma 8.4, it follows that vg = −eg+eg−1+et−1 or −eg+eg−1+et−1+· · ·+e0,
and g ≥ t + 2. Let us rule out the first possibility. Thus, assume by way of

contradiction that this is the case. It follows that vg 6∼ vt in G(S). Note that

G(Sg−1) is a path and that vg ∼ vt−1. Suppose that vg ∼ vg−1. It follows

that vg−1 ∼ vt−1, since otherwise G(S) contains an induced cycle of length

> 3. However, since Sg−1 is built from St by a sequence of expansions, it
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follows that t − 1 = min(supp(vg−1)). However, this implies that vg 6∼ vg−1,

a contradiction. Hence vg 6∼ vg−1. But then (vt−1; vi, vg−1, vg) induces a claw,

where i = t if t = 2 and i = t − 2 if t > 2. This contradiction shows that

vg = −eg + eg−1 + et−1 + · · ·+ e0, as desired.

(b) g = t + 2. Observe that |vt+1| ∈ {2, 3}, since St+1 is an expansion

on St. If |vt+1| = 2, then vt+1 ∼ vg, since otherwise (vt; v1, vn+1, vg) induces a

claw. If |vt+1| = 3, then vt+1 6∼ vg, since otherwise (vg, vt, v1, · · · , vt−1) induces

a cycle of length > 3 in G(S). It follows in either case that g = t+2, as desired.

(c) If vh = −eh + eh−1 + et−1 + · · · + e0, then h = g. For if h 6= g, then

Tg, Th ≺ Tt and Tg and Th are distant, and (vt; v1, vg, vh) induces a claw.

(d) If vh = −eh+eh−1+et−1, then h = g+1 = t+3. For if h > g+1, then

(vh, vg, vt, v1, . . . , vt−1) spans a cycle in G(S) that is missing the edge (vh, vt).

Henceforth we write h = g + 1 if vg+1 takes the form in article (d), and

h = g otherwise. It follows from Lemma 8.4 and articles (c) and (d) that if

|vm| ≥ 3 for some m > h, then zm /∈ Tt. In particular, vm ∼ vi if and only if

Tm and Ti abut for all m > h.

(e) If m > h, then vm is not gappy. For suppose that vm is gappy for

some minimal m > h, let k = min(supp(vm)), and let j denote a minimal

gappy index for vm. Then k > 0, since otherwise |vj+1| ≥ 3 implies that

〈vj+1, vg〉 ≥ 2, and then t = j+1 and zg ∈ Tt, a contradiction. Now 〈vm, vk〉 =

−1 and 〈vm, vj+1〉 = 1, so vm ∼ vk, vj+1, and since G(Sm−1) is connected,

it follows that vk ∼ vj+1. Furthermore, Tg † Tj+1 since |vg|, |vj+1| ≥ 3, and

since (vk, vl+1, vg) is a positive triangle, it follows that 〈vk, vl+1〉 = −1. Thus,

vl+1,k = 1, and since 〈vl+1, vg〉 ≤ 1, it follows that l = k. Now, vk,k−1 6= 0, so

it follows that vk+1,k−1 = 0. Consequently, vk+1 is gappy. Since m > h was

chosen minimal, it follows that k+1 ∈ {g, h}. However, the only way that this

can occur and satisfy 〈vk, vk+1〉 = −1 is if k + 1 = g = t + 2 and |vt+1| = 2.

However, in this case, (vt, vt+1, vm, vt+2) spans a cycle that is missing the edge

(vt, vm), a contradiction. It follows that no such m exists, as desired.

Thus, zm /∈ Tt.
(f) min(supp(vm)) = t+1 or ≥ t+3 for all m > h. Let k = min(supp(vm)).

Since 〈vg, vm〉 ≤ 1, it follows that k ≥ t− 1. Lemma 8.5 with i = g and l = m

implies that k /∈ {t − 1, t + 2}. Finally, k 6= t, since otherwise (vt; v1, vg, vm)

induces a claw.

Suppose that there exists a minimal m > h such that |vm| ≥ 3.

(g) k = t + 1. For if k ≥ t + 3, then vk has a smaller neighbor vi, and

(vk; vi, vk+1, vm) induces a claw.

(h) There does not exist m′ > m for which |vm′ | ≥ 3. Suppose other-

wise, and let k′ = min(supp(vm′)). If k′ = t + 1, then either (vt+1, vm, vm′)

or (vg, vm, vm′) forms a heavy triple, depending on |vt+1| ∈ {2, 3}. From (f)
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it follows that k′ ≥ t + 3. Thus, k′ + 1 = m, since otherwise |vk′+1| = 2,

vk′ has a smaller neighbor vi, and (vk′ , vi, vk′+1, vm′) induces a claw. Thus,

(vh, . . . , vm−1, vm′) induces a path. If h = t + 2, then we obtain a contradic-

tion to Lemma 8.5 with i = g and l = m′. If h = t + 3, then we obtain a

similar contradiction with a bit more work. Specifically, considering the path

(vt, v1, . . . , vt−1, vt+3, . . . , vm−1, vm′), it follows that the interval Tt+3 ∪
⋃t−1
i=1 Ti

contains one endpoint of Tt and the interval Tm′ ∪
⋃m−1
i=t+3 Ti contains the other.

As zm′ /∈ Tt, it follows that zt+3 is the unique vertex of degree ≥ 3 in Tt, a

contradiction, since zt+2 ∈ Tt as well.

The four cases stated in the proposition now follow from the possibilities

|vt+1| ∈ {2, 3} and h ∈ {t+ 2, t+ 3}. �

9. Producing the Berge types

The goal of this section is to show how the families of linear lattices enu-

merated in the structural propositions of Sections 6, 7, and 8 give rise to the

homology classes of Berge knots tabulated in Section 1.2. Section 9.1 describes

the methodology, and Table 1 collects the results. Section 9.2 contains the nec-

essary background material about continued fractions, and Sections 9.3 and 9.4

carry out the details.

9.1. Methodology. Given a standard basis S expressed in one of the struc-

tural propositions, we show that the changemaker lattice it spans is isomorphic

to a linear lattice Λ(p, q) by converting S into a vertex basis B = {x1, . . . , xn}
for it. Letting ν denote the sequence of norms (|x1|, . . . , |xn|), we recover p

as the numerator N [ν]− = N [|x1|, . . . , |xn|]− of the continued fraction. We

recover the value k of Proposition 2.2, and hence q ≡ −k2 (mod p), in the

following way. Let B? denote the elements in B that pair nontrivially with e0,

let νi = (|x1|, . . . , |xi|), and let pi = N [νi]
−. Then

(9) k =
∑
xi∈B?

pi−1〈xi, e0〉

according to (3), Proposition 2.2, and Lemma 9.4(1). In practice, B? contains

at most three elements, and each value 〈xi, e0〉 is typically ±1. (In case of

Proposition 8.3, it can equal ±2.)

Example. As an illustrative example, consider a standard basis S as in

Proposition 6.2(1). By inspection, “G(S) is nearly a path, which suggests that

S is not far off from a vertex basis. Indeed, a little manipulation shows that

B = {−v?s ,−vs+2, vs+3, vs−1, . . . , v
?
1,−(vs+1 + vs−1 + · · ·+ v1)

?}
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is a vertex basis for the lattice spanned by S. The elements denoted by a star

(?) belong to B?. From B we obtain the sequence of norms

ν = (s+ 1, 3, 5, 2[s−1], 3),

using 2[t] as a shorthand for a sequence of t 2’s. In order to determine p, we

calculate

p = N [s+ 1, 3, 5, 2[s−1], 3]− = N [s+ 1, 3, 4,−s, 2]−

= N [s+ 1,−3, 4, s,−2]+ = 22s2 + 31s+ 11,

using Lemma 9.5(1) for the second equality and Mathematica [47] for the last

one. In order to determine k, we consider the substrings

ν0 = ∅, νs+1 = (s+ 1, 3, 5, 2[s−2]), νs+2 = (s+ 1, 3, 5, 2[s−1]).

Weight the numerator of each [νi−1]
− by 〈xi, e0〉, which equals the sign ±1

appearing on the leading term in the starred expression, and add them up to

obtain the value k. Thus,

k=−N [∅]− +N [s+ 1, 3, 5, 2[s−2]]− −N [s+ 1, 3, 5, 2[s−1]]−

=−1 +N [s+ 1, 3, 4,−(s− 1)]− −N [s+ 1, 3, 4,−s]−

=−1 +N [s+ 1,−3, 4, s− 1]+ −N [s+ 1,−3, 4, s]+

=−1 + (11s2 − s− 5)− (11s2 + 10s+ 2)

= 11(−s− 1) + 3.

Since s ≥ 2 and p = (2k2+k+1)/11, it follows that the standard bases of 6.2(1)

correspond to Berge type X with k ≤ 11(−3) + 3. The result of this example

appears in Table 1 and as the first entry in Table 2.

In this manner we extract a linear lattice, described by the pair (p, k), from

each standard basis expressed in the structural propositions. In the process,

we show that these values account for precisely the pairs (p, k) tabulated in

Section 1.2. Table 1 displays the results. Note that Proposition 7.5(2) gets

reported in terms of its constituents, Lemmas 7.2(1,3,4,5) and 7.3.

Table 1. Structural Propositions sorted by Berge type.

I+ 6.5(1,3) I− 8.3(1,3) II+ 8.3(2) II− 6.2(3)

III(a)+ 8.7(1), 8.8(1) (a)− 6.5(2), 7.3(1,2), 7.5(3) (b)+ 8.6(1), 8.8(4) (b)− 7.3(3)

IV(a)+ 8.6(2), 8.8(2) (a)− 7.2(3) (b)+ 8.8(3) (b)− 6.4(5), 7.2(1), 7.5(3)

V(a)+ 8.7(2) (a)− 6.4(5), 6.5(2), 7.2(4) (b)+ 8.7(3) (b)− 7.2(5)

VII 7.5(1) VIII 8.2 IX 6.2(2), 6.4(2,3) X 6.2(1), 6.4(1,4)
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We mention one caveat, which amounts to the overlap between different

Berge types. For example, in type III(a)+, 8.7(1) and 8.8(1) account for the

cases that d = 2, (k+1)/d ≥ 5 and d = 3, (k+1)/d ≥ 3, respectively (Table 4).

What happens when (d, (k + 1)/d) ∈ {(2, 3), (1, ∗), (∗, 1)}? For (2, 3), notice

that we obtain the same family of examples by setting d = 3, (k + 1)/d = 2

in type V(a)+. This is covered by 8.7(2). Moreover, 8.7(2) fills out most of

V(a)+, while only this sliver of it applies to III(a)+. For that reason, we only

report 8.7(2) next to V(a)+ in Table 1. Similarly, the cases of (1, ∗) and (∗, 1)

correspond to II− with i = 2 and I− with i = 1, respectively. In general, it is

not difficult to identify the overlaps of this sort and use Table 1 to obtain a

complete correspondence between structural propositions and Berge types. In

a few places the overlap is explicit: 6.4(5), 6.5(2), and 7.5(3) each appear twice

in Table 1.

The correspondence between structural propositions and Berge types ex-

hibits some interesting features. For example, amongst the “small” families

(defined just below), and excluding the special cases of 6.4(5) and 6.5(1),

• all elements of S are just right if and only if L is an exceptional type

(IX or X);

• S has a gappy vector but no tight one if and only if L is of − type;

• S has a tight vector if and only if L is of + type.

It would be interesting to examine the geometric significance of this correspon-

dence.

In determining the values (p, k) from the structural propositions, it is use-

ful to partition these families into two broad classes: large families, those that

involve a sequence of expansions, and small families, those that do not. The

large families (along with 6.5(1)) correspond to Berge types I, II, VII, and VIII

in Table 1. Determining the relevant values (p, k) for these families occupies

Section 9.3. The small families, while more numerous, are considerably simpler

to address. We take them up in Section 9.4. Excluding 6.5(1), they correspond

to Berge types III, IV, V, IX, and X in Table 1.

Lastly, we remark that the determination of the isomorphism types of

the sums of linear lattices enumerated in Proposition 5.7 follows as well, and

involves far fewer cases. As it turns out, they correspond precisely to the sums

of lens spaces that arise by surgery along a torus knot or a cable thereof. For

example, Proposition 9.2 enumerates the sums of linear lattices spanned by

standard bases built from ∅ by a sequence of expansions. They correspond

to the connected sums −(L(p, q)#L(q, p)) that result from pq-surgery along

the positive (p, q)-torus knots. In fact, [23, Th. 1.5] asserts a much stronger

conclusion: if surgery along a knot produces a connected sum of lens spaces,

then it is either a torus knot or a cable thereof. We refer to [23] for further

details.
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9.2. Minding p’s and q’s. Given a basis C = {v1, . . . , vn} built from ∅ by

a sequence of expansions, augment C by a vector v′n+1 :=
∑n
i=k ei, where k = 0

if |vi| = 2 for all vi ∈ C; k = n−1 if |vn| ≥ 3; and k is the maximum index of a

vector in C with norm ≥ 3 otherwise. Observe that C ′ := C ∪ {v′n+1} spans a

lattice isomorphic to a sum of two nonzero linear lattices for which C ′ is a vertex

basis. More precisely, partition C ′ = {vi1 , . . . , vil} ∪ {vj1 , . . . , vjm} into vertex

bases for the two summands, where i1 > · · · > il and n+1 = j1 > · · · > jm, and

write (a1, . . . , al) = (|vi1 |, . . . , |vil |) and (b1, . . . , bm) = (|vj1 |, . . . , |vjm |). Then

〈C ′〉 ∼= Λ(p, q) ⊕ Λ(p′, q′), where p/q = [a1, . . . , al]
− and p′/q′ = [b1, . . . , bm]−.

The following result sharpens this statement.

Lemma 9.1. The lattice spanned by C ′ is isomorphic to Λ(p, q)⊕Λ(p, p−q)
for some p > q > 0.

Note that Lemma 9.1 implies a relationship between the Hirzebruch-Jung

continued fraction expansions of p/q and p/(p− q). This is nicely expressed by

the Riemenschneider point rule. (See the German original, [42, pp. 222–223];

or [32, pp. 2158–2159].)

Proof. We proceed by induction on n = |C|. When n = 1, we have

C ′ = {e0 − e1, e0 + e1}, and C ′ spans a lattice isomorphic to Λ(2, 1)⊕ Λ(2, 1),

from which the lemma follows with p = 2 and q = 1.

For n > 1, observe that C ′ is constructed from C ′n−1 by either setting

vn = v′n − en and v′n+1 = en−1 + en, or else vn = en−1 − en and v′n+1 =

v′n + en. By induction, C ′n−1 determines two strings of integers (a1, . . . , al)

and (b1, . . . , bm), and 〈C ′n−1〉 ∼= Λ(p, q)⊕Λ(p, p− q), where p/q = [a1, . . . , al]
−

and p/(p− q) = [b1, . . . , bm]−. Swapping the roles of q and p− q if necessary,

C ′ determines the strings (2, a1, . . . , al) and (b1 + 1, . . . , bm), for which we

calculate [2, a1, . . . , al]
− = 2−1/(p/(p−q)) = (p+q)/p and [b1 +1, . . . , bm]− =

1 + p/(p − (p − q)) = (p + q)/p. Therefore, 〈C ′〉 = Λ(p + q, q) ⊕ Λ(p + q, p),

which takes the desired form and completes the induction step. �

Proposition 9.2. Suppose that C is built from ∅ by a sequence of ex-

pansions. If |vi| = 2 for all vi ∈ C , then L ∼= Λ(n + 1, n). Otherwise,

L ∼= Λ(p, q) ⊕ Λ(r, s) for some p > q > 0, where r = p − q and s denotes

the least positive residue of −p (mod r).

Proof. Augment C to C ′ as above, and write

〈C ′〉 ∼= Λ(p, q)⊕ Λ(p, p− q)

according to Lemma 9.1. Then C determines the strings (a1, . . . , al) and

(b2, . . . , bm), where the second string is empty in case m = 1. We have

b1 = dp/(p − q)e, from which it easily follows that [b2, . . . , bm]− = r/s when

m > 1, with the values r and s as above. Thus, L takes the desired form in
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this case. Furthermore, when m = 1, it follows easily that L ∼= Λ(n + 1, n).

This establishes the proposition. �

Definition 9.3. Given integers a1, . . . , al ≥ 2, write pj/qj = [a1, . . . , aj ]
−,

rj = pj − qj , and p0 = 1, and define integers b1, . . . , bm ≥ 2 by [b1, . . . , bm]− =

pl/rl.

Thus, Definition 9.3 relates the strings (a1, . . . , al) and (b1, . . . , bm) pre-

ceding Lemma 9.1.

Lemma 9.4. Given integers a1, . . . , an ≥ 2 and an indeterminate x, the

following hold :

(1) pj = pj−1aj − pj−2 and qj = qj−1aj − qj−2;

(2) [a1, . . . , an, x]− = (pnx− pn−1)/(qnx− qn−1);
(3) [aj , . . . , a1]

− = pj/pj−1;

(4) pj−1 is the least positive residue of q−1j (mod pj);

(5) qj−1 is the least positive residue of −p−1j (mod qj);

(6) rj−1 is the least positive residue of p−1j ≡ q
−1
j (mod rj).

Proof sketch. Item (1) follows by induction on k, using the identity

[a1, . . . , aj , aj+1]
− = [a1, . . . , aj − 1/aj+1]

−.

Item (2) follows at once from (1). Item (3) follows from [aj+1, . . . , a1]
− =

aj+1 − qj/pj and (1). The identity

pj−1qj − pjqj−1 = 1

follows from (1) and induction; the inequalities 0<pj−1<pj and 0<qj−1<qj
follow from the fact that aj ≥ 2; and items (4) and (5) follow from these

observations. From the preceding identity we obtain

pjrj−1 − pj−1rj = 1 and qjrj−1 − qj−1rj = 1,

and (1) implies that 0 < rj−1 < rj . Item (6) now follows as well. �

We collect a few more useful facts whose straightforward proofs follow

from Lemma 9.4. Following Lisca, we use the shorthand

(. . . , 2[t], . . . ) := (. . . , 2, . . . , 2︸ ︷︷ ︸
t

, . . . ).

Lemma 9.5. The following identities hold :

(1) [. . . , b+ 1, 2[a−1], c+ 1, . . . ]− = [. . . , b,−a, c, . . . ]−;

(2) [2[a−1], b+ 1, . . . ]− = p/q =⇒ [−a, b, . . . ]− = −p/(p− q);
(3) [. . . , b+ 1, 2[a−1]]− = [. . . , b,−a]−;

(4) [bm, . . . , b2]
− = rl/(rl − rl−1);

(5) [a1, . . . , al, t+ 1, bm, . . . , b2]
− = (plrlt+ 1)/(qlrlt+ 1);
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(6) [a1, . . . , al + 1, 2[t−2], bm + 1, . . . , b2]
− = (plrlt− 1)/(qlrlt− 1);

(7) [a1, . . . , al, bm, . . . , b1]
− = (p2l −plpl−1 +p2l−1)/(plql−plql−1 +pl−1ql−1);

(8) [a1, . . . , al, bm, . . . , b2]
− = (plrl − pl−1rl + pl−1rl−1)/(qlrl − ql−1rl +

ql−1rl−1);

(9) [a1, . . . , al + bm + 1, . . . , b1]
− = (p2l + plpl−1 − p2l−1)/(qlpl + ql−1pl −

ql−1pl−1 − 1);

(10) [a1, . . . , al + bm + 1, . . . , b2]
− = (plrl + pl−1rl − pl−1rl−1 − 1)/(qlrl +

ql−1rl − ql−1rl−1 − 1).

9.3. Large families. For each standard basis S occurring in a large family,

we alter at most one vi ∈ S to another vi such that S −{vi} ∪ {vi} is a vertex

basis, up to reordering and negating some elements. In each case, there exists

a unique partition {1, . . . , n} = {i1, . . . , iλ} ∪ {j1, . . . , jµ} with the following

properties:

• i1 = n, and in the case of Propositions 7.2(2) and 8.2, j1 = n− 1;

• i1 > · · · > iλ and j1 > · · · > jµ;

• {i1, j1} = {1,min{j > 1 | |vj | > 2}};
• the subgraphs of “G(S − {vi} ∪ {vi}) induced on {vi1 , . . . , viλ} and

{vj1 , . . . , vjµ} are paths with vertices appearing in consecutive order

(replacing vi by vi).

For the first five families below, we modify S to a related subset C built

from ∅ by a sequence of expansions. We obtain a pair of strings (a1, . . . , al),

(b1, . . . , bm) from C ′, and we express the sequence of norms ν in terms of them.

The values l and m are related to the values λ and µ. To determine p and

k from ν, we apply Lemmas 9.4 and 9.5. Frequently it is easier to recover k′

instead of k by reversing the order of the basis.

Proposition 6.5(3).

B = {vi1 , . . . , viλ , vjµ , . . . , vj1} and B? = {v1};
C = S − {v1} ⊂ span〈e1, . . . , en〉;
ν = (a1, . . . , al, 2, bm, . . . , b2);

p = plrl + 1 by 9.5(5) with t = 1;

k = pl if jµ = 1; k′ = rl if iλ = 1.

Note that pl ≥ 3 and rl ≥ 2. With {i, k} = {pl, rl}, it follows that p = ik + 1

with i, k ≥ 2 and gcd(i, k) = 1. The values i and k are unconstrained besides

these conditions. In summary, 6.5(3) accounts for Berge type I+ with i, k ≥ 2.

Proposition 8.3(1).

B = {−vi1 , . . . ,−v?iλ , v
?
jµ , . . . , vj1};

C = S ∪ {v′, v′t} − {vt} ⊂ span〈e′, e0, . . . , en〉, where v′ = −e0 + e′ and

v′t = vt + v′;

ν = (a1, . . . , al + bm, . . . , b2);
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p = plrl − 1 by 9.5(5) with t = −1;

k = pl if jµ = 1, using al = 2 and 9.4(1); k′ = rl if iλ = 1 in the same way.

With {i, k}={pl, rl}, it follows that p= ik − 1 with i, k ≥ 3 and gcd(i, k) = 1.

The values i and k obey two further constraints coming from max{al, bm} = 3

and max{al−1, . . . , a1, bm−1, . . . , b2} ≥ s+ 1 ≥ 3. In summary, 8.3(1) accounts

for part of Berge type I− with i, k ≥ 3.

Proposition 8.3(3). The argument is identical to the case of 8.3(1), switch-

ing the conclusions in the case of iλ = 1 and jµ = 1. Now we have the constraint

that max{al, bm} = t + 2 ≥ 4. In summary, 8.3(3) accounts for another part

of Berge type I− with i, k ≥ 3.

Proposition 8.3(2).

B = {vi1 , . . . , viλ , vjµ , . . . , vj1} and B? = {v1};
C = S − {v1} ⊂ span〈e1, . . . , en〉;
ν = (a1, . . . , al, 5, bm, . . . , b2);

p = 4plrl + 1 by 9.5(5) with t = 4;

k = 2pl if jµ = 1; k′ = 2rl if iλ = 1.

With {i, k} = {2pl, 2rl}, it follows that p = ik + 1 with i, k ≥ 2 and gcd(i, k)

= 2. The values i, k are unconstrained besides these conditions. However,

the case min{i, k} = 2 (which occurs when s = 2) accounts for Berge I− with

min{i, k} = 2. In summary, 8.3(2) accounts for Berge type II+ and this special

case of Berge I−.

Proposition 6.2(3).

B = {−vi1 , . . . ,−v ?iλ−2
, viλ−1

, v?iλ , vjµ , . . . , vj1} if iλ = 1, in which case

iλ−2 = m, viλ−2
= vm + v1 + v2, iλ−1 = 2, and jµ = 3;

C = S ∪ {v′3, v′m} − {v1, v2, v3, vm} ⊂ span〈e2, . . . , en〉, where v′3 = v3 − e1
and v′m = vm − e1;

ν = (a1, . . . , al + 1, 2, 2, bm + 1, . . . , b2);

p = 4plrl − 1 by 9.5(6) with t = 4;

k = 2pl if iλ = 1; k′ = 2rl if jµ = 1.

With {i, k}={2pl, 2rl}, it follows that p= ik−1 where i, k ≥ 4 and gcd(i, k)=2.

A similar argument applies in case jµ = 1. In summary, 6.2(3) accounts for

Berge type II−.

For the two remaining large families, we modify S directly into a subset

C ′ as in Section 9.2. Let (a′1, . . . , a
′
l) and (b′1, . . . , b

′
m) denote its corresponding

strings, and let (a1, . . . , al) and (b1, . . . , bm) denote their reversals (ai = a′l+1−i
and bj = b′m+1−j). This notational hiccup results in cleaner expressions for p

and k. Note that these values are still related in the manner of Definition 9.3,

so Lemma 9.5 applies.
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Proposition 7.5(1). Here n = g.

B = {−v?iλ , . . . ,−vi1 , vj1 , . . . , v
?
jµ} if iλ = 1, where j1 = n and vn = vg =

vg + vg−1 + · · ·+ vk+2;
4

C ′ = S ∪ {v′n} − {vn} ⊂ span〈e0, . . . , en−1〉, where v′n = vn + en + en−1;

ν = (a1, . . . , al, bm, . . . , b1);

p = p2l − plpl−1 + p2l−1 by 9.5(7);

k = plrl − pl−1rl + pl−1rl−1 − 1 by 9.5(8); also, observe that the difference

between the numerator and denominator in [ν]− is D := r2l − rlrl−1 + r2l−1.
Now we use the identity (a2−ab+b2)(c2−cd+d2) = (e2−ef +f2), where e =

ac−bc+bd and f = ad−bc. We apply this identity with a = pl, b = pl−1, c = rl,

and d = rl−1, noting that f = 1. It follows that p ·D = (k+ 1)2− (k+ 1) + 1 =

k2+k+1. Up to renaming variables, the same argument applies in case jµ = 1.

In summary, 7.2(2) accounts for Berge type VII.

Proposition 8.2. Here n = t.

B′ = {v?iλ , . . . , vi1 , vj1 , . . . , v
?
jµ} if iλ = 1, where j1 = n and vn = vt =

vt − (vt−1 + · · ·+ v1);

C ′ = S ∪ {v′n, v′n+1} − {vn}, where v′n = vn − en−1 and v′n+1 = en−1 + en;

ν = (a1, . . . , al + bm + 1, . . . , b1);

p = p2l + plpl−1 − p2l−1 by 9.5(9);

k = plrl + pl−1rl − pl−1rl−1 by 9.5(10);

and the difference between the numerator and denominator in [ν]− is

D = r2l + rlrl−1 − r2l−1.
Now we use the identity (a2 + ab − b2)(c2 + cd − d2) = (e2 + ef − f2), where

e = ac − bd + bc and f = ad − bc. As before, we apply it with a = pl, b =

pl−1, c = rl, and d = rl−1, noting that f = 1. It follows that p ·D = k2 + k− 1.

Again, the same conclusion holds if, instead, jµ = 1. Replacing k by −k, it

follows in summary that 8.2 accounts for Berge type VIII.

9.4. Small families. The 26 small families fall to a straightforward, though

somewhat lengthy, analysis. In each case, converting the standard basis S into

a vertex basis B usually involves altering just one element from S into a sum of

several such, and then permuting these elements and replacing some of them by

their negatives. In two cases (8.7(1) and 8.8(2)) there are two such alterations,

and in a handful there are none.

From the sequence of norms ν, it is straightforward to obtain the values

p and k as in the example of Section 9.1. Lemmas 9.5(1,2,3) help reduce the

number of terms appearing in the continued fraction expansions under consid-

eration; note that although Lemma 9.5(3) relates two different fractions, their

numerators are opposite one another. In this way, we reduce each string to one

4Apology: this is the k of Lemma 7.2, not the homology class of K.
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Table 2. Small families and their Berge types

Propn. Berge type B and B?; ν; k, p

6.2(1) X, k ≤ 11(−3) + 3 {−v?s ,−vs+2, vs+3, vs−1, . . . , v?1 ,−(vs+1 + vs−1 + · · ·+ v1)?}
(a+ 1, 3, 5, 2[a−1], 3), a = s ≥ 2

k = 11(−a− 1) + 3, p = (2k2 + k + 1)/11

6.2(2) IX, k ≤ 11(−3) + 2 {−v?s ,−vs+3, vs+2, vs−1, . . . , v?1 ,−(vs+1 + vs−1 + · · ·+ v1)?}
(a+ 1, 4, 4, 2[a−1], 3), a = s ≥ 2

k = 11(−a− 1) + 2, p = (2k2 + k + 1)/11

6.4(1) X, k = 11(−2) + 3 {−v?1 ,−v3, v
?
4 ,−v

?
2}

(2, 3, 5, 3)

k = −19, p = (2k2 + k + 1)/11 = 64

6.4(2) IX, k = 11(−2) + 2 {−v?1 ,−v4, v
?
3 ,−v

?
2}

(2, 4, 4, 3)

k = −20, p = (2k2 + k + 1)/11 = 71

6.4(3) IX, k ≥ 11(2) + 2 {−v?1 , . . . ,−vs−1,−vs+3, vs+2, v?s , vs+1}
(2[a−1], 5, 3, a+ 1, 2), a = s ≥ 2

k = 11a+ 2, p = (2k2 + k + 1)/11

6.4(4) X, k ≥ 11(2) + 3 {−v?1 , . . . ,−vs−1,−vs+2, vs+3, v?s , vs+1}
(2[a−1], 4, 4, a+ 1, 2), a = s ≥ 2

k = 11a+ 3, p = (2k2 + k + 1)/11

6.4(5) IV(b)−, d = 3, 2k−1
d
≥ 5 {v2, v?1 , vm,−v

?
3 , . . . ,−vm−1,−vm+1, . . . ,−vn}

and (2, 2, a+ 3, 4, 2[a−1], 3, 2[b−1]), a = m− 3 ≥ 1, b = n−m ≥ 0

V(a)−, d = 3, k+1
d
≥ 3 k = 3a+ 5, p = (b+ 1)k2 − 3(k + 1)

6.5(1) any type with k = 1 {v?1 , . . . , vn}
(2[n])

k = 1, p = n+ 1

6.5(2) III(a)−, d = 2, k+1
d

= 3 {−v2,−v?1 , v3, v
?
4 , . . . , vn}

and (2, 2, 3, 5, 2[a−1]), a ≥ 1

V(a)−, d = 3, k+1
d

= 2 k = 5, p = 25(a+ 1)− 18

with at most three variables (a, b, c) and eight entries, which a computer alge-

bra package or a tenacious person can evaluate. We used Mathematica [47] to

perform these evaluations, relying on the command FromContinuedFraction

and the conversion [. . . , ai, . . . ]
− = [. . . , (−1)i+1ai, . . . ]

+. Tables 2 and 4 report

the results. We use variables a, b, c (instead of g,m, n, s, t) to keep notation

uniform across different families. As in Table 1, we report Lemmas 7.2(1,3,4,5)

and 7.3 in place of Proposition 7.5(2).

Certain degenerations in our notation deserve mention. A string ending in

(. . . , x, y, 2[−1]) should be understood as (. . . , x). Thus, in 6.4(5), taking b = 0,

we obtain the string (2, 2, a + 3, 4, 2[a−1]). Furthermore, it follows that n =

m−1 in this case, so the vertex basis truncates to {v2, v1, vm,−v3, . . . ,−vm−1}.
In 8.8(1) and (2), there are two degenerations that can occur. In these cases,

the degeneration b = 0 can occur only if c = 0. If b = c = 0, then we obtain

the strings (2[a−1], 4, a+ 2, 2) and (a+ 2, 4, 2[a−1], 3), respectively.
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Table 3. Small families (contd)

7.2(1) IV(b)−, d ≥ 5, 2k−1
d
≥ 5 {v?s , vs+1,−(vg + v1 + · · ·+ vs−1 + vs+1)?, v?1 , . . . , vs−1,

vs+2, . . . , vg−1, vg+1, . . . , vn}
(a+ 1, 2, b+ 3, 2[a−1], 4, 2[b−1], 3, 2[c−1]),

a = s ≥ 2, b = g − s− 2 ≥ 1, c = n− g ≥ 0

k = 2ab+ 3a+ b+ 2, p = (c+ 1)k2 − (2a+ 1)(k + 1)

7.2(3) IV(a)−, d ≥ 5, 2k+1
d
≥ 5 {−v?1 , . . . ,−vs−1,−vs+1, vg , v?s , vs+2, . . . , vg−1, vg+1, . . . , vn}

(2[a−1], 3, b+ 2, a+ 1, 3, 2[b−1], 3, 2[c−1]),

a = s ≥ 2, b = g − s− 2 ≥ 1, c = n− g ≥ 0

k = 2ab+ 3a+ b+ 1, p = (c+ 1)k2 − (2a+ 1)(k − 1)

7.2(4) V(a)−, d ≥ 5, k+1
d
≥ 3 {−vj ,−v?1 ,−vg , v

?
2 , . . . , vj−1, vj+1, . . . , vg−1, vg+1, . . . , vn}

(a+ 2, 2, b+ 3, 3, 2[a−1], 3, 2[b−1], 3, 2[c−1]),

a = j − 2 ≥ 1, b = g − j − 1 ≥ 1, c = n− g ≥ 0

k = 2ab+ 4a+ 3b+ 5, p = (c+ 1)k2 − (2a+ 3)(k + 1)

7.2(5) V(b)−, d ≥ 3, k−1
d
≥ 2 {−vj−1, . . . ,−v?2 , vg , v

?
1 , vj , . . . , vg−1, vg+1, . . . , vn}

(2[a−1], 3, b+ 2, 2, a+ 2, 2[b−1], 3, 2[c−1]),

a = j − 2 ≥ 1, b = g − j ≥ 1, c = n− g ≥ 0

k = 2ab+ 2a+ b+ 2, p = (c+ 1)k2 − (2a+ 1)(k − 1)

7.3(1) III(a)−, d ≥ 3, k+1
d
≥ 5 {v?s , vg ,−vs+1,−vs−1, . . . ,−v?1 , (vs+2 + v1 + · · ·+ vs−1)?,

. . . , vg−1, vg+1, . . . , vn}
(a+ 1, b+ 2, 3, 2[a−1], 4, 2[b−1], 3, 2[c−1]),

a = s ≥ 2, b = g − s− 2 ≥ 1, c = n− g ≥ 0

k = 2ab+ 3a+ 2b+ 2, p = (c+ 1)k2 − (a+ 1)(2k − 1)

7.3(2) III(a)−, d = 2, k+1
d
≥ 5 {v?1 , vg ,−v

?
2 , v

?
3 , . . . , vg−1, vg+1, . . . , vn}

(2, a+ 2, 3, 4, 2[a−1], 3, 2[b−1]), a = g − 3 ≥ 1, b = n− g ≥ 0

k = 4a+ 5, p = (b+ 1)k2 − 2(2k − 1)

7.3(3) III(b)−, d ≥ 2, k−1
d
≥ 5 {−v?1 , . . . ,−vs−1,−vg ,−vs+1, (vs + vs+1)?,

vs+2, . . . , vg−1, vg+1, . . . ,−vn}
(2[a−1], b+ 3, 2, a+ 1, 3, 2[b−1], 3, 2[c−1]),

a = s ≥ 2, b = g − s− 2 ≥ 1, c = n− g ≥ 0

k = 2ab+ 3a+ 1, p = (c+ 1)k2 − a(2k + 1)

7.5(3) III(a)−, d ≥ 2, k+1
d

= 3 {−v?s ,−vs+1,−(vs+2 − v1 − · · · − vs−1)?,

v?1 , . . . , vs−1, vs+3, . . . , vn}
and (a+ 1, 2, 3, 2[a−1], 5, 2[b−1]),

a = s ≥ 2, b = n− s− 2 ≥ 0

IV(b)−, d ≥ 3, 2k−1
d

= 3 k = 3a+ 2, p = (b+ 1)k2 − (k + 1)(2k − 1)/3

10. Proofs of the main results

Recall that we established Theorem 1.6 in Section 3.4 using [23, Th. 3.3].

Proof of Theorem 1.7. Suppose that (p, q) appears on Berge’s list. Then

Λ(p, q) embeds as the orthogonal complement to a changemaker by Theo-

rem 1.6. On the other hand, suppose that Λ(p, q) is isomorphic to a change-

maker lattice L = (σ)⊥ ⊂ Zn+1. Then L has a standard basis S appearing in
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Table 4. Small families (contd)

8.6(1) III(b)+, d = 2, k−1
d
≥ 3 {−v?3 , . . . ,−vm−1,−(v1 − v3 − · · · − vm−1)?, v?2 , vm, . . . , vn}

(3, 2[a−1], 4, 3, a+ 2, 2[b−1]),

a = m− 3 ≥ 1, b = n−m+ 1 ≥ 0

k = 4a+ 3, p = bk2 + 2(2k + 1)

8.6(2) IV(a)+, d = 5, 2k+1
d
≥ 5 {−v?3 ,−(v1 − v3 − v4 − · · · − vm−1)?,−vm−1, . . . ,−v?4 ,

v?2 , vm, . . . , vn}, (3, 3, 2
[a−1], 3, 3, a+ 3, 2[b−1]),

a = m− 4 ≥ 1, b = n−m+ 1 ≥ 0

k = 5a+ 7, p = bk2 + 5(k − 1)

8.7(1) III(a)+, d = 2, k+1
d
≥ 5 {v4, . . . , vm−1, (v1 − v3 − v4 − · · · − vm−1), (v3 + v2)?,

−v2, vm, . . . , vn}, (3, 2[a−1], 3, 3, 2, a+ 3, 2[b−1]),

a = m− 4 ≥ 1, b = n−m+ 1 ≥ 0

k = 4a+ 5, p = bk2 + 2(2k − 1)

8.7(2) V(a)+, d ≥ 3, k+1
d
≥ 2 {vs, . . . , v2, (v1 − v2 − · · · − vs − vs+2)?, vm−1, . . . , v?s+2,

vs+1, vm, . . . , vn}, (2[a−1], 4, 2[b−1], 3, a+ 1, b+ 2, 2[c−1]),

a = s ≥ 1, b = m− s− 2 ≥ 1, c = n−m+ 1 ≥ 0

k = 2ab+ 2a+ b, p = ck2 + (2a+ 1)(k + 1)

8.7(3) V(b)+, d ≥ 3, k−1
d
≥ 2 {vs+1, v?s+2, . . . , vm−1, (v1 − vs+2 − · · · − vm−1)?, . . . , vs,

vm, . . . , vn}, (a+ 1, 3, 2[b−1], 4, 2[a−1], b+ 3, 2[c−1]),

a = s ≥ 1, b = m− s− 2 ≥ 1, c = n−m+ 1 ≥ 0

k = 2ab+ 2a+ b+ 2, p = ck2 + (2a+ 1)(k − 1)

8.8(1) III(a)+, d ≥ 3, k+1
d
≥ 3 {v?1 , . . . , vt−1, vt+3, . . . , vm−1, vt − v1 − · · · − vt−1−

vt+2 − · · · − vm−1, v?t+2, vt+1, vm, . . . , vn}
(2[a−1], 3, 2[b−1], 3, a+ 2, 2, b+ 3, 2[c−1]),

a = t ≥ 2, b = m− t− 3 ≥ 0, c = n−m+ 1 ≥ 0

k = 2ab+ 3a+ 2b+ 2, p = ck2 + (a+ 1)(2k − 1)

8.8(2) IV(a)+, d ≥ 7, 2k+1
d
≥ 3 {−v?t+2,−vt + v1 + · · ·+ vt−1 + vt+2 + · · ·+ vm−1,

−vm−1, . . . , (−vt+3 + v1 + · · ·+ vt−1)?, v?1 , . . . , vt−1, vt+1,

vm, . . . , vn}, (a+ 2, 3, 2[b−1], 3, 2[a−1], 3, b+ 3, 2[c−1]),

a = t ≥ 2, b = m− t− 3 ≥ 0, c = n−m+ 1 ≥ 0

k = 2ab+ 3a+ 3b+ 4, p = ck2 + (2a+ 3)(k − 1)

8.8(3) IV(b)+, d ≥ 5, 2k−1
d
≥ 3 {−vt−1, . . . ,−v?1 , (−vt + vt+2 + · · ·+ vm−1)?,

vm−1, · · · , v?t+2, vt+1, vm, . . . , vn}
(2[a−1], 4, 2[b−1], a+ 2, 2, b+ 2, 2[c−1]),

a = t ≥ 2, b = m− t− 2 ≥ 1, c = n−m+ 1 ≥ 0

k = 2ab+ a+ b+ 1, p = ck2 + (2a+ 1)(k + 1)

8.8(4) III(b)+, d ≥ 3, k−1
d
≥ 3 {−v?t+2, . . . ,−vm−1, (−vt + vt+2 + · · ·+ vm−1)?,

v?1 , . . . , vt−1, vt+1, vm, . . . , vn}
(a+ 2, 2[b−1], 4, 2[a−1], 3, b+ 2, 2[c−1]),

a = t ≥ 2, b = m− t− 2 ≥ 1, c = n−m+ 1 ≥ 0

k = 2ab+ 2a+ b+ 2, p = ck2 + (a+ 1)(2k + 1)
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one of the structural propositions of Sections 6–8. Section 9 in turn exhibits

an isomorphism L ∼= Λ(p′, q′), where the pair (p′, q′) appears on Berge’s list.

By Proposition 3.6, p′ = p, and either q′ = q or qq′ ≡ 1 (mod p). Hence at

least one of the pairs (p, q), (p, q′) appears on Berge’s list. �

Proof of Theorem 1.2. This follows from Theorems 1.6 and 1.7, making

use of Proposition 2.2 and the analysis of Section 9 to pin down the homology

class of the knot K. �

We note that the statement of Theorem 1.2 holds with S3 replaced by an

arbitrary L-space homology sphere Y with d-invariant 0. The only modification

in the set-up is to use the 2-handle cobordism W from L(p, q) to Y . The space

X(p, q) ∪W is negative-definite and has boundary Y . By [38, Cor. 9.7] and

Elkies’ Theorem [13], its intersection pairing is diagonalizable, so [23, Th. 3.3]

and the remainder of the proof go through unchanged.

Proof of Theorem 1.3. Suppose that Kp = L(p, q), and let K ′ ⊂ L(p, q)

denote the induced knot following the surgery. By Theorem 1.2, [K ′] = [B′] ∈
H1(L(p, q);Z) for some Berge knot B ⊂ S3. By [40, Th. 2], it follows that÷HFK(K ′) ∼= ÷HFK(B′). By [40, Prop. 3.1 and the remark thereafter], it

follows that ∆K′ = ∆B′ , where ∆ denotes the Alexander polynomial. Since

∆ depends only on the knot complement, it follows that ∆K = ∆B. By [39,

Th. 1.2], ∆K and ∆B determine ÷HFK(K) and ÷HFK(B); therefore, these

groups are isomorphic.

Next, suppose that K is doubly primitive. As remarked in the introduc-

tion, both K ′ and B′ are simple knots, and since they are homologous, they are

isotopic. Thus, the same follows for K and B, whence every doubly primitive

knot is a Berge knot. �

Proof sketch of Theorem 1.4. The main idea is to analyze the changemak-

ers implicit in the structural propositions and apply Proposition 10.1, which

restates the essential content of [23, Prop. 3.1]. The use of weight expansions

draws inspiration from [33]. For a vector x = (x0, . . . , xn), we make use of its

L1 norm |x|1 :=
∑n
i=0 |xi|.

Proposition 10.1. Suppose that Kp = L(p, q), and let σ denote the cor-

responding changemaker. Then

2g(K) = p− |σ|1.

Note that we obtain equality in Proposition 10.1 because the 4-manifoldX(p, q)

is sharp.
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Definition 10.2. A weight expansion is a vector of the form

w = (a0, . . . , a0︸ ︷︷ ︸
m0

, a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , aj , . . . , aj︸ ︷︷ ︸
mj

),

where each mi ≥ 1, a−1 := 0, a0 = 1, and ai = mi−1ai−1 +ai−2 for i = 1, . . . , j.

It is an amusing exercise to show that the entries of w form the sequence

of side lengths of squares that tile an aj × aj+1 rectangle (cf. Figure 4).

25 9

9

7
2
2
2

1

Figure 4. The tiling specified by the weight expansion w =

(1, 1, 2, 2, 2, 7, 9, 9, 25).

Another useful observation is at = 1 +
∑t−1
i=0miai − at−1 for all t ≥ 1. Thus,

(10) |w| = aj · aj+1 and |w|1 = aj + aj+1 − 1,

which together with aj+1 ≥ aj + 1 leads to the bound

(11) (|w|1 + 1)2 ≥ 4|w|+ 1.

Observe that a weight expansion is a special kind of changemaker. In fact,

it is easy to check that a changemaker σ is a weight expansion if and only if

the changemaker lattice L = (σ)⊥ ⊂ Zn+1 is built from ∅ by a sequence of

expansions. Such lattices occur as one case of Proposition 5.7. Indeed, by

inspection, for each changemaker lattice that appears in one of the structural

propositions of Sections 5–8, the changemaker σ is just a slight variation on a

weight expansion. For example, the changemakers implicit in Proposition 8.2

are obtained by augmenting a weight expansion by aj + aj+1, while those

in Proposition 8.3(1,3) are obtained by deleting the first entry in a weight

expansion with m0 ≥ 2.

Using Proposition 10.1, we obtain estimates on the genera of knots ap-

pearing in these families. For the changemakers σ specified by Proposition 8.2,

(10) easily leads to the inequality

(12) (|σ|1 + 1)2 ≥ (4/5) · (4|σ|+ 1)
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in the same way as (11). Furthermore, equality in (12) occurs precisely for

changemakers σ of the form (1, . . . , 1, n, 2n+ 1), with 1 repeated n times. By

Proposition 10.1, it follows that the bound (2) stated in Theorem 1.4 holds for

type VIII knots, with equality attained precisely by knots K specified by the

pairs (p, k) = (5n2 + 5n+ 1, 5n2 − 1).

Similarly, for the changemakers σ specified by Proposition 8.3(1,3), (10)

easily leads to the bound (|σ1|+ 2)2 ≥ 4|σ|+ 5. Furthermore, equality occurs

precisely for changemakers σ of the form (1, . . . , 1, n + 1), with 1 repeated n

times. By Proposition 10.1, it follows that the bound

(13) 2g(K)− 1 ≤ p+ 1−
√

4p+ 5

holds for type I− knots, with equality attained precisely by knots K specified

by the pairs (p, k) = (n2 + 3n + 1, n + 1). In fact, (12) holds for all the

changemakers of Proposition 8.3(1,3) with the single exception of (1, 2). This

corresponds to 5-surgery along a genus one L-space knot, which must be the

right-hand trefoil by a theorem of Ghiggini [20]. Thus, the bound (2) holds for

all the type I− knots with the sole exception of 5-surgery along the right-hand

trefoil.

The changemakers in the other structural propositions fall to the same

basic analysis. Due to the abundance of cases, we omit the details, and instead

happily report that the bound (2) is strict for the remaining lens space knots.

This completes the proof sketch of Theorem 1.4. �
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