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Values of certain L-series
in positive characteristic

By Federico Pellarin

Abstract

We introduce a class of deformations of the values of the Goss zeta

function. We prove, with the use of the theory of deformations of vectorial

modular forms as well as with other techniques, a formula for their value

at 1, and some arithmetic properties of values at other positive integers.

Our formulas involve Anderson and Thakur’s function ω. We discuss how

our formulas may be used to investigate the existence of a kind of functional

equation for the Goss zeta function.

1. Introduction, results

Euler’s formulas [11]

ζ(−n) = (−1)n
Bn+1

n+ 1
, n ∈ Z≥0

and

ζ(2k) =
(−1)k+1(2π)2kB2k

2(2k)!
, k ∈ Z>0

must have looked particularly intriguing before Riemann’s discovery of the

functional equation for Riemann’s zeta function.

The double appearance of the Bernoulli numbers in these formulas and

the occurrence of the constant π in the second prompted Euler to conjecture

the existence of a potential functional equation [12]; a problem that Riemann

was able to solve more than a century later.

There is yet another function, called the Goss zeta function, which bears

similarities to Riemann’s zeta function, of which the existence of functional

equations is expected, although it seems difficult to even guess its appearance.

The aim of this paper is to provide new functional identities involving values

of this function.
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The zeta function of Goss. Let q = pe be a power of a prime number p with

e > 0 an integer, and let Fq be the finite field with q elements. We consider,

for an indeterminate θ, the polynomial ring A = Fq[θ] and its fraction field

K = Fq(θ). On K, we use the absolute value | · | defined by |a| = qdegθ a, a

being in K, so that |θ| = q (degθ denotes the degree in θ). Let K∞ := Fq((1/θ))
be the completion of K for this absolute value, let Kalg

∞ be an algebraic closure

of K∞. We denote, by A+, the subset of monic polynomials of A.

In his explicit class field theory for the field K, Carlitz was led to introduce

the values of the following series:

(1) ζ(n) :=
∑
a∈A+

a−n ∈ K∞, n > 0,

as analogues of the values of Riemann’s zeta function at integers > 1;1 see, for

example, [7], [8], [9]. These “zeta-values” will play a fundamental role in the

present paper.

The complete solution of the explicit class field theory problem for global

fields of positive characteristic given by Hayes [24] gave impetus to the devel-

opment of the theory. Shortly later, Goss [17] extended the study of of these

series to the case of A = Γ(X\{∞},OX), where X is a smooth projective curve

defined over Fq and∞ is a closed point of X. Goss also provided the necessary

analytic structure to study these series. Just as Riemann’s zeta function inter-

polates meromorphically the Euler zeta-values mentioned at the beginning of

the present paper, Goss’ zeta function ζ is a kind of analytic interpolation ob-

tained by Goss [17] of the zeta-values (1), whose construction can be extended

to the more general class of rings A as above. In this paper however, we will

only focus on the simplest case of A = Fq[θ] (that is, X = P1 with its point at

infinity).

No functional equation is known for these functions, in spite of evidence

supporting their existence, collected in [22].

A new kind of interpolation. In this paper we introduce a new type of

analytic interpolation, specializing in the zeta-values (1) with n varying in

certain subsets of Z. Some of the functions we introduce turn out to satisfy

functional equations.

Let C∞ be the completion of Kalg
∞ for the unique extension of | · | to Kalg

∞ ,

and let Ksep be the separable closure of K in Kalg
∞ . We consider an element t

of C∞. We have the “evaluating at t” ring homomorphism

χt : A→ Fq[t]

1We will rarely mention Riemann’s zeta function in this paper, so the double use of the

symbol ζ will not bother us.
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defined by χt(a) = a(t). In other words, χt(a) is the image of the polynomial

a(θ) obtained by substituting θ with t in a(θ). For example, χt(1) = 1 and

χt(θ) = t. If we choose t ∈ Falg
q , then χt factors through a Dirichlet character

modulo the ideal generated by the minimal polynomial of t in A.

We can also consider t as an indeterminate. We have, for α > 0 an integer,

a formal series

L(χt, α) =
∑
a∈A+

χt(a)a−α =
∏
p

(1− χt(p)p−α)−1,

where the Eulerian product runs over the monic irreducible polynomials of A,

which is well defined in K∞[[t]], as it is easily verifiable by the reader. This

formal series converges for logq |t| < α, logq being the logarithm in base q. It

is easy to see, by using Goss’ result [23, Th. 2], that it extends to an entire

function on C∞. This analytic continuation is given by ordering the summation

according to the degrees. (See the proof of Corollary 3 and Remark 7.)

If t = θq
k

for k ∈ Z and α > qk, then the series L(χ
θqk
, α) converges to

the zeta-value

L(χ
θqk
, α) = ζ(α− qk) =

∑
a∈A+

aq
k−α,

but with the above-mentioned result of Goss, the analytic extension takes, at

the points t = θq
k
, the zeta-values ζ(α− qk) for k ∈ Z. If, on the other hand,

we consider t ∈ Falg
q , then, for α > 0, L(χt, α) converges to the value at α of

the L-series associated to a Dirichlet character, described in Goss’ book [21].

For certain values of α, we show the existence of a functional equation for

the function L(χt, α) (of the variable t) which provides an alternative path to

the analytic extension.

To describe this, we recall that Carlitz’s module is the unique Fq-linear

algebra homomorphism

φCar : A→ EndFq−lin.(Ga(C∞)) = C∞[τ ]

such that φCar(θ) = θ + τ . Here, C∞[τ ] denotes the skew ring of polynomials∑
i ciτ

i in τ with coefficients in C∞, with product defined by the commutation

rule τc = cqτ .

We will need some classical tools related to Carlitz’s module. The expo-

nential function exp associated to φCar is defined, for all η ∈ C∞, by the sum

of the convergent series

(2) exp(η) =
∑
n>0

ηq
n

dn
,

where d0 := 1 and di := [i][i− 1]q · · · [1]q
i−1

, with [i] = θq
i − θ if i > 0.

We choose once and for all a fundamental period π̃ of exp. It is possible

to show that π̃ is equal, up to choice of a (q − 1)-th root of −θ, to the (value
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of the) convergent infinite product

(3) π̃ := θ(−θ)
1
q−1

∞∏
i=1

(1− θ1−qi)−1 ∈ (−θ)
1
q−1K∞.

We will also need Anderson and Thakur’s function ω, belonging to Ksep[[t]],

(4) ω(t) :=
∞∑
i=0

exp

Å
π̃

θi+1

ã
ti =

∞∑
n=0

π̃q
n

dn(θqn − t)

converging for |t| < q. This function was introduced in [5, Proof of Lemma

2.5.4, p. 177] and is denoted by ω1 there. (The same function is denoted by

sCar in [34].) We shall prove

Theorem 1. The following identity holds :

L(χt, 1) = − π̃

(t− θ)ω(t)
.

We also obtained some information on the values L(χt, α) with α > 1 such

that α ≡ 1 (mod q − 1).

Theorem 2. Let α be a positive integer such that α ≡ 1 (mod q − 1).

Then, there exists a nonzero element λα ∈ Fq(t, θ) such that

L(χt, α) = λα
π̃α

(t− θ)ω(t)
.

Theorem 1 implies that λ1 = −1.

For our purposes, we need to recall three properties of the function ω.

(See, for example, [32] for more details.)

1. The function ω is solution of a difference equation. More precisely, it

generates the one-dimensional Fq(t)-vector space of solutions of the τ -difference

equation

(5) τX = (t− θ)X,

in the fraction field of the Tate algebra T of formal power series in t converging

for |t| ≤ 1 (that is, of series
∑
n≥0 cnt

n ∈ C∞[[t]] such that limn→∞ cn = 0),

where

τ : C∞((t))→ C∞((t))

is the operator defined by

τ
∑

cit
i =

∑
cqi t

i.

2. The function ω is defined and meromorphic over C∞ (in the rigid

sense). The poles are simple, and their set is {θqn : n ≥ 1}. Indeed, the

function

Ω =
1

τω
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is entire on C∞ with the only zeros at t = θq, θq
2
, . . . . This can be deduced

from the τ -difference equation (5), which yields the identity

Ω(t) = −θ−1(−θ)−
1
q−1

∞∏
i=1

(1− tθ−qi) ∈ (−θ)
1
q−1K∞[[t]].

3. The residue of ω at t = θ is −π̃. The property is equivalent to the

identity

Ω(θ) = − 1

π̃
,

which can be verified by using (3).

The function Ω was used in an essential way in [4, §4.4.11] in the study

of the algebraic relations between values of the “geometric” gamma function

of Thakur. Following the terminology of the authors, it is a rigid analytic

trivialization of Carlitz’s t-motive. The functions ω,Ω also appear, under

several different notations, in the papers [1], [5], [4], [31]. In [1], the function

ω is related to the theory of scattering matrices (see Section 3.1 of loc. cit.).

An overview of further properties of ω and Ω is contained in [32].

Before presenting the other results of this paper, we explain the interest

of Theorems 1 and 2. The identity

L(χt, 1) = −π̃Ω(t)

holds, and we notice that the product is independent of the choice of a fun-

damental period π̃ of exp. But since the function Ω is entire, so is the map

t 7→ L(χt, 1), with the only zeros at the points t = θq, θq
2
, . . . . The properties

above imply that

(6) lim
t→θ

L(χt, 1) = 1

and, for k > 0,

(7) lim
t→θqk

L(χt, 1) = 0.

These limits are useful in proving the following corollary of Theorem 1 and

rediscovering, in a new way, known results about the function ζ of Goss.

Corollary 3. We have ζ(0) = 1 and ζ(1− qk) = 0 for k > 0.

The interest of the corollary lies in its proof. Indeed, we are going to show

that the zeros are located where the poles of τω are, just as the trivial zeros of

Riemann’s zeta function are located at the poles of Euler’s gamma function.

Proof of Corollary 3. We need to use Goss’ works [21], [23]. Let S∞ =

C∞ × Zp be the “complex plane” over which he introduced his continuous-

analytic extensions of the zeta-values (1). For (t, x, y) varying in the space
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C∞ ×C×∞ × Zp = C∞ × S∞, we recall the definition of the series L(χt, x, y) in

[23]:

L(χt, x, y) =
∑
d≥0

x−d

Ñ ∑
a∈A+(d)

χt(a)〈a〉−y
é
,

where A+(d) denotes the set of monic polynomials of A of degree d in θ and

the 〈·〉y denotes p-adic exponentiation of the 1-unit 〈a〉 = aθ−d (d = degθ a) as

defined in [23] and in [21, §8.5].2 In [23, Th. 2], Goss shows that the function

f(t, x, y) := L(χt, x, y) is a continuous family of entire functions in t, x−1,

parametrized by y ∈ Zp. This means that we can write

f(t, x, y) =
∑
n≥0

∑
i+j=n

tix−jci,j(y)

with ci,j : Zp → C∞ continuous and, setting

mn = max
i+j=n

max
y∈Zp

|ci,j(y)|,

we have mnr
n → 0 as n→∞, for all r ≥ 0 (compare with [21, Def. 8.5.1]). In

particular, the map

t 7→ f(t, θj , j)

is entire for all j ∈ Z and must then coincide with L(χt, 1) = −π̃Ω(t) for j = 1,

for all t ∈ C∞, because it coincides with it for |t| small. In particular, we obtain

from (6) and (7) that f(θ, θ−1, 1) = 1 and f(θq
k
, θ−1, 1) = 0 for k > 0. Theorem

2 of [23] also implies, now fixing t0 ∈ C∞ and varying (x, y) ∈ S∞, that the

map

(x, y) 7→ f(t0, x, y)

is analytic over the space S∞ (after Definition 8.5.1 of loc. cit.).3 If t0 =

θq
k

(k ≥ 0), we get f(θq
k
, x, y) = ζ(xθq

k
, y − qk), Goss’ continuous-analytic

extension of ζ connecting to (1) through ζ(θ−n, n) = ζ(n). In particular, we

obtain, evaluating at (x, y) = (θ−1, 1) ∈ S∞,

ζ(0) = ζ(1, 0) = 1

and

ζ(1− qk) = ζ(θq
k−1, 1− qk) = 0, k > 0. �

The vanishing of ζ(n) at negative integers n divisible by q − 1 is a well-

known result due to Goss [17], and we only obtain fragments of this result.

What is really important here is that the function τω plays a role analogue

2Notice the choice of uniformizer π = θ−1 of K (in Goss’ notations).
3See also Theorem 1 of loc. cit., where it is shown that the function α 7→ L(χβt , α) extends

analytically to the whole plane S∞ for any choice of t and β positive integer.
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to that of Euler’s gamma function in the classical functional equation of Rie-

mann’s zeta function; its poles provide the trivial zeroes of Goss’ ζ at the points

1− qk, k > 0, and this is the first known interplay between certain values of ζ

at positive and negative multiples of q− 1. The trivial zeros of ζ are simple; it

is not yet known whether our method implies this property. See Remark 7 for

a discussion about a generalization of the function L(χt, x, y).

In Section 1.1 we introduce a function of two variables fq(t,X), satisfying

the identity
1

τω(t)
= (−θ)−q/(q−1)fq(t, θ)

(with the appropriate choice of (q − 1)-th root of −θ). We will describe three

classes of functional equations for this function which can be considered as

analogues of the classical translation, multiplication, reflection formulas for

Euler’s gamma function, hence providing yet another similarity between ω and

Euler’s gamma function. Transcendence and algebraic independence issues will

also be discussed.

Corollary 4. We have, for α ≡ 1 (mod q − 1) positive and k > 0, the

formulas

ζ(αqk − 1) =
∑
a∈A+

a1−αqk = (−1)k−1(τkλα)(θ)
π̃αq

k−1

[k][k − 1] · · · [1]
.

The identities of this corollary are also well known, especially for the case

α = 1 when λα = −1 (see Carlitz [6] and Goss [16]). But here again, we have a

glimpse of something like a functional equation behind the proof. Theorem 2

yields these formulas thanks to the identity Ω(θ) = −1/π̃. Similarly, in the

computation of the value of Riemann’s zeta function at, e.g., two, by means of

its functional equation, one is led to use the formula Γ(1/2) =
√
π.

Proof of Corollary 4. From the definition of L(χt, α) we deduce τkL(χt, α)

= L(χt, αq
k) (use k ≥ 0). Apply τk to both the left- and the right-hand sides

of the identity of Theorem 2 (or Theorem 1 if α = 1), and compute the limit

for t→ θ in both left- and right-hand sides of the obtained identity. Observing

the relation

(8) τk((t− θ)ω(t)) = (t− θqk) · · · (t− θq)(t− θ)ω(t),

which can be deduced from (5), and the limit limt→θ(t−θ)ω(t) = Ω(θ)−1 = −π̃,

the corollary follows. �

In particular, we notice the formula

τkλα = (t− θqk) · · · (t− θq)λqkα
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and the fact that λα(θq
−k

) is well-defined nonzero for all k nonnegative (due

to the fact that ζ(αqk − 1) is well defined and nonzero). Apart from this,

the explicit computation of the λα’s is difficult and very little is known about

these coefficients which could encode, we hope, an interesting generalization in

Fq(t, θ) of the theory of Bernoulli-Carlitz’ numbers.

If t = ξ ∈ Falg
q , Theorems 1 and 2 imply that for α ≡ 1 (mod q − 1)

positive, L(χξ, α), the value of an L-function associated to a Dirichlet character

is a multiple of π̃α by an algebraic element of C∞. More precisely, we obtain

the following result.

Corollary 5. For ξ ∈ Falg
q with ξq

r
= ξ (r > 0) and α > 0 with α ≡ 1

(mod q − 1), we have

L(χξ, α) = λα(ξ)
π̃α

ρξ
,

where ρξ 6= 0 is the root (τω)(ξ) ∈ C∞ of the polynomial equation

Xqr−1 = (ξ − θqr) · · · (ξ − θq).

Proof. Consider (8) with k = r, and then apply Theorem 2, noticing that

(τ r(τω))(ξ) = ((τω)(ξ))q
r
. Of course, since the series L(χξ, α) converges, the

value λα(ξ) is well defined. �

Some cases of the above corollary are also covered by the work [29] (when

α = 1); see also [10]. One of the new features of Corollary 5 is to highlight

that several such results on values at one of L-series in positive characteristic

belong to the special family described in Theorem 1.

Remark 6. The convolution algebra of v-adic measures with v a place ofK,

particularly important in the study of the values of ζ at negative integers, is

canonically isomorphic to the ring of formal higher derivatives acting on the

Tate algebra T, where our deformations of ζ(n) lie; see [20]. The author owes

this remark to David Goss.

Remark 7. The result of Goss [23, Th. 2] can be generalized to the fol-

lowing setting. Consider s variables t1, . . . , ts and, for β1, . . . , βs nonnegative

integers and (x, y) an element of S∞, the series

L(χβ1
t1 , . . . , χ

βs
ts , x, y) =

∑
d≥0

x−d
∑

a∈A+(d)

χβ1
t1 (a) · · ·χβsts (a)〈a〉−y.

It can be proved that the above series again defines a continuous family of

entire functions in t1, . . . , ts and x−1, parametrized by y ∈ Zp. Indeed, one

can argue by specialization in the above type of series (for various s) with

β1 = · · · = βs = 1, case accessible by using Goss’ method of proof of [23,

Th. 2]; we skip the details of this verification.
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In particular, for all α > 0 and β1, . . . , βs ≥ 0, the series∑
a∈A+

χβ1
t1 (a) · · ·χβsts (a)a−α ∈ K∞[[t1, . . . , ts]]

is an element of the Tate algebra Ts.4 But, in fact, it extends to an entire

function.

Each of these functions interpolates infinitely many zeta-values. To see

this, it suffices to evaluate at points such as

(t1, . . . , ts) = (θq
n1
, . . . , θq

ns
), n1, . . . , ns ∈ Z.

We get the zeta-values

ζ(α− β1q
n1 − · · · − βsqns), n1, . . . , ns ∈ Z.

Methods of proof of Theorems 1 and 2. We will provide two independent

proofs of Theorem 1. The first one uses deformations of vectorial modular

forms (see Section 2). The second one, written in Section 4, is obtained from a

variant of Anderson’s so-called log-algebraic power series identities for twisted

harmonic sums; see [2], [3]. We expect, in principle, that this method will

be useful in computing the values at α = 1 of a variant of our series L(χt, α)

associable to general Carlitz-Hayes’ modules. (This method is also used in

[29].) Unfortunately, it does not seem to be flexible enough to handle values

L(χt, α) with α > 1.

The proof of Theorem 2 that we propose relies again on certain properties

of deformations of vectorial modular forms. We will present a result, Theo-

rem 8, immediately implying Theorem 1, and Theorem 2 will be obtained from

a simple modification of the techniques introduced to prove Theorem 8.

A fundamental identity for deformations of vectorial modular forms. To

present Theorem 8, we need to introduce more tools. Let Ω be the set C∞\K∞.

It is well known [13] that it has a structure of geometrically connected rigid

analytic space. Goss’ paper [18] provides the background for the related theory.

We recall that the group GL2(K∞) acts on Ω by homographies in a way

compatible with the rigid structure. The group Γ = GL2(A) is a discrete

subgroup of GL2(K∞) acting discontinuously on Ω, and the quotient Γ\Ω can

be given a rigid analytic structure as well.

For z ∈ Ω, we denote by Λz the A-module A + zA, free of rank 2. The

evaluation at η ∈ C∞ of the exponential function expΛz associated to the lattice

4The Tate algebra Ts is the ring of series in monomials in t1, . . . , ts converging in the

polydisk {(t1, . . . , ts) ∈ Cs∞, |ti| ≤ 1 for all i}.
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Λz is given by the series

(9) expΛz(η) =
∞∑
i=0

αi(z)η
qi

for functions αi : Ω → C∞ with α0 = 1. We recall that for i > 0, αi is a

Drinfeld modular form of weight qi− 1 and type 0 in the sense of [13]; see also

[19].

We also recall from [34] the series

s1(z, t) =
∞∑
i=0

αi(z)z
qi

θqi − t
,

s2(z, t) =
∞∑
i=0

αi(z)

θqi − t
.

Let Hol(Ω) be the ring of holomorphic functions Ω → C∞. The series

s1, s2 define formal series si(z, t) =
∑
n≥0 fi,n(z)tn (i = 1, 2) of Hol(Ω)[[t]]

(i.e., the coefficients are holomorphic functions) such that for all z ∈ Ω, the

series obtained by specialization of the coefficients converges for |t| < q. In

particular, s1, s2 define two functions Ω → T. With the use of the recursive

formulas for the coefficients αi and Lemma 4 given in [34], one can show that

for any t ∈ B1, the functions s1(·, t) and s2(·, t) are holomorphic functions

Ω→ C∞.

We point out that for a fixed choice of z ∈ Ω, the matrix function
t(s1(z, t), s2(z, t)) is the canonical rigid analytic trivialisation of the t-motive

associated to the lattice Λz discussed in [32]. We set, for i = 1, 2,

di(z, t) := π̃ω(t)−1si(z, t).
5

The advantage of using these functions instead of the si’s is that d2 has a u-

expansion defined over Fq[t, θ] (see Proposition 16), u being the local parameter

at infinity of Γ\Ω:

u(z) =
1

exp(π̃z)
, z ∈ Ω.

Moreover, for all z ∈ Ω, d1(z, t) and d2(z, t) are entire functions of the variable

t ∈ C∞ (see Corollary 18).

On the other hand, both the series

e1(z, t) =
∑′

c,d∈A

χt(c)

cz + d
, e2(z, t) =

∑′

c,d∈A

χt(d)

cz + d

converge for (z, t) ∈ Ω × C∞ with |t| ≤ 1, where the dash ′ denotes a sum

avoiding the pair (c, d) = (0, 0). The series e1, e2 define functions Ω → T.

5In the notations of [34], we have d2 = d.
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Moreover, for every t ∈ C∞ such that |t| ≤ 1, both the functions z 7→ ei(z, t)

are holomorphic on Ω (see Proposition 22).

The Frobenius Fq-linear map τ acts on Hol(Ω), the ring of holomorphic

functions Ω → C∞: if f ∈ Hol(Ω), then τf = f q. We consider the unique

Fq((t))-linear extension of τ :

Hol(Ω)⊗Fq Fq((t))→ Hol(Ω)⊗Fq Fq((t)),

again denoted by τ .

We shall prove the fundamental theorem

Theorem 8. The following identities hold for z ∈ Ω, t ∈ C∞ such that

|t| ≤ 1:

L(χt, 1)−1e1(z, t) =−(t− θ)ω(t)(τd2)(z, t)h(z),(10)

L(χt, 1)−1e2(z, t) = (t− θ)ω(t)(τd1)(z, t)h(z).

In the statement of the theorem, h is the opposite of the unique normalized

Drinfeld cusp form of weight q + 1 and type 1 for Γ = GL2(A) as in Gekeler’s

paper [13]. This function was the object of extensive investigation. It is known

that it is proportional to the unique Poincaré series of weight q+ 1 and type 1

[13, (5.11)]. Gekeler [13, Th. (6.1)] also showed that h has the following infinite

product expansion:

h = −u
∏
a∈A+

f q
2−1
a (u),

where fa(X) is the polynomial φCar(a)(X−1)X |a|, making it explicit that h has

the coefficients of its u-expansion in A and carries analogies with the unique

normalized cusp form of weight 12 for SL2(Z).

It can be observed that both right-hand sides in (10) are well defined for

t ∈ C∞ with |t| < qq so that these identities provide analytic extensions of the

functions e1, e2 in terms of the variable t. In Section 3 we show how to deduce

Theorem 1 from Theorem 8. But the formula of Theorem 1 can be jointly

applied with Theorem 8 and gives the identities

e1(z, t) = π̃−1(τd2)(z, t)h(z), e2(z, t) = −π̃−1(τd1)(z, t)h(z).

Corollary 18 then implies that e1(z, t), e2(z, t) extend to entire functions of the

variable t for every choice of z ∈ Ω.

1.1. Gamma phenomenology and transcendence properties. We have seen

how the function ω in Corollaries 3 and 4 played a role similar to that of

Euler’s gamma function in the functional equation of Riemann’s zeta function.

Here, we mention yet another connection between these two functions via the

functions fqk defined below.
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Thanks to Theorem 1, the function L(χt, 1) can be written as

(11) L(χt, 1) =
fq(t, θ)

fq(θ, θ)
,

where fq denotes the formal series

fq(t,X) =
∏
n>0

Å
1− t

Xqn

ã
∈ Fq[[t,X−1]],

converging for t,X ∈ C∞ with |X| > 1. It now becomes important to consider

a more general family of functions (fqk)k≥1 defined by

fqk(t,X) =
∏
i>0

Å
1− t

Xqki

ã
.

Here we describe three kinds of functional equations allowing us to trace analo-

gies with corresponding functional equations of Euler’s gamma function. At

the end of this section, we discuss certain issues in transcendence and algebraic

independence of values of the function L(χt, α).

Analogues of the translation formula for Γ. Writing

τ1 : Fq((t))((X−1))→ Fq((t))((X−1))

for the unique Fq((t))-endomorphism associating X to Xq, the vector

F = t(fqk , τ1fqk , . . . , τ
k−1
1 fqk)

is a solution, as it can be checked easily, of the system of τ1-difference equations

of order 1 (with component-wise action of the operator τ1):

(12) τ1F = BkF,

where

Bk =

Ç
0 Ik−1

1− t

Xqk
0

å
is a block matrix of GLk(Fq(t,X)) with an identity block of size k − 1. In

particular, we have

(13) fqk(t,X) =

Å
1− t

Xqk

ã
τk1 fqk(t,X).

This functional equation can be considered as an analogue of the translation

formula Γ(s+ 1) = sΓ(s) of Euler’s gamma function.

Analogue of the multiplication formula for Γ. For k > 0 a given integer,

the functional equation

fq(t,X) =
k−1∏
l=0

τ l1fqk(t,X)

can be verified directly by using (12).
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Analogue of the reflection formula for Γ. Let us fix an integer k > 0. The

functional equation

fqk(tq−1, Xq−1) =
∏
λ∈F×q

fqk(λt,X)

holds and can be verified in the following way. The right and the left-hand

sides satisfy the same functional equation

F =

Ç
1− tq−1

Xqk(q−1)

å
τk1 F.

The above is a homogeneous, linear τk1 -difference equation of order 1. Since

the subfield of τk1 -invariant elements of Fq((t))((X−1)) is Fq((t)), the set of

solutions of the above equation in Fq((t))((X−1)) is a Fq((t))-vector space of

dimension one, so the two solutions are multiples of each other and the factor

of proportionality is equal to one.

Remark 9. Of these functional equations, only the first one transfers di-

rectly to the function ω and to the values of the series L(χt, α) for α ≡ 1

(mod q − 1) positive. However, Anderson, Brownawell and Papanikolas [4]

gave evidence of the fact that the function ω is intimately related to the arith-

metic of the values of Thakur’s geometric gamma function, which satisfies yet

three other classes of functional equations in analogy with the three shown

above. At the time of writing the present paper, the exact connection be-

tween the values of the general functions fqk(t,X) and the values of Thakur’s

function is not completely elucidated.

Transcendence and algebraic independence of values. Our results can be

used to obtain transcendence properties of values L(χt, 1) (or more generally,

of values L(χt, α) with α ≡ 1 (mod q − 1)). With Corollary 5, we notice

that if t belongs to Falg
q , then L(χt, 1) is transcendental by the well-known

transcendence of π̃. Moreover, we have the following result.

Corollary 10. Let t be an element of Kalg \Falg
q . The quantities π̃ and

L(χt, 1) are algebraically independent over K if and only if t is not of the form

θq
k

with k ∈ Z.

Sketch of proof. By (3), (11) and Corollary 4, we see that if t is of the

form θq
k

for k ∈ Z, then π̃ and L(χt, 1) are algebraically dependent. Assume

conversely that π̃ and L(χt, 1) are algebraically dependent. Then fq(t, θ) and

fq(θ, θ) are algebraically dependent. By [33, Th. 11], the functions fq(t,X)

and fq(θ,X) are algebraically dependent over C∞(X). An appropriate variant

of [33, Prop. 21] allows us to show that, for some α, β ∈ Z not both vanishing,
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there exists an algebraic function g(X) ∈ C∞(X)alg such that

fq(t,X)αfq(θ,X)β = g(X).

We notice now that the functions fq(t,X) and fq(θ,X) of the variable X

have infinitely many zeros, respectively located at the sets {tqk , k ∈ Z} and

{θqk , k ∈ Z}. This is compatible with the existence of g as above (algebraic

and nonzero, therefore with finitely many poles and zeroes) only if t = θq
k

for

some k ∈ Z. �

The above considerations can be extended to give a necessary and suffi-

cient condition on t1, . . . , ts algebraic for the algebraic independence of Ω(t1),

. . . ,Ω(ts), from which one deduces the corresponding condition for L(χt1 , 1),

. . . , L(χts , 1). The details will be described in another work.

1.2. Structure of proof of Theorem 8. We adopt the notations

E = L(χt, 1)−1(e1, e2)

and

F =

Ç
d1

d2

å
,

and we consider the representation ρt : GL2(A)→ GL2(Fq[t]) defined by

ρt(γ) =

Ç
χt(a) χt(b)

χt(c) χt(d)

å
for γ =

(
a b
c d

)
∈ GL2(A). Then, for any such a choice of γ, we have the

functional equations (see Propositions 16 and 22)

F(γ(z), t) = (cz + d)−1ρt(γ) · F(z, t),
tE(γ(z), t) = (cz + d) tρ−1

t (γ) · tE(z, t).

Here and in the following, γ(z) denotes the homography action of γ at z:

γ(z) = (az + b)/(cz + d). This immediately puts the functions tE and F in

the framework of deformations of vectorial modular forms, a topic that will

be developed in Section 2 (see Definition 12 and the papers [27], [30]): the

parameter of the deformation is t.

Let B1 be the set of t ∈ C∞ such that |t| ≤ 1. We will make use of a

remarkable sequence G = (Gk)k∈Z of functions Ω × B1 → C∞ defined by the

scalar product (with component-wise action of τ):

Gk = (τkE) · F .

For k ≥ 0, Gk turns out to be an element of Mqk−1,0⊗Fq[t, θ], where Mw,m de-

notes the C∞-vector space of Drinfeld modular forms of weight w and type m.

In fact, we need only examine the functions G0,G1 to prove Theorem 1. Once

their explicit computation is accomplished (see Proposition 26), the proof of
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Theorem 8 is only a matter of solving a nonhomogeneous system in two equa-

tions and two indeterminates e1, e2. We need, to compute G0 and G1, a defor-

mation of Legendre’s identity (proved in [34]):

h−1(τω)−1 = d1(τd2)− d2(τd1)

(see Proposition 16, eq. (17)).

It turns out that this formula is equivalent to the identity G0 = −1,

obtained in Proposition 26. Theorem 1 will be deduced with the computation

of a limit in the identity

e1 = −L(χt, 1)τ(ωd2)h,

and a similar path will be followed for Theorem 2, this time using the more

general sequences Gα,0,k = (τkEα,0) · F defined later, for which we will have

τkE1,0 = Eqk,0 = τkE and G1,0,k = Gk.

Next, we must explain why we use deformation of vectorial modular forms

in our setting. The terminology reflects that if we specialize the parameter t

to some value in B1, we get some close variant of a vectorial modular form (as

in Definition 11). In fact, we consider the parameter t as varying in B1 only.

This simplifies many computations and is not restrictive for our results since

at the end we need formulas valid in a neighborhood of t = 0 that can be later

extended analytically so that it will be possible to evaluate at t = θ. But in

many cases, the analysis of the interesting value t = θ can be made directly;

let us give an example.

Let gk be the normalization of the Eisenstein series of weight qk − 1 and

type 0 of [13]. By definition, for k > 0 (see loc. cit.), we have

(14) gk(z) =
∑′

c,d∈A
(cz + d)1−qk = −ζ(qk − 1)−1

∑′

c,d∈A
(cz + d)−q

k
(c, d) ·

Ç
z

1

å
,

a scalar product of vectorial modular forms of weights qk and −1 associated

respectively to the transpose of the inverse of the identity representation and

the identity representation. We have equality of convergent series

(τkE)(z, θ) = −ζ(qk − 1)−1
∑′

c,d∈A
(cz + d)−q

k
(c, d)

and we also have a well-defined limit (see [34]):

lim
t→θ
F(z, t) =

Ç
z

1

å
.

The above formula for gk can be rewritten in the following way:

gk(z) = − lim
t→θ
Gk(z, t) = − lim

t→θ
(τkE)(z, t) · F(z, t).
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It is precisely the use of the parameter t that allows us to extract new in-

teresting arithmetic information from such an identity. For k = 0, the se-

ries
∑′
c,d∈A(cz + d)−q

k
(c, d) is only conditionally convergent, but the limit

t → θ in the formula above is still well defined and results in the identity

1 = g0 = − limt→θ G0(z, t). Thanks to [14, Th. 6.2], this can also be viewed

as an analogue of the classical Legendre period relation. Considering again

our deformation of Legendre’s period relation (17) and comparing it this time

with Theorem 8, we complete showing how the former can be deduced from

the latter.

2. Vectorial modular forms and their deformations

We denote by Jγ the factor of automorphy (γ, z) 7→ cz + d if γ =
(
a b
c d

)
.

We recall the local parameter at infinity of Γ\Ω, u = u(z) = 1/ exp(π̃z). For all

w,m, we have an embedding of Mw,m in C∞[[u]] associating to every Drinfeld

modular form its u-expansion; see [13], [19]. We will often identify modular

forms with their u-expansions.

In all of the following, t will be considered either as a new indeterminate

or as a parameter varying in C∞, and we will freely switch from formal series

to functions. We will say that a series
∑
i≥i0 ciu

i (with the coefficients ci in

some field extension of Fq(t, θ)) is normalized if ci0 = 1. We will also say that

the series is of type m ∈ Z/(q − 1)Z if i 6≡ m (mod q − 1) implies ci = 0. This

definition is obviously compatible with the notion of type of a Drinfeld modular

form already mentioned in the introduction; see [13].

The following definition is a simple adaptation of the notion of vectorial

modular form for SL2(Z) investigated in works by Knopp and Mason such as

[27], [30]. Let ρ : Γ→ GLs(C∞) be a representation of Γ.

Definition 11. A vectorial modular form of weight w, type m and dimen-

sion s associated to ρ is a holomorphic function f : Ω → Mats×1(C∞) with

the following two properties. Firstly, for all γ ∈ Γ,

f(γ(z)) = det(γ)−mJwγ ρ(γ) · f(z).

Secondly, the vectorial function f = t(f1, . . . , fs) is tempered at infinity in the

following way. There exists ν ∈ Z such that for all i ∈ {1, . . . , s}, the following

limit holds:

lim
|z|=|z|i→∞

u(z)νfi(z) = 0.

(|z|i denotes, for z ∈ C∞, the infimum infa∈K∞{|z − a|}.)

We denote byMs
w,m(ρ) the C∞-vector space generated by these functions.

For s = 1 and ρ = 1 the constant representation, our space M1
w,m(1) is the

space of meromorphic modular forms of weight w and type m that are holo-

morphic on Ω, which we denote by M !
w,m. This is the C∞-vector space (of
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infinite dimension) generated by the holomorphic functions f : Ω→ C∞ satis-

fying, for all z ∈ Ω and γ ∈ Γ, f(γ(z)) = det(γ)−mJwγ f(z) and meromorphic

at infinity. This vector space is generated by the functions h−imi, where mi is

a Drinfeld modular form of weight w + i(q + 1) and type i.

For the vectorial modular forms occurring in (14), we have, if ρ is the

identity representation, tEqk(z, θ) ∈M2
qk,0

(tρ−1) and F(z, θ) ∈M2
−1,0(ρ).6

We recall that B1 is the disk {t ∈ C∞ such that |t| ≤ 1}. We will work

with certain functions f : Ω×B1 → C∞ with the property that for all z ∈ Ω,

f(z, t) can be identified with a series of T converging for all t0 ∈ B1 to f(z, t0).

For such functions, we will then also write f(z) to stress the dependence on

z ∈ Ω when we want to consider them as functions Ω→ T. Sometimes, we will

not specify the variables z, t and write f instead of f(z, t) or f(z) to lighten

our formulas just as we did in some parts of the introduction. Moreover, z will

denote a variable in Ω throughout this work.

Let us denote by R the integral ring whose elements are the formal series

f =
∑
i≥0 fit

i such that

(1) For all i, fi is a map Ω → C∞ belonging to Hol(Ω), the ring of holo-

morphic functions on Ω.

(2) For all z ∈ Ω,
∑
i≥0 fi(z)t

i is an element of T.

The ring R is endowed with the injective endomorphism τ acting on formal

series as follows:

τ
∑
i≥0

fi(z)t
i =

∑
i≥0

fi(z)
qti.

2.1. Deformations of vectorial modular forms. Let us consider a represen-

tation

(15) ρ : Γ→ GLs(Fq[t]).

We assume that the determinant representation det(ρ) is the µ-th power of the

determinant character for some µ ∈ Z/(q − 1)Z.

Definition 12. A deformation of vectorial modular forms of weight w, di-

mension s and type m associated with a representation ρ as in (15) is a column

matrix F = t(f1, . . . , fs) ∈Mats×1(R) such that the following two properties

hold. Firstly, considering F as a map Ω→Mats×1(T) we have, for all γ ∈ Γ,

F(γ(z)) = Jwγ det(γ)−mρ(γ) · F(z).

6More generally, one speaks about matrix modular forms associated to left and right

actions of two representations of Γ (or SL2(Z)). Then, Eqk (·, θ) is a row matrix modular

form associated to the right action of ρ−1.
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Secondly, the entries of F are tempered: there exists ν ∈ Z such that, for all

t ∈ B1 and i ∈ {1, . . . , s}, lim|z|=|z|i→∞ u(z)νfi(z) = 0.

The set of deformations of vectorial modular forms of weight w, dimension

s and type m associated to a representation ρ is a T-module, which we will

denote byMs
w,m(ρ). (We use the same notations as for the spaces of vectorial

modular forms.) It is easy to see that we can endow the space Ms(ρ) =

⊕w,mMs
w,m(ρ) (the sum is direct) with the structure of a graded module over

the graded ring M ! ⊗ T, where M ! = ⊕w,mM !
w,m.

If F ∈ Ms
w,m(ρ) is a deformation of vectorial modular forms and if t0

is an element of B1, we have that F(·, t0) is a vectorial modular form of the

space Ms
w,m(ρ|t=t0), where ρ|t=t0 is the representation GLs(A) → GLs(C∞)

obtained by evaluating, for each γ ∈ Γ, the coefficients of ρ(γ) at t = t0.

Lemma 13. Let 1 : Γ → (1) be the trivial representation. We have

M1
w,m(1) = M !

w,m ⊗ T.

Proof. It suffices to show that M1
w,m(1) ⊂M !

w,m ⊗ T, the other inclusion

being evident. Let G be inM1
w,m(1). Then, for all t ∈ B1, G(·, t) is an element

of M !
w,m and, by the fact that G is tempered, there exists an integer n such

that hnG(·, t) ∈Mw+n(q+1),m+n. Let (b1, . . . , bs) be a basis of the latter vector

space. Then, we have functions c1, . . . , cs of the variable t ∈ B1 such that, for

all (z, t) ∈ Ω×B1,

G(z, t) = h(z)−n(c1(t)b1(z) + · · ·+ cs(t)bs(z)).

We can find z1, . . . , zs ∈ Ω such that the matrix B = (h(zj)
−nbi(zj))1≤i,j≤s is

invertible, from which we deduce that

(c1(t), . . . , cs(t)) = (G(z1, t), . . . ,G(zs, t)) ·B−1.

But for all z ∈ Ω, G(z, ·) ∈ T. Therefore, ci ∈ T for i = 1, . . . , s. Finally,

M1
w,m(1) = M !

w,m ⊗ T. �

Lemma 14. Let k be a nonnegative integer. If F is in Ms
w,m(ρ), then

τkF ∈Ms
wqk,m

(ρ). If we choose nonnegative integers k1, . . . , ks, then

det(τk1F , . . . , τksF) ∈M !
w(qk1+···+qks ),sm−µ ⊗ T.

In particular,

Wτ (F) = det(τ0F , . . . , τ s−1F) ∈M !
w(1+q+q2+···+qs−1),sm−µ ⊗ T.

Proof. From the definition, and for all k′ ∈ Z,

(τk
′F)(γ(z)) = Jwq

k′

γ det(γ)−mρ(γ)(τk
′F)(z)

because τ(ρ(γ)) = ρ(γ). Moreover, τ is an endomorphism of R, and it is

obvious that F being tempered, also implies that τkF is tempered.
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Now define the matrix function

Mk1,...,ks = (τk1F , . . . , τksF).

After the first part of the lemma we have, for γ ∈ GL2(A),

Mk1,...,ks(γ(z)) = det(γ)−mρ(γ) ·Mk1,...,ks(z) ·Diag(Jwq
k1

γ , · · · , Jwqksγ ),

and we conclude the proof taking determinants of both sides. �

Lemma 15. Let us consider F in Ms
w,m(ρ) and let E be such that tE is

in Ms
w′,m′(

tρ−1). Let us denote by Gk the scalar product (τkE) · F . Then, for

nonnegative k,

Gk ∈M !
wqk+w′,m+m′ ⊗ T.

Furthermore, we have

τkG−k ∈M !
w+w′qk,m+m′ ⊗ T.

Proof. By Lemma 14, τk(tE) is inMs
w′qk,m′(

tρ−1) and τkF is inMs
wqk,m

(ρ).

Let γ be in GL2(A). We have, after transposition, and for all k ∈ Z,

(τkE)(γ(z)) = Jw
′qk

γ det(γ)−m
′E(z) · ρ−1(γ),

and since τkG−k = tE · (τkF),

(τkF)(γ(z)) = Jwq
k

γ det(γ)−mρ(γ) · (τkF(z)).

Hence, for k ≥ 0,

Gk(γ(z)) = Jw
′qk+w

γ det(γ)−m−m
′Gk(z),

and
τkG−k(γ(z)) = Jw+w′qk

γ det(γ)−m−m
′G−k(z).

On the other hand, Gk and τkG−k are tempered for all k ≥ 0. The lemma

follows by using Lemma 13. �

From now on, we will use the representation ρ = ρt, defined in Section 1.2,

and the transpose of its inverse.

2.2. The function F . The function of the title of this subsection is the

vector valued function
(d1

d2

)
. As we will see in (24), we may write it, with the

obvious extension of the notations, as

F(z, t) =

Ç
d1(z, t)

d2(z, t)

å
= π̃(t− θ)Ω(t)

Ö
E
Ä
−z
t−θ

ä
E
Ä
−1
t−θ

ä è ,

where E = EexpΛz
(see Section 4).

In the next proposition, containing the properties of F of interest for us,

we write g for the unique normalized Drinfeld modular form of weight q − 1

and type 0 for Γ (proportional to an Eisenstein series) and ∆ for the cusp form

−hq−1.
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Proposition 16. We have the following four properties for F and the

functions d1,d2:

(1) We have F ∈M2
−1,0(ρt).

(2) The functions d1,d2 span the Fq(t)-vector space of dimension 2 of so-

lutions of the following τ -linear difference equation :

(16) X = (t− θq)∆τ2X + gτX,

in the field ∪n≥0τ
−nK, where K is the field of fractions of R.

(3) Define

Ψ(z, t) :=

Ç
d1(z, t) d2(z, t)

(τd1)(z, t) (τd2)(z, t)

å
.

Then, for all z ∈ Ω and t with |t| < q, we have

(17) det(Ψ) = (t− θ)−1ω(t)−1h(z)−1.

(4) We have the series expansion

(18) d2 =
∑
i≥0

ci(t)u
(q−1)i ∈ 1 + uq−1Fq[t, θ][[uq−1]],

convergent for t, u such that |t|, |u| are sufficiently small.

The field τ−nK above is the fraction field of the ring τ−nR whose elements

are the series
∑
i≥0 fit

i with f q
n

i ∈ Hol(Ω) and, for all z ∈ Ω,
∑
i≥0 fi(z)t

i ∈ T.

The identity (17) is our deformation of Legendre’s period relation. Both left-

and right-hand sides have the well-defined limit t → θ. The identity we then

obtain is that of [14, Th. 6.2], an analogue of the classical Legendre’s period

relation.

Proof of Proposition 16. All the properties but one follow immediately

from the results of [34], where some of them are stated in slightly different,

but equivalent formulations. The only property we have to justify here is that

F is tempered. After (18), we are led to check that there exists ν ∈ Z such

that u(z)νd1 → 0 for z ∈ Ω such that |z| = |z|i → ∞. For this, we have the

following lemma, which concludes the proof of the Proposition (and will also

be used later).

Lemma 17. The following limits hold for all t ∈ C∞ such that |t| ≤ 1:

lim
|z|=|z|i→∞

u(z)d1(z, t) = 0, lim
|z|=|z|i→∞

u(z)(τd1)(z, t) = 1.

Proof. We recall the series expansion

d1(z) =
π̃

ω(t)
s1(z) =

π̃

ω(t)

∑
n≥0

expΛz

Å
z

θn+1

ã
tn,

which converges for all t such that |t| < q and for all z ∈ Ω.
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By a simple modification of the proof of [14, Lemma 5.9 p. 286], we have

lim
|z|i=|z|→∞

u(z)tn expΛz(z/θ
n+1)q = 0,

uniformly in n > 0, for all t such that |t| ≤ 1 (in fact, even if |t| ≤ q).
Moreover, it is easy to show that

lim
|z|i=|z|→∞

u(z) expΛz(z/θ)
q = π̃−q lim

|z|i=|z|→∞
exp(π̃z/θ)q/ exp(π̃z) = 1,

which gives the second limit, from which we deduce the first limit as well. �

Corollary 18. For all z ∈ Ω, the series d1(z, t),d2(z, t) ∈ C∞[[t]] have

infinite radii of convergence and define entire functions.

Proof. We assume that z is fixed as before. We know from the definitions

that the radius of convergence in R≥0 ∪ {∞} of the series is r > 1. Replacing

X by di(z, t) in (16), we get an identity of formal series in which the right-

hand side has radius of convergence rq and the left-hand side has radius of

convergence r. Therefore, r =∞ and the corollary follows easily. �

2.3. Structure of M2. Let us denote by F∗ the function
(−d2

d1

)
, which is

easily seen to be an element ofM2
−1,−1(tρ−1

t ). In this subsection we give some

information on the structure of the spaces M2
w,m(tρ−1

t ).

Proposition 19. We have

M2
w,m(tρ−1

t ) = (M !
w+1,m+1 ⊗ T)F∗ ⊕ (M !

w+q,m+1 ⊗ T)(τF∗).

More precisely, for all E with tE ∈ M2
w,m(tρ−1

t ), we have

tE = (τω)h((τG−1)F∗ + G0(τF∗)),

where we have written Gk = (τkE) · F for all k ∈ Z.

The first part of the proposition is equivalent to the equality

M2
w,m(ρt) = (M !

w+1,m ⊗ T)F ⊕ (M !
w+q,m ⊗ T)(τF).

In the rest of this paper, we will only discuss the structure of M2
w,m(tρ−1

t ).

Proof of Proposition 19. Let us temporarily write M′ for

(M !
w+1,m+1 ⊗ T)F∗ + (M !

w+q,m+1 ⊗ T)(τF∗).

It is easy to show, thanks to the results of [34], that the sum is direct. Indeed,

in loc. cit. it is proved that d2, τd2, g and h are algebraically independent over

C∞((t)). Moreover, M′ clearly embeds in M2
w,m(tρ−1

t ). It remains to show

the opposite inclusion.
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By Proposition 16, the matrix M = (F , τ−1F) is invertible. From (17)

we deduce that

τM−1 = (t− θ)ωh
Ç
−d2 d1

τd2 −τd1

å
.

Let E be such that tE ∈ M2
w,m(tρ−1

t ). Thanks to the above expression for

τM−1, the identity Ç
E
τE

å
· F =

Ç
G0

G1

å
,

product of a 2× 2 matrix with a one-column matrix (which is the definition of

G0,G1), yields the formulas

E = (G0, τ
−1G1) ·M−1

(19)

= (t− θ1/q)h1/q(τ−1ω)(G0, τ
−1G1) ·

Ç
−τ−1d2 τ−1d1

d2 −d1

å
= (t− θ1/q)h1/q(τ−1ω)((τ−1G1)d2 − G0(τ−1d2),−(τ−1G1)d1 + G0(τ−1d1)).

Now, we observe that we have, from the second part of Proposition 16 and for

all k ∈ Z,

Gk = g(τGk−1) + ∆(t− θq)τ2Gk−2.

Applying this formula for k = 1, we obtain

(20) τG−1 =
τ−1G1 − g1/qG0

(t− θ)∆1/q
,

and by using part two of Proposition 16 again, we eliminate τ−1G1 and τ−1di

(τ−1G1)di − G0τ
−1di = ∆1/q(t− θ)((τG−1)di − G0(τdi)), i = 1, 2.

Replacing this in (19) and using ∆1/qh1/q = −h and (t − θ1/q)τ−1ω = ω, we

get the formula:

(21) E = (t− θ)ωh(−(τG−1)d2 + G0(τd2), (τG−1)d1 − G0(τd1)).

By Lemma 15, we have G0 ∈ M !
w−1,m ⊗ T, (τG−1) ∈ M !

w−q,m ⊗ T, and the

proposition follows from the fact that h ∈Mq+1,1. �

Remark 20. Let us choose any E = (f1, f2) such that tE ∈ M2
w,m(tρ−1

t ).

Proposition 19 implies that there exists µ ∈ Z such that

hµf1 ∈M†µ(q+1)+w,1,µ+m,

where M†α,β,m is a certain sub-module of the module of almost A-quasi-modular

forms as introduced in [34].
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2.4. Deformations of vectorial Eisenstein and Poincaré series. The aim

of this subsection is to construct nontrivial elements of M2
w,m(tρ−1

t ).

Following Gekeler [13, §3], we recall that for all α > 0, there exists a

polynomial Gα(u) ∈ C∞[u], called the α-th Goss polynomial, such that, for all

z ∈ Ω, the function Gα(u(z)) equals the sum of the convergent series

π̃−α
∑
a∈A

1

(z + a)α
.

Several properties of these polynomials are collected in [13, Prop. (3.4)].

Here, we will need to recall that for all α, Gα is of type α as a formal series of

C∞[[u]]. Namely,

Gα(λu) = λαGα(u) for all λ ∈ F×q .
We also recall, for a ∈ A, the function

ua(z) := u(az) = exp(π̃az)−1 = u|a|fa(u)−1 = u|a| + · · · ∈ A[[u]],

where fa ∈ A[[u]] is the a-th inverse cyclotomic polynomial defined in [13,

(4.6)]. Obviously, we have

uλa = λ−1ua for all λ ∈ F×q .
We will use the following lemma.

Lemma 21. Let α be a positive integer such that α ≡ 1 (mod q − 1). We

have, for all t ∈ C∞ such that |t| ≤ 1 and z ∈ Ω, convergence of the series

below, and equality∑′

c,d∈A

χt(c)

(cz + d)α
= −π̃α

∑
c∈A+

χt(c)Gα(uc(z)),

from which it follows that the series in the left-hand side is not identically zero.

Proof. Convergence is ensured by Lemma 23 (or Proposition 22) and the

elementary properties of Goss’ polynomials. On the other hand, the series on

the right-hand side converges for all t ∈ C∞. We then compute∑′

c,d

χt(c)

(cz + d)α
=
∑
c 6=0

χt(c)
∑
d∈A

1

(cz + d)α

= π̃α
∑
c 6=0

χt(c)
∑
d∈A

1

(cπ̃z + dπ̃)α

= π̃α
∑
c 6=0

χt(c)Gα(uc)

= π̃α
∑
c∈A+

χt(c)Gα(uc)
∑
λ∈F×q

λ1−α

=−π̃α
∑
c∈A+

χt(c)Gα(uc).
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The nonvanishing of the series comes from the nonvanishing contribution of

the term Gα(u) in the last series. Indeed, the order of vanishing at u = 0 of

the right-hand side is equal to minc∈A+{ordu=0Gα(uc)} = ordu=0Gα(u), which

is <∞. �

Following [13], we consider the subgroup

H =

®Ç
∗ ∗
0 1

å´
of Γ = GL2(A) and its left action on Γ. For δ =

(
a b
c d

)
∈ Γ, the map δ 7→ (c, d)

induces a bijection between the orbit set H\Γ and the set of (c, d) ∈ A2 with

c, d relatively prime.

We consider the factor of automorphy

µα,m(δ, z) = det(δ)−mJαδ ,

where m and α are positive integers. (At the same time, m will also determine

a type; that is, a class modulo q − 1.)

Let V1(δ) be the row matrix (χt(c), χt(d)). It is easy to show that the row

matrix

µα,m(δ, z)−1um(δ(z))V1(δ)

only depends on the class of δ ∈ H\Γ, so that we can consider the following

expression:

Eα,m(z) =
∑

δ∈H\Γ
µα,m(δ, z)−1um(δ(z))V1(δ),

which is a row matrix whose two entries are formal series.

Let V be the set of functions Ω → Mat1×2(C∞[[t]]). We introduce, for

α,m integers, f ∈ V and γ ∈ Γ, the Petersson slash operator

f |α,mγ = det(γ)m(cz + d)−αf(γ(z)) · ρt(γ).

This will be used in the next proposition, where we denote by log+
q (x) the

maximum between 0 and logq(x), the logarithm in base q of x > 0. We

point out that we will not apply this proposition in full generality. Indeed,

in this paper, we essentially consider the case m = 0 of the proposition. The

proposition is presented in this way for the sake of completeness.

Proposition 22. Let α,m be nonnegative integers with α ≥ 2m+ 1, and

write r(α,m) = α− 2m− 1. We have the following properties :

(1) For γ ∈ Γ, the map f 7→ f |α,mγ induces a permutation of the subset of

V :

S = {µα,m(δ, z)−1um(δ(z))V1(δ); δ ∈ H\Γ}.
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(2) If t ∈ C∞ and α,m are chosen so that r(α,m) > log+
q |t|, then the

components of Eα,m(z, t) are series of functions of z ∈ Ω that converge

absolutely and uniformly on every compact subset of Ω to holomorphic

functions.

(3) If |t| ≤ 1, then the components of Eα,m(z, t) converge absolutely and

uniformly on every compact subset of Ω also if α− 2m > 0.

(4) For any choice of α,m, t submitted to the convergence conditions above,

the function tEα,m(z, t) belongs to the space M2
α,m(tρ−1

t ).

(5) If α−1 6≡ 2m (mod (q−1)), the matrix function Eα,m(z, t) is identically

zero.

(6) If α− 1 ≡ 2m (mod (q− 1)), α ≥ (q+ 1)m+ 1 so that Eα,m converges,

then Eα,m is not identically zero in its domain of convergence.

The elements of the set S as in the proposition are easily viewed as couples

of polynomials in t with coefficients holomorphic on Ω.

Proof of Proposition 22. 1. We choose δ ∈ H\Γ corresponding to a pair

(c, d) ∈ A2 with c, d relatively prime, and we set

fδ = µα,m(δ, z)−1um(δ(z))V1(δ) ∈ S.

We have

fδ(γ(z)) = µα,m(δ, γ(z))−1um(δ(γ(z)))V1(δ)

= µα,m(γ, z)µα,m(δγ, z)−1um(δγ(z))V1(δ)

= µα,m(γ, z)µα,m(δγ, z)−1um(δγ(z))V1(δγ) · ρt(γ)−1

= µα,m(γ, z)µα,m(δ′, z)−1um(δ′(z))V1(δ′) · ρt(γ)−1

= µα,m(γ, z)fδ′ · ρt(γ)−1,

with δ′ = δγ and fδ′ = µα,m(δ′, z)−1um(δ′(z))V1(δ′), from which part 1 of the

proposition follows.

2. Convergence and holomorphy are ensured by simple modifications of

[13, (5.5)], or by the arguments in [15, Ch. 10]. More precisely, let us choose

0 ≤ s ≤ 1 and look at the component at the place s+ 1,

Es(z, t) =
∑

δ∈H\Γ
µα,m(δ, z)−1u(δ(z))mχt(c

sd1−s),

of the vector series Eα,m. Writing α = n(q − 1) + 2m + l′ with n nonnegative

integer and l′ ≥ 1 we see, following Gerritzen and van der Put, [15, pp. 304–

305] and taking into account the inequality |u(δ(z))| ≤ |cz + d|2/|z|i, that the

term of the series Es

µα,m(δ, z)−1um(δ(z))χt(c
sd1−s) = (cz + d)−n(q−1)−l′−2mu(δ(z))mχt(c

sd1−s)
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(where δ corresponds to (c, d)) has absolute value bounded from above by

|z|−mi

∣∣∣∣∣ χt(c
sd1−s)

(cz + d)n(q−1)+l′

∣∣∣∣∣ .
Applying the first part of the proposition, to check convergence, we can freely

substitute z with z+a (a ∈ A) and we may assume, without loss of generality,

that |z| = |z|i. We verify that, either λ = degθ z ∈ Q \ Z, or λ ∈ Z, a case in

which for all ρ ∈ K∞ with |ρ| = |z|, we have |z−ρ| = |z|. In both cases, for all

c, d, |cz + d| = max{|cz|, |d|}. Then, the series defining Es can be decomposed

as follows:

Es =

Ñ ∑′

|cz|<|d|
+
∑′

|cz|≥|d|

é
µα,m(δ, z)−1um(δ(z))χt(c

sd1−s).

We now look for upper bounds for the absolute values of the terms of the series

above, separating the two cases in a way similar to that of Gerritzen and van

der Put in loc. cit.

Assume first that |cz| < |d|; that is, degθ c+ λ < degθ d. Then∣∣∣∣∣ χt(c
sd1−s)

(cz + d)n(q−1)+l′

∣∣∣∣∣ ≤ κmax{1, |t|}degθ d|d|−n(q−1)−l′ ≤ κqdegθ d(log+
q |t|−n(q−1)−l′),

where κ is a constant depending on λ, and the corresponding sub-series con-

verges with the imposed conditions on the parameters, because log+
q |t|

− n(q − 1)− l′ < 0.

If on the other side |cz| ≥ |d| (that is, degθ c+ λ ≥ degθ d), then∣∣∣∣∣ χt(c
sd1−s)

(cz + d)n(q−1)+l′

∣∣∣∣∣≤κ′max{1, |t|}degθ d|c|−n(q−1)−l′≤κ′qdegθ c(log+
q |t|−n(q−1)−l′),

with a constant κ′ depending on λ, again because log+
q |t| − n(q − 1)− l′ < 0.

This completes the proof of the second part of the Proposition.

3. This property can be deduced from the proof of the second part because

if |t| ≤ 1, then |χt(csd1−s)| ≤ 1.

4. The property is obvious by the first part of the proposition, because

Eα,m =
∑
f∈S f , and because the functions are obviously tempered thanks to

the estimates we used in the proof of part two.

5. We consider γ = Diag(1, λ) with λ ∈ F×q ; the corresponding homogra-

phy, multiplication by λ−1, is equal to that defined by Diag(λ−1, 1). Hence,

we have

Eα,m(γ(z)) = λα−mEα,m(z) ·Diag(1, λ−1)

= λmEα,m(z) ·Diag(λ, 1),

from which it follows that Eα,m is identically zero if α− 1 6≡ 2m (mod q − 1).
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6. If m = 0 and α = 1, we simply appeal to Lemma 21. Assuming now

that either m > 0 or α > 1, we have that Eα,m converges at t = θ and

zE0(z, θ) + E1(z, θ) =
∑

δ∈H\Γ
det(δ)m(cz + d)1−αu(δ(z))m

=Pα−1,m,

where Pα−1,m ∈ Mα−1,m is the Poincaré series of weight α − 1 and type m so

that [15, Prop. 10.5.2] suffices for our purposes.

Let α,m be nonnegative integers such that α − 2m > 1 and α − 1 ≡ 2m

(mod (q − 1)). We have constructed functions

Eα,m : Ω→Mat1×2(R),

F : Ω→Mat2×1(R),

with tEα,m ∈ M2
α,m(tρ−1

t ), F ∈ M2
−1,0(ρt). Therefore, after Lemma 15, the

functions

Gα,m,k = (τkEα,m) · F = Eqkα,m · F : Ω→ T
satisfy Gα,m,k ∈M !

qkα−1,m
⊗ T.

A special case. After Proposition 22, if α > 0 and α ≡ 1 (mod q − 1),

then Eα,0 6= 0. We call these series deformations of vectorial Eisenstein series.

Lemma 23. With α > 0 such that α ≡ 1 (mod q − 1), the following

identity holds for all t ∈ C∞ such that |t| ≤ 1:

Eα,0(z, t) = L(χt, α)−1
∑′

c,d

(cz + d)−αV1(c, d)

and Eα,0 is not identically zero.

Proof. We recall the notation

V1(c, d) = (χt(c), χt(d)) ∈Mat1×2(Fq[t]).

We have∑′

c,d

(cz + d)−αV1(c, d) =
∑

(c′,d′)=1

∑
a∈A+

a−α(c′z + d′)−αV1(ac′, ad′)

=L(χt, α)Eα,0(z, t),

where the first sum is over pairs of A2 distinct from (0, 0), while the second

sum is over the pairs (c′, d′) of relatively prime elements of A2. Convergence

features are easy to deduce from Proposition 22. Indeed, we have convergence

if log+
q |t| < r(α,m) = α− 1 (that is, max{1, |t|} ≤ qα−1 if α > 1) and we have

convergence for α = 1 and |t| ≤ 1. In all cases, convergence holds for |t| ≤ 1.

Nonvanishing of the function also follows from Proposition 22. �
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3. Proof of the theorems

We will need two auxiliary lemmas.

Lemma 24. Let α > 0 be an integer such that α ≡ 1 (mod q− 1). For all

t ∈ C∞ such that |t| ≤ 1, we have

lim
|z|i=|z|→∞

d1(z)
∑′

c,d

χt(c)

(cz + d)α
= 0.

Proof. By Lemma 17, we have that lim|z|=|z|i→∞ f(z)d1(z, t) = 0 for all

t ∈ B1 and for all f of the form f(z) =
∑∞
n=1 cnu(z)n, with ci ∈ C∞, locally

convergent at u = 0. But after Lemma 21,
∑′
c,d

χt(c)
(cz+d)α is equal, for |z|i big

enough, to the sum of the series f(z) = −π̃α∑c∈A+ χt(c)Gα(uc(z)), which is of

the form −π̃ακαuνα +o(uνα), where Gα(X) = καX
να +o(Xνα), and the lemma

follows. (In general, it is very difficult to compute κα and να explicitly.) �

Lemma 25. Let α > 0 be an integer such that α ≡ 1 (mod q− 1). For all

t ∈ C∞ such that |t| ≤ 1, we have

lim
|z|i=|z|→∞

∑′

c,d

χt(d)

(cz + d)α
= −L(χt, α).

Proof. It suffices to show that

lim
|z|i=|z|→∞

∑
c 6=0

∑
d∈A

χt(d)

(cz + d)α
= 0.

Assuming that z′ ∈ Ω is such that |z′| = |z′|i, we see that for all d ∈ A,

|z′ + d| ≥ |z′|i. Now, consider c ∈ A \ {0} and z′ = cz with |z| = |z|i. Then,

|cz + d| ≥ |cz|i = |cz| so that, for |t| ≤ 1,∣∣∣∣∣ χt(d)

(cz + d)α

∣∣∣∣∣ ≤ |cz|−α.
This implies that ∣∣∣∣∣∣∑c 6=0

∑
d∈A

χt(d)

(cz + d)α

∣∣∣∣∣∣ ≤ |z|−α,
from which the Lemma follows. �

The next step is to prove the following proposition.

Proposition 26. For all α > 0 with α ≡ 1 (mod q − 1), then Gα,0,0 ∈
Mα−1,0 ⊗ T, and we have the limit lim|z|=|z|i→∞ Gα,0,0 = −1.

Moreover, if α ≤ q(q − 1), then

Gα,0,0 = −Eα−1,

where Eα−1 is the normalized Eisenstein series of weight α− 1 for Γ.
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Proof. Let us write

Fα(z, t) := d1(z)
∑′

c,d

χt(c)

(cz + d)α
+ d2(z)

∑′

c,d

χt(d)

(cz + d)α

as series converging for all (z, t) ∈ Ω × C∞ with |t| ≤ 1. By Lemma 23, we

have

Fα(z, t) = L(χt, α)Eα,0(z, t) · F(z, t) = L(χt, α)Gα,0,0,
so that Fα ∈ M !

α−1,0 ⊗ T. After (18), we verify that for all t with |t| ≤ 1,

lim|z|i=|z|→∞ d2(z) = 1. From Lemmas 24 and 25,

lim
|z|i=|z|→∞

Fα(z, t) = −L(χt, α).

Therefore, for all t such that |t| ≤ 1, Fα(z, t) converges to a holomorphic

function on Ω and is endowed with a u-expansion holomorphic at infinity. In

particular, Fα(z, t) is a family of modular forms of Mα−1,0 ⊗ T.

Since for the selected values of α, Mα−1,0 = 〈Eα−1〉, we obtain that Fα =

−L(χt, α)Eα−1. �

Proof of Theorem 8. Let us consider, for given α > 0, the form E = Eα,0
and the scalar product form Gα,0,k = (τkE) · F . The general computation of

G0 = Gα,0,0 and τG−1 = τGα,0,−1 as in Proposition 19 is difficult, but for α = 1,

we can apply Proposition 26. We have G1,0,0 = −1 and G1,0,1 = Gq,0,0 = −g =

−Eq−1. Therefore, Gα,0,−1 = 0 by (20) and Theorem 8 follows. �

Proof of Theorem 1. By Proposition 19 (or (21)) with E = Eα,0, we see

that the first component of this function is

(t− θ)ωh(Gα,0,0(τd2)− (τGα,0,−1)d2).

On the other hand, by Lemma 21, this component is also equal to

L(χt, α)−1π̃α
∑
c∈A+

χtGα(uc).

Therefore, the following identity holds:

(22) L(χt, α) =
π̃α
∑
c∈A+ χt(c)Gα(uc)

(τω)h((τGα,0,−1)d2 − Gα,0,0(τd2))
.

In particular, the numerator and the denominator of the above fraction are

proportional to each other.

For α = 1 we can replace, by the above discussion, Gα,0,−1 = 0 and Gα,0,0 =

−1. Thanks to the fact that h = −u+ o(u) and
∑
c∈A+ χt(c)uc = u+ o(u), we

obtain

L(χt, 1) =
π̃
∑
c∈A+ χt(c)uc

(τ(ωd2))h
= − π̃

τω
+ o(1),
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from which we deduce Theorem 1 and even some additional information;

namely, the formula

�(23) (τd2)h = −
∑
c∈A+

χt(c)uc.

Proof of Theorem 2. For general α, we set

λα =

∑
c∈A+ χt(c)Gα(uc)

h((τGα,0,−1)d2 − Gα,0,0(τd2))
.

By (22), λα is an element of L (L being the fraction field of T) and

L(χt, α) = λα
π̃α

τω
.

We are going to show that λα belongs to Fq(t, θ).
Let us write f for the series

∑
c∈A+ χt(c)Gα(uc), φ for λαhτGα,0,−1 and ψ

for −λαhGα,0,0, so that

f = φd2 + ψτd2.

Proposition 19 then tells us that φ ∈M !
α+1,1 ⊗ L and ψ ∈M !

α+q,1 ⊗ L.

Let L be an algebraically closed field containing L, hence containing also

Fq(t, θ). As for any choice of w,m, M !
w,m embeds in C∞((u)), and since

there is a basis of this space with u-expansions defined over K, we have that

Aut(L/Fq(t, θ)) acts on M !
w,m⊗L through the coefficients of the u-expansions.

Let σ be an element of Aut(L/Fq(t, θ)) and, for µ ∈M !
w,m ⊗ L, let us denote

by µσ ∈ M !
w,m ⊗ L the form obtained applying σ to every coefficient of the

u-expansion of µ.

Since f,d2 and τd2 are defined over Fq[t, θ], we obtain f = φσd2 +ψστd2,

so that

(φ− φσ)d2 + (ψ − ψσ)τd2 = 0.

We cannot have φσ 6= φ or ψσ 6= ψ by Proposition 19. Hence, for all σ, φσ = φ

and ψσ = ψ. This means that the u-expansions of φ, ψ are both defined over

Fq(t1/q
s
, θ1/qs) for some s ≥ 0. By the fact that Gα,0,0 = −1+o(1) (this follows

from the first part of Proposition 26), we get that λα ∈ Fq(t1/q
s
, θ1/qs).

We have proven that λα = π̃−αL(χt, α)(t − θ)ω ∈ Fq(t1/q
s
, θ1/qs). But

we already know that L(χt, α) ∈ K∞[[t]], ω ∈ Ksep[[t]] and π̃ ∈ Ksep
∞ (the

separable closure of K∞). Therefore,

λα ∈ Fq(t1/q
s
, θ1/qs) ∩Ksep

∞ ((t)) = Fq(t, θ). �

Remark 27. Proposition 26 tells us that φ ∈ Mα+1,1 ⊗ L, which is more

precise than φ ∈ M !
α+1,1 ⊗ L, following Proposition 19. We also have ψ =

(f −φd2)/τd2. Since d2 = 1 + · · · has u-expansion in Fq[t, θ][[u]] by the fourth

part of Proposition 16, the same property holds for τd2 and ψ also belongs
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to Mα+q,1 ⊗ L. We observe the additional information that both Gα,0,0 and

τGα,0,−1 are defined over Fq(t1/q
s
, θ1/qs); this also follows from Proposition 19.

Remark 28. Structures similar to the above emerge in the classical setting

too, but in a more fragmentary way. Let us consider, for z in the complex

upper-half planeH, the basic quasi-periods η1(z) and η2(z) of the lattice zZ+Z.

(See Lang’s book [28, Ch. 18].) Now look at the holomorphic vectorial function

F ′1 : H → C2 defined by F ′1(z) =
(η1(z)
η2(z)

)
, which is a vectorial modular form of

weight 1 associated to the identity representation.

Choose an odd integer α ≥ 5, and consider the vectorial series

E ′α(z) =
∑′

m,n∈Z
(mz + n)−α(m,n).

It is easy to show that the transpose of the series above converges to a nonzero

vectorial modular form of weight α associated to the representation γ 7→ tγ−1.

More specifically, E ′α is a vectorial Poincaré series after [27].

The function G′α = E ′α ·F ′1 is a meromorphic modular form of weight α+ 1

for SL2(Z) (which is holomorphic on H); we shall compute it.

For this purpose, we appeal to the classical Legendre’s period relation (as in

Lang’s book [28]), from which one can also deduce the formula η2 = (3/π2)E2,

where E2 is the normalized logarithmic derivative of the unique normalized

cusp form of weight 12. We get, for G2k =
∑′
m,n(mz + n)−2k, the Eisenstein

series of weight 2k (take k ≥ 2) and eliminating η1,

G′α =
∑′

m,n∈Z
(mz + n)−α(mη1 + nη2)

= η2

∑′

m,n∈Z
(mz + n)1−α − 2πi

∑′

m,n∈Z
m(mz + n)−α

=
4π2

α− 1

Å
DGα−1 −

α− 1

12
E2Gα−1

ã
,

where D = (2πi)−1d/dz. In other words, G′α, up to the factor 4π2/(α − 1), is

proportional to the so-called Ramanujan’s modular derivative of the Eisenstein

series Gα−1.7

This simple computation can be used to explicitly determine the vectorial

form E ′α. Indeed, we may also consider the vectorial form F ′−1 =
(z
1

)
of weight

−1 and, from the obtained relations, compute the entries of E ′α solving a linear

system with coefficients given by the matrix (F ′−1,F ′1). The computation of

the limit =(z)→∞ in the first component of E ′α agrees with the second set of

Euler formulas in the introduction. This very much resembles our scheme of

7The above computation is actually meaningful for α = 3 by dealing in appropriate way

with the conditionally convergent series.
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proof of Theorem 8, but there is no obvious analogue of the deformations we

used above.

Contiguity relations for Gauss’ hypergeometric functions seem analogous

to part of the theory of τ -difference equations used here. Evidence of this

analogy can be observed, for example, by reading the papers [25], [26], from

which one will perhaps be able to extract an analogue of our deformations in

the classical setting. More work is needed to reach a good understanding of

the problem.

4. Alternative proof of Theorem 1

In this section we shall prove Theorem 1 by using techniques related to

“log-algebraic” power series identities essentially introduced by Anderson in

[2], [3]. We recall that the Tate algebra T is a C∞-Banach algebra with respect

to the norm ‖ · ‖ defined, for f =
∑
n≥0 cnt

n ∈ T, by ‖f‖ = supn≥0 |cn|, that it

is complete, Noetherian and factorial.

The map τ : C∞((t)) → C∞((t)) induces an Fq[t]-automorphism of T.

The set

T[[τ ]] =

∑
n≥0

anτ
n, with an ∈ T


is endowed with the evident ring structure determined by the noncommutative

product ∑
i≥0

aiτ
i ·
∑
j≥0

a′jτ
j =

∑
k≥0

Ñ ∑
i+j=k

aiτ
i(a′j)

é
τk,

where
∑
i≥0 aiτ

i and
∑
j≥0 a

′
jτ
j are elements of T[[τ ]].

Let a =
∑
i≥0 aiτ

i be an element of T[[τ ]], let R(a) be the supremum of

the set of the real numbers r ≥ 0 such that the limit limi→∞ ‖ai‖rq
i

is well

defined and zero. (We call this number the radius of convergence of a.) If

f =
∑
n≥0 cnt

n ∈ T is such that ‖f‖ < R(Φ), the series (evaluation of a at f)

Ea(f) =
∑
n≥0

Ñ∑
m≥0

φmτ
m(cn)

é
tn

converges to an element of T and defines an Fq[t]-linear map

Ea : Br → T,

where Br is the set (and Fq[t]-sub-module) of elements f of T such that ‖f‖ < r,

which can be called disk of convergence of Ea.

Let e be the formal series of T[[τ ]] associated to Carlitz’ exponential func-

tion

e =
∑
i≥0

τ i

di
∈ C∞[[τ ]].
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Since R(e) = ∞, we can associate to it the Fq[t]-linear map Ee : T → T
(exponential operator) agreeing with Carlitz’ exponential function exp over

C∞. The series Ee

(
− π̃
t−θ

)
is well defined in T and, in fact, comparing with

(4) and the identity

π̃
∑
i≥0

ti

θi+1
= − π̃

t− θ
,

we see that it coincides with ω:

(24) ω(t) = Ee

Å
− π̃

t− θ

ã
.

From this identity it is apparent that ω is a (t− θ)-torsion point for the Fq[t]-
linear extension of the Carlitz module

φCar : Fq[t, θ]→ T[[τ ]],

uniquely determined by φCar(θ) = θ+ τ and φCar(t) = t. This is an equivalent

way of expressing the fact that ω is a solution of (5).

We also have the following fundamental and elementary property.

Lemma 29. For all a ∈ A, the function ω is eigenfunction of the operator

φCar(a) with eigenvalue χt(a):

(25) φCar(a)ω = χt(a)ω.

Proof. This can be easily deduced from (5) and Fq-linearity. However,

thanks to (24), we can argue as follows. Observe that for all a ∈ A, a− χt(a)

is divisible by t − θ. By the identity φCar(a)e = ea, the series ω belongs to

the (a− χt(a))-torsion as well; that is, φCar(a− χt(a))ω = 0. (Notice that for

f ∈ T, there is no need to distinguish between EφCar(a)(f) and φCar(a)f .) �

Remark 30. Similar identities hold for the so-called Baker’s function in

the framework of Krichever modules, See, for example, [35, Prop. 5.11]. The

exponential expression for ω in (24) is also useful to associate good variants of

the series L(χβt , α) to more general rings A. This topic will be developed in

another work.

Proof of Theorem 1. We provide a useful identity between Fq[t]-linear op-

erators as above (more precisely, we will furnish two different series expansions

for the same operator) in the skew ring T[[τ ]]. To define the first operator, we

recall the element l of T[[τ ]] associated to the Carlitz logarithm:

l =
∑
n≥0

τn

ln
,

where the sequence (ln)n≥0 is defined inductively by l0 = 1 and ln = −[n]ln−1.

It is easy to show that R(l) = qq/(q−1).
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The first operator is then, for X ∈ C∞ such that |X| < 1,

lX :=
∑
n≥0

Xqnτn

ln
.

By R(a ·X) = |X|−1R(a) (for general a ∈ T[[τ ]]), we see that lX has radius of

convergence |X|−1qq/(q−1). For X ∈ C∞ such that |X| < 1 and z ∈ C∞ in the

disk of convergence of l, the following identity holds:

ElX (z) = log(Xz),

where log is Carlitz’ logarithm.

Let us introduce the second operator, at first sight distinct from the first.

For X ∈ C∞ with |X| < 1, the series jX ∈ C∞[[τ ]],

jX =
∑
d≥0

Xqd
∑

a∈A+(d)

a−1φCar(a),

is well defined. Indeed, let us recall the formula (see for example Thakur’s

book [36])

(26) φCar(a) =

degθ(a)∑
j=0

ß
a

qj

™
τ j ,

where ß
a

qj

™
=

j∑
k=0

aq
k

dkl
qk

j−k

is a polynomial of degree (degθ(a)− j)qj .
The coefficient of τ j in jX is then the sum of the series∑

d≥0

Xqd
∑

a∈A+(d)

a−1
ß
a

qj

™
,

which is convergent as the absolute value of its d-th term is ≤ |X|qdq(d−j)qj−d.

We shall show

Lemma 31. For |X| < 1, we have the identity

jX = lX .

Proof. We denote by Sd(m) the sum
∑
a∈A+(d) a

m, and we recall, again

from Thakur’s book [36, Cor. 5.6.4], that if d > k, then Sd(q
k − 1) = 0, and

that, for k ≥ d,

(27) Sd(q
k − 1) =

dk
ldd

d
k−d

.
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Next, using (26) and (27), for |X| < 1, we compute

jX =
∑
d≥0

Xqd
∑

a∈A+(d)

a−1
d∑
j=0

ß
a

qj

™
τ j

=
∑
d≥0

Xqd
d∑
j=0

∑
a∈A+(d)

j∑
k=0

aq
k−1

dkl
qk

j−k

τ j

=
∑
d≥0

Xqd
d∑
j=0

j∑
k=0

1

dkl
qk

j−k

Sd(q
k − 1)τ j

=
∑
d≥0

Xqd
d∑
j=0

j∑
k=d

1

dkl
qk

j−k

dk
ldd

d
k−d

τ j

=
∑
d≥0

Xqd 1

ld
τd. �

Since ‖ω‖ = | exp(π̃/θ)| = q
1
q−1 , for all X with |X| < q, we have that

ElX (ω) is well defined and

(28) ElX (ω) = ElX

Ñ∑
i≥0

exp

Å
π̃

θi+1

ã
ti

é
=
∑
i≥0

ti log

Å
X exp

Å
π̃

θi+1

ãã
.

To proceed further, we need the following elementary lemma, where log tem-

porarily denotes the classical logarithm, logq denotes the logarithm in base q

and e is Euler’s number.

Lemma 32. We have, for all a ∈ A with degθ(a) = d ≥ 0,

logq

∥∥∥∥Ee

Å
− aπ̃

t− θ

ã∥∥∥∥ ≤ (e log(q))−1q
d+ 1

q−1 .

Proof. Since

Ee

Å
− aπ̃

t− θ

ã
=
∑
n≥0

exp

Å
aπ̃

θn+1

ã
tn

and

exp

Å
aπ̃

θn+1

ã
=
∑
m≥0

1

dm

Å
aπ̃

θn+1

ãqm
,

we have ∥∥∥∥Ee

Å
− aπ̃

t− θ

ã∥∥∥∥ = sup
n≥0

sup
m≥0

∣∣∣∣∣ 1

dm

Å
aπ̃

θn+1

ãqm ∣∣∣∣∣ .
Now, we compute ∣∣∣∣∣ 1

dm

Å
aπ̃

θn+1

ãqm ∣∣∣∣∣ = q
qm(−(n+1)+d+ q

q−1
−m)

,
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and the lemma follows from the elementary inequality, valid for x ≥ 0:

qx
Å
−(n+ 1) + d+

q

q − 1
− x
ã
≤ qd−n+ 1

q−1 (e log(q))−1. �

We observe that for all a ∈ A, φCar(a)(ω) = Ee

(
− aπ̃
t−θ

)
. By Lemma 32, if

X ∈ C∞ and a ∈ A is of degree d ≥ 0, then

‖Xqda−1φCar(a)(ω)‖ ≤ qqd(logq |X|+(e log(q))−1)q
1

(e log(q))(q−1)
−d
.

Therefore, if X is such that |X| < q−1/(e log(q)), the series∑
d≥0

Xqd
∑

a∈A+(d)

a−1φCar(a)(ω)

converges. By Lemma 31, we have, for X submitted to the condition above,

the identity

ElX (ω) =
∑
d≥0

Xqd
∑

a∈A+(d)

a−1φCar(a)(ω).

By Lemma 29, the latter sum is equal to
∑
d≥0X

qd∑
a∈A+(d) a

−1χt(a)ω, yield-

ing the identity

(29) ElX (ω) =

Ç∑
d≥0

Xqd
∑

a∈A+(d)

a−1χt(a)

å
ω.

In principle, we have obtained an identity of series that holds for |X| <
q−1/(e log(q)) only. However, the left-hand side of (29) clearly converges for

|X| < q and the right-hand side converges at least for |X| ≤ 1. The value at

X = 1 of the left-hand side is

ElEe

Å
− π̃

t− θ

ã
= − π̃

t− θ
.

By making the limit X → 1 on the right-hand side, we obtain

lim
X→1

Ç∑
d≥0

Xqd
∑

a∈A+(d)

a−1χt(a)

å
ω = L(χt, 1)ω.

Therefore, − π̃
t−θ = L(χt, 1)ω and our Theorem 1 follows.

Remark 33. The well-known identity

log(1) = ζ(1),

first obtained by Carlitz [6] (see also [3]), can be easily deduced from our proof.

Notice also that the identity in T[[τ ]],

lφCar(a) = al, a ∈ A \ {0},
yields an identity ElEφCar(a) = aEl only on the disk {f ∈ T, ‖f‖ < |a|−1q

q
q−1 }.

Since ω lies on the boundary of this disk when a = θ, there is no reason for
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having identities between (ElEφCar(a))(ω) and aEl(ω). In fact, the identities

are false, and by (25), the identities

(ElEφCar(a))(ω) = χt(a)El(ω), a ∈ A \ {0}
hold instead.
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