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Hereditary approximation property

By W. B. Johnson and A. Szankowski

Dedicated to the memory of Joram Lindenstrauss

Abstract

If X is a Banach space such that the isomorphism constant to `n2 from

n-dimensional subspaces grows sufficiently slowly as n → ∞, then X has

the approximation property. A consequence of this is that there is a Ba-

nach space X with a symmetric basis but not isomorphic to `2 so that all

subspaces of X have the approximation property. This answers a problem

raised in 1980. An application of the main result is that there is a separable

Banach space X that is not isomorphic to a Hilbert space, yet every sub-

space of X is isomorphic to a complemented subspace of X. This contrasts

with the classical result of Lindenstrauss and Tzafriri that a Banach space

in which every closed subspace is complemented must be isomorphic to a

Hilbert space.

1. Introduction

The first Banach space not isomorphic to a Hilbert space, all of whose

subspaces have the approximation property, was constructed in [7]. We say

that such a space has the hereditary approximation property (HAP) or is a

HAPpy space. Later on Pisier [22], [23] developed the theory of spaces called

weak Hilbert spaces that share many properties of Hilbert space and proved

that they all have the HAP.

The spaces constructed in [7] as well as all weak Hilbert spaces are asymp-

totically Hilbertian. A space X is asymptotically Hilbertian provided there is a

constant β such that for every n, there is a finite codimensional subspace of X,

all of whose n-dimensional subspaces are β-isomorphic to the n-dimensional

Hilbert space `n2 . It was noted in [7] that an asymptotically Hilbertian space

is superreflexive (= isomorphic to a uniformly convex space) and cannot have

a symmetric or even subsymmetric basis unless it is isomorphic to `2. This

induced the first named author to conclude [7] with two problems:
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(S) Is there a HAPpy space that has a symmetric basis but is not isomor-

phic to `2?

(R) Is every HAPpy space reflexive?

In this paper we give an affirmative answer to (S) by constructing a HAPpy

Orlicz sequence space that is not isomorphic to `2. Problem (R) remains open.

Before stating in more detail the results herein, we recall some definitions

and set our notation. “Space” means “infinite dimensional Banach space”

unless specified otherwise. L(X) denotes the space of bounded operators on

the space X while F (X) denotes the finite rank operators in L(X). The

identity operator on X is written IdX . BX denotes the unit ball of X.

Recall that a Banach space X is said to have the approximation property

(AP) if for every compact set K in X and for every ε > 0, there is a T ∈ F (X)

such that ‖Tx− x‖ ≤ ε for every x ∈ K.

As was already mentioned, we say that a Banach space has the hereditary

approximation property (HAP) if all of its subspaces have the AP. Results

of Davie/Figiel and the second author combined with results of Krivine and

Maurey and Pisier (cf. [16, Th. 1.g.6]) imply that if X has the HAP, then X is

of type 2− ε and of cotype 2 + ε for every ε > 0. This means that X has to be

“very close” to a Hilbert space since a space that is both of type 2 and cotype

2 is isomorphic to a Hilbert space. (This is a remarkable result of Kwapień

from 1972 [3, Cor. 12.20].)

Both the AP and the HAP are in a natural way related to the trace

formula. Let us recall here some main points. (This topic is discussed in more

detail in [23, Chap. 4].)

For x∗ ∈ X∗, x ∈ X let x∗ ⊗ x ∈ F (X) be defined by

(x∗ ⊗ x)(y) = x∗(y)x.

A T ∈ B(X) is called nuclear if T =
∞∑
i=1

x∗i ⊗ xi with
∑ ‖x∗i ‖‖xi‖ < ∞. Let

N(T ) denote the space of all nuclear operators on X. It is tempting to define

the trace of a T ∈ N(X) by

tr T =
∞∑
i=1

x∗i (xi).

Grothendieck [5] (cf. [16, Th. 1.a.4.]) discovered that tr T is well defined for

every T ∈ N(X) if and only if X has the approximation property; i.e., X does

not have the AP if and only if there are x∗i ∈ X∗, xi ∈ X so that

(1)
∑
‖x∗i ‖‖xi‖ <∞,

∑
x∗i (x)xi=0 for every x∈X, but

∑
x∗i (xi) 6=0.

Suppose now that X is a complex Banach space with the AP. It is natural

to ask whether the trace formula holds for every T ∈ N(X). More precisely,

let T ∈ N(X) be such that
∑ |λj(T )| < ∞, where λ1(T ), λ2(T ), . . . are all
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the eigenvalues of T , with their multiplicities. (This assumption is necessary,

because for every X not isomorphic to a Hilbert space, there is a T ∈ N(X)

such that
∑ |λj(T )| =∞, by a result of [8].) We ask whether then

(2) tr T =
∑

λj(T ).

If the trace formula (2) holds for every T ∈ N(Y ) with summable eigenvalues,

then Y is a HAPpy space. Indeed, suppose Y fails the HAP, and let X ⊂ Y be

a subspace without the AP. By the Grothendieck result quoted above, there

are x∗i ∈ X∗i , xi ∈ X so that (1) holds. Let y∗i ∈ Y ∗ be a Hahn-Banach

extension of x∗i , and let T ∈ N(Y ) be defined by T =
∑
y∗i ⊗ xi. Then

tr T =
∑
y∗i (xi) =

∑
x∗i (xi) 6= 0. On the other hand, Tx = 0 for every x ∈ X,

TY ⊂ X, therefore T 2 = 0; hence 0 is the only eigenvalue of T . Therefore (2)

does not hold.

To put it tersely, the AP is necessary (and sufficient) for formula (2) to

make sense, while the HAP is necessary for formula (2) to be true. We do not

know if it is sufficient.

The information about the class L of Banach spaces satisfying (2) is still

very scarce. Lidskii proved in [13] that Hilbert spaces belong to L. We do not

know whether the nonweak Hilbert HAPpy spaces constructed in [7] belong to

L. Pisier [22], [23] proved that the weak Hilbert spaces belong to L, and, for

the time being, there are no other examples, although it might be true that

every HAPpy space is in L.

Rather more is known about the class of spaces that satisfy the HAP.

Unfortunately, this class is very difficult to work with, partly because the HAP

is not very stable. For example, there are two HAPpy spaces whose direct sum

fails the HAP [1]. In fact, all the known examples of HAPpy spaces come

from verifying that some hereditary (i.e., which passes to subspaces) property

implies the AP and constructing spaces that satisfy the property. Examples of

such properties are several conditions that are equivalent to the weak Hilbert

property [23] and properties of being sufficiently asymptotically Hilbertian [7].

To be more precise, it is enough that X satisfies the condition that for some

β and infinitely many n, there is a log n-codimensional subspace all of whose

4n-dimensional subspaces are β-isomorphic to `4
n

2 [7]. A space that satisfies

this need not be a weak Hilbert space. On the other hand, it is open whether

every weak Hilbert space satisfies the condition, although it is true for a weak

Hilbert space that has an unconditional basis [20].

In this paper we give another hereditary condition that implies the AP

but does not imply the asymptotically Hilbertian property. The condition is

that dn(X) goes to infinity sufficiently slowly, where dn(X) is the supremum

over the n-dimensional subspaces E of X of the isomorphism constant from E

to `n2 (cf. (7)). Hence, in order to get an affirmative answer to problem (S),
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it is enough, given any sequence δk → ∞, to produce a Banach space with

symmetric basis X nonisomorphic to `2 such that dk(X) ≤ δk for every k. It

is more or less obvious that this can be done, but we were unable to find such

constructions in the literature. The simplest ones we know are of modified

Tsirelson/Schlumprecht type, presented in Section 3 as example (A). We also

show in example (B) that there are Orlicz spaces other than `2 that have this

property. This looks rather obvious but is tedious to verify.

2. Basic theorem

Let X be a Banach space. Let n be a natural number. For m ≥ n, let

f(n,m) = fX(n,m)(3)

= sup E⊂X,dimE=n inf{‖T‖ : T|E = IdE and rk T ≤ m}.

Observe that if dimE = n, then f(n, n) is the minimal norm of a projection

of X onto E; thus,

f(n, n) = λn(X),

where, as usual, λn(X) is the supremum over all n-dimensional subspaces E

of the relative projection constant of E in X.

Also, by taking a weak cluster point of an appropriate sequence of T ’s,

we see that the infimum on the right side of (3) is a minimum provided X is

reflexive.

With this notation the space X is said to have the λ-uniform approxima-

tion property (λ-UAP) if for every n ∈ N, there is j(n) so that f(n, j(n)) ≤ λ.

In this case j(n) is called a λ-uniformity function of X.

We say that the space X has the uniform approximation property (UAP)

if it has the λ-uniform approximation property for some λ < ∞. A HAPpy

space X will be said to have the hereditary UAP (denoted HUAP)- or to be

uniformly HAPpy if all of its subspaces have the UAP.

There are two basic ingredients in the proof of Theorem 2.1. The first

is the averaging argument of Lindenstrauss and Tzafriri [15] to prove that a

uniformly convex space with the UAP actually has the (1 + ε)-UAP for every

ε > 0. An important difference is that in [15], uniformly bounded operators

were averaged to produce an operator with norm close to one. Here we get the

same conclusion but average operators whose norms grow slowly.

The second ingredient in the proof of Theorem 2.1 is the argument in

[7] that spaces that are sufficiently Hilbertian must have many finite rank

projections with controlled norms.

We begin with a simple lemma that is a variation of one in [15].

Lemma 1. Assume that X is a Banach space and δ > 0, ε > 0 satisfy

(4) x, y ∈ BX , ‖x− y‖ > ε⇒ ‖x+y
2
‖ < 1− 2δ.
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Let A = 3
δ . If T ∈ F (X) with rk T = k and

K = {x ∈ BX : ‖Tx‖ ≥ (1− δ)‖T‖},

then K can be covered by [Ak] sets of diameter ε.

Proof. By a standard volumetric estimate, TBX can be covered by [Ak]

balls of diameter 2‖T‖δ, centered at a maximal ‖T‖δ-separated subset of TBX ;

say TBX ⊂
⋃[Ak]
i=1 Bi,diam Bi ≤ 2‖T‖δ. Let Ki = (T−1Bi)∩K. We claim that

diam Ki ≤ ε.
For assume that there are x, y ∈ Ki with ‖x − y‖ > ε. By (4), ‖x+y2 ‖ <

1− 2δ, hence ‖Tx+Ty2 ‖ < (1− 2δ)‖T‖. Since Tx, Ty ∈ Bi, we have ‖Tx−Ty2 ‖ ≤
1
2diam Bi ≤ ‖T‖δ. Summing these inequalities, we have by the triangle in-

equality that ‖Tx‖ < (1− δ)‖T‖, hence x /∈ K, a contradiction. �

Notice that if X is uniformly convex and 1 > ε > 0, condition (4) is

satisfied for all sufficiently small δ > 0.

Lemma 1 is used to prove that, under certain (extremal) conditions, for a

fixed n we can shrink fX(n, j) (see (3)) by a constant factor by changing j to

a suitable larger integer.

To formulate the next lemma about a uniformly convex space X, we make

the following technical assumptions:

• δ > 0 and 0 < ε < 3/4 satisfy (4),

• δ is so small that we have

(5) 5
8 + 1

2(1 + δ
2)ε ≤ 1− δ

4 .

Then we denote

A = 3
δ , α =

Ä
1 + δ

2

ä−1
, β = 1− δ

4 .

Lemma 2 (The main lemma). Let X be a uniformly convex space, let

A,α, β be as above. If for some n, j with n ≤ j ≤ N we have fX(n, j) =

f(n, j) ≥ αf([Aj ] + n,N), then

f(n,N + j) ≤ max(4, βf(n, j)).

Proof. Let E ⊂ X,dimE = n. We shall find U such that U|E = IdE , rk U

≤ N + j and ‖U‖ ≤ βf(n, j). Let T be such that T|E = IdE , rk T ≤ j and

‖T‖ ≤ f(n, j). (Remember that X is reflexive.) Without loss of generality we

can assume that ‖T‖ ≥ αf([Aj ] + n,N) and also assume that ‖T‖ ≥ 4 since

otherwise we are done.

Let K = {x ∈ BX : ‖Tx‖ ≥ (1−δ)‖T‖}, and get K1, . . . ,K[Aj ] ⊂ BX from

Lemma 1 so that K ⊂ ⋃[Aj ]
i=1 Ki and diam Ki ≤ ε. For i = 1, . . . , [Aj ], pick any

yi ∈ Ki. Let S be an operator of rank at most N so that S|E = IdE , Syi = yi
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for i = 1, . . . , [Aj ] and ‖S‖ ≤ f([Aj ] + n,N). Thus,

(6) ‖S‖ ≤ α−1‖T‖ = (1 + δ
2
)‖T‖.

Set now U = 1
2(T + S). Evidently U|E = IdE and rk U ≤ N + j.

Let x ∈ BX . If x ∈ Ki, then, by (6) and (5),

‖Ux‖ ≤ 1
2
(‖Tx‖+ ‖Syi‖+ ‖S(x− yi)‖) ≤ 1

2
(‖T‖+ 1 + (1 + δ

2
)ε‖T‖)

≤ 1
2
‖T‖(1 + 1

4
+ (1 + δ

2
)ε) ≤ β‖T‖.

If x ∈ BX\
⋃[Aj ]
i=1 Ki, then, by (6),

‖Ux‖ ≤ 1
2
[(1− δ)‖T‖+ (1 + δ

2
)‖T‖].

In both cases we obtain ‖Ux‖ ≤ β‖T‖ ≤ βf(n, j). �

Denote dn(X) = sup {d(E, ln2 ) : E ⊂ X,dimE = n}. Here d(E,F ) is the

isomorphism constant from E to F , i.e., the infimum of ‖T‖·‖T−1‖ as T ranges

over all isomorphisms from E onto F . In the sequel we are concerned with

spaces X for which dn(X) → ∞ very slowly. Pisier [21, p. 348] proved that

such a space is superreflexive and hence has an equivalent uniformly convex

norm, under which the space satisfies (4) and (5) for some ε and δ.

In the proof of Theorem 2.1 we also need the concept of projection con-

stant. For a subspace E of X, recall that λ(E) = λ(E;X) is the infimum of

‖P‖ as P ranges over all projections from X onto E. The parameter λn(X) is

the supremum of λ(E;X) as E ranges over the n-dimensional subspaces of X.

Already in [7] the relation between λn(X) and dm(X) played an important

role.

Here we use the fact that λn(X) ≤ Cd4n(X), although the weaker estimate

proved in [7] would serve equally well. The improved estimate follows from the

following lemma proved by Vitali Milman a couple of years after the results in

[7] were obtained.

Lemma 3. If E embeds isometrically into `N∞ and E ⊂ X , then λ(E;X)

is the infimum of λ(E;F ) as F ranges over the N -dimensional subspaces of X

that contain E.

Proof. The number λ(E;X) is, by duality, the supremum of |tr (T )| as T

ranges over operators from E to X that have nuclear norm less than one and

map E into E (or, by a small perturbation argument, map E onto E). Given

such a T with TE = E and regarding E as a subspace of `N∞, we can extend

T to an operator T̃ : `N∞ → X that also has nuclear norm less than one. The

nuclear norm of T̃ is
∑N
k=1 ‖T̃ (ek)‖, where (ek) is the unit vector basis of `N∞.

But T̃ can be written as
∑N
k=1 e

∗
k ⊗ T̃ (ek) and

∑N
k=1 ‖e∗k‖ · ‖T̃ (ek)‖ < 1, so T

has nuclear norm less than one when considered as an operator into the (at

most N -dimensional) subspace span (T̃ ek)
N
k=1. �
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Corollary 1. For every space X , λn(X) ≤ 2d4n(X).

Proof. Let E be any n-dimensional subspace of X. Then E is less than

2-isomorphic to a subspace of `4
n

∞ , so Lemma 3 gives a 4n-dimensional subspace

F ofX that contains E and so that λ(E;X) < 2λ(E;F ). But clearly λ(E;F ) ≤
d(F, `4

n

2 ) ≤ d4n(X). �

Let us notice that for type 2 spaces a much better estimate is valid, namely

λn(X) ≤ Cdn(X), where C is the type 2 constant of X (cf. [26]).

Given a map D : N → N and a natural number k, by D〈k〉 let us denote

the k iterate of D; i.e., D〈k〉 = D ◦D ◦ · · · ◦D, k times. Let D(j) = 3[Aj ], and

let γ(j) be the 3j + 1 iterate of D of 1; i.e., γ(j) = D〈3
j+1〉(1).

Theorem 2.1. Let X be a Banach space, let 0 < α ≤ β < 1, and let

A > 1 be as in Lemma 2. If

(7) dγ(j)(X) = o(β−j),

then X has the 4-UAP. Consequently, X has the HUAP and there exists a

function j(n) that is a 4-uniformity function for all Y ⊂ X .

Proof. For a fixed n ∈ N, we define by recursion some numbers κj(n),

which play the role of N in Lemma 2. Formally, we define

κ0(n) = n, κj+1(n) = κj(n) + κj(2A(κj(n))).

For M ∈ N, let us denote

sj(M) = max{f(n, κj(n)) : κj(n) ≤M}.

We claim that

(8) sj+1(M) ≤ max(4, βsj(M)).

Indeed, let n be such that κj+1(n) ≤M . We shall show that

f(n, κj+1(n)) ≤ βsj(M).

First, since f(n, κj+1(n)) ≤ f(n, κj(n)), without loss of generality we can

assume that f(n, κj(n)) ≥ βsj(M).

In particular, since κj(2A(κj(n)) ≤ κj+1(n) ≤M , we get

f(n, κj(n)) ≥ βf(B(κj(n)), κj(B(κj(n)))).

Also β ≥ α; therefore, by Lemma 2,

f(n, κj(n) + κj(B(κj(n)))) ≤ max(4, βsj(M)),

which is (8).

Let n, j ∈ N, and let M = κj(n). Since s0(M) ≥ s1(M) ≥ . . . , by

induction we get from (8) that

sj(κj(n)) ≤ max(4, βjs0(κj(n))).
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By Corollary 1, we have

s0(M) = f(M,M) = λM (X) ≤ 2d4M (X),

thus

sj(κj(n)) ≤ max(4, 2βjd
4κj(n)

(X));

in particular,

(9) f(n, κj(n)) ≤ max(4, 2βjd
4κj(n)

(X)).

Let us now estimate κj(n). By induction we obtain that κj(n) ≤ D〈3j〉(n). For

a given n, let J be such that n ≤ D〈3J 〉(1); thus, κj(n) ≤ D〈3(j+J)〉(1). Observe

that 4k ≤ D(k); thus,

4κj(n) ≤ D(κj(n)) ≤ D〈3(j+J)+1〉(1) = γ(j + J).

Hence,

βjd
4κj(n)

(X) ≤ βjdγ(j+J)(X) = 2β−Jβj+Jdγ(j+J)(X)1/2

and, by (7), this tends to 0. Therefore, by (9), f(n, κj(n)) ≤ 4 for sufficiently

large j. �

3. Main application

As was mentioned in the introduction, for more than thirty years it has

been an open question whether there exists a HAPpy space with symmetric

basis that is not isomorphic to a Hilbert space. We prove the existence of

such spaces. By Theorem 2.1, it is just enough, given any sequence δk → ∞,

to produce a Banach space with symmetric basis X nonisomorphic to `2 such

that dk(X) ≤ δk for every k. We give two such examples:

(A) We build a space X(2) of modified Tsirelson/Schlumprecht type ([7]),

[25]) that has a symmetric basis and so that dn(X(2)) tends to infinity

as slowly as we wish.

(B) We show that there are Orlicz sequence spaces that have the same

property; the arguments in this case are more involved than in (A).

Let us mention that if we are just looking for a non-hilbertian space X

with symmetric basis so that dn(X) satisfy the estimate of Theorem 2.1, such

a space has already appeared in the literature. The space S(T 2), constructed

by Cassazza and Nielsen in [2] satisfies this estimate, as follows from Proposi-

tion 3.9. in [2].

(A) Given any positive sequence bn ↓ 0, let a = an ↓ 0 be a strictly

decreasing sequence such that an > δbn for some positive δ, an = 1, anam ≤
anm, and nan is concave. We build a space of sequences X = X(a) so that

the unit vector basis is a 1-symmetric basis for X, X 6= `1 even up to an

equivalent renorming, and so that for any choice (xk) of n disjoint vectors
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in X, we have ‖∑n
k=1 xk‖ ≥ an

∑n
k=1 ‖xk‖. Then any collection of n disjointly

supported unit vectors in the 2-convexificationX(2) ofX is a−nn equivalent to an

orthonormal basis. (See ([4] or [17, §1.d] for a discussion of p-convexification.)

As was explained already in [7], this does the job (the reason being that an n-

dimensional subspace of a Banach lattice is a small perturbation of a subspace

of the span of some set of nn disjoint vectors).

The space X is the completion of c00 under the unique norm that satisfies

the implicit equation

(10) ‖x‖ = ‖x‖c0 ∨ sup

®
an

n∑
k=1

‖Akx‖ : n = 1, 2, 3, . . . ; (Ak) disjoint

´
.

(Multiplication of x by the indicator function of A is denoted by Ax.) The

now standard argument for the existence of the norm ‖ · ‖ goes back to [4].

Define two sequences of norms on c00 by recursion. Set ‖x‖1 = ‖x‖′1 = ‖x‖c0
and

‖x‖m+1 = ‖x‖m ∨ sup

®
an

n∑
k=1

‖Akx‖m : n = 2, 3, . . . ; (Ak) disjoint

´
,

‖x‖′m+1 = ‖x‖′c0 ∨ sup

®
an

n∑
k=1

‖Akx‖′m : n = 2, 3, . . . ; (Ak) disjoint

´
.

An easy induction argument shows that ‖x‖n = ‖x‖′n from that it follows that

‖ · ‖n converges to a norm that satisfies (10).

It is obvious that the unit vector basis is a normalized 1-symmetric basis

for X and that for any choice of (xk) of n disjoint vectors in X, we have

‖∑n
k=1 xk‖ ≥ an

∑n
k=1 ‖xk‖. Just as in [25, Lemma 4], the submultiplicativity

of an and the concavity of nan easily implies that ‖∑n
i=1 ei‖ = nan, so the

constructed space is not `1 under an equivalent norm.

(B) Perhaps the following theorem is known but we were unable to find it

in the literature.

Theorem 3.1. Let 1 < δk → ∞. There exists an Orlicz space `M of

type 2, nonisomorphic to `2, so that dk(`M ) ≤ δk for every k.

M will be defined by M(x) = F (x2), where F : [0, 1] → [0, 1] is a convex

function such that F (0) = 0, F (1) = 1(i.e., `M is the 2-convexification of `F ).

Observe that for every x, y, F (x)+F (y) ≤ F (x+y) (in particular, 2F (x) ≤
F (2x)) and that F (x)

x is an increasing function of x.

For 0 ≤ a < b ≤ 1, let Fa,b(t) = t−a
b−aF (b) + b−t

b−aF (a), and let us denote

Φk(a) =
1

a
F−1(2Fa

2
,2ka(a)).
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Lemma 4. We have

dk(`M ) ≤
Ç

sup
0<a≤ 1

2k

Φk(a) + 1

å1/2

.

Proof. It is well known [23, Lemma 13.3(ii)] that dk(`M ) ≤ µ, provided

(11)

∥∥∥∥∥
Ç k∑
i=1

y2i

å1/2

‖ ≥ µ−1
Ç k∑
i=1

‖yi‖2
å1/2

for every y1, . . . , yk ∈ X (notice that `M is 2-convex) so that∥∥∥∥∥
Ç k∑
i=1

y2i

å1/2
∥∥∥∥∥ ≤

Ç k∑
i=1

‖yi‖2
å1/2

.

Let us fix y1, . . . , yk ∈ X with
∑ ‖yi‖2 = 1. Set ti = ‖yi‖2; thus,

∑
ti = 1.

Let us denote ai(j) = t−1i yi(j)
2. By the definition of the norm in X, for

i = 1, . . . , k, we have

(12)
∞∑
j=1

F (ai(j)) = 1.

Without loss of generality assume that t1 ≥ t2 ≥ · · · . Let 1 ≤ m ≤ k be such

that t1 + · · ·+ tm−1 <
1
2 ≤ t1 + · · ·+ tm. Then tm + tm+1 + · · ·+ tk >

1
2 . Hence

tm ≥ 1
2k , whence t1 ≥ · · · ≥ tm ≥ 1

2k and t1 + · · ·+ tm ≥ 1
2 .

Let α = 2sup {Φk(a) : 0 < a < 1
2k}. Then for every 0 ≤ a ≤ 1, all

ai ∈ (a2 , 2ka), and all ti with Σti ≤ 1 and Σtiai ≤ a,∑
tiF (ai) ≤ F (α/2a).

We shall prove that

(13)
∞∑
j=1

F

Ç
α+ 1

2

m∑
i=1

tixi(j)

å
≥ 1

2
,

hence
∞∑
j=1

F ((α+ 1)
m∑
i=1

tiai(j))) ≥ 1, thus ‖
m∑
i=1

y2i ‖ ≥ (α+ 1)−
1
2 .

Let us observe that, by (12),

∞∑
j=1

m∑
i=1

tiF (ai(j)) =
m∑
i=1

ti ≥
1

2
.

It is clear that (13) follows from the following inequality, valid for any 0 ≤
a1, . . . , am ≤ 1:

(14) F

Ç
α+ 1

2

m∑
i=1

tiai

å
≥

m∑
i=1

tiF (ai).
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To prove (14), let a =
m∑
i=1

tiai. Let us observe that for every i, ai ≤ t−1i a ≤ 2ka.

Since
∑

i:ai<
a
2

tiai <
a
2 , we have

∑
i:ai≥a2

tiai >
a
2 . Therefore,

∑
tiF (ai) =

∑
i:ai≥a2

+
∑

i:ai<
a
2

≤ F
Å
α

2
a

ã
+ F

Å
a

2

ã
≤ F

Å
α+ 1

2
a

ã
. �

Lemma 5. Let F (e−t) = e−t−ϕ(t), where ϕ : [0,∞) → [0,∞) is an in-

creasing, convex, continuous function and lim
t→∞

ϕ(t) =∞. Then

dk(`M ) ≤ 2kF−1
Å

1

k

ã
for k = 1, 2, . . . .

Proof. Let us first observe that for every 0≤γ≤1, the function Ψ(x)= F (γx)
F (x)

is decreasing on [0, 1]. Indeed, put γ = e−s, x = e−t, then Ψ(x) = γeϕ(t)−ϕ(s+t)

and the exponent is a decreasing function of t since ϕ′(t)− ϕ′(s+ t) < 0.

We have

Fa
2
,2ka(a)=

1

4k − 1
F (2ka) +

Å
1− 1

4k − 1

ã
F

Å
a

2

ã
≤ 2

4k − 1
F (2ka)≤ 1

k
F (2ka),

because F (a2 ) ≤ 1
4kF (2ka), since F (x)

x is an increasing function of x. Conse-

quently, Φk(a) ≤ α if F (αa) ≤ 1
kF (2ka); thus d = sup

0≤α≤ 1
2k

Φk(a) ≤ α provided

F (αa)
F (2ka) ≥

1
k for every a ≤ 1

2k . Since F (αa)
F (2ka) is a decreasing function of a, its min-

imum in [0, 1
2k ] is F ( α2k ). Thus α is given by F ( α2k ) = 1

k , i.e., α = 2kF−1( 1k ).

�

Proof of Theorem 1.2. Let tk = − lnn δk2k . We can assume, without loss

of generality, that 0 = t0 < t1 < t2 < · · · . Let ϕ be piecewise linear in the

intervals [tk−1, tk], and let it satisfy the conditions

e−ϕ(tk) ≥ 1
2
δk,(15)

ϕ(tk+1)− ϕ(tk)

tk+1 − tk
≥ ϕ(tk)− ϕ(tk−1

tk − tk−1
.(16)

(Condition (16) implies the convexity of ϕ.) �

4. More applications

Nielsen and Tomczak [20] proved that if X is a weak Hilbert space that

has an unconditional basis, then dn(X) satisfies the estimate needed to apply

Theorem 2.1. It is obvious that dn(`2(X)) = dn(X), so we get

Corollary 2. If X is a weak Hilbert space that has an unconditional

basis, then `2(X) has the HUAP.
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The interest in Corollary 2 is that `2(X) is a weak Hilbert space only when

X is isomorphic to a Hilbert space [22, Th. 12.3].

Recall that a Banach space X is complementably universal for a classM of

Banach space provided that every space inM is isomorphic to a complemented

subspace of X. Kadec [12] constructed a separable Banach space with the

BAP that is complementably universal for all separable Banach spaces that

have the BAP, while the authors [10] proved that there is no separable Banach

space that is complementably universal for all separable Banach spaces that

have the AP. Timur Oikhberg asked the authors whether there is a separable

infinite dimensional Banach space not isomorphic to `2 that is complementably

universal for all subspaces of itself. Notice that if such a space has the BAP,

then it has the HAP and hence must be “close” to a Hilbert space. Also

notice that such a space cannot have all subspaces complemented, since that

condition implies that the space is isomorphic to `2 [14]. Theorem 2.1 can be

used to give an affirmative answer to Oikhberg’s question.

Theorem 4.1. There is a separable, infinite dimensional Banach space

not isomorphic to `2 that is complementably universal for all subspaces of all

of its quotients.

Proof. Let X be any Banach space such that d4n(X) satisfies the esti-

mate assumed for dn(X) in Theorem 2.1. Let (Ek) be a sequence of finite

dimensional spaces that is dense (in the sense of the Banach-Mazur distance)

in the collection of all finite dimensional spaces that are contained in some

quotient of `2(X), and let Y be the `2-sum of the Ek. Then dn(Y ) ≤ 2d4n(X)

because an n-dimensional subspace of a quotient of a Banach space Z is

2-isomorphic to a quotient of a 4n-dimensional subspace of Z. By construction,

dn(Y1) ≤ dn(Y ) ≤ 2d4n(X) for any quotient Y1 of Y ; hence every subspace of

every quotient of Y has the AP, and hence the BAP since Y is forced to be

superreflexive. The technique at the end of [6] (which also uses a result from

[9]) then yields that if Z is a subspace of a quotient of Y , then Z ⊕ Y has a

finite dimensional decomposition. The main result in [11] implies that Z⊕Y is

isomorphic to (
∑
Hn)2 for some sequence Hn of finite dimensional spaces. By

construction, the Hn are uniformly isomorphic to a subsequence of En, which

gives that Z is isomorphic to a complemented subspace of Y . �

5. Open questions

Question 1. Does the HAP imply the HUAP?

Question 2. If X has the HAP, do all quotients of X have the AP? (If

yes, then the two conditions would, of course, be equivalent.)

Question 3. Is every HAPpy space reflexive?
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Let us recall that there exist non-reflexive spaces that are of type 2 − ε
and of cotype 2 + ε for every ε > 0 (cf.[24]).

Question 4. Is the HAP preserved under ultrapowers?

Question 5. If X has the HAP, does X ⊕ `2 necessarily have the HAP?

Question 6. Does every HAPpy space belong to L?

Question 7. If X /∈ L, does there exist a nilpotent operator on X with

nonzero trace?

Question 8. Can the space X(2) (see (A) above) be modified so that no

subspace of it is isomorphic to `2?

Question 9. If X ∈ HAP, is `2(X) ∈ HAP?

We do not know the answer to the following special case of Question 9:

Question 9.1. If X is a weak Hilbert space, is `2(X) HAPpy?

Question 10. Is every quotient of a HAPpy space again HAPpy?

In connection with Questions 9.1 and 10, we recall the result of Mankiewicz

and Tomczak-Jaegerman [18] that if X is not isomorphic to `2, then `2(X) has

a quotient that has a subspace that does not have a basis. On the other hand,

some of the spaces constructed in [7] have the property that every subspace of

every quotient has a basis. This suggests

Question 11. If dn(X) goes to infinity sufficiently slowly and X is separa-

ble, must X have a finite dimensional decomposition?

The result of Maurey and Pisier included in [19] shows that every weak

Hilbert space has a finite dimensional decomposition.

The rate of growth of dn(X) needed in Theorem 2.1 is of (inverse) Ack-

ermann type. It is interesting to know whether this rate can be improved

significantly. We even do not know the answer to the following:

Question 12. Must X be HAPpy if dn(X) = o(log(n))?

In connection with Theorem 4.1 we have the following:

Question 13. Does there exist a space with symmetric basis X such that

every subspace of X is isomorphic to a complemented subspace of X, but X

is not isomorphic to a Hilbert space?
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