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The Nash problem for surfaces

By Javier Fernández de Bobadilla and Maŕıa Pe Pereira

Abstract

We prove that Nash mapping is bijective for any surface defined over an

algebraically closed field of characteristic 0.

1. Introduction

The Nash problem [18] was formulated in the sixties (but published later)

in the attempt to understand the relation between the structure of resolution

of singularities of an algebraic variety X over a field of characteristic 0 and

the space of arcs (germs of parametrized curves) in the variety. He proved

that the space of arcs centered at the singular locus (endowed with an infinite-

dimensional algebraic variety structure) has finitely many irreducible compo-

nents and proposed to study the relation of these components with the essential

irreducible components of the exceptional set of a resolution of singularities.

An irreducible component Ei of the exceptional divisor of a resolution

of singularities is called essential if given any other resolution, the birational

transform of Ei to the second resolution is an irreducible component of the

exceptional divisor. Nash defined a mapping from the set of irreducible com-

ponents of the space of arcs centered at the singular locus to the set of essential

components of a resolution as follows. To each component W of the space of

arcs centered at the singular locus he assigned the unique component of the

exceptional set which meets the lifting of a generic arc of W to the resolution.

Nash established the injectivity of this mapping. For the case of surfaces, it

seemed plausible for him that the mapping is also surjective, and he posed the

problem as an open question. He also proposed to study the mapping in the

higher dimensional case. Nash resolved the question positively for the surface
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singularities of type Ak. As a general reference for the Nash problem, the

reader may look at [18] and [10].

Besides the Nash problem, the study of arc spaces is interesting because it

lays the foundations for motivic integration and because the study of its geo-

metric properties reveals properties of the underlying varieties. (See papers of

de Fernex, Denef, Ein, Ishii, Lazarsfeld, Loeser, Mustata, Yasuda and others.)

It is well known that birational geometry of surfaces is much simpler than

in higher dimension. This fact reflects on the Nash problem: Ishii and Kollár

showed in [10] a 4-dimensional example with nonbijective Nash mapping. In

the same paper they showed the bijectivity of the Nash mapping for toric

singularities of arbitrary dimension. Other advances in the higher dimensional

case include [23], [6], [14]. Very recently there have appeared 3-dimensional

counterexamples as well. The first ones are due to T. de Fernex [1]. Later

J. Kollár showed even simpler counterexamples [11]: even the A4-threefold

singularity, defined by the equation x2 + y2 + z2 +w5 = 0 is a counterexample.

In the same paper he proposes a revised higher dimensional conjecture.

On the other hand, bijectivity of the Nash mapping has been shown for

many classes of surfaces (see [6], [10], [8], [9], [12], [13], [17], [19], [20], [21],

[22], [24], [25], [26]). The techniques leading to the proof of each of these

cases are different in nature, and the proofs are often complicated. It is worth

noting that even for the case of the rational double points not solved by Nash,

a complete proof had to be awaited until 2010; see [19], where the problem

is solved for any quotient surface singularity, and also [21] and [24] for the

cases of Dn and E6. In [4] it is shown that the Nash problem for surfaces only

depends on the topological type of the singularity.

In this paper we resolve the Nash question for surfaces.

Main Theorem Nash mapping is bijective for any surface defined over

an algebraically closed field of characteristic 0.

The core of the result is the case of normal surface singularities. After

settling this case we deduce from it the general surface case.

The proof is based on the use of convergent wedges and topological meth-

ods. A wedge is a uniparametric family of arcs. The use of wedges in con-

nection to the Nash problem was proposed by M. Lejeune-Jalabert [12]. Later

A. Reguera [27], building onto the fundamental lemma of motivic integration

by J. Denef and F. Loeser [2], proved a characterization of components which

are at the image of the Nash map in terms of formal wedges defined over fields

which are of infinite transcendence degree over the base field. In [4] the first

author proves a characterization of the image of the Nash mapping for surfaces

in terms of convergent (or even algebraic) wedges defined over the base field,

which is the starting point of this article.
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The present paper is partially inspired by the ideas of [19]; more concretely,

by the use of representatives of wedges.

The idea of our proof is as follows. Let (X,O) be a normal surface singu-

larity and

π : X̃ → (X,O)

be the minimal resolution of singularities. By a theorem of [4], if Nash mapping

of (X,O) is not bijective, there exists a convergent wedge

α : (C2, O)→ (X,O)

with certain precise properties (see Definition 1). As in [19], taking a suitable

representative we may view α as a uniparametric family of mappings

αs : Us → (X,O)

from a family of domains Us to X with the property that each Us is diffeomor-

phic to a disk. For any s, we consider the lifting

α̃s : Us → X̃

to the resolution. Notice that α̃s is the normalization mapping of the image

curve.

On the other hand, if we denote by Ys the image of α̃s for s 6= 0, then we

may consider the limit divisor Y0 in X̃ when s approaches 0. This limit divisor

consists of the union of the image of α̃0 and certain components of the excep-

tional divisor of the resolution whose multiplicities are easy to be computed.

We prove an upper bound for the Euler characteristic of the normalization of

any reduced deformation of Y0 in terms of the following data: the topology of

Y0, the multiplicities of its components and the set of intersection points of Y0

with the generic member Ys of the deformation. Using this bound we show

that the Euler characteristic of the normalization of Ys is strictly smaller than

one. This contradicts the fact that the normalization is a disk.

In the last section we deduce the general case from the normal case.

Acknowledgments. We thank M. Lejeune-Jalabert, A. Nemethi and
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to C. Plenat and M. Spivakovsky for a discussion which was important in order

to settle the nonnormal case.

2. Preliminaries

2.1. Let (X,O) be a complex analytic normal surface singularity. Let

π : (X̃, E)→ (X,O)

be the minimal resolution of singularities, which is an isomorphism outside the

exceptional divisor E := π−1(O). Consider the decomposition E = ∪ri=0Ei of
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E into irreducible components. These irreducible components are the essential

components of (X,O).

2.2. Given any irreducible component Ei we define by NEi the Zariski

closure in the arc space of X of the set of nonconstant arcs whose lifting to

the resolution is centered at Ei. These Zariski closed subsets are irreducible,

and each irreducible component of the space of arcs is equal to some NEi for a

certain component Ei. If NEi is an irreducible component of the space of arcs

centered at the singular set, then its image by Nash mapping is the essential

component Ei. Thus Nash mapping is not bijective if and only if there exist

two different irreducible components Ei and Ej of the exceptional divisor of

the minimal resolution such that we have the inclusion NEi ⊂ NEj (see [18]).

Such inclusions were called adjacencies in [4].

2.3. The germ (X,O) is embedded in an ambient space CN . Denote by

Bε the closed ball of radius ε centered at the origin and by Sε its boundary

sphere. Take a Milnor radius ε0 for (X,O) in CN ; that is, we choose ε0 > 0 such

that for a certain representative X and any radius 0 < ε ≤ ε0 we have that all

the spheres Sε are transverse to X and X∩Sε is a closed subset of Sε. (See [16]

for a proof of its existence.) In particular, X ∩Bε0 has conical structure. From

now on we will denote by Xε0 the Milnor representative X∩Bε0 and by X̃ε0 the

resolution of singularities π−1(Xε0). In these conditions the space X̃ε0 admits

the exceptional divisor E as a deformation retract. Hence the homology group

H2(X̃ε0 ,Z) is free and generated by the classes of the irreducible components

Ei. Since X̃ε0 is a smooth 4-manifold, there is a symmetric intersection product

� : H2(X̃ε0 ,Z)×H2(X̃ε0 ,Z)→ Z.

The intersection product is negative definite since it is the intersection product

of a resolution of a surface singularity.

2.4. We recall some terminology and results from [4]. Consider coordi-

nates (t, s) in the germ (C2, O). A convergent wedge is a complex analytic

germ

α : (C2, O)→ (X,O)

which sends the line V (t) to the origin O. Given a wedge α and a parameter

value s, the arc

αs : (C, 0)→ (X,O)

is defined by αs(t) = α(t, s). The arc α0 is called the special arc of the wedge.

For small enough s 6= 0, the arcs αs are called generic arcs.

Any nonconstant arc

γ : (C, 0)→ (X,O)

admits a unique lifting to (X̃, O), which we denote by γ̃.
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Definition 1 ([4]). A convergent wedge α realizes an adjacency from Ej
to Ei (with j 6= i) if and only if the lifting α̃0 of the special arc meets Ei
transversely at a nonsingular point of E and the lifting α̃s of a generic arc

satisfies α̃s(0) ∈ Ej .

Our proof is based on the following theorem, which is the implication

“(1)⇒ (a)” of Corollary B of [4].

Theorem 2 ([4]). An essential divisor Ei is in the image of the Nash

mapping if there is no other essential divisor Ej 6= Ei such that there exists a

convergent wedge realizing an adjacency from Ej to Ei.

The proof in [4] of this theorem has two parts. The first consists of proving

that if there is an adjacency, then there exists a formal wedge

α : Spec(C[[t, s]])→ (X,O)

realising the adjacency. For that, firstly it is used a theorem of A. Reguera [27],

which produces wedges defined over large fields. Then a specialisation argu-

ment is performed to produce a wedge defined over the base field C. This

was done independently in [14]. The second part is an argument based on

D. Popescu’s Approximation Theorem, which produces the convergent wedge

from the formal one. In [5] the authors of the present paper give an alternative

proof of the first part giving, in one step, a formal wedge defined over C.

2.5. The previous theorem allows us to address the Nash question in

the complex analytic case. Suppose that (X,O) is a singularity of a normal

algebraic surface defined over an algebraically closed field K of characteristic 0.

It is well known that (X,O) may be defined over a field K1 ⊂ K which is a finite

extension of Q, and hence admits an embedding into C. Let K̄1 be the algebraic

closure of K1. We have then two field embeddings K1 ⊂ K and K1 ⊂ C.

In 7.1 and 7.2 of [4] it is shown that the bijectivity of the Nash mapping does

not change by extension of algebraically closed fields. Therefore we deduce

that if we prove the bijectivity of the Nash mapping for any complex analytic

normal surface singularity, then it holds for any normal surface singularity

defined over a field of characteristic equal to 0.

2.6. Following [19] we shall work with representatives rather than germs

in order to get richer information about the geometry of the possible wedges.

Recall that Bε denotes the closed ball of CN centered at the origin and Sε its

boundary sphere. We denote by Ḃε the open ball. Remember that Xε0 stands

for a Milnor representative X ∩Bε0 ⊂ CN with ε0 a Milnor radius for (X,O).

Consider the real analytic function ρ : CN → R given by the square of the

distance function to the origin in CN .
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Lemma 3. Given any nonconstant convergent arc γ, there exists a positive

radius ε0 such that the mapping γ is transverse to the sphere Sε for any positive

radius ε ≤ ε0.

Proof. We follow the proof of the existence of Milnor representatives of

analytic spaces given in [16]. The critical set C of the composition ρ◦γ is a

real analytic subset of C. We claim that the origin is an isolated point in C.

Indeed, otherwise there is a 1-dimensional component of the germ (C, 0), which

admits a nonconstant parametrization θ : (R, 0)→ C. The composition ρ◦γ◦θ
is constant since, by the chain rule, its first derivative vanishes at any point.

This implies that γ◦θ(s) is always at distance 0 to the origin, and hence γ◦θ
is constant. Since 0 is an isolated point of γ−1(O) for being γ a nonconstant

holomorphic arc, then θ(s) is constantly 0 and this is a contradiction. �

Given any nonconstant convergent arc γ, since 0 is an isolated point of

γ−1(O), we may consider a representative

γ|D : D → X

for an open bounded domain D in C such that 0 is the only point of γ−1(O) in

D. We choose an open domain D′ containing 0 and whose closure is contained

in D.

Lemma 4. There exists ε0 small enough such that the restriction

γ|D′∩γ|−1
D (Bε0 ) : D′ ∩ γ|−1

D (Bε0)→ Xε0

is proper and for any positive radius ε < ε0, the domain D′ ∩ γ−1(Bε) is

diffeomorphic to a closed disk.

Proof. Since 0 is the only point of γ−1(O) in D, the minimum of the

function ρ◦γ in the compact set ∂D′ is a positive number η. We take ε0

strictly smaller than
√
η and such that the conclusion of Lemma 3 holds.

The inverse image by γ|D of the closed ball Bε0 is a closed subset of D

disjoint to ∂D′. Hence the connected components of γ|−1
D (Bε0) contained in

D′ are compact. This shows the properness of γ|D′∩γ|−1
D (Bε0 ).

Since the mapping γ|U is transverse to the sphere Sε0 , we obtain that the

boundary of D′ ∩ γ|−1
D (Bε0) is a disjoint union of differentiable circles.

Since γ|U is transverse to the sphere Sε for any positive radius ε ≤ ε0, we

have a smooth function

ρ◦γ : D′ ∩ γ|−1
D (Bε0)→ [0, ε0]

such that the preimage of ε0 defines the boundary of D′ ∩ γ|−1
D (Bε0) and such

that its only critical point is 0 and assumes the value 0. Therefore D′ ∩
γ|−1
D (Bε0) is homeomorphic to the cone over the boundary of D′ ∩ γ|−1

D (Bε0),

and thus to the cone over a disjoint union of circles. Since D′ ∩ γ|−1
D (Bε0) is
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a smooth manifold with boundary, we have that there is only one circle and

therefore it is diffeomorphic to a closed disk. �

Definition 5. A Milnor representative of γ is a representative of the form

γ|U : U → Xε0 ,

where U is diffeomorphic to a closed disk, we have the equality γ|−1
U (∂Xε0) =

∂U and the mapping γ|U is transverse to any sphere Sε for any 0 < ε ≤ ε0.

The radius ε0 is called a Milnor radius for γ.

Remark 6. The union of Lemmata 3 and 4 gives that any nonconstant arc

has a Milnor representative with U of the form D′∩γ|−1
D (Bε0) for some ε0 and

domains D′ ⊂⊂ D of C.

2.7. Denote by Dδ the closed disk of radius δ centered at the origin of

C and by Ḋδ the open one. We denote with Ȧ the interior of a set A in the

transcendent topology.

Given a wedge α with nonconstant special arc α0, consider the mapping

β : (C2, (0, 0))→ (CN × C, (O, 0))

given by β(t, s) := (α(t, s), s). Since α is defined in a neighbourhood of the

origin in C2, we may consider a Milnor representative α0|U with Milnor radius

ε0 for α0 such that for a positive and small enough δ, the mapping α is defined

in U ×Dδ. Consider the restriction

β|U×Dδ : U ×Dδ → X ×Dδ.

We denote by pr the projection of U ×Dδ onto the second factor.

Lemma 7. After possibly shrinking δ, we have that there exists ε > 0 such

that, defining

U := β|−1
U×Ḋδ

(Xε × Ḋδ),

we have that

(a) the restriction β|U̇ : U̇ → Ẋε × Ḋδ is a proper and finite morphism of

analytic spaces

(b) the set β(U̇) is a 2-dimensional closed analytic subset of Ẋε × Ḋδ ;

(c) the set β(U) is contained in a bigger analytic 2-dimensional closed subset

Y of Xε1 × Ḋδ for some ε1 > ε such that β(∂U) = Y ∩ (∂Xε × Ḋδ);

(d) for any s ∈ Dδ , the restriction β|U×{s} is transverse to Sε × Ḋδ ;

(e) the set U is a smooth manifold with boundary β|−1
U (∂Xε × Ḋδ);

(f) for any s ∈ Dδ , the intersection U ∩ (C× {s}) is diffeomorphic to a disk.
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Proof. By continuity, for any η there is a δ small enough so that for any

s ∈ Dδ, we have the inclusion

αs(∂U) ⊂ Bε0+η \Bε0−η.

For any positive ε1 strictly smaller than ε0−η and any compact subset K ∈ Ḋδ,

we have that β|−1
U×Dδ(Bε1 ×K) is a closed subset of U × Ḋδ which is disjoint

from the boundary ∂(U × Ḋδ). This easily implies that for any ε1 strictly

smaller than ε0 − η, if we define

U̇1 := β|−1
U×Dδ(Ḃε1 × Ḋδ),

then the restriction

β|U̇1 : U̇1 → Ẋε1 × Ḋδ

is a proper morphism of analytic spaces, which is in fact finite since each arc

αs is finite. Remmert’s Finite Mapping Theorem ([7, Prop. 3.1.3, p. 65]) gives

that the image β(U̇1) is a 2-dimensional closed analytic subset of Ẋε1 × Ḋδ.

Fix a positive ε strictly smaller than ε1, and define

U := β|−1
U×Ḋδ

(Xε × Ḋδ).

We have properties (a)–(b) for U for the same reason that we have them for

U1 since ε < ε1 < ε0 − η. To get (c) we take Y := β(U̇1).

Since transversality is an open property, we may fix a new δ small enough

so that αs|U is transverse to Sε for any s ∈ Ḋδ. This is (d) and this implies that

U is a manifold with boundary, which gives (e). Denoting by pr the projection

of C2 to the second factor, we also have that the restriction pr|∂U : ∂U → Ḋδ

is submersive. Therefore the mapping

pr|U : U → Ḋδ

is a proper submersion which is also a submersion when restricted to the bound-

ary ∂U . Then Ehresmann Fibration Theorem gives (f). �

We will denote by Us the fibre pr|−1
U (s). The fact that every Us is a disk

is a key in the proof as it was in the final step of the proof of the main result

of [19].

From now on we only deal with wedges α, as the ones realising an adja-

cency (see Definition 1), whose special arc has a Milnor representative

α0|U : U → Xε,

which is injective. For such a wedge, consider a representative β : U → Xε×Ḋδ

so small that it satisfies Lemma 7. We get the following

Lemma 8. If δ is chosen small enough, then we have that αs|Us is gener-

ically one-to-one.
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Proof. Notice that

αs|Us : Us → Xε

is a perturbation of the injective smooth mapping

α0|U0 : U0 → Xε.

Observe that β−1(∂Bε×{s}) is an S1 for any s ∈ Ḋδ. Since we cannot deform

an embedding S1 → Sε to a noninjective mapping S1 → Sε, we get that αs|Us
is generically one-to-one. �

3. Wedges and divisors

3.1. Let α be a wedge realizing an adjacency. By the previous section,

we may consider a representative β : U → Xε×Ḋδ satisfying Lemmata 7 and 8.

To simplify notation we take Dδ closed, redefining δ strictly smaller.

We consider the image H := β(U). For every s ∈ Dδ, the fibre Hs, by the

natural projection onto Dδ, is the image of the representative

αs|Us : Us → Xε.

Given the minimal resolution of singularities

π : X̃ε → Xε,

we consider the mapping

σ : X̃ε ×Dδ → Xε ×Dδ

defined by σ(x, s) = (π(x), s). Note that the mapping σ is an isomorphism

outside E×Dδ. We consider the strict transform of H by σ in X̃ε×Dδ, which

we denote by Y . We will explain this construction in detail, looking especially

at the fibers of the restriction to Y of the projection of X̃ε×Dδ onto the second

factor.

We define Y to be the analytic Zariski closure in X̃ε ×Dδ of

(1) σ−1(H \ ({O} ×Dδ)).

The space (1) is an irreducible surface; thus, so is its closure Y . Since X̃ε×Dδ

is a smooth threefold, the surface Y considered with its reduced structure is a

Cartier divisor (that is, a codimension 1 analytic subset whose sheaf of ideals

is locally principal). We denote by Ys the intersection Y ∩ (X̃ × {s}).
The indeterminacy locus of the mapping σ−1◦β|U has codimension 2.

Hence reducing ε and δ if necessary, we can assume that the origin (0, 0) ∈ U
is the only indeterminacy point. Denote by

β̃ : U \ {(0, 0)} → X̃ε ×Dδ
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the restriction of σ−1◦β|U to its domain of definition U \{(0, 0)}. Observe that

we have the equality

β̃(U \ β−1({O} ×Dδ)) = σ−1(H \ ({O} ×Dδ)).

Consequently Y is the analytic Zariski closure of β̃(U \ {(0, 0)}).
We claim that the morphism

β̃|U\U0 : U \ U0 → X̃ε × (Dδ \ {0})

is proper. Indeed, given any compact subset K ⊂ X̃ε×(Dδ \{0}), its preimage

β̃|−1
U\U0(K) is equal to β−1(σ(K)), which is compact because β is proper. Then

the Remmert Direct Image Theorem shows that the image β̃(U \U0) is a closed

analytic subset of X̃ε × (Dδ \ {0}). This immediately implies the equality

(2) Y ∩ (X̃ε × (Dδ \ {0})) = β̃(U \ U0).

For any s ∈ Dδ, there exists a unique lifting

α̃s : Us → X̃ε

such that αs = π◦α̃s. Obviously, for s 6= 0, we have the equality β̃(t) =

(α̃s(t), s) for any t ∈ Us. This, together with equality (2), implies the equality

Ys = α̃s(Us).

Since Y is reduced, perhaps shrinking δ, we can assume that Ys is reduced.

Since αs is proper and generically one-to-one, and Us is smooth, we have that

the mapping

α̃s : Us → Ys

is the normalisation of Ys. We have obtained

Lemma 9. For any s ∈ Dδ \ {0}, the divisor Ys is reduced, the mapping

α̃s : Us → Ys

is its normalisation and Us is diffeomorphic to a disk.

The curve Y0 does not need to be either reduced or irreducible. The set

Z0 := α̃0(U0) is an irreducible component of Y0. Since σ is an isomorphism

outside E×Dδ and H0 is reduced out of the origin, we deduce that Y0 is reduced

at Z0 \E. The rest of the irreducible components of Y0 are components of the

exceptional divisor E. We decompose the divisor Y0 as a sum

(3) Y0 = Z0 +
r∑
i=0

aiEi.

All the ai’s are nonnegative since the divisor Y0 is effective.
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3.2. If α is a wedge realizing the adjacency from Ej to E0 with j 6= 0, then

by definition, the lifting α̃0 meets E0 transversely. In particular, Z0 � E0 = 1

and Z0 � Ei = 0 for i > 0, where Z0 is as in formula (3).

Since the divisor Ys is a deformation of the divisor Y0, we have the equality

(4) Y0 � Ei = Ys � Ei

for any i. Denote by bi the intersection product of Ys �Ei and by M the matrix

of the intersection form in H2(X̃ε,Z) with respect to the basis {[E0], . . . , [Er]}.
Then, (4) can be expressed as follows:

(5) M(a0, . . . , ar)
t = (−1 + b0, b1, . . . , br)

t.

In the terminology of [19], the number bi is the number of returns of the

wedge through the divisor Ei; it is the number of points p ∈ αs|−1
Us (O) for which

the lifting to X̃ of the germ at p of αs|Us meets Ei (counted with appropriate

multiplicity).

Since α realizes an adjacency from Ej to E0, we have more restrictions

about bi’s and ai’s. They can be seen as consequences of the following lemma.

Lemma 10. All the entries of the inverse matrix M−1 are nonpositive.

Proof. The matrix −M is symmetric, positive definite and such that any

nondiagonal entry is nonpositive. Hence, if endow Rr with the standard eu-

clidean product, then there is a basis v1, . . . , vr such that the angle formed by

any two different vectors of the base is at least π/2, and the matrix −M is the

matrix of scalar products of pairs of vectors of the basis. Therefore the inverse

matrix −M−1 is the matrix of scalar products of pairs of vectors of a basis of

vectors such that the angle formed by any two of the vectors is at most π/2.

This implies that all the entries of −M−1 are nonnegative. �

Hence, if we require in (5) that each bi and each ai be a nonnegative

integer, then we get that b0 has to be equal to 0 or to 1, and in this last case

we get that b1 = · · · = br = 0.

Hence, we have the following immediate consequence.

Corollary 11. If α is a wedge realizing an adjacency from Ej to E0

(with j 6= 0) and (b0, . . . , br) are the intersection numbers Ys · Ei associated

with the generic member of a good wedge representative as in (5), then b0 is

equal to 0. Moreover, a0 is positive; that is, the divisor E0 appears in the

support of Y0.

Proof. Since α realizes an adjacency from Ej to E0, we have bj 6= 0. Then

b0 = 0. Now in the first row of system (5), in order to have the equality b0 = 0,

we need that
∑r
j=0 ajk0,j = −1. By definition, all aj and all k0,j except k0,0

are nonnegative. This implies that a0 is different from 0. �
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3.3. The equality (5) can be viewed as a linear system whose indeter-

minates are a0, . . . , ar. It can be used to prove that wedges realizing certain

adjacencies with certain prescribed returns do not exist. (We are using the ter-

minology of [19].) The method is as follows: the adjacencies and the prescribed

returns determine b0, b1, . . . , br. The existence of the wedge is impossible if the

solution of the linear system has either a negative or a nonintegral entry.

Using this method it is possible to prove the bijectivity of Nash mapping

for many singularities (toric, dihedral . . . ), but it does not suffice for all of

them. It is interesting to compare this method with the methods of [19] for

the E8 singularity: the set of adjacencies with prescribed returns which this

method is not able to rule out coincide precisely with the list of 25 adjacencies

with prescribed returns that the second author is not able to rule out only with

intersection multiplicity methods in [19].

4. Euler characteristic estimates

Let X̃ be a smooth compact domain with smooth boundary in a projective

complex surface. Let

(6) Y0 =
m∑
i=0

ciZi +
r∑
i=0

aiEi

be a divisor in X̃, where the Ei’s are compact prime divisors contained in the

interior of X̃ and the Zi’s are prime divisors meeting transversely the boundary

of X̃. We denote by (Y0)red the reduced divisor associated with Y0. In all this

section we consider a deformation Ys of the divisor Y0 with the following two

properties:

(I) the divisor Ys is reduced;

(II) given any sequence {pk}k∈N of points that converges to a point p ∈
Y0 ∩ ∂X̃ and such that pk belongs to Ysk for sk 6= 0, we have that the

limit of the tangent spaces TpkYsk converges to Tp(Y0)red.

Notice that property (II) implies that Ys is transverse to ∂X̃ for s small

enough.

Let

n : Us → Ys

be the normalization of Ys.

In this section we bound the Euler characteristic of the normalization

Us in terms of the topology of the reduced divisor associated with Y0, the

multiplicities ci and ai and the number of intersection points of Y0 with Ys, for

s 6= 0.

First we do the case when Y0 is a normal crossing divisor. We take a

smaller s when necessary in the definition of Ys.
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4.1. Property (II) appears for free in the local context.

Lemma 12. The set S of smooth points q ∈ (Y0)red to which a sequence

of points qn ∈ Ysn converges (with sn 6= 0 and limn→0 sn = 0) satisfying that

TqnYsn does not converge to Tq(Y0)red is a discrete set in Y0.

Proof. We prove that S is contained in a 0-dimensional analytic subset

of Y0. Let Y be the total divisor ∪s∈Dδ(Ys × {s}) of X̃ε × Dδ giving rise to

the deformation. Let µ : Y → Dδ be the restriction to Y of the projection of

X̃ε ×Dδ to the second factor. Let m be a positive integer. Take the mapping

τ : Dδ1/m → Dδ

defined by τ(z) := zm. Consider the fibre product Y ×Dδ Dδ1/m and its nor-

malisation

n : Y ′ → Y ×Dδ Dδ1/m .

Let

θ1 : Y ′ → Y,

θ2 : Y ′ → Dδ1/m

be the composition of the normalisation mapping and the natural projections

of Y ×Dδ Dδ1/m to each of the factors respectively.

For an adequate choice of m, the fibre θ−1
2 (0) is generically reduced. Thus

the mapping θ2 has a 0-dimensional analytic subset Σ1 ⊂ θ−1
2 (0) of isolated

critical points. Moreover outside a 0-dimensional subset Σ2 ⊂ Y0 the rank of

the differential of n|Y0 is at least 1.

It is clear that S is contained in θ1(Σ1 ∪ Σ2), which is a 0-dimensional

analytic subset since θ1 is finite. �

The following is an immediate consequence.

Lemma 13. For every point p of (Y0)red \ ∂X̃ , we can choose a radius

ε such that the family of divisors Ys ∩ B(p, ε′) satisfy property (II) for any

ε′ ∈ (0, ε].

4.2. Local normal crossings case. In this case X̃ is a ball Bε centered at

the origin of C2, and Y0 is defined by f0 = xayb = 0, where x and y are

the coordinates of C2. The divisor Ys is defined by fs = 0, where fs is a

1-parameter holomorphic deformation of f0 such that fs is reduced for s 6= 0.

Property (II) follows from Lemma 13. We have the following bound.

Lemma 14. If s is small enough, then the Euler characteristic of the

normalization Us of Ys satisfies

(7) χ(Us) ≤
∑

p∈Ys∩Y0
Ip(Ys, (Y0)red).
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Proof. The only connected orientable surface with a boundary that has

positive Euler characteristic is the disk. Hence χ(Us) is bounded above by the

number of connected components of Us that are disks.

Let Ws be an irreducible component of Ys whose normalization is a disk.

Its boundary Ws ∩ Sε is a circle that deforms to one of the components of

Y0 ∩ Sε; that is, either to V (x)∩ Sε or to V (y)∩ Sε. Both cases are symmetric.

In the first case the equation gs of Ws degenerates to xc for a certain c ≤ a;

that is, g0 = xc. Thus the circle Ws ∩ Sε loops c times around the V (y) and

hence represents a nontrivial element in π1(Bε \ V (y)). The normalization of

the component Ws is a mapping from a disk to Ws. If Ws does not meet V (y),

the circle Ws ∩ Sε would be a trivial element in π1(Bε \ V (y)), and this is not

the case.

We conclude that each component of Ys whose normalization is a disk

has at least one intersection point with the union of the axis. This proves the

lemma. �

4.3. Global normal crossings case. We assume Y0 to be a normal crossings

divisor. Define

Ėi = Ei \ Sing((Y0)red),

Żi = Zi \ Sing((Y0)red)

for any i. Given any point p ∈ X̃, we denote by B(p, ε) the closed ball in X̃ of

radius ε centered in p.

Lemma 15. If s is small enough, then the Euler characteristic of the

normalization Us of Ys satisfies

(8) χ(Us) ≤
m∑
i=0

ciχ(Żi) +
r∑
i=0

aiχ(Ėi) +
∑

p∈Ys∩Y0
Ip(Ys, (Y0)red).

Proof. Since X̃ is a domain in a projective surface we think of it embedded

in some PN . Since Y0 ∩ ∂X̃ is compact, we may assume the existence of

collar structure for the boundary of X̃ near Y0 ∩ ∂X̃. That is, there exists a

neighbourhood C of Y0 ∩ ∂X̃ in X̃ and a smooth function

κ : C → (0, 1]

without critical points such that C ∩ ∂X̃ = κ−1(1). Since property (II) is

satisfied by the family Ys in X̃, by Lemma 12 we have that, if C is chosen

small enough, then we may ensure that it is also satisfied for the families

Ys ∩ κ−1((0, t]) for any t ∈ (0, 1].

We choose a neighbourhood of Y0 as the union of the following sets:

(i) Balls B(p1, ε1),. . . , B(pR, εR) inside X̃ centered in each of the singular

points p1,. . . ,pR of (Y0)red with radii ε1,. . . , εR as in Lemma 13.



THE NASH PROBLEM FOR SURFACES 2017

(ii) Tubular neighbourhoods Ai for each Ei minus a finite number of disks,

which we construct as follows. For every Ei, we take a pencil of hyper-

planes in PN such that none of them contains Ei. Given any point x ∈ Ei,
we denote by Hx the unique hyperplane of the pencil meeting x. There

is a finite number of points in Ėi that are tangent to hyperplanes of the

pencil. We denote them by qEi1 ,. . . , qEik(Ei)
. For any j, consider a small

disc ∆(qEij , δ
Ei
j ) in Ei around qEij of radius δEij . The discs are chosen

mutually disjoint and disjoint to every Ei ∩B(pl, εl).

Fix ε′l < εl for any l. Define

E′i := Ei \
( R⋃
l=1

Ḃ(pl, ε
′
l) ∪

k⋃
j=1

∆̇(qEij , δ
Ei
j )
)
.

We take a small tubular neighbourhood A′i in X̃ of Ei such that given

any point x ∈ E′i, the unique connected component Ax of the intersection

Hx ∩ A′i only meets Ei at x.

Define

Ai :=
⋃
x∈E′i

Ax.

The pencil defines a natural holomorphic projection

ζEi : Ai → E′i.

We choose s small enough such that Ys is transverse to ζ−1
Ei

(∂E′i) and

ζEi |Ys is onto.

(iii) Tubular neighborhoods Di around each Zi minus the union of a finite

number of discs and small annuli neighbouring Zi ∩ ∂X̃, whose con-

struction is parallel to the one of the neighbourhoods Ai. For further

reference, we sketch the construction briefly. Choose a pencil of hyper-

planes with properties as before. Define Z ′i as Zi minus the union of

κ−1((1/2, 1]) ∪ ⋃Rl=1 Ḃ(pl, ε
′
l), and a finite number of disks ∆(qZij , δ

Zi
j )

centered at points {qZi1 , . . . , qZik(Zi)
} where the pencil is tangent. Define

tubular neighbourhoods Di of Z ′i in X̃ and a holomorphic projection

ζZi : Di → Z ′i imitating the construction in (iii). We choose s small

enough such that Ys is transversal to ζ−1
Zi

(∂Z ′i) and ζZi |Ys is onto.

(iv) Sets BEij (respectively BZij ) around each point qEij ∈ Ei (respectively

qZij ∈ Zi) given as a difference B(qEij , η
Ei
j ) \ Ȧi (respectively B(qZij , η

Zi
j ) \

Ḋi), where the radius ηEij (respectively ηZij ) is slightly larger than δEij
(respectively δZij ) and is such that the boundary of the Riemann surface

Ys∩BEij (respectively Ys∩BZij ) equals Ys∩ζ−1
Ei

(∂∆(qEij , η
Ei
j )) (respectively

Ys ∩ ζ−1
Zi

(∂∆(qZij , η
Zi
j ))) for s small enough.

(v) The set E := C \ (∪iḊi).
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We compute an estimate for the Euler characteristic of the normalization

of the intersection of Ys with each of these pieces. Then, (8) is obtained

as the sum of these estimates since, as we check later in the proof, the Euler

characteristics of n−1(Ys∩Ai∩BEij ), n−1(Ys∩Di∩BZij ), n−1(Ys∩Ai∩B(pl, εl)),

n−1(Ys ∩ Di ∩B(pl, εl)), n
−1(Ys ∩ Di ∩ E) are 0 for every i, j and l.

To estimate χ(n−1(Ys∩B(pl, εl)) we use (7). To estimate χ(n−1(Ys∩Ai))
we note that the composition

ζEi◦n : Ys ∩ Ai → E′i

is a holomorphic branched cover of Riemann surfaces of degree ai. By the

Riemann-Hurwitz formula, we get

(9) χ(Ys ∩ Ai) ≤ aiχ(E′i) = aiχ(Ėi)− k(Ei)ai.

In a similar way, we obtain

(10) χ(Ys ∩ Di) ≤ ciχ(Z ′i) = ciχ(Żi)− k(Zi)ci.

For further use, notice that the inequality becomes an equality if there are

no ramification points.

For a given divisor Ei, to estimate χ(n−1(Ys∩(∪kj=1B
Ei
j ))) we observe that

the boundary of the Riemann surfacen−1(Ys∩BEij ) equalsYs∩ζ−1
i (∂∆(qEij , δ

Ei
j )).

It is an unramified cover of degree ai over the circle ∂∆(qEij , δ
Ei
j ). We con-

clude that ∂(n−1(Ys ∩ BEij )) is a disjoint union of at most ai circles. Since

each connected component of n−1(Ys ∩ BEij ) has boundary, we have at most

ai connected components, and since the Euler characteristic of each of these

connected components is at most 1, we obtain the bound

(11) χ(n−1(Ys ∩ (∪k(Ei)
j=1 B

Ei
j )) ≤ k(Ei)ai.

Besides, we have obtained that χ(n−1(Ys ∩ BEij ∩ Ai)) = 0 for all i and j. A

similar procedure shows

(12) χ(n−1(Ys ∩ (∪k(Zi)
j=1 B

Zi
j )) ≤ k(Zi)ci

and the equality χ(n−1(Ys ∩ BZij ∩ Di)) = 0 for all i and j.

Now we prove that χ(n−1(Ys ∩ Ai ∩ B(pl, εl)) = 0 (and that χ(n−1(Ys ∩
Di ∩B(pl, εl)) = 0). Let ρl denote the distance function to the point pl. Since

property (II) is satisfied for the family of divisors Ys ∩B(pl, ε) for any ε < εl,

we deduce that, fixing any ε′′l < ε′l, if s is chosen small enough, the analytic

space Ys ∩ B(pl, εl) \ Ḃ(pl, ε
′′
l ) is a smooth Riemann surface with boundary.

Moreover, the restriction

ρl|Ys∩B(pl,εl)\Ḃ(pl,ε
′′
l

) : Ys ∩B(pl, εl) \ Ḃ(pl, ε
′′
l )→ [ε′′l , εl]

is a smooth function without critical points. We denote by Xs the gradient of

ρl|Ys∩B(pl,εl)\Ḃ(pl,ε
′′
l

).
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The components of the boundary of Ai defined by

M := ζ−1
Ei

(Ei ∩ ∂B(pl, ε
′
l))

form a 3-dimensional real smooth submanifoldM ofB(pl, εl) which do not meet

B(pl, ε
′′
l ) if Ai is chosen small enough. Since the family of divisors Ys∩B(pl, εl)

satisfies property (II), we have that, if s is small enough, the intersection of

Ys with M is transverse and moreover M divides Ys ∩B(pl, εl) \ Ḃ(pl, ε
′′
l ) into

two pieces. Besides, the vector field Xs always points to the same side of M .

Consider the flow

Φ :
Ä
Ys ∩ ∂B(pl, εl)

ä
× [0, εl − ε′′l ]→ Ys ∩B(pl, εl) \ Ḃ(pl, ε

′′
l )

associated to −Xs. Since Xs always points at the same side of M we deduce

that the flow line associated to any point x ∈ Ys ∩ ∂B(pl, εl) meets M at a

unique time t(x). This assignment is smooth. Therefore the set⋃
x∈Ys∩∂B(pl,εl)

Φ({x} × [0, t(x)])

is a smooth manifold with boundary diffeomorphic to a union of annuli and it

clearly coincides with Ys ∩B(pl, εl) ∩ Ai.
In the same way but considering the collar function κ instead of the dis-

tance function ρi, we get the equality χ(n−1(Ys ∩ E)) = 0. �

Remark 16. Observe that the sum of estimates (9) and (11) gives the

estimate

(13) χ(n−1(Ys ∩ Ui)) ≤ aiχ(Ėi)

for a tubular neighbourhood Ui of Ei \ ∪lB(pl, εl). The sum of (10) and (12)

gives an analogous estimate for a tubular neighbourhood of the Zi\∪lB(pl, εl).

4.4. The general local case. In this case Y0 is defined by f0 =
∏m
i=0 g

ci
i = 0,

where the gi are irreducible and reduced analytic function germs. We denote

by µi the Milnor number of gi at the origin. We take a Milnor ball Bε for f0

as the space X̃. The divisor Ys is defined by fs = 0, where fs is a 1-parameter

holomorphic deformation of fs such that fs is reduced for s 6= 0. We consider

a sufficiently small δ so that f−1
0 (δ)∩Bε is the Milnor fibre of f0. Property (II)

follows from Lemma 13. We start in Lemma 17 by giving an alternative proof

of an equality that was proved in [15]; Proposition 18 may be understood as a

generalization of it.

Lemma 17 ([15]). The Euler characteristic of the Milnor fibre of f0 is

equal to

(14) χ(f−1
0 (δ) ∩Bε) =

m∑
i=0

ci

Ç
1− µi − IO

(
gi,
∏
j 6=i

gj
)å
.
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Proof. Given a vector v of C2, we denote by τv the translation of C2

associated with v. We choose m vectors v1, . . . , vm in C2 such that for any t

small enough and i 6= j, the curves V (gi◦τtvi − t) and V (
∏
j 6=i gj◦τtvj − t) meet

transversely in Bε.

Consider the deformation Ft :=
∏m
i=0(gi◦τtvi−t)ci . An easy local argument

shows that for small enough t and any s ∈ Dδ \ {0}, the set F−1
t (s) is smooth

at the meeting points with ∂Bε and transverse to it. This implies the existence

of a finite subset of critical values ∆t of Dδ such that the restriction

Ft : Bε ∩ F−1
t (Dδ \∆t)→ Dδ \∆t

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of f0.

See Theorem 2.2 of [3] for a proof of these facts in a much more general context.

Fix a small enough t different from 0. We view F−1
t (s) as a deformation

of the normal crossings divisor F−1
t (0) inside Bε and study it like in the global

normal crossings case. The irreducible components of this divisor are Zi =

V (gi◦τtvi − t) for i = 0, . . . ,m. The component Zi is a translation of the

the Milnor fibre of gi and, hence, its Euler characteristic is equal to 1 − µi.
Consequently, using that the curve Zi meets transversely the union ∪j 6=iZi and

the conservativity of intersection multiplicity, we obtain

χ(Żi) = 1− µi − IO
(
gi,
∏
j 6=i

gj
)
.

Observe that the piece of the Milnor fibre contained in a neighbourhood of

a singularity of F−1
t (0) is a union of cylinders because locally F−1

t (0) is normal

crossings. Decompose the Milnor fibre as in Lemma 15. Observe that in

this case inequality (10) becomes an equality because there is no ramification.

Inequality (12) also becomes an equality; in the corresponding inequality for a

component Zi, for any point pj , the Riemann surface B ∩ B′′j is a union of ci
disjoint discs. Adding Euler characteristics we obtain the result. �

After this lemma we can prove the Euler characteristic bound that we

want.

Proposition 18. If s is small enough, we have

(15) χ(Us) ≤
m∑
i=0

ci

Ç
1− µi − IO

(
gi,
∏
j 6=i

gj
)å

+
∑

p∈Ys∩Y0
Ip(Ys, (Y0)red).

Proof. A particular case: the divisor Ys does not meet the origin for s 6=0.

In order to reduce the problem to the global normal crossings case, we consider

the minimal embedded resolution

π : X̃ → Bε
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of V (f0). Let {Ei}ri=1 be the irreducible components of the exceptional divisor.

For any s ∈ Dδ, we denote by Vs the pullback of Ys by π. Since the divisor Ys
does not meet the origin when s 6= 0, we have that it is isomorphic to Vs and

that Vs does not meet the exceptional divisor of π. Then it is enough to prove

the bound for the Euler characteristic of the divisor Vs for s 6= 0.

The divisor V0 decomposes as V0 =
∑m
i=0 ciZi +

∑r
i=0 aiEi, where the ci’s

appear on the equation of Y0 and the ai’s are deduced from the ci’s solving

the linear system derived from the identities V0 ·Ei = 0. (Notice that Vs does

not meet any Ei because Ys does not meet the origin and then Vs · Ei = 0 for

all i.)

Using the bound obtained in Paragraph 4.2 and the fact that Żi is a

punctured disk for any i, we obtain

(16) χ(Us) ≤
r∑
i=0

aiχ(Ėi) +
∑

p∈V0∩Vs
Ip(Vs, (V0)red).

Using the fact that the number of intersection points of Ys and (Y0)red counted

with multiplicity coincides with the number of intersection points of Vs and

(V0)red counted with multiplicity, after Lemma 17, in order to prove the propo-

sition it only rests to check that the first sum of the right side of (16) coincides

with the Euler characteristic of the Milnor fibre of f0.

For this we observe that the divisor V0 =
∑m
i=0 ciZi +

∑r
i=0 aiEi is equal

to the total transform of V (f0) by the modification π. This is because the

coefficients ai are also characterized by the equalities V0 ·Ei = 0 for any i. The

Euler characteristic of the Milnor fibre is given then by

(17) χ(f−1
0 (s)) =

r∑
i=0

aiχ(Ėi).

Indeed, if Ws is the pullback of the Milnor fibre f−1
0 (s) by π we apply to Ws

the procedure of the proof of Lemma 15 and the following easy facts:

• The piece of Milnor fibre contained at the balls neighbouring singular

points of the total transform is a union of cylinders.

• The coverings associated to the part of Milnor fibre contained at the

tubular neighbourhoods of Ėi and Żi are unramified.

• Each set Żi is a punctured disk.

The general case. We reduce the proof to the previous particular case by a

deformation argument. Recall that τv denotes the translation in the direction

of a vector v. Let vt be a holomorphic family of vectors in C2 with v0 = O and

such that for t small enough, V (f0◦τvt) does not meet the origin. It is easy to

check that the 2-parameter family Ft,s := fs◦τvt has the following properties:
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(i) The set of parameters ∆ such that V (Ft,s) meets the origin is a proper

closed analytic subset in the parameter space.

(ii) There exist positive η � δ such that for any s with 0 < |s| ≤ δ and any t

satisfying 0 ≤ |t| < η, the normalization of V (Ft,s) ∩Bε is diffeomorphic

to the normalization of V (F0,s) = V (fs).

Choose a parametrized curve in the parameter space of the family of the

form (t(s), s) with t(0) = 0 and such that for s 6= 0 small enough, t(s) is

nonzero and avoids ∆. Then, the normalization of V (Ft(s),s) is diffeomorphic

to the normalization of V (fs) for any s. Applying the particular case to the

family V (Ft(s),s), we prove the proposition for the general case. �

4.5. General global case. For any component Ei, we consider the set of

irreducible components of the germ of Ei at each point of Sing((Y0)red. We

denote these germs by {(Γk, pk)}dk=1. We denote by µEi the sum of Milnor

numbers of these local branches and by νEi the number of branches and define

ηEi :=
d∑

k=1

∑
l 6=k

Ipk(Γk,Γl).

We also define the analogous numbers µZi , νZi and ηZi for any divisor Zi.

For any i, we denote by Ėi (respectively Żi) the set Ei \ Sing((Y0)red)

(respectively Zi \ Sing((Y0)red)).

Proposition 19. For nonzero and small enough s, we have

(18) χ(Us) ≤
m∑
i=0

ci(χ(Żi) + θZi) +
r∑
i=0

ai(χ(Ėi) + θEi) +
∑

p∈Ys∩Y0
Ip(Ys, (Y0)red),

where θ(Zi) and θ(Ei) are defined by

θZi := νZi − µZi − ηEi − Zi � ((Y0)red − Zi),

θEi := νEi − µEi − ηZi − Ei � ((Y0)red − Ei).

Proof. The proof follows the scheme of the proof of Lemma 15. We con-

sider small Milnor balls around the singular points of (Y0)red and small tubular

neighbourhoods around the connected components of the complement of these

balls in (Y0)red. We split Us into pieces, each being the part that maps into

one of the neighbourhoods just defined. We bound the Euler characteristic of

the parts corresponding to tubular neighbourhoods using Hurwitz formula as

in the proof of Lemma 15. We bound the Euler characteristic of the pieces

corresponding to the Milnor balls using Proposition 18. Summing up the con-

tributions and rearranging terms, we get the desired expression. �
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5. Bijectivity of the Nash map for normal surface singularities

Theorem 20. Nash mapping is bijective for any normal surface singu-

larity defined over an algebraically closed field of characteristic equal to 0.

Proof. The argument in Paragraph 2.5 shows that it is enough to deal

with the complex case.

Let (X,O) be a complex normal surface singularity. If Nash mapping is

not bijective then, by Theorem 2, there exists a wedge α realizing an adjacency

from a component Ej of the exceptional divisor of the minimal resolution to a

different component E0. We take a representative α|U with U as in Lemma 7

and define the divisors Y0 and Ys as in Paragraph 3.1. As we stated in Lemma 9,

the divisor Ys is reduced, the domain Us is a disk and the lifting

α̃s : Us → X̃

is the normalization of Ys. We will use the estimates of Section 4 to get a

contradiction to the fact that the Euler characteristic of Us is 1. In this way

we show the nonexistence of α and, by Theorem 2, that the Nash mapping is

bijective for normal surface singularities.

5.1. We are going to give an estimate for χ(Us) splitting Us into three

pieces, in the spirit of Section 4. Remember that the divisor Y0 is as in (3),

where ai ≥ 0 and a0 > 0 (see Corollary 11), which means that E0 is in the

support of Y0. In this case we have a single Zi (comparing with the general

case (6)) which has the topology of a disk and intersects transversely E0 at a

smooth point of E. Moreover the divisor Y0 is reduced at the generic point of

Z0 and transverse to ∂X̃. Consequently it is clear that the family Ys satisfies

property (II) at the beginning of Section 4.

Let X̃1 be a small ball in X̃ centered at the point p = E0 ∩ Z0 so that

the family Ys ∩ X̃1 satisfies property (II). (Lemma 13 ensures its existence.)

Let X̃3 be a small compact tubular neighbourhood around the disk Z0 \ X̃1

in X̃. Define X̃2 as the closure of the complement of X̃1 ∪ X̃3 in X̃. For s

nonzero and small enough, the divisor Ys meets transversely the boundaries

of the X̃i. We define U is as the normalization of Ys ∩ X̃i. By Remark 16 we

see that χ(U3
s ) = 0 since Z0 \ X̃1 is a topological annulus. Moreover, since the

intersections U1
s ∩ U2

s and U1
s ∩ U3

s are a disjoint union of circles, we have that

(19) χ(Us) = χ(U1
s ) + χ(U2

s ).

5.2. First let us give a bound for the Euler characteristic of U1
s improv-

ing the methods of Paragraph 4.2 for our special case. We may choose local

coordinates (x, y) around p in X̃1 so that we have E0 = V (y) and Z0 = V (x).

Let gs be the family of functions defining the divisor Ys locally around p. We

have, up to a unit, the equality g0 = xya0 . Notice that in Corollary 11 we have
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proved that a0 is positive. The Euler characteristic of U1
s is bounded by the

number of topological disks in the normalization of V (gs) ∩ X̃1. In principle

the number of circles in ∂X̃1 ∩ Ys is at most a0 + 1. There certainly appears

one circle Ks which is a small deformation of V (x)∩∂X̃1. By the connectivity

of Us, the boundary of the connected component of U1
s containing Ks cannot

consist only of Ks. This implies that the maximal number of disks that can

appear in U1
s is a0 − 1, and hence

(20) χ(U1
s ) ≤ a0 − 1.

5.3. The Euler characteristic of U2
s is bounded using Proposition 19. No-

tice the following identities:

νE0∩X̃2
= νE0 − 1,

µE0∩X̃2
= µE0 ,

(E0 ∩ X̃2) � ((Y0)red − E0 ∩ X̃2) = E0 � ((Y0)red − E0)− 1,

which imply that

θE0∩X̃2
= θE0 .

Then, by (19), we obtain

(21) χ(Us) ≤ a0 − 1 +
r∑
i=0

ai(χ(Ėi) + θEi) +
∑

p∈Ys∩Y0∩X̃2

Ip(Ys, (Y0)red).

Note that the last term is the total number of returns. Defining δaj = 1 if

aj 6= 0 and δaj = 0 if aj = 0, we have the obvious bound

(22)
∑

p∈Ys∩Y0∩X̃2

Ip(Ys, (Y0)red) ≤
r∑
j=0

δajbj .

If we denote by ki,j the intersection product Ei � Ej , by equation (5) we have

that
r∑
j=0

bj =
r∑
j=0

r∑
i=0

δajaiki,j + 1.

Regrouping and coming back to (22), we get the following:

(23)
∑

p∈Ys∩Y0∩X̃2

Ip(Ys, (Y0)red) ≤
r∑
i=0

ai
( r∑
j=0

δajki,j
)

+ 1.

Now, on one hand, denoting by gi the genus of the normalization of Ei,

we have

(24) χ(Ėi) = 2− 2gi − νEi .
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On the other hand, we have that

E0 � ((Y0)red − E0) =
∑
j 6=0

δajk0,j + E0 � Z0 =
∑
j 6=0

δajk0,j + 1,

Ei � ((Y0)red − E0) =
∑
j 6=i

δajki,j for any 1 ≤ i ≤ r,

and hence

θE0 = νE0 − µE0 − ηE0 −
∑
j 6=0

δajk0,j − 1,(25)

θEi = νEi − µEi − ηEi −
∑
j 6=i

δajki,j for any 1 ≤ i ≤ r.(26)

Performing substitutions (24)–(26) in (21) and using (23), we get to the

following:

(27) χ(Us) ≤
r∑
i=0

ai(2− 2gi − µEi − ηEi + ki,i).

By negative definiteness, for any 0 ≤ i ≤ r, the self-intersection ki,i is a

negative integer. Observe that, since π : X̃ → X is the minimal resolution,

for any 0 ≤ i ≤ r, if ki,i is equal to −1, then either the divisor Ei is singular

or it has positive genus. (Otherwise it is a smooth rational divisor with self-

intersection equal to −1 and the resolution is nonminimal.) If the divisor

E0 has an irreducible singularity then µEi is at least 2. If the divisor Ei
has a singular point with several irreducible branches, then ηEi is at least 2.

Therefore, we have

ai(2− 2gi − µi − ηi + ki,i) ≤ 0

for any i. (Note that ai ≥ 0.) Hence we get that χ(Us) ≤ 0. This is a

contradiction because we know that Us is a disk. �

6. The nonnormal case

In this section we deduce the bijectivity of the Nash mapping for any

surface from the case of normal surface singularities proved in the previous

section.

6.1. Consider a Hironaka resolution of singularities of an algebraic surface

(a resolution which is an isomorphism outside the singular locus). Given any

irreducible component C of the exceptional locus, we define the set NC to be

the Zariski closure of the arcs in the variety centered at the singular locus, not

contained in it, and whose lifting to the resolution is centered at C.

As before the Lefschetz principle allows us to reduce the bijectivity of

Nash mapping for nonnormal surfaces to the complex algebraic case.
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6.2. Let X1 be any reduced algebraic surface defined over C. Let

n : X2 → X1

be the normalization and

π : X̃2 → X2

be the minimal resolution of the singularities of X2.

Let ∪ri=1Ei be a decomposition into irreducible components of the excep-

tional divisor of π. By the minimality of the resolution, all these components

are essential.

Let n−1(Sing(X1)) = ∪si=1Ai be a decomposition into irreducible compo-

nents of the preimage of the singular set of X1 by the normalization. Denote

by Bi the strict transform of Ai by π. The decomposition into irreducible

components of the exceptional divisor of the resolution n◦π is given by

(28) (∪si=1Bi)
⋃

(∪ri=1Ei).

All these components are essential.

6.3. As in Paragraph 2.2, Nash mapping is not bijective if and only if

there exist two different irreducible components C1 and C2 among those in

(28) such that we have the adjacency NC1 ⊂ NC2 (see also [18]).

Suppose we have an adjacency of type NBi ⊂ NBj when i 6= j, NBi ⊂ NEj

for any i, j, NEi ⊂ NEj when i 6= j, or NEi ⊂ NBj for any i, j. The proof

of Theorem 2 works equally in the nonnormal case, and so we can find a

convergent wedge

α1 : (C2, O)→ X1

realising the adjacency.

6.4. Inclusions of type NBi ⊂ NBj when i 6= j and NBi ⊂ NEj for any

i, j cannot occur since this contradicts easily the continuity of α.

Notice that any wedge α1 realising a nontrivial adjacency is a dominant

map from (C2, O) whose image is not contained in any proper analytic subset

of X1. Since C2 is normal, by the universal property of the normalization, it

admits a lifting

α2 : (C2, O)→ X2.

If the wedge α1 realises an adjacency of the type NEi ⊂ NEj in X1, then

its lifting to X2 realises the corresponding adjacency in the normal surface X2.

This is impossible because the Nash problem is true for normal surfaces.

6.5. Assume we have an adjacency of type NEi ⊂ NBj . We consider a

convergent wedge realizing the adjacency and consider its lifting

α2 : (C2, O)→ X2.
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The image p := α2(O) is a normal singular point of X2. In the next paragraph

we will cut out the exterior of a neighbourhood U of p in X2 and glue another

piece of analytic surface instead so that the Bj ∩U ’s extend to compact curves

B̄j such that
⋃
iEi ∪

⋃
j B̄j is in the exceptional divisor of a resolution of a

new normal surface singularity (X,O). Then the push forward of α2 to this

new normal surface singularity is a wedge that realizes an adjacency between

two essential divisors in the new normal surface. We use then that the Nash

problem is true for normal surfaces and get a contradiction.

6.6. Consider a ball Bε around p of sufficiently small radius so that it is

a Milnor ball for X2 and each Bi at p. Consider a resolution X̃ ′2 of the pair

(X2,∪iBi) so that the preimage of ∪Bi has strict normal crossings. Then on the

one hand, we take a small tubular neighbourhood in X̃ ′2 of the strict transform

B̃j of each Bj . If ε and the radius of the tubular neighbourhood are small

enough, we may assume that the tubular neighbourhood is biholomorphic to

the product of B̃j and a disk. On the other hand, we consider a holomorphic

embedding

ιj : B̃j → P1.

Consider the product P1 × D, D being a small disk, and glue it with X̃ ′2
identifying ιj(B̃j) × D with the tubular neighbourhood of B̃j in X̃ ′2. In this

way we obtain a smooth surface Y which extends X̃ ′2 and such that each disk

B̃j extends to a compact B̄j biholomorphic to P1 embedded in Y .

We perform sufficiently many blow ups in Y at points of Y \ X̃ ′2 such that

we obtain a new surface Y where the self-intersection of the strict transform

of the B̄j ’s are as a negative as we wish. Hence, the configuration in Y given

by the union of the exceptional divisor of the resolution X̃ ′2 and the strict

transform of the B̄j ’s has a negative-definite matrix. If the self intersections

of the strict transforms of the B̄j ’s in Y ′ are chosen to be negative enough,

the blow down of this configuration in Y ′ gives a resolution of a new normal

surface singularity (X,O) where the divisors Ei and the strict transforms of

the B̄j ’s are essential.

6.7. There is an obvious analytic morphism

κ : (X2, p)→ (X,O).

The wedge κ◦α2 realises an adjacency between two essential components of

the resolution of (X,O). This contradicts the bijectivity of Nash mapping for

normal surfaces.
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[2] J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and

motivic integration, Invent. Math. 135 (1999), 201–232. MR 1664700. Zbl 0928.

14004. http://dx.doi.org/10.1007/s002220050284.

[3] J. Fernández de Bobadilla, Relative morsification theory, Topology 43

(2004), 925–982. MR 2061213. Zbl 1052.32025. http://dx.doi.org/10.1016/j.top.

2003.11.001.

[4] , Nash problem for surface singularities is a topological problem, Adv.

Math. 230 (2012), 131–176. MR 2900541. Zbl 06029072. http://dx.doi.org/10.

1016/j.aim.2011.11.008.

[5] J. Fernández de Bobadilla and M. Pe Pereira, Curve Selection Lemma in

infinite dimensional algebraic geometry and arc spaces, 2012. arXiv 1201.6310.
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