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A proof of the Breuil-Schneider conjecture
in the indecomposable case

By Claus M. Sorensen

Abstract

This paper contains a proof of a conjecture of Breuil and Schneider on

the existence of an invariant norm on any locally algebraic representation

of GL(n), with integral central character, whose smooth part is given by a

generalized Steinberg representation. In fact, we prove the analogue for any

connected reductive group G. This is done by passing to a global setting,

using the trace formula for an R-anisotropic model of G. The ultimate

norm comes from classical p-adic modular forms.

1. Introduction

The p-adic Langlands program is still in its initial stages, especially for

groups of higher rank. For a p-adic field F , one anticipates a correspondence

between certain Galois representations ρ : Gal(Q̄p/F )→ GLn(Q̄p) and certain

representations π̂ of GLn(F ) on p-adic Banach spaces. See Breuil’s survey

[Bre10] from the ICM 2010. This correspondence should somehow be compat-

ible with reduction mod p, cohomology, and p-adic families. This is a (big)

theorem for GL2(Qp), due to the work of many people (Berger, Breuil, Colmez,

Emerton, Paskunas, and others). However, beyond this example, not much is

known, although the subject is rapidly developing. Even GL2(F ), for fields

F 6= Qp, seems surprisingly hard to deal with. Let us return to GL2(Qp) for

a moment, and give more details. We start off with a potentially semistable

Galois representation

ρ : Gal(Q̄p/Qp)→ GL(V ) ' GL2(E),

with coefficients in a finite extension E/Qp. We assume ρ is regular. That is,

it has distinct Hodge-Tate weights w1 < w2. By a standard recipe of Fontaine,

to be recalled below, one associates a Weil-Deligne representation WD(ρ). By

the classical local Langlands correspondence, its Frobenius-semisimplification

WD(ρ)F−ss corresponds to an irreducible smooth representation π′ of GL2(Qp)
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over E. We let π = π′⊗|det |−1/2 if π′ is generic (that is, infinite-dimensional).

If π′ is nongeneric, we replace it by π = π′′ ⊗ | det |−1/2, where π′′ is a certain

parabolically induced representation with π′ as its unique irreducible quotient.

This is the generic local Langlands correspondence. Note that π may be re-

ducible. Now, one attaches to ρ an admissible unitary Banach space represen-

tation B(ρ) of GL2(Qp) over E satisfying a list of desiderata [Br, p. 8]. Most

important for us is that B(ρ) is the completion, relative to a suitable invariant

norm, of the locally algebraic representation (at least when ρ is irreducible)

B(ρ)alg = detw1 ⊗E Symw1−w2−1(E2)⊗E π.

Moreover, B(·) is compatible with the mod p local Langlands correspondence.

The Breuil-Schneider conjecture mimics some of this for GLn(F ). Again,

let

ρ : Gal(Q̄p/F )→ GL(V ) ' GLn(E)

be a potentially semistable Galois representation. With ρ, we associate a Weil-

Deligne representation WD(ρ) and a multiset of integers HT(ρ) as follows. Pick

a finite Galois extension F ′/F such that ρ|Gal(Q̄p/F ′) is semistable. Then

D = (Bst ⊗Qp V )Gal(Q̄p/F ′)

is a free F ′0⊗QpE-module of rank n, where F ′0 is the maximal unramified subfield

of F ′. The module D comes equipped with a Frobenius φ, a monodromy opera-

tor N such that Nφ = pφN , and a commuting action of Gal(F ′/F ). Moreover,

there is an admissible filtration of DF ′ by Gal(F ′/F )-invariant F ′ ⊗Qp E-sub-

modules, which allows one to recover ρ. Observe that one has a factorization

DF ′ '
∏

σ:F→E
DF ′,σ, DF ′,σ = DF ′ ⊗F ′⊗QpE

(F ′ ⊗F,σ E).

Hence, for each σ, we are given a filtration Fili(DF ′,σ) by Gal(F ′/F )-invariant

free F ′ ⊗F,σ E-submodules. Admissibility means, intuitively, that the Hodge

polygon lies beneath the Newton polygon. More formally, one introduces num-

bers tN (D) and tH(DF ′) as in [BS07, p. 15]. The former is given purely in terms

of φ, the latter in terms of the filtration. One requires that tH(DF ′) = tN (D)

and that tH(D′F ′) ≤ tN (D′) for any subobject D′ ⊂ D (with the induced

filtration).

Hodge-Tate numbers. For every embedding σ : F → E, the n-element

multiset HTσ(ρ) contains i ∈ Z with multiplicity rk(F ′⊗F,σE)gri(DF ′,σ). We

label these as

gri(DF ′,σ) 6= 0⇔ i ∈ HTσ(ρ) = {i1,σ ≤ · · · ≤ in,σ}.

We say ρ is regular (at σ) if all the Hodge-Tate numbers ij,σ are distinct.
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Weil-Deligne representation. Forgetting the filtration, the (φ,N)-module

D gives rise to WD(ρ) as follows. Choose an embedding F ′0 ↪→ E, and consider

DE = D⊗F ′
0⊗QpE

E with the inherited monodromy operator N and WF -action

defined by the formula

r(w) = φ−d(w) ◦ w̄, w ∈WF .

(Here d(w) is the power of arithmetic Frobenius induced by w, its image in

Gal(F ′/F ) is w̄, and φ is the semilinear Frobenius on Bst.) Note that r|WF ′ is

unramified. This defines WD(ρ) = (r,N,DE), a Weil-Deligne representation.

Conversely, suppose we are given a Frobenius-semisimple Weil-Deligne

representation (r,N,DE) of WF over E, unramified when restricted to WF ′ ,

and for each σ : F → E a set of n distinct integers,

i1,σ < · · · < in,σ.

When do these data arise from a potentially semistable ρ? By [BS07, p. 14]

we know (r,N,DE) corresponds to a (φ,N)×Gal(F ′/F )-module D. What we

are asking for is an admissible filtration Fili(DF ′,σ) such that

gri(DF ′,σ) 6= 0⇔ i ∈ {i1,σ < · · · < in,σ}.

The Breuil-Schneider conjecture asserts that this is the case precisely when

some locally algebraic representation ξ⊗E π (constructed from the given data)

carries an invariant norm. That is, a non-archimedean norm ‖ · ‖ such that

GLn(F ) acts unitarily.

The algebraic representation ξ. This is constructed out of the tuples ij,σ.

Let

aj,σ = −in+1−j,σ − (j − 1), a1,σ ≤ · · · ≤ an,σ.

That is, write ij,σ in the opposite order, change signs, subtract (0, 1, . . . , n−1).

The sequence aj,σ is identified with a dominant weight for GLn, relative to the

lower triangular Borel. We let ξσ be the corresponding irreducible algebraic

representation of GLn, and ξ = ⊗ξσ, viewed as an irreducible algebraic repre-

sentation of the restriction of scalars ResF/QpGLn, over E.

The smooth representation π. This is constructed out of (r,N,DE) via a

modified local Langlands correspondence. Let π◦ be the smooth irreducible

representation of GLn(F ) (over Q̄p) associated with (r,N,DE) by the usual

unitary local Langlands correspondence (after fixing a square root of q = #FF )

(r,N,DE) ' rec(π◦ ⊗ | det |(1−n)/2).

The twist π◦(1−n
2 ) does not depend on the choice of q

1
2 , and it can be defined

over E. By the Langlands classification (see [Kud94] for a useful survey), π◦
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is the unique irreducible quotient of a parabolically induced representation

IndGP (Q(∆1)⊗ · · · ⊗Q(∆r))� Q(∆1, . . . ,∆r) ' π◦.

Here the induction is normalized. The Q(∆i) are generalized Steinberg rep-

resentations, built from segments of supercuspidals, ∆i, ordered in a suitable

way. We define

π = IndGP (Q(∆1)⊗ · · · ⊗Q(∆r))⊗ | det |(1−n)/2.

By [BS07, p. 16], this π can be defined over E. Note that π may be re-

ducible, and it admits π◦(1−n
2 ) as its unique irreducible quotient. Moreover,

π ' π◦(1−n
2 ) exactly when the representation π◦ is generic. Also, π is always

generic [JS83]. This is the so-called generic local Langlands correspondence

for GLn.

We are now in a position to state the conjecture, announced in [BS07]

and [Bre10]. These references build on [ST06], where the crystalline case was

discussed in detail (but with somewhat inconvenient normalizations).

The Breuil-Schneider conjecture. Fix data (r,N,DE) and ij,σ as

above, and let π and ξ be the representations constructed therefrom. Then the

following two conditions are equivalent :

(1) The data arises from a potentially semistable Galois representation.

(2) The representation ξ ⊗E π admits a GLn(F )-invariant norm ‖ · ‖.

The implication (2)⇒ (1) is completely known. A few cases were worked

out in [BS07], and Hu proved it in general in [Hu09]. In fact, Hu proves a

lot more. He shows that (1) is equivalent to what he refers to as the Emerton

condition, which is a purely group theoretic statement: With V denoting the

space ξ ⊗E π,

(3) V N0,Z
+
M=χ 6= 0⇒ |δ−1

P (z)χ(z)| ≤ 1

for all z ∈ Z+
M . The implication (2)⇒ (3) is an easy exercise.

We are concerned with the converse, (1)⇒ (2). Our main result is

Theorem A. The conjecture holds when (r,N,DE) is indecomposable.

Recall that indecomposable Weil-Deligne representations are precisely

those obtained as follows. Starting with an irreducible representation r̃ : WF →
GL(D̃), with open kernel, and a positive integer ∈ Z>0, let

D = D̃⊕s, r = r̃ ⊕ r̃(1)⊕ · · · ⊕ r̃(s− 1), N : r̃(i− 1)
∼→ r̃(i).

Here r̃(i) denotes twisting r̃ by the ith power of | · |, the absolute value on WF ,

transferred from F ∗ via the reciprocity map. Under the (classical) local Lang-

lands correspondence, D̃ corresponds to a supercuspidal τ , and D corresponds
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to the generalized Steinberg representation Q(∆), where ∆ is the segment

∆ = τ ⊗ τ(1)⊗ · · · ⊗ τ(s− 1).

The Jacquet modules of Q(∆) can be made explicit; see Lemma 3.1 in [Hu09],

for example. They are irreducible if nonzero. From that, it is easy to see that

condition (3) just amounts to saying ξ ⊗E π has integral central character.

In fact, this was already observed in Proposition 5.3 in [BS07], where they

also state the resulting conjecture explicitly (as Conjecture 5.5), which is what

we prove. Our methods work for any connected reductive group G defined

over Qp.

Theorem B. Let G be a connected reductive group over Qp. Let ξ be

any irreducible algebraic representation of GQ̄p , and let π be any essentially

discrete series representation of G. Then ξ ⊗ π admits a G-invariant norm if

and only if its central character is integral.

Taking G = ResF/QpGL(n) yields Conjecture 5.5 in [BS07]. Indeed, the

generalized Steinberg representations coincide with the essentially discrete se-

ries representations for GL(n). This theorem, and its proof, is purely group-

theoretical. There is no mention of Galois representations, and much of the

previous discussion is meant to be motivation only.

The proof of Theorem B (which implies Theorem A) is by passing to a

global setting and making use of algebraic modular forms. By some sort of

averaging over finite (cohomology) groups, we first reduce to the case where

G is simple and simply connected, in which case the condition on the central

character is vacuous. For such G, a result of Borel and Harder allows us to

find a global model G/Q such that G(R) is compact. If π is a discrete series, a

trace formula argument (due to Clozel in greater generality) shows that ξ ⊗ π
admits an automorphic extension. Fixing an isomorphism ι : C → Q̄p, we

infer that πK sits as a submodule of AKG,ξ, a space of classical p-adic modular

forms. Therefore, ξ⊗π contributes to the direct limit of all ξ⊗AKG,ξ, which in

turn embeds in CG the space of all continuous functions G(Q)\G(Af ) → Q̄p.

This latter space carries a supremum-norm, which is obviously invariant under

G(Af ).

In [Sor12], a sequel to this paper, we make progress in the decomposable

case. For instance, we show that the Banach space representations Bξ,ζ intro-

duced in [ST06] are nonzero (as conjectured) when (ξ, ζ) is globally relevant.

This is done by combining the ideas of this paper with local-global compati-

bility at p = ` in the book project context; see [BLGGT] and [Car].

Acknowledgments. I would like to thank M. Harris, L. Clozel, and M. Tadic

for some psychologically comforting facts about Galois conjugates of discrete

series representations. Moreover, thanks are due to C. Breuil, F. Herzig,
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D. Ramakrishnan, and C. Skinner for their encouragement. I appreciate the

feedback from C. Breuil and S.-W. Shin, who made comments on a previous

version of this manuscript.

2. Modular forms on definite reductive groups

2.1. The complex case.

2.1.1. Notation. For now, we will study automorphic forms on an ar-

bitrary connected reductive group G over Q such that Gder(R) is compact.

Here Gder is the derived subgroup, which is then necessarily an R-anisotropic

semisimple group. As is standard, AG denotes the maximal Q-split central

torus in G, and we choose any central torus ZG (over Q) containing AG. We

will often take it to be the whole identity component of the center. K∞ is the

maximal compact subgroup of G(R), which is unique, and possibly bigger than

Gder(R).

2.1.2. Classical automorphic forms. Let A = R×Af be the ring of rational

adeles. Inside G(A), we introduce the normal subgroup G(A)1 cut out by

all |χ|, where χ ranges over the Q-characters of G. It contains G(Q) as a

cocompact discrete subgroup, and one has a decomposition

G(A) = AG(R)+ ×G(A)1.

Automorphic forms are affiliated with a central character, which we fix through-

out. That is, we pick an arbitrary continuous (possibly nonunitary) character

ω : ZG(Q)\ZG(A)→ C∗

and consider the Hilbert space L2
G(ω) of all measurable ω-central functions

f : G(Q)\G(A)→ C,

∫
G(Q)\G(A)1

|f(x)|2dx <∞.

The right regular representation of G(A) is completely reducible, and L2
G(ω)

breaks up into (irreducible) automorphic representations π = π∞⊗πf , each oc-

curring with finite multiplicity mG(π). The space of automorphic forms AG(ω)

is the dense subspace of smooth functions f satisfying the usual finiteness prop-

erties under the action of K∞ and the center of the universal enveloping algebra

at infinity. We will restrict ourselves to algebraic π. That is, we will assume π∞
is the restriction of an irreducible algebraic (finite-dimensional) representation

ξ : GC → GL(W ),

which we fix throughout. Its isotypic component is ξ ⊗AG,ξ(ω), where we let

Definition 1. AG,ξ(ω) = HomG(R)(ξ,AG(ω)) = (ξ∨ ⊗AG(ω))G(R).
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This is an admissible smooth representation of G(Af ), which breaks up as

a direct sum ⊕πmG(π)πf , summing over automorphic π, of central character

ωπ = ω, such that π∞ = ξ. We view elements of AG,ξ(ω) as vector-valued

functions.

Lemma 1. As a G(Af )-module, AG,ξ(ω) can be identified with the space

of all ωf -central smooth functions :

f : G(Af )→W∨, f(γfx) = ξ∨(γ∞)f(x) ∀γ ∈ G(Q).

Proof. One introduces a third space, consisting of all smooth ω-central

functions:

f : G(Q)\G(A)→W∨, f(xg) = ξ∨(g)−1f(x) ∀g ∈ G(R).

Such a function f gives a G(R)-map ξ → AG(ω) by sending a vector w ∈W to

the automorphic form g 7→ 〈f(g), w〉. On the other hand, restriction to G(Af )

identifies it with the space of functions in the lemma. �

Remark. We always assume ξ and ω are compatible; that is, ω∞ = ξ|ZG(R).

By smoothness, as K varies over all compact open subgroups of G(Af ),

one has

AG,ξ(ω) = lim−→
K

AG,ξ(ω)K ,

where AG,ξ(ω)K is the subspace of K-invariants, a module for the Hecke al-

gebra HG,K of all K-biinvariant compactly supported C-valued functions on

G(Af ). Again, for this subspace to be nonzero, we need K and ω to be com-

patible in the sense that ωf is trivial on ZG(Af ) ∩K.

Example. When ξ = 1, we are just looking at the space AG,1(ω) of all

ωf -central smooth C-valued functions on the profinite (hence compact) set

S̃ = G(Q)\G(Af ) = lim←−
K

SK , SK = G(Q)\G(Af )/K.

Moreover, AG,1(ω)K is the space of ωf -central functions on the finite set SK .

2.2. The p-adic case.

2.2.1. Notation. We fix a prime number p, an algebraic closure Q̄p, to-

gether with an (algebraic) isomorphism ι : C ∼→ Q̄p. We will occasionally make

use of an algebraic closure Q̄, always assumed to be endowed with an embed-

ding ι∞ : Q̄ ↪→ C. Correspondingly, ιp = ι ◦ ι∞ is an embedding Q̄ ↪→ Q̄p.

Via ι, we base change ξ to an algebraic representation over Q̄p:

ιξ : GQ̄p → GL(ιW ), ιW = W ⊗C,ι Q̄p.



374 CLAUS M. SORENSEN

Our central character ω has a p-adic avatar, the continuous character

ωf,p : ZG(Q)\ZG(Af )→ Q̄∗p, ωf,p(z) = ιωξ(zp) · ιωf (z).

(Here ωξ denotes the central character of ξ; the restriction of its highest weight

to the connected center ZG.)

2.2.2. Classical p-adic automorphic forms. All constructions of the previ-

ous section can be transferred to Q̄p via ι. When we put an ι in front, we mean

tensoring by Q̄p, as in ιW = W ⊗C,ι Q̄p.

Lemma 2. As a G(Af )-module, ιAG,ξ(ω)K can be identified with the space

of all ωf,p-central functions (smooth away from p)

f : G(Q)\G(Af )→ ιW∨, f(xk) = ιξ∨(kp)
−1f(x) ∀k ∈ K .

Proof. Given a complex form f , as in the previous lemma, one associates

the function x 7→ ιξ∨(xp)
−1ιf(x). It is easy to check that one can recover f . �

Definition 2. CG(ω) = {continuous ωf,p-central G(Q)\G(Af )
f→ Q̄p}.

Any function f , as in the lemma, yields a K-map ιξ → CG(ω) by sending

w ∈ ιW to the continuous (in fact, locally algebraic) function g 7→ 〈f(g), w〉,
and vice versa. Here K acts on ιξ through the projection to G(Qp). We have

shown that

ιAG,ξ(ω)K = HomK(ιξ, CG(ω)) = (ιξ∨ ⊗ CG(ω))K .

Note that the image of K in G(Qp) is compact open, hence Zariski dense, so

that ιξ is an irreducible representation ofK. Let us look at its isotypic subspace

CG(ω)[ιξ]; that is, the sum of all K-stable subspaces isomorphic to ιξ. This is

a semisimple K-representation, and HomK(ιξ, CG(ω)) is its multiplicity space

ιξ ⊗ ιAG,ξ(ω)K
∼−→ CG(ω)[ιξ] ⊂ CG(ω).

As K varies, these identifications are compatible with inclusions among the

spaces AG,ξ(ω)K . Taking the direct limit, we end up with the injection

lim−→
K

ιξ ⊗ ιAG,ξ(ω)K ↪→ CG(ω).

It can be checked that this map is G(Af )-equivariant. The image is the sub-

space of locally ξ-algebraic functions. Altogether, we arrive at our key result.

Theorem 1. There is an injective G(Af )-map ιξ ⊗ ιAG,ξ(ω) ↪→ CG(ω).

Remark. At least when ZG is trivial (so that ω = 1), this can be found in

Section (3.2) of [Eme06]. It is part of a larger picture, which we learnt after

writing this paper. For a general G, Emerton introduces a certain spectral

sequence computing completed cohomology H̃n. In our case, H̃0 = CG, and
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the injection from Theorem 1 is (essentially) an edge map of that spectral

sequence; that is, (0.3) on page 3 in [Eme06]. Now Theorem 1 is basically just

Corollary 2.2.25, page 37 in [Eme06]. We adopt this point of view in [Sor12].

2.2.3. Existence of invariant norms. The space CG(ω), being a subspace

of C(S̃, Q̄p), has a natural sup-norm

‖f‖ = supx∈G(Af )|f(x)|p = maxx∈G(Af )|f(x)|p,

which is obviously invariant under the G(Af )-action; that is, ‖g · f‖ = ‖f‖.

Corollary 1. If π = ξ ⊗ πf is an automorphic representation of G(A),

then ιξ ⊗ ιπf has a natural G(Af )-invariant norm. (Here G(Apf ) acts through

ιπpf and G(Qp) acts diagonally.)

Since ιξ ⊗ ιπf = (ιξ ⊗ ιπp)⊗ ιπpf , we deduce

Corollary 2. If πp is an irreducible admissible representation of G(Qp),

which extends to an automorphic representation of G(A) of weight ξ, then

ιξ ⊗ ιπp has a G(Qp)-invariant norm.

This norm is far from canonical. There may be many ways to extend πp.

3. A Grunwald-Wang type theorem

3.1. The Grunwald-Wang theorem for GL(1). From [AT09, p. 103], we

briefly recall the following result of Grunwald (as corrected by Wang). This

goes to show that one has to be careful about the center when prescribing

automorphic representations locally. In the subsequent section we will restrict

to simple groups for that reason.

Theorem 2. Given a number field F , a finite set of places S, and for

each v ∈ S a character χv of F ∗v of finite order, there exists a finite order

Hecke character χ of F extending χS = ⊗v∈Sχv .

Furthermore, the order of χ can be taken to be the least common multiple

of the orders of the χv, unless a special case occurs (where the order of χ

becomes twice that). Given an arbitrary χS , we see that it can be extended to

a Hecke character conditionally; precisely, when some twist χS | · |sS is of finite

order. This is a constraint among the {χv}v∈S (as s ∈ C depends only on S).

(There is a variant for tori, which follows easily from the congruence sub-

group problem, as affirmed by Chevalley for tori.)

3.2. Clozel ’s argument on limit multiplicities. We will use the trace for-

mula in its absolute simplest form. Namely, we will assume, for a moment,

that G is semisimple. We keep all other assumptions. In particular, G(R) is
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compact. The trace formula for G is the following identity:

tr(φ : L2
G) =

∑
π

mG(π)trπ(φ) =
∑
{γ}

vol(Gγ(Q)\Gγ(A))Oγ(φ),

valid for any test function φ ∈ C∞c (G(A)). On the spectral side, we are sum-

ming over all automorphic representations π. On the geometric side, the sum

ranges over γ ∈ G(Q), up to conjugacy. We denote by Gγ its stabilizer and by

Oγ the orbital integral. Measures are chosen compatibly.

We wish to quickly outline an argument of Clozel, giving an analogue of

the Grunwald-Wang theorem for G. We start off with a finite set of places S

of Q, which we assume contains ∞. At each v ∈ S, we are given a discrete

series representation π◦v of G(Qv). (That is, its matrix coefficients are square-

integrable.)

Theorem 3. There is a function φ◦v ∈ C∞c (G(Qv)) such that, for every

tempered irreducible admisisble representation πv ,

trπv(φ
◦
v) =

1, πv = π◦v ,

0, πv 6= π◦v .

(Such a φ◦v is called a pseudo-coefficient of π◦v .)

Proof. For v = ∞, this is in [CD85]. The case v 6= ∞ is in [Clo86,

p. 278]. �

Note. There may be nontempered πv for which trπv(φ
◦
v) 6= 0, but only

finitely many. See [Clo86, p. 269] and [Clo86, p. 280]. Let us introduce φ◦S =

⊗v∈Sφ◦v. Then trπS(φ◦S) 6= 0 for only finitely many representations π◦S =

πS,0, . . . , πS,r.

With this choice of φ◦S , the spectral side becomes∑
πS

mG(π◦S ⊗ πS)trπS(φS) +
r∑
i=1

∑
πS

mG(πS,i ⊗ πS)trπS,i(φ
◦
S)trπS(φS)

for all φS ∈ C∞c (G(AS)). We will take this φS to be of the following form:

φS = vol(KS)−1 · charKS ,

where KS ⊂ G(AS) is a compact open subgroup, which we will let shrink to

the identity below. With this choice, the spectral side turns into

dim HomG(QS)(π
◦
S , (L

2
G)K

S
) +

r∑
i=1

dim HomG(QS)(πS,i, (L
2
G)K

S
)trπS,i(φ

◦
S).

In some sense, the key ingredient of Clozel’s proof is the following limit multi-

plicity formula, based on a method of DeGeorge-Wallach.

Lemma 3. limKS→1 vol(KS) dim HomG(QS)(πS,i, (L
2
G)K

S
) = 0 for i > 0.

Proof. This is (a weak version of) Lemma 8, [Clo86, p. 274]. �
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Now, let us focus on the geometric side,∑
{γ}

vol(Gγ(Q)\Gγ(A))OγS (φ◦S)OγS (φS).

Here, by Lemma 5 in [Clo86, p. 271], for sufficiently small KS , the factor

OγS (φS) = 0 unless γ is unipotent. Since G is Q-anisotropic, this means

γ = 1. In the limit, as KS → 1, the geometric side reduces to just one term,

vol(G(Q)\G(A))φ◦S(1)vol(KS)−1.

Here φ◦S(1) = d(π◦S) > 0 is the formal degree, by the Plancherel formula.

See Lemmas 9 and 12 in [Clo86]. Putting all this together, we arrive at the

following limit formula.

Theorem 4. We have

vol(KS) dim HomG(QS)(π
◦
S , (L

2
G)K

S
) −→
KS→1

vol(G(Q)\G(A))d(π◦S).

This is a weak version of Theorems 1A and 1B in [Clo86], which control

ramification away from just one prime. We will not need this. On the other

hand, Clozel’s theorems give lower bounds for lim infKS→1, not exact limits.

The following extension theorem, in the vein of Grunwald-Wang, will be

crucial for the applications we have in mind later on.

Corollary 3. Let G be a semisimple anisotropic Q-group. Given a dis-

crete series representation π◦S of G(QS), where S is a finite set of places of Q,

there is an automorphic representation π of G(A) such that πS = π◦S .

Proof. This follows immediately from Theorem 4. Since π◦S is a discrete

series, d(π◦S) > 0, so that the limit is nonzero. Consequently, for small enough

KS , there is a G(QS)-embedding of π◦S into (L2
G)K

S
, which decomposes as a

direct sum of πK
S

for automorphic π. �

4. Invariant norms on discrete series

4.1. Forms of algebraic groups. We will quote (and use) a result of Borel

and Harder on locally prescribed forms of algebraic groups. Recall that if

G is an algebraic group over a field F , an F -form of G is an F -group G′

isomorphic to G over the algebraic closure F̄ . This gives rise to a cocycle

c : Gal(F̄ /F )→ Aut(G) in the obvious way and identifies the set of equivalence

classes of forms with the non-abelian Galois cohomology set

H1(F,Aut(G)).

We will take F to be a number field. For each place v of F , there is an obvious

restriction map
H1(F,Aut(G))→ H1(Fv,Aut(G)),

which on forms corresponds to extending scalars G′  G′v = G′ ⊗F Fv.
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Theorem 5. Let F be a number field, S a finite set of places of F , and

G an (absolutely) almost simple F -group that is either simply connected or of

adjoint type. Then the canonical restriction map is surjective:

H1(F,Aut(G))�
∏
v∈S

H1(Fv,Aut(G)).

In other words, given an Fv-form G′v for each v ∈ S, there is an F -form G′

equivalent to G′v at places in S.

Proof. This is Theorem B in [BH78]. �

If v is a real (infinite) place of F , there is always a unique compact form

G′v, up to equivalence. The corresponding cocycle c is essentially given by

the Cartan involution. We immediately deduce the following existence result,

which will be used in the next section.

Corollary 4. Let G be an almost simple Qp-group that is either simply

connected or of adjoint type. Then there is a model over Q, still denoted by G,

such that G(R) is compact.

Proof. The group GQ̄p ' GC has a split model over Q (even over Z, this

is the theory of Chevalley groups), which we will denote by G∗. We apply the

theorem to this group, with S = {∞, p}. At ∞ we take the compact form of

G∗R. At p, we take G. �

4.2. The simple case. The following result is at the heart of our method.

Lemma 4. Let G be an almost simple Qp-group that is either simply con-

nected or of adjoint type. Let ξ be any irreducible algebraic representation

of GQ̄p , and let π be any discrete series representation of G(Qp) (both over

Q̄p). Then the locally algebraic representation ξ ⊗ π carries a norm, which is

invariant under the G(Qp)-action.

Proof. The key is to embed this in a global situation. Thus, as in the

previous corollary, we first find a Q-model G such that G(R) is compact. With

a choice of an isomorphism ι : C → Q̄p, we can confuse ξ and π with repre-

sentations over C (of GC and G(Qp) respectively). We will change notation

and denote the previous π by π◦p. Also, we let π◦∞ = ξ|G(R). Both are discrete

series, so by Corollary 3 there is an automorphic representation π of G(A) such

that π∞ = ξ and πp = π◦p. By Corollary 2, we see that ιξ⊗ιπ◦p has an invariant

norm. �

4.3. The semisimple case. From the simple case, we derive the semisimple

case.
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Lemma 5. Let G be a connected semisimple Qp-group. Let ξ be any irre-

ducible algebraic representation of GQ̄p , and let π be any discrete series repre-

sentation of G(Qp) (both over Q̄p). Then the locally algebraic representation

ξ ⊗ π carries a norm, which is invariant under the G(Qp)-action.

Proof. Now, suppose G is any connected semisimple Qp-group, and let

Gsc � G be its universal covering over Qp; see [PR94]. The kernel π1(G) is

finite. Being simply connected, Gsc is an actual direct product G1 × · · · ×Gr,
of finitely many simply connected simple groups Gi. By the main theorem of

[Sil79], the restriction of π to Gsc is a direct sum of finitely many irreducible

admissible representations

π|Gsc ' ⊕sj=1(τ1,j ⊗ · · · ⊗ τr,j),

where τi,j is a discrete series representation of Gi(Qp). The restriction ξ|Gsc

remains irreducible, and we continue to denote it simply by ξ. It factors as a

tensor product ξ1⊗ · · ·⊗ ξr, where ξi is an irreducible algebraic representation

of Gi,Q̄p . According to Lemma 4, each ξi ⊗ τi,j has a norm ‖ · ‖i,j , invariant

under the action of Gi(Qp). On the tensor product, where j is fixed for now,

(ξ1 ⊗ τ1,j)⊗ · · · ⊗ (ξr ⊗ τr,j),

we put the tensor product norm; see [Sch02, p. 110] and Proposition 17.4

therein. It has the property that

‖v1 ⊗ · · · ⊗ vr‖j = ‖v1‖1,j · · · ‖vr‖r,j ,

with vi ∈ ξi ⊗ τi,j . It is defined, for sums of pure tensors, by the formula

‖v‖j = inf{max ‖v1‖1,j · · · ‖vr‖r,j : v =
∑

v1 ⊗ · · · ⊗ vr}.

Here the maximum is over the same index set as the summation. The infimum

is over all possible expressions for v. This tensor product norm ‖ · ‖j is clearly

invariant under Gsc(Qp). Taking the maximum of all these, over j = 1, . . . , s,

we have constructed a Gsc(Qp)-invariant norm ‖ · ‖ on ξ ⊗ π. Now, to make it

invariant under G(Qp), we note that

G(Qp)/im(Gsc(Qp)→ G(Qp)) ⊂ H1(Qp, π1(G))

is a finite abelian group. Pick a set of representatives R, and replace ‖ · ‖ with

‖v‖′ = max
g∈R
‖g · v‖.

By construction, this modification ‖·‖′ is a G(Qp)-invariant norm on ξ⊗π. �
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4.4. The reductive case. From the semisimple case, we derive the general

reductive case.

Definition 3. An irreducible admissible complex representation π ofG(Qp)

is essentially discrete series if a twist π⊗ ν is (unitary) discrete series for some

smooth character ν : G(Qp) → C∗. The essentially discrete series representa-

tions over Q̄p are those of the form ιπ for some isomorphism ι : C→ Q̄p.

Remark. To put this definition (over Q̄p) on more solid ground, we would

like to know that we can in fact pick any ι; in other words, whether any

Aut(C)-conjugate of an essentially discrete series representation is again es-

sentially discrete series.1 This is predicted by the local Langlands conjecture.

(The parameter does not map into a proper Levi.) If σ ∈ Aut(C), the matrix

coefficients of σπ are σ-conjugates of matrix coefficients of π. Hence, it is cer-

tainly true for supercuspidals, but square integrability seems to be a problem.

We should mention that at least it is known to be true for GL(n). Indeed the

work of Bernstein-Zelevinsky shows that the essentially discrete series repre-

sentations for GL(n) coincide with the generalized Steinberg representations

Q(∆), built from a segment ∆ of supercuspidals, and σQ(∆) = Q(σ∆) in

a suitable (rational) normalization. See [Kud94] for a nice exposition of the

Langlands classification.

Theorem 6. Let G be a connected reductive group over Qp. Let ξ be any

irreducible algebraic representation of GQ̄p , and let π be any essentially dis-

crete series representation of G(Qp) (both over Q̄p). Then the locally algebraic

representation ξ ⊗ π admits a G(Qp)-invariant norm if and only if its central

character ωξ · ωπ is integral (that is, maps into Z̄×p ).

Proof. The only if part is obvious. We assume ωξ ·ωπ is integral and seek

a norm. The derived subgroup Gder is semisimple, ZG ∩Gder is finite, and

1→ ZG ∩Gder → ZG ×Gder → G→ 1

is exact. Here ZG is the full identity component of the center. The restriction

ξ|Gder hence remains irreducible, and we will just write ξ. On the other hand,

the restriction π|Gder(Qp) may not be, but it breaks up as a direct sum

π|Gder(Qp) ' τ1 ⊕ · · · ⊕ τr

of discrete series representations τi of Gder(Qp). For example, see [Tad92,

p. 381 and p. 385]. By Lemma 5, there is a norm ‖ · ‖i on ξ ⊗ τi, invariant

1Tadic informs me that, at least for classical groups, this is known for generic representa-

tions. Clozel has later informed me that he proved this in general long ago and that Vigneras

[Vig96] has published a different proof.
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under Gder(Qp). Their maximum defines a Gder(Qp)-invariant norm ‖ · ‖ on

ξ ⊗ π, which is automatically ZG(Qp)-invariant, by our assumption on the

central character. We have that

G(Qp)/ZG(Qp)G
der(Qp) ⊂ H1(Qp, ZG ∩Gder)

is a finite abelian group. Pick representatives R, and replace ‖ · ‖ with

‖v‖′ = max
g∈R
‖g · v‖.

This is independent of R and defines a G(Qp)-invariant norm on ξ ⊗ π. �

Taking G = ResF/QpGL(n), for a finite extension F/Qp, yields

Corollary 5. Conjecture 5.5 in [BS07] holds true.

Proof. As already mentioned, by Bernstein-Zelevinsky, the essentially dis-

crete series representations of GL(n) are precisely the generalized Steinberg

representations. �
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