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Kloosterman sheaves for reductive groups

By Jochen Heinloth, Bao-Châu Ngô, and Zhiwei Yun

Abstract

Deligne constructed a remarkable local system on P1 −{0,∞} attached

to a family of Kloosterman sums. Katz calculated its monodromy and

asked whether there are Kloosterman sheaves for general reductive groups

and which automorphic forms should be attached to these local systems

under the Langlands correspondence.

Motivated by work of Gross and Frenkel-Gross we find an explicit family

of such automorphic forms and even a simple family of automorphic sheaves

in the framework of the geometric Langlands program. We use these auto-

morphic sheaves to construct `-adic Kloosterman sheaves for any reductive

group in a uniform way, and describe the local and global monodromy of

these Kloosterman sheaves. In particular, they give motivic Galois rep-

resentations with exceptional monodromy groups G2, F4, E7 and E8. This

also gives an example of the geometric Langlands correspondence with wild

ramification for any reductive group.
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Introduction

0.1. Review of classical Kloosterman sums and Kloosterman sheaves. Let

n be a positive integer and p be a prime number. For every finite extension

Fq of Fp and a ∈ F×q , the Kloosterman sum in n-variables in defined as the

exponential sum

Kln(a; q) := (−1)n−1
∑

x1x2···xn=a,xi∈Fq
exp

Å
2πi

p
TrFq/Fp(x1 + x2 + · · ·+ xn)

ã
.
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Kloosterman sums occur in the Fourier coefficients of modular forms. They

satisfy the Weil bound

(0.1) |Kln(a; q)| ≤ nq(n−1)/2.

When n = 2, for any a ∈ F×p , define the angle θ(a) ∈ [0, π] to be such that

2pdeg(a)/2 cos(θ(a)) = Kl2(a; pdeg(a)),

where deg(a) is the degree of a over Fp. Then the angles {θ(a)|a ∈ F×p }
are equidistributed according to the Sato-Tate measure 2

π sin2 θdθ on [0, π] as

deg(a) tends to∞. In general, a similar equidistribution theorem for Kln(a; q)

was proved by Katz [26], using Deligne’s results in [11].

The above properties of Kloosterman sums were proved using a sheaf-

theoretic incarnation. Let us recall this construction. In [10], Deligne consid-

ered the diagram
Gn
m

σ

}}

π

""
Ga Gm.

Here Gm is the multiplicative group, Ga
∼= A1 is the additive group and σ

(resp. π) is the map of taking the sum (resp. product) of the n-coordinates of

Gn
m. Let ψ : Fp → Q`(µp)

× be a nontrivial character (here µp is the set of p-th

roots of unity), and let ASψ be the associated Artin-Schreier local system on

the additive group Ga over Fp. Deligne then defined the Kloosterman sheaf

as the following complex of sheaves with Q`(µp)-coefficients on Gm over Fp:

Kln := Rπ!σ
∗ASψ[n− 1].

Fix an embedding ι : Q`(µp) ↪→ C such that ιψ(x) = exp(2πix/p) for x ∈ Fp.
For any a ∈ Gm(Fq) = F×q , denote by Froba the geometric Frobenius at a,

acting on the geometric stalk (Kln)a. Then, by the Grothendieck-Lefschetz

trace formula, we have

Kln(a; q) = ιTr(Froba, (Kln)a).

In this sense, Kln is a sheaf-theoretic incarnation of the Kloosterman sums

{Kln(a; q)}a∈F×q .

In [10, Th. 7.4, 7.8], Deligne proved

(1) Kln is concentrated in degree 0 and is a local system of rank n.

(2) Kln is tamely ramified around {0}, and the monodromy is unipotent

with a single Jordan block.

(3) Kln is totally wildly ramified around {∞} (i.e., the wild inertia at∞ has

no nonzero fixed vector on the stalk of Kln), and the Swan conductor

Swan∞(Kln) = 1.

(4) Kln is pure of weight n− 1 (which implies the estimate (0.1)).
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In [26, §8.7], Katz proved the unicity of Kloosterman sheaves: If a rank-n

local system L on Gm satisfies properties (2) and (3) listed above, then L is

isomorphic to Kln on Gm ⊗ Fp up to a translation action on Gm. Moreover,

in [26, §11], Katz further studied the global geometric monodromy of Kln. Fix

a geometric point η of Gm, and denote by

ϕ : π1(Gm, η)→ GLn(Q`(µp))

the monodromy representation associated to the Kloosterman sheaf Kln. Let

ϕgeo be the restriction of ϕ to π1(Gm⊗Fq Fq, η). Katz determined the Zariski

closure Ǧgeo of the image of ϕgeo to be

(0.2) Ǧgeo =


Spn n even,

SLn n odd, p odd,

SOn n odd, n 6= 7, p = 2,

G2 n = 7, p = 2.

Using Deligne’s equidistribution theorem [11, Th. 3.5.3], Katz showed that

the conjugacy classes for the Frobenius elements Froba are equidistributed

according to a “Sato-Tate” measure.

0.2. Motivation and goal of the paper. In view of the mysterious appear-

ance of the exceptional group G2 as the global geometric monodromy, Katz

asked [27, p. I-5] whether all semisimple groups appear as geometric mon-

odromy of local systems on Gm. Alternatively, are there exponential sums

whose equidistribution laws are governed by arbitrary simple groups, and es-

pecially by exceptional groups?

In this paper we find a uniform construction of such local systems. For

any split reductive group Ǧ, we will construct a Ǧ-local system KlǦ on Gm =

P1
\{0,∞} with similar local ramifications as Kln, and when Ǧ = GLn, we recover

the Kloosterman sheaf Kln of Deligne. We will determine the Zariski closure of

its global geometric monodromy (which turns out to be “large”), prove purity

of the sheaf and deduce equidistribution laws. Finally, we give a conjecture

about the unicity of such Galois representations (or local systems).

For the purpose of the introduction, let us restrict to the following cases.

Assume G is either a split, almost simple and simply-connected group over

k = Fq, or G = GLn over k. Let Ǧ be its Langlands dual group over Q`(µp),

which is either a split, simple and adjoint group, or GLn.

The motivation of our construction comes from the Langlands correspon-

dence for the rational function field K = k(t). Already in his study of Kloost-

erman sheaves, Katz [26] suggested the following.



KLOOSTERMAN SHEAVES FOR REDUCTIVE GROUPS 245

“. . . It would be interesting to compare this result with the con-

jectural description of such sheaves, provided by the Langlands

philosophy, in terms of automorphic forms.”

In a series of work [22], [21], [20], [15], Gross, partly joint with Reeder and

with Frenkel, proposed a candidate automorphic representation π of G(AK)

which, in the case of G = GLn, should give the Kloosterman sheaf Kln. Let us

briefly review their work.

In [22], Gross and Reeder gave the following construction of a represen-

tation Vφ of G(k((s))). Fix a Borel subgroup B ∈ G, and denote by U the

unipotent radical of B. Denote by I(0) := {g ∈ G(k[[s]])|g mod s ∈ B} the

Iwahori subgroup of G(k[[s]]) and by I(1) := {g ∈ G(k[[s]])|g mod s ∈ U} the

unipotent radical of I(0). For any affine generic character φ : I(1) → Q`(µp)

(see §1.3), let Vφ := c-Ind
G(k((s)))
I(1)×Z(G)(φ⊗1) be the compactly induced representa-

tion of G(k((s))). Gross and Reeder show that this representation is irreducible

and supercuspidal.

For any global field F , Gross [21] managed to use the trace formula to

obtain an expression for the multiplicities of automorphic representations π of

G(AF ) whose ramified local components are either the Steinberg representa-

tion or the representation Vφ. In particular, when the global field is K = k(t),

this formula implies that, for any semisimple simply connected group G, there

is unique cuspidal automorphic representation π = π(φ) of G(AK) such that

(1) π is unramified outside {0,∞};
(2) π0 is the Steinberg representation of G(k((t)));

(3) π∞ is the simple supercuspidal representation Vφ of G(k((s))), s = t−1.

Motivated by the Langlands philosophy, Gross [20] raised the following

conjecture. The automorphic representation π = π(φ) should correspond to a

Ǧ-local system KlǦ(φ) on Gm = P1
\{0,∞}, which we will call the Kloosterman

sheaf associated to Ǧ and φ, with the following properties parallel to that of π:

(1) KlǦ(φ) is a Ǧ-local system on Gm = P1
\{0,∞}.

(2) KlǦ(φ) is tamely ramified around {0}, and the monodromy is a regular

unipotent element in Ǧ.

(3) The local system KlAd
Ǧ

(φ) associated to the adjoint representation of Ǧ

(which is a local system on P1
\{0,∞} of rank dim Ǧ) is totally ramified

around {∞} (i.e., the inert group at ∞ has no nonzero fixed vector),

and Swan∞(KlAd
Ǧ

(φ)) = r(Ǧ), the rank of Ǧ.

(4) For any irreducible representation V of Ǧ, the associated local system

KlV
Ǧ

(φ) is pure.

For Ǧ = GLn, the sheaf Kln has the above properties. For Ǧ of type

A,B,C and G2, Ǧ-local systems with the above properties were constructed
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earlier by Katz [27], using a case-by-case construction and using Kln as building

blocks.

In [15], Gross and Frenkel constructed an analog of such local systems

over the complex numbers. Namely, they defined a ǦC-connection ∇Ǧ(X̌)

on P1
C\{0,∞} (depending on the choice X̌ of nonzero vectors in the affine

simple root spaces of ǧ). This connection has regular singularity at {0} and

irregular singularities at ∞, parallel to properties (2) and (3) above. They

furthermore show that ∇Ǧ(X̌) is cohomologically rigid [15, Th. 1] and compute

the differential Galois group of these connections. For Ǧ of type A,B,C and

G2, they verify that ∇Ǧ(X̌) coincide with connections constructed by Katz

[27], which are the analogs of Katz’s `-adic Ǧ-local systems mentioned above.

All these give strong evidence that ∇Ǧ(X̌) should be the correct de Rham

analog of the conjectural local system KlǦ(φ).

The predictions about the conjectural local system KlǦ(φ) made in [15]

served as a guideline for our work.

0.3. Method of construction. Our construction of the Kloosterman sheaves

can be summarized as follows. We start with the automorphic representation π

mentioned above. The key observation is that π contains a Hecke eigenfunction

fφ, which can be written down explicitly using the combinatorics of the double

coset

G(K)\G(AK)/

Ñ
I0 × I∞(2)×

∏
x 6=0,∞

G(Ox)

é
(see §2.1).

The points of this double coset are the rational points of a moduli stack

BunG(0,2) of G-bundles on P1 with a particular level structure at 0 and∞, and

we can upgrade the function fφ to a sheaf Aφ on this stack. We then prove

that this sheaf is indeed a Hecke eigensheaf. In particular, we show that the

eigenvalues of the geometric Hecke operators applied to Aφ define a Ǧ-local

system on P1
\{0,∞} — our Kloosterman sheaf KlǦ(φ). Technically, the proof of

this result relies on the fact that the sheaf Aφ is a clean extension of a local

system with affine support.

In the case G = GLn, we compute the local system KlǦ(φ) explicitly. For

a particular φ, the rank-n local system associated to KlǦ(φ) and the standard

representation of Ǧ = GLn turns out to be the Kloosterman sheaf Kln of

Deligne. Here Deligne’s diagram will reappear as a part of a geometric Hecke

transformation.

Our construction also works when we replace G by a certain class of quasi-

split group schemes G over P1
\{0,∞}, and there is also a variant depending on an

additional Kummer character. These generalizations seem to be the natural

setup needed in order to compare Kloosterman sheaves for different groups.
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Since the generalization does not require additional arguments, we will give

the construction in this more general setup.

0.4. Properties of Kloosterman sheaves. The longest part of this article

(§§4–6) is then devoted to the study of local and global properties of Klooster-

man sheaves KlǦ(φ) for simple adjoint groups Ǧ. First, using [11], the expected

purity property (4) is a corollary to our construction. When Ǧ is adjoint, we

can moreover normalize KlV
Ǧ

(φ) to be pure of weight 0. Thus, fixing an em-

bedding ι : Q`(µp) ↪→ C as before, the exponential sums

KlV
Ǧ

(φ; a; q) = ιTr(Froba, (KlV
Ǧ

(φ))a), for a ∈ F×q , V ∈ Rep(Ǧ)

satisfy the Weil bound

|KlV
Ǧ

(φ; a; q)| ≤ dimV.

Property (2) about the monodromy at 0 (see Theorem 1(2)) will be proved

in Section 4.3. Property (3) about the monodromy at ∞ (see Theorem 2)

will be proved in Section 5. The calculation of the Swan conductors involves

a detailed study of the geometry of certain Schubert varieties in the affine

Grassmannian, which occupies a large part of Section 5. Using a result of

Gross-Reeder [22], one can give an explicit description of the monodromy at

∞ (Corollary 2.15). Together, these results show that the local system KlǦ(φ)

satisfies properties (1)–(4) expected by Gross.

Again, let

ϕ : π1(P1
\{0,∞}, η)→ Ǧ(Q`(µp))

be the monodromy representation associated to the Kloosterman sheaf KlǦ(φ),

and let ϕgeo be its restriction to π1(P1
\{0,∞}⊗k k, η). We find (Theorem 3) that

for p > 2 (and p > 3 in the case Ǧ = B3), the Zariski closure Ǧgeo of the image

of ϕgeo coincides with the differential Galois group Ǧ∇ of ∇Ǧ(X̌) calculated

by Frenkel-Gross in [15, Cor. 9,10], which we list in Table 1.

Ǧ Ǧgeo

A2n A2n

A2n−1, Cn Cn
Bn, Dn+1 (n ≥ 4) Bn
E7 E7

E8 E8

E6, F4 F4

B3, D4, G2 G2.
Table 1. Global geometric monodromy of KlǦ(φ)

Deligne’s equidistribution theorem [11, Th. 3.5.3] then implies the follow-

ing equidistribution law for the image of the Frobenius elements under ϕ.
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Corollary. Suppose Ǧ is simple and adjoint. (In this case the whole

image of ϕ lies in Ǧgeo.) Let Ǧgeo,c ⊂ Ǧgeo(C) be a compact real form (using

the embedding ι : Q`(µp) ↪→ C to make sense of Ǧgeo(C)). Let Ǧ\geo,c be the

set of conjugacy classes of Ǧgeo,c.

For a ∈ k
×

, the conjugacy class ϕ(Froba) of Ǧgeo(C) in fact belongs to

Ǧ\geo,c. As deg(a) (the degree of the field extension k(a)/k) tends to ∞, the

conjugacy classes

{ϕ(Froba)|a ∈ k
×} ⊂ Ǧ\geo,c

become equidistributed according to the push-forward of the Haar measure from

Ǧgeo,c to Ǧ\geo,c.

0.5. Open problems. Compared to the known results about Kln, the only

missing piece for KlǦ(φ) is the unicity. We prove that KlǦ(φ) is cohomologically

rigid; i.e.,

H1(P1, j!∗KlAd
Ǧ

(φ)) = 0.

This gives evidence for the physical rigidity of KlǦ(φ). Any other local sys-

tem L on P1
\{0,∞} satisfying properties (2) and (3) should be isomorphic to

KlǦ(φ) over P1
\{0,∞} ⊗k k. We will state the precise unicity conjecture in

Conjectures 7.1 and 7.2.

Table 1 also suggests that the Kloosterman sheaves for different groups Ǧ

appearing in the same line of the table should be essentially the same (see Con-

jecture 7.3). This can be viewed as a functoriality statement for Kloosterman

sheaves.

Also, the monodromy of Kloosterman sheaves is studied in detail only for

split groups. In Section 7.2, we state our predictions on the local and global

monodromy of KlLG(φ) for G a quasi-split, simple and simply-connected group

scheme over P1 with good reduction at all places outside {0,∞}, which is split

by a tame Kummer cover [N ] : P1
\{0,∞} → P1

\{0,∞} (z 7→ zN ).

0.6. Organization of the paper. In Section 1, we define the various group

schemes G(m0,m∞) over P1 encoding the level structures of the moduli stacks

of G-bundles on which the automorphic sheaves will be defined. We also give a

description of the geometry of these moduli stacks. In Section 2, we construct

the automorphic sheaf Aφ and state the main results of the paper. The proofs

are given in Sections 4–6. Section 3 is devoted to the case G = GLn, where we

recover classical Kloosterman sheaves of Deligne. In Section 7, we state our

conjectures about rigidity of Kloosterman sheaves and our expectations about

Kloosterman sheaves for quasi-split groups.

The paper contains four appendices. In Appendix A, we prove the struc-

ture theorem for the moduli spaces BunG in the generality of quasi-split groups.

In Appendix B, we prove compatibility between outer automorphisms and the
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geometric Satake equivalence. This is needed to describe the global mon-

odromy image of Kloosterman sheaves and we couldn’t find a reference for the

result. In Appendix C, we collect some facts about quasi-minuscule represen-

tations of Ǧ. In Appendix D, we analyze the geometry of the adjoint Schubert

variety for G2, which does not fit into the uniform treatment for groups of

other types.
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1. Structural groups

We will work over a fixed finite field k of characteristic p. We fix a co-

ordinate t of our base curve P1, so that A1 = Spec(k[t]) ⊂ P1. We write

s := t−1 for the coordinate around ∞ ∈ P1. For any closed point x ∈ P1, we

will denote by Ox the completed local ring at x and by Kx the fraction field

of Ox.

Since we are interested in the geometric Langlands correspondence for

(wildly) ramified local systems, we will need to consider principal bundles with

various level structures. It will be convenient to view these as torsors under

group schemes G over P1. Moreover, in order to formulate the conjectured

functoriality, it will be useful to allow quasi-split group schemes. We will

introduce these group schemes in several steps.

1.1. Quasi-split group schemes over P1
\{0,∞}. We will assume G|P1

\{0,∞}
is a quasi-split reductive group. Moreover, we will assume that there is a finite

extension k′/k and an integer N with (N, p) = 1 such that G splits over the

tame extension [N ] : Gm,k′ → Gm,k′ defined by t 7→ tN . We may and will

assume that k′ contains all N -th roots of unity. We write µN for the group of

N -th roots of unity.

We will fix subgroups S ⊂ T |P1
\{0,∞} ⊂ B|P

1
\{0,∞} ⊂ G|P

1
\{0,∞}, where

S is a maximal split torus, T |P1
\{0,∞} is a maximal torus and B|P1

\{0,∞} is a

Borel subgroup. We also fix a quasi-pinning of G|P1
\{0,∞}.
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In order to describe our group schemes we will, for simplicity, assume that

k = k′. In general, the construction we give will be invariant under Gal(k′/k)

so that Galois-descent will then give the general case.

By [13, Exp. XXIV, Th. 3.11], these groups can be described explicitly

as follows. By assumption, there is a split reductive group G over k such that

[N ]∗G|Gm = G × Gm. The automorphism group of the covering [N ] is µN .

We fix T ⊂ B ⊂ G to be a split maximal torus and a Borel subgroup as well

as a pinning † of G.

This data defines a morphism σ : µN → Aut†(G), where Aut†(G) is the

automorphisms of G respecting the pinning. Let us denote by [N ]∗(G ×Gm)

the Weil restriction of G×Gm for the covering [N ]. Then µN acts on this Weil

restriction by the action of σ on G and by the action on the covering [N ]. We

will denote the diagonal action again by σ. Then descent implies

G|P1
\{0,∞}

∼= ([N ]∗(G×P1
\{0,∞}))

σ = (G×Gm)/(µN ).

1.2. Level structures at 0 and ∞. Next we need to describe several ex-

tensions of G|P1
\{0,∞} to P1. We will again denote by [N ] : P1 → P1 the

map given by t 7→ tN . The group G|P1
\{0,∞} will be extended as the (special)

Bruhat-Tits group G defined by the convex function, which is 0 on all roots.

Since we assumed that G|P1
\{0,∞} splits over a tame extension, this group can

be described as the connected component of the group ([N ]∗(G×P1))σ. The

subgroups S ⊂ T |P1
\{0,∞} ⊂ B|P

1
\{0,∞} ⊂ G|P

1
\{0,∞} define closed subgroups

S ⊂ T ⊂ B ⊂ G.

We will need to introduce level structures at 0 and ∞. These will cor-

respond to the first steps of the Moy-Prasad filtration of G. A self-contained

exposition of the construction of these group schemes can be found in the

preprint of Yu [37].

We first consider tori. For a split torus T = Gr
m ×P1, we will denote by

T (m0,m∞) the smooth group scheme over P1 such that

T (m0,m∞)|P1
\{0,∞} = Gr

m ×P1
\{0,∞},

T (m0,m∞)(OP1,0) = {g ∈ T (OP1,0)|g ≡ 1 mod tm0},
T (m0,m∞)(OP1,∞) = {g ∈ T (OP1,∞)|g ≡ 1 mod sm∞}.

This also defines a filtration for induced tori. For an arbitrary torus T , pick an

embedding into an induced torus T ↪→ I and define the filtration by pulling

back the filtration on I. By [37, §4], this definition is independent of the

chosen embedding, and since we assumed that T splits over a tame extension,

the subgroups define connected groups.

For reductive groups G|P1
\{0,∞}, we want to define models G(m0,m∞) for

m0,m∞ ∈ {0, 1, 2}, corresponding to the m0-th (resp. m∞-th) step in the

Moy-Prasad filtration of the Iwahori subgroup at 0 (resp. ∞).
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First assume that G = G×P1 is a split, semisimple group. As before, we fix

S = T ⊂ B ⊂ G to be a split maximal torus, a Borel subgroup and a pinning of

G. We denote by U ⊂ B the unipotent subgroup. Denote by Φ = Φ(G,S) the

set of roots and by Φ± ⊂ Φ the set of positive and negative roots with respect

to the chosen Borel subgroup. Let α1, . . . , αr denote the positive simple roots

of G, and let {θj} denote the highest roots of G (one for each simple factor of

G). Finally, for each root α, let Uα denote the corresponding root subgroup

of G.

We will consider the following bounded subgroups of G(k[[s]]):

I(0) := {g ∈ G(k[[s]])|g mod s ∈ B} is the Iwahori subgroup,

I(1) := {g ∈ G(k[[s]])|g mod s ∈ U} is the unipotent radical of I(0).

To describe I(2), let f : Φ ∪ {0} → N be the concave function defined by

f(0) = 1 and

f(α) =


0 if α ∈ Φ+ \ {αi} is positive, but not simple,

1 if α = αi is a positive simple root,

1 if α ∈ Φ− \ {−θj},
2 if α = −θj is the negative of a highest root.

I(2) ⊂ G(k[[s]]) denotes the bounded subgroup defined by the concave

function f , i.e., the subgroup generated by {u ∈ Uα|u ≡ 1 mod sf(i)} and

{g ∈ T (k[[s]])|g ≡ 1 mod s}.
Note that by definition, I(1)/I(2) ∼= ⊕α simple affineGa is isomorphic to the

sum of the root subgroups Uα ⊂ G(k[[s]]) for which α is a simple affine root.

Similarly, we define I(i)opp ⊂ G(k[[t]]) to be the analogous groups obtained by

using the opposite Borel subgroup Bopp in the above definition.

Example. For G = SLn, we choose S = T to be the diagonal matrices

and B the upper triangular matrices. Then the subgroup I(0) ⊂ SLn(k[[s]])

is the subgroup of matrices such that the lower diagonal entries are divisible

by s. I(1) ⊂ I(0) is the subgroup such that the diagonal entries are elements

of 1 + sk[[s]].

The root subgroups of SLn for the simple roots are given by the above-

diagonal entries ai,i+1, and the U−α̃ of the negative of the longest root is given

by the entry in the lower left corner. So I(2) consists of matrices of the formá
1 + sk[[s]] sk[[s]] k[[s]] k[[s]]

sk[[s]] 1 + sk[[s]] sk[[s]] k[[s]]

sk[[s]] sk[[s]] 1 + sk[[s]] sk[[s]]

s2k[[s]] sk[[s]] sk[[s]] 1 + sk[[s]]

ë
.
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We obtain an isomorphism I(1)/I(2) ∼= An by mapping a matrix (aij) to the

leading coefficients of the entries ai,i+1 and an,1.

For a general, split reductive group G = G×P1, we consider the derived

group Gder and the connected component of the center Z(G)◦, which is a torus.

We will temporarily denote by IGder
(i), Iopp

Gder
(i) the groups defined above for

the semisimple group Gder and define

I(i) := Z(G)◦(i)(k[[s]]) · IGder(i) ⊂ G(k[[s]])

and similarly I(i)opp := Z(G)◦(i,m∞)(k[[t]])Iopp
Gder

(i).

For split, reductive groups G = G×P1, the group G(m0,m∞) denotes the

Bruhat Tits group scheme such that

G(m0,m∞)|P1
\{0,∞} = G×Gm,

G(m0,m∞)(O∞) = I(m∞), and

G(m0,m∞)(O0) = I(m0)opp.

Finally, for a general quasi-split group, we define

G(m0,m∞) :=
(Ä

[N ]∗G(m0,m∞)
äσ)◦

.

Note that for tori, this does not give a new definition.

We will abbreviate:

I(m∞) := G(m0,m∞)(O∞),

I−(m0) := G(m0,m∞)(P1 − {∞}).

Recall from [33] that the groups I(m) have a natural structure as (infinite

dimensional) group schemes over k.

1.3. Affine generic characters. As indicated before, our construction de-

pends on the choice of a character of I(1). We call a linear function φ : I(1)/I(2)

→ A1 generic if for any simple affine root α, the restriction of φ to Uα is non-

trivial. Throughout we will fix such a generic φ.

We will fix a nontrivial additive character ψ : Fp → Q` and denote the

character k → Q` defined as ψ ◦ Trk/Fp again by ψ. With this notation, the

character ψ ◦ φ is called an affine generic character of I(1).

1.4. Principal bundles. Having defined our groups, we need to collect some

basic results on the geometry of the moduli stacks of G-bundles BunG . All of

these are well known for constant groups. (See, e.g., [24], or [14] for a recent

account.) In order to generalize these results to our setup we rely on [33] and

[23], where the corresponding results on twisted loop groups are explained. Let

us point out that, except for the computation of the connected components
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of BunG , all results are particular to group schemes over P1 that split over a

tamely ramified covering [N ] : P1 → P1.

First, we recall some results and notations from [23]. We denote by N
the normalizer of T and by W̃ := N (k((s)))/T (k[[s]]) the Iwahori-Weyl group.

Furthermore, denote by W0 := N (k((s)))/T (k((s))) the relative Weyl group.

This is isomorphic to the Weyl group of the reductive quotient of the special

fiber G∞,red (loc. cit., Prop. 13) and W̃ ∼= X∗(T )π1(P1
\{0,∞})

nW0.

Denote by Wa the affine Weyl group of the root system of G(k((s))),

which can be identified with the Iwahori-Weyl group of the simply connected

cover of the derived group of G ([23, p. 196]). This is a Coxeter group. Then

W̃ ∼= Wa n Ω, where Ω ∼= X∗(Z(Ǧ)π1(Gm)) is the stabilizer of an alcove.

Finally, for x ∈ P1 − {∞}, we denote by GrG,x the affine Grassmannian

(see [33]) so that GrG,x(k) = G(Kx)/G(Ox). It can also be defined as the

ind-scheme parametrizing G-bundles P on P1 together with a trivialization

ϕ : P|P1\{x}
∼=−→ GP1\{x} (see, e.g., [25]).

Proposition 1.1. Assume that the ground field k is either finite or al-

gebraically closed. Let G = G(0, 0) over P1 be a generically quasi-split group

scheme, constructed as in Section 1.2. Then the following hold :

(1) For any x ∈ P1, the canonical map GrG,x → BunG has sections, locally in

the smooth topology on BunG . Moreover, this map is essentially surjective

on k points ; i.e., for any G-bundle over P1, its restriction to P1\{x} is

trivial.

(2) π0(BunG) ∼= π1([N ]∗G|Gm)π1(Gm)
∼= Ω.

(3) Every G(0, 0)-bundle on P1 admits a reduction to T .

(4) (Birkhoff-Grothendieck decomposition)

G(0, 0)(k((s))) =
∐
w∈‹W I−(0) · W̃ · I(0).

(5) For n ∈ {0, 1, 2},m ∈ {0, 1}, the map BunG(m,n) → BunG(0,0) is an

I−(0)/I−(m)×I(0)/I(n)-torsor. In particular, π0(BunG(m,n))∼=π0(BunG).

If G = G×P1 is a split group, a proof of this result can be found in [14]

or [24]. Since the case of split groups was our starting point, we will postpone

the proof of the general case to Appendix A. For γ ∈ Ω, we will denote by

BunγG(m,n) the corresponding connected component of BunG(m,n).

Let us collect some consequences of this result.

Corollary 1.2. Let n ∈ {0, 1, 2},m ∈ {0, 1}. Any γ ∈ Ω defines an

isomorphism Hkγ : BunG(m,n) → BunG(m,n). This induces an isomorphism of

the connected components Bun0
G(m,n) → BunγG(m,n).

In particular, all connected components of BunG(m,n) are isomorphic.
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Proof. By Propostiion 1.1(2), the connected components of BunG(m,n)

are indexed by Ω ⊂ W̃ . Since Ω is the stabilizer of the alcove defining I(0)opp,

any γ ∈ Ω normalizes I(0)opp and its unipotent radical I(1)opp. Thus Ω acts

by right multiplication on GrG(m,n),0 = G(k((t)))/I(m)opp. This defines an

isomorphism Hkγ : BunG(m,n) → BunG(m,n). Moreover, [23, Lemma 14] im-

plies that the restriction of this map to Bun0
G(m,n) induces an isomorphism

Bun0
G(m,n) → BunγG(m,n). �

Corollary 1.3. (1) Denote by G(P1) the automorphism group of the

trivial G-bundle. Then the inclusion BG(P1) → BunG is an affine, open

embedding.

(2) Denote by T (P1) = H0(P1, T ) = H0(P1,G(0, 0)) the automorphism group

of the trivial G(0, 0)-bundle. The inclusion of the trivial bundle defines an

affine open embedding B(T (P1)) ↪→ BunG(0,0).

(3) The trivial G(0, 1)-bundle defines an affine, open embedding Spec(k) ↪→
Bun0

G(0,1).

(4) Applying the action of I(1)/I(2) on BunG(0,2) to the trivial G(0, 2)-bundle,

we obtain a canonical map j0 : I(1)/I(2) ↪→ BunG(0,2). This is an affine

open embedding.

(5) For any γ ∈ Ω, the map

jγ := Hkγ ◦j0 : I(1)/I(2) ↪→ BunG(0,2)

is an affine open embedding, called the big cell.

(6) Applying the action of T red
0 × I(1)/I(2) on BunG(1,2) to the trivial G(1, 2)-

bundle, we obtain canonical affine embeddings

j̃0 : T red
0 × I(1)/I(2) ↪→ BunG(1,2) and

j̃γ := Hkγ ◦j̃0 : T red
0 × I(1)/I(2) ↪→ BunG(1,2).

Proof. Let us first recall why this corollary holds for GLn. For (1), note

that the only vector bundle on P1 of rank n with trivial cohomology is the

bundle O(−1)n. Therefore, the inverse of the determinant of cohomology line

bundle on BunGLn has a section vanishing precisely on the trivial bundle. This

proves (1) in this case. Next, recall that a GLn(0, 0) bundle is a vector bundle

together with full flags at 0 and ∞. Let us denote by Modi,0 : Bun0
GLn(0,0) →

BuniGLn(0,0) the i-th upper modification along the flag at 0. The inverse of this

map is given by the i-th lower modification, which we will denote by Mod−i,0.

To prove (2), denote by Modi,∞ the i-th modification at ∞. The trivial

GLn(0, 0)-bundle is the bundle given by On and the canonical opposite flags

(Vi,0)i=0,...,n of the fiber (On)0 at 0 and (Vi,∞)i=0,...,n at ∞. This is the only

GLn(0, 0)-bundle (E , Vi,0, Vi,∞) of degree 0 on P1 such that the complex E →
E0/Vi,0⊕E∞/Vn−i,∞ has trivial cohomology for all i. Thus again, the inclusion
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of the trivial GLn(0, 0) bundle in BunGLn(0,0) is defined by the nonvanishing

of sections of line bundles.

For general G, we pick a faithful representation ρ : G → GLn × P1. This

defines a map BunG → BunGLn . The Birkhoff-Grothendieck decomposition

implies that a G-bundle is trivial if and only if the associated GLn-bundle

is trivial. Moreover, in order to check that the reductions to B at 0,∞ are

opposite, it is also sufficient to check this on the induced GLn-bundle. This

proves (1) and (2).

One can show that T (P1) = H0(P1, T ) ∼= T red
0 ; see the proof of the

claim in Appendix A. Now BunG(0,1) is a T red
0 -torsor over BunG(0,0). Thus the

preimage of the affine open embedding B(T (P1)) ↪→ BunG(0,0) from (2) is the

point Spec(k) defined by the trivial G(0, 1)-bundle. This proves (3) .

(4) follows from (3) because the map BunG(0,2) → BunG(0,1) is an I(1)/I(2)-

torsor. By Corollary 1.2, (5) follows from (4). Finally (6) follows from (5) since

BunG(1,2) → BunG(0,2) is a T red
0 -torsor. �

2. Eigensheaf and eigenvalues: Statement of main results

In this section we will construct the automorphic sheaf Aφ. We will also

state our main results about the local and global monodromy of the Klooster-

man sheaf KlLG(φ, χ), which will be defined to be the eigenvalue of Aφ.

2.1. The eigenfunction. In this subsection we give a simple formula for

an eigenfunction in Gross’s automorphic representation π mentioned in the

introduction. Surprisingly, this calculation turns out to be independent of

Gross’s result.

We set k to be a finite field and K = k(t). The completions of K at t = 0

and t = ∞ are denoted by k((t)) and k((s)). We will use the generic affine

character ψ ◦ φ : I(1)/I(2)→ Q` chosen in Section 1.3.

By Proposition 1.1, we know

BunG(0,2)(k) = G(K)\G(0, 2)(AK)/
∏
x

G(0, 2)(Ox)

= I−(0)\G(k((s)))/I(2)

and

G(k((s))) =
∐
w∈‹W I−(0)wI(1).

Suppose we were given, as in the introduction, an automorphic represen-

tation π = ⊗′πν of G(AK) such that for ν 6∈ {0,∞}, the local representation

πν is unramified, π0 is the Steinberg representation and such that π∞ occurs in

c-Ind
G(k((s)))
Z(G(0,1))×I(1)(ψ ◦ φ). Then there exists a function f on BunG(0,2)(k) such

that f(gh) = ψ(φ(h))f(g) for all h ∈ I(1).
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The following lemma characterizes such functions in an elementary way.

Lemma 2.1. Let f : BunG(0,2)(k) → Q` be a function such that for all

h ∈ I(1), g ∈ G(0, 2)(k((s))), we have f(gh) = ψ(φ(h))f(g). Then f is uniquely

determined by the values f(γ) for γ ∈ Ω. Moreover, f(w) = 0 for all w ∈
W̃ − Ω.

Proof. For any w ∈ W̃ with l(w) > 0, there exists a simple affine root αi
such that w(αi) is negative. This implies that wUαiw

−1 ⊂ I−(0). This implies

that for all u ∈ Uαi , we have ψ(φ(u))f(w) = f(wu) = f(w) so f(w) = 0.

For w with l(w) = 0, i.e., w ∈ Ω, the value of f(γ) can be arbitrary by

Corollary 1.3. �

Remark 2.2. Any function f in the above lemma is automatically cuspidal.

In fact, for any parabolic Q ⊂ G with unipotent radical NQ, the constant term

function

fNQ(g) =

∫
NQ(K)\NQ(AK)

f(ng)dn

is left invariant under NQ(k((s))) and right equivariant under I∞(1) against

the character ψ ◦ φ. A similar argument as in Lemma 2.1 shows that such a

function must be zero.

2.2. The automorphic sheaf Aφ,χ. Let us reformulate the preceding obser-

vation geometrically. Denote by ASψ the Artin-Schreier sheaf onA1 defined by

the character ψ. We set ASφ := φ∗(ASψ), the pull-back of the Artin-Schreier

sheaf to I(1)/I(2) ∼= Ad.

Let us denote by Perv(BunG(0,2))
I(1),ASφ the category of perverse sheaves

on BunG(0,2) that are (I(1),ASφ)-equivariant. We will use this notation more

generally for any stack with an action of I(1)/I(2).

For any γ ∈ Ω, denote by jγ : I(1)/I(2) ↪→ BunγG(0,2) the embedding of the

big cell and by iγ : Spec(k) → BunγG(0,2), the map given by the G(0, 2) bundle

defined by γ.

The following is the geometric analog of Lemma 2.1.

Lemma 2.3. The sheaf ASφ satisfies jγ,! ASφ = jγ,∗ASφ. Moreover, for

any γ ∈ Ω, the functor

Perv(Gm)→ Perv(BunγG(0,2) ×Gm),

F 7→ jγ,! ASφ�F [dim(BunG(0,2))]

is an equivalence of categories. An inverse is given by

K 7→ (iγ × idP1
\{0,∞}

)∗K[−dim(BunG(0,2))].
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Proof. For any w ∈ W̃ − Ω, we pick a representative in N (T ((t))), again

denoted by w. Consider the G(0, 2)-bundle Pw defined by w. Let Uα ⊂ I(1) be a

root subgroup corresponding to a simple affine root α such that w.α is negative,

i.e., such that Uw.α ⊂ I−(0). This defines an inclusion Uα ↪→ Aut(Pw). Thus

we get a commutative square

Uα × Spec(k)

(id,Pw)

��

// Spec(k)

Pw
��

Uα × BunG(0,2)
act // BunG(0,2).

This implies that (ASφ |Uα) �K|Pw ∼= Q`|Uα �K|Pw . Since we assumed that

ASφ |Uα is defined by a nontrivial character of Uα, it follows that the stalk of

K at Pw vanishes. Dually, the same result holds for the costalk of K at Pw.

This proves our first claim. Also for our second claim, this implies that

any (I(1),ASφ)-equivariant perverse sheaf on BunγG(0,2) is its !-extension form

the substack jγ(I(1)/I(2)). On this substack, tensoring with the local sys-

tem ASφ gives an equivalence between (I(1)/I(2))-equivariant sheaves and

(I(1)/I(2),ASφ)-equivariant sheaves. This proves our claim. �

Using this lemma we can now define our automorphic sheaf.

Definition 2.4. We define Aφ ∈ Perv(BunG(0,2))
I(1),ASφ to be the perverse

sheaf given on the component BunγG(0,2) by jγ,! ASφ[dim(BunG(0,2))]. We will

denote by Aγφ the restriction of Aφ to the component BunγG(0,2).

Remark 2.5 (A variant with multiplicative characters). We can generalize

the above construction of Aφ slightly. Recall that the open cell in BunγG(1,2) is

canonically isomorphic to T red
0 × I(1)/I(0). Any character χ : T red

0 (k) → Q`

defines a rank-one local system Kumχ on the torus T red
0 . Then Lemma 2.3 also

holds for (T red
0 × I(1)/I(0),Kumχ � ASφ)-equivariant sheaves on BunG(1,2).

Definition 2.6. We define Aφ,χ ∈ Perv(BunG(0,2)) to be the perverse sheaf

given on the component BunγG(0,2) by jγ,!(Kumχ � ASφ)[dim(BunG(0,2))].

2.3. The geometric Hecke operators. In order to state our main result, we

need to recall the definition of the geometric Hecke operators. The stack of

Hecke modifications is the stack

HeckeA
1

G(m,n)(S) :=

〈
(E1, E2, x, ϕ)

∣∣∣ Ei ∈ BunG(m,n)(S), x : S → A1,

ϕ : E1|P1−x×S
∼=−→ E2|P1−x

〉
.
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This stack has natural forgetful maps:

(2.7) HeckeA
1

G(m,n)

pr1

xx

pr2

((

pr
A1 // A1

BunG(m,n) BunG(m,n) ×A1.

Set Hecke
P1\{0,∞}
G(m,n) := pr−1

A1(P1
\{0,∞}).

Remark 2.8. (1) The fiber of pr1 over the trivial bundle G(m,n) ∈ BunG
is called the Beilinson-Drinfeld Grassmannian. It will be denoted by

GRG(m,n). The fibers of GRG → A1 over a point x ∈ P1
\{0,∞} are iso-

morphic to the affine Grassmannian GrG,x, the quotient G(Kx)/G(Ox).

(2) The geometric fibers of pr2 over BunG(m,n)×P1
\{0,∞} are (noncanonically)

isomorphic to the affine Grassmannian GrG. Locally in the smooth topol-

ogy on BunG ×P1
\{0,∞}, this fibration is trivial (e.g., Remark 4.1).

(3) The diagram (2.7) has a large group of symmetries. The group I(0)/I(2)

= (I(1)/I(2))oT red
∞ acts on BunG(m,2) by changing the I(2)-level structures

at ∞, and this action extends to the diagram (2.7). (That is, it also acts

on HeckeA
1

G(m,2) and the maps pri are equivariant under these actions.)

The 1-dimensional torus Grot
m acts on the curve P1 fixing the points {0}

and {∞}; hence, it also acts on (2.7). Finally, the pinned automorphisms

Aut†(G) act on (2.7). So we see that the group I(0)/I(2)o(Grot
m ×Aut†(G))

acts on the diagram (2.7).

Let us first recall the Hecke-operators for constant group schemes. For

this, we collect some facts about the geometric Satake equivalence (see [30],

[18] and [31]).

Let GrG = G((τ))/G[[τ ]] be the abstract affine Grassmannian, without

reference to any point on P1
\{0,∞}. Let O = k[[τ ]], and let AutO be the pro-

algebraic k-group of continuous (under the τ -adic topology) automorphisms

of O. Then G[[τ ]]oAutO acts on GrG from the left. The G[[τ ]] orbits on GrG
are indexed by dominant cocharacter µ ∈ X∗(T )+. The orbits are denoted by

GrG,µ, and their closures (the Schubert varieties) are denoted GrG,≤µ. We de-

note the intersection cohomology sheaf of on GrG,≤µ by ICµ. We will normalize

ICµ to be of weight 0 (see Remark 2.10).

The Satake category Sat = PervAutO(G[[τ ]]\G((τ))/G[[τ ]]) is the category

ofG[[τ ]]oAutO-equivariant perverse sheaves (with finite-type support) on GrG.

Similarly, we define Satgeo by considering the base change of the situation to k.

Finally we define the normalized semisimple Satake category S to be the full

subcategory of Sat consisting of direct sums of ICµ’s.

In [31] and [18], it was shown that
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• Satgeo carries a natural tensor structure (which is also defined for Sat) such

that the global cohomology functor h = H∗(GrG,−) : Satgeo → Vec is a

fiber functor.

• Aut⊗(h) is a connected reductive group over Q`, which is Langlands dual

to G. Let Ǧ := Aut⊗(h). Then the Tannakian formalism gives the geo-

metric Satake equivalence of tensor categories

Satgeo ∼= Rep(Ǧ).

• By construction, Ǧ is equipped with a maximal torus Ť , and a natural

isomorphism X∗(Ť ) ∼= X∗(T ). (In fact, Ǧ is equipped with a canonical

pinning; see Lemma B.3.) The geometric Satake equivalence sends ICµ

to the irreducible representation Vµ of extremal weight µ. We denote the

inverse of this equivalence by V 7→ ICV .

Remark 2.9. In [1, §3.5], it was argued that S is closed under the tensor

structure on Sat. Therefore S is naturally a tensor category.

The pull-back along GrG⊗kk → GrG gives a tensor functor S → Satgeo,

which is easily seen to be an equivalence because both categories are semisimple

with explicit simple objects. Therefore, the above results in [31] and [18]

all apply to S. In particular, we have the (semisimplified k-version of) the

geometric Satake equivalence

S ∼= Satgeo ∼= Rep(Ǧ).

Remark 2.10 (Normalization of weights). We use the normalization mak-

ing the complex ICµ pure of weight 0; i.e., we choose a square root of q in Q`

and denote by ICµ the intersection complex, tensored by Q`(
1
2 dim(Grµ)).

As was pointed out in [15], it is not necessary to make this rather unnatural

choice, which is made to obtain the group Ǧ from the category S. Alternatively,

we can enlarge the category S by including all Tate-twists of the intersection

cohomology sheaves ICµ(n). By the previous remark, this is still a neutral

tensor category, defining group Ǧ1, which is an extension of Ǧ by a central,

1-dimensional torus.

The stack Hecke
P1\{0,∞}
G(m,n) is a locally trivial fibration over BunG(m,n) ×

P1
\{0,∞} with fiber GrG, and the G[[τ ]]-orbits Grµ on GrG define substacks

HeckeP
1\{0,∞}

µ ⊂ Hecke
P1\{0,∞}
G(m,n) . By abuse of notation we will also denote by

ICµ the intersection cohomology complex of HeckeP
1\{0,∞}

µ , shifted in degree

such that ICµ restricts to the intersection complex on every fiber.

One defines the geometric Hecke operators as a functor (see [17]):

Hk : Rep(Ǧ)×Db(BunG(m,n))→Db(BunG(m,n) ×P1
\{0,∞}),

(V,K) 7→HkV (K) := pr2,!pr∗1(K ⊗ ICV ).
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In order to compose these operators, one extends HkV to an operator

Db(BunG(m,n) ×P1
\{0,∞})→ Db(BunG(m,n) ×P1

\{0,∞}),

defined as K 7→ pr2!((pr1 × prP1
\{0,∞}

)∗K ⊗ ICV ).

2.4. Local systems as eigenvalues. By a Ǧ-local system E on P1
\{0,∞}, we

mean a tensor functor

E : Rep(Ǧ)→ Loc(P1
\{0,∞}).

For such a Ǧ-local system E, we denote its value on V ∈ Rep(Ǧ) by EV , which

is a Q`-local system on P1
\{0,∞} in the usual sense.

Definition 2.11 (See [17] for details). Let E be a Ǧ-local system onP1
\{0,∞}.

A Hecke eigensheaf with eigenvalue E is a perverse sheaf K ∈ Perv(BunG(m,n))

together with isomorphisms HkV (K)
∼→ K � EV , which are compatible with

the symmetric tensor structure on Rep(Ǧ) and composition of Hecke corre-

spondences.

Remark 2.12. Since local systems are usually introduced differently, let us

briefly recall how the tensor functor E allows us to reconstruct the monodromy

representation of the local system. This will be useful to fix notations for

the monodromy representation. Choose a geometric point η over SpecK0 ∈
P1
\{0,∞}. The restriction to η defines a tensor functor

(2.13) ωE : S E−→ Loc(P1
\{0,∞})

j∗
η−→ Vec,

i.e., (see [12, Th. 3.2]) a Ǧ torsor with an action of π1(P1
\{0,∞}, η). Choosing a

point of the torsor, this defines the monodromy representation

(2.14) ϕ : π1(P1
\{0,∞}, η)→ Ǧ(Q`).

We denote by ϕgeo the restriction of ϕ to πgeo
1 (P1

\{0,∞}, η) = π1(P1
\{0,∞}⊗kk, η)

and call it the global geometric monodromy representation of E.

The analog of this construction for twisted groups G will produce LG-local

systems. Here we define the L-group of G to be LG = Ǧo 〈σ〉, where σ is the

automorphism of order N of G used in the definition of G. This automorphism

induces an automorphism of Ǧ via the geometric Satake isomorphism. In

Lemma B.3 we will check that this automorphism indeed preserves the pinning

of Ǧ.

Let us give a definition of LG-local systems that is sufficient for our pur-

poses. The reason why we cannot immediately apply the geometric Satake

isomorphism is that the fibers of pr2 are not constant along P1
\{0,∞}, so only

some of the Hecke operators HkV will define global Hecke operators over



KLOOSTERMAN SHEAVES FOR REDUCTIVE GROUPS 261

P1
\{0,∞}. However, we can pull back the convolution diagram by the map

[N ] : P1
\{0,∞} → P1

\{0,∞}. We will denote this covering by ‹P1
\{0,∞} → P1

\{0,∞}.

After pull-back we can, as before, define Hecke operators on Hecke
P̃1
\{0,∞}

G(m,n) :

Hk: Rep(Ǧ)×Db(BunG(m,n))∼=S×Db(BunG(m,n))→Db(BunG(m,n)×‹P1
\{0,∞}).

Moreover, the covering group µN acts on the convolution diagram over ‹P1
\{0,∞}.

This defines a µN -equivariant structure on the functor Hk. On the source, µN
acts on S via σ : µN → Aut†(G), which can be identified with the action of

Aut†(Ǧ) on Rep(Ǧ) (Lemma B.3); on the target µN acts on ‹P1
\{0,∞}.

Let E be a Ǧ-local system on ‹P1
\{0,∞} together with compatible isomor-

phisms ζ∗E ∼= E ×Ǧ,σ(ζ) Ǧ for ζ ∈ µN . We view E as a tensor functor

E : Rep(Ǧ)→ Loc(‹P1
\{0,∞})

together with a µN -equivariant structure. We can define a Hecke eigensheaf

K ∈ Perv(BunG(m,n)) with eigenvalue E as before, but now we have to specify

an isomorphism of functors ε(V ) : HkV (K)
∼→ K � EV compatible with the

tensor structure on Rep(Ǧ) that commutes with the µN -equivariant structures

of the functor V 7→ HkV (K) and the functor E.

Note that if σ : µN → Aut(G) is trivial, the isomorphisms ζ∗E ∼= E×Ǧ,σ(ζ)

Ǧ define a descent datum for E. So in this case the definition coincides with

the definition for constant groups.

With these definitions we can state our first main result.

Theorem 1. (1) The sheaves A = Aφ and Aφ,χ (see Definitions 2.4 and

2.6) are Hecke eigensheaves. We will denote the eigenvalue of Aφ (resp.

Aφ,χ) by KlLG(φ) (resp. KlLG(φ, χ)).

(2) If G = P1 × G is a constant group scheme, the local system KlǦ(φ) is

tamely ramified at 0. The monodromy action at 0 on KlǦ(φ) is given by a

principal unipotent element in Ǧ.

(3) For any irreducible representation V ∈ Rep(Ǧ), the sheaf KlLG(φ, χ)V is

pure.

Since we defined KlǦ(φ) using geometric Hecke operators, for any point

x ∈ P1
\{0,∞} the Ǧ-conjugacy class of Frobx defined by the local system is given

by the Satake parameter of Gross’s automorphic form π(φ) at x.

2.5. The monodromy representation. In this section, we assume G = G

× P1, where G is an almost simple split group over k. As in Remark 2.12,

we will denote by ϕ the monodromy representation for KlǦ(φ) and by ϕgeo its

geometric monodromy representation.
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Our next result is about the geometric monodromy of KlǦ(φ, χ) at∞. Let

KlAd
Ǧ

(φ, χ) be the local system on P1
\{0,∞} induced from the adjoint represen-

tation V = ǧ. Fixing an embedding of the local Galois group Gal(Ksep
∞ /K∞)

into π1(P1
\{0,∞}, η), we get an action of Gal(Ksep

∞ /K∞) on the geometric stalk

of KlAd
Ǧ

(φ, χ) at the formal punctured discs SpecKsep
∞ . Choosing an identifica-

tions of this stalk with ǧ, we get an action of Gal(Ksep
∞ /K∞) on ǧ (well defined

up to Ǧ-conjugacy).

Let I∞ ⊂ Gal(Ksep
∞ /K∞) be the inertia group. Let I+

∞ ⊂ I∞ be the wild

inertia group and It∞ = I∞/I
+
∞ be the tame inertia group.

Theorem 2. Suppose p = char(k) is good for G if G is not simply-laced

(i.e., p > 2 when G is of type Bn, Cn and p > 3 when G is of type F4, G2).

Then

• Swan∞(KlAd
Ǧ

(φ, χ)) = r(Ǧ), the rank of Ǧ;

• ǧI∞ = 0.

The Swan equality will be proved in Corollary 5.1; the vanishing of

I∞-invariants will be proved in Proposition 5.3(2). Combining this theorem

with a result of Gross and Reeder [22, Prop. 5.6], we get an explicit description

of the geometric monodromy of KlǦ(φ, χ) at ∞.

Corollary 2.15 (Gross-Reeder). Suppose p = char(k) does not divide

#W . Then the local geometric Galois representation ϕgeo
∞ : I∞ → Ǧ is a simple

wild parameter defined in [22, §6]. More precisely, up to Ǧ-conjugation, we

have a commutative diagram of exact sequences

I+
∞ //

ϕgeo,+
∞
��

I∞ //

ϕgeo
∞
��

It∞

��
Ť // N(Ť ) // W,

where

• A topological generator of the tame inertia It∞ maps to a Coxeter element

Cox ∈W (well defined up to W -conjugacy ; see [6, Ch.V,§6]).

• The wild inertia I+
∞ maps onto a subgroup Ť (ζ) ⊂ Ť [p]. Here ζ ∈ F×p is a

primitive h-th root of unity (h is the Coxeter number) and Ť (ζ) ⊂ Ť [p] is

the unique Fp[Cox]-submodule of Ť [p] isomorphic to Fp[ζ] (on which Cox

acts by multiplication by ζ).

• The nonzero breaks of the I∞-representation KlAd
Ǧ

(φ, χ) are equal to 1/h.

Finally, we can state our result on the global geometric monodromy of

KlǦ(φ). Let Ǧgeo ⊂ Ǧ be the Zariski closure of the image of the global geo-

metric monodromy representation ϕgeo.
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Theorem 3. Suppose char(k) > 2. Then the geometric monodromy group

Ǧgeo for KlǦ(φ) is connected and

• Ǧgeo = ǦAut†(Ǧ),◦ if Ǧ is not of type A2n (n ≥ 2) or B3,

• Ǧgeo = Ǧ if Ǧ is of type A2n,

• Ǧgeo = G2 if Ǧ is of type B3 and char(k) > 3.

The proof will be given in Section 6.2.

2.6. Variant. There is a variant of our construction using D-modules in-

stead of `-adic sheaves. The base field is then taken to be k = C. The

Artin-Schreier local system ASψ is replaced by the exponential D-module

C〈x, ∂x〉/(∂x − 1) on A1
C = SpecC[x]. All the rest of the construction car-

ries through, and we get a tensor functor

KlLG(φ)dR : Rep(LGC)→ Conn(P1
\{0,∞},C),

where Conn(P1
\{0,∞},C) is the tensor category of vector bundles with connec-

tions on P1
\{0,∞},C.

We conjecture that our construction should give the same connection as

the Frenkel-Gross construction. To state this precisely, let G be almost simple

and G be a quasi-split form of G over P1
\{0,∞} given by σ : µN → Aut†(G).

Recall from [15, §5] the Frenkel-Gross connection on the trivial LG-bundle on

P1
\{0,∞},C:

∇LG(X̌0, . . . , X̌rσ) = d+
rσ∑
i=0

X̌i
d

dz
,

where rσ is the rank of Gσ and X̌i is a basis of the (−αi)-root space of the

(twisted) affine Kac-Moody Lie algebra associate to ǧ and σ.

Conjecture 2.16. There is a bijection between the set of generic linear

functions φ : I(1)/I(2) → Ga,C and the set of bases (X̌0, . . . , X̌rσ) such that

whenever φ corresponds to (X̌0, . . . , X̌rσ) under this bijection, there is a natural

isomorphism between LG-connections on P1
\{0,∞},C:

KlLG(φ)dR
∼= (LG,∇LG(X̌0, . . . , X̌rσ)).

After the paper was written, we learned that Xinwen Zhu [38] has obtained

a proof of this conjecture.

3. Example: Kloosterman sheaf for GLn

In this section, we calculate the Kloosterman sheaf KlGLn(φ, χ) for the

constant group G = GLn over P1. Its Langlands dual is GLn,Q`
and we

will denote the standard representation by Std. Describing this GLn-local

system over P1
\{0,∞} is then the same as describing the rank-n local system
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KlStd
GLn(φ, χ). We will see that this rank-n local system coincides with the

classical Kloosterman sheaf defined by Deligne in [10].

3.1. Another modular interpretation. We want to interpret GLn(1, 2)-bun-

dles in terms of vector bundles. We first define a variant of BunGLn(1,2). Let

Bunn,1,2 be the stack classifying the data (E , F ∗E , {vi}, F∗E , {vi}) where

(1) E is a vector bundle of rank n on P1;

(2) a decreasing filtration F ∗E giving a complete flag of the fiber of E at 0:

E = F 0E ⊃ F 1E ⊃ · · · ⊃ FnE = E(−{0});

(3) a nonzero vector vi ∈ F i−1E/F iE for each i = 1, . . . , n;

(4) an increasing filtration F∗E giving a complete flag of the fiber of E at ∞:

E(−{∞}) = F0E ⊂ F1E ⊂ · · · ⊂ FnE = E ;

(5) a vector vi ∈ FiE/Fi−2E that does not lie in Fi−1E/Fi−2E for i = 1, . . . , n.

(We understand F−1E as (Fn−1E)(−{∞}).)
Note that Bunn,1,2 is the moduli stack of G-torsors over P1, where G is

the Bruhat-Tits group scheme over P1 such that

• G|P1
\{0,∞}

= GLn × (P1
\{0,∞}),

• G(O0) = IGLn(1)opp,

• G(O∞) = ZGLn(1)(k[[s]]) · ISLn(2) ⊃ IGLn(2).

The only difference between G and GLn(1, 2) is that they take different

level structures for the center Gm = ZGLn at ∞. Therefore we have a natural

morphism GLn(1, 2)→ G, hence a natural morphism BunGLn(1,2) → Bunn,1,2,

which is a Ga-torsor.

Choosing a trivialization of the bundle E over P1
\{0,∞}, we can rewrite the

moduli problem for Bunn,1,2 in the following way. Let Λ be the free k[t, t−1]-

module with basis {e1, . . . , en}. Let ei+jn = tjei for 1 ≤ i ≤ n and j ∈ Z. Then

Λ is a k-vector space with basis {ei}i∈Z. For any k-algebra R, an R[t]-lattice

in R ⊗ Λ is an R[t]-submodule Λ′ ⊂ R ⊗ Λ such that there exists M ∈ Z>0

such that

SpanR{ei|i > M} ⊂ Λ′ ⊂ SpanR{ei|i ≥ −M}

and that both Λ′/SpanR{ei|i > M} and SpanR{ei|i ≥ −M}/Λ′ are projective

R-modules. Similarly, we can define the notion of R[t−1]-lattices in R⊗ Λ.

Let fiBunn,1,2(R) classify the data (Λ∗, {vi}0≤i≤n−1,Λ∗, {vi}1≤i≤n).

(1) R ⊗ Λ ⊃ Λ0 ⊃ Λ1 ⊃ · · · ⊃ Λn = tΛ0 is a chain of R[t]-lattices such that

Λi/Λi+1 is a projective R-module of rank 1. We let Λi+jn = tjΛi for any

1 ≤ i ≤ n and j ∈ Z.

(2) vi ∈ Λi/Λi+1 is an R-basis for i = 0, . . . , n− 1.
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(3) R ⊗ Λ ⊃ Λn ⊃ Λn−1 ⊃ · · · ⊃ Λ0 = t−1Λn is a chain of R[t−1]-lattices such

that Λi/Λi+1 is a projective R-module of rank 1. We let Λi+jn = tjΛi for

any 1 ≤ i ≤ n and j ∈ Z.

(4) vi ∈ Λi/Λi−2 whose image in Λi/Λi−1 is an R-basis, for i = 1, . . . , n.

The group GLn(k[t, t−1]) (viewed as an ind-group scheme over k) acts

on Λ, and hence it acts on the stack fiBunn,1,2. Moreover, Bunn,1,2 is naturally

isomorphic to the quotient stack fiBunn,1,2/GLn(k[t, t−1]).

Associated with the chains of lattices (Λ∗,Λ∗) is the locally constant

integer-valued function on SpecR:

deg(Λ∗,Λ∗) := χR(Λ0 ⊕ Λ0
(ι0,ι0)−−−−→ R⊗ Λ).

Here ι0, ι0 are inclusion maps and the Euler characteristic on the right-hand

side is defined as rkR ker(ι0, ι0)− rkRcokerR(ι0, ι0).

For d∈Z, let Bundn,1,2 ⊂ Bunn,1,2 be the substack classifying {Λ∗, vi,Λ∗, vi}
with deg(Λ∗,Λ∗) = d.

The embedding of the big cell jd : T × Gn
a ↪→ Bundn,1,2 can be fixed as

follows. For a = (a1, . . . , an) ∈ T (R) = (R×)n and b = (b1, . . . , bn) ∈ Rn,

the point jd(a, b) ∈ Bun0
n,1,2(R) is given by the GLn(R[t, t−1])-orbit of the

following data:

(1) Λi = SpanR{ej |j > i} ⊂ R⊗ Λ,

(2) vi = ai+1ei+1 ∈ Λi/Λi+1,

(3) Λi = SpanR{ej |j ≤ i+ d} ⊂ R⊗ Λ,

(4) vi = ei+d + biei+d−1 ∈ Λi/Λi−2.

In particular, we have a base point ?d = jd(1, 0) ∈ Bundn,1,2. We denote

the k[t]-chain (resp. k[t−1]-chain) of ?d by Λ∗(?d) (resp. Λ∗(?d)). Notice that

the underlying vector bundle for any point jd(a, b) is the bundle

Ed = O(m+ 1)⊕r ⊕O(m)⊕n−r,

where m ∈ Z and 0 ≤ r ≤ n− 1 is uniquely determined by d = mn+ r.

3.2. The Kloosterman sheaf associated with the standard representation

of GLn. Let χ : T (k) → Q
×
` be a character, which defines a Kummer local

system Kumχ on T . The perverse sheaves

Adφ,χ = jd! (Kumχ[n] � φ∗ASψ[n])

on Bundn,1,2 form a Hecke eigensheaf on Bunn,1,2 by Theorem 1.
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Consider the Hecke correspondence Heckeω1 given by the coweight ω1 =

(1, 0, . . . , 0). (ω1 defines the representation Std.) We restrict it to the compo-

nents of Bun0 and Bun1 and the curve P1
\{0,∞}:

(3.1) Heckeω1

pr1

yy

pr2

((
Bun0

n,1,2 Bun1
n,1,2 × (P1

\{0,∞}).

We would like to evaluate the eigenvalue local system KlStd
GLn(φ, χ) on P1

\{0,∞}
characterized by

pr2,!pr∗1A
0
φ,χ[n− 1] ∼= A1

φ,χ � KlStd
GLn(φ, χ).

The intersection cohomology sheaf ICω1 on Hkω1 is simply Q`[n − 1] because

pr1 : Hkω1 → Bunn,1,2 is a Pn−1-bundle.1 We restrict the diagram (3.1) to the

fiber of ?1 × (P1
\{0,∞}) ⊂ Bun1

n,1,2 × (P1
\{0,∞}) under pr2 and the fiber GR◦ω1

over the big cell in Bun0
n,1,2 under pr1. We get

(3.2) GR◦ω1
//

pr1

yy

GRω1

pr1

zz

π

$$
T ×Gn

a

j0 // Bun0
n,1,2 P1

\{0,∞}.

The R-points of the open subscheme GR◦ω1
⊂ GRω1 classifies R[t, t−1]-homo-

morphisms M : R⊗Λ→ R⊗Λ sending the chains (Λ∗(?0),Λ∗(?0)) to (Λ∗(?1),

Λ∗(?1)) up to pre-composing with automorphisms of (R ⊗ Λ,Λ∗(?0),Λ∗(?0)).

With respect to the R[t, t−1]-basis {e1, . . . , en} of R⊗Λ, any such M takes the

form 
a1 tbn
b1 a2

b2 a3

. . .
. . .

bn−1 an



1In this calculation, we will not normalized ICω1 to be of weight 0, as we did in Re-

mark 2.10. So strictly speaking, the sheaf KlStd
GLn

(φ, χ) differs from the one defined in Sec-

tion 2.3 by a Tate twist (n−1
2

).
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up to right multiplication by diagonal matrices. (Here ai, bi ∈ R×.) Therefore,

we can normalize the matrix of M to be

(3.3) M =

à
a1 t

1 a2

. . .
. . .

1 an

í
.

That is, we get an identification U ∼= Gn
m by sending M to (−a1, . . . ,−an).

We now describe the projections pr1 and π using this identification. Using

the isomorphism M we can pull back the vectors {vi = ei+1}, {vi = ei+1}
in the data of ?1 to get the corresponding vectors for the point pr1(M) =

(Λ,Λ∗(?0), {vi},Λ∗(?0), {vi}) ∈ Bun0
n,1,2:

vi = a−1
i+1ei+1, i = 0, . . . , n− 1,

vi = ei − aiei−1, i = 1, . . . , n.

This means that pr1(M) for M as in (3.3) has coordinates

pr1(M) = j0(a−1
1 , . . . , a−1

n ,−a1, . . . ,−an).

On the other hand, the point π(M) ∈ P1
\{0,∞} is the value of t such that

det(M) = 0; i.e.,
π(M) = (−1)na1 · · · an.

In summary, the maps pr1 and π from GR◦ω1
can be identified with the following

maps:
Gn
m

(−inv,ι)

��

mult

��
Gn
m ×Gn

a Gm = P1
\{0,∞},

where inv : Gn
m → Gn

m is the coordinate-wise inverse and ι : Gn
m ↪→ Gn

a is the

natural inclusion. We thus get

Proposition 3.4. The Kloosterman sheaf KlStd
GLn(φ, χ) associated with

the Hecke eigensheaf Aφ,χ and the standard representation of the dual group

GLn,Q`
= ĜLn takes the form

KlStd
GLn(φ, χ) ∼= mult!((−inv)∗Kumχ ⊗ φ∗ASψ)[n− 1].

Here we denote the restriction of φ : Gn
a → Ga to Gn

m still by φ.

Remark 3.5. When φ=add : Gn
a → Ga is the addition of the coordinates

and χ is written as n-multiplicative characters (χ1, . . . , χn), the Kloosterman

sheaf KlStd
GLn(φ, χ) is the same as the Kloosterman sheaf

Kl(ψ;χ1, . . . , χn; 1, . . . , 1)

defined by Katz in [26, §4.1], which is a generalization of Deligne’s Kloosterman

sheaves [10, §7].
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4. Proof of Theorem 1

In this section we prove Theorem 1.

4.1. First Step: HkV (A) is perverse. We want to show that for every V ∈
Rep(Ǧ), the complex HkV (Aφ,χ)[−1] is a perverse sheaf. In order to simplify

notation, we will only consider the sheaf A = Aφ. The proof for Aφ,χ is iden-

tical; one only needs to replace G(0, 2) by G(1, 2) everywhere in the argument.

Let us recall the convolution diagram from Section 2.2:

HeckeA
1

G(0,2)

pr1

xx

pr2

''

pr
A1 // A1

BunG(0,2) BunG(0,2) ×A1.

Our proof is based on a few simple geometric observations. First we need to

recall that the maps pri in the above diagram are locally trivial fibrations.

Remark 4.1. The map pr1 is a locally trivial fibration; i.e., there exists a

smooth atlas U → BunG(0,2) such that

U ×BunG(0,2)
HeckeA

1

G(0,2)
∼= U ×GRG(0,2) .

Furthermore, the map pr2 is also locally trivial on this atlas; i.e.,

(U ×A1)×BunG(0,2)×A1 HeckeA
1

G(0,2)
∼= U ×GRG(0,2) .

Proof. In order to find an atlas p : U → BunG(0,2) satisfying these condi-

tions, we only need that the family of G(0, 2)-bundles corresponding to p on

U ×P1 is trivial over U ×A1. By Proposition 1.1, for any U this condition is

satisfied locally in the étale topology on U . �

For γ ∈ Ω, we denoted by jγ : I(1)/I(2) ↪→ BunG(0,2) the canonical embed-

ding. Recall that Aγ =jγ,! ASφ[dim(BunG(0,2))]. Denote by j′γ : pr−1
1 (I(1)/I(2))

↪→ Hecke
G(0,2)
A1 the inverse image of this embedding into the Hecke stack.

Remark 4.2. The restriction of pr2 to pr−1
1 (I(1)/I(2)),

pr2 : pr−1
1 (I(1)/I(2))→ BunG(0,2) ×A1,

is affine.

Proof. By Corollary 1.3 the open subset I(1)/I(2) ↪→ BunG(0,2) is defined

by the nonvanishing of sections of line bundles Li, which can be defined as the

pull-back of the corresponding sections for GLn under a faithful representation

G → GLn. If G = GLn, then for any x ∈ A1, the pull-backs of these bundles

generate of the Picard-group GrGLn(0,2),x, which is an ind-projective scheme

(e.g., [14, Th. 7 and 8]). Thus the preimage of I(1)/I(2) in GRGLn(0,2) is affine

over A1.
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For general G, the ind-scheme GrG(0,2),x is usually constructed as a closed

sub-scheme of GrGLn for a suitable faithful representation ([33]). So again, the

claim follows from the case G = GLn. �

Now we can prove the first step. Fix any V ∈ Rep(Ǧ) and the correspond-

ing perverse sheaf ICV on HeckeA
1

G(0,2). We claim that Remark 4.1 implies

j′!(pr∗1 ASφ⊗ ICV ) ∼= j′∗(pr∗1 ASφ⊗ ICV ).

To see this, recall that the formation of j! and j∗ commutes with smooth

base-change. Thus, to prove the claimed isomorphism, we may choose a smooth

atlas p : U → BunG(0,2) such that the pull-back of pr1 is isomorphic to the pro-

jection U×GRG → U . But in this case the claim follows from the isomorphism

j! ASφ = j∗ASφ (Lemma 2.3).

In particular, we find that j′!(pr∗1A⊗ ICV )[1] is a perverse sheaf and

HkV (A) = (pr2 ◦ j′)!(pr∗1(A)⊗ ICV )

= (pr2 ◦ j′)∗(pr∗1(A)⊗ ICV ).

By Remark 4.2, the map (pr2 ◦ j′) is affine. Therefore (pr2 ◦ j′)∗ is right-exact

for the perverse t-structure ([3, §4.1.1]). Thus HkV (A)[1] must be perverse.

4.2. Second step: A is an eigensheaf. We already noted (Remark 2.8) that

the action of I(1)/I(2) on BunG(0,2) extends to an action on the convolution di-

agram. Thus HkV (A) is (I(1)/I(2), φ)-equivariant. By Lemma 2.3 this implies

that for any γ ∈ π0(BunG(0,2)), we have

HkV (A)|BunγG(0,2)
×X = Aγ � EγV ,

where EγV [1] is a perverse sheaf on X.

We claim that the sheaf EγV does not depend on γ. To show this, we may

assume that ICV is supported only on one connected component GRγ
G ⊂ GRG ,

because the functor HkV is isomorphic to the direct sum of the functors defined

by the restriction of ICV to the connected components.

Note that for any γ′ ∈ Ω, the Hecke operator Hkγ′ commutes with HkV ,

because Hecke operators supported at different points of P1 commute. By

definition A is an eigensheaf for the operators Hkγ′ . Thus,

A0 � E0
V = HkV (A−γ) = HkV (Hk−γ(A0))

= Hk−γ(HkV (A0)) = Hk−γ(Aγ � EγV )

= A0 � EγV .

This implies that the sheaves EγV are canonically isomorphic to E0
V , and so we

may drop the index γ.
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The HkV are compatible with the tensor product of representations so, in

particular, we have

HkV⊗V (A) = HkV ◦HkV (A) = A� (EV ⊗ EV ).

This implies that EV ⊗ EV [−1] is again a perverse sheaf. Therefore, EV
must be a perverse sheaf concentrated in cohomological degree 0. So for any V ,

the complex EV is a sheaf such that EV = jη,∗EV,η, where we denoted by

jη : η ↪→ P1 the inclusion of the generic point.

Also, we obtain a tensor functor V 7→ (EV )η with values in the category

of local systems on η. This is a rigid tensor category, so by [12, Th. 3.2] this

defines a Ǧ-local system over η. We need to show that EV,η extends to a local

system on P1
\{0,∞}.

For the trivial Hecke operator Hk1, we have canonical isomorphisms E1 =

Q` together with maps E1 → EV ⊗ EV ∗ → E1 such that the composition is

equal to multiplication by dim(V ). We already know that EV = jη,∗EV,η. Thus

for any geometric point x of Gm, the fiber EV,x is a subspace of the geometric

generic fiber EV,η and the canonical map idη : Q`,η → (EV ⊗ EV ∗)η factors

through EV,x ⊗ EV ∗,x. This implies that the sheaves EV are locally constant

because idη corresponds to the identity of EV,η.

Therefore, the EV define a tensor functor from Rep(Ǧ) to the category

Loc(P1
\{0,∞}) of local systems on P1

\{0,∞}. Since again this is a rigid tensor

category, this defines a Ǧ-local system on P1
\{0,∞}.

4.3. Third step: The monodromy at the tame point. As in the statement of

Theorem 1 (2) we now assume G = G×P1 is a constant split group. To compute

the monodromy of KlǦ(φ) at {0} we rephrase an argument of Bezrukavnikov

[4]. His argument relies on results on central sheaves of Gaitsgory [16] and on

Gabber’s result that the monodromy filtration on nearby cycles coincides with

the weight filtration [2].

In order to explain the argument we need to recall Gaitsgory’s construction

([16]). He considered the diagram

GR
P1\{0,∞}
G

� � jGR //

��

GRG

��

GRG,0 = FlG? _oo

��
P1
\{0,∞}

� � j // A1 {0}? _oo

and the induced nearby cycles functor Ψ : Perv(GR
P1\{0,∞}
G ) → PervI0(FlG).

He showed that the monodromy action on the sheaves Ψ(ICV ) is unipotent.

Since the map pr1 : HeckeA
1

G(0,2) → BunG(0,2) is locally isomorphic to the

product with fibers isomorphic to GRG(0,2), we know that Ψ(pr∗1(A)⊗ ICV ) =
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pr∗1(A)⊗Ψ(ICV ). In particular, by Gaitsgory’s result [16, Th. 2] we find that

the monodromy action on this sheaf is unipotent. Therefore ([19, Lemma 5.6])

the monodromy action on pr2,!(Ψ(pr∗1(A)⊗ICV )) is again unipotent. Since tak-

ing nearby-cycles commutes with proper push-forward, the monodromy action

on

(4.3)

pr2,!(pr∗1(A)⊗Ψ(ICV )) = pr2,!(Ψ(pr∗1(A)⊗ ICV )) = Ψ(A� EV ) = A� Ψ(EV )

is also unipotent. By definition, Ψ(EV ) is the stalk of EV at the geometric

point SpecKsep
0 over the punctured formal neighborhood of 0, carrying the

Gal(Ksep
0 /K0)-action as monodromy. Restricting (4.3) to the trivial G(0, 2)-

bundle, we therefore get

(4.4) KlV
Ǧ
|SpecKsep

0
= RΓc(pr∗1A⊗Ψ(ICV ))

with the inertia group I0 ⊂ Gal(Ksep
0 /K0) acting tamely and unipotently.

We have to show that the monodromy action is given by a principal unipo-

tent element. Recall that the G(0, 2)(k[[t]]) = I(0)opp-orbits on the affine flag

manifold FlG = GRG,0 are parametrized by the Iwahori-Weyl group W̃ ([33,

Prop.8.1]). The intersection cohomology sheaves of the closures of these orbits

will be denoted by ICw̃. The convolution with these sheaves defines Hecke

operators Hkw̃(A) := pr2,!(pr∗1(A)⊗ ICw̃).

By a result of Görtz and Haines [19, Corollary 1.2], the sheaf Ψ(ICV )

has a filtration such that the associated graded sheaves are isomorphic to

ICw(i) for some w ∈ W̃ , i ∈ Z and the multiplicity of the IC1(i) is equal

to dimH2i(GrG, ICV ).

Now, for any ‹w ∈ W̃ of length l(‹w) > 0, there exists a simple reflection

s such that ‹w = ‹w′s and l(‹w′) < l(‹w). Write Ps := I(0)opp ∪ I(0)oppsI(0)opp

for the parahoric subgroup generated by I(0)opp and s, so that the projection

prs : Fl → G((t))/Ps is a P1-bundle. From this we see that the sheaf ICw̃ is

of the form pr∗s(ICw̃′). Therefore the complex Hkw̃(A) is invariant under the

larger parahoric subgroup Ps ⊃ I(0)opp. Since Hkw̃(A) is also (I(1)/I(2),ASφ)-

equivariant, this implies that Hkw̃(A) = 0.

Thus only the Hecke operators of length 0 act nontrivially on A. Therefore,

by the result of Görtz and Haines, the dimensions of the weight filtration of

Ψ(KlV
Ǧ

) = KlV
Ǧ,η

are given by the dimensions of H2i(GrG, ICV ). Since the

monodromy filtration agrees with the weight filtration [2], the monodromy

must act as a principal nilpotent element. This proves our claim.

Remark 4.5. A key ingredient needed in the article of Görtz and Haines is

the formula for the trace function of the sheaves Ψ(ICµ). This trace is given by

Bernstein’s formula for the central elements of the Iwahori-Hecke algebra (see

[19, §2.7]). One can also deduce our proposition directly from this formula.
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5. Cohomological properties of Kloosterman sheaves

In this section, let G be a split, almost simple group over k, viewed as a

constant group scheme over P1. Recall that for each root α ∈ Φ, Uα is the

root group in G. We fix an isomorphism uα : Ga
∼→ Uα for each root α.

Notation. For a scheme X defined over k and a Q`-complex F of sheaves

on X, χc(X,F ) and H∗(X,F ) mean the Euler characteristic and the cohomol-

ogy of the pull-back of F to X ⊗k k.

5.1. The Euler characteristics, Swan conductors and cohomological rigid-

ity. There are two uniform choices of V ∈ Rep(Ǧ) that have small dimensions.

One is V = Ad = ǧ, the adjoint representation; the other is V = Vθ∨ , the

representation whose nonzero weights consist of short roots of ǧ. We call Vθ∨

the quasi-minuscule representation of Ǧ (which coincides with the adjoint rep-

resentation when Ǧ is simply-laced). Basic facts about Vθ∨ are summarized in

Appendix C. We will denote the number of long (resp. short) simple roots of

G by r`(G) (resp. rs(G)) and call it the long rank (resp. the short rank of G).

See Lemma C.1 for equivalent descriptions of these numbers.

Let Klθ
∨

Ǧ
(φ, χ) (resp. KlAd

Ǧ
(φ, χ)) be the local system associated to KlǦ(φ, χ)

and the quasi-minuscule representation (resp. the adjoint representation) of Ǧ.

Theorem 4.

(1) −χc(P1
\{0,∞},Klθ

∨

Ǧ
(φ, χ)) equals the number of long simple roots of G.

(2) Suppose char(k) is good for G when G is not simply-laced. Then

−χc(P1
\{0,∞},KlAd

Ǧ
(φ, χ))

equals the rank of G.

By the Grothendieck-Ogg-Shafarevich formula, we get

Corollary 5.1.

(1) Swan∞(Klθ
∨

Ǧ
(φ, χ)) = rs(Ǧ).

(2) Swan∞(KlAd
Ǧ

(φ, χ)) = r(Ǧ), under the same assumption on char(k) as

in Theorem 4(2).

The following subsections will be devoted to the proof of Theorem 4. We

first draw some consequences.

Lemma 5.2. Suppose the principal nilpotent element acts on V without

trivial Jordan block, then H0(P1
\{0,∞},KlV

Ǧ
(φ)) = 0.

Proof. Suppose the contrary, then KlV
Ǧ

(φ) contains the constant sheaf as

a sub-local-system. By construction, KlV
Ǧ

(φ) is pure. By [3, Th.5.3.8], over

P1
\{0,∞} ⊗k k, KlV

Ǧ
(φ) is a direct sum of simple perverse sheaves. Hence the

constant sub-sheaf must be a direct summand.
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On the other hand, by assumption, V does not contain any direct sum-

mand under which the tame monodromy at {0} ∈ P1 (i.e., a principal unipo-

tent element, by Theorem 1) acts trivially. This yields a contradiction. �

Let i0 : {0} ↪→ P1; i∞ : {∞} ↪→ P1 and j : P1
\{0,∞} ↪→ P1 be the inclu-

sions. For any local system L on P1
\{0,∞}, we abuse the notation j!∗L to mean

j!∗(L[1])[−1].

As in the discussion before Theorem 2, the Galois groups Gal(Ksep
∞ /K∞)

and Gal(Ksep
0 /K0), hence the inertia groups I0 and I∞, act on the correspond-

ing geometric stalks of KlV
Ǧ

(φ), defining representations on V up to conjugacy.

Proposition 5.3. Under the same assumption on char(k) as in Theo-

rem 4(2), we have

(1) (Cohomological rigidity) H∗(P1
k
, j!∗KlAd

Ǧ
(φ)) = 0.

(2) ǧI∞ = 0. (Note that ǧ is the space of V = Ad.)

The same statements hold for Klθ
∨

Ǧ
(φ) in place of KlAd

Ǧ
(φ), with no restriction

on char(k).

Proof. The statements being geometric, we will ignore Tate twists in this

proof. Since the adjoint representation ǧ is self-dual, the local system KlAd
Ǧ

(φ)

is also self-dual. Fixing such an isomorphism KlAd
Ǧ

(φ)
∼→ (KlAd

Ǧ
(φ))∨, we get

isomorphisms

H0(P1, j!∗KlAd
Ǧ

(φ)) ∼= H2(P1, j!∗KlAd
Ǧ

(φ))∨

and

H0(P1
\{0,∞},KlAd

Ǧ
(φ)) ∼= H2

c (P1
\{0,∞},KlAd

Ǧ
(φ))∨.

We have a distinguished triangle in Db
c(P

1,Q`),

j!KlAd
Ǧ

(φ)→ j!∗KlAd
Ǧ

(φ)→ H0i∗0j∗KlAd
Ǧ

(φ)⊕H0i∗∞j∗KlAd
Ǧ

(φ)→,

which induces a long exact sequence

0 = H0
c (P1

\{0,∞},KlAd
Ǧ

(φ))→H0(P1, j!∗KlAd
Ǧ

(φ))→ ǧI0 ⊕ ǧI∞
d−→,(5.4)

d−→ H1
c (P1

\{0,∞},KlAd
Ǧ

(φ))→H1
c (P1, j!∗KlAd

Ǧ
(φ))→ 0→,(5.5)

→ H2
c (P1

\{0,∞},KlAd
Ǧ

(φ))→H2
c (P1, j!∗KlAd

Ǧ
(φ))→ 0(5.6)

By (5.6) we first conclude

H2(P1, j!∗KlAd
Ǧ

(φ)) ∼= H2
c (P1

\{0,∞},KlAd
Ǧ

(φ)) ∼= H0(P1
\{0,∞},KlAd

Ǧ
(φ))∨ = 0,

where the vanishing of the last term follows by applying Lemma 5.2 to V = ǧ.

By duality, H0(P1, j!∗KlAd
Ǧ

(φ)) = 0. By (5.4) and the vanishing of H0’s, the

connecting homomorphism d is injective.
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On the one hand, by Theorem 1(2), dim ǧI0 = r(Ǧ) because I0 acts

on ǧ through a principal unipotent element. On the other hand, by Theo-

rem 4, dimH1
c (P1

\{0,∞},KlAd
Ǧ

(φ)) = −χc(P1
\{0,∞},KlAd

Ǧ
(φ)) = r(Ǧ). (Here we

again used the vanishing of H i
c(P

1
\{0,∞},KlAd

Ǧ
(φ)) for i = 0, 2.) Therefore d

must be an isomorphism. This implies ǧI∞ = 0. By (5.5), we conclude that

H1(P1, j!∗KlAd
Ǧ

(φ)) = 0.

The statement for Klθ
∨

Ǧ
(φ) is proved in the same way. We may apply

Lemma 5.2 to Vθ∨ because of equation (C.2) from the proof of Lemma C.1. �

Remark 5.7. Following Katz [28, §5.0], we call a Ǧ-local system L on

P1
\{0,∞} ⊗k k cohomologically rigid if it satisfies H1(P1, j!∗L

Ad) = 0. We think

of H1(P1, j!∗L
Ad) as the space of infinitesimal deformations of the Ǧ-local

system L with fixed isomorphism type on the formal punctured discs around

0 and ∞, although the notion of such deformations has not been defined.

Proposition 5.3 implies that KlǦ(φ) is cohomologically rigid, which provides

evidence for its physical rigidity. For more precise conjectures, see Section 7.

5.2. General method of calculation. In the following calculation, we will

only consider the neutral component of BunG(1,2). Hence we may assume that

G is simply-connected.

We denote by ? ∈ BunG(1,2) the point corresponding to the trivial bundle.

In order to compute the sheaf KlV
Ǧ

(φ, χ), we restrict the convolution diagram

(2.7) to ?×P1
\{0,∞} ⊂ BunG(1,2) ×P1

\{0,∞}:

GR
pr1

zz

pr2

%%
BunG(1,2) ?×P1

\{0,∞}.

By proper base change, we have KlV
Ǧ

(φ, χ) = pr2,!(pr∗1A⊗ ICV ). Furthermore,

A is supported only on the big cell j : T × I(1)/I(2) ⊂ Bun(G(1,2)). Let us

denote by Gr◦ ⊂ Gr the inverse image of the big cell and write I(1)/I(2) ∼=
U/[U,U ]× U−θ. We write φ = (φ+, φ0) according to this decomposition.

We obtain a diagram

GR◦ �
� //

pr◦2

��

(fT ,f0,f+)

vv

GR
pr1

zz

pr2

$$
T × U−θ × U/[U,U ] �

� // BunG(1,2) P1
\{0,∞}.
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By proper base change,

(5.8) KlV
Ǧ

(φ, χ) = pr◦2,!(f
∗
TKumχf

∗
0 ASφ0 ⊗f∗+ ASφ+ ⊗ ICV ).

So we need to describe the subspace GR◦ and compute the maps fT , f0, f+.

First, let us denote by GRtriv ⊂ GR the preimage of the trivial G-bundle

under the forgetful map GR → BunG. Let us fix a point x ∈ P1
\{0,∞} and

chose tx := 1 − t
x as a local parameter at x. So tx = 1 corresponds to t = 0

and tx =∞ corresponds to t =∞.

The ind-scheme Grtriv
x classifies isomorphism classes of pairs (E , ϕ) such

that E is a trivial G-bundle on P1 and ϕ : E|P1\{x}
∼→ G × (P1\{x}) is an

isomorphism. We can rigidify this moduli problem so that Grtriv
x classifies an

automorphism of the trivial G-bundle on P1\{x} that is identity at ∞. Hence

we can identify

(5.9) Grtriv
x

∼→ G[t−1
x ]1 := ker(G[t−1

x ]
ev(tx=∞)−−−−−−→ G),

where G[t−1
x ] is the ind-scheme whose R-points are G(R[t−1

x ]).

Remark 5.10. There is a dilation action ofGrot
m on P1

\{0,∞}, which extends

to GR: λ ∈ Grot
m sends (x, E , ϕ) 7→ (λx, λ−1,∗E , λ−1,∗ϕ) and stabilizes GRtriv.

Note that the local coordinate tx is invariant under the simultaneous dilation

on t and x.

Let Grtriv ⊂ Gr = G((τ))/G[[τ ]] be an abstract copy of the affine Grass-

mannian, not referring to any point on P1
\{0,∞}. The dilation action, together

with (5.9), gives a trivialization of the family GRtriv over P1
\{0,∞}:

GRtriv ∼= (P1
\{0,∞})×G[τ−1]1 ∼= (P1

\{0,∞})×Grtriv,(5.11)

(x, g(t−1
x )) 7→ (x, g(τ−1)).

By definition, the big cell in BunG(1,2) is obtained from the action of T ×
I(1)/I(0) on the trivial bundle. Let êv0 : G[t−1

x ] → G[[t]] and êv∞ : G[t−1
x ] →

G[[t−1]] denote the expansions around 0 and ∞. Let ev0, ev∞ : G[t−1
x ] → G

denote the evaluation at t = 0 and t =∞.

The G(1, 2)-level structure on the G-bundle (E , ϕ) ∈ Grx is obtained

from the trivialization ϕ. For g ∈ G[t−1
x ], the composition E|P1\{x}

ϕ−→
G×P1\{x} g−→ G×P1\{x} extends to an isomorphism E → G×P1. Thus g

defines the level structure on the trivial bundle defined by ev0(g), ev∞(g). We

have a commutative diagram

G[t−1
x ]

“ev0,“ev∞ //

%%

G\(G[[t]]×G[[t−1]])

vv
BunG(1,2).
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Here G = Aut(G×P1) acts diagonally on G[[t]]×G[[t−1]]. Thus we find that

g ∈ G[t−1
x ] lies in Gr◦x if and only if (ev0(g), ev∞(g)) ∈ G\G(Bopp ×U). Using

the identifications (5.9) and (5.11), we get

Gr◦x
∼→{g(t−1

x ) ∈ G[t−1
x ]1|ev0(g) ∈ UBopp},(5.12)

GR◦
∼→ (P1

\{0,∞})× {g(τ−1) ∈ G[τ−1]1|g(1) ∈ UBopp}

⊂ GRtriv = (P1
\{0,∞})×G[τ−1]1.

Lemma 5.13. For (x, g(τ−1)) ∈ GR◦ under the parametrization in (5.12),

write g(1) = ubopp with u ∈ U and bopp ∈ Bopp. Then we have

fT (x, g) = bopp mod Uopp ∈ T,
f+(x, g) = u−1 mod [U,U ] ∈ U/[U,U ],

f0(x, g) = xa−θ(g) ∈ U−θ ∼= g−θ,

where a−θ : G[τ−1] → g−θ sends g to the g−θ-part of the tangent vector
dg(τ−1)
d(τ−1)

∣∣∣
τ−1=0

∈ g.

Proof. The formulas for fT , f+ follow from our description in (5.12). By

definition f0(x, g) is obtained by expanding g(t−1
x ) at t = ∞ using the local

parameter t−1 and taking the g−θ-part of the coefficient of t−1. Note that

dg(t−1
x )

d(t−1)

∣∣∣∣∣
t−1=0

= x
dg(t−1

x )

d(t−1
x )

∣∣∣∣∣
t−1
x =0

∈ g.

Moreover, under the identification (5.11), the parameter tx corresponds to τ ,

therefore f0(x, g) = xa−θ(g). This proves the lemma. �

Let ASU,−φ+ be the pull-back of ASψ via U → U/[U,U ]
−φ+−−−→ Ga. Let

KumBopp,χ be the pull-back of the Kummer local system Kumχ via Bopp → T .

Let jUBopp : UBopp ↪→ G be the inclusion, and denote

J = J−φ+,χ := jUBopp,!(ASU,−φ+ �KumBopp,χ) ∈ Db
c(G,Q`).

Remark 5.14. According to [5], or the argument of Lemma 2.3 (in this

paper), we have the cleanness property of J :

jUBopp,!(ASU,−φ+ �KumBopp,χ)
∼→ jUBopp,∗(ASU,−φ+ �KumBopp,χ).

We can view J = J−φ+,χ ∈ Db
c(G,Q`) as a finite-field analog of the automor-

phic sheaf Aφ,χ in Definition 2.6 and Remark 2.5.

With this notation, and using the identification (5.11), formula (5.8) be-

comes

(5.15) KlV
Ǧ

(φ, χ)
∼→ πtriv

! (ICtriv
V ⊗f∗0 ASφ0 ⊗ev∗τ=1J),
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where πtriv : GRtriv = P1
\{0,∞} × G[τ−1]1 → P1

\{0,∞} is the projection. In the

sequel, we often write evτ=1 simply as ev.

The ultimate goal of this section is to calculate the Euler characteristics

of KlV
Ǧ

(φ, χ) for V = Vθ∨ and ǧ. Here we make a few reduction steps for

general V . By (5.15), we need to calculate

(5.16) χc(P
1
\{0,∞},KlV

Ǧ
(φ, χ)) = χc(P

1
\{0,∞} ×Grtriv, ICtriv

V ⊗f∗0 ASφ0 ⊗ev∗J).

According to whether a−θ vanishes or not, we decompose Grtriv ∼= G[τ−1]1
into Grtriv,a6=0 and Grtriv,a=0. Over P1

\{0,∞}×Grtriv,a=0, the complex in (5.16)

is constant along P1
\{0,∞}; hence, the Euler characteristic is 0. On the other

hand, we have a change of variable isomorphism

P1
\{0,∞} ×Grtriv,a6=0 3 (x, g) 7→ (xa−θ(g), g) ∈ Gm ×Grtriv,a6=0 .

Under this isomorphism, f0 = xa−θ becomes the projection to the Gm-factor,

and we can apply the Künneth formula. Summarizing these steps, we get

χc(P
1
\{0,∞},KlV

Ǧ
(φ, χ))(5.17)

= χc(P
1
\{0,∞} ×Grtriv,a 6=0, ICtriv

V ⊗f∗0 ASφ0 ⊗ev∗J)

= χc(Gm,ASφ0)χc(Grtriv,a6=0, ICtriv
V ⊗ev∗J)

= −χc(Grtriv,a6=0, ICtriv
V ⊗ev∗J)

= −χc(Grtriv \?, ICtriv
V ⊗ev∗J) + χc(Grtriv,a=0 \?, ICtriv

V ⊗ev∗J).

The last equality is because the base point ? ∈ Gr belongs to Grtriv,a=0.

Lemma 5.18. χc(Grtriv \?, ICtriv
V ⊗ev∗J) = 0.

Proof. Since ICV is constant along the strata Grλ, it suffices to show

that χc(Grtriv
λ , ev∗J) = 0 for dominant coweights λ 6= 0. Denote by

G∗ the

convolution product on Db
c(G,Q`). For K1,K2∈Db

c(G,Q`),

K1
G∗ K2 := m!(K1 �K2),

where m : G × G → G is the multiplication map. Let Kλ := ev!Q`,Grtriv
λ
∈

Db
c(G). Then RΓc(Grtriv

λ , ev∗J) is the stalk at e ∈ G of the convolution

ASU,φ+

G∗ Kλ
G∗ KumBopp,χ−1 . Since ev = evτ=1 is G-equivariant (under conju-

gation), Kλ carries a natural G-equivariant structure. Hence,

Kλ
G∗ KumBopp,χ−1

∼= KumBopp,χ−1
G∗ Kλ.

In particular, over each Bruhat stratum BoppwBopp, Kλ
G∗ KumBopp,χ−1 has

the form Sw ⊗ Lw, where Lw is a local system on UoppwBopp and Sw (a

complex of Q`-vector spaces) is the stalk of Kλ
G∗ KumBopp,χ−1 at ẇ ∈ NG(T )

(a representative of w ∈W ).
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Therefore, ASU,φ+

G∗ Kλ
G∗ KumBopp,χ−1 is a successive extension of Sw ⊗

(ASU,φ+

G∗ Lw) for various w ∈ W . To prove the vanishing of the Euler

characteristic of the stalks of ASU,φ+

G∗ Kλ
G∗ KumBopp,χ−1 , it suffices to show

that χ(Sw) = 0 for all w.

By definition,

Sw = (Kλ
G∗ KumBopp,χ−1)ẇ(5.19)

= RΓc(wB
opp,Kλ ⊗KumBopp,χ)

= RΓc(Grtriv
λ ∩ev−1(wBopp), ev∗KumBopp,χ).

The T -action on Grtriv=G[τ−1]1 by conjugation preserves Grtriv
λ ∩ev−1(wBopp).

The only T -fixed points on Gr are τµ for µ ∈ X∗(T ), which do not belong to

any Grtriv
λ (λ 6= 0). Moreover, the local system ev∗KumBopp,χ is monodromic

under T -conjugation: there exists m ≥ 1 (prime to p) such that ev∗KumBopp,χ

is equivariant under the m-th power of the T -conjugation. Since the m-th

power of T -conjugation still has no fixed point on Grtriv
λ ∩ev−1(wBopp), the

Euler characteristic in (5.19) is zero. This proves the lemma. �

Corollary 5.20. Let X∗(T )+ ⊂ X∗(T ) be the dominant coweights and

V (λ) ⊂ V be the weight space for λ ∈ X∗(T ). Then

χc(P
1
\{0,∞},KlV

Ǧ
(φ, χ)) =

∑
λ∈X∗(T )+,λ 6=0

dimV (λ)χc(Grtriv,a=0
λ , ev∗J).

Proof. By [30, Th. 6.1], the Euler characteristic of the stalks of ICV along

Grλ is dimV (λ). Therefore,

χc(Grtriv,a=0 \?, ICtriv
V ⊗ev∗J) =

∑
λ∈X∗(T )+,λ 6=0

dimV (λ)χc(Grtriv,a=0
λ , ev∗J).

Combining this with (5.17) and Lemma 5.18 yields the desired identity. �

5.3. Quasi-minuscule Schubert variety. For a coweight λ ∈ X∗(T ), let

Pλ ⊂ G be the parabolic generated by T and the root spaces Uα for 〈α, λ〉 ≥ 0.

For each root α and i ∈ Z, let Uα,≥i ⊂ Uα((τ)) be the subgroup whose R-points

are Uα(τ iR[[τ ]]). Let Uα,i = Uα,≥i/Uα,≥i+1.

Now let λ ∈ X∗(T )+, and consider the (open) Schubert variety Grλ ⊂
Gr. By [32, Lemme 2.3 and discussions preceding it], we have (fixing a total

ordering of Φ+)

G
P−λ
×

Ñ ∏
〈α,λ〉≥2

Uα,≥1/Uα,≥〈α,λ〉

é
∼→Grλ(5.21)

(g, u) 7→ guτλ.
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The action of P−λ on the product in (5.21) is given by the adjoint action of

P−λ on
∏
α Uα,≥1 followed by the projection onto factors Uα,≥1 for 〈α, λ〉 ≥ 2.

Now consider the special case λ = θ∨, the dominant short coroot. We

need to recall the description of the quasi-minuscule Schubert variety Grθ∨

from [32]. We write P−θ for P−θ∨ .

Lemma 5.22. The open locus Grtriv
θ∨ ⊂ Grθ∨ consists of a single G-orbit.

More precisely, the morphism

G
P−θ
× U×−θ,−1→G[τ−1]1 = Grtriv,

(g, u−θ(cτ
−1)) 7→Ad(g)u−θ(cτ

−1)

gives an isomorphism onto Grtriv
θ∨ . (Here P−θ acts on U−θ,−1 through adjoint

action and U×α,i = Uα,i\{1}.)

Proof. This is essentially [32, Lemme 7.2]. Applying (5.21) to λ = θ∨, we

find that the product in (5.21) consists of only one term Uθ,1 (since 〈α, θ∨〉 ≤ 1

for any root α 6= θ). Therefore, Grtriv
θ∨
∼= G

P−θ
× U triv

θ,1 · τ θ
∨

for some proper open

subset U triv
θ,1 ⊂ Uθ,1 stable under P−θ. (Grtriv

θ∨ cannot be equal to Grθ∨ because

τ θ
∨
/∈ Grtriv.) Since P−θ acts on Uθ,1 via dilation, U triv

θ,1 must be U×θ,1. Hence,

Grtriv
θ∨
∼= G

P−θ
× U×θ,1 · τ

θ∨ .

On the other hand, the following calculation in the SL2-subgroup defined

by θ, Ç
1 cτ

1

åÇ
τ

τ−1

å
=

Ç
τ c

τ−1

å
=

Ç
1

c−1τ−1 1

åÇ
τ c

−c−1

å
,(5.23)

shows that uθ(cτ)τ θ
∨ ∈ Gr equals u−θ(c

−1τ−1) ∈ U×−θ,−1 ⊂ G[τ−1]1 for c

invertible. This proves the lemma. �

The Bruhat decomposition for G = tw∈W/Wθ
UwP−θ gives a decomposi-

tion

G
P−θ
× U×−θ,−1 =

⊔
w∈W/Wθ

UwP−θ
P−θ
× U×−θ,−1.

The stratum UwP−θ
P−θ
× U×−θ,−1 has image Ad(U)U×−wθ,−1 in G[τ−1]1. Since

w 7→ −wθ sets up a bijection between W/Wθ and the set of long roots of G,

we can rewrite the above decomposition as

Grtriv
θ∨ =

⊔
β long root

Ad(U)U×β,−1.
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For each w ∈W/Wθ, we have an isomorphism (fixing total ordering on Φ+)∏
α∈Φ+,〈w−1α,θ∨〉>0

Uα ∼= UwP−θ/P−θ.

Therefore, for β = −wθ, the stratum Ad(U)U×β,−1 can be written as

Ad(U)U×β,−1
∼=

∏
α∈Φ+,〈α,β∨〉<0

Uα × U×β,−1,(5.24)

Ad
(∏

uα
)
uβ(cτ−1)↔

(∏
uα, uβ(cτ−1)

)
.

Lemma 5.25. The function a−θ : Grtriv
θ∨ → g−θ in Lemma 5.13 restricted

on each stratum Ad(U)U×β,−1 ⊂ Grtriv
θ∨ is given by

a−θ(Ad(u)uβ(cτ−1)) =

cx−θ if β = −θ,
0 otherwise.

Here x−θ ∈ g−θ corresponds to u−θ(1) ∈ U−θ. In particular,

(5.26) Grtriv,a=0
θ∨ =

⊔
β long,β 6=−θ

Ad(U)U×β,−1.

Proof. By definition, the value of a−θ on Ad(u)uβ(cτ−1) is

d

d(τ−1)
Ad(u)uβ(cτ−1)|τ−1=0 ∈ Ad(U)gβ.

If β 6= −θ, Ad(u)gβ only involves roots ≥ β. If β = −θ, then the above

derivative equals Ad(u)cx−θ ∈ g, whose g−θ-part is cx−θ ∈ g−θ. �

5.4. Proof of Theorem 4(1). Applying Corollary 5.20 to V = Vθ∨ , which

only has one nonzero dominant weight θ∨, we get

χc(P
1
\{0,∞},Klθ

∨

Ǧ
(φ, χ)) = χc(Grtriv,a=0

θ∨ , ev∗J).

By the decomposition (5.26) in Lemma 5.25, we only need to calculate

χc(Ad(U)U×β,−1, ev∗J)

for long roots β 6= −θ. Theorem 4(1) thus follows from

Claim. Suppose β 6= −θ is a long root. Then

χc(Ad(U)U×β,−1, ev∗J) =

−1 β is a simple long root,

0 otherwise.

To prove the claim, we distinguish three cases.
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Case I: β is positive but not simple. Since β > 0, we have ev(Ad(U)U×β,−1)

⊂ U . Since β is not simple, the image of ev(Ad(U)U×β,−1) in U/[U,U ] is trivial;

hence, ev∗J is the constant sheaf on Ad(U)U×β,−1. By (5.24), Ad(U)U×β,−1 has

a factor U×β,−1
∼= Gm; hence,

χc(Ad(U)U×β,−1, ev∗J) = χc(Ad(U)U×β,−1) = 0.

Case II: β = αi is a simple long root. For u ∈ U , ev(Ad(u)uβ(cτ−1)) has

image uαi(c) ∈ U/[U,U ]. In terms of the coordinates in (5.24), ev∗J is the

pull-back of ASφi from the U×β,−1
∼= U×αi-factor. Hence,

χc(Ad(U)U×β,−1, ev∗J) = χc(U
×
αi ,ASφi) = −1.

Case III: β is negative and β 6= −θ. Since β 6= −θ, there exists a simple

root αi such that β − αi is still a root. Then α = −β + αi is a positive

root. Moreover, since 〈αi, β∨〉 ≤ 1 (because αi 6= β), we have 〈α, β∨〉 =

〈−β + αi, β
∨〉 = −2 + 〈αi, β∨〉 < 0. Hence Uα appears in the decomposition

(5.24).

Using (5.24), we write an element in Ad(U)U×β,−1 as Ad(u)uβ(cβτ
−1),

where u = uαuα(cα) and uα ∈ A :=
∏
α′>0,〈α′,β∨〉<0,α′ 6=α Uα′ . Note that

(5.27) ev(Ad(u)uβ(cβτ
−1)) = uuβ(cβ)u−1 = uα[uα(cβ), uβ(cβ)]uβ(cβ)uα,−1.

Since α 6= ±β, we can apply Chevalley’s commutator relation [9, p. 36, (4)]

to conclude that [uα(cβ), uβ(cβ)] is a product of elements in the root groups

Uiα+jβ for i, j ∈ Z>0. Our assumptions that

(i) α+ β is simple and

(ii) β is a long root

imply that any such iα + jβ is positive (if it is a root), and the only simple

root of this form is α + β. Therefore, [uα(cα), uβ(cβ)] ∈ U , and its image in

U/[U,U ] is uαi(εcαcβ), where ε = ±1.

By (5.27), Ad(u)uβ(cβ) ∈ UBopp if and only if uβ(cβ)uα,−1 ∈ UBopp.

Moreover, when Ad(u)uβ(cβ) ∈ UBopp, its image in U/[U,U ] is uαi(εcαcβ)

times another element that only depends on cβ and uα.

Under the decomposition (5.24), Ad(U)U×β,−1
∼= Uα × A. Let prA :

Ad(U)U×β,−1 → A be the projection. By the above discussion, ev∗J restricted

to the fibers of prA are isomorphic to Artin-Schreier sheaves on Uα. Therefore

prA,!ev∗J = 0; hence,

H∗c (Ad(U)U×β,−1, ev∗J) = H∗c (A,prA,!ev∗J) = 0.

This proves the claim and completes the proof of Theorem 4 (1).
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5.5. The adjoint Schubert variety. In this subsection, let G be nonsimply-

laced. We always assume that char(k) is a good prime for G. So char(k) > 2

when G is of type Bn, Cn and char(k) > 3 when G is of type F4, G2.

Let γ be the short dominant root of G and γ∨ be the corresponding long

coroot. We define P−γ , Wγ , etc. in the same way as P−θ, Wθ, etc. According

to the possible values of 〈α, γ∨〉 for roots α ∈ Φ, we have two cases:

• Type (Bn,Cn,F4): |〈α, γ∨〉| = 0, 1, 2;

• Type (G2): |〈α, γ∨〉| = 0, 1, 2, 3.

Let Φγ
n := {α ∈ Φ|〈α, γ∨〉 = n}.

Lemma 5.28. Suppose G is of type Bn, Cn or F4. Then Grtriv
γ∨ consists of

a single G-orbit. More precisely, let

V−γ =
∏

〈α,γ∨〉=2

U−α,−1.

We identify V−γ with its Lie algebra. The adjoint action of P−γ on V−γ (which

factors through its Levi factor Lγ) stabilizes a unique quadric Q−γ defined by

a nondegenerate quadratic form q−γ on V−γ , so that the action of Lγ factors

through GO(V−γ , q−γ),2 with a dense orbits V−γ −Q−γ .

The natural morphism

(5.29) G
P−γ
× (V−γ −Q−γ) 3 (g, v) 7→ Ad(g)v ∈ G[τ−1]1

gives an isomorphism G
P−γ
× (V−γ −Q−γ) ∼= Grtriv

γ∨ .

Proof. In the case G is of type B, C or F4, the product in (5.21) becomes

Λ =
∏
〈α,γ∨〉=2 Uα,1 (a commutative unipotent group), which can be identified

with its Lie algebra. Since Grtriv
γ∨ is stable under G-conjugation, it takes the

form G
P−γ
× Λtriv for some P−γ-stable open subset Λtriv ⊂ Λ. The action of

P−γ on Λ factors through the Levi quotient Lγ .

The vector space Λ carries a bilinear form

(5.30) (x, y)Λ := (x,Ad(wγ)y)g,

where wγ is the image of
(

0 1
−1 0

)
under the homomorphism SL2 → G corre-

sponding to the root γ, and (·, ·)g is an Ad(G)-invariant nondegenerate sym-

metric bilinear pairing on g (which exists when char(k) is good; see [8, §1.16]).

It is easy to check that (·, ·)Λ is a nondegenerate symmetric bilinear pairing,

and the Lγ-action on Λ preserves this pairing up to scalar. Let qΛ be the

quadratic form associated to (·, ·)Λ.

2GO(V−γ , q−γ) consists of invertible linear automorphisms of V−γ preserving q−γ up to a

scalar.
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By a quick case-by-case analysis, one checks that the action map Lγ →
GO(Λ, qΛ) is surjective. Therefore, Λ contains a unique Lγ-stable irreducible

divisor QΛ = {qΛ = 0} whose complement is a single Lγ-orbit.

On the other hand, the complement Gr≤γ∨ −Grtriv
≤γ∨ is an ample divisor

representing the class of the determinant line bundle and hence has codimen-

sion 1. Since Gr≤γ∨ −Grγ∨ has codimension at least 2, Grγ∨ −Grtriv
γ∨ also has

codimension 1 in Grγ∨ . Hence Λ−Λtriv also has codimension 1 in Λ; therefore,

it must be the irreducible divisor QΛ. This implies Λtriv = Λ−QΛ, which is a

single P−γ-orbit, therefore Grtriv
γ∨ is a single G-orbit.

By the same SL2-calculation as in (5.23), we have

uγ(τ)τγ
∨

= u−γ(τ−1) ∈ Grtriv .

Therefore, Λtrivτγ
∨

= Ad(P−γ)uγ(τ)τγ
∨

= Ad(P−γ)u−γ(τ−1) ⊂ Grtriv. By

a similar argument as above, Ad(P−γ)u−γ(τ−1) is the open subset of V−γ =∏
〈α,γ∨〉=2 U−α,−1 defined by the complement of a quadric Q−γ . Therefore,

Grtriv
γ∨ = G

P−γ
× (Λ−QΛ)τγ

∨
= G

P−γ
× (V−γ −Q−γ) ⊂ G[τ−1]1. �

Lemma 5.31. The morphism (5.29) extends to a resolution

ν : G
P−γ
× V−γ → Grtriv

≤γ∨ ,

which is an isomorphism over Grtriv
γ∨ by Lemma 5.28.

(1) The fiber ν−1(?) ∼= G/P−γ .

(2) The fibers over Grtriv
θ∨ are isomorphic to Lθ/Lθ ∩ P−γ .

Proof. Since G
P−γ
× (V−γ − Q−γ) is dense in G

P−γ
× V−γ and Grtriv

≤γ∨ is the

closure of Grtriv
γ∨ in Grtriv, the morphism (5.29) extends to ν. By Lemma 5.28,

there are three Ad(P−γ) (or Ad(Lγ))-orbits on V−γ : V−γ − Q−γ , Q×−γ :=

Q−γ − {0} and {0}, which give three G-orbits of G
P−γ
× V−γ .

The orbit G
P−γ
× {0} maps to Grtriv

0 = ?, which proves (1).

The orbit G
P−γ
× Q×−γ must then map to Grtriv

θ∨ . The G-stabilizer of

u−θ(τ
−1) in G

P−γ
× Q×−γ and in Grtriv

θ∨ = G
P−θ
× U×−θ,−1 are P−γ ∩ P 1

−θ and

P 1
−θ respectively, where P 1

−γ = ker(θ : P−θ → Gm). The fiber ν−1(u−θ(τ
−1))

thus equals P 1
−θ/P

1
−θ ∩ P−γ . It is easy to check that the inclusions Lθ ↪→ P−θ

and P 1
−θ ↪→ P−θ induce isomorphisms

Lθ/Lθ ∩ P−γ
∼→ P−θ/P−θ ∩ P−γ

∼←− P 1
−θ/P

1
−θ ∩ P−γ .

Since Grtriv
θ∨ is a single G-orbit by Lemma 5.22, all the fibers of ν over Grtriv

θ∨

are isomorphic to ν−1(u−θ(τ
−1)) ∼= Lθ/Lθ ∩ P−γ . �
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The Bruhat decomposition G = tW/Wγ
UwP−γ gives a decomposition

G
P−γ
× V−γ =

⊔
W/Wγ

UwP−γ
P−γ
× V−γ .

The map w 7→ −wγ sets up a bijection between W/Wγ and the set of short

roots of G. For β = −wγ, let Vβ = Ad(w)V−γ . Then the above decomposition

can be rewritten as

(5.32) G
P−γ
× V−γ =

⊔
β short root

Ad(U)Vβ.

As in the quasi-minuscule case, we can further write each stratum as

Ad(U)Vβ ∼=
∏

α∈Φ+,〈α,β∨〉<0

Uα ×
∏

〈β′,β∨〉=2

Uβ′,−1,(5.33)

Ad
(∏

uα
)∏

uβ′(cβ′τ
−1)↔

(∏
uα, uβ′(cβ′τ

−1)
)
.

Remark 5.34. (1) For each short root β, the set Φβ
2 (those roots that

appear in the factors of Vβ) is totally ordered according to their heights. To

see this, we only need to show that for different β′, β′′ ∈ Φβ
2 , 〈ρ∨, β′ − β′′〉 6= 0.

In the proof of Lemma 5.28, we remarked that Lγ → GO(Λ, qΛ) is surjective,

which means that for any two different roots α′, α′′ ∈ Φγ
2 (i.e., they appear in

the factors of Λ), the difference α′ − α′′ is a nonzero multiple of a root of Lγ .

Since Φβ
2 = wΦγ

2 if β = wγ, the difference β′− β′′ is also a nonzero multiple of

a root of Lβ; therefore, 〈ρ∨, β′ − β′′〉 6= 0.

The set Φβ
2 carries an involution β′ 7→ 2β−β′, with β the only fixed point.

This involution is order-reversing.

(2) Again since Lγ � GO(Λ, qΛ) in the proof of Lemma 5.28, all roots

γ′ ∈ Φγ
2\{γ} are permuted by Wγ . A similar statement holds if γ is replaced

by any short root β. In particular, all roots in Φβ
2 are long roots except β itself.

Lemma 5.35. For a short root β,
∏
uβ′(cβ′τ

−1) ∈ Vβ (the product over

Φβ
2 ), and u ∈ U , we have

a−θ(Ad(u)(
∏

uβ′(cβ′τ
−1))) =

c−θx−θ if − θ ∈ Φβ
2 ,

0 otherwise.

The proof is similar to that of Lemma 5.25.

5.6. Proof of Theorem 4(2). Here we assume G is of type B, C or F4. For

G of type A, D, E, the statement (2) is identical to (1) in Theorem 4; the

proof for G = G2 will be given in Section D.
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Applying Corollary 5.20 to V = ǧ, which has two nonzero dominant

weights θ∨ and γ∨, each with multiplicity one, we conclude that

χc(P
1
\{0,∞},KlAd

Ǧ
(φ, χ)) = χc(Grtriv,a=0

θ∨ , ev∗J) + χc(Grtriv,a=0
γ∨ , ev∗J).

We already know from (1) that χc(Grtriv,a=0
θ∨ , ev∗J) = r`(G); we only need to

show that χc(Grtriv,a=0
γ∨ , ev∗J) = rs(G).

For any subset S ⊂ Φ, let

V S
β =

{∏
uβ′′(cβ′′τ

−1) ∈ Vβ|cβ′′ = 0 for β′′ /∈ S
}
.

Using this definition and the standard partial ordering on Φ (which restricts

to the total ordering on Φβ
2 , by Remark 5.34(1)), the meanings of V >−θ

β , V >0
β ,

etc. are obvious.

Using Lemma 5.31, Lemma 5.35 and the decomposition (5.32), the reso-

lution ν restricted to Grtriv,a=0
≤γ∨ reads

νa=0 :
⊔

β short root

Ad(U)(V >−θ
β )→ Grtriv,a=0

≤γ∨ .

By Lemma 5.31, the Euler characteristic of ev∗J on the target of νa=0 has

contributions from ?, Grtriv,a=0
θ∨ and Grtriv,a=0

γ∨ :

∑
β short root

χc(Ad(U)V >−θ
β , ev∗J)(5.36)

= χc(G/P−γ) + χc(Grtriv,a=0
θ∨ , ev∗J)χc(Lθ/Lθ ∩ P−γ)

+ χc(Grtriv,a=0
γ∨ , ev∗J).

The Bruhat-decomposition implies

χc(G/P−γ) = #(W/Wγ) = #{short roots in Φ},(5.37)

χc(Lθ/Lθ ∩ P−γ) = #(Wθ/Wθ ∩Wγ).(5.38)

Claim. For a short root β,

χc(Ad(U)(V >−θ
β ), ev∗J) =

0 Φβ
2 contains a simple root,

1 otherwise.
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Admitting the claim first, we finish the proof. Combining (5.36), (5.37),

(5.38) and the claim, we get

−χc(Grtriv,a=0
γ∨ , ev∗J) = #{short roots} − r`(G)#(Wθ/Wθ ∩Wγ)

(5.39)

−#{short roots β|Φβ
2 does not contain simple root}

= #{short roots β|Φβ
2 contains a simple root}

− r`(G)#(Wθ/Wθ ∩Wγ).

By Remark 5.34(1), Φβ
2 is totally ordered by heights and hence contains at

most one simple root. Therefore

#{short roots β|Φβ
2 contains a simple root} = Ns +N`,

where Ns (resp. N`) is the number of short roots β such that Φβ
2 contains a

short (resp. long) simple root.

• If Φβ
2 contains a short simple root, this simple root must be β since β

is the only short root in Φβ
2 by Remark 5.34(2). Therefore Ns = rs(G).

• Any simple long root is in the W -orbit of θ; therefore N` = r` · Nθ,

where Nθ = #{short roots β|θ ∈ Φβ
2}. Such short roots β are in the

Wθ-orbit (this follows by applying Remark 5.34(2) to the dual root

system), and γ is one of them; hence, Nθ = #(Wθ/Wθ ∩Wγ). Hence,

N` = r`(G)#(Wθ/Wθ ∩Wγ).

Combining these calculations and (5.39), we conclude that−χc(Grtriv,a=0
γ∨ , ev∗J)

= rs(G), hence proving Theorem 4(2).

It remains to prove the claim.

CaseI: Φβ
2 contains a simple root αi. For u ∈ U and v = uαi(cαiτ

−1)vαi ∈
Vβ, where vαi ∈ ∏β′ 6=αi Uβ′,1, we have

ev(Ad(u)v) = Ad(u)uαi(cαi) ·Ad(u)ev(vαi).

This means that Ad(u)v ∈ UBopp if and only if Ad(u)ev(vαi) ∈ UBopp,

and in case this happens, its image in U/[U,U ] is uαi(cαi) times the image

of Ad(u)ev(vαi) in U/[U,U ]. Using the decomposition (5.33), we can write

Ad(U)V >−θ
β = Uαi,−1 ×A for some affine space A (the product of other fac-

tors), and the sheaf ev∗J is an exterior product ev∗ASφi �L for some local

system L on A. By Künneth formula,

H∗c (Ad(U)V >−θ
β , ev∗J) = H∗c (U−αi,−1, ev∗ASφi)⊗H

∗
c (A, L) = 0.
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Case II. Φβ
2 does not contain any simple root. We stratify the vector space

V >−θ
β into

V >−θ
β = V >0

β

⊔Ö ⊔
β′∈Φβ2 ,−θ<β′<0

(
V ≥β

′

β − V >β′

β

)è
.

First, we show that χc(Ad(U)V >0
β , ev∗J) = 1. In fact, since Φβ

2 ∩ Φ+

contains no simple root, ev(Ad(U)V >0
β ) ⊂ [U,U ]; hence, ev∗J is the constant

sheaf on Ad(U)V >0
β . Since Ad(U)V >0

β is an affine space by (5.33), we get the

conclusion.

Second, we prove that χc(Ad(U)(V ≥β
′

β − V >β′

β ), ev∗J) = 0 for each β′ ∈
Φβ

2 ,−θ < β′ < 0. Since β′ 6= −θ, β′ − αi is still a root for some simple

αi. Then α = αi − β′ is a positive root. By assumption, αi /∈ Φβ
2 , therefore

〈α, β∨〉 = 〈αi, β∨〉 − 2 < 0, i.e., α appears in the first product in (5.33).

Lemma 5.40. Let a, b ∈ Z>0 and β′ ≤ β1, . . . , βb be roots in Φβ
2 (not

necessarily distinct). Then aα +
∑b
i=1 βi 6= 0. If aα +

∑b
i=1 βi is a root, then

one of the following situations happens :

(1) aα +
∑b
i=1 βi is a negative root. Then a = b − 1, aα +

∑b
i=1 βi ∈ Φβ

2

and is larger than any of the βi’s (in the total order of Φβ
2 );

(2) aα+
∑b
i=1 βi is positive but not simple;

(3) a = b = 1, β1 = β′ and aα+
∑b
i=1 βi = αi.

Proof. If a ≥ b, since α + β′ > 0 and βi ≥ β′, α + βi must have positive

height. Therefore,

aα+
b∑
i=1

βi = (a− b)α+
b∑
i=1

(α+ βi) > 0.

Since each term on right-hand side of the above sum has positive height, it is

a simple root if there is only one summand, which must be the case (3).

If a < b, then 〈aα+
∑b
i=1 βi, β

∨〉 ≥ 2b−2a ≥ 2. Therefore, if aα+
∑b
i=1 βi

is a root, we must have a = b − 1 and aα +
∑b
i=1 βi ∈ Φβ

2 . Since Φβ
2 does not

contain simple roots, we get either case (1) or case (2).

In any case, we have aα+
∑b
i=1 βi 6= 0. �

For u =
∏
uα′(cα′) (the product over α′ ∈ Φ+, 〈α, β∨〉 < 0), let uα =∏

α′ 6=α uα′(cα′). Similarly, for v ∈ V ≥β
′

β − V >β′

β , write

v = uβ′(cβ′τ
−1)vβ

′∏
uβ′′(cβ′′τ

−1)
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(product over β′ < β′′ ∈ Φβ
2 , and cβ′ invertible). Then

ev(Ad(u)v)

(5.41)

= uα[uα(cα), uβ′(cβ′)]uβ′(cβ′)

Ç ∏
β′′>β′

[uα(cα), uβ′′(cβ′′)]uβ′′(cβ′′)

å
uα,−1.

To calculate (5.41), we use Chevalley’s commutator relation to write each

[uα(cα), uβ′′(cβ′′)] into products of positive and negative root factors. We

try to pass the negative root factors (which necessarily appear in Φβ
2 by

Lemma 5.40(1)) to the right. By Chevalley’s commutator relation, each time

we will produce new factors of the form aα+β1 + · · ·+βb for βi ∈ Φβ
2 , a, b > 0.

We keep the positive factors and pass the negative factors further to the right.

The only thing we need to make sure of in this process is that when we do

commutators [Uα′ , Uγ′ ], we always have that α′ and γ′ are linearly independent

so that Chevalley’s commutator relation is applicable. In fact, in the process,

we only encounter the case where α′ ∈ Φ+, γ′ ∈ Φ− and α′ + γ′ has the form

aα + β1 + · · · + βb for β′ ≤ βi ∈ Φβ
2 (a, b ∈ Z>0). The only possibility for

α′ and γ′ to be linearly dependent is α′ + γ′ = 0, which was eliminated by

Lemma 5.40.

In the end of the process, we get

(5.42) ev(Ad(u)v) = uαuαi(εcαcβ′)u
+

Ç ∏
β′′≥β′,β′′∈Φβ2

uβ′′(cβ′′ + c̃β′′)

å
uα,−1.

The term uαi(εcαcβ′) (where ε = ±1) comes from [uα(cα), uβ′(cβ′)]. The term

u+ is the product all the other positive factors in Uaα+β1+···+βb (i.e., aα+β1 +

· · · + βb ∈ Φ+). By Lemma 5.40(2)(3), these aα + β1 + · · · + βb are never

simple; therefore u+ ∈ [U,U ]. Finally, the extra coefficient c̃β′′ comes from

the negative factors in Uaα+β1+···βb , which is a polynomial functions in cα and

cβ′′′ for β′′′ ∈ Φβ
2 . By Lemma 5.40(1), cβ′′ only involves those cβ′′′ such that

β′′′ < β′′.

Therefore, we can make a change of variables

Ad(U)(V ≥β
′

β − V >β′

β ) ∼= Uα × U×β′,−1 ×
∏

〈α′,β∨〉<0,α′ 6=α
Uα′ ×

∏
β′′∈Φβ2 ,β

′′>β′

Uβ′′,−1,

(5.43)

Ad(u)(v)↔
Ç
uα(cα), uβ′(cβ′τ

−1), uα,
∏

uβ′′(cβ′′ + c̃β′′)

å
.

Let A be the product of the last three terms in (5.43). Let prA : Ad(U)(V ≥β
′

β −
V >β′

β ) → A be the projection. In view of (5.42), the restriction of ev∗J on
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the fibers of prA are isomorphic to Artin-Schreier sheaves on Uα. Therefore

prA,!ev∗J = 0; hence,

H∗c (Ad(U)U×β,−1, ev∗J) = H∗c (A, prA,!ev∗J) = 0.

This completes the proof of Case II of the claim.

6. Global monodromy

This section is devoted to the proof of Theorem 3. Let G be split, almost

simple over k.

6.1. Dependence on the additive character. Recall from Remark 2.8(3)

that ToAut†(G)×Grot
m acts on BunG(0,2) and the Hecke correspondence (2.7).

The group T (k) o Aut†(G)×Grot
m (k) also acts on I∞(1)/I∞(2), hence on the

space of generic additive characters. Let Sφ be the stabilizer of φ under the

action of T o Aut†(G)×Grot
m . This is a finite group scheme over k.

When G is of adjoint type, for each σ ∈ Aut†(G), there is a unique (t, s) ∈
(T ×Grot

m )(k) such that (t, σ, s) fixes φ. Therefore, in this case, the projection

Sφ → Aut†(G)
∼→ Out(G) is an isomorphism (as discrete groups over k). In

general, Sφ → Aut†(G) is a ZG-torsor but may not be surjective on k-points.

The following lemma follows immediately from the definition of the geo-

metric Hecke operators.

Lemma 6.1. The tensor functor defining KlǦ(φ),

Hkφ : S 3 ICV 7→ HkV (Aφ)|?×P1
\{0,∞}

∈ Loc(P1
\{0,∞}),

carries a natural Sφ-equivariant structure. Here Sφ(k) acts on S via its image

in Aut†(G) and Sφ(k) acts on Loc(P1
\{0,∞}) via its action on P1

\{0,∞} through

Sφ → Grot
m .

In Lemma B.3(1) we will check that under the equivalence Rep(Ǧ) ∼= S,

the Aut†(G)-action on S coincides with the action of Aut†(G) ∼= Aut†(Ǧ) with

respect to the chosen pinning of the dual group.

Let S1
φ(k) = ker(Sφ(k)→ Grot

m (k)), and let Srot
φ (k) be the image of Sφ(k)

in Grot
m (k), which is a finite cyclic group. We would like to use the above

equivariance to conclude that the monodromy representation of KlǦ(φ) can

be chosen to take values in ǦS
1
φ(k). However, since this representation is only

defined up to inner automorphisms, this requires an extra argument.

Recall that we have chosen a geometric generic point η over SpecK0, the

formal punctured disc at 0. We defined KlǦ(φ, 1) as a functor from the Satake

category S ∼= Rep(Ǧ) to Loc(P1
\{0,∞}) so that restriction to η is a tensor
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functor

(6.2) ωφ : S
KlǦ(φ)
−−−−→ Loc(P1

\{0,∞})
j∗
η−→ Vec.

As this is a fiber functor of S, we can define
φ
Ǧ = Aut⊗(ωφ). Of course,

φ
Ǧ

is isomorphic to Ǧ but not canonically so. The group
φ
Ǧ has the advantage

that by Tannakian formalism, we get a canonical homomorphism Aut⊗(j∗η)→
Aut⊗(ωφ), where Aut⊗(j∗η) is the pro-algebraic envelope of the fundamental

group π1(P1
\{0,∞}, η). Therefore, we get a homomorphism

(6.3) ϕ : π1(P1
\{0,∞}, η)→ φ

Ǧ(Q`).

By Lemma 6.1 we get a homomorphism

(6.4) S1
φ(k)→ Aut⊗(S,Hkφ)

(j∗
η

)∗
−−−→ Aut⊗(S, ωφ) = Aut(

φ
Ǧ).

In other words, we have an action of S1
φ on

φ
Ǧ. We will prove in Lemma B.4

that
φ
Ǧ also carries a natural pinning ‡ and that the above action preserves this

pinning. The pinnings ‡ and † define a canonical isomorphism can:
φ
Ǧ ∼= Ǧ.

Using this identification, we obtain

Corollary 6.5. The monodromy representation ϕ extends to a homo-

morphism between exact sequences :

(6.6) π1(P1
\{0,∞}, η)

[#Srot
φ (k)]
//

ϕ
��

π1(P1
\{0,∞}, η) //

ϕ̃
��

Srot
φ (k)

ǦS
1
φ(k) // ǦS

1
φ(k) o Srot

φ (k) // Srot
φ (k).

Proof. By equation (6.4), the S1
φ(k)-action on

φ
Ǧ factors through S1

φ(k)→
Aut⊗(S,Hkφ). By Lemma B.2, the monodromy representation ϕ thus factors

through π1(P1
\{0,∞}, η)→ φ

ǦS
1
φ ⊂ φ

Ǧ; i.e.,

Hkφ : S ∼= Rep(
φ
Ǧ)

Res−−→ Rep(
φ
ǦS

1
φ(k))

κ−→ Loc(P1
\{0,∞})

for some tensor functor κ.

We identified Ǧ ∼= φ
Ǧ using the pinned isomorphism “can,” so we can view

the functor κ as Rep(ǦS
1
φ(k)) → Loc(P1

\{0,∞}). Then Srot
φ (k) = Sφ(k)/S1

φ(k)

acts on ǦS
1
φ(k) via Sφ(k) → Out(G)

ι−→ Aut†(Ǧ), hence acting on the source

and target of κ. Lemma 6.1 implies that κ carries a natural Srot
φ (k)-equivariant
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structure. Taking Srot
φ (k)-invariants of both tensor categories, we get a func-

tor κ̃:

Rep(ǦS
1
φ(k) o Srot

φ (k))

o
��

κ̃ // Loc(P1
\{0,∞}/S

rot
φ (k))

o
��

Rep(ǦS
1
φ(k))S

rot
φ (k) (κ)

Srot
φ

(k)

// Loc(P1
\{0,∞})

Srot
φ (k).

Since the quotient map P1
\{0,∞} → P1

\{0,∞}/S
rot
φ (k) can be identified with the

#Srot
φ (k)-th power map of P1

\{0,∞} = Gm, we arrive at the diagram (6.6). �

Remark 6.7. Corollary 6.5 remains true if k is replaced by an extension

k′ and P1
\{0,∞} is replaced by P1

\{0,∞} ⊗k k
′. In particular, to get information

about the geometric monodromy, we take for k′ = k.

In the case Out(Ǧ) is nontrivial, we have

Ǧ Aut†(Ǧ)
∼→ Out(Ǧ) ǦAut†(Ǧ) S1

φ(k) Srot
φ (k)

A2n−1 (n ≥ 2) Z/2 Cn Out(Ǧ) 1

A2n Z/2 Bn 1 Z/2

D4 S3 G2 Out(Ǧ) 1

Dn (n ≥ 5) Z/2 Bn−1 Out(Ǧ) 1

E6 Z/2 F4 Out(Ǧ) 1

Table 2. Outer automorphisms and stabilizers of φ.

6.2. Zariski closure of global monodromy. Let Ǧgeo ⊂ Ǧ be the Zariski

closure of the image of the geometric monodromy representation

ϕgeo : π1(P1
\{0,∞} ⊗k k, η)→ φ

Ǧ ∼= Ǧ.

We first show that Ǧgeo is not too small.

Proposition 6.8 (B. Gross). If char(k) > 2, and the rank of G is at

least 2, the Ǧgeo is not contained in any principal PGL2 ⊂ Ǧ.

Proof. Suppose instead Ǧgeo ⊂ PGL2 ⊂ Ǧ, where PGL2 contains a prin-

cipal unipotent element (image of It0) of Ǧ. The image of the wild inertia I+
∞

must be nontrivial because Klθ
∨

Ǧ
(φ) has nonzero Swan conductor at ∞.

Since p = char(k) > 2, ϕ(I+
∞) lies in a maximal torus Gm ⊂ PGL2 and

contains µp ⊂ Gm. Since ϕ(I∞) normalizes ϕ(I+
∞), it must be contained in the

normalizer N(Gm) ⊂ PGL2 of the torus Gm.

For any irreducible representation S2` = Sym2`(Std) of PGL2 (where Std

is the 2-dimensional representation of SL2), every pair of weight spaces S2`(n)⊕
S2`(−n) (0 ≤ n ≤ `) is stable under N(Gm), hence under I∞. If the weight
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n does not divide p, the Swan conductor of S2`(n) ⊕ S2`(−n) is at least 1.

Therefore,

Swan∞(S2`) ≥ `− [`/p].

Consider the action of I∞ on the quasi-minuscule representation Vθ∨ of Ǧ.

By Lemma C.1, Vθ∨ decomposes into rs(Ǧ) irreducible representations of the

principal PGL2: Vθ∨ = S2`1 ⊕ · · · ⊕ S2`rs(Ǧ) . Therefore,

Swan∞(Vθ∨) ≥
rs(Ǧ)∑
i=1

(`i − [`i/p]) ≥ (1− 1/p)
hrs(Ǧ)

2
.

Here we used
∑
i `i = hrs(Ǧ)/2. (See the proof of Lemma C.1.) On the other

hand, we have Swan∞(Vθ∨) = rs(Ǧ) by Corollary 5.1(1). So as long as h > 3

or p > 3, we get contradiction with . Even when h = 3 and p = 3, then

Ǧ = PGL3 with Vθ∨ = S4⊕S2, we still have Swan∞(Vθ∨) ≥ 2+1 = 3 > rs(Ǧ),

a contradiction! �

Proof of Theorem 3. Since KlV
Ǧ

(φ) is a pure of weight 0 for every V ∈
Rep(Ǧ), it is geometrically semisimple. By Deligne [11, Corollaire 1.3.9], the

neutral component Ǧ◦geo of Ǧgeo is a semisimple group.

Step I. Assume G is not of type A1, A2n or B3. We first determine Ǧ◦geo,

or equivalently, its Lie algebra ǧgeo. On the one hand, by Theorem 1(2), Ǧ◦geo

contains a principal unipotent element; hence it contains a principal PGL2.

Proposition 6.8 says that Ǧgeo cannot be equal to PGL2. Since a principal

PGL2 is its own normalizer in Ǧ, we conclude that Ǧ◦geo cannot be equal to

PGL2, i.e., sl2 $ ǧgeo. On the other hand, since G is not of type A2n, S1
φ(k) =

Aut†(Ǧ)
∼→ Out(Ǧ). In this case, Corollary 6.5 implies Ǧgeo ⊂ ǦAut†(Ǧ).

Dynkin classified all Lie subalgebras ǧgeo ⊂ ǧ that contain a principal

sl2. If ǧ 6= so7, then either ǧgeo = sl2 or ǧgeo is the fixed point algebra of some

pinned automorphism of Ǧ. In our case, if G is not of type A2n, we can already

conclude that ǧgeo = ǧAut†(Ǧ).

Step II. Suppose Ǧ is of type B3 and char(k) > 3. We claim that

Ǧ◦geo = G2. For this it suffices to show that Kl∧
3V7

SO7
(φ) contains has a global

section over P1
\{0,∞} ⊗k k, where V7 is the 7-dimensional standard representa-

tion of SO7. Suppose the contrary. Then the long exact sequence (5.4)–(5.6)

with ǧ replaced by ∧3V7 would imply

(6.9)

dim(∧3V7)I0 + dim(∧3V7)I∞ ≤ dimH1
c (P1

\{0,∞},Kl∧
3V7

SO7
(φ)) = SwanI∞(∧3V7).

We use the standard basis {e−3, . . . , e0, . . . , e3} for V7. (The quadratic form is

e2
0 + e1e−1 + e2e−2 + e3e−3.) The 0-weight space of ∧3V7 under the principal
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sl2 is spanned by {e1 ∧ e−2 ∧ e−3, e−1 ∧ e2 ∧ e3, e0 ∧ ei ∧ e−i, i = 1, 2, 3} and

hence has dimension 5. Since I0 acts on V7 as a principal unipotent element

by Theorem 1(3), one concludes that dim(∧3V7)I0 = 5.

Since char(k) > 3, it does not divide the Coxeter number of Ǧ. Therefore

Corollary 2.15 is applicable. Since the breaks of the I+
∞-action on V7 are

1/h = 1/6, the breaks of I+
∞ on the nonzero weight spaces of ∧3V7 are ≤

1/6. Therefore SwanI∞(∧3V7) ≤ [1
6 dim∧3V7] = [35/6] = 5. Moreover, by

the description of ϕ(I+
∞) in Corollary 2.15, I+

∞ acts trivially on Span{e1 ∧
e2 ∧ e3, e−1 ∧ e−2 ∧ e−3}, and the Coxeter permutation e1 → e2 → e3 →
e−1 → e−2 → e−3 → e1 permutes e1 ∧ e2 ∧ e3 and e−1 ∧ e−2 ∧ e−3. We get

dim(∧3V7)I∞ ≥ 1. Thus,

dim(∧3V7)I0 + dim(∧3V7)I∞ ≥ 5 + 1 > 5 ≥ SwanI∞(∧3V7),

which contradicts (6.9). This proves that Ǧgeo = G2 in the case Ǧ = SO7.

Step III: When Ǧ is of type A2n. In this case, KlǦ(φ) comes from the

classical Kloosterman sheaf Kln(φ), whose global monodromy is treated by

Katz in [26]; see (0.2).

Step IV. It remains to prove that Ǧgeo is connected. The case of An is

treated by Katz in loc. cit. In the case Ǧ is of type E6, one checks that ǦAut†(Ǧ)

is already connected.

In general, we have Ǧgeo ⊂ NǦ(Ǧ◦geo) = Ǧ◦geoZǦ. Consider the surjective

homomorphism

ϕgeo : πgeo
1 (P1

\{0,∞}, η)
ϕgeo

−−−→ Ǧgeo → π0(Ǧgeo) = ZǦ/ZǦ ∩ Ǧ◦geo.

Assuming Ǧ is not of type An or E6, then π0(Ǧ) is a 2-group. Since char(k) > 2,

ϕgeo factors through the tame quotient. On the other hand, the tame generator

in I0
∼= πgeo(P1

\{0,∞}, η) must map to a unipotent element in Ǧgeo, hence inside

Ǧ◦geo. Therefore the map ϕgeo is trivial; i.e., Ǧgeo is connected. �

7. Functoriality of Kloosterman sheaves: Conjectures

In this section, we offer some conjectures for a further study on Klooster-

man sheaves. In particular, according to a rigidity property that is known in

the case of GLn according to Katz and Gabber, the Kloosterman sheaves with

the same geometric monodromy tabulated in Table 1 should be isomorphic

after matching the additive characters φ. We will also give a conjectural de-

scription of the local and global monodromy of KlLG(φ) for certain quasi-split

groups G.
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7.1. Rigidity.

Conjecture 7.1 (Physical rigidity of Kloosterman sheaves). Suppose L

is a Ǧ-local system on P1
\{0,∞}⊗k k that, as I0 and I∞-representations, has the

same isomorphism types as KlǦ(φ, χ). Then L ∼= KlǦ(φ, χ) over P1
\{0,∞}⊗k k.

Even stronger, we expect

Conjecture 7.2. Suppose L is a Ǧ-local system on P1
\{0,∞} satisfying

• L is tame at {0}; the semisimple part of the image of a topological

generator of It0 is conjugate to an element in Ť [q− 1] that corresponds

to a multiplicative character χ : T (k)→ Q
×
` .

• Swan∞(LAd) = r, and (LAd)I∞ = 0.

Then there exists a generic linear function φ : I(1)/I(2) → Ga such that

L ∼= KlǦ(φ, χ) up to an unramified twist (given by Gal(k/k)→ ZǦ).

Inspired by the above conjectures, and the calculation of the local and

global monodromy of Kloosterman sheaves given in Theorem 1(2), Corol-

lary 2.15 and Theorem 3, we conjecture that there should be functorial re-

lationship between the Kloosterman sheaves.

Conjecture 7.3. Let G,G′ be split, almost simple groups over k whose

dual groups Ǧ ⊃ Ǧ′ appear in the same line of Table 1. Then for every generic

linear function φ of G, there exists a generic linear function φ′ of G′ such

that over P1
\{0,∞} ⊗k k, the Kloosterman sheaf KlǦ(φ) is the pushout of the

Kloosterman sheaf KlǦ′(φ
′).

7.2. Quasi-split groups. Let G be a split, almost simple and simply-con-

nected group over k. Let G be the quasi-split group scheme on P1 whose

restriction to P1
\{0,∞} is given by the twisting σ : µN ↪→ Aut†(G) as in Sec-

tion 1.1. Recall that N is assumed to be prime to char(k), and N = 2 unless G

is of type D4, in which case N = 3. We abuse the notation to denote still by σ

the image of a generator of µN in Aut†(G). We identify Aut†(G) with Aut†(Ǧ)

using the isomorphism in Lemma B.3(2). We write 〈σ〉 ⊂ Aut†(G) ∼= Aut†(Ǧ)

for the subgroup generated by σ. The associated L-group can be taken as
LG = Ǧo 〈σ〉. The Kloosterman sheaf KlLG(φ) constructed in Theorem 1 gives

a monodromy representation

ϕ : π1(P1
\{0,∞}, η)→ LG = Ǧo 〈σ〉.

The adjoint representation Ad : Ǧ→ GL(ǧ) can be extend to a homomorphism

Adσ : LG → GL(ǧ)

so that the Kloosterman sheaf KlLG(φ) induces a local system KlAd
LG (φ).
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We have the following predictions for the local monodromy of KlLG(φ).

The tame monodromy at {0} should be generated by the element (u, σ) ∈
LG = Ǧ o 〈σ〉, where u ∈ Ǧσ is a principal unipotent element. The Swan

conductor Swan∞(KlLG(φ)) = −χc(P1
\{0,∞},KlAd

LG (φ)) should equal the rank of

the neutral component of Ǧσ. Moreover, we also expect that the analog of

Corollary 2.15 holds for KlLG(φ), with the Coxeter element replaced by the

σ-twisted Coxeter element Coxσ ∈ W × {σ} ⊂ W o 〈σ〉 (see [36] and [35, §5])

and the Coxeter number replaced by the σ-twisted Coxeter number hσ (the

order of the Coxσ).

As for the global monodromy, we expect that for char(k) not too small,

the global geometric monodromy representation ϕgeo for KlLG(φ) has Zariski

dense image.

We observe from Table 1 that for simply-laced split groups G not of type

A2n, the Zariski closure Ǧgeo of the geometric monodromy of KlǦ(φ) is smaller

than Ǧ. Now pick a quasi-split form G of G built out of a nontrivial σ ∈
Aut†(G) of order N . Then according to our expectation, the Ǧ-local system

[N ]∗KlLG(φ) on ‹P1
\{0,∞} (the N -th Kummer cover of P1

\{0,∞}, which is still

isomorphic to P1
\{0,∞}) should have Zariski dense geometric monodromy in Ǧ.

This compensates the smallness of Ǧgeo for simply-laced G.

When G is of type A2n, by Corollary 6.5, ϕ extends to

π1(P1
\{0,∞}, η)→ Ǧo µ2,

hence giving a Ǧoµ2-local system KlǦ(φ) on P1
\{0,∞}/µ2. On the other hand,

let G be the quasi-split unitary group given by the nontrivial σ ∈ Aut†(G). We

have a Kloosterman sheaf KlLG(φ′) on P1
\{0,∞}. After identifying LG with Ǧoµ2

and matching φ with φ′, we expect that KlLG(φ) ∼= KlǦ(φ′) over P1
\{0,∞}⊗kk ∼=

(P1
\{0,∞}/µ2)⊗k k.

Appendix A. Proof of Proposition 1.1

In this appendix, we give a proof of Proposition 1.1 on the geometry of

moduli spaces of G-bundles on P1.

Proof. The proof of the first two claims uses the same argument as in [23,

Prop. 3]. We will first assume that the base field k is algebraically closed.

(A) Assume that G = T ; i.e., G|P1
\{0,∞} is a torus. In this case, (2)

has been proved in [25, Lemma 16]. Let us prove (1). Since T is abelian,

for any T -torsor P, we have H1(P1,P ×T Lie(T )) = H1(P1,Lie(T )). We

claim that this group vanishes. By construction we know that Lie(T ) ⊂
Lie([N∗](G

r
m×P1)) is a direct summand. Also Lie([N ]∗(G

r
m×P1)) = [N ]∗OrP1

and H1(P1, [N ]∗(OP1)) = H1(P1,OP1) = 0. Thus, H1(P1,P ×T Lie(T )) = 0
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for any P so that there are no nontrivial deformations of T -bundles. Since

k is algebraically closed, H1(k(P1), T ) = 0; i.e., all T -bundles are generi-

cally trivial. Thus the map ⊕x∈P1T (Kx)/T (Ox)→ BunT (k) is surjective. By

construction, the isomorphism π0(BunT ) ∼= π1(T )π1(Gm) is induced from the

Kottwitz homomorphism π0(GrT ,x) → X∗(T )Gal(Ksep
x /Kx). Thus for any x,

the map T (Kx) → BunT (k) is surjective. This proves (1) in the case of tori.

Finally (1) and (2) imply (4) for tori.

(B) In case G|P1
\{0,∞} is a semisimple, simply connected group, statements

(1) and (2) have been proved in [25, Th. 4], again assuming k to be algebraically

closed.

(C) Suppose that the derived group Gder|P1
\{0,∞} of G|P1

\{0,∞} is simply

connected, and denote D|P1
\{0,∞} := G/Gder|P1

\{0,∞}. Denote by Gder and D
the corresponding group schemes over P1 constructed as in Section 1.2. Then

Haines and Rapoport show ([23, proof of Prop. 3]) that there is an induced

exact sequence of group schemes over P1:

1→ Gder → G → D → 1.

By (A) any D-bundle is trivial over P1\{x}, and by (B) we know the same for

all forms of Gder as well. This implies (1) for G. Moreover, we know from [23]

that G(k((s))) → D(k((s))) is surjective. Thus π0(BunG) ∼= π0(BunD), which

proves (2) for G.

(D) For general groups G we can choose a z-extension

1→ Z|P1
\{0,∞} → G

′|P1
\{0,∞} → G|P

1
\{0,∞} → 1

such that Z|P1
\{0,∞} is an induced torus, which is induced from a covering

[N ] : Gm → Gm as in Section 1, and G′der|P1
\{0,∞} is simply connected. As in

Section 1.2, the induced torus Z|P1
\{0,∞} extends to P1 as the Weil restriction

of a split torus via the map [N ] : P1 → P1 and G′|P1
\{0,∞} extends naturally

as to a group scheme G over P1 as in Section 1.2. By the local computation

in [23, d) in proof of Prop. 3], this defines an exact sequence

1→ Z → G′ → G → 1.

Since Z is the Weil restriction of a split torus, via the tamely ramified,

finite map [N ] : P1 → P1, Tsen’s theorem implies that H2(P1,Z) = 0. There-

fore, any G bundle can be lifted to a G′ bundle. Since we know (1) for G′, this

proves (1) for G. To prove (2) denote by Zη a geometric generic fiber of Z.

Under our assumption, (X∗(Zη))π1(P1
\{0,∞})

is torsion free, and therefore as in

[23], we have an exact sequence

0→ X∗(Žη
π1(P1

\{0,∞}))→ X∗(Z(Ǧη
′
)
π1(P1

\{0,∞}))→ X∗(Z(Ǧη)
π1(P1

\{0,∞}))→ 0.

This implies (2).
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To prove the third claim we follow the arguments of Harder [24], Ra-

manathan [34] or Faltings [14, Lemma 4]. Recall from Section 1.2 that we

fixed S ⊂ T ⊂ B ⊂ G, which are extensions a maximal split torus, a maximal

torus and a Borel subgroup over P1
\{0,∞} to P1.

We need to fix notation for dominant weights. First X∗(Tη)π1(Gm)
Q =

X∗(S)Q. Moreover, the relative roots Φ(G, S) span the subspace of characters

of S that are trivial on the center of G. We denote by X∗(Tη)π1(Gm),+ ⊂
π0(BunT ) the the subset of γ ∈ X∗(T )π1(Gm) such that for any positive, relative

root a ∈ Φ(G, S)+, we have a(γ) ≥ 0.

First, we want to prove that

G(k((s))) =
∐

λ∈X∗(T )π1(Gm),+

G(k[t])λ(s)G(k[[s]]).

From (1) we conclude that every G-bundle is trivial outside any point. In

particular, any G bundle admits a reduction to B. Let E be a G-bundle and

choose a reduction EB of E to B.

For any character α : T → Gm, we denote by EB(α) the associated line

bundle on P1. Since X∗(T )
π1(Gm)
Q

∼= X∗(S)Q, the degree deg(EB(α)) ∈ Q is

also defined for α ∈ X∗(S).

We claim that if for all positive, simple roots ai ∈ Φ(G, S)+ we have

deg(EB(ai)) ≥ 0, then the bundle EB admits a reduction to T . To show this,

denote by U ⊂ B the closure of the unipotent radical of B|P1
\{0,∞} and ET :=

EB/U the induced T -bundle. In order to show that EB is induced from ET , we

only need to show that H1(P1, ET ×T U) = 0. The group U has a filtration

such that the subquotients are given by root subgroups.

Consider a positive, relative root a ∈ Φ(G, S). The root subgroup Ua is a

direct summand of [N ]∗(⊕Uα′) where the sum is over those roots α′ ∈ Φ(G,T )

that restrict to a on S. Thus Ua is a direct summand of a vector bundle V
satisfying H1(P1,V) = 0.

Similarly, ET ×T Ua is a direct summand of ET ×T [N ]∗(⊕Uα′). Since [N ]∗ET
is π1(Gm)-invariant, this implies that H1 of this bundle is 0 if deg(EB(a)) ≥ 0.

Thus we also find H1(P1, ET ×T U) = 0.

If the reduction EB does not satisfy the condition deg(EB(ai)) ≥ 0 for some

simple root ai, we want to modify the reduction EB. Consider the parabolic

subgroup Pai ⊂ G generated by B and U−ai . The root subgroups U±ai define

a subgroup L of P such that the simply connected cover of L (extended from

P1
\{0,∞} to P1 as in §1.2) is either isomorphic to [n]∗SL2 or isomorphic to

[n]∗SU3 for some n dividing N [7, §4.1.4]. The semisimple quotient Pss/Z(Pss)
is isomorphic to Lad and furthermore P/B ∼= L/(L ∩ B). We claim that the

result holds for Lad bundles because these bundles can be described in terms

of vector bundles. If Lad = [n]∗PGL2, then the result follows from the result
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for vector bundles of rank 2. The case of unitary groups is similar; we will

explain it below in Lemma A.1.

Thus we can find a new reduction E ′B to B such that EPai is unchanged, but

E ′B(ai) ≥ 0. This implies that for the fundamental weights εk (multiples of the

determinant of the adjoint representation of the maximal parabolic subgroups

Pk, generated by B and all Uaj with j 6= k), the degree of EB(εk) for k 6= i is

unchanged but the degree E ′B(εi) is larger than the degree of EB(εi).

However, E ′B(εi) is a subbundle of ∧dim(Lie(Pi))E(Lie(G)), so the degree

of all of these line bundles is bounded. Thus the procedure must eventually

produce a B-reduction satisfying deg(EB(ai)) ≥ 0 for all simple roots. This

proves (3).

Let us deduce the Birkhoff decomposition (4). In the case of constant

groups, this is usually deduced from the decomposition G = B−W0B and (3).

For general G, the analog of this is provided by [7, Th. 4.6.33]. Denote by G0 :=

Gred
0 the reductive quotient of the fiber of G over 0 and B0 ⊂ G0 the image of B.

Denote by U0 the unipotent radical of B0 so that G0 = U0W0B0. The quoted

result says that the inverse image of B0 in G is I(0). By construction of G,

elements of U0(k) can be lifted to U(P1). Thus we have G(k[[s]]) = U0W0I(0).

Similarly, by our construction of G, the evaluation G(A1) → G0(k) is

surjective so that G(A1) = I−(0)W0U0.

For dominant t ∈ T (k((s))) and b ∈ U0, we have t−1bt ∈ I(0). Thus

using (3), we find G(k((s))) = I−(0)T (k((s)))G(k[[s]]). Now we want to argue

in the same way, decomposing G(k[[s]]). For any t, we can choose w ∈ W0

such that wtw−1 is dominant. Then choose B′0 ⊂ G0 as wB0w
−1 and write

G0 = B′0W0B0. Then we can use the same argument as before to deduce (4)

(still assuming k to be algebraically closed).

Let us deduce the case that k is a finite field. First assume that G splits

over the totally ramified covering [N ] : P1 → P1. The embedding W̃ → GrG,x
is then defined over k so that all geometric points of BunG are defined over k.

Once we show the following claim, (1), (3) and (4) follow over k by Lang’s

theorem.

Claim. The automorphism group of any G(0, 0)-bundle is connected.

Proof of the claim. We first treat the case G = T . Since T is constructed

as a subgroup of a Weil restriction [N ]∗(G
r
m), we have

H0(P1, T ) ↪→ H0(P1, [N ]∗(G
r
m)),

and the same will hold after any base change S → Spec(k). Thus, if we let

p : P1 → Spec(k) denote the projection, we find that p∗T ↪→ p∗([N ]∗(G
r
m)) as

sheaves in the fppf-topology, both of which are represented by affine group

schemes over k. Since the evaluation at 0 ∈ P1 defines an isomorphism
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p∗([N ]∗(G
r
m))

∼→ ([N ]∗G
r
m)red

0 = Gr
m, this implies that also for T the eval-

uation p∗T → T red
0 is injective. Since T was constructed as

Ä
([N ]∗(G

r
m))σ

ä◦
we also see that T red

0 ↪→ ([N ]∗G
r
m)red

0 = Gr
m
∼= p∗([N ]∗(G

r
m)) defines a section

T red
0 → p∗T so that p∗(T ) ∼= T red

0 , which is a connected group.

In general, for any w ∈ W̃ , the automorphism group of the corresponding

G(0, 0)-bundle over k is I−(0)∩wI(0)w−1. This group admits p∗(T ) as a quo-

tient, and the kernel is a product of root subgroups for affine roots, which are

connected as well. �

The general case follows from the previous case (i.e., G splits by pulling

back via [N ]) by Galois descent, using [23, Remark 9] that the Iwahori-Weyl

group can be computed as the Galois invariants in the Iwahori-Weyl group over

the separable closure of k. Part (5) follows from the definition of G(m,n). �

In the above proof we used the following special case. Denote by SU3

the quasi-split unitary group for the covering [2] : P1 → P1. This can be

described as the special unitary group for the hermitian form h(x1, x2, x3) =

x1x
σ
3 + x2x

σ
2 + x3x

σ
1 . Denote by PSU3 the corresponding adjoint group.

Lemma A.1. Any PSU3 bundle P has a reduction PB to B such that for

the positive root α we have deg(PB(α)) ≥ 0.

Proof. Define GU3 to be the group obtained from SU3 by extending the

center of SU3 to [2]∗Gm so that there is an exact sequence 1 → [2]∗Gm →
GU3 → PSU3 → 1. Again, every PSU3 bundle is induced from a GU3-bundle.

Such a bundle can be viewed as a rank-3 vector bundle E on the covering

P1 [2]−→ P1 with a hermitian form with values in a line bundle of the form

[2]∗L. In this case, to give a reduction to B it is sufficient to give an isotropic

line subbundle E1 → E , as this defines a flag E1 ⊂ E⊥1 ⊂ E . If E is not

semistable, then the canonical subbundle of E defines an isotropic subbundle

of positive degree, so in this case a reduction exists. If E is semistable, then

the hermitian form defines a global isomorphism E
∼=−→ σ∗E∨⊗ [2]∗L. But such

an isomorphism must be constant so that we can find an isotropic subbundle

of degree deg(E)
3 . �

Appendix B. Geometric Satake and pinnings of the dual group

We first need some general properties of tensor functors. Let C be a rigid

tensor category with a fiber functor ω : C → VecF , where F is a field. Let

H = Aut⊗(ω) be the algebraic group over F determined by (C, ω).

For any F -algebra R, let ωR : C ω−→ VecF
⊗FR−−−→ ModR. Let Aut⊗(C, ωR)

be isomorphism classes of pairs (σ, α), where σ : C ∼→ C is a tensor auto-

equivalence, and α : ωR ◦ σ ⇒ ωR is a natural isomorphism of functors. Then
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Aut⊗(C, ωR) has a natural group structure. Denote by Aut⊗(C, ω) the functor

R 7→ Aut⊗(C, ωR), which defines a fppf sheaf of groups. On the other hand,

let Aut(H) be the fppf sheaf of automorphisms of the pro-algebraic group H

over F .

Lemma B.1. There is a natural isomorphism of fppf sheaves of groups

Aut⊗(C, ω)
∼→ Aut(H). In particular, we have a natural isomorphism of groups

Aut⊗(C, ω)
∼→ Aut(H), which induces an isomorphism of groups [Aut⊗(C)] ∼→

Out(H), where [Aut⊗(C)] is the set of isomorphism classes of tensor auto-

equivalences of C.

On the level of F -points, a pair (σ, α) ∈ Aut⊗(C, ω) gives the following

automorphism of H = Aut⊗(ω): it sends h : ω ⇒ ω to the natural transfor-

mation

ω
α +3 ω ◦ σ h◦idσ +3 ω ◦ σ α−1

+3 ω.

More generally, suppose we are given a tensor functor Φ : C → C′ into

another rigid tensor category C′; we can similarly define a sheaf of groups

Aut⊗(C,Φ).

Let ω′ : C′ → Vec be a fiber functor and ω = ω′◦Φ. Then there is a natural

homomorphism ω′∗ : Aut⊗(C,Φ) → Aut⊗(C, ω) = Aut(H) by sending (σ, α) ∈
Aut⊗(C,Φ) to (σ, idω′ ◦ α) ∈ Aut⊗(C, ω). In other words, Aut⊗(C,Φ) acts on

the pro-algebraic group H. On the other hand, we have natural homomorphism

of pro-algebraic groups Φ∗ : H ′ = Aut⊗(ω′)→ H = Aut⊗(ω).

Lemma B.2. The homomorphism Φ∗ : H ′ → H factors through H ′ →
HAut⊗(C,Φ) ⊂ H .

Now we consider the normalized semisimple Satake category S in Sec-

tion 2.3. Following [31] and [18], we use the global section functor h to define

Ǧ = Aut⊗(h) and get the geometric Satake equivalence S ∼= Rep(Ǧ).

Lemma B.3.

(1) There is a natural homomorphism Aut(G) → Aut⊗(S, h) ∼= Aut(Ǧ)

that factors through ι̃ : Out(G)→ Aut(Ǧ).

(2) There is a natural pinning † = (B̌, Ť , {xα∨i }) of Ǧ preserved by the

Out(G)-action via ι̃. Let Aut†(Ǧ) be the automorphism group of Ǧ

fixing this pinning. Then ι̃ induces an isomorphism ι : Out(G)
∼→

Aut†(Ǧ).

Proof. (1) The Aut(G)-action on (S, h) is induced from its action on GrG.

Since objects in S carry G-equivariant structures under the conjugation action

ofG on GrG, inner automorphisms ofG acts trivially on (S, h); i.e., the Aut(G)-

action on (S, h) factors through Out(G).
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(2) We first need to exhibit a pinning of Ǧ that is preserved by the Aut(G)-

action. For this, we need to give a maximal torus Ť ⊂ Ǧ, a cocharacter 2ρ ∈
X∗(T ) = X∗(Ť ) (half the sum of positive coroots in the pinning) and a principal

nilpotent element e ∈ ǧ (the sum of simple root vectors). Equivalently, we need

to

(P1) Factor the fiber functor h into a tensor functor

h =
⊕

µ∈X∗(T )

hµ : S → VecX∗(T ) forget−−−→ Vec.

(P2) Find a a tensor derivation e : h→ h (i.e., e(K1 ∗K2) = e(K1)⊗ idK2 +

idK1 ⊗ e(K2)) that sends hµ to ⊕ihµ+αi such that for each simple root

αi, the component hµ → hµ+αi is nonzero as a functor.

The factorization hµ is given by Mirković-Vilonen’s “weight functors” [31,

Ths. 3.5, 3.6]. They also proved that h =
⊕

i h
i (where hi is the sum of hµ with

〈2ρ, µ〉 = i) coincides with the cohomological grading of h = H∗(GrG,−). The

tensor derivation e is given by the cup product with c1(Ldet) ∈ H2(GrG,Q`),

where Ldet is the determinant line bundle on GrG.

The action of Aut†(G) ⊂ Aut(G) on S permutes the weight functors

hµ in the same way as it permutes µ ∈ X∗(T ), preserves the 〈2ρ, µ〉 (hence

preserves 2ρ ∈ X∗(T ) = X∗(Ť )) and commutes with e = c1(Ldet). Therefore,

the Aut†(G)
∼→ Out(G)-action on S preserves the above pinning.

An element σ ∈ Aut†(G) induces a dual automorphism σ̌ of the Dynkin

diagram of Ǧ. Since σ∗ ICµ
∼= ICσ−1(µ), the self-equivalence σ∗ of S ∼= Rep(Ǧ)

is isomorphic to the self-equivalence of Rep(Ǧ) induced by the pinned auto-

morphisms of Ǧ given by the dual automorphism σ̌−1 on the Dynkin diagram

of Ǧ. This proves

Out(G)→ [Aut⊗(S)] ∼= [Aut⊗(Rep(Ǧ))] ∼= Out(Ǧ)

is an isomorphism. (The last isomorphism follows from Lemma B.1.) Hence

ι : Out(G)→ Aut†(Ǧ) is also an isomorphism. �

For our purpose in Section 6, we shall also need a different fiber functor

ωφ defined in (2.13). Recall that Sφ is the stabilizer of φ under the action of

T o Aut†(G) × Grot
m , and S1

φ(k) = ker(Sφ(k) → Grot
m (k)). Recall from (6.4)

that we have an action of S1
φ(k) on

φ
Ǧ.

Lemma B.4. There is a natural pinning ‡ = (
φ
B̌,

φ
Ť , {φxα∨i }) of

φ
Ǧ,

which is preserved by the S1
φ(k)-action.

Proof. Using (4.4), we can rewrite the fiber functor ωφ as

S Ψ−→ PervI0(FlG)
Vφ−→ Vec,
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where FlG = G((t))/I0 is the affine flag variety at {0},

Ψ : S → Perv(I0\G((t))/I0) = PervI0(Fl)

is the nearby cycles functor of Gaitsgory [16] and Vφ(K) := RΓc(FlG,K ⊗
pr∗1Aφ) as in (4.4). To exhibit a pinning of

φ
Ǧ, we need to find analogs of (P1)

and (P2) as in the proof of Lemma B.3(2).

According to Arkhipov-Bezrukavnikov [1, Th. 4], each object Ψ(K) admits

a X∗(T )-filtration with Wakimoto sheaves as associated graded pieces. More

precisely, they constructed a functor

(B.5)
⊕

µ∈X∗(T )

Wµ ◦Ψ(−) : S → VecX∗(T ).

Here for Ψ(K) ∈ PervI0(FlG) with Wakimoto filtration Ψ(K)≤µ, we write

grµΨ(K) = Ψ(K)≤µ/Ψ(K)<µ = Jµ⊗Wµ(K), where Jµ is the Wakimoto sheaf

[1, §3.2] and Wµ(K) is a vector space with Frobenius action. In [1, Th. 6], it

is proved that (B.5) is tensor.

For each µ, let jµ : Flµ = I0t
µI0/I0 ↪→ FlG be the inclusion. We fix the

Frobenius structure of Jµ in the following way: for µ regular dominant, let Jµ =

jµ,∗Q`[〈2ρ, µ〉](〈2ρ, µ〉); for µ regular anti-dominant, let Jµ = jµ,!Q`[〈2ρ, µ〉];
for general µ = µ1 + µ2 where µ1 is regular dominant and µ2 is regular anti-

dominant, let Jµ = Jµ1

I0∗ Jµ2 (where
I0∗ is the convolution on FlG). It follows

from [1, Lemma 8, Cor. 1] that Jµ is well defined. This normalization makes

sure that in the composition series of Jµ, δ = IC1 appears exactly once, with

multiplicity space Q` as a trivial Frobenius module. (See [1, Lemma 3(a)],

with obvious adjustment to the mixed setting.) Since all ICw̃ are killed by Vφ
except ‹w = 1, we conclude that

(B.6) Vφ(Jµ) = Q` as a trivial Frobenius module for all µ ∈ X∗(T ).

Claim. For K ∈ S , Wµ(K) is pure of weight 〈2ρ, µ〉. In fact, we have a

natural isomorphism of functors hµ ∼= Wµ. (hµ is the weight functor in [31,

Ths. 3.5, 3.6], which was used in the proof of Lemma B.3.)

Proof. We first recall the definition of the weight functors in [31]. For

every µ ∈ X∗(T ), let Sµ ⊂ GrG be the U((t))-orbit containing tµ. The weight

function defined in loc. cit. is hµ(K) = H∗c (Sµ,K), which is concentrated in

degree 〈2ρ, µ〉.
Let π : FlG → GrG be the projection. Then π−1(Sµ) = tw∈W‹Sµw, where‹Sµw ⊂ FlG is the U((t))-orbit containing tµw. We have natural isomorphisms

(for K ∈ S)

hµ(K)=H∗c (Sµ, π!Ψ(K))∼=H∗c (π−1(Sµ),Ψ(K))
∼→ H∗c (‹Sµ,Ψ(K))

∼→Wµ(K).
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Here, the first equality follows from π!Ψ(K) = K and the last two isomorphisms

follow from [1, Th. 4(2)] (with extra care about the Frobenius structure).

Since hi(K) = H i(GrG,K) is pure of weight i and hµ(K) is a direct

summand of h〈2ρ,µ〉, hµ(K) is pure of weight 〈2ρ, µ〉. Hence, Wµ(K) is also

pure of weight 〈2ρ, µ〉. �

Now we construct a natural isomorphism
⊕
µW

µ∼=ωφ. For each K∈S, the

Wakimoto filtration on Ψ(K) gives a spectral sequence calculating Vφ(Ψ(K))

with E1-page Vφ(grµΨ(K)). By (B.6),

(B.7) Vφ(grµΨ(K)) = Vφ(Jµ)⊗Wµ(K) = Wµ(K)

is concentrated in degree 0; the spectral sequence degenerates at E1. The limit

of the spectral sequence gives a Wakimoto filtration on the Frobenius module

ωφ(K) = Vφ(Ψ(K)), which we denote by w≤µ. By the claim and (B.7), this

filtration refines the weight filtration w≤i on ωφ(K):

grwi ωφ(K) =
⊕

〈2ρ,µ〉=i
grwµωφ(K).

Since ωφ(K) is a Frobenius module in Q`-vector spaces, the weight filtration

splits canonically. Therefore, the Wakimoto filtration w≤µωφ(K) also splits

canonically. This gives a canonical isomorphism
⊕
µW

µ ∼= ωφ.

Finally, the principal nilpotent element is given by the logarithm of the

monodromy action (of a topological generator of the tame inertia group at 0)

on the nearby cycles ([16, Th. 2]) MK : Ψ(K)→ Ψ(K)(−1).

The action of S1
φ(k) commutes with the nearby cycle functor and therefore

commutes with the monodromy MK . It permutes the Wakimoto sheaves, hence

permutes the functors Wµ through the action of S1
φ(k)→ Aut†(G) on X∗(T ),

and it preserves 〈2ρ, µ〉. Therefore the S1
φ(k)-action preserves the pinning ‡. �

Appendix C. Quasi-minuscule combinatorics

We assume G is almost simple of rank at least 2. Let θ be the highest

root (which is a long root) and θ∨ the corresponding coroot (which is a short

coroot). The set of roots Φ is partitioned into Φθ
n = {α ∈ Φ|〈α, θ∨〉 = n},

n = 0,±1,±2, with Φθ
±2 = {±θ}. The roots in Φθ

1 are coupled into pairs (α, β)

with α+ β = θ.

Let Vθ∨ be the irreducible representation of Ǧ with highest weight θ∨. The

nonzero weights of Vθ∨ are the short roots of Ǧ, each with multiplicity 1. Let

{e =
∑
i xi, 2ρ, f =

∑
i yi} ∈ ǧ be the principal sl2-triple, where xi ∈ ǧα∨i , yi ∈

ǧ−α∨i are nonzero and 2ρ ∈ ť is the sum of positive coroots of Ǧ.
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Lemma C.1. The following numbers are the same:

(1) dimVθ∨(0), where Vθ∨(0) is the zero weight space under the 2ρ-action,

and is also the zero weight space under the Ť -action ;

(2) dimV e
θ∨ , where V e

θ∨ = ker(ad(e)|Vθ∨);

(3) the number of short simple roots of Ǧ (the short rank rs(Ǧ));

(4) #(Wθ∨)/h = #{short roots of Ǧ}/h. (Here h is the Coxeter number

of W .)

Proof. Under the principal sl2 action, Vθ∨ can be decomposed as a sum of

irreducible representations of sl2:

Vθ∨ =

rs(Ǧ)∑
i=1

Sym2`i(Std),

where Std is the 2-dimensional representation of sl2. Since the weights of the

2ρ-action on Vθ∨ are even, only even symmetric powers of Std appear in Vθ∨ .

Since each Sym2`i(Std) contributes 1-dimension to both Vθ∨(0) and V e
θ∨ , we

have rs(Ǧ) = dimVθ∨(0) = dimV e
θ∨ . This proves the equality of the numbers

in (1) and (2).

Let Vθ∨(n) be the weight n-eigenspace of the ρ-action. Then

Vθ∨(n) =
∑

α∨short,〈ρ,α∨〉=n
Vθ∨(α∨).

In particular, dimVθ∨(1) is the number of short simple roots of Ǧ. The map

e : Vθ∨(0) → Vθ∨(1) is clearly surjective. It is also injective, because if v ∈
Vθ∨(0), ev = 0 means ǧα∨i v = 0 for all simple α∨i ; i.e., v is a highest weight, a

contradiction. This proves

(C.2) dimVθ∨(0) = dimVθ∨(1) = rs(Ǧ).

It remains prove that (4) is the same as the rest. The argument is similar to

that of [29, §6.7], where Kostant considered the adjoint representation instead

of Vθ∨ . We only give a sketch. Let ζ be a primitive h-th root of unity, and let

P = ρ(ζ) ∈ Ǧ. Let γ∨ be the highest root of Ǧ and z = e+ x−γ∨ . Then z is a

regular semisimple element in ǧ and Ad(P )z = ζz. Let Ǧz be the centralizer

of z (which is a maximal torus). Then P ∈ NǦ(Ǧz), and its image in the

Weyl group is a Coxeter element. Choosing a basis ui for the highest weight

line in Sym2`i(Std) ⊂ Vθ∨ , there exists a unique vi ∈ Vθ∨(`i − h) such that

ui + vi ∈ V z
θ∨ (kernel of the z-action on Vθ∨). Then {ui + vi}1≤i≤rs(Ǧ) form a

basis of V z
θ∨ , with eigenvalues ζ`i under the action of Ad(P ).

The representation Vθ∨ of Ǧ is clearly self-dual. According to zero and

nonzero weights under ǧz, we can write Vθ∨ = V z
θ∨ ⊕ V ′ as NǦ(Ǧz)-modules.

Any self-duality Vθ∨ ∼= V ∗θ∨ of Ǧ-modules necessarily restricts to a self-duality

V z
θ∨
∼= (V z

θ∨)∗ as NǦ(Ǧz)-modules. Hence the eigenvalues of Ad(P ) on V z
θ∨ are
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invariant under inversion; i.e., the multi-set {ζ`i}1≤i≤rs(Ǧ) is invariant under

inversion. This implies
∑
i `i = rs(Ǧ)h/2. Hence dimVθ∨ =

∑
i(2`i+1) = (h+

1)rs(Ǧ). Since the nonzero weight spaces of Vθ∨ are indexed by short roots of

Ǧ, hence by the orbit Wθ∨, we get #(Wθ∨) = dimVθ∨−dimVθ∨(0) = hrs(Ǧ).

This proves that (4) coincides with the rest of the numbers. �

Appendix D. The adjoint Schubert variety for G2

In this section we assume char(k) > 3. Recall (see tables in [8]) that G2

has four nonregular unipotent orbits:

• the subregular orbit containing a generic element in the unipotent rad-

ical of P−θ, which has dimension 10;

• the orbit containing U×−γ , which has dimension 8;

• the orbit containing U×−θ, which has dimension 6;

• the identity orbit, which has dimension 0.

The G-orbits of Grtriv
≤γ∨ for G2 turns out to be closely related to these unipotent

orbits. More precisely,

Lemma D.1. (1) There are four Ad(G)-orbits on Grtriv
≤γ∨ ,

Grtriv
≤γ∨ = Grsubr

⊔
Ad(G)U×−γ,−1

⊔
Grtriv

θ∨
⊔
{?},

of dimensions 10, 8, 6 and 0 respectively, which, under the evaluation map

evτ=1, map onto the four nonregular unipotent orbits.3

(2) The morphism

ν : G
P−θ
×
( ∏
〈β,−θ∨〉≥1

Uβ,−1

)
→Grtriv

≤γ∨ ,

(
g,
∏

uβ(cβτ
−1)
)
7→Ad(g)

(∏
uβ(cβτ

−1)
)

is a resolution. Its fibers over the G-orbits are

• ν is an isomorphism over Grsubr,

• ν−1(u−γ(τ−1)) ∼= P1,

• ν−1(u−θ(τ
−1)) is a projective cone over P1 (it contains a point, whose

complement is a line bundle over P1),

• ν−1(?) ∼= G/P−θ.

(3) The morphism

ν ′ : G
P−γ
×
( ∏
〈β,−γ∨〉≥2

Uβ,−1

)
→ Grtriv

≤γ∨ ,

3In fact, Grsubr is an étale double cover of the subregular orbit; the other G-orbits map

isomorphically to the corresponding unipotent orbits. We do not need this more precise

statement in this paper.
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defined similarly as ν, is a resolution of the closure of Ad(G)U×−γ,−1. Its

fibers over the G-orbits are

• ν is an isomorphism over Ad(G)U×−γ,−1,

• ν−1(u−θ(τ
−1)) ∼= P1,

• ν−1(?) ∼= G/P−γ .

Proof of Theorem 4(2) for G = G2. By the same reduction steps as in the

case of other types, we reduce to showing

(D.2) χc(Grtriv,a=0
γ∨ , ev∗J) = −rs(G) = −1.

Step I. χc((Ad(G)U×−γ,−1)a=0, ev∗J) = −1. For any short root β, let Vβ =∏
〈β′,β∨〉≥2 Uβ′,−1. Then the source of ν ′ has a Bruhat decomposition

G
P−γ
× V−γ =

⊔
β short root

Ad(U)Vβ.

The following Claim can be proved similarly as the claim in Section 5.6.

Claim. For a short root β,

χc(Ad(U)V >−θ
β , ev∗J) =

0 Φβ
≥2 contains a simple root,

1 otherwise.

Looking at the root system G2, there are 3 short roots β such that Φβ
≥2

does not contain a simple root. Therefore χc((G
P−γ
× V−γ)a=0, ν ′∗ev∗J) = 3.

On the other hand, by Lemma D.1(3), we have

3 =χc((G
P−γ
× V−γ)a=0, ν ′∗ev∗J)

=χc(G/P−γ) + χc(P
1)χc(Grtriv,a=0

θ∨ , ev∗J) + χc((Ad(G)U×−γ,−1)a=0, ev∗J).

Plugging in χc(G/P−γ) = #W/Wγ∨ = 6, χc(P
1) = 2 and χc(Grtriv,a=0

θ∨ , ev∗J)

= −1 from the proof of Theorem 4(1), we conclude that

χc((Ad(G)U×−γ,−1)a=0, ev∗J) = −1.

Step II. χc(Gra=0
subr, ev∗J) = 0. For any long root α, let

Vα =
∏

〈α′,α∨〉≥1

Uα′,−1.

Then the source of ν has a Bruhat decomposition

G
P−θ
× V−θ =

⊔
α long root

Ad(U)Vα.

The following claim can be proved similarly as the claim in Section 5.6.
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Claim. For a long root α,

χc(Ad(U)V >−θ
α , ev∗J) =

0 Φα
≥1 contains a simple root,

1 otherwise.

Looking at the root system G2, α = −θ is the only long root for which Φα
≥1

does not contain a simple root. Therefore χc((G
P−θ
× V−θ)

a=0, ν∗ev∗J) = 1. On

the other hand, by Lemma D.1(2), we have

1 =χc((G
P−θ
× V−θ)

a=0, ν ∗ ev∗J)

=χc(G/P−θ) + χc(P
1)χc((Ad(G)U×−γ,−1)a=0, ev∗J)

+χc(ν
−1(u−θ(τ

−1)))χc(Grtriv,a=0
θ∨ , ev∗J) + χc(Gra=0

subr, ev∗J).

Plugging in χc(G/P−θ) = #W/Wθ = 6, χc(P
1) = 2, χc(ν

−1(u−θ(τ
−1)))

= 3 from Lemma D.1(2), χc((Ad(G)U×−γ,−1)a=0, ev∗J) = −1 from Step I and

χc(Grtriv,a=0
θ∨ , ev∗J) = −1 from the proof of Theorem 4(1), we conclude that

χc(Gra=0
subr, ev∗J) = −1.

Combining Step I and II, since Grtriv,a=0
γ∨ = Gra=0

subr t(Ad(G)U×−γ,−1)a=0,

we get (D.2). This proves Theorem 4(2) in the case of G2. �
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