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The Parisi ultrametricity conjecture

By Dmitry Panchenko

Abstract

In this paper we prove that the support of a random measure on the unit

ball of a separable Hilbert space that satisfies the Ghirlanda-Guerra identi-

ties must be ultrametric with probability one. This implies the Parisi ultra-

metricity conjecture in mean-field spin glass models, such as the Sherring-

ton-Kirkpatrick and mixed p-spin models, for which Gibbs measures are

known to satisfy the Ghirlanda-Guerra identities in the thermodynamic

limit.

1. Introduction and main result

Let us consider a random probability measure G on the unit ball of a

separable Hilbert space H. We will denote by (σl)l≥1 an independent and

identically distributed sample from this measure, by 〈·〉 the average with re-

spect to G⊗∞ and by E the expectation with respect to the randomness of

G. Let Rl,l′ = σl · σl′ be the scalar product, or overlap, of σl and σl
′
. The

random measure G is said to satisfy the Ghirlanda-Guerra identities if for any

n ≥ 2, any bounded measurable function f of the overlaps (Rl,l′)l,l′≤n and any

bounded measurable function ψ of one overlap,

(1.1) E
¨
fψ(R1,n+1)

∂
=

1

n
E
¨
f
∂
E
¨
ψ(R1,2)

∂
+

1

n

n∑
l=2

E
¨
fψ(R1,l)

∂
.

Another way to express the Ghirlanda-Guerra identities is to say that, un-

der the measure EG⊗∞, conditionally on Rn = (Rl,l′)l,l′≤n the distribution of

R1,n+1 is given by the mixture

(1.2)
1

n
µ+

1

n

n∑
l=2

δR1,l
,

where µ is the distribution of one overlap R1,2 under EG⊗2. We will prove the

following.
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Theorem 1. Under (1.1), the distribution of (Rl,l′)l,l′≥1 is ultrametric;

i.e.,

(1.3) E
¨
I
Ä
R1,2 ≥ min(R1,3, R2,3)

ä∂
= 1.

It is known (Theorem 2 in [9]) that if G satisfies the Ghirlanda-Guerra

identities and if q∗ is the supremum of the support of µ, then with probability

one the support of G belongs to the sphere of radius
√
q∗ in H. Therefore,

(1.3) means that with probability one over the choice of the random measure

G, the distances in the Hilbert space H between three independent replicas

σ1, σ2 and σ3 sampled from G must satisfy the ultrametric inequality

(1.4) ‖σ1 − σ2‖ ≤ max
Ä
‖σ1 − σ3‖, ‖σ2 − σ3‖

ä
.

Examples of random measures satisfying the Ghirlanda-Guerra identities arise

in several mean-field spin glass models, such as the Sherrington-Kirkpatrick

model [16] and mixed p-spin models, for which measures G are defined as

the asymptotic analogues of the Gibbs measures in the thermodynamic limit

by way of the Dovbysh-Sudakov representation [3]. Originally, the Ghirlanda-

Guerra identities (1.1) were proved in [4] on average over the inverse temper-

ature parameters and later, in a closely related formulation, by introducing a

small perturbation term to the Hamiltonian of the model ([17], [20], [21]), but

in some cases it can be proved in a strong sense without perturbation ([10]).

The ultrametric structure of the overlap array (Rl,l′) appeared implicitly

in the original work of G. Parisi in [14], [15], in which the famous Parisi formula

for the free energy in the Sherrington-Kirkpatrick model was discovered. The

fact that the particular form of the array (Rl,l′) suggested in [14], [15] encoded

some definite physical properties of the Gibbs measure, including ultrametric-

ity, was found during the subsequent interpretation of the Parisi solution in the

work of M. Mézard, G. Parisi, N. Sourlas, G. Toulouse and M.A. Virasoro in [6],

[7]; see [8] for more details. The Parisi formula for the free energy was proved

rigorously in a celebrated work of M. Talagrand in [18] following the break-

through invention of the replica symmetry breaking interpolation scheme by

F. Guerra in [5], which gave a very strong indirect support to the entire Parisi

ansatz including the ultrametricity conjecture. More recently, several results

providing some direct mathematical support to the ultrametricity conjecture

were proved under an additional technical assumption that the overlaps take

only finitely many values, i.e., R1,2 ∈ {q1, . . . , qk} with probability one for some

nonrandom values (ql)l≤k. The first such result was proved by L.-P. Arguin and

M. Aizenman in [2] as a consequence of the Aizenman-Contucci stochastic sta-

bility property [1] of the Gibbs measures in the mixed p-spin models. Inspired

by [2], the author proved a similar result based on the Ghirlanda-Guerra iden-

tities in [9] (see [11] for an elementary proof) and M. Talagrand gave a different
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proof in [19]. Unfortunately, in the Sherrington-Kirkpatrick and mixed p-spin

models one expects the distribution of the overlap to have a continuous com-

ponent ([8]), so the results in [2], [9] and [19] were not directly applicable to

these models.

In this paper we deduce ultrametricity (1.3) without any assumptions on

the distribution of the overlap and, as a result, one can now give a more di-

rect approach to the Parisi formula for the free energy in the mixed p-spin

models (see [13]). The proof of Theorem 1 utilizes a new representation of the

Ghirlanda-Guerra identities that appears in Theorem 2 below, which can be

viewed as a new invariance principle for random measures that satisfy (1.1).

The idea behind this representation was originally motivated by the stability

property proved in [12], which unified the Aizenman-Contucci stochastic sta-

bility and the Ghirlanda-Guerra identities; however, the proof we give here is

based only on the Ghirlanda-Guerra identities.

Acknowledgement. The author would like to thank Michel Talagrand for

constant encouragement of the efforts that lead to this work.

2. Invariance principles

In this section, we will first prove a new invariance property for random

measures that satisfy the Ghirlanda-Guerra identities in Theorem 2 and then

deduce from it a modified version of the invariance principle in Theorem 3,

which will be used in the proof of Theorem 1 in Section 3. Given n ≥ 1,

consider n bounded measurable functions f1, . . . , fn : R→ R and define

(2.1) F (σ, σ1, . . . , σn) = f1(σ · σ1) + · · ·+ fn(σ · σn).

For 1 ≤ l ≤ n, we define

(2.2) Fl(σ, σ
1, . . . , σn) = F (σ, σ1, . . . , σn)− fl(σ · σl) + E〈fl(R1,2)〉,

and for l ≥ n+ 1, we define

(2.3) Fl(σ, σ
1, . . . , σn) = F (σ, σ1, . . . , σn).

The definition (2.3) for l ≥ n+ 1 will not be used in the statement but will ap-

pear in the proof of the next result. Let us recall the notation Rn = (Rl,l′)l,l′≤n.

Theorem 2. Suppose (1.1) holds, and let Φ be a bounded measurable

function of Rn. Then

(2.4) E〈Φ〉 = E
〈Φ exp

∑n
l=1 Fl(σ

l, σ1, . . . , σn)

〈expF (σ, σ1, . . . , σn)〉n
〉
,

where the average 〈·〉 in the denominator is in σ only for fixed σ1, . . . , σn and

the outside average of the ratio is in σ1, . . . , σn.



386 DMITRY PANCHENKO

When n = 1, it is understood that Φ is a constant. Notice that one can

easily recover the original Ghirlanda-Guerra identities from (2.4) by taking

f1 = tψ and f2 = · · · = fn = 0 and computing the derivative at t = 0.

Proof. Without loss of generality, let us assume that Φ takes values in

[0, 1] and suppose that |fl| ≤ L for 1 ≤ l ≤ n for some large enough L. For

t ≥ 0, let

(2.5) ϕ(t) = E
〈Φ exp

∑n
l=1 tFl(σ

l, σ1, . . . , σn)

〈exp tF (σ, σ1, . . . , σn)〉n
〉
.

We will show that the Ghirlanda-Guerra identities (1.1) imply that this func-

tion is constant, thus, proving the statement of the theorem, ϕ(0) = ϕ(1). If

for k ≥ 1 we denote

Dn+k =
n+k−1∑
l=1

Fl(σ
l, σ1, . . . , σn)− (n+ k − 1)Fn+k(σ

n+k, σ1, . . . , σn),

then one can easily compute by induction that (recall (2.3) and that we average

in σ only in the denominator of (2.4))

ϕ(k)(t) = E
〈ΦDn+1 . . . Dn+k exp

∑n+k
l=1 tFl(σ

l, σ1, . . . , σn)

〈exp tF (σ, σ1, . . . , σn)〉n+k
〉
.

First, we note that ϕ(k)(0) = 0. Indeed, if we denote Φ′= ΦDn+1 · · ·Dn+k−1,

then Φ′ is a function of the overlaps (Rl,l′)l,l′≤n+k−1 and

ϕ(k)(0)=E
〈

Φ′
(n+k−1∑

l=1

Fl(σ
l, σ1, . . . , σn)− (n+ k − 1)Fn+k(σ

n+k, σ1, . . . , σn)
)〉(2.6)

=
n∑
j=1

E
〈

Φ′
(n+k−1∑
l 6=j,l=1

fj(Rj,l) + E〈fj(R1,2)〉 − (n+ k − 1)fj(Rj,n+k)
)〉

= 0

by the Ghirlanda-Guerra identities (1.1) applied to each term j. Now, since

|Fl| ≤ Ln and |Dn+k| ≤ 2L(n+ k − 1)n, we get

|ϕ(k)(t)| ≤
( k∏
l=1

2L(n+ l − 1)n
)
E
〈Φ exp

∑n+k
l=1 tFl(σ

l, σ1, . . . , σn)

〈exp tF (σ, σ1, . . . , σn)〉n+k
〉

=
( k∏
l=1

2L(n+ l − 1)n
)
E
〈Φ exp

∑n
l=1 tFl(σ

l, σ1, . . . , σn)

〈exp tF (σ, σ1, . . . , σn)〉n
〉

=
k∏
l=1

(n+ l − 1) (2Ln)k ϕ(t).



THE PARISI ULTRAMETRICITY CONJECTURE 387

Consider arbitrary T > 0. Again, using that |Fl| ≤ Ln it is obvious that

ϕ(t) ≤ e2LTn2
for 0 ≤ t ≤ T and, therefore,

|ϕ(k)(t)| ≤ e2LTn2 (n+ k − 1)!

(n− 1)!
(2Ln)k.

By (2.6) and Taylor’s expansion,

|ϕ(t)− ϕ(0)| ≤ max
0≤s≤t

|ϕ(k)(s)|
k!

tk ≤ e2LTn2 (n+ k − 1)!

k! (n− 1)!
(2Lnt)k.

Letting k → ∞, we get that ϕ(t) = ϕ(0) for t < (2Ln)−1. Therefore, for

any t0 < (2Ln)−1, we again have ϕ(k)(t0) = 0 for all k ≥ 1, and by Taylor’s

expansion for t0 ≤ t ≤ T,

|ϕ(t)− ϕ(t0)| ≤ max
t0≤s≤t

|ϕ(k)(s)|
k!

(t− t0)k ≤ e2LTn
2 (n+ k − 1)!

k! (n− 1)!
(2Ln(t− t0))k.

Letting k →∞ proves that ϕ(t) = ϕ(0) for 0 ≤ t < 2(2Ln)−1. We can continue

in the same fashion to prove this equality for all 0 ≤ t < T ; note that T was

arbitrary. �

Let us write down a corollary of Theorem 2 on which the proof of Theo-

rem 1 will be based. Consider a finite index set A. Given n ≥ 1 and configura-

tions σ1, . . . , σn, let (Bα)α∈A be a partition of the Hilbert space H such that

for each α ∈ A, the indicator IBα = I(σ ∈ Bα) is a measurable function of Rn

and (σ · σl)l≤n, and let

(2.7) Wα = Wα(σ1, . . . , σn) = G(Bα).

Let us define a map T by

(2.8) W = (Wα)α∈A → T (W ) =
(〈IBα expF (σ, σ1, . . . , σn)〉
〈expF (σ, σ1, . . . , σn)〉

)
α∈A

.

The following holds.

Theorem 3. Under (1.1), for any bounded measurable function ϕ : Rn2×
R|A| → R,

(2.9) E
¨
ϕ(Rn,W )

∂
= E

〈ϕ(Rn, T (W )) exp
∑n
l=1 Fl(σ

l, σ1, . . . , σn)

〈expF (σ, σ1, . . . , σn)〉n
〉
.

Proof. For each α ∈ A, let us take integer nα ≥ 0 and let m = n +∑
α∈A nα. Let (Sα)α∈A be any partition of {n+ 1, . . . ,m} such that |Sα| = nα.

Consider a continuous function Φ : Rn2 → R, and let Φ′ = Φ(Rn)
∏
α∈A ϕα,

where

(2.10) ϕα = I
Ä
σl ∈ Bα,∀l ∈ Sα

ä
.
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Let fl for l ≤ n be as in (2.1) and fn+1 = · · · = fm = 0. Let us now apply

Theorem 2 with these choices of functions Φ′ and fl. First of all, integrating

out the coordinates (σl)l>n, the left-hand side of (2.4) can be written as

(2.11) E〈Φ′〉 = E
〈

Φ(Rn)
∏
α∈A

ϕα
〉

= E
〈

Φ(Rn)
∏
α∈A

Wnα
α (σ1, . . . , σn)

〉
,

where Wα’s were defined in (2.7). Let us now compute the right-hand side of

(2.4). Since fn+1= · · ·=fm=0, the denominator will be
¨
expF (σ, σ1, . . . , σn)

∂m
and

(2.12)
m∑
l=1

Fl(σ
l, σ1, . . . , σm) =

n∑
l=1

Fl(σ
l, σ1, . . . , σn)+

m∑
l=n+1

F (σl, σ1, . . . , σn).

Since the denominator does not depend on (σl)l>n, integrating in the coordi-

nate σl for l ∈ Sα will produce a factor

〈IBα expF (σ, σ1, . . . , σn)〉 .

For each α ∈ A, we have |Sα| = nα such coordinates. Therefore, the right-hand

side of (2.4) is equal to

(2.13)

E
〈Φ(Rn) exp

∑n
l=1 Fl(σ

l, σ1, . . . , σn)

〈expF (σ, σ1, . . . , σn)〉n
∏
α∈A

(〈IBα expF (σ, σ1, . . . , σn)〉
〈expF (σ, σ1, . . . , σn)〉

)nα〉
.

Comparing with (2.11), recalling (2.8) and approximating a continuous func-

tion φ on [0, 1]|A| by polynomials we get (2.9) first for products Φ(Rn)φ(W ),

then for continuous functions ϕ(Rn,W ) and then for arbitrary bounded mea-

surable functions. �

3. Proof of Theorem 1

We mentioned in the introduction that G is concentrated on the sphere of

radius
√
q∗ so all σ below will be of length ‖σ‖ =

√
q∗. Consider a symmetric

nonnegative definite matrix A = (al,l′)l,l′≤n such that al,l = q∗ for l ≤ n. Given

ε > 0, we will write x ≈ a to denote that x ∈ (a − ε, a + ε) and Rn ≈ A to

denote that Rl,l′ ≈ al,l′ for all l 6= l′ ≤ n. For simplicity of notation, we will

keep the dependence of ≈ on ε implicit. Below, the matrix A will be used to

describe a set of constraints such that the overlaps in Rn can take values close

to A,

(3.1) E
¨
I(Rn ≈ A)

∂
> 0,

for a given ε > 0. Let us introduce the notation

(3.2) a∗n = max(a1,n, . . . , an−1,n).

The main step in the proof of Theorem 1 is the following result, which will be

based on the invariance principle of Theorem 3.
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Theorem 4. Under (1.1), given ε > 0, if the matrix A satisfies (3.1) and

a∗n + ε < q∗, then

(3.3)

E
〈
I
(
Rn ≈ A,R1,n+1 ≈ a1,n, . . . , Rn−1,n+1 ≈ an−1,n, Rn,n+1 < a∗n + ε

)〉
> 0.

Theorem 4 will be used in the following way. Suppose that the matrix A

is such that a∗n < q∗ and A is in the support of the distribution of Rn under

EG⊗∞, which means that (3.1) holds for all ε > 0. Since a∗n + ε < q∗ for small

ε > 0, (3.3) holds for all ε > 0. Therefore, the support of the distribution of

Rn+1 under EG⊗∞ intersects the event in (3.3) for every ε > 0, and since the

support is compact, it contains a point in the set

(3.4)
{
A′ : a′l,l′ = al,l′ for l, l′ ≤ n, a′l,n+1 = al,n for l ≤ n− 1, a′n,n+1 ≤ a∗n

}
.

Proof of Theorem 4. We will prove (3.3) by contradiction, so suppose that

the left-hand side is equal to zero. We will apply Theorem 3 with A = {1, 2}
and the partition

B1 =
¶
σ : σ · σn ≥ a∗n + ε

©
, B2 = Bc

1.

Since we assume that a∗n + ε < q∗, the set B1 contains a small neighborhood

of σn, and on the event {Rn ≈ A} its complement B2 = Bc
1 contains small

neighborhoods of σ1, . . . , σn−1 since Rl,n < al,n + ε ≤ a∗n + ε. Thus, on this

event and for σ1, . . . , σn in the support of G, the weights W1 = G(B1),W2 =

G(B2) = 1 − W1 are strictly positive. Then, (3.1) implies that we can find

0 < p < p′ < 1 and small δ > 0 such that

(3.5) E
¨
I
Ä
Rn ≈ A,W1 ∈ (p, p′)

ä∂
≥ δ.

Let us apply Theorem 3 and (2.9) with the above partition, the choice of

(3.6) ϕ(Rn,W ) = I
Ä
Rn ≈ A,W1 ∈ (p, p′)

ä
,

and the choices of functions f1 = · · · = fn−1 = 0 and fn(x) = tI(x ≥ a∗n + ε)

for t ∈ R. The terms that appear on the right-hand side of (2.9) will become

n∑
l=1

Fl(σ
l, σ1, . . . , σn) =

n−1∑
l=1

tI(Rl,n ≥ a∗n + ε) + tE
¨
I(R1,2 ≥ a∗n + ε)

∂
= tE

¨
I(R1,2 ≥ a∗n + ε)

∂
=: tγ

since, again, on the event {Rn ≈ A} the overlaps Rl,n < al,n + ε ≤ a∗n + ε for

l ≤ n− 1 and¨
expF (σ, σ1, . . . , σn)

∂
=
¨
exp tI(σ · σn ≥ a∗n + ε)

∂
= ∆t(W ),

where

(3.7) ∆t(W ) = G(B1)e
t +G(B2) = W1e

t + 1−W1.
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If W = (W1,W2), the map Tt(W ) corresponding to (2.8) can now be written

as

(3.8) Tt(W ) =
( W1e

t

∆t(W )
,
1−W1

∆t(W )

)
.

Since ∆t(W ) ≥ 1 for t ≥ 0, in this case equation (2.9) together with (3.5)

implies

δ≤E
〈I(Rn ≈ A, (Tt(W ))1 ∈ (p, p′)) etγ

∆t(W )n

〉
(3.9)

≤E
〈
I
Ä
Rn ≈ A, (Tt(W ))1 ∈ (p, p′)

ä
etγ
〉
.

In the average 〈·〉 on the right-hand side let us fix σ1, . . . , σn−1 and consider the

average with respect to σn first. Clearly, on the event {Rn ≈ A} such average

will be taken over the set

(3.10) Ω(σ1, . . . , σn−1) =
¶
σ : σ · σl ≈ al,n for l ≤ n− 1

©
.

Let us look at the diameter of this set on the support of G. Suppose that with

positive probability over the choice of the measure G and replicas σ1, . . . , σn−1

from G satisfying the constraints in A (i.e., Rl,l′ ≈ al,l′ for l, l′ ≤ n− 1) we can

find two points σ′, σ′′ in the support of G that belong to the set Ω(σ1, . . . , σn−1)

and such that σ′ ·σ′′ < a∗n+ε. This would then imply (3.3) since for (σn, σn+1)

in a small neighborhood of (σ′, σ′′), the vector (σ1, . . . , σn, σn+1) would belong

to the event¶
Rn ≈ A,R1,n+1 ≈ a1,n, . . . , Rn−1,n+1 ≈ an−1,n, Rn,n+1 < a∗n + ε

©
on the left-hand side of (3.3). Since we assume that the left-hand side of (3.3)

is equal to zero, we must have that for almost all choices of the measure G and

replicas σ1, . . . , σn−1 satisfying the constraints in A any two points σ′, σ′′ in

the support of G that belong to the set Ω(σ1, . . . , σn−1) satisfy σ′ ·σ′′ ≥ a∗n+ε.

Now, let us also recall that in (3.9) we are averaging over σn that satisfy the

condition (Tt(W ))1 ∈ (p, p′). If we fix any such σ′ in the support of G that

satisfies this condition and belongs to the set (3.10), then the Gibbs average in

σn will be taken over its neighborhood B1 = B1(σ
′) = {σ′′ : σ′ · σ′′ ≥ a∗n + ε}

of measure W1 = W1(σ
′) = G(B1(σ

′)) that satisfies (Tt(W ))1 ∈ (p, p′). One

can easily check that the map in (3.8) satisfies T−1t = T−t, and using this for

(Tt(W ))1 ∈ (p, p′) implies that

W1(σ
′) ∈

{ qe−t

qe−t + 1− q
: q ∈ (p, p′)

}
and, thus, W1(σ

′) ≤ (1 − p′)−1e−t. This means that the average on the right-

hand side of (3.9) over σn for fixed σ1, . . . , σn−1 is bounded by (1−p′)−1e−tetγ
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and, therefore, for t ≥ 0,

(3.11) 0 < δ ≤ E
¨
I
Ä
Rn ≈ A, (Tt(W ))1 ∈ (p, p′)

ä
etγ
∂
≤ (1− p′)−1e−t(1−γ).

Since A satisfies (3.1), 1 − γ = E〈I(R1,2 < a∗n + ε)〉 > 0. Letting t → +∞ in

(3.11), we arrive at contradiction. �

Proof of Theorem 1. The proof is again by contradiction. Suppose that

ultrametricity is violated, in which case there exist a < b ≤ c < q∗ such that

the matrix

(3.12)

Ö
q∗ a b

a q∗ c

b c q∗

è
is in the support of the distribution of R3 under EG⊗∞ so it satisfies (3.1)

for every ε > 0. In this case Theorem 4 implies the following. Given any

n1, n2, n3 ≥ 1 and n = n1 + n2 + n3, we can find a matrix A in the support

of the distribution of Rn under EG⊗∞ such that for some partition of indices

{1, . . . , n} = I1 ∪ I2 ∪ I3 with |Ij | = nj , we have j ∈ Ij for j ≤ 3 and

(a) al,l′ ≤ c for all l 6= l′ ≤ n;

(b) al,l′ = a if l ∈ I1, l
′ ∈ I2, al,l′ = b if l ∈ I1, l

′ ∈ I3 and al,l′ = c if

l ∈ I2, l′ ∈ I3.
This can be proved by induction on n1, n2, n3. First of all, by the choice of

the matrix (3.12), this holds for n1 = n2 = n3 = 1. Assuming the claim holds

for some n1, n2 and n3 with the matrix A, let us show how one can increase

any of the nj ’s by one. For example, let us assume for simplicity of notation

that n ∈ I3 and show that the claim holds with n3 + 1. Since a∗n ≤ c < q∗,

we can use the comment below Theorem 4 to find a matrix A′ in the support

of the distribution of Rn+1 under EG⊗∞ that belongs to the set (3.4). Hence,

a′l,l′ ≤ c for all l 6= l′ ≤ n+1 and a′l,n+1 = al,n for l ≤ n−1. Thus, in particular,

a′l,n+1 = b if l ∈ I1 and a′l,n+1 = c if l ∈ I2, which means that A′ satisfies the

conditions (a), (b) with I3 replaced by I3 ∪ {n + 1}. In a similar fashion, one

can increase the cardinality of I1 and I2, which completes the induction. Now,

let n1 = n2 = n3 = m, find the matrix A as above, and find σ1, . . . , σn on

the sphere of radius
√
q∗ such that Rl,l′ = al,l′ for all l, l′ ≤ n. Let σ̄j be the

barycenter of the set {σl : l ∈ Ij}. Condition (a) implies that

‖σ̄j‖2 =
1

m2

∑
l∈Ij
‖σl‖2 +

1

m2

∑
l 6=l′∈Ij

Rl,l′ ≤
mq∗ +m(m− 1)c

m2
,

and condition (b) implies that σ̄1 · σ̄2 = a, σ̄1 · σ̄3 = b and σ̄2 · σ̄3 = c. Therefore,

‖σ̄2 − σ̄3‖2 = ‖σ̄2‖2 + ‖σ̄3‖2 − 2σ̄2 · σ̄3 ≤ 2(q∗ − c)
m
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and 0 < b − a = σ̄1 · σ̄3 − σ̄1 · σ̄2 ≤ Km−1/2. Letting m → ∞, we arrive at

contradiction. �
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