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Higher finiteness properties of reductive
arithmetic groups in positive characteristic:

The Rank Theorem

By Kai-Uwe Bux, Ralf Köhl∗, and Stefan Witzel

Abstract

We show that the finiteness length of an S-arithmetic subgroup Γ in a

noncommutative isotropic absolutely almost simple group G over a global

function field is one less than the sum of the local ranks of G taken over the

places in S. This determines the finiteness properties for S-arithmetic sub-

groups in isotropic reductive groups, confirming the conjectured finiteness

properties for this class of groups.

Our main tool is Behr–Harder reduction theory which we recast in terms

of the metric structure of euclidean buildings.

Let K be a global function field, and let G be a linear algebraic group

defined over K. We fix a finite set S of places over K and let OS denote the

subring of S-integers in K. We want to talk about the group Γ := G(OS), but

as an algebraic variety, the R-points of G are only well defined forK-algebras R.

However, we regard G as a concrete matrix group defined by polynomial equa-

tions in the matrix coefficients. That is, we choose a particular realization of

the variety G as an algebraic set in some affine space. Given this realization,

we define Γ as its set of OS-points. The subgroup Γ obtained this way is called

an S-arithmetic subgroup of G. Of course, the S-arithmetic group Γ depends

on the chosen realization of G, but any two choices lead to S-arithmetic sub-

groups of G that share a common subgroup of finite index in both; see, e.g.,

[Ser79, §1]. Hence, the commensurability class of Γ depends only on the group

scheme G and the S-arithmetic ring OS .

We are interested in finiteness properties of the group Γ. Recall that a

group G is of type Fm if it admits a classifying space with finite m-skeleton.

The finiteness length φ(G) of G is the largest m such that G is of type Fm.

We say that φ(G) = ∞ if G is of type Fm for all m. The finiteness length
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is a commensurability invariant; in fact, it is invariant under quasi-isometries

[Alo94]. In particular, the finiteness length φ(Γ) of the S-arithmetic group Γ

depends only on G and OS but not on the particular chosen realization of G
as a matrix group.

Let Kp be the completion of the field K at the place p. The local rank

of G at the place p is the rank of G over the field Kp. If G is isotropic and

absolutely almost simple, the group G(Kp) acts on its associated Bruhat–Tits

building Xp and the dimension dim(Xp) is the local rank of G at the place p.

We prove the following theorem, which answers [AB08, Question 13.20].

Rank Theorem. Let G be a connected noncommutative absolutely al-

most simple K-isotropic K-group. Then the finiteness length φ(Γ) of the

S-arithmetic group Γ = G(OS) is d − 1, where d :=
∑
p∈S dim(Xp) is the

sum of the local ranks of G.

It was shown in [BW07] that φ(Γ) ≤ d− 1. Recently, G. Gandini gave an

alternative proof for this fact [Gan]. Hence, only the positive statement is new:

Γ is of type Fd−1.

If G is reductive and anisotropic, J-P. Serre showed that S-arithmetic sub-

groups are of type F∞. More precisely, G(OS) has a torsion free subgroup of

finite index that admits a finite Eilenberg–Mac Lane complex [Ser71, Cas (b),

pp. 126–127].

The Rank Theorem contrasts with the number field case where S-arith-

metic subgroups of reductive groups are of type F∞; see [Rag68, Cors. 1 and 4]

for arithmetic groups and [BS76, § 11] for S-arithmetic groups. We refer to

the introduction of [BW07] for some conjectures about a more quantitative

account, which should reveal indeed deep similarities in the geometric under-

pinnings of both cases. See [BEW] for first results in this direction.

Interest in finiteness properties of Γ started in 1959 when H. Nagao [Nag59]

showed that SL2(Fq[t]) is not finitely generated. In this case, there is a single

place and the corresponding euclidean building is a tree, thus d = 1.

In 1969, H. Behr [Beh69] proved that Γ is finitely generated if and only

if d > 1. He had to exclude a few cases. However, as he pointed out, those

restrictions can be removed by appealing to Harder’s version [Har69] of reduc-

tion theory. Using Harder’s reduction theory again, Behr [Beh98] showed in

1998 that Γ is finitely presented if and only if d > 2.

Concerning higher finiteness properties (i.e., beyond finite presentability),

U. Stuhler [Stu80] showed that SL2(OS) has finiteness length |S| − 1 = d− 1.

H. Abels [Abe91] and P. Abramenko [Abr87] showed that SLn(Fq[t]) have finite-

ness length n−2 = d−1 provided that q is large enough depending on n. Abra-

menko [Abr96] extended this result to classical groups by recasting it in the

context of groups acting on twin buildings. The need to exclude small q arises
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from the method of proof: it involves the analysis of certain subcomplexes

in spherical buildings that only have sufficient topological connectivity if the

underlying buildings are sufficiently thick. The articles [DGM09] and [KW]

also suffer from this shortcoming as they use a filtration modeled upon the

filtration by combinatorial codistance introduced by Abels and Abramenko.

Hence, similar relative links arise.

In 2005, Bernd Schulz analyzed in his Ph.D. thesis [Sch] a class of sub-

complexes of spherical buildings that have the right topological connectivity

without restrictions. Immediately following his discovery, several results were

obtained in the positive direction (i.e., establishing that Γ is of type Fd−1).

In [BW11], K. Wortman and the first author proved the Rank Theorem for

K-groups of K-rank one using reduction theory as a source for a filtration

that leads to relative links analyzed by Schulz. In a previous version of this

paper [BGW09], the authors eliminated the restriction on q in Abramenko’s

results. The third author [Wit11] extended the analysis to G
(
Fq
[
t, t−1

])
. The

basic idea was to replace combinatorial codistance by a metric codistance that

leads to better behaved relative links. This paper extends the reduction theory

approach from [BW11] and removes the restriction on the global rank.

The Rank Theorem allows one to deduce finiteness properties of arbi-

trary reductive groups as described in [Beh98, 2.6(c), p. 91]. First pass to

the connected component of the identity. For the S-arithmetic subgroup, this

means passing to a subgroup of finite index which does not change the finite-

ness length. Reducing to a semisimple group scheme by splitting off a central

torus also does not affect the finiteness length of Γ. Using a central isogeny

[Beh68, Satz 1], we can assume that the group scheme is simply connected still

without any change of the finiteness length. A simply connected semisimple

group is the direct product of its almost simple factors (which remain simply

connected). The finiteness length of a direct product is the minimum of the

finiteness lengths of its factors. Finally, by restriction of scalars, one may as-

sume that each factor of the direct product is absolutely almost simple (and

still simply connected); see, e.g., [Kne65, Hilfssatz 7.4 and 7.5]. Kneser treats

the number field case, but his arguments can be extended without difficulty.

Finally, the Rank Theorem applies to the absolutely almost simple factors.
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menko, Richard Weiss, Bernhard Mühlherr, Michael Joswig, Sven Herrmann,

Bernd Schulz, and Hendrik Van Maldeghem for helpful discussions. An-

drei Rapinchuk has helped us with Lemma 11.1. We also thank Bertrand Rémy
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1. Behr–Harder reduction theory

In this section, we collect the results of reduction theory. Let G be a

connected, reductive, noncommutative K-isotropic K-group. In particular, it

has proper K-parabolic subgroups. In Section 12, we shall state and prove

results in the slightly more general setting of reductive but not necessarily

isotropic G.

The euclidean building X :=
∏
p∈S Xp associated to G(OS) is a CAT(0)-

space [AB08, Th. 11.16]. Its visual boundary consists of parallelism classes of

geodesic rays ρ : R≥0 → X. To each such ray, one associates a Busemann

function

β : X −→R,
x 7→ lim

t→∞
(dist(ρ(0) , ρ(t))− dist(x, ρ(t))).

Two rays are parallel if and only if their corresponding Busemann functions

differ by an additive constant. In particular, a Busemann function determines

a unique point in the visual boundary, its center. See, e.g., [BH99, pp. 267ff,

in particular, 8.20].

Let ∆ := ∆K be the spherical building for the group G(K). Its chambers

correspond to the minimal K-parabolic subgroups, and its vertices correspond

to the maximal K-parabolic subgroups of G. Let C(∆) denote its set of cham-

bers and V(∆) its set of vertices.

The visual boundary ∂(X) is the spherical join of the boundaries ∂(Xp)

where the join is taken over all p ∈ S. In Proposition 12.2, we describe how

one can construct a Γ-invariant isometric embedding ∆ ↪→ ∂(X). Using this

embedding, we identify vertices of ∆ with points in the visual boundary ∂(X).

It turns out that Busemann functions centered at vertices of ∆ ⊂ ∂(X) are

not constant on any of the factors Xp of X.

Now, fix a family (βv : X → R)v∈V(∆) of Busemann functions so that each

βv is centered at v. For any simplex τ of ∆, put

βτ (x) := max
v∈τ

(βv(x)) .
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YΣ,τ (t)

Figure 1. The closest point projection prtΣ,τ.

v wτ = {v, w}

YΣ,τ (t)

σt(−, τ) = {v} σt(−, τ) = {w}

σt(−, τ) = τ

σt(−, τ) = ∅

Figure 2. The decomposition of an apartment. Shown is an

apartment whose visual boundary contains the simplex τ and

the decomposition of the apartment into regions according to

the values of σt(−, τ). Note, in particular, how moving up the

tip will affect the picture.
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For an apartment Σ of X and a simplex τ of ∆ contained in the visual boundary

∂(Σ), we consider the convex cones

YΣ,τ (t) := {x ∈ Σ βτ (x) ≤ t}

as dependent on a real parameter t. Let

prtΣ,τ : Σ −→ YΣ,τ (t)

denote the closest point projection.

Observation 1.1. Any two apartments Σ and Σ′ containing x ∈ X and

with τ in their visual boundary can be identified via an isometry that commutes

with the Busemann functions βv for all v ∈ τ . More precisely, there is an

isomorphism of Coxeter complexes

ι : Σ −→ Σ′

such that the following diagram commutes :

Σ
ι //

βv   

Σ′

βv~~
R.

In particular, ι identifies YΣ,τ (t) and YΣ′,τ (t). Moreover,

prtΣ′,τ ◦ι = ι ◦ prtΣ,τ

and the values btτ,v(x) := βv
Ä
prtΣ,τ (x)

ä
are independent of the apartment Σ.

We put

σt(x, τ) :=
¶
v ∈ τ btτ,v(x) = t

©
.

Thinking within a given apartment Σ containing x and τ , the set σt(x, τ)

collects precisely those vertices v ∈ τ whose associated inequalities βv(−) ≤ t

are sharp at the point prtΣ,τ (x). Hence, we may delete the other inequalities.

Observation 1.2. For any subsimplex σ ⊆ τ containing σt(x, τ), the

closest point to x in YΣ,τ (t) is also the closest point to x in YΣ,σ(t), i.e.,

prtΣ,τ (x) = prtΣ,σ(x). In particular, it follows that σt(x, τ) = σt(x, σ).

We say that a chamber c ∈ C(∆) t-reduces x ∈ X if σt(x, c) = c.

Observation 1.3. For t ≤ t′,

σt′(x, τ) ⊆ σt(x, τ) ⊆ τ.

Corollary 1.4. Assume t′ := βτ (x) ≥ t. Then each vertex v with

βv(x) = t′ belongs to σt(x, τ). In particular, σt(x, τ) 6= ∅ and βτ (x) =

βσt(x,τ)(x).
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v

βv(−) = t

w

βw(−) = t

x

σt(−, c) = c

x, c

c

Figure 3. Reducing convex hulls. The lightly shaded area is the

region of points in the depicted apartment reduced by c. The

darker region is the cone x, c.

Proof. We have {v ∈ τ βv(x) = t′} = σt′(x, τ) ⊆ σt(x, τ). �

Observation 1.5. Assume that c t-reduces x. As illustrated in Figure 3,

the chamber c t-reduces every point in the sector x, c.

A reduction datum consists of a family (βv : X → R)v∈V(∆) of Busemann

functions on the euclidean building X and two constants r < R so that the

following holds:

For any chamber c that r-reduces x, the simplex σR(x, c) is

contained in any chamber c′ that r-reduces x.

Observation 1.6. If ((β∗) , r, R0) is a reduction datum and R1 > R0,

then so is ((β∗) , r, R1).

We now fix a reduction datum and say c reduces the point x if it r-reduces

the point.

Observation 1.7. If the chambers c and c′ both reduce the point x ∈ X ,

then

σt(x, c) = σt
(
x, c′

)
for any t ≥ R. Also, if βc(x) ≥ R, then βc(x) = βc′(x) and σt(x, c) 6= ∅.
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v

w

βv(−) = r

βw(−) = r

βv(−) = R

βw(−) = R

σR(−, c) = c

σR(−, c) = {v}

σR(−, c) = {w}

Figure 4. The upper reduction bound. Shown is the partition of

the reduced region as induced by the upper reduction bound R.

The chamber is c = {v, w}.

Proof. First, σt(x, c) ⊆ τ := c ∩ c′. Therefore Observation 1.2 yields

σt(x, c) = σt(x, τ) = σt(x, c
′). Furthermore, if βc(x) ≥ R, Corollary 1.4 implies

βc(x) = βσt(x,c)(x) = βσt(x,c′)(x) = βc′(x). �

Corollary 1.8. For any two chambers c, c′ ∈ C(∆) both reducing the

point x ∈ X and any bound t ≥ R, we have

βc(x) ≤ t if and only if βc′(x) ≤ t.

A reduction datum is Γ-invariant if for each γ ∈ Γ, each vertex v ∈ V(∆),

and each point x ∈ X, we have βγv(γx) = βv(x). A Γ-invariant reduction

datum is called Γ-cocompact if for each t ≥ R, the set

Yt := {x ∈ X βc(x) ≤ t for all c ∈ C(∆) reducing x}

has compact quotient modulo the action of Γ.

We say that a subset B ⊆ X can be uniformly reduced if there is a chamber

c ∈ C(∆) reducing simultaneously all points in B. Let d be a nonnegative real

number. We say that a reduction datum is d-uniform if every subset B ⊂ X

of diameter at most d can be uniformly reduced. For a 0-uniform reduction

datum, Corollary 1.8 yields a different description of the filtration

Yt = {x ∈ X βc(x) ≤ t for some c ∈ C(∆) reducing x} .

With these notions, we can rephrase the main theorems of Behr–Harder

reduction theory as follows.
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Theorem 1.9. For every diameter d, there is a d-uniform, Γ-invariant

reduction datum. It is Γ-cocompact provided G is absolutely almost simple.

We give a proof in Section 12. This rendering of the statement is loosely

inspired by [Beh98], where a slightly different version of the sets Yt was used

as a filtration of X: just let t tend to ∞. Ultimately, we will choose d large,

although for our immediate needs, we shall only require that closed chambers

in X can be uniformly reduced.

2. A blueprint for the main argument

In [Rag68], Raghunathan considers an arithmetic subgroup Γ in a con-

nected semisimple Q-group. He constructs a smooth Γ-invariant Morse func-

tion h : X → R on the symmetric space X, on which the arithmetic group Γ

acts with cocompact sublevel sets. He shows that above a certain level, no crit-

ical points occur. Hence, the symmetric space is homotopy equivalent to some

sublevel set. Therefore, this sublevel set is contractible and has compact quo-

tient modulo the action of Γ. It follows that the group Γ is of type F∞. As Γ is

virtually torsion free and the sublevel set is a manifold with boundary, it even

follows that Γ has a finite index subgroup that has a finite Eilenberg–Mac Lane

complex.

In our setting, the S-arithmetic group Γ acts on the euclidean building X,

which replaces the symmetric space. The euclidean building is not a differen-

tiable manifold, hence we cannot talk about a smooth Morse function on X.

Nonetheless, the proof of finiteness properties for the S-arithmetic group Γ

centers around a Γ-invariant function h : X → R on the euclidean building

X with Γ-cocompact sublevel sets and highly connected descending links. We

loosely think of h as a Morse function. Its key feature is that, at any point

above a certain level, directions can be ascending or descending and that there

is a gradient, which is the unique direction of steepest ascent.

In this section, we shall construct an approximation ĥ : X → R that

almost suffices: ĥ is Γ-invariant, Γ-cocompact, and generically has highly con-

nected descending links. In the following sections, we will perturb ĥ so as to

make descending links highly connected everywhere.

We define σt(x) :=
⋂
c reduces x σt(x, c). We call the (possibly empty) sim-

plex

σ(x) := σR(x)

close to x. It is nonempty if βc(x) ≥ R for some (and hence, by Corollary 1.8,

any) chamber c that reduces x. In this case, it equals σR(x, c) for any reducing

chamber.

For a point x ∈ X, an apartment Σ containing x, and a chamber c ∈ C(∆)

in the visual boundary ∂(Σ) and reducing x, we define xΣ,c := prRΣ,c(x) to be
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the point in YΣ,c(R) closest to x. We let ĥΣ,c(x) be the euclidean distance from

xΣ,c to x.

Proposition 2.1. With x, Σ, and c as above, x ∈ YR if and only if

x ∈ YΣ,c(R). The point xΣ,c is also the closest point of YΣ,σ(x)(R) to x.

If x 6∈ YΣ,c(R), the straight ray −−−−→xΣ,c, x from xΣ,c through x within the

apartment Σ meets ∂(Σ) in σ(x).

In the latter case, we denote the visual endpoint of −−−−→xΣ,c, x by êΣ,c(x) ∈ σ(x).

Proof. One could be tempted to argue YΣ,c(R) = YR ∩ Σ, but that is

generally not true. However, a point x reduced by c belongs to either side or

neither side. By Corollary 1.8,

x ∈ YΣ,c(R)

⇐⇒ βc(x) ≤ R
⇐⇒ βc′(x) ≤ R for all c′ reducing x

⇐⇒ x ∈ YR.

By Observation 1.2, xΣ,c = prRΣ,σR(x,c)(x); i.e., xΣ,c is the point of

YΣ,σ(x)(R) closest to x. If x 6∈ YΣ,c(R), then x 6= xΣ,c and, in the apart-

ment Σ, we can draw the ray −−−−→xΣ,c, x. This ray lies in the normal cone to xΣ,c

of the convex body YΣ,σ(x)(R). This normal cone is spanned by the gradients

of the Busemann functions βv for v ∈ σ(x). Hence −−−−→xΣ,c, x meets ∂(Σ) in σ(x).

�

Now, we can see that ĥΣ,c(x) and êΣ,c(x) are independent of the choices

of Σ and c.

Corollary 2.2. If Σ′ and c′ is another pair with c′ ⊂ ∂(Σ′), x ∈ Σ′, and

c′ reducing x, then ĥΣ,c(x) = ĥΣ′,c′(x) and êΣ,c(x) = êΣ′,c′(x).

Proof. First, we have the following chain of equivalences:

ĥΣ,c(x) = 0

⇐⇒ x ∈ YΣ,c(R)

⇐⇒ x ∈ YR
⇐⇒ x ∈ YΣ′,c′(R)

⇐⇒ ĥΣ′,c′(x) = 0.

Hence, whether or not ĥΣ,c(x) = 0 does depend on neither Σ nor c.

Both chambers, c and c′, reduce x. Hence, σ(x) ⊆ c ∩ c′ and the convex

hull x, σ(x) of x and σ(x) lies in Σ∩Σ′. Hence, there is an isometry ι : Σ→ Σ′

fixing x, σ(x) pointwise. Hence for each v ∈ σ(x) ⊆ c∩c′, the following diagram
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commutes:

Σ
ι //

βv   

Σ′

βv~~
R.

Hence, ι identifies YΣ,σ(x) with YΣ′,σ(x) and xΣ,c with xΣ′,c′ . It follows that

êΣ,c(x) = êΣ′,c′(x) and ĥΣ,c(x) = ĥΣ′,c′(x). �

Thus, we define ĥ(x) := ĥΣ,c(x) and ê(x) := êΣ,c(x), where c is a chamber

reducing x and Σ is an apartment containing x and whose boundary contains c.

The properties of ĥ that we are about to establish roughly say that ĥ

qualifies as a Morse function for the analysis of Γ.

Observation 2.3. The function ĥ is defined entirely in terms of a Γ-

invariant reduction datum ; hence, it is itself Γ-invariant. That is, ĥ(γx) =

ĥ(x) for any γ ∈ Γ and any point x ∈ X .

Proposition 2.4. Each sublevel set ĥ−1([0, s]) has compact quotient mod-

ulo the action of Γ.

Proof. We use the Γ-cocompactness of the reduction datum. More pre-

cisely, we show that for any s ≥ 0, the sublevel set ĥ−1([0, s]) is contained in

the Γ-cocompact set Ys+R. It is easier to prove the contrapositive. So assume

that we have a point x 6∈ Ys+R. We have to argue that ĥ(x) > s.

As x 6∈ Ys+R, there is a chamber c reducing x with βc(x) > s + R; i.e.,

there is a vertex v ∈ c with βv(x) > s + R. To estimate ĥ(x) we additionally

choose an apartment Σ containing x that has c in its visual boundary. Then

ĥ(x) = ĥΣ,c(x)

= dist(xΣ,c, x)

≥ βv(x)− βv(xΣ,c)

> (s+R)−R = s.

This completes the proof. The first inequality follows in general from the

definition of Busemann functions and the triangle inequality. However, as Σ

is a euclidean space, we have a more precise statement: βv(x) − βv(xΣ,c) =

cos(ϑ) dist(xΣ,c, x), where ϑ is the angle between the segment [xΣ,c, x] and the

gradient of βv. �

Proposition 2.5. The function ĥ : X → R is continuous.

Proof. Here, we use the hypothesis that the chosen reduction datum is

sufficiently uniform. More precisely, we shall use that every chamber in X

can be uniformly reduced. So let C be a chamber in X, let c ∈ C(∆) be a
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chamber uniformly reducing C, and let Σ be an apartment containing C whose

visual boundary contains c. Then, the functions ĥ and ĥΣ,c agree on C. In

particular, ĥ restricts to a continuous function on C. As the euclidean building

X carries the weak topology with respect to its chambers, the function ĥ is

continuous. �

Morse functions are supposed to be differentiable and not merely contin-

uous. The following statements make precise the sense in which ĥ induces a

gradient field and what should be considered flow lines of this gradient field.

First we treat the gradient; i.e., we describe the behavior of ĥ on small scales.

Proposition 2.6. Let x and y be two points in X that lie within a com-

mon closed chamber. Then

ĥ(y)− ĥ(x) ≤ dist(y, x)

with equality if and only if y lies on the ray [x, ê(x)). In case of equality,

moreover, ê(x) = ê(y).

Thus, we define the gradient of ĥ at the point x to be the direction ∇xĥ ∈
lk(x) defined by the ray [x, ê(x)). It is the unique direction of fastest ascent,

and ĥ grows in that direction with unit speed.

Proof. Choose c and Σ so that ĥ and ĥΣ,c agree on the segment [x, y].

Then

ĥ(y)− ĥ(x) = ĥΣ,c(y)− ĥΣ,c(x)

= dist(yΣ,c, y)− dist(xΣ,c, x)

≤ dist(xΣ,c, y)− dist(xΣ,c, x)

≤ dist(y, x).

We have equality in the last step if and only if x lies on the straight line

segment [xΣ,c, y]. In this case, however, the segment [xΣ,c, y] is normal to

YΣ,c(R). Therefore, yΣ,c = xΣ,c, whence we have equality throughout and

ê(x) = ê(y). �

Observation 2.7. Every line segment in X cuts through finitely many

chambers. Hence, one can easily “integrate” the local information provided by

the previous proposition : for any two points y and x, the geodesic segment

[x, y] can be subdivided into finitely many segments each of which is supported

by a closed chamber. That is, there are points

x = x0, x1, . . . , xn = y ∈ [x, y]
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such that [x, y] is the concatenation of the segments [xi, xi+1]. Applying the

previous proposition to each of those segments, we obtain

ĥ(y) ≤ ĥ(x) + dist(y, x)

with equality if and only if y ∈ [x, ê(x)). In the case of equality, ê(y) = ê(x).

Thus, we can regard the unit speed geodesic ray from x to ê(x) as a flow

line of the gradient field.

Now we are ready to give a first, albeit failing, attempt to prove the

Rank Theorem. The actual proof given below follows the same lines, and this

argument will help identify exactly the shortcomings of ĥ that we have to

address in the following sections.

The S-arithmetic group Γ acts on the euclidean building X, which is a

CAT(0)-space and therefore contractible. Cell stabilizers of this action are finite

as X is a proper CAT(0)-space and Γ is discrete in its isometry group. For each

positive real s, let X(s) be the largest subcomplex of X fully contained in the

sublevel set ĥ−1([0, s]). By Proposition 2.4, the orbit space of X(s) modulo

the action of Γ is compact. Should X(s) be (d− 2)-connected for some s, then

[Bro87, Props. 1.1 and 3.1] would imply that Γ is of type Fd−1.

The aim of combinatorial Morse theory is to describe how the homotopy

type of sublevel complexes X(s) change as s varies. This description should

be in terms of purely local information about the function ĥ. Crucial are

descending links, i.e., the set of directions at a given point x along which

the function ĥ decreases. More precisely, a cell τ containing the vertex x is

considered descending if ĥ assumes its maximum on τ at and only at x. The

descending cells at x form the descending link at x. If all vertices of x with

s ≤ ĥ(x) ≤ s′ have m-connected descending links, the inclusion X(s) ⊆ X(s′)

of sublevel complexes induces isomorphisms in homotopy groups πi for all

i ≤ m. As the euclidean building X is contractible, these isomorphisms in

the πi imply that already some X(s) is m-connected. Thus, using Brown’s

criterion from above, we are reduced to the question of whether descending

links are (d− 2)-connected.

In smooth Morse theory, the descending link is an infinitesimal notion and

a direction is descending if it spans an obtuse angle with the gradient. In the

combinatorial setting, whether an edge determines an ascending or descending

direction in the link of an adjacent vertex depends on the values of the Morse

function at the end points. Hence, the descending link is a local rather than an

infinitesimal notion. Often, however, the infinitesimal behavior of the Morse

function is good enough an approximation: at a generic vertex x, an adjacent

edge is descending if and only if it spans an obtuse angle with the gradient∇xĥ.

We call this the gradient criterion. At those vertices where predictions based
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Figure 5. Bad edges. The shaded area in the bottom is YΣ,c(R).

The “corridor” above the tip yields an infinite family of “bad

edges.”

solely on the gradient are correct, descending links are therefore hemisphere

complexes, whose connectivity properties are given in [Sch].

This strategy almost succeeds. Unfortunately, the gradient criterion is

sometimes wrong. Figure 5 shows an apartment Σ with the convex set YΣ,c(R)

drawn in. Suppose that c reduces the marked edge. Then, the edge spans an

obtuse angle with the gradient at either end point. Hence, the gradient criteria

for both vertices are in direct conflict with one another. The reason is that

the gradient criterion only makes correct predictions on an infinitesimal scale.

The Morse function ĥ actually decreases along the edge from either end toward

the center. Beyond the center point, however, ĥ increases again, spoiling the

prediction based on the gradient. Figure 5 also shows that this problem occurs

“arbitrarily far out”; i.e., we cannot avoid it by considering X(s) for some high

value of s. Since the reduction datum is geometric, the chamber c also reduces

all the edges in the “corridor” above the marked edge whence ĥ along these

edges can be read off in the picture.

Our main task will be to alter the Morse function ĥ to make gradients

consistent; i.e., we do not want to see edges that span obtuse angles with

gradient vectors at either end. The obstruction is, of course, that we want to

keep high connectivity of descending links at vertices where they are already

fine.

We note that the predictive powers of the gradient hinge upon the un-

derlying apartments being euclidean spaces. A Coxeter complex in hyperbolic

space does not scale; its edges have lengths determined by the Coxeter dia-

gram. If vertices are too far apart, the infinitesimal nature of the gradient

renders it useless even for predicting the value of a Busemann function on
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Figure 6. A star in a hyperbolic Coxeter complex.

neighbors. This phenomenon is shown in Figure 6. In particular, one cannot

expect descending links to be hemisphere complexes. This matches examples

of Abramenko in the compact hyperbolic case where the finiteness length of

a lattice falls short of the dimension of the building on which the groups acts

naturally.

The remainder of this paper is organized as follows. After some pre-

liminaries on zonotopes in Section 3 and spherical buildings in Section 4,

we define, in Section 5, a primary Morse function h (the height), which is a

perturbation of ĥ discussed above. It is Γ-invariant, Γ-cocompact, continuous,

and induces a gradient field with geodesic flow lines. It improves upon ĥ in

that the gradient criterion never leads to inconsistencies. However, we cannot

avoid h-flat cells, e.g., edges on which h is constant. To break ties, i.e., to

determine which vertex of such an edge to add first in filtering the euclidean

building, we introduce a secondary and even a tertiary Morse function in

Section 7. Here we rely on the notion of depth introduced in [BW11] and

further developed in [Wit11]. The analysis of descending links for h is carried

out in Section 9 whereas Section 10 derives the Rank Theorem. The final

three sections are devoted to reduction theory.

3. A small convex geometry toolkit

We address the problem illustrated in Figure 5 by changing the shape of

YΣ,c(R). We will flatten the tip as shown in Figure 7. Then the gradient field

becomes consistent along edges.
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Figure 7. Flattening the tip. Flattening the tip removes corri-

dors of bad edges.

Let E denote a euclidean space with inner product 〈−,−〉 and origin 0.

Let F be the face of some convex polytope P . The normal cone

N(F ) :=

ß
n ∈ E 〈n, z〉 = max

z′∈P
〈n, z′〉 for all z ∈ F

™
is the set of all n ∈ E such that the function 〈n,−〉 restricted to P assumes its

maximum on the points in F . It is a closed convex cone. For any point x ∈ E,

the closest point projection onto P satisfies

prP (x) ∈ F if and only if x− prP (x) ∈ N(F ) .

For a finite subset D ⊂ E, the compact convex polytope

Z(D) :=

∑
d∈D

add 0 ≤ ad ≤ 1 for all d ∈ D


is called the zonotope spanned by D. This construction ensures

Observation 3.1. Through every point z ∈ Z(D) and every d ∈ D, there

is a line segment parallel to [0,d] inside Z(D).

Let P ⊂ E be a compact convex polytope. We call D ⊂ E saturated with

respect to P if, for any two vertices v,v′ ∈ P , at least one of v − v′ or v′ − v

lies in D.

Proposition 3.2. Let D ⊂ E be saturated with respect to the compact

convex polytope P ⊂ E. Then any translate of Z(D) that intersects P contains

a vertex of P . Equivalently, whenever one translates P to intersect Z(D), one

has to move a vertex of P into Z(D).
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Proof. Since differences of vertices are invariant under translation, we may

also assume that P intersects Z(D). Let z be a point in the intersection. We

have to show that Z(D) contains a vertex of P .

Let v and v′ be two vertices of P on opposite parallel supporting hyper-

planes. Choose the labels so that v − v′ ∈ D. Any translate of the segment

[v,v′] through the point z meets the boundary of P , and Observation 3.1 im-

plies that there is such a translate that stays inside Z(D). Hence, P has a

proper face F that intersects Z(D). By induction on the dimension, we may

therefore conclude that Z(D) contains a vertex of F . �

Corollary 3.3. If D and P are as in the proposition, i.e., D is saturated

with respect to P , then P+Z(D) = P (0)+Z(D), where P (0) is the set of vertices

of P .

Proof. Let x ∈ P + Z(D), i.e., there is a point z ∈ P with x ∈ z + Z(D).

Then z ∈ x + Z(−D). By Proposition 3.2, there is a vertex v ∈ P (0) with

v ∈ x+ Z(−D), which implies x ∈ v + Z(D). �

Let f : E→ R be a continuous function, and let C be a nonempty compact

convex subset of E. Define

fC : E−→R,
x 7→ min {f(y) y ∈ x+ C} .

Observation 3.4. If f is convex, then so is fC .

Proposition 3.5. Let f : E→ R be continuous, let P ⊂ E be a compact

convex polytope, and let D ⊂ E be a finite subset containing all differences

x− x′ for any two vertices x and x′ of P . Then the following hold :

(1) The min-set of fZ(D) on P contains a vertex of P .

(2) If f is a convex function, then the max-set of fZ(D) on P is a face of

P .

In fact, it suffices to assume that D is saturated with respect to P .

Proof. Part (1) follows immediately from Corollary 3.3. As for part (2),

put

V :=
¶
v ∈ max-set

Ä
fZ(D)|P

ä
v is vertex of P

©
.

Since fZ(D) is a convex function, V is not empty. Let F be the smallest face

of P containing V, and let V be the convex hull of V. By part (a), the

function fZ(D)|V assumes its minimum in a vertex, i.e., a point in V. Hence f

is constant on V, as V consists of points in P where fZ(D) is maximal. As F

is the smallest face of P containing V and fZ(D) is a convex function, fZ(D) is

constant on F . �
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Example 3.6. Let Y ⊂ E be a nonempty closed convex set. Consider the

distance from Y as a function

f : E−→R,
x 7→ dist(x, Y ).

Then, for any nonempty compact convex set C ⊂ E and for any x ∈ E, we

have

fC(x) = min
y∈C

(f(x + y))

= min
y∈C

(dist(x + y, Y ))

= min
y∈C,z∈Y

(dist(x + y, z))

= min
y∈C,z∈Y

(dist(x, z− y))

= dist(x, Y − C).

Hence, the functions fC and dist(−, Y − C) coincide.

4. Some subcomplexes of spherical buildings

To deduce finiteness properties, we use the well-established technique of

filtering a complex upon which the group acts. The main task, as usual, is

to control the homotopy type of relative links that arise in the filtration. In

this section, we collect the results concerning connectivity properties of those

subcomplexes of spherical buildings that we will encounter.

Let M be euclidean or hyperbolic space or a round sphere. We call an

intersection of a nonempty family of closed half-spaces (or hemispheres in the

latter case) demiconvex. We call a subset of M fat if it has nonempty interior.

Note that a proper open convex subset of M is contained in an open halfspace.

Observation 4.1. Let A ⊂M be fat and demiconvex, and let B ⊂M be

proper, open, and convex. If A and B intersect, then A\B strongly deformation

retracts onto the boundary part ∂(A) \B.

Proof. Since A is fat and demiconvex, the interior of A is dense in A.

Hence the open set B intersects the interior of A. Choose x in the intersection.

Note that A is starlike with regard to x and the geodesic projection away from

x restricts to the deformation retraction we need. �

We call a CW-complex geometric if its cells carry a spherical, euclidean,

or hyperbolic structure in which they are demiconvex; i.e., each cell is an

intersection of half-spaces in the model geometry. Also, we require attaching

maps to be isometric embeddings. Iterated application of the projection trick

yields
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Proposition 4.2. Suppose that L is a geometric CW-complex. Let B be

an open subset of L that intersects each cell in a convex set. Then there is a

strong deformation retraction

ρL : L \B −→ LB

of L \B onto its maximal subcomplex.

Proof. First, we assume that L has finite dimension. Let τ be a maximal

cell of L. If τ ⊆ B, the cell τ does not intersect L \ B and we do not need to

do anything. If τ avoids B, the map ρ must be the identity on τ . Otherwise,

let x be a point in the intersection τ ∩ B chosen in the relative interior of τ .

Projecting away from x, as in Observation 4.1, deformation retracts τ \ B
onto ∂(τ) \ B. The maps constructed for two maximal cells agree on their

intersection. Hence, we can paste all these maps together to get a deformation

retraction of L \B onto L′ \B, where L′ is L with the interiors of all maximal

cells intersecting B removed.

Now, L′ has other maximal cells, which might intersect B. Using the

same construction for L′, we obtain another deformation retraction L′ \ B →
L′′\B. We keep going, removing more and more cells intersecting B. Since the

dimension of L is finite, the process terminates after finitely many steps. The

composition of the maps thus obtained is the strong deformation retraction

from L \B onto LB. This proves the claim for finite dimensional L.

Note that the construction is local; what it does on a cell is only deter-

mined by the intersection of this cell with the set B. Hence, the deformation

retraction is compatible with subcomplexes. More precisely, if K is a sub-

complex of L, then the deformation retractions ρL and ρK from above are

constructed such that ρK is the restriction of ρL to K. It follows that the pair

(L \B,K \B) is homotopy equivalent to (LB,KB). Applying this observation

to pairs of skeleta, the claim follows by standard arguments in the case that L

has infinite dimension. �

Let ∆ be a spherical building. We regard ∆ as a metric space with the

angular metric. So each apartment is a round sphere of radius 1. When ∆

is a finite building, the topology induced by the metric agrees with the weak

topology it carries as a simplicial complex. For locally infinite buildings, both

topologies differ, and we will use the weak topology throughout for the building

and all its subcomplexes.

Proposition 4.3. Let ∆ be a spherical building, and fix a chamber C in

∆. Let B ⊂ ∆ be a subset such that for any apartment Σ containing C , the

intersection B ∩ Σ is a proper, open, and convex subset of the sphere Σ. Then



330 KAI-UWE BUX, RALF KÖHL, and STEFAN WITZEL

the space Y := ∆ \B and its maximal subcomplex ∆B are both (dim(∆)− 1)-

connected. The complex ∆B has dimension dim(∆) and hence is spherical of

this dimension.

Remark 4.4. Using B = ∅ in Proposition 4.3, we obtain the Solomon–

Tits Theorem as a special case. Theorem A of [Sch], whose proof inspired

the argument given below, is the special case where B is open, convex, and of

diameter strictly less than π.

Proof of Proposition 4.3. We observe first that Proposition 4.2 implies

that the subset Y and its maximal subcomplex ∆B are homotopy equivalent.

Therefore, it suffices to prove that Y is (dim(∆)− 1)-connected.

We have to contract spheres of dimensions up to dim(∆)− 1. Let S ⊆ Y
be such a sphere. Since S is compact in ∆, it is covered by a finite family of

apartments and we can apply [vH03, Lemma 3.5] as follows. There is a finite

sequence Σ1,Σ2, . . . ,Σn such that (a) each Σi contains C, (b) the sphere S is

contained in the union
⋃
i Σi, and most importantly, (c) for each i ≥ 2, the

intersection Σi ∩ (Σ1 ∪ · · · ∪Σi−1) is a union of closed half-apartments, each of

which contains C. Put Li := Σ1∪· · ·∪Σi, and observe that Li is obtained from

Li−1 by gluing in the closure Ai := Σi \ (Σ1 ∪ · · · ∪ Σi−1) along the boundary

∂(Ai) of Ai in Σi. Note that Ai is fat and demiconvex.

Now, we can build Ln \ B inductively. We begin with L1 \ B, which is

contractible. The space Li\B is obtained from Li−1\B by gluing in Ai\B along

∂(Ai) \ B. If Ai and B are disjoint, this is a cellular extension of dimension

dim(∆) as Ai is fat. Otherwise, Observation 4.1 implies that Ai\B deformation

retracts onto ∂(Ai) \B, whence Li \B and Li−1 \B are homotopy equivalent

in this case. In the end, the sphere S can be contracted inside Ln \B. �

Corollary 4.5. Let ∆ be a finite spherical building, and fix a chamber

C in ∆. Let A ⊂ ∆ be a subset such that for any apartment Σ containing C ,

the intersection A∩Σ is a closed convex subset of diameter strictly less than π

in the sphere Σ. Then the space Y := ∆ \ A and its maximal subcomplex ∆A

are both (dim(∆)− 1)-connected. The complex ∆A has dimension dim(∆) and

hence is spherical of this dimension.

Proof. The building ∆ is finite; hence A is compact. Let B be an ε-neigh-

borhood of A. Choosing ε sufficiently small, we can ensure that B satisfies the

hypotheses of Proposition 4.3, that ∆ \B and ∆ \A are homotopy equivalent,

and that ∆B = ∆A. �

An interesting special case of Proposition 4.3, also already noted in [Sch],

is obtained when B is chosen as the open π
2 -ball around a fixed point n ∈ ∆,

which we think of as the north pole. Then the complex ∆≥
π
2 (n) := ∆B is
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a closed hemisphere complex and dim(∆)-spherical by Proposition 4.3. This

result was independently proven by J. Dymara and D. Osajda [DO07, Th. A.2

and Cor. A.10].

Proposition 4.3 fails badly if B is chosen as the closed ball of radius π
2

around n. In fact, the open hemisphere complex ∆>π
2 (n) spanned by all vertices

avoiding the closed ball B generally is not dim(∆)-spherical; the dimension of

∆>π
2 (n) might be too small. The main result of Schulz is that this is the only

obstruction.

Proposition 4.6 (see [Sch, Ths. A and B]). The open hemisphere com-

plex ∆>π
2 (n) is spherical of dimension dim(∆ver). If ∆ is thick, then neither

open nor closed hemisphere complexes in ∆ are contractible.

The subcomplex ∆ver(n) is defined as follows. The equator ∆=π
2 (n) is

the subcomplex spanned by those points in ∆ of distance π
2 from n. Recall

that ∆ decomposes as a join of unique irreducible factors. The horizontal part

∆hor(n) is the join of all factors fully contained in the equator. The complex

∆ver(n) is the join of the other irreducible factors. In particular,

(1) ∆ = ∆hor(n) ∗∆ver(n) .

5. Height

We now begin the proof of the Rank Theorem proper. Let Σ̂ be a euclidean

Coxeter complex upon which the apartments of X are modeled, and let E
be the underlying euclidean space where the origin 0 shall correspond to a

special vertex in Σ̂. Let W be the spherical Weyl group generated by the walls

of Σ̂ through 0. For constructing zonotopes, we shall choose an admissible

subset D ⊂ E; i.e., we require that D be finite, W -invariant, and symmetric

with respect to the origin 0. In the course of the argument, we will need to

strengthen the requirements on D, but we begin with any admissible D. Since

D is invariant with respect to the maximal Weyl group, the subset x + Z(D)

is well defined in any apartment Σ of X containing x.

Observation 5.1. Given a reduction datum ((β∗) , r, R) for an absolutely

almost simple group, there exists a bound R∗ ≥ R such that the following

implication holds :

βc(x) ≥ R∗ and y ∈ x+ Z(D) =⇒ σR∗(y, c) ⊆ σR(x, c) .

Here, c ∈ C(∆) is any chamber and x, y ∈ X are any two points that lie in a

common apartment whose visual boundary contains c.

See Figure 8 for a picture that explains how to choose R∗ for a single

vertex. Since there are only finitely many types of vertices in the building ∆,

one can choose R∗ large enough for every type.
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v

w

βv(−) = r

βw(−) = r

βv(−) = R

βw(−) = R

βv(−) = R∗

βw(−) = R∗

βc(−) ≥ R
v ∈ σR(−, c)

βc(−) ≥ R∗
v ∈ σR∗(−, c)

Figure 8. Moving out the tip. Given a fixed distance bound

L, we can choose R∗ large enough so that βc(x) ≥ R∗ and

v ∈ σR∗(x, c) implies v ∈ σR(y, c) for any two points x and y of

distance at most L: every reduced point L-close to the darker

area still lies within the lightly shaded region.

We modify the construction given in Section 2. Let ((β∗) , r, R) be a

reduction datum that reduces chambers in X uniformly. Fix R∗ as in Obser-

vation 5.1. For a point x ∈ X, an apartment Σ containing x, and a chamber

c ∈ C(∆) in the visual boundary ∂(Σ) and reducing x, we define

hΣ,c(x) := dist(x+ Z(D) , YΣ,c(R
∗)) = dist(x, YΣ,c(R

∗)− Z(D)).

Let x∗Σ,c be the point in YΣ,c(R
∗)− Z(D) closest to x, and for x 6∈ YΣ,c(R

∗)−
Z(D), let eΣ,c(x) be the visual limit of the ray from x∗Σ,c through x.

Proposition 5.2. Let x ∈ X be a point. Let Σ and Σ′ be two apartments

containing x, and let c and c′ be two chambers of ∆ reducing x. Assume that

c ⊂ ∂(Σ) and c′ ⊂ ∂(Σ′). Then hΣ,c(x) = hΣ′,c′(x). Moreover, eΣ,c(x) =

eΣ′,c′(x) ∈ σ(x) provided hΣ,c(x) > 0.

Proof. Assume first βc(x) ≤ R∗. Since R∗ ≥ R, Corollary 1.8 implies

βc′(x) ≤ R∗. Hence,

hΣ,c(x) = 0 = hΣ′,c′(x) .

It remains to argue the case βc(x) > R∗ ≥ R. First, we work inside Σ.

Choose y ∈ x+Z(D) so that it minimizes the distance to YΣ,c(R
∗), and let yΣ,c

the point in YΣ,c(R
∗) closest to y. By choice of R∗, Observation 5.1 applies

whence σR∗(y, c) ⊆ σR(x, c) = σ(x). It follows from Observation 1.2 that yΣ,c

is also the point in YΣ,σ(x)(R
∗) closest to y.
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Now the isometry argument applies. Since βc(x) ≥ R∗ ≥ R, we have

σ(x) ⊆ c ∩ c′. Hence there is a Coxeter isomorphism ι : Σ → Σ′ fixing x and

σ(x). Since YΣ,σ(x)(R
∗) is only defined in terms of Busemann functions indexed

by vertices in σ(x), the isometry ι identifies YΣ,σ(x)(R
∗) with YΣ′,σ(x)(R

∗). As

ι is a Coxeter isomorphism, it identifies the two sets x+ Z(D) as drawn in Σ

and Σ′. It follows that

hΣ,c(x) = distΣ(x+ Z(D) , YΣ,σ(x)(R
∗))

= distΣ′(x+ Z(D) , YΣ′,σ(x)(R
∗))

= hΣ′,c′(x) .

If hΣ,c(x) > 0, then yΣ,c 6= y and the ray from yΣ,c through y is parallel

to the ray from x∗Σ,c through x. Hence, it defines the same visual end, which

lies in σR∗(y, c) ⊆ σR(x, c) = σ(x). The isometry ι identifies the ray from yΣ,c

through y with its counter part in Σ′. Hence, eΣ,c(x) = eΣ′,c′(x). �

Observation 5.3. Note that the ray from yΣ,c through y gives the direc-

tion of fastest ascent for the function hΣ,c in the point x. Also, moving x in

that direction increases hΣ,c(x) with unit speed and the gradient of hΣ,c does

not change along this ray.

Hence, we can define h(x) := hΣ,c(x) and e(x) := eΣ,c(x). Here Σ is any

apartment of X containing x and c is any chamber in ∆ lying in ∂(Σ) and

reducing x.

Observation 5.4. Since the reduction datum used in the construction is

Γ-invariant, so is the function h.

Observation 5.5. There is a constant C , depending on D and R∗, such

that ĥ(x) ≤ h(x) + C for each x ∈ X . Hence, Proposition 2.4 implies that

each sublevel set h−1([0, t]) ⊆ ĥ−1([0, t+ C]) has compact quotient modulo the

action of Γ.

As for continuity and the gradient field, nothing essential changes.

Observation 5.6. The same reasoning as in the proof of Proposition 2.5

shows that the function h is continuous.

Proposition 5.7. Let x and y be two points in X that lie in a common

closed chamber of X . Then

h(y)− h(x) ≤ dist(y, x)

with equality if and only if y lies on the ray [x, e(x)). In case of equality,

moreover, e(y) = e(x).
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Proof. By uniformity of the reduction datum, choose c and Σ so that h

and hΣ,c agree on the segment [x, y]. Then

h(y)− h(x) = hΣ,c(y)− hΣ,c(x)

= dist(y, YΣ,c(R
∗)− Z(D))− dist(x, YΣ,c(R

∗)− Z(D))

≤ dist(y, x).

By Observation 5.3, we have equality if y ∈ [x, e(x)), and in this case e(x) =

e(y). �

For x ∈ X, we define the gradient ∇xh ∈ lk(x) to be the direction defined

by the geodesic ray [x, e(x)). Along this ray, the function h increases with unit

speed and all other directions show a slower increase. Thus, the geodesic ray

[x, e(x)) can be regarded as the flow line of the gradient field ∇h starting at x.

Let us call a brick any subset of X that arises as the convex hull of a set

of vertices of a common chamber in X.

Observation 5.8. Let x ∈ X be a point in a brick B such that ∇xh is

perpendicular to B. Then x is a point of lowest height in B.

Proof. Choose Σ and c so that h agrees with hΣ,c on B. Hence, h is a

convex function on B and the claim follows. �

To actually ensure that h is superior to ĥ, we have to strengthen the

requirement on D. Of course, we have to adjust R∗ accordingly.

We call D almost rich if for any two vertices v and v′ of Σ̂ that belong to a

common chamber, the difference v−v′ ∈ D. Note that one can obtain a finite,

admissible, almost rich set D by starting with the finite set of difference vectors

arising from the vertices of a fixed chamber (note that this is automatically

symmetric with respect to the origin) and then closing the set with respect to

the action of W . Since 0 is a special vertex, W acts transitively on parallelism

classes of chambers in Σ̂.

When D is almost rich, the results of Section 3 apply to bricks. Let us

spell out the consequences of Proposition 3.5 combined with Example 3.6.

Corollary 5.9 (to Proposition 3.5). If D is almost rich, the function h

assumes its minimum on any brick in X in a vertex ; i.e., the subset of points

of minimum height contains a vertex. The subset of points of maximum height,

on the other hand, is a face of the brick.

Proposition 5.10 (Gradient Criterion). We still assume that D is al-

most rich. Let x and y be two distinct vertices in X that lie in a common

chamber. Then the following hold :

(1) The function h is monotonic on the line segment ε := [x, y].

(2) The angle ∠x(ε,∇xh) > π
2 if and only if h(y) < h(x).
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Figure 9. An almost rich zonotope for Ã2. The lightly shaded

areas and the white corridors are the normal cones for the zono-

tope.

Proof. By Corollary 5.9, h attains its minimum along ε at a boundary

point. As h is a convex function, this proves the first claim.

If ∠x(ε,∇xh) 6= π
2 , the height h changes when one moves from the vertex x

infinitesimally into the segment ε. If the angle is obtuse, the height decreases; if

the angle is acute, the height increases. By monotonicity, x must be the highest

or lowest point on ε, respectively. Observation 5.8 covers the remaining case

that ∇xh is orthogonal to ε. �

6. Cells of constant height

Let x ∈ X. We think of the link lk(x) as the space of directions issuing

from x. It is a spherical building, and we regard it as a metric space via the

angular metric.

Now suppose that x is carried by the cell τ . The link lk(τ) is also a

spherical building. Its simplicial structure corresponds to the poset of cofaces

of τ in X. We can realize lk(τ) as the space of directions at x orthogonal to τ .

For two different points carried by τ , the corresponding realizations of lk(τ) are

canonically identified, and we may think of elements in lk(τ) as parallel fields

of directions perpendicular to τ . This way, lk(τ) carries an angular metric. We

thus consider lk(τ) as a metric space.

The point link splits as a spherical join

(2) lk(x) = ∂(τ) ∗ lk(τ) ,
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where ∂(τ) is the subspace of lk(x) consisting of those directions that do not

leave τ . It is a round sphere in the angular metric. As τ is a polysimplicial

cell, there is also an obvious cell structure on ∂(τ).

A cell τ in X is h-flat if h restricts to a constant function on τ .

Observation 6.1. Let τ be an h-flat cell. Then all flow lines issuing in

τ are pairwise parallel and orthogonal to τ .

Proof. For flow lines issuing from points carried by τ , the claim is clear;

it follows for points on the boundary by continuity. �

Hence, we can talk about the gradient ∇τh of a h-flat cell as a point in the

link lk(τ). Regarding the gradient as the north pole in the spherical building

lk(τ), the link decomposes as in (1),

(3) lk(τ) = lkhor(τ) ∗ lkver(τ) ,

into the horizontal and vertical parts of lk(τ) relative to the north pole ∇τh.

We call the horizontal part lkhor(τ) the horizontal link of the h-flat cell τ , and

we call the vertical part lkver(τ) its vertical link. Beware that the vertical link

can contain equatorial cells; consequently, not every h-flat coface of a h-flat cell

τ defines a simplex in lkhor(τ). It can also happen that a cell in the horizontal

link is not h-flat.

7. Depth

Horizontal cells are the main obstacle for the analysis of the cocompact

filtration of X by height. We will use the method of [BW11] as extended to

reducible buildings in [Wit11] to cope with this difficulty. Here, we mostly

follow [Wit11, §2.7].

Let τ be an h-flat cell in X. By Observation 6.1, the flow lines starting in τ

are pairwise parallel geodesic rays in X and therefore, they define a point e(τ)

in the spherical building at infinity. Let β be a Busemann function centered at

that point. Since the flow lines are orthogonal to τ , the function β is constant

on τ , i.e., the simplex τ is β-flat. The notion of the horizontal and vertical

link of τ defined above agree with the notions in [Wit11, §2.7], whence we can

use some results therein directly.

The Busemann function β is not constant on any factor Xp. In the

Rank Theorem, the group G is assumed to be absolutely almost simple. Hence,

the factors Xp are all irreducible. It follows that β is not constant on any irre-

ducible factor X, i.e., the Busemann function is in general position (see Propo-

sition 12.2).
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Lemma 7.1. For any h-flat cell τ , there is a unique face τmin such that

for any proper face σ < τ , the following equivalence holds :

τ defines a simplex in the horizontal link of σ if and only if τmin ≤ σ.

Proof. Note that τ is β-flat for any Busemann function β centered at e(τ).

Then the statement follows from [Wit11, Lemma 2.7.7]. �

In the same way, the following lemma is an immediate consequence of

[Wit11, Obs. 2.7.11].

Lemma 7.2. Suppose τmin ≤ σ ≤ τ ; i.e., τ defines a simplex in the

horizontal link of σ. Then τmin = σmin.

For any two β-flat cells τ and σ, we define going up as

σ ↗ τ :⇐⇒ σ = τmin 6= τ

and going down as

τ ↘ σ :⇐⇒ τmin 6≤ σ < τ.

We define a β-move as either going up or going down.

Observation 7.3. If there is a move from τ to τ ′, then either τ is a face

of τ ′ or τ ′ is a face of τ . In either case, we have e(τ) = e(τ ′).

The following is the statement of [Wit11, Prop. 2.7.9].

Proposition 7.4. There is a uniform upper bound, depending only on

the building X , on the length of any sequence of β-moves.

Figure 10. The face τmin. Both figures take place inside the

Coxeter complex B̃3. In the picture on the left-hand side, the

black vertex is the face τmin of the horizontal solidly colored

2-simplex τ . The two edges of τ containing τmin illustrate

Lemma 7.2. In the picture on the right, the horizontal sim-

plex τ is the center edge. Here, we have τ = τmin.
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Figure 11. Sequences of moves. This figure continues Figure 10;

it also takes place inside a Coxeter complex of type B̃3. It shows

a possible patch of horizontal 2-cells. Each dot in the picture on

the right represents a cell; for orientation, one horizontal 2-cells

has been filled in. Arrows indicate moves: solid arrows rep-

resent going up, whereas dashed arrows represent going down.

Note that there are no moves between triangles and short edges.

We define the depth dp(τ) of an h-flat cell τ as the maximum length of a

sequence of β-moves starting at τ for the corresponding Busemann function β

given by the flow lines of the gradient field on τ .

8. The Morse function

From now on, we assume that D is almost rich. Let τ be any cell of X.

By Proposition 5.9, the max-set of h on τ is a face τ̂ , which we call the roof

of τ . The roof is h-flat. We define the depth of τ of X as follows:

dp(τ) :=

dp(τ) if τ is flat,

dp(τ̂ )− 1
2 otherwise.

We define the following Morse function on cells of X:

f : C(X)−→R× R× R,

τ 7→
(
max
τ

(h) , dp(τ) ,dim(τ)
)
.

Observation 8.1. The dimension component assures that comparable but

distinct cells (i.e., one is a strict face of the other or vice versa) are not

assigned the same triple.

The cells of X are in one-to-one correspondence to the vertices of the

barycentric subdivision X̊ of X. Ordering R × R × R lexicographically, we

regard f as a Morse function on X̊.

For each cell τ , let τ̊ denote its barycenter, i.e., the vertex of X̊ that

corresponds to τ . The link of the vertex τ̊ in X̊ decomposes as a join of the

boundary ∂(τ) and the link lk(τ). This corresponds to the decomposition (2).
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The descending link of a vertex τ̊ ∈ X̊ consists of those simplices in the

link whose vertices all lie strictly below τ̊ with respect to the Morse function f .

Hence, the descending link also decomposes as a join:

(4) lk↓(̊τ) = ∂↓(τ) ∗ lk↓(τ) .

Here, ∂↓(τ) can be regarded as the poset of strict faces of τ with smaller f -value

and lk↓(τ) can likewise be viewed as the poset of strict cofaces with smaller

f -value.

9. Descending links

We call τ insignificant if τ 6= τ̂min and significant otherwise. We shall

deal with the insignificant cells first. Here, the descending link is always con-

tractible. In fact, in the decomposition lk↓(̊τ) = ∂↓(τ) ∗ lk↓(τ), already the

boundary part ∂↓(τ) is contractible.

Proposition 9.1. If τ 6= τ̂min, then ∂↓(τ) is contractible. More precisely,

the complex ∂↓(τ) deformation retracts onto the subcomplex ∂(τ) \ st
Ä
τ̂min

ä
.

Proof. First, we note that τ̂min cannot correspond to a vertex in the de-

scending link. The height does not decide as

max
τ

(h) = max
τ̂

(h) = max
τ̂min

(h) .

As for the depth, we have

dp(τ) ≤ dp(τ̂ ) ≤ dp
Ä
τ̂min

ä
.

Figure 12. The deformation of ∂↓(τ) onto ∂(τ) \ st
Ä
τ̂min

ä
from

Proposition 9.1. On the left hand, the solid vertex at the top

is τ̂min. The shaded triangle is ∂(τ) \ st
Ä
τ̂min

ä
and guaran-

teed to be descending. Note that the barycentric subdivision is

drawn but st
Ä
τ̂min

ä
denotes the open star of τ̂min with respect

to the original cell structure. The hollow vertices are unknown;

they could be descending or ascending. On the right hand, one

possibility for ∂↓(τ) is shown.
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If τ 6= τ̂ , then the first inequality is strict. If τ = τ̂ , the hypothesis that

τ is insignificant implies τ̂ 6= τ̂min, whence there is a move τ̂min ↗ τ̂ and

dp(τ̂ ) < dp
Ä
τ̂min

ä
. In either case the strict inequality dp(τ) < dp

Ä
τ̂min

ä
follows, whence f(τ) < f

Ä
τ̂min

ä
; i.e., τ̂min is not descending.

We now turn to the “opposite part”; i.e., we identify a subcomplex of ∂(τ)

that is descending. Let σ be a cell with τ̂min 6≤ σ < τ . As σ < τ , we have

maxσ (h) ≤ maxτ (h). Also, τ̂min 6≤ σ implies τ̂min 6≤ σ̂. Hence, there is a move

τ̂ ↘ σ̂, whence dp(σ̂) < dp(τ̂ ). Since depths of flat cells are integer valued,

dp(σ) ≤ dp(σ̂) < dp(τ̂ )− 1
2 ≤ dp(τ).

So, let K be the subcomplex of ∂(τ) spanned by vertices σ̊ with τ̂min 6≤
σ < τ . We have seen that K is descending. Let v be the barycenter of τ̂min.

We have seen that v is ascending, not descending. Radial projection inside τ

away from v defines a deformation retraction of ∂↓(τ) onto K. Since K is a

sphere with an open star of a cell removed, ∂↓(τ) is contractible. �

Corollary 9.2. If τ is insignificant, then the descending link lk↓(̊τ) of

its barycenter is contractible.

The remainder of this section is devoted to the analysis of descending links

lk↓(̊τ) when τ is a significant cell.

Observation 9.3. If τ is significant, i.e., τ = τ̂min, then τ is flat, whence

maxσ (h) = maxτ (h) for any face σ ≤ τ . In particular, the depth and the

dimension determine which part of ∂(τ) is descending.

It follows that ∂(τ) is completely descending : for any proper face σ < τ ,

there is a move τ ↘ σ, whence dp(σ) < dp(τ). Thus, ∂↓(τ) is a sphere of

dimension dim(τ)− 1.

Observation 9.4. If ξ > τ = τ̂min is a flat coface of a significant cell,

then either τ ↗ ξ or ξ ↘ τ . If ξmin ≤ τ , then ξmin = τmin = τ by Lemma 7.2.

In this case, τ ↗ ξ. If ξmin 6≤ τ , then ξ ↘ τ .

Proposition 9.5. Assume that τ is significant. Fix cofaces ξ and ζ with

τ < ξ ≤ ζ . If f(ζ) < f(τ), then f(ξ) < f(τ).

Proof. First note that maxτ (h) ≤ maxξ (h) ≤ maxζ (h) as τ < ξ ≤ ζ. By

hypothesis, maxζ (h) ≤ maxτ (h). Thus, we have equality throughout.

As dim(ζ) > dim(τ), the hypothesis f(ζ) < f(τ) implies dp(ζ) < f(τ).

Passing to roofs, we have the inclusions τ ≤ ξ̂ ≤ ζ̂ of flat cells. If τ = ξ̂ , then

ξ 6= ξ̂ . Hence, dp(ξ) < dp
Ä
ξ̂
ä

= dp(τ) and ξ is descending.

If, on the other hand, τ 6= ξ̂ , then ζ̂ is a proper flat coface of the significant

cell τ . By Observation 9.4, there is a move τ ↗ ζ̂ or a move ζ̂ ↘ τ . In the latter

case, dp(ζ) ≥ dp
Ä
ζ̂
ä
> dp(τ), contradicting the hypothesis that f(ζ) < f(τ).
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Therefore, there is a move τ ↗ ζ̂ ; that is, τ = ζ̂min. Then Lemma 7.2 implies

τ = ξ̂min, whence τ ↗ ξ̂min and dp(ξ) ≤ dp
Ä
ξ̂
ä
< dp(τ). �

Proposition 9.5 justifies a notational vagueness of which we are guilty.

In Section 6, particularly in the decomposition 2, we used lk(τ) to denote a

spherical building. In Section 8, we switched to its barycentric subdivision (the

geometric realization of the poset of strict cofaces of τ). Since barycenters of

insignificant cells have contractible descending links just by their boundary

part ∂↓(τ), the precise structure of lk↓(τ) did not matter in this case. If τ

is significant, lk↓(τ) does matter. Although it is defined as a subcomplex of

the barycentric subdivision, Proposition 9.5 implies that we can regard the

descending link as a subcomplex of the spherical building lk(τ). Hence, we put

lk↓hor(τ) := lk↓(τ) ∩ lkhor(τ) ,

lk↓ver(τ) := lk↓(τ) ∩ lkver(τ) .

Proposition 9.6. If τ is significant, lk↓ver(τ) is an open hemisphere com-

plex in lk(τ) with respect to the north pole ∇τh.

Proof. Let H be the open hemisphere complex of lk(τ) with respect to

∇τh. The Gradient Criterion 5.10 implies H ⊆ lk↓ver(τ). To show equality,

it suffices to argue that no flat coface ξ > τ in lkver(τ) is descending, i.e.,

f(ξ) > f(τ). However, as ξ belongs to lkver(τ), it does not belong to lkhor(τ)

whence, by Lemma 7.1, there is a move ξ ↘ τ . Thus, dp(ξ) > dp(τ). As ξ is

flat, f(ξ) > f(τ) follows. �

Proposition 9.7. The decomposition (1) at the end of Section 4 induces

the decomposition

lk↓(τ) = lk↓hor(τ) ∗ lk↓ver(τ)

provided τ is significant.

Proof. As each vertex of lk↓(τ) lies in lk↓hor(τ) or lk↓ver(τ), it follows that

lk↓(τ) ⊆ lk↓hor(τ) ∗ lk↓ver(τ).

To see the converse, let ξh and ξv denote strict cofaces of τ , where ξh

determines a simplex in lk↓hor(τ) and ξv determines a simplex in lk↓ver(τ). We

need to show that the join ξ := ξh ∗ ξv lies in lk↓(τ), i.e., f(ξ) < f(τ). The cell

ξ is the smallest coface of τ containing ξh and ξv.

Since ξh is descending, it is flat. As lk↓ver(τ) is an open hemisphere complex,

all directions from τ that have a nonvanishing component into a direction of

ξv are descending with respect to the height h. Hence ξh = ξ̂ and maxξ (h) =

maxξh (h) = maxτ (h). Since ξh is descending, dp(ξ) ≤ dp(ξh) < dp(τ). Thus,

f(ξ) < f(τ). �



342 KAI-UWE BUX, RALF KÖHL, and STEFAN WITZEL

Figure 13. A flat vs. a nonflat horizontal coface. The primary

height is distance from the shaded area, the significant cell is

the fat vertex, the little arrow indicates the gradient of the

height function, and the horizontal coface is the marked edge

issuing to the right. To see that the edge is in the horizontal

link of its left vertex, recall that the link decomposes as a join

into the vertical and horizontal parts. The horizontal part is

the maximal join factor that is perpendicular to the gradient.

Corollary 9.8. For significant τ , the descending link lk↓(̊τ) decomposes

as

lk↓(̊τ) = ∂(τ) ∗ lk↓ver(τ) ∗ lk↓hor(τ) .

In Proposition 9.6, we have determined that lk↓ver(τ) is an open hemisphere

complex. It remains to analyze lk↓hor(τ).

Lemma 9.9. Let ξ ∈ lkhor(τ) for a significant cell τ , i.e., ξ is a proper

coface of τ with ξmin ≤ τ = τmin < ξ. Then, the following are equivalent :

(1) The cell ξ is descending ; i.e., ξ ∈ lk↓hor(τ).

(2) The cell ξ is h-flat.

(3) We have maxξ (h) = maxτ (h).

Proof. First assume that ξ is flat. Then maxξ (h) = maxτ (h). Also,

by Lemma 7.2, ξmin = τmin = τ . Hence, there is a move τ ↗ ξ, whence

dp(ξ) < dp(τ) . Hence f(ξ) < f(τ).

Now assume that ξ is not flat. The Gradient Criterion 5.10 implies that

maxξ (h) > maxτ (h). In particular, f(ξ) > f(τ). �

For the final part of the analysis, we need to strengthen the hypothesis on

D one last time. We call D rich if it contains the differences v−v′ of any two

vertices v,v′ ∈ Σ̂ whose closed stars intersect.
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Also, at last, we have to enlarge the diameter d of uniformity for the

reduction datum. Using Theorem 1.9, we assume that any closed star of any

cell can be uniformly reduced. This affects the constants r and R. Using a

rich D, the construction of Section 5 then will yield an appropriate R∗.

Let τ be a significant cell, let c be a chamber in ∆ uniformly reducing the

closed star of τ , and let Σ be an apartment containing τ with c ⊂ ∂(Σ). Put

L↑Σ(τ) := {v ∈ Σ v is a vertex, v ∨ τ defines a cell in lk(τ) , h(v) > h(τ)} .

Let AΣ denote the convex hull of L↑Σ(τ) in the euclidean space Σ.

Observation 9.10. Assume that D is rich. Then AΣ is a convex polytope

satisfying the hypotheses of Proposition 3.5. Hence, h assumes its minimum

on AΣ in a vertex, which is still higher than the flat cell τ .

Corollary 9.11. Provided that D is rich, AΣ is disjoint from the affine

subspace of Σ spanned by τ .

The convex set AΣ induces a closed subset ÃΣ in lkΣ(τ) ⊂ lk(τ) by pro-

jection onto an orthogonal complement of the span of τ .

Corollary 9.12. Also under the hypothesis that D is rich, the subset

ÃΣ ⊂ lkΣ(τ) is closed, convex, and has diameter strictly less than π.

We can extract a little more information.

Observation 9.13. By Lemma 9.9, a horizontal coface ξ of τ is descend-

ing if and only if it is flat. Hence, the value of h on ξ cannot exceed the value

on τ . Therefore, if D is rich, the descending horizontal link lk↓hor(τ) and ÃΣ

are disjoint by Observation 9.10.

Let Σ′ be another apartment in X containing τ and satisfying c ⊂ ∂(Σ′).

Observation 9.14. Any Coxeter isomorphism ι : Σ → Σ′ that is the

identity on the intersection Σ ∩ Σ′ makes the diagram

Σ
ι //

hΣ,c ��

Σ′

hΣ′,c~~
R

commute.

Proof. The height h is defined in terms of (a) Busemann functions βv for

points v ∈ c and (b) zonotopes of the form x+Z(D). The Busemann functions

are clearly preserved under the Coxeter isomorphism ι since the intersection

Σ ∩ Σ′ contains a sector bounding c. Since ι is a Coxeter isomorphism, it also

preserves D, which is invariant under the full spherical Weyl group. �
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Now, we fix a chamber C in the visual boundary ∂(X) that contains c. If

Σ and Σ′ are two apartments both containing the convex cone τ, C, then the

retraction ρ : X → Σ of the building X onto Σ centered at the chamber C

restricts to a Coxeter isomorphism ρ|Σ′ : Σ′ → Σ to which Observation 9.14

applies. Now, we use the hypothesis that c uniformly reduces the closed star

of τ . Hence,

h|st(τ)∩Σ = hΣ,c|st(τ)∩Σ,

h|st(τ)∩Σ′ = hΣ′,c|st(τ)∩Σ′ .

In particular, ρ|Σ′ identifies AΣ′ with AΣ.

Observation 9.15. We assume that D is rich so that we can use the

previous results. Let C̃ be the projection of C in the spherical building

lkhor(τ). It is a chamber. Let Σ̃ be the apartment Σ ∩ lkhor(τ). Then

C̃ ⊂ Σ̃. Let ρ̃ : lkhor(τ) → Σ̃ be the retraction onto Σ̃ centered at C̃ . Put

Ã := ρ̃−1
Ä
ÃΣ

ä
. Then, any apartment in lkhor(τ) that contains C̃ is of the

form Σ̃′ := Σ′ ∩ lkhor(τ), where Σ′ is an apartment in X containing the convex

cone τ, C ; moreover, Ã ∩ Σ′ = ÃΣ′ is a closed convex subset of Σ̃′ of diameter

less than π by Corollary 9.12.

Hence Corollary 4.5 applies ; the maximal subcomplex of the complement

lkhor(τ) \ Ã is (dim(lkhor(τ))− 1)-connected and of dimension dim(lkhor(τ)).

Corollary 9.16. Assume that D is rich. The horizontal descending

link lk↓hor(τ) of a significant cell τ is contractible or spherical of dimension

dim(lkhor(τ)).

Proof. By the preceding Observation 9.15, we have to argue that lk↓hor(τ) is

the maximal subcomplex of lkhor(τ)\Ã. Observation 9.13 implies the inclusion

lk↓hor(τ) ⊆ lkhor(τ) \ Ã. On the other hand, any vertex of lkhor(τ) \ lk↓hor(τ) lies

within Ã by definition of the sets L↑Σ(τ). �

We can summarize the analysis of descending links.

Proposition 9.17. Assume that D is rich. Then the descending link

lk↓(̊τ) of any barycenter is contractible or spherical of dimension dim(X)− 1.

Proof. If τ is insignificant, then lk↓(τ) is contractible by Corollary 9.2. If

τ is significant, then the descending link decomposes as

lk↓(̊τ) = ∂(τ) ∗ lk↓ver(τ) ∗ lk↓hor(τ)

by Corollary 9.8. The part ∂(τ) is a sphere of dimension dim(τ) − 1 (or

empty if τ is a vertex). The other parts are treated in Proposition 9.6 and

Corollary 9.16. Their join is contractible or spherical of dimension dim(X) −
dim(τ)−1. Hence, lk↓(̊τ) is contractible or spherical of dimension dim(X)−1.

�
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Observation 9.18. A vertex x is always a significant cell as x = xmin

since xmin is a nonempty face of x. Also, a vertex has empty boundary. Hence,

lk↓(̊x) = lk↓ver(x) ∗ lk↓hor(x) .

Generically, lk(x) will not have a horizontal component : the gradient ∇xh will

be in general position. In those cases, lk↓(̊x) = lk↓ver(x) is an (open) hemi-

sphere complex, which is not contractible by Proposition 4.6 since the building

X is thick. (In the Rank Theorem, the group G is assumed to be noncommu-

tative.) In particular, there exist arbitrarily high vertices with noncontractible

descending links.

10. Proof of the Rank Theorem

We assume that D is rich and invariant under the full spherical Weyl

group. For example, one could choose D to consist of difference vectors of any

pair of vertices in Σ̂ = E whose closed stars intersect.

Observation 10.1. The S-arithmetic group Γ acts on the product X by

cell-permuting homeomorphisms. Cell stabilizers are finite.

Observation 10.2. The function f is Γ-invariant by Observation 5.4,

and its sublevel complexes are Γ-cocompact by Observation 5.5.

Proof of the Rank Theorem. Given the topological properties of descend-

ing links, the deduction of finiteness properties is routine. Since Γ acts co-

compactly, there are only finitely many Γ-orbits of cells in X below any given

f -bound in R×R×R. In particular, only finitely many elements in R×R×R
arise as values of f below any given bound. Define F (i) to be the subcomplex

of X̊ spanned by the barycenters τ̊ of cells τ for which there are at most i

values in the image im(f) that are strictly below f(τ).

By Observation 8.1, there are no f -flat edges in X̊. Thus, F (i+ 1) \ F (i)

does not contain adjacent vertices. For any vertex τ̊ ∈ F (i+ 1) \ F (i), the

descending link lk↓(̊τ) is precisely the relative link lk(̊τ) ∩ F (i). This relative

link is contractible or spherical of dimension dim(X)− 1 by Proposition 9.17.

Thus, the complex F (i+ 1) is obtained from F (i) up to homotopy equivalence

by attaching d-cells; recall that d is the dimension of X. Observation 9.18

ensures that the extension is nontrivial at infinitely many stages.

The group Γ acts on X̊ by cell-permuting homeomorphisms and with finite

cell stabilizers. Thus, all hypotheses of Brown’s criterion [Bro87, Cor. 3.3] are

satisfied and Γ is of type Fd−1 but not of type Fd. �

11. Reduction theory: the adelic version

In this section, we describe Harder’s version of reduction theory for reduc-

tive groups over global function fields. Thus, we relax the hypotheses of the
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Rank Theorem: the group scheme G is assumed to be connected and reductive.

After Theorem 11.2, we shall add the requirement that G be K-isotropic.

Let k be the finite field of constants of the global function field K. For

any place p on K, let Kp be the completion of K at p. The field Kp is a

local field on which we can regard p as a normalized discrete valuation. Let

Op be the corresponding valuation ring and mp its unique maximal ideal. The

residue field kp := Op/mp is a finite extension of the field k of constants. Let

dp := [kp : k] denote its degree. The modulus map

‖ − ‖p : Kp−→R,

f 7→ |k|−dpp(f)

describes how multiplication by f changes the Haar measure on Kp.

For any finite set of places S, the product

AS :=
∏
p∈S

Kp ×
∏
p 6∈S
Op

is the ring of S-adeles. Note that the functor S 7→ AS is a directed system

indexed by the family of finite sets of places. The ring A of adeles is by

definition the direct limit of this system. As each AS is a topological ring, so

is A, and O := A∅ =
∏
pOp is a compact subring.

For any adele f = (fp)p ∈ A, we define the idele norm as

‖f‖ :=
∏
p

‖fp‖p.

Taking logarithms, we obtain

(5) log|k|(‖f‖) =
∑
p

−dpp(fp) .

For any f ∈ K, there are only finitely many places p for which f 6∈ Op. Hence,

K diagonally embeds into A, and with respect to this inclusion, OS = AS ∩K.

Also, the idele norm is trivial on K∗; i.e., we have the product formula

(6) ‖f‖ =
∏
p

‖f‖p = 1 for any f ∈ K∗.

Let K ′ be a finite Galois extension of K. In particular, K ′ is a global

function field in its own right. Let A′ denote the ring of adeles associated to

K ′. Since every discrete valuation on K extends to at least one valuation on

K ′, there is a diagonal embedding A ⊆ A′. Let N : K ′ → K denote the norm

map. For any f ′ ∈ K ′, one has

(7) ‖N
(
f ′
)
‖p =

∏
p′ extends p

‖f ′‖p′ .

As the idele norm is defined in terms of the modulus maps, we infer

‖N
(
f ′
)
‖K = ‖f ′‖K′ .
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Let G be a reductive group defined over K. Then G(AS) =
∏
p∈S G(Kp) ×∏

p∈S G(Op) and G(A) = lim−→S
G(AS). Let Mult denote the multiplicative group

regarded as a group scheme over K. A character on a K-group is a homomor-

phism into Mult. One defines

G(A)◦ := {γ ∈ G(A) | ‖χ(γ) ‖ = 1

for any character χ : G →Mult defined over K},
G
(
A′
)◦

:= {γ ∈ G
(
A′
)
| ‖χ(γ) ‖ = 1

for any character χ : G →Mult defined over K ′}.

Of course, there may be more characters defined over K ′ than there are defined

over K. Hence the latter group appears smaller in this regard. However using

the norm map N to average over K ′-characters on G, one can deduce from (7)

that the inclusion G(A) ≤ G(A′) induced by A ⊆ A′ restricts to an inclusion of

G(A)◦ in G(A′)◦ as a closed topological subgroup.

Lemma 11.1. The inclusion G(A) ⊆ G(A′) induces proper maps

G(A) /G(K)→ G(A′) /G(K ′) and G(A)◦ /G(K)→ G(A′)◦ /G(K ′).

Proof. This follows from [Har69, Lemma 2.2.3]. �

The following statement says everything there is to say (from the reduction

theory point of view) about K-anisotropic groups.

Theorem 11.2 ([Har69, Korollar 2.2.7]). G is K-anisotropic if and only

if G(A)◦ /G(K) is compact.

From now on, we assume that G is K-isotropic. Note that G(Op) is an open

compact subgroup of G(Kp). Following Harder, we call a subgroup C of G(A)

standard if C is of the form
∏
p Cp, where each Cp is an open compact subgroup

of G(Kp). In particular, the canonical subgroup G(O) =
∏
p G(Op) is standard.

Let P be a K-parabolic subgroup with unipotent radical Ru. Starting with

a nonvanishing volume form ω on Ru (in the sense of algebraic geometry and

defined over K), the associated measure dωA on Ru(A) is independent of ω

because of the product formula [Wei82, Th. 2.3.1]; in fact, dωA is proportional

to the Tamagawa measure. For any parabolic P and any standard subgroup C,
Harder defines

(8) π(P, C) := voldωA(Ru(A) ∩ C) .

As the measure dωA is canonical, this definition is invariant under the conju-

gacy action of G(K) on G(A); i.e., for each element γ ∈ G(K), we have

(9) π(P, C) = π(γP, γC) .

The unipotent radical Ru is a weight space for the adjoint representation

of the parabolic group P. We call the associated character χP : P →Mult the
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canonical character of P. Its idele norm is the functional determinant of the

conjugacy action of P on Ru. Hence,

Proposition 11.3 (Transformation Formula [Har69, Satz 1.3.2]). For

any standard subgroup C ≤ G(A) and any γ ∈ P(A), we have

(10) π(P, C) = π(P, γC) ‖χP(γ) ‖.

Construction 11.4 ([Har69, p. 47]). Assume that P is a minimal

K-parabolic, let R be its radical, let Ru be its unipotent radical, and put

T := R/Ru. Let T ′ ≤ T be the maximal K-split torus. We think of T and

T ′ not just as abstract tori but as tori inside of a Levi subgroup L of P. In

particular, T is a maximal torus in L and T ′ is a maximal K-split torus in-

side L. Let {α1, . . . , αr} ⊂ X(T ′) be the set of the simple roots on T ′. With

X(P) := HomK(P;Mult), we have X(P)⊗R = X(T ′)⊗R hence, we can regard

each αi as an element of X(P)⊗R. The minimal parabolic P corresponds to a

chamber of the spherical building ∆ = ∆K . The roots αi correspond to faces.

Hence i can be regarded as a cotype. Let Pi be the maximal parabolic above

P of type i (i.e., the face corresponding to αi and the vertex corresponding

to Pi span the chamber for P). Let χi : P → Mult be the restriction of the

canonical character χPi : Pi →Mult.

The set of roots {α1, . . . , αr} is a basis for X(P) ⊗ R and so is the set

{χ1, . . . , χr}. This determines real (in fact rational) numbers cij and nji such

that

αi =
∑
j

cijχj ,

χj =
∑
i

njiαi.

These two bases are almost dual. Let 〈−,−〉 be an inner product on X(P)⊗R
invariant under the action of the Weyl group. The αi are simple roots, and

the χj point in the direction of the fundamental weights. Thus,

0≤ nji,
0<njj ,

0< cjj ,

〈χj , αi〉= 0 if j 6= i,

〈χj , αi〉> 0 if j = i,

〈αi, αj〉 ≤ 0 for all i, j,

〈χj , χk〉 ≥ 0 for all j, k.
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Observation 11.5. Let A be a subset of{
(a1, . . . , ar, x1, . . . , xr) ∈ R2r xj =

∑
i

njiai

}

with the coefficients nji as above. The xj depend on the ai. Hence, A is

bounded if and only if its projection onto the first r coordinates is. Moreover,

the coefficients nji are nonnegative and strictly positive for j = i. Hence, xi
tends to ∞ if ai tends to ∞ while all other aj stay bounded from below. Thus,

the following are equivalent :

(1) A is bounded.

(2) There exists constants c−α and c+
α with

c−α ≤ ai ≤ c+
α for all i

for all (a1, . . . , ar, x1, . . . , xr) ∈ A.

(3) There exists constants c−α and c+
χ with

c−α ≤ ai, xj ≤ c+
χ for all i, j

for all (a1, . . . , ar, x1, . . . , xr) ∈ A.

Recall that Pj denotes the maximal parabolic of type j containing the

minimal parabolic P. Harder defines the invariants

νi(P, C) :=
∏
j

π(Pj , C)cij ,

but we find it more convenient to express his results using logarithms:

β(Pj , C) := log|k|(π(Pj , C)),
µi(P, C) := log|k|(νi(P, C)).

Note that π(Pj , C) > 0 as this number is the volume of an open subgroup.

Now, we have

µi(P, C) =
∑
j

cijβ(Pj , C) .

We say that a constant C1 is a lower reduction bound if for any γ ∈ G(A), there

exists a minimal K-parabolic subgroup P satisfying µi(P, γG(O)) ≥ C1 for all

i. In this language, the main theorems of reduction theory read as follows.

Theorem 11.6 ([Har69, Satz 2.3.2]). If G is K-isotropic, it admits a

lower reduction bound.

For a minimal parabolic P and an element γ ∈ G(A), we say that the

parabolic reduces γ with bound C1, if µi(P, γG(O)) ≥ C1 for all i. We may

omit mention of the bound if it is clear from context.
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Theorem 11.7 ([Har69, Satz 2.3.3]). Assume that G is K-isotropic. For

any lower reduction bound C1, there is another constant C2 (which we call

the upper reduction bound) such that whenever P is a minimal K-parabolic

reducing γ ∈ G(A) with bound C1 and µi(P, γG(O)) ≥ C2, then any minimal

K-parabolic that reduces γ with bound C1 is contained in the maximal K-para-

bolic of type i above P .

Theorem 11.8 (Mahler’s Compactness Criterion). Assume that G is

K-isotropic. A subset M ⊆ G(A)◦ is relatively compact modulo G(K) if any

only if there are two constants c− and c+ such that for every γ ∈ M , there

exists a minimal K-parabolic subgroup P with

c− ≤ µi(P, γG(O)) ≤ c+

for each i. Without loss of generality, the lower bound c− can be taken to be

any lower reduction bound.

It is a little unfortunate that Harder states Theorem 11.8 only in the case

that G is K-split. Harder also provides the means of deducing the nonsplit

case, but he does not carry out the argument. We provide an outline.

Proof of Theorem 11.8. For a fixed γ ∈ G(A), consider the set

M = M(γ)

:= {µi(P, γG(O)) P minimal K-parabolic reducing γ, i arbitrary} ⊆ R.

We claim that this set is bounded. It is bounded from below since the parabol-

ics P are assumed to reduce with respect to a fixed lower reduction bound C1.

There are only finitely many types. So, assuming that M is not bounded

from above, there is a i such that

Mi := {µi(P, γG(O)) P minimal K-parabolic reducing γ}

is unbounded. Observation 11.5 then implies that

Bi := {β(Pi, γG(O)) | Pi maximal K-parabolic

of type i containing a P reducing γ}

is unbounded. This, however, contradicts Theorem 11.7. Hence, M(γ) is

bounded.

Now assume that M ⊆ G(A)◦ is relatively compact modulo G(K). Then⋃
γ∈M M(γ) is still bounded. The constant C1 can be taken as c− and the

upper bound can be taken as c+.

To argue the converse, we let K ′ be a finite Galois extension of K such

that G is K ′-split. Let M be a subset of G(A)◦. By Lemma 11.1, M is relatively

compact modulo G(K) in G(A)◦ if it is relatively compact modulo G(K ′) in

G(A′)◦. As Harder argues in [Har69, Lemma 2.2.2], this happens if there are
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two constants c′+ ≥ c′− > 0 such that for each γ ∈ M and each K ′-Borel

subgroup B, the inequality

c′− ≤ νi,j
(
B, γK′

)
≤ c′+

holds where K′ is a suitable standard subgroup in G(A′).
Given bounds c− and c+ as in the statement of Theorem 11.8, one can find

such c′− and c′+ using [Har69, Lemma 2.3.5]. We remark that the exponent n in

that statement is the degree of the extension K ′/K; see [Har69, Lemma 2.2.6].

�

The following alternate form of Mahler’s compactness criterion is a con-

sequence of Observation 11.5.

Corollary 11.9 (Mahler’s Compactness Criterion, alternate form). Let

C1 be a lower reduction bound. A subset M ⊆ G(A)◦ is relatively compact

modulo G(K) if any only if there is a constant c+ such that for every γ ∈ M ,

there exists a minimal K-parabolic subgroup P that reduces γ with bound C1

and satisfies β(Pj , γG(O)) ≤ c+ for each j.

12. Geometric reduction theory

In this section, G is assumed to be connected and reductive. The group

G(Kp) acts on the associated euclidean Bruhat–Tits building Xp. The action is

not necessarily type-preserving, but it is transitive on chambers; in particular,

it has only finitely many orbits of vertices. The subgroup G(Op) can be assumed

to be the stabilizer of some vertex. The group G(AS) acts componentwise on

the product X :=
∏
p∈S Xp. (Components corresponding to places not in S

act trivially.) The subgroup G(O) is the stabilizer of some vertex ∗ in X.

There are only finitely many G(AS)-orbits of vertices in X; hence, there is a

uniform upper bound for the distance of any point in X to the orbit G(AS) · ∗.
Heuristically, the translation of reduction theory into the language of buildings

proceeds via pretending that the euclidean building X can be identified with

the orbit space G(AS) /G(O).

To make this more precise, let xp the vertex in Xp stabilized by the group

G(Op), and let Xp denote the G(Kp)-orbit of xp. Hence,

Xp = G(Kp) /G(Op) .

Putting X :=
∏
p∈S Xp, we have

X=
∏
p∈S
G(Kp) /G(Op)

=
∏
p∈S
G(Kp) /G(Op) ×

∏
p 6∈S
G(Op) /G(Op)

= G(AS) /G(O) .
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Conversely, for any vertex x ∈ X, the stabilizer Stab(x) in G(AS) is a standard

subgroup of G(A).

We can now start to interpret reduction theory in terms of Busemann func-

tions. Harder, when studying the cohomology of S-arithmetic groups [Har77],

already gave an interpretation of reduction theory in terms of Bruhat–Tits

buildings. Our approach, however, connects reduction theory to the metric

structure of euclidean buildings and allows us to make use of their nonpositive

curvature.

Let ∆ be the spherical building of G(K) over the global field, i.e., the

simplicial complex that is the realization of the poset of proper K-parabolic

subgroups of G. Any vertex v ∈ V(∆) corresponds to a maximal K-parabolic

Pv of G. In particular, the building ∆ is empty if and only if G is anisotropic

over K. The anisotropic case is implicitly excluded in all considerations that

require ∆ to be nonempty. Note, however, that any statement of the form “for

any vertex v in ∆, . . . ” is vacuously true.

For v ∈ V(∆), we define

β̃v : X−→R,
x 7→ β(Pv,Stab(x)) .

We would like to show that β̃ can be extended to a Busemann function on X.

Let P be a minimalK-parabolic subgroup of G corresponding to a chamber

c of ∆. By [Spr98, Th. 13.3.6], the group P contains a maximal torus T that

is defined over K. Of course, T is not necessarily split over K. Let T ′ be

the maximal K-split subtorus of T . For each place p ∈ S, let T ′p be the

maximal split Kp-subtorus of T . Note that T ′ ≤ T ′p for each p ∈ S. Let Σp

be the apartment corresponding to T ′p in the euclidean building Xp. We put

Σ :=
∏
p∈S Σp and S := X ∩ Σ.

Lemma 12.1. For any vertex v ∈ c, there exists an affine function on Σ

that agrees with β̃v on the set S.

Proof. From the Transformation Formula in Proposition 11.3, we obtain

(11) β(Pv, γC)− β(Pv, C) = − log|k|(‖χPv(γ) ‖) =
∑
p

dpp(χPv(γ))

for each γ ∈ T (A). Considering this statement just for γ ∈ ∏p∈S T ′p (Kp) with

C taken to be the stabilizer of a vertex in S, the claim follows. �

So far, we cannot speak of Busemann functions on X as we did not yet fix

a euclidean metric on X. There is some freedom in making this choice. On the

one hand, we can freely rescale metrics on the factors Xp; on the other hand,

the factors Xp need not be irreducible and if Xp decomposes as a product, the

metrics on the irreducible factors can be independently scaled. However, that
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is the only source of nonuniqueness. Up to scaling, there is a unique Weyl

group invariant metric on any irreducible euclidean building. In particular,

we only have to choose the relative scales of the factors Xp if G is absolutely

almost simple.

However, even in the case of an absolutely almost simple group and a single

place S = {p}, we would have something to prove. We do not just want some

metric on X. Rather, we would like a metric so that the geometry of the root

system constructed in 11.4 is reflected in the angular metric at infinity induced

from the euclidean metric on X. The reason for this restriction stems from

the following: Harder’s reduction theory is phrased in terms of the roots αi
and the dual characters χj . In our translation, we want to dispose of the roots

αi and only work with the characters; to those, our Busemann function will

correspond. The euclidean metric is supposed to supply the necessary duality

by means of its associated inner product. Thus, we need to demonstrate how

this can be achieved.

As a first step, we compare the root system for G over the global field K

to the root system over the local field Kp. If the field extension Kp/K was

normal, we could directly quote [BT65, § 6]. Let Ks
p be the abstract separable

closure of Kp, and let Ks be the separable closure of K inside Ks
p. Now Ks

p/Kp

and Ks/K are both normal extensions. The group G splits over Ks and Ks
p.

Moreover, the root systems for G over Ks and Ks
p are canonically isomorphic. A

maximal Ks-split torus T s in G is also maximal Ks
p-split, and all its characters

defined over Ks
p are already defined over Ks; hence

(12) XKs(T s)⊗ R = XKs
p
(T s)⊗ R =: V s.

Let T ′ be a maximal K-split torus in T s, and put V := XK(T ′)⊗R. Restriction

of characters on T s to T ′ induces a projection V s → V . We endow V s with

an inner product that is invariant under the full spherical Weyl group. By

[BT65, § 6.10], there is a canonical way of realizing the abstract vector space

V as a subspace of V s such that the orthogonal projection is the restriction

homomorphism. The induced inner product on V is invariant under the Weyl

group of G over K.

The same construction can be carried out for Kp, yielding a subspace Vp
of V s. We want to argue the inclusion V ≤ Vp. To do so, we impose the

assumption that the chosen Ks-split torus T s is defined over K. It is then also

defined over Kp. Moreover, [BT65, § 6.11] applies: the vector space V is the

fixed point set of the Galois action of Gal(Ks/K) on V s. Similarly, Vp is the

fixed point set of Gal
Ä
Ks
p/Kp

ä
on V s. Since any K-automorphism of Ks

p leaves

the separable closure Ks ⊆ Ks
p invariant, we have a homomorphism

Aut
Ä
Ks
p/K

ä
→ Gal(Ks/K)
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and the group Gal
Ä
Ks
p/Kp

ä
acts on V s via this projection. (Here, we consider

the identification made in 12.) Hence V ≤ Vp.
In particular, these considerations apply to the situation discussed in

Lemma 12.1. In that case, T s is just the maximal K-torus T within the

minimal parabolic P. T automatically splits over the separable closures Ks

and Ks
p.

Proposition 12.2. Assume that G is a connected reductive group. There

exists a euclidean metric on X =
∏
p∈S Xp. For each vertex v ∈ V(∆), there

is a positive coefficient sj ∈ R, depending only on the type j = type(v), such

that the following hold :

(1) For each vertex v ∈ V(∆), the rescaled function sj β̃v : X → R is the

restriction of a Busemann function βv : X → R to X. Let ev ∈ ∂(X)

be the center of the Busemann function, i.e., the visual end point of

the gradient of βv .

(2) For each vertex v ∈ V(∆), the Busemann function βv is nonconstant

on each factor Xp of X . In particular, if all factors Xp are irreducible

(e.g., if G is absolutely almost simple), the Busemann functions βv are

in general position (cf. Section 7).

(3) The map v 7→ ev induces an isometric embedding of ∆ into ∂(X).

(4) For each γ ∈ Γ, each vertex v ∈ V(∆), and each point x ∈ X , we

have βγv(γx) = βv(x). In particular, the map v 7→ ev and the induced

embedding ∆ ↪→ ∂(X) are Γ-invariant.

Proof. If G is anisotropic over K, the building ∆ is empty and there is

nothing to prove; the proposition is vacuously true. So, we assume that G is

K-isotropic.

We choose as our standard apartment Σ for X the apartment correspond-

ing to the torus T ; i.e., within each factor Xp, the standard apartment Σp

corresponds to the maximal Kp-split torus T ′p within T . Above, we fixed an

inner product on V s; this inner product induces inner products on each Vp,

which is the metric model for the standard apartment Σp. This way, we define

a metric on Σ and thus on the euclidean building X.

By Lemma 12.1, the function β̃v agrees with an affine function on Σ.

Affine functions on euclidean spaces are Busemann functions up to rescaling.

Hence, we can choose a factor sj so that the rescaled function sj β̃v agrees with

a Busemann function βv : X → R on Σ. By equation (11) from the proof of

Lemma 12.1, the rescale factor sj depends only on the length of the canonical

character χPv in the product
∏
p∈S Vp. Hence, sj depends only on the type

of v.

Again by equation (11), the center of βv is given by the visual end of the

fundamental weight. In particular, it is stabilized by P(AS). As G(Kp) acts
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strongly transitively on the factor Xp, translates of Σp under the action of the

parabolic P(Kp) cover Xp. Hence, the P(AS)-translates of Σ cover X. The

Transformation Formula (10) implies that sj β̃v agrees with βv on each of these

translates. This proves the first claim.

The second claim follows directly from equation (11) since dp 6= 0 for each

p ∈ S. Claim 3 follows from the discussion preceding this proposition. The

geometry of the chamber c of ∆ corresponding to the minimal parabolic P
(i.e., the angular distances between its vertices) is given by the angles between

the fundamental weights in V . As V ≤ Vp, we have an induced diagonal

embedding of V into the orthogonal product
∏
p∈S Vp. This is an isometric

embedding modeling the map v 7→ ev on the standard apartment. Considering

other minimal K-parabolics in the same apartment, we see that ∆ ↪→ ∂(X) is

an isometric embedding on the standard apartment. The choice of the standard

apartment was arbitrary and does not influence the embedding. Hence, ∆ ↪→
∂(X) is an isometric embedding on each apartment. Since any two points of

∆ are contained in a common apartment, ∆ ↪→ ∂(X) preserves distances.

Finally, Claim 4 follows from equation (9). As Γ might not act type-

preserving, we have to consider the rescaling factors sj and stype(γv). These

factors depend only on the length of the associated canonical characters. As

Γ acts by isometries, sj = stype(γv). �

Let c be a chamber of ∆, and let P denote the corresponding minimal

K-parabolic. Let Σ be an apartment of X with c ⊆ ∂(Σ). The Busemann

functions βv associated with vertices v ∈ c restrict to affine functions on Σ.

Put

Σ0 := {x ∈ Σ βv(x) = 0 for each v ∈ c} .

The metric on Σ is constructed from a metric on XK(P)⊗ R invariant under

the action of the Weyl group, and the quotient Σ/Σ0 is isometric to XK(P)⊗R.

The Busemann functions βv descend to the quotient Σ/Σ0. They form a system

of coordinates, which under the isometry Σ/Σ0
∼= XK(P) ⊗ R corresponds to

the set of fundamental weights up to rescaling. Recall that the simple roots

are related to the rescaled fundamental weights by the matrix (cij). Thus, we

define

µci :=
∑
v∈c

ci type(v)

stype(v)
βv : X −→ R.

Observation 12.3. For any x ∈ X ⊆ X , we have µci (x) = µi(P,Stab(x)).

Hence Theorem 11.6, the first main theorem of Harder’s reduction theory,

implies

Corollary 12.4. If G is K-isotropic, there is a constant C1 ∈ R such

that for any point x ∈ X , there exists a chamber c in ∆ with µci (x) ≥ C1.
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Restricted to Σ, the functions µci are affine and the duality between fun-

damental weights and simple roots translates into the following relationship.

Observation 12.5. For any real number t ∈ R and any face τ ⊆ c, we

consider the convex cone (with tip parallel to Σ0)

YΣ,τ (t) := {x ∈ Σ βv(x) ≤ t for each v ∈ τ}

We also define

ZΣ,τ (t) :=
¶
x ∈ Σ µtype(v)(x) ≥ t for each v ∈ τ

©
.

Then, ZΣ,τ (0) is the normal cone for YΣ,τ (0); i.e., ZΣ,τ (0) consists precisely of

those points in Σ whose closest point projection onto YΣ,τ (0) lies in the tip Σ0.

Let

prtΣ,τ : Σ −→ YΣ,τ (t)

denote the closest point projection. As seen in Observation 1.1, for x ∈ Σ, the

value btτ,v(x) := βv
Ä
prtΣ,τ (x)

ä
is independent of the apartment Σ. Recall the

definition

σt(x, τ) :=
¶
v ∈ τ btτ,v(x) = t

©
.

Also recall that x is t-reduced by c if σt(x, c) = c. The closest point projection

is embedded into this terminology so that it allows us to characterize normal

cones to YΣ,c(t).

Observation 12.6. The set

NΣ,c(t) := {x ∈ Σ x is t-reduced by c}

is the normal cone to YΣ,c(t). In particular, it is a translate of ZΣ,c(0). Thus,

there exist real constants t′1, . . . , t
′
r only depending on t such that

NΣ,c(t) =
{
x ∈ Σ µci (x) ≥ t′i for each i = 1, . . . , r

}
.

If Σ′ is another apartment of X whose visual boundary contains the cham-

ber c, then the isomorphism of Coxeter complexes ι : Σ → Σ′ from Observa-

tion 1.1 does not only commute with the Busemann functions βv but also with

the functions µci . In particular, it identifies ZΣ,c(t) with ZΣ′,c(t) and NΣ,c(t)

with NΣ′,c(t). We define

Nc(t) :=
⋃

Σ : c⊆∂(Σ)

NΣ,c(t)

= {x ∈ X x is t-reduced by c} ,
Zc
(
t′
)

:=
⋃

Σ : c⊆∂(Σ)

ZΣ,c
(
t′
)
.

The systems NΣ,c(t) and ZΣ,c(t
′) are strongly related.
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Figure 14. Normal cones. The family ZΣ,τ (−), shown on the

left, is defined via the functions µj . Some level sets of the µj
are drawn. In contrast, the family NΣ,c(−), shown on the right,

is defined in terms of the Busemann functions βv. The latter

are normalized to have unit length gradient with respect to the

metric. Their level sets are shown. The shaded areas indicate

the family YΣ,τ (−).

Observation 12.7. For any t, there exist t′+ and t′− such that

ZΣ,c
(
t′−
)
⊆ NΣ,c(t) ⊆ ZΣ,c

(
t′+
)

for any apartment Σ and any K-rational chamber c in the visual boundary

of Σ. Analogously, for any t′, there exist t+ and t− such that

NΣ,c(t−) ⊆ ZΣ,c
(
t′
)
⊆ NΣ,c(t+)

for any c ∈ ∆ and any euclidean apartment Σ whose visual boundary contains c.

We can also relate the subsets Nc(t) to their Hausdorff neighborhoods.

For any subset V ⊆ X, let NbhdL(V ) denote the Hausdorff neighborhood of

radius L around V , i.e., the set of points in X of distance at most L to V .

Observation 12.8. For any fixed distance L ≥ 0, there is a constant C

such that

NbhdL(Nc(t)) ⊆ Nc(t− C)

for any t ∈ R and any chamber c in ∆. Conversely, for any given C there

exists a constant L such that

Nc(t− C) ⊆ NbhdL(Nc(t))

for any t ∈ R and any chamber c in ∆.



358 KAI-UWE BUX, RALF KÖHL, and STEFAN WITZEL

We are ready for the geometric version of Theorem 11.6.

Proposition 12.9. Assume that G is K-isotropic. For any fixed diameter

d ∈ R, there exists a constant r ∈ R such that for any x ∈ X , there is a chamber

c that r-reduces each point y of distance at most d to x.

Proof. By Corollary 12.4, there is a constant C1 such that

X =
⋃

c∈C(∆)

Zc(C1) .

By Observation 12.7, there is a bound r′ such that

X =
⋃

c∈C(∆)

Nc
(
r′
)

.

Now, one chooses r so that Nc(r) contains the d-Hausdorff neighborhood of

Nc(r
′) for any chamber c in ∆. �

The main theorem of geometric reduction theory reads as follows.

Theorem 12.10. Assume that G is connected, reductive, and defined and

isotropic over the global function field K . For any diameter d, there exist

constants r and R such that (βv : X → R)v∈V(∆) together with the constants

r and R is a d-uniform and Γ-invariant reduction datum. Moreover, for any

x ∈ X and any chamber c in ∆ that r-reduces x, the simplex σR(x, c) is

contained in any chamber c′ that r-reduces x.

Proof. Using Observation 12.7, choose C1 so that Nc(r) ⊆ Zc(C1) for any

c in ∆. Then, C1 is a lower reduction bound. We can be a little more specific.

Let P be the minimal K-parabolic corresponding to a chamber c that r-reduces

the point γ∗ for some γ ∈ G(AS). Then µi(P, γG(O)) ≥ C1 for all i.

By Theorem 11.7, there is a corresponding C2. Again using Observa-

tion 12.7, we find a constant R such that Nc(R) ⊆ Zc(C2) for every chamber c

in ∆. Then, for any vertex v ∈ c and any x ∈ X that is r-reduced by c, we have

v ∈ σR(x, c) =⇒ µctype(v)(x) ≥ C2.

For x = γ∗, it follows that the maximal K-parabolic Pv corresponding to v

contains any minimal K-parabolic P ′ whose chamber c′ r-reduces γ∗. Hence,

σR(γ∗, c) ⊆ c′.
Extending coverage from X to all of X requires changing the constants r

and R only by a little. Hence, we have established a reduction datum.

We have already argued in Proposition 12.9 that this reduction datum is

d-uniform. That it is Γ-invariant follows from Proposition 12.2, part (4). �

It remains to discuss Γ-cocompactness of the reduction datum. We con-

sider the filtration of X by subspaces

Yt := {x ∈ X βv(x) ≤ t for all c reducing x and all v ∈ c} .
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Theorem 12.11. If G does not admit any nontrivial K-characters, then

Yt has compact quotient modulo Γ. If there is a nontrivial K-character G →
Mult, then Yt does not have a compact quotient modulo Γ unless Yt is empty.

Proof. If there are no nontrivial characters, we have G(A) = G(A)◦. Hence,

cocompactness of the Yt is immediate from Mahler’s Compactness Criterion in

its alternate form 11.9.

If there is a nontrivial character on G, then G has a central K-torus.

Corresponding to this torus, the euclidean building X has a euclidean space

as a factor. Dirichlet’s unit theorem implies that the S-arithmetic subgroup

does not act cocompactly in the direction of this factor. �

In particular, an absolutely almost simple noncommutative group G does

not admit nontrivial K-characters. Hence, Theorem 1.9 follows from Theo-

rems 12.10 and 12.11.

Remark 12.12. Formally, the filtration is meaningful even for anisotropic

G. In that case, Yt = X independent of t. Theorem 11.2 implies that X/Γ is

cocompact in this case. This way, one recovers Serre’s proof that G(OS) is of

type F∞ for K-anisotropic G [Ser71, Cas (b), p. 126–127].

Remark 12.13. If G is K-isotropic and noncommutative, then ∆ is

nonempty and Corollary 1.8 yields an alternative description of the filtration

Yt = {x ∈ X βv(x) ≤ t for some c reducing x and all v ∈ c} for t ≥ R.

13. The structure of the quotient X/Γ

Let G be a connected reductive K-group with S-arithmetic subgroup Γ.

The corresponding euclidean building X is a locally finite cell complex. Its

symmetry group Aut(X) is a locally compact topological group, which there-

fore carries a Haar measure. It is a totally disconnected topological group. Its

topology is induced by the compact-open topology on the set of continuous

maps from X to itself. The fix groups of finite subcomplexes in X form a basis

for the open neighborhoods of the identity. The stabilizer of any cell is an open

compact subgroup. If there are trees among the irreducible factors of X then

the group Aut(X) is much larger than the group G(AS).

We assume in this section that G does not admit a nontrivial K-character

so that the filtration Yt is Γ-cocompact by Theorem 12.11. Our goal is to show

that in this case the image Γ0 of Γ in the automorphism group Aut(X) is a

lattice in Aut(X), i.e., Γ0 has finite covolume with respect to the Haar measure

on Aut(X).

It is well known that Γ0 is a lattice. For a Chevalley group scheme G,

Harder [Har69, p. 41] constructs a fundamental set for G(K) in G(A). The

restriction to Chevalley group schemes is unnecessary. In the same paper,
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Harder generalizes the main statements of reduction theory (also first proved

for Chevalley groups) to arbitrary reductive groups. His construction of a

fundamental domain can then be carried out in the same vein; in fact, Harder

points out this possibility [Har69, p. 51]. He also remarks that the same

argument as in [God64] following Théorème 7 then shows that G(K) is a lattice

in G(A). Harder also indicates [Har69, pp. 51ff] how this argument can be

adapted to deal with the lattice G(OS) in G(AS). Since G(AS) acts cocompactly

on X, the result shows that Γ0 is a lattice in Aut(X).

Hence, the point of this section is to demonstrate that Theorem 12.10 pre-

serves the necessary information. In fact, even the rough strategy of the proof

is the same: in Proposition 13.6 a fundamental set for Γ0 in X is constructed;

an application of Serre’s criterion in the proof of Proposition 13.8 replaces the

covolume estimate following [God64, Th. 7].

Remark 13.1. The covolume of G(K) in G(A) with respect to the Tam-

agawa measure is called the Tamagawa number of G. Harder [Har74, 3.3]

has shown that simply connected Chevalley groups have Tamagawa number

1. A geometric proof by Gaitsgory-Lurie that the Tamagawa number be 1 for

general simply connected group schemes has been announced in [Gai, 1.2.3].

See [BD09] for conjectural values and partial results concerning Tamagawa

numbers of non-simply connected group schemes.

Observation 13.2. The kernel of the projection Γ→ Γ0 is the kernel of

the action of Γ on X . Hence, it is finite as it is clearly contained in any vertex

stabilizer of Γ, which is finite.

Observation 13.3. If G is K-anisotropic, the group Γ0 is a lattice. In

fact, the quotient X/Γ0 is compact by Theorem 12.11 or by Theorem 11.2.

Let r and R be constants satisfying Theorem 12.10.

Lemma 13.4. For any point x ∈ X , there is at most one chamber c in ∆

with x ∈ Nc(R).

Proof. Assume x ∈ Nc(R). Then σR(x, c) = c. Hence, c is contained in

any chamber c′ that r-reduces x. In particular, c is the only chamber that

r-reduces x, whence it is the only chamber that R-reduces x. �

Corollary 13.5. For any point x ∈ Nc(R), the set Nc(R) is invariant

under the induced action of the stabilizer StabΓ0(x).

The following theorem provides a fundamental set for the action of Γ on X.

One should compare it to [Ser80, Th. 9, p. 106].
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xi

Si

NΣ,c(R)

Σ

ci

Figure 15. A wedge NΣ,c(R) and a sector Si. Here, the rational

building ∆ has dimension 1 and the euclidean building X has

dimension 3.

Proposition 13.6. Assume that G is K-isotropic and noncommutative.

There exists a constant L, finitely many points x1, . . . , xs, and as many cham-

bers c1, . . . , cs in ∆ such that the following hold :

(1) The point xi is R-reduced by ci for each i ∈ {1, . . . , s}.
(2) Note that the union Si of rays from xi with visual endpoint in ci is

isometric to a flat sector. Every point in X is within distance L to the

orbit of some sector Si. Equivalently, the Γ0-translates of

D := NbhdL

(
s⋃
i=1

Si

)
cover X .

(3) For i 6= j, the Γ0-orbits of Si and Sj are disjoint.

Proof. The set
⋃
c∈C(∆)Nc(R) is Γ0-invariant. Hence,

Q := YR ∩
⋃

c∈C(∆)

Nc(R)

= {x ∈ X x is R-reduced by some c and βv(x) ≤ R for all v ∈ c}

is Γ0-invariant with compact quotient. By Lemma 13.4, each point x ∈ Q has

a unique R-reducing chamber in ∆. Moreover, this chamber varies Γ0-equi-

variantly with the point. Since Q/Γ0 is compact, there exist a constant L0,

finitely many pairwise Γ0-inequivalent chambers c1, . . . , cs in ∆, and points

x1, . . . , xs such that the following holds:
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For each point x ∈ Q, there exists a γ ∈ Γ0 and a unique index

i ∈ {1, . . . , s} such that x is within distance at most L0 of γxi
and so that x is R-reduced by the chamber γci.

Let Si be the union of geodesic rays from xi with visual endpoint in ci. We

put

D0 := NbhdL0

(
s⋃
i=1

Si

)
and claim that the Γ0-translates of D0 cover the union

⋃
c∈C(∆)Nc(R). Recall

that Nc(R) is the union of wedges NΣ,c(R). The tip of such a wedge consists

precisely of the subspace {x ∈ Σ βv(x) = R for all v ∈ c}, which is a subset

of Q. Now, let y ∈ NΣ,c(R). Then, there is a unique point x ∈ Q ∩ NΣ,c(R)

such that y lies on a geodesic ray from x with visual endpoint in c. There

is γ ∈ Γ0 and a subscript i ∈ {1, . . . , s} such that c = γci and such that x

is within distance at most L0 of γxi. It follows that y is within distance L0

of γSi.

By Theorem 12.9, X =
⋃
cNc(r), and by Observation 12.8 there is a

constant L1 such that Nc(r) ⊆ NbhdL1 Nc(R) for all chambers c of ∆. It

follows that L := L0 + L1 yields a domain

D := NbhdL

(
s⋃
i=1

Si

)

whose Γ0-translates cover X. �

Lemma 13.7. For every distance L, there is a constant K such that for

any two points x, y ∈ X of distance at most L, the inequality

1

K
|StabΓ0(x)| ≤ |StabΓ0(y)| ≤ K |StabΓ0(x)|

holds.

Proof. The ball B := BL(y) of radius L with center y is invariant under

the induced action of StabΓ0(y). The group Γ0 acts by cell-permuting home-

omorphisms on X; hence, the induced action on the barycentric subdivison is

rigid: a cell that is stabilized is fixed pointwise. By restriction, the action of

StabΓ0(y) on the induced cell decomposition of B inherits this property. In

particular, the size of any orbit is bounded by the number Ky of cells in B.

The index of the group StabΓ0(x)∩ StabΓ0(y) in StabΓ0(y) is given by the

size of the orbit StabΓ0(y) · x. Hence, it is bounded by Ky.

The claim follows since there is a maximum number of cells that a ball of

radius L centered anywhere in X can meet. �

Proposition 13.8. The group Γ0 is a lattice in Aut(X).
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Proof. We consider the action of Aut(X) on the set C(X) of chambers

of X. By [BL01, 1.6 Cor.], we have to argue that the infinite sum

(13)
∑
C∈X

1

|StabΓ0(C)|

converges, where X is a set of representatives of C(X) /Γ0.

Let L, x1, . . . , xs, c1, . . . , cs, S1, . . . , Sn, and D be as in Proposition 13.6.

We now choose X to be the collection of all chambers in X that intersect D.

The set Qi := YR ∩ Nci(R) consists of the tips of those wedges that form

Nci(R). Let ρ be some geodesic ray from xi in Si; i.e., the visual endpoint e of

ρ lies in ci. Let Tρ be the union of all geodesic rays in X that share an infinite

segment with ρ. Then Tρ is a locally finite tree and intersects Qi in a discrete

set. Let Rρ be the set of points in Qi ∩ Tρ that lie within distance L of xi.

Consider a point y on the ray ρ. The union of all geodesic rays in X with

endpoint e that pass through y is a subtree Ty of Tρ. The intersection Ty ∩Qi
is a finite set on which the finite group StabΓ0(y) acts. By Proposition 13.6,

each StabΓ0(y)-orbit has a representative in Rρ. As the cardinality |Qi ∩ Ty|
grows exponentially with the distance dist(y, xi), so does the size |StabΓ0(y)|.
As ci is compact, the growth rate is uniformly bounded away from 1 for all

rays ρ from the tip xi into Si. On the other hand, the number of chambers in

X intersecting Si at a point of distance d to xi grows only polynomially with

the distance d.

Finally, Lemma 13.7 shows that stabilizers of chambers of bounded dis-

tance have comparable sizes. It follows that the sum (13) converges. �

The case that X is a tree is treated in [Ser80, Exercise 2 a, p. 110].
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[BL01] H. Bass and A. Lubotzky, Tree Lattices, Progr. Math. 176, Birkhäuser,
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in Séminaire Bourbaki, 1962/63. Fasc. 3, No. 257, 15, Secrétariat
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