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On geometric transfer in
real twisted endoscopy

By D. Shelstad

Abstract

We prove the existence of a transfer of orbital integrals in endoscopy for

real reductive groups when there is twisting by an automorphism defined

over the reals and by a character on the real points of the group. Our proof

contains a relatively short self-contained argument for the already known

case of standard endoscopy.

1. Introduction

Endoscopy concerns conjugacy classes and irreducible representations for

reductive groups: conjugacy classes within a stable class and irreducible rep-

resentations within a packet. We consider just real groups. In the case of

standard endoscopy, where there is no twisting, geometric and spectral trans-

fer identities have been proved. These identities display structure on both

packets and stable classes. In particular, the structure on a packet of discrete

series representations reflects that on the set of conjugacy classes in a regular

elliptic stable class. As is well known, this structure plays a role in various

comparisons of trace formulas and in multiplicity formulas for automorphic rep-

resentations. In the present paper we consider the broader setting of twisted

endoscopy, again for real groups. Our purpose is to present a complete argu-

ment for the main geometric transfer identity. This identity shows that sums

of integrals over suitably regular twisted conjugacy classes, when weighted by

the transfer factors introduced in [KS99] (see also [KS12]), may be interpreted

as integrals over stable conjugacy classes in an endoscopic group. The precise

result has two immediate applications. First, locally (i.e., for real groups),

it establishes the underlying structure for a functorial dual transfer of stable

traces on a twisted endoscopic group to virtual twisted traces on the ambient

group. In a separate paper [She11] we begin the description of an explicit form

for the dual transfer via compatible spectral transfer factors. This extends the

standard, or untwisted, case [She10], [She08b] and appears useful in the global

theory; see, for example, [Art11, Th. 2.2.4]. Second, in the global picture,
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our geometric transfer identity is of course one ingredient for stabilization of

the geometric side of the general twisted version of the Arthur-Selberg trace

formula.

Suppose G is a connected reductive algebraic group defined over R. There

are two familiar types of twisting we will consider for an admissible repre-

sentation π of the reductive Lie group G(R): composing π with an R-auto-

morphism θ of G and multiplying π by a character $ of G(R). An isomor-

phism Aπ between π ◦ θ and $⊗ π, if it exists, provides us with a distribution

f → Trace(π(f)Aπ), a (θ,$)-twisted character for π, on a suitable space of test

functions f . Comparing these twisted traces with ordinary stable traces for

a lower dimensional group, an endoscopic group H1(R) for (G, θ,$), requires

a correspondence on test functions. That is provided by the main geometric

transfer identity which displays weighted sums of (θ,$)-twisted orbital inte-

grals of test functions on G(R) as stable orbital integrals of the corresponding

test functions on H1(R). For the remainder of Section 1 we will discuss in some

detail our setting for this and related results. The results themselves will then

be described in more detail in Section 2.

Our setting is based on the constructions and results of [KS99] for the

case of real groups. For the norm correspondence of [KS99, Chap. 3, §5.4]

between points of G(R) and points of an endoscopic group H1(R) for (θ,$), it

is an associated outer automorphism θ∗ of a quasi-split inner form G∗ that is

significant. If θ is inner, then θ∗ is the identity, and we have a slight variant of

the setting for standard endoscopy [LS87, §1.3]. To simplify the presentation

we will carry a minor assumption on the norm correspondence for most of the

paper. Fix an inner twist ψ : G → G∗, where G∗ is quasi-split over R. There

is an R-automorphism θ∗ of G∗ which preserves a given R-splitting of G∗ and

for which θ∗ and ψ ◦ θ ◦ ψ−1 differ by an inner automorphism of G∗. We

then say (G, θ, ψ) is an inner twist of (G∗, θ∗), as in [KS99, App. B]. Start

now with the pair (G∗, θ∗). We will consider those (isomorphism classes of)

inner twists (G, θ, ψ) for which there is a norm correspondence from twisted

conjugacy classes in G(R) to the ordinary, i.e., untwisted, conjugacy classes

in an endoscopic group H1(R). See Section 6 for a precise version of the

assumption. If θ∗ is the identity, this excludes certain inner automorphisms

θ. In these cases the twist θ persists to conjugacy classes in the endoscopic

group according to the formalism of [KS99, §5.4]. The general excluded case is

a variant of this, and we use a slightly twisted norm correspondence. It can be

handled by a straightforward extension of our arguments, as we will describe

in Section 12.

An endoscopic group H1 comes with more data. First we assume that we

are given, rather than the twisting character $ itself, a 1-cocycle a$ (of the

Weil group WC/R in the center of the connected complex dual group G∨ of G or
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G∗) to which $ is attached by Langlands’ construction [Bor79, 10.1]. A set e of

endoscopic data for (G, θ, a$) or (G∗, θ∗, a$) is a tuple (H,H, s, ξ) as in [KS99,

§2.1]. There is no harm in assuming that ξ, an embedding of the group H in

the L-group LG = G∨oWC/R, is the inclusion map incl, so that H is given as

a subgroup of LG. We do so, and drop ξ entirely from notation. This subgroup

H is, by definition, a split extension of WC/R by H∨. In some cases, there is

an L-isomorphism ξ1 : H → LH. This provides us then with an L-embedding

incl ◦ (ξ1)−1 of LH in LG, and H itself may serve as an endoscopic group.

The L-embedding incl ◦ (ξ1)−1 determines both a term for geometric transfer

factors and a shift in infinitesimal character for the dual spectral transfer from

H(R) to G(R). The shift is necessary for the existence of a transfer identity

satisfying the functoriality principle; for some examples, see [She, Part B, §2].

Existence of ξ1 as isomorphism, however, excludes many cases; quick examples

can be found for an outer automorphism of SU(2, 1) or for base change in

Sp4. (In standard endoscopy, examples are harder to find.) To avoid these

exclusions, we add to the endoscopic data e = (H,H, s) a z-pair (H1, ξ1) as

in [KS99, Chap. 2], and then H1, rather than H, serves as endoscopic group.

This group H1 is quasi-split over R with simply-connected derived group, and

there is an exact sequence 1→ Z1 → H1 → H → 1 defined over R, where Z1 is

an induced central torus in H1. Then H1(R) → H(R) is surjective and LH is

naturally embedded in LH1. Now ξ1 is an injective L-homomorphism of H in
LH1 (see [KS99, §2.2] for proof of existence), and ξ1 determines, in particular,

a character $1 on Z1(R). For example, in the SU(2, 1) case we may pass from

the problematic H = PGL(2) to the group H1 = GL(2) with sign character

$1 on Z1(R) = R×. Spectral transfer from H1(R) to G(R) involves just those

representations π1 of H1(R) for which Z1(R) acts by $1. We will assume this

property for a representation π1 without further mention. The L-embedding

incl◦ (ξ1)−1, now defined on a subgroup of LH1, plays essentially the same role

in spectral transfer as before, but of course with H1 in place of H.

We will prove transfer for test functions on G(R) that are smooth and

either compactly supported or rapidly decreasing on G(R). (Passage to func-

tions with prescribed behavior under the action of twisted conjugation by the

center is then routine.) In the case of smooth functions of compact support

this provides a direct analogue of Waldspurger’s results in the nonarchimedean

case [Wal08]. In particular, we use the same normalization of twisted orbital

integrals [Wal08, §§1.5, 3.10]. We no longer need the technical assumption on

the central behavior of θ from an earlier draft; see Lemma 8.1 and its prepa-

ration from Sections 6 and 7. Following the formalism of z-pairs [KS99, §2.2],

we do prescribe behavior of test functions on H1(R) under translation by the

central subgroup Z1(R) = Ker(H1(R) → H(R)). Namely, we require that a
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test function f1 on H1(R) satisfy

f1(z1h1) = $1(z1)−1f1(h1)

for all z1 ∈ Z1(R), h1 ∈ H1(R).

For our test functions we could go directly to C∞c -spaces and then obtain,

as a corollary of the geometric transfer, the dual transfer of stable admissible

traces to twisted-invariant distributions. Instead we prefer to start with a more

general space of functions of Harish-Chandra Schwartz type and then later

pass to C∞c -functions using a well-known result of Bouaziz [Bou94, Th. 6.2.1].

Thus from our main theorem we obtain first a dual spectral transfer of stable

tempered traces to tempered twisted-invariant distributions. There has been

recent progress by Mezo [Mez12] on identifying these distributions as weighted

sums of tempered irreducible twisted traces. For standard endoscopy, this pro-

gram has been completed [She10], with the weights identified as the predefined

canonical spectral transfer factors of [She10]. Then, for standard endoscopy,

we conclude from the existence of geometric transfer that a spectrally defined

transfer identity for a pair (f, f1) of test functions of any type also yields a geo-

metric transfer identity for the pair if and only if it is correct on the tempered

spectrum, i.e., it has the spectral transfer factors as weights. For progress with

twisted spectral factors and their relation to Mezo’s constants, see [She11].

To define a θ-Schwartz function f on G(R) we consider, as usual, the

manifold G(R)θ within G(R)oAutR(G). On G(R)θ there is an action of G(R)

by conjugation: xθ.g = g−1(xθ)g = g−1x θ(g) θ. To a smooth complex-valued

function f on G(R) we attach the smooth function fθ on G(R)θ given by

fθ(xθ) = f(x). We call f a θ-Schwartz function on G(R) if fθ is Schwartz

on G(R)θ. This requires a straightforward generalization of Harish-Chandra’s

definition; see the appendix for details and references. Write C(G(R), θ) for the

space of all such functions. On H1(R) we consider the space C(H1(R), $1) of

functions that are $1-Schwartz in the usual sense. As mentioned already, for

the fully general case there is a twist also on H1(R) by an inner automorphism

θ1. In that setting, H1(R)θ1 may be replaced by an appropriate coset of H1(R)

in H1(C) (see Section 12), and we again require that test functions transform

by $−1
1 under the translation action of Z1(R).

To specify a correspondence (f, f1) it will be sufficient to consider those

twisted conjugacy classes of elements δ in G(R) that are strongly θ-regular

and have a (strongly G-regular) norm γ1 in H1(R) in the sense of [KS99, §§3.3,

5.4]. Then the θ-twisted centralizer Centθ(δ,G) of δ is reductive and abelian,

but is not necessarily connected (as complex group). Because δ has a norm in

H1(R), $ is trivial on Centθ(δ,G)(R); see [KS99], where we use Theorem 5.1.D

to strengthen Lemma 4.4.C. The ordinary centralizer Cent(γ1, H1) is a torus

which we write as Hγ1 . Recall we assume no twisting in H1(R) until Section 12.
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There is a simple notion of compatibility for normalization of Haar measures

on Centθ(δ,G)(R) and Hγ1(R); see Section 11. We fix Haar measures dg on

G(R) and dh1 on H1(R). This choice can be avoided if we work instead with

Schwartz measures fdg and f1dh1. In any case, it plays no significant role

provided we insist on compatible measures dtδ and dtγ1 for Centθ(δ,G)(R)

and Hγ1(R) when γ1 is a norm of strongly θ-regular δ. For f ∈ C(G(R), θ) and

quotient measure dg
dtδ

, we have the well-defined (θ,$)-twisted orbital integral

Oθ,$(δ, f) =

∫
Centθ(δ,G)(R)\G(R)

f(g−1δθ(g))$(g)
dg

dtδ

(see the appendix). Finally, the familiar stable orbital integral SO(γ1, f1)

is defined for f1 ∈ C(H1(R), $1) and the quotient measure dh1
dtγ1

. If strongly

θ-regular δ does not have a norm in H1(R), we may still define a (θ,$)-twisted

orbital integral Oθ,$(δ, f), but it plays no role in the transfer to H1(R). There

will be other endoscopic groups that do account for it [KS99, Chap. 6].

The last ingredient for our transfer identity is the transfer factor ∆(γ1, δ)

from [KS99] (see also [KS12]). While its definition is complicated in general,

it has the property that the relative factor

∆(γ1, δ)/∆(γ1, δ) = ∆(γ1, δ; γ1, δ)

is canonical [KS99, Th. 4.6.A]. This means that the relative factor depends

only on the data we have prescribed: the inner twist (G, θ, ψ), cocycle a$
defining the twisting character $, endoscopic data e with z-pair (H1, ξ1) for

e, and of course the pairs (γ1, δ), (γ1, δ). When $ is trivial, it is only the

appropriate conjugacy classes of these pairs that matter: the stable (slightly

twisted) conjugacy classes of γ1, γ1 in H1(R) and the ordinary (G(R)-) twisted

conjugacy classes of δ, δ in G(R). In general, there is a further twist by $ over

twisted conjugacy classes in G(R) in the sense of [KS99, Th. 5.1.D (2)].

The canonicity property motivates our approach to proving transfer and

is critical to our arguments, reducing the difficulties in establishing the main

transfer identity to simply stated problems at various walls in the endoscopic

group. We are free to make convenient choices for the data determining the

individual terms in transfer factors at each wall, and we thereby avoid the long

consistency arguments for various local choices over on the ambient group in

our original approach to the case of standard endoscopy for real groups [She82].

In particular, given the definitions of the transfer factors in [LS87] and the

alternate characterization of stable orbital integrals we use here (see Section 4

and Theorem 12.1, where we may set g0 to be the identity), the present paper

offers a relatively short proof of the transfer for standard endoscopy. Indeed,

we may go directly to Section 9 since the results of Sections 6–8 for ordinary

conjugacy are known [She79a] and Section 5 is essentially just a statement of
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the main jump formula from which the transfer follows quickly. The argument

for this jump formula is a special case of the arguments in Sections 9–11.

There we reduce easily to questions about the terms in transfer factors. Then,

in loosely technical terms, our choice of a-data from Section 3, which is different

from but in the same spirit as that in [Kal11], makes the previously intractable

term ∆I easy to handle (Lemma 9.5). The term ∆II is trivial to handle and so

the burden is on ∆III . Our choice of χ-data from Section 3 allows us to deal

with this term in our main lemma (Lemma 9.3) by a sequence of cohomological

calculations based on results in [LS87], [LS90] and [KS99], and we are done. In

particular, we avoid the convoluted arguments needed in Section 13 of [She08a]

for the proof of standard transfer sketched there.

In some cases there are particular normalizations for the absolute factor

∆(γ1, δ) which simplify its form, but these do not play a direct role in the

arguments of the present paper. In fact, since the choice of normalization does

not matter for existence of the transfer identity, in Section 5 we simply fix

a pair (γ1, δ) and specify ∆(γ1, δ) in a way that allows us to avoid carrying

various constants in our calculations.

Finally, we note that Waldspurger has pointed out two corrections ([Wal09],

personal communication) needed for the definition of twisted transfer factors

in [KS99]. These have been addressed in [KS12]. The first does not affect our

archimedean setting; see Remark 1 of Section 9. The second involves the choice

of a sign in the Galois hypercohomology pairing of Appendix A of [KS99] used

to define the term ∆III in transfer factors. In the archimedean case we may

simply invert the pairing without further change, as explained in Remark 2 of

Section 9.

2. Statement of the main theorem

We fix a set e of endoscopic data, along with a z-pair (H1, ξ1) for e, and

study geometric transfer for G(R) and H1(R) under the transfer factor ∆.

Until Section 12 we assume that the norm correspondence involves no twisting

of the conjugacy classes in H1(R).

Suppose f is a θ-Schwartz function on G(R), i.e., f ∈ C(G(R), θ). We

have attached to e and (H1, ξ1) the shift character $1 on the central subgroup

Z1(R) of H1(R). Define the subset

Trans(f)

of C(H1(R), $1) to consist of those $1-Schwartz functions f1 on H1(R) whose

strongly G-regular stable orbital integrals match, through the norm corre-

spondence for G(R) and H1(R) attached to θ, ∆-weighted combinations of

(θ,$)-twisted orbital integrals of f :

SO(γ1, f1) =
∑

δ, θ-conj

∆(γ1, δ)O
θ,$(δ, f)
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for all strongly G-regular γ1 in H1(R). The summation is over θ-conjugacy

classes of strongly θ-regular elements inG(R); for fixed γ1, the product ∆(γ1, δ)

Oθ,$(δ, f) depends only on the θ-conjugacy class of strongly θ-regular δ and

is nonvanishing on finitely many such classes (see Section 5).

This transfer identity for the pair (f, f1) says, in particular, that if strongly

G-regular γ1 is not a norm, then

SO(γ1, f1) = 0

since, by definition, we then have ∆(γ1, δ) = 0 for all strongly θ-regular δ

in G(R). Moreover, the stable orbital integrals of f1 have relatively simple

behavior around semiregular semisimple elements. One requirement of the

identity is thus that the weights ∆ provide a great deal of cancellation in the

singularities of the individual (θ,$)-twisted orbital integrals of f .

Notice that f1 ∈ Trans(f) is determined uniquely modulo the annihi-

lator in C(H1(R), $1) of the space of stable tempered characters on H1(R).

The strongly G-regular elements are dense in the set of all regular semisim-

ple elements in H1(R), and so functions f1 and f2 in Trans(f) have the same

stable orbital integrals on all regular semisimple elements. Then, by Harish-

Chandra’s regularity theorem for characters (see [HC75, §11, Th. 1]) and a

simple application of a stable Weyl integration formula, those integrals gener-

ate all stable tempered characters on H1(R). Hence, f1 and f2 agree on such

characters, as asserted.

We may consider instead f ∈ C∞c (G(R), θ), by which we mean that fθ lies

in C∞c (G(R)θ), and define the set Transc(f) of functions f1 ∈ C∞c (H1(R), $1)

such that f and f1 have ∆-matching orbital integrals in the same manner.

Embedding C∞c (G(R), θ) in C(G(R), θ), we may adapt the argument above

to see that f1 ∈ Transc(f) is determined uniquely modulo the annihilator in

C∞c (H1(R), $1) of the space of all stable tempered characters on H1(R).

Theorem 2.1 (Main Theorem). For all f ∈C(G(R), θ), the subset Trans(f)

of C(H1(R), $1) is nonempty.

We conclude from this theorem that the correspondence (f, f1), where f ∈
C(G(R), θ) and f1 ∈ Trans(f), is well defined. This correspondence determines

a map from C(G(R), θ) to the quotient of C(H1(R), $1) by the annihilator of

stable tempered characters on H1(R). If we switch from Schwartz functions to

Schwartz measures, then the map is determined uniquely up to normalization

of transfer factors. In standard endoscopy, where the dual tempered spectral

transfer is available (see [She10] and [She08b] for the form needed), we may

normalize the tempered spectral factors ∆(π1, π) first if we wish. For example,

for certain inner forms there is a common Whittaker normalization that has

desirable properties [She08b, §§11, 13]. Then for simultaneous geometric and
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spectral transfer identities the geometric factors must be normalized so that

∆(π1, π)/∆(γ1, δ) coincides with a predefined, and canonical, compatibility

factor ∆(π1, π; γ1, δ) [She10, §12]. In the Whittaker case, this brings us back

to the geometric version of the Whittaker normalization in [KS99, §5.3] for

∆(γ1, δ) [She10, §12]. Similar results are expected for the twisted case; see

[She11].

There is an analogue for C∞c -functions.

Corollary 2.2. For all f ∈ C∞c (G(R), θ), the subset Transc(f) is non-

empty.

Proof. Let f ∈ C∞c (G(R), θ). Using the main theorem we first find f ′1
in the subset Trans(f) of C(H1(R), $1). Then because the stable orbital in-

tegrals of f ′1 vanish off the conjugacy classes meeting a set in H1(R) that is

bounded modulo Z1(R), Bouaziz’s characterization of stable orbital integrals

of C∞c -functions shows that there exists f1 ∈ C∞c (H1(R), $1) such that

SO(γ1, f1) = SO(γ1, f
′
1)

for all strongly G-regular γ1 in H1(R). Here, a slight extension of [Bou94,

Th. 6.2.1] is needed; see [Ren03, §5.3]. Then f1 ∈ Transc(f). �

Let K,K1 be maximal compact subgroups of G(R), H1(R) respectively.

If f ∈ C∞c (G(R), θ) is K-finite, then spectral methods are expected to show

that there is K1-finite f1 in Transc(f), as for standard endoscopy. In the

standard setting, if ∆(π1, π) is the spectral transfer factor compatible with

given geometric factor ∆(γ1, δ), then the Paley-Wiener argument of Clozel in

an appendix to [CD84] shows that there is K1-finite f1 satisfying tempered

spectral transfer for f with weights ∆(π1, π). Thus f1 ∈ Transc(f).

Sections 3–11 are dedicated to a proof of the main theorem which, after

some preparation, hinges almost entirely on Theorem 5.1. In Sections 3 and 4,

we introduce a variant of Harish-Chandra’s ′Ff transform that fits better with

transfer factors. In particular, we obtain the limit formulas of Theorem 4.2 for

ordinary stable orbital integrals. These are simpler; for example, the trouble-

some fourth root of unity that appears in the jump formulas for stable ′Ff (see

[She08a, §3]) is gone. In Sections 5–10, our main goal is to prove Theorem 5.1,

which amounts to analogous limit formulas for the right side of the transfer

identity, i.e., for sums of twisted orbital integrals weighted by the transfer fac-

tors. At this stage we ignore the limit formulas for derivatives that will be

required later in the paper and focus instead on the needed analysis of terms

in the transfer factors.

The main lemma (Lemma 9.3) in the proof of Theorem 5.1 is a simple wall-

crossing property of the term ∆III in the transfer factor ∆ = ∆I∆II∆III∆IV

that we deduce from a detailed examination of constructions from [LS87],
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[LS90], and [KS99]. Two features are crucial to the cancellations that yield this

result: use of the s-compatible data sets introduced in Section 3 and precise

control of data attached to the abstract norm map; see toral descent data at γ0

in Section 7. The term ∆II then contributes trivially at the wall, apart from

the piece needed for descent to a neighborhood of the identity in a twisted

centralizer of Dynkin type A1, while analysis of ∆I may be avoided if we use

known results for standard endoscopy. Since we plan to deduce that case as

well, we also give an independent analysis of ∆I as an exercise with descent

formulas from [LS90]. The term ∆IV is, as usual, absorbed into the definition

of normalized integrals.

Once we have finished the proof of Theorem 5.1, we extend the limit

formulas to derivatives. Again, use of the alternative transform simplifies both

statements and arguments. We then complete our proof of the main theorem

in Section 11. In Section 12, the theorem is extended to the general case, i.e.,

to the case of slightly twisted norms.

Our notation will follow this pattern: O for unnormalized integrals, Φ for

normalized integrals, and Ψa,χ for our variant of the stabilized ′Ff transform.

We should mention the work of Renard [Ren97], [Ren03], which offers

insight into the difficulties of local analysis for twisted transfer. In [Ren03],

however, the focus is different from ours; certain choices are made there that we

expressly exclude here by the symmetry (s-compatibility) requirements of the

next section. Those choices are reminiscent of our initial approach to standard

endoscopy [She82], and unfortunately the reference [Sh6] in [Ren03] consists

only of some personal notes which make no attempt to address the remaining

problems for making the method work. In the example of base change, we

note that the consistency problems in [She81a] were resolved only by the new

approach of [She84]. With the dual spectral transfer in mind (see [She11,

§11]), we also need the slightly more general setting of [KS99], and we start

with Schwartz functions to capture the dual tempered transfer first. Some

of our early results from Section 6 have analogues in [Ren03], but our paths

soon separate since we bundle transfer factors with the twisted integrals from

the start and then focus on the space of (abstract) norms and the endoscopic

group. This leads us to local problems for transfer factors directly related to

descent arguments from [LS87] and [LS90]. Those are the problems we propose

to describe and solve here since, as we have already mentioned for the special

case of standard endoscopy, the desired transfer then follows quite quickly.

3. Generalized Weyl denominators

A stabilized version of Harish-Chandra’s ′Ff transform was introduced in

[She79a] to characterize stable orbital integrals. We prepare in the present

section to introduce a variant of this transform based on the generalized Weyl
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denominators from [She08a, §9] (see also [She10, §7c]) that depend on the

a-data and χ-data of [LS87, §2] rather than on a choice of positive roots.

Let G be a connected reductive algebraic group defined over R, and let T

be a maximal torus in G defined over R. The familiar skew-symmetric Weyl

denominator on the Lie algebra tR of T (R) does not in general lift to T (R).

Harish-Chandra introduced the closely related function ∆′ on T (R) defined by

∆′(γ) =
∣∣∣det(Ad(γ)− I)g/m

∣∣∣1/2∏
α>0,imag

(α(γ)− 1),

where m is Lie algebra of the centralizer M in G of the split component of

T. The product is over those imaginary roots, i.e., roots of T in M, which

are positive for some specified ordering. See Section 17 of [HC75]; this paper

has the final version of ′Ff . An earlier definition, which differs by a sign that

depends on the ordering, is recognized by the presence of a term εR. Note also

that we have modified the definition to accommodate the use of the right ac-

tion of conjugation in prescribing orbital integrals. Following Harish-Chandra

[HC75], we partition roots of T in G as real (σα = α), imaginary (σα = −α),

or complex (σα 6= ±α). Here, and throughout, σ denotes the action of the

nontrivial element of Γ = Gal(C/R) on T, on the rational characters X∗(T ),

etc. Then

∆′(γ) =
∏

α>0,imag
(α(γ)− 1)

∏
α real,cmplx

∣∣∣α(γ)1/2 − α(γ)−1/2
∣∣∣1/2 ,

where |α(γ)1/2−α(γ)−1/2| is convenient notation for |(α(γ)−1)(α(γ)−1−1)|1/2.
If γ is regular as an element of M , we may further write

∆′(γ) =
∏

α>0,imag

(α(γ)− 1)

|α(γ)− 1|
∏

α

∣∣∣α(γ)1/2 − α(γ)−1/2
∣∣∣1/2 .

Let Oα denote the Galois orbit of the root α of T in G. If α is imaginary, then

Oα is symmetric: Oα = −Oα = {±α}. Otherwise Oα is asymmetric. Then Oα
and −Oα are disjoint and Oα consists of one or two roots according as α is

real or complex. Recall that we define a-data {aα} and χ-data {χα} as follows

[LS87, 2.2 and 2.5]. For each root α, aα is a nonzero complex number and

aσα = aα, a−α = −aα.

In particular, if α is real, then aα is a real number, while if α imaginary, then aα
is purely imaginary. Turning to χ-data, if α is imaginary or complex, then χα
is a character on C×. Further, if α is imaginary, then χα must be an extension

to C× of the sign character on R×. Finally,

χσα = χα ◦ σ, χ−α = χ−1
α .

If α is real, then χα is a character on R× and χ−α = χ−1
α .

If Oα is asymmetric, then χα may be the trivial character, in which case

the choice of aα will not matter for the objects we construct (for the sake of
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completeness, we will often pick aα = ±1 = −a−α), and we say that such data

are trivial.

The associated (right) generalized Weyl denominator is

∆a,χ,right(γ) =
∏
O
χα

Ç
(α(γ)− 1)

aα

å∏
α

∣∣∣α(γ)1/2 − α(γ)−1/2
∣∣∣1/2

=
∣∣∣det(Ad(γ)− I)g/t

∣∣∣1/2∏
O
χα

Ç
(α(γ)− 1)

aα

å
,

where the product is over all Galois orbits O, symmetric or not. Notice that

the choice of representative α for O does not matter.

We may also define ∆a,χ,left(γ) by replacing each term χα( (α(γ)−1)
aα

) with

the term

χα(−aα(1− α(γ)−1)).

A useful property for computing the dual transfer of characters is that the

product

∆a,χ,left(γ)∆a,χ,right(γ)

coincides with the term
∣∣∣det(Ad(γ)− I)g/t

∣∣∣ appearing in the Weyl integration

formula [She10, Lemma 7.3]. In the present paper we are interested only in

∆a,χ,right(γ) and will write it simply as ∆a,χ(γ).

To return to the Harish-Chandra factor ∆′(γ), we choose a positive system

for the imaginary roots and then set

χα(z) = (z/z)
1
2 =

z

|z|
for α positive imaginary. We also set χα trivial for all real roots and all complex

roots. Then for any choice {aα} of a-data, we have

∆′(γ) = ∆a,χ(γ)
∏

α>0,imag

aα
|aα|

.

Notice that the product on the right is a fourth root of unity.

Suppose (arbitrarily chosen) χ-data {χα} are replaced by another such set

{χ′α = ηαχα}. Then

∆a,χ′(γ) = ∆a,χ(γ)
∏
O,symm

ηα

Ç
α(γ)− 1

aα

å∏
±O,asymm

ηα(α(γ)).

Suppose α is imaginary, and choose a square root α(γ)1/2 for α(γ). Then

ηα(α(γ)1/2) is independent of this choice, and the last formula may be rewritten

as

∆a,χ′(γ) = ∆a,χ(γ)
∏
O,symm

ηα(α(γ)1/2)
∏
±O,asymm

ηα(α(γ)),

showing that the change is independent of the choice of a-data. Replacing

{aα} by another set {a′α = aαbα} yields

∆a′,χ(γ) = ∆a,χ(γ)
∏
O,symm

sign(bα),
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and then that change is independent of the choice of χ-data.

Let α be an imaginary root of T. By a Cayley transform with respect

to α we mean the restriction to T of an inner automorphism of G, written

γ → γs = s−1γs or T → T s, for which sσ(s)−1 acts on T as the Weyl reflection

ωα with respect to α. Then T s is defined over R. This is a generalization of

the usual Cayley transform (see [She79a], [She79b, §3], also a review in [She83,

§2]) that works well for stable conjugacy. Such a transform exists if and only

if the orbit of α under the imaginary Weyl group, i.e., the Weyl group of T in

M , contains a noncompact root (see [She79a, Prop. 4.11]). In the terminology

of [She83, §2] this says that α is not totally compact. For each root β of T , we

denote by βs its transport by s to a root of T s.

Suppose that {aβ}, {χβ} are a-data and χ-data for T , and fix an imaginary

root α. Assume that α is not totally compact so that we may choose a Cayley

transform s with respect to α. Then we call {aβ}, {χβ} together with a-data

and χ-data {aβs}, {χβs} for T s an s-compatible data set if

aωα(β) = aβ, χωα(β) = χβ

for all β 6= ±α, and

aβs = aβ, χβs = χβ

for all roots β 6= ±α of T except those complex β for which βs is real, while

for such β, we require

aβ = aβs , χβ = χβs ◦NmC
R.

This definition places no additional restrictions on the data aα, aαs , χα or

χαs corresponding to the Cayley roots α, αs. On the other hand, we are not free

to make the usual assumption that the data are trivial on all asymmetric orbits

for T s : the data must be nontrivial on those asymmetric (complex) orbits for

T s which bifurcate into symmetric orbits on passage back to T ; see the last

step in the proof of Lemma 3.1. In the case of bifurcation of an asymmetric

(complex) orbit for T into asymmetric (real) orbits for T s, mentioned in the

definition, we may choose trivial data, but if we do not, then only real (Galois-

invariant) aβ, χβ are allowed. The requirements in this last case are made with

the proofs of Lemmas 4.1 and 9.1 in mind.

Lemma 3.1. Suppose that s is a Cayley transform. Then s-compatible

data sets exist.

Proof. Write σ, σs for the Galois actions on T, T s respectively. By con-

struction,

σs(βs) = (ωασβ)s

for all roots β of T . Thus, as in the case of the standard Cayley transform,

the roots ±αs are real. If β is real, then so is βs. If β is complex, then either
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ωαβ 6= ±σβ and βs is complex or ωαβ = σβ and βs is real. Here the case

ωαβ = −σβ (equivalently, βs imaginary) has been excluded since that implies

βs is orthogonal to αs, so that β must be imaginary and orthogonal to α.

First we pick a-data and χ-data for T. Clearly we may adjust the data

to satisfy the conditions that aωα(β) = aβ and χωα(β) = χβ for all imaginary

β 6= ±α. Suppose that β is real. Then we may take χβ trivial and arrange

that aβ = ±1 = − a−β. Suppose that β is complex. Then we again take

χβ to be trivial and arrange that aβ = ±1 = − a−β. We may also require

that aωα(β) = aβ = aσβ. For this we observe that the orbit of β under the

group generated by σ and ωα is asymmetric and, moreover, disjoint from its

negative; if βs is real, then ωαβ = σβ and the orbit is {β, σβ}, whereas if

βs is complex, then ωαβ 6= ±σβ and the orbit is {β, σβ, ωαβ, ωασβ}. The

disjointness property is then clear.

To complete the proof of the lemma we show that we may define a-data

and χ-data for T s as follows. First use the formulas

aβs = aβ, χβs = χβ

for all roots β of T except ±α and those complex β for which βs is real. Suppose

β is complex and βs is real. We pick aβs = aβ and take χβs trivial on R×. We

choose χ±αs trivial on R× and aαs = 1 = −a−αs .
There is nothing left to show for aβs , χβs unless β is imaginary and β 6=

±α. Then βs is imaginary or complex according as β is orthogonal to α or not.

If β is orthogonal to α, then σs(βs) = (σβ)s and so it is clear that our chosen

a±βs = aβ, χ±βs = χβ are appropriate. If β is not orthogonal to α, then

σs(βs) = (−ωαβ)s.

Using the additional requirement

aωα(β) = aβ, χωα(β) = χβ,

we see that

aσs(βs) = a−ωαβ = aωαβ = aβ = aβs

and

χσs(βs) = χ−ωαβ = χωαβ ◦ σ = χβ ◦ σ = χβs ◦ σ.

Since clearly a−βs = −aβs and χ−βs = χ−1
βs , this finishes the proof. �

4. A limit formula for stable orbital integrals

We continue with the setting of the last section. Suppose that SO is an

unnormalized stable orbital integral on the regular semisimple set of G(R),

i.e., that there is a Schwartz function f on G(R) such that, for each regular

semisimple γ in G(R), SO(γ) is the stable orbital integral SO(γ, f). Suppose
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also that γ lies in T (R). Then we use the factors ∆′ and ∆a,χ from the last

section to define the transforms

Ψ(γ) = ∆′(γ)SO(γ)

for a given choice of positive imaginary roots for T and

Ψa,χ(γ) = ∆a,χ(γ)SO(γ)

for a given choice of a-data and χ-data for T. The choice of measures has been

suppressed in notation; we follow [She79a] (see also Section 11). Our purpose

in the present section is to deduce simple limit formulas for Ψa,χ from the limit

formulas for Ψ; see [She79a] for a detailed proof of the latter.

We confine our attention to the behavior of orbital integrals near semireg-

ular semisimple elements of G(R), those elements with centralizer of type A1.

Suppose then that γ0 is a semiregular element of T (R), that α(γ0) = 1, where

α is an imaginary root which is not totally compact, and that s is a Cay-

ley transform with respect to α. We may regard the coroot α∨ as an ele-

ment of the Lie algebra of T , and then aαα
∨ lies in the real Lie algebra:

σ(aαα
∨) = a−α(−α∨) = aαα

∨. For a sufficiently small nonzero real number ν,

the element γν = γ0 exp(νaαα
∨) is a regular element in T (R). Moreover, it

is unchanged if α is replaced by −α. At the same time, the element γs0 lies

in T s(R) and is annihilated only by the real roots ±αs. Then Ψas,χs(γ
s
0) is

prescribed by smooth extension [HC75, §17, Th. 1]. In particular, if we set

γs,ν = γs0 exp(νaαs(α
s)∨), then

Ψas,χs(γ
s
0) = lim

ν→0
Ψas,χs(γs,ν).

We note first a lemma that simplifies our argument for the next theorem

(and motivates the definition of s-compatibility).

Lemma 4.1. For any s-compatible data set {aβ}, {χβ}, {aβs}, {χβs}, we

have ∏
O6=Oα

χβ

Ç
(β(γ0)− 1)

aβ

å
=
∏
Os 6=±Oαs

χβs

Ç
(βs(γs0)− 1)

aβs

å
.

On the left, the product is over all Galois orbits O for T except Oα =

{±α}. Each term is independent of the choice of representative β for O. The

right side is defined by using all Galois orbits for T s except {αs} and {−αs},
and again the choice of representative has no effect on the terms.

Proof. If O is orthogonal to Oα, then we find immediately a matching

term for O on the right side of the equation. For the remaining cases, if β is

imaginary and β′ = ωαβ is distinct from β, then the contributions to the left

from {±β}and {±β′} are equal and moreover they each equal the contribution

to the right from each of the two orbits {βs,−(β′)s} and {−βs, (β′)s}. If β
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is complex and βs is complex, then we clearly have matching terms. If β

is complex and βs is real, then (σβ)s = ωαsβ
s. The product of the terms

for {β, σβ} and {−β,−σβ} is χβ(β(γ0)). The product of the terms for {βs},
{−βs} is χβs(β

s(γs0)), which equals the product for {ωαsβs}, {−ωαsβs}. Since

β(γ0) = βs(γs0) is real, s-compatibility ensures that

χβ(β(γ0)) = χβs(β
s(γs0)2) = χβs(β

s(γs0)).χωαsβs(ωαsβ
s(γs0)),

and the lemma is proved. �

Theorem 4.2. For any s-compatible data set, we have

lim
ν→0−

Ψa,χ(γν) = − lim
ν→0+

Ψa,χ(γν)

and

lim
ν→0+

Ψa,χ(γν) = Ψas,χs(γ
s
0).

Proof. As a first step, we check that it is sufficient to verify these limits

for one s-compatible data set. Suppose then that the result is true for the

choice {aβ}, {χβ} and {aβs}, {χβs}. We now use another set, which we write as

{aβbβ}, {χβηβ} and {aβsbβs}, {χβsηβs}, and we consider the effect on Ψa,χ(γν)

and Ψas,χs(γ
s
0). We may argue orbit by orbit.

Notice that only the data for Oα = {±α} affect γν . The characters η±α =

η±1
α are trivial on R×, while bα = b−α may be any nonzero real number. Then

γν is replaced by γbαν and ∆a,χ(γν) is multiplied by

χα(bα)−1ηα

Ç
α(γν)− 1

aα

å
= sign(bα)ηα(eνaα)

since α(γν) = e2νaα and (eνaα−e−νaα)/aα is real. Thus the first limit statement

remains true (each side is replaced with the negative of the other if bα is

negative), and then the second limit statement follows also. Next we observe

that η±αs = η±1
αs and bαs = b−αs contribute no change to Ψas,χs(γ

s
0) since

ηαs

Ç
αs(γ)− 1

aαs

å
η−αs

Ç
αs(γ)−1 − 1

a−αs

å
χαs(bαs)

−1χ−αs(b−αs)
−1 = ηαs(α

s(γ))

for any regular γ in T s(R), and so has limit 1 as γ approaches γs0. Thus we are

done with the orbits Oα, ±Oαs .
For the remaining orbits, we could do a calculation for each symmetric

orbit O and each asymmetric pair ±O individually. Instead we appeal to

Lemma 4.1 to see that the (nonzero) total contribution can be cancelled from

the limit formulas. This finishes the first step.

The second step in our proof is to compare the proposed limit formulas

with the limit formulas for the stable version Ψ = ∆′.SO of Harish-Chandra’s
′Ff transform ([She79a], recalled in Section 3 of [She08a]). It is convenient to

assume first that α itself is noncompact and then drop this assumption later.
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We pick a system of positive imaginary roots for T that is adapted to α. This

means that α is positive and that if β is positive imaginary and not orthogonal

to α, then β1 = −ωα(β) is also positive. For convenience, we will choose χβ
to be the standard character z → z

|z| if β is positive imaginary and orthogonal

to α. This is also assumed for β = α. In each of these cases we set aβ = i. For

each pair of positive roots β, β1 = −ωα(β) not orthogonal to α and distinct

from α, we pick one, labeling it β, and make χβ the standard character. Then

χβ1
must be its inverse. Also we set aβ = i, so that aβ1

must be −i. We assume

that χβ is the identity character if β is real or complex.

Now we compare ∆a,χ(γ) with ∆′(γ) at γν = γ0 exp(iνα∨), as well as

∆as,χs(γ
s
0) with ∆′(γs0). We proceed orbit by orbit, considering the contribu-

tion of O to the change for ∆a,χ and of Os to the change for ∆as,χs . Real or

complex orbits for T contribute no change to either ∆′(γν) or ∆′(γs0). Consider

the imaginary orbits orthogonal to α. Suppose there are N such orbits. Then

passage to ∆a,χ(γν) multiplies ∆′(γν) by (i)−N . Since N is the number of imag-

inary orbits for T s and we use s-compatible data for T s, the term ∆′(γs0) is also

multiplied by (i)−N . Consider next the orbits of a pair of positive imaginary

roots β, β1 not orthogonal to α and distinct from α. Then we replace

A(γν) =
β(γν)− 1

|β(γν)− 1|
.
β1(γν)− 1

|β1(γν)− 1|
by

B(γν) =
β(γν)− 1)/i

|β(γν)− 1|
.
|β1(γν)− 1|
−(β1(γν)− 1)/i

=
β(γν)− 1

1− β1(γν)
.
|β1(γν)− 1|
|β(γν)− 1|

.

Because β1(γ0) = β(γ0)−1 = β(γ0), we have

lim
ν→0+

A(γν) = lim
ν→0−

A(γν) = 1,

whereas

lim
ν→0+

B(γν) = lim
ν→0−

B(γν) = β(γ0).

Thus we have to multiply all limits by β(γ0). Consider now the change to

∆′(γs0). This term is multiplied by

χβs

Ç
βs(γs0)− 1

aβs

å
.χ−βs

Ç
βs(γs0)−1 − 1

−aβs

å
= χβs

Ç
βs(γs0)− 1

1− βs(γs0)−1

å
= χβ(

β(γ0)− 1

1− β1(γ0)
) = B(γ0) = β(γ0),

and so we are done with this case.

There is one remaining orbit, that of α. Its contribution multiplies ∆′(γν)

by i−1, but there is no change to ∆′(γs0). This is exactly what we need to

deduce the claimed limits from the analogous limits for the Harish-Chandra
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type function Ψ (see [She08a, §3, Property (vi)]). Step 2 is thus complete and

the assertions of the theorem proved for the case that α is noncompact.

Suppose that α is compact and that ω is an element of the imaginary Weyl

group for which α† = ω−1α is noncompact. Assume that ω acts on T as Int(w).

Then if s is a Cayley transform relative to α, s† = w−1s is a Cayley transform

relative to α†. Also if γ0 is a semiregular element of T (R) such that α(γ0) = 1,

then γw0 is a semiregular element of T (R), α†(γw0 ) = 1, and (γw0 )s
†

= γs0. Finally,

to obtain an s†-compatible data set from an s-compatible data set {aβ}, {χβ}
and {aβs}, {χβs}, we may replace {aβ}, {χβ} by {a′β}, {χ′β}, where a′β = aωβ
and χ′β = χωβ, and leave {aβs}, {χβs} unchanged. Then

γwν = γw0 exp vaα†(α
†)∨,

and because SO is stable, we have

Ψa,χ(γν) = Ψa′,χ′(γ
w
ν ).

The limit formulas at γ0 now follow immediately from those at γw0 , and this

completes the proof of Theorem 4.2. �

Notice that Lemma 4.1 allows us to use ∆α in place of ∆a,χ in the state-

ment of Theorem 4.2, where

∆α(γ) = χα(
(α(γ)− 1)

aα
)
∣∣∣det(Ad(γ)− I)g/t

∣∣∣1/2 .
Here ∆−α = ∆σα = ∆α, and so only the (symmetric) orbit O of α matters.

We then write ∆O in place of ∆α.

We end this section with a remark on the normalized orbital integral

Φ(γ) =
∣∣∣det(Ad(γ)− I)g/t

∣∣∣1/2 SO(γ).

Set

ΨO(γ) = ∆O(γ) SO(γ) = χα( (α(γ)−1)
aα

) Φ(γ).

Assume, as in the theorem, that α is not totally compact. Notice that if

we write aα as ibα, where bα is real, then for |ν| small and nonzero, we have

χα

Ç
(α(γν)− 1)

aα

å
= χα(eiνbα)χα

Ç
eiνbα − e−iνbα

ibα

å
= χα(eiνbα)χα

Ç
2 sin(νbα)

νbα
ν

å
= χα(eνaα)sign(ν).

Because s defines an inner twist between the identity components of their

respective centralizers, the elements γ0 and γs0 are stably conjugate in G(R)

in the sense introduced by Kottwitz in Section 3 of [Kot82] for the untwisted

setting. Comparing limits for ΨO with limits for Φ, we see, by an argument

along the lines of Section 2 that the assertions of Theorem 4.2 may be rephrased

as the existence and equality of the limits of Φ(γ) as (i) γ approaches γ0
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through the regular elements of T (R) and (ii) γ approaches the stable conjugate

γs0 of γ0 through the regular elements of T s(R) (see Section 2 of [She83]).

This suggests another approach to the proof of transfer; we simply found our

present approach quicker. Our preference for working with ΨO rather than Φ

is explained by the formulas of Section 10 for derivatives.

It is now a short exercise to modify the characterization theorem for sta-

ble orbital integrals in [She79a] using the statement of Theorem 4.2 or, more

precisely, its generalization to derivatives. As mentioned in Section 1, we will

need eventually to introduce a slight twist in the stable integrals. Thus we will

wait until Section 12, and then write a slightly more general characterization

theorem (Theorem 12.1).

5. A limit formula for twisted orbital integrals

We return to the statement of the main theorem in Section 2 and follow

the notation established in that setting. In particular, we will consider (θ,$)-

twisted integrals for G, while the endoscopic group H1 will now assume the role

of the group of the last two sections. Recall that, because of our assumption on

the inner twist (G, θ, ψ), we consider completely untwisted integrals on H1(R).

To commence the proof of the main theorem, we assume that f ∈ C(G(R), θ)

and define a function Φ1 on the strongly G-regular elements γ1 of H1(R) by

Φ1(γ1) =
∣∣∣det(Ad(γ1)− I)h1/t1

∣∣∣1/2 ∑
δ,θ-conj

∆(γ1, δ)O
θ,$(δ, f).

We must show Φ1 is a normalized stable orbital integral on H1(R). Our primary

concern will be an analogue of the limit formulas of the last section.

Consider Φ1 near a semiregular element γ0 in H1(R) annihilated by an

imaginary root α1 of a maximal torus T1 in H1. Because H1 is quasi-split

over R, the root α1 is not totally compact [She79b, Lemma 9.2]. We then

have a Cayley transform s1 in the sense of Section 3 for α1, along with the

semiregular element γs10 in the adjacent Cartan subgroup T s11 (R) annihilated

by the real root αs11 . We will choose an s1-compatible data set in Section 9

based on compatible twisted data. We make the additional requirement that

γ0 be G-semiregular ; see Section 6 for definition. For all nonzero real ν with

|ν| sufficiently small, we will see that both γν = γ0 exp(νaα1α
∨
1 ) in T1(R) and

γs1,ν = γs10 exp(νaαs11
(αs11 )∨) in T s11 (R) are G-regular and then that Φ1(γν),

Φ1(γs1,ν) are defined.

Theorem 5.1. All relevant limits exist, and the assertions of Theorem 4.2

are true for the group H1 when Φ (normalized stable orbital integral on H1(R))

is replaced by Φ1 (normalized transport of a weighted sum of twisted integrals
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on G(R)):

lim
ν→0−

Ψa,χ(γν) = − lim
ν→0+

Ψa,χ(γν)

and

lim
ν→0+

Ψa,χ(γν) = lim
ν→0

Ψas1 ,χs1 (γs1,ν).

We will gather ingredients for a proof of the theorem over the next four

sections, completing the argument in Section 10. Later the theorem will be

strengthened to include derivatives (see Lemmas 10.1, 10.2) and all semiregular

γ0 (see Section 11). Often we will write γ′ν for γs1,ν and a′, χ′ for as1 , χs1 .

To begin, we replace Oθ,$(δ, f) by the normalized integral

Φθ,$(δ, f) =
∣∣∣det(Ad(δ) ◦ θ − I)g/Cent(gθ

δ
,g)

∣∣∣1/2Oθ,$(δ, f).

Assume strongly G-regular γ1 is a norm of δ. Then the term ∆IV (γ1, δ) in the

transfer factor is the quotient of the normalizing term above by that for ordi-

nary orbital integrals on H1(R). Thus our proposed normalized stable orbital

integral is given on γ1 by

Φ1(γ1) =
∑

δ,θ-conj

∆(γ1, δ)

∆IV (γ1, δ)
Φθ,$(δ, f).

We may as well assume for the rest of the paper that there exists a strongly

G-regular element in H1(R) that is a norm, for otherwise the zero function lies

in Trans(f) and the main theorem is proved. We then fix a pair (γ, δ), with

strongly G-regular γ ∈ H1(R) a norm of strongly θ-regular δ ∈ G(R), in order

to normalize transfer factors as mentioned in Section 1. We gather all terms

involving only (γ, δ) as

∆∗(γ, δ) = ∆(γ, δ)[∆I(γ)∆II(γ)∆IV (γ)]−1.

Here we have dropped the second argument in our notation for ∆I ,∆II ,∆IV

since it plays no role. There is no harm for the proof of Theorem 5.1 in

assuming that transfer factors are normalized so that

∆(γ, δ) = ∆I(γ)∆II(γ)∆IV (γ),

and then

∆∗(γ, δ) = 1.

This allows us to rewrite Φ1(γ1), for any strongly G-regular γ ∈ H1(R), as

∆I(γ1)∆II(γ1)
∑

δ,θ-conj

∆III(γ1, δ; γ, δ) Φθ,$(δ, f),

where the summation is over θ-conjugacy classes of strongly θ-regular elements

δ in G(R). Here we declare the contribution of the class of δ to be zero if γ1 is

not a norm of δ.
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If γ1 is a norm of δ, then the torus Cent(γ1, H1) is a norm group (in

the sense of the next section) which, as noted in Section 1, implies that the

character $ is trivial on Centθ(δ,G)(R). The transformation rule (2) of Theo-

rem 5.1.D of [KS99] further allows us to write ∆III(γ1, δ; γ, δ)O
θ,$(δ, f) in the

form ∫
Centθ(δ,G)(R)\G(R)

∆III(γ1, g
−1δθ(g); γ, δ)f(g−1δθ(g))dg/dt.

As a function of δ, this is constant on θ-conjugacy classes, as is the normalizing

factor
∣∣∣det(Ad(δ) ◦ θ − I)g/Cent(gθ

δ
,g)

∣∣∣1/2 for Φθ,$(δ, f). The set of elements with

γ1 as norm forms a single stable θ-conjugacy class of elements in G(R), as will

be reviewed in Sections 6 and 7. Thus the summation in Φ1(γ1) may be taken

over the (finite) set of θ-conjugacy classes in this stable class.

In Section 7 we will define Φ1(γ1) for G-regular elements γ1 that are not

strongly G-regular in the same way as for the untwisted case, i.e., by smooth

extension. First, we need to describe our choice of stable θ-conjugacy class with

norm γ1 in that setting. At the same time we prepare for the more delicate

analysis of Φ1(γ1) when γ1 is near semiregular γ0.

6. Norm groups and semiregular elements

To view semisimple elements of the endoscopic group H1(R) as norms, we

adapt the definition of image in standard endoscopy (see (1.2) of [LS90]) to

our twisted setting. Recall that we have made an assumption to avoid any

twisting in H1(R). Namely, we have fixed quasi-split data (G∗, θ∗) and inner

twist (G, θ, ψ):
ψσ(ψ)−1 = Int(u(σ))

and
ψ ◦ θ ◦ ψ−1 = Int(gθ)

−1 ◦ θ∗,
where u(σ), gθ lie in G∗sc. We write u(σ), gθ also for the images of these two

elements in G∗ under the natural map G∗sc → G∗. Define m : G → G∗ by

m(δ) = ψ(δ)g−1
θ . Then our assumption is that we may choose u(σ), gθ so that

σ(m)(δ) = u(σ)−1m(δ)θ∗(u(σ)).

See Lemma 3.1.A and Appendix B of [KS99] for its (hyper)cohomological signif-

icance. It is not difficult to drop the assumption, as we will check in Section 12.

We start our discussion of norms with the correspondence of [KS99] be-

tween the set of stable conjugacy classes of strongly G-regular elements in

H1(R) and the set of stable θ-conjugacy classes of strongly θ-regular elements

in G(R). Recall from the last section that we may as well assume this cor-

respondence is nonempty. It is uniquely determined by the choice of gθ; see

[She11] for a related discussion. If the class of strongly θ-regular δ in G(R)

corresponds to the class of strongly G-regular γ1 in H1(R), then γ1 is a norm

of δ. We will call a maximal torus T1 over R in H1 a norm group for (G, θ) if
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T1(R) contains stronglyG-regular elements that are norms of strongly θ-regular

elements in G(R); this generalizes a definition in [KS99, §3.3].

Let T1 be a maximal torus over R in H1. Then by Lemma 3.3.B of [KS99]

there exist a θ∗-stable maximal torus T in G∗ defined over R and an admissible

homomorphism T1 → Tθ∗ from T1 to the coinvariants of θ∗ in T. In more detail:

there exist a θ∗-stable maximal torus T in G∗ defined over R and a θ∗-stable

Borel subgroup B containing T , along with Borel subgroup B1 containing T1

such that the homomorphism

T1 → T1/Z1 → Tθ∗

attached to the pairs (B1, T1) and (B, T ) is defined over R. Here the map

T1 → T1/Z1 is the natural projection, and the construction of T1/Z1 → Tθ∗

comes from the definition of endoscopic data. The strongly θ∗-regular elements

of T (R), which include a dense subset of T (R)0, have strongly G∗-regular norms

in T1(R), and so the cited lemma shows that any maximal torus over R in H1

is a norm group for the pair (G∗, θ∗).

Assume now that T1 is a norm group for (G, θ). Suppose that γ1 is a

strongly G-regular element of T1(R) and that γ1 is a norm of strongly θ-regular

δ in G(R). First we take an admissible homomorphism T1 → Tθ∗ mapping γ1

to an element, say γ∗, of Tθ∗(R). Because γ1 is a norm of δ, there is also an

associated isomorphism

Int(g) ◦ ψ : Gθδ → (T θ
∗
)0

defined over R, where g is chosen in G∗sc so that

δ∗ = gm(δ)θ∗(g)−1

lies in T and N(δ∗) = γ∗; see [KS99, §§3.3, 4.4]. Here, as in [KS99, §3.2], N

denotes the abstract norm map, i.e., the projection T → Tθ∗ to coinvariants,

while Gθδ denotes Centθ(δ,G)0, a torus defined over R. In the equation δ∗ =

gm(δ)θ∗(g)−1, the element g has been identified with its image in G∗ (we will

do this repeatedly, often without mention) and m is the modification of the

inner twist ψ : G → G∗ defined in the first paragraph. Because of the strong

regularity condition, g is unique up to an element of Tsc once T1 → Tθ∗ has

been fixed. Also, changing T1 → Tθ∗ changes g in a simple manner [KS99,

§4.4].

In summary, if strongly G-regular γ1 in H1(R) is a norm of strongly

θ-regular δ in G(R), we identify the quotient of Cent(γ1, H1) = T1 by Z1

with the group of θ∗-coinvariants in T. Here T is provided by the data for an

admissible homomorphism T1 → Tθ∗ . We also identify Gθδ = Centθ(δ,G)0 with

the identity component of the group of θ∗-invariants in T .

Recall that the strong θ-regularity of δ ensures only that Centθ(δ,G) is

abelian and diagonalizable. The isomorphism Int(g)◦ψ above maps Centθ(δ,G)

onto the full group of θ∗-invariants in T.
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Now we drop the assumption of strong G-regularity on a semisimple ele-

ment in H1(R). Then the ambient norm group is not unique unless the element

is G-regular, and so we proceed torus by torus.

Suppose that γ0 is an element in the norm group T1(R), and assume

that δ0 is a θ-semisimple element of G(R). Then, by definition [KS99, §3.2],

Int(δ0) ◦ θ preserves some pair (B†, T †). Write T δ0 for the identity component

of the fixed points of Int(δ0) ◦ θ in T †. Then T δ0 is a maximal torus in the

reductive group Gθδ0 defined over R, and we may assume T δ0 is defined over

R. (Otherwise replace (B†, T †) by a suitable Gθδ0-conjugate pair.) Fix an

admissible homomorphism T1 → Tθ∗ , and write γ∗0 for the image of γ0. Then

there is an isomorphism Int(g) ◦ ψ carrying (B†, T †) to (B, T ), where g ∈ G∗sc.
This implies that δ∗0 = gm(δ0)θ∗(g)−1 lies in T.

Definition. We call γ0 a T1-norm of δ0 if we may choose g ∈ G∗sc so that

(i) N(δ∗0) = γ∗0 and (ii) the isomorphism Int(g) ◦ ψ : T δ0 → (T θ
∗
)0 is defined

over R.

In the case that γ0 is stronglyG-regular (ii) follows from (i) [KS99, (3.3.6)].

In general, for given T1, the choice of admissible homomorphism T1 → Tθ∗ does

not affect the existence of g.

Next, we consider together all elements in the γ0-component γ0T1(R)0 of

T1(R).

Lemma 6.1. The following are equivalent for γ0 ∈ T1(R):

(i) γ0 is a T1-norm,

(ii) some strongly G-regular element in the γ0-component is a norm,

(iii) every element of the γ0-component is a T1-norm.

Proof. Fix an admissible homomorphism T1 → Tθ∗ , and assume that γ0 ∈
T1(R) is a T1-norm of a θ-semisimple δ0 ∈ G(R). Choose elements g, δ∗0 as

in the definition. Take ε in the identity component of the Cartan subgroup

T δ0(R) of Gθδ0(R), and consider δ = εδ0. Then δ is θ-semisimple since Int(δ)◦θ
preserves the same pair (B†, T †) as Int(δ0) ◦ θ. Also, by results of Steinberg

(see Theorem 1.1.A in [KS99]), Gθδ(R) contains T δ0(R) as Cartan subgroup.

Further we may choose ε so that δ is strongly θ-regular; the elements ε with

this property are dense in T δ0(R)0. Set

δ∗=gm(δ)θ∗(g)−1 =gm(εδ0)θ∗(g)−1 =gψ(ε)g−1.gm(δ0)θ∗(g)−1 =ε∗δ∗0 =δ∗0ε
∗,

where ε∗ = gψ(ε)g−1 lies in T θ
∗
(R)0. The image of the γ0-component in T1(R)

under T1 → Tθ∗ then contains N(δ∗) = γ∗0N(ε∗), where γ∗0 is, as before, the

image of γ0 under T1 → Tθ∗ . Since δ∗ is strongly θ∗-regular, each element in

the γ0-component which maps to N(δ∗) under T1 → Tθ∗ is strongly G-regular,

and (ii) now follows.
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Assume (ii), and suppose strongly G-regular γ1 in the γ0-component of

T1(R) is a norm of δ. Choose δ∗, g as in the definition of norm for strongly

G-regular elements. By our assumption that the restriction of θ to the center

of G is (strongly) semisimple, the homomorphism N : T θ
∗
(R)0 → Tθ∗(R)0 is

surjective. Thus the image of γ1T1(R)0 under T1 → Tθ∗ coincides with the

image under N of δ∗T θ
∗
(R)0. We write an element γ2 of γ1T1(R)0 = γ0T1(R)0

as the image under N of some element δ∗2 in δ∗T θ
∗
(R)0. Then, as in Lemma

4.4.A of [KS99],

σ(δ∗2)δ∗−1
2 = σ(δ∗)δ∗−1 = (θ∗ − 1)v(σ),

where the cochain v(σ) is (the image in T of) the cochain gu(σ)σ(g)−1 in Tsc.

Thus

δ2 = m−1(g−1δ∗2θ
∗(g))

is θ-semisimple, lies in G(R), and has norm γ2, so that (iii) follows. The rest

is immediate. �

We now expand on the argument for (i) ⇒ (ii) in the last lemma. Write

the element ε defined there as expY, where Y belongs to the Cartan subalgebra

tδ0(R) of the Lie algebra gθδ0(R) of Gθδ0(R). Let Y map to Y ∗, where Y ∗ ∈
tθ
∗
(R), under the bijection provided by Int(g) ◦ ψ. Recall from the definition

of z-pair that we have the exact sequence 1 → Z1 → H1 → H → 1, with

Z1 central in H1. We split the corresponding sequence for Lie algebras in the

usual manner and identify, over R, the Lie algebra h as a subalgebra of h1

complementary to z1. Then the Lie algebra tH of T1/Z1 is a subspace of t1
complementary to z1. There is a linear isomorphism

tθ
∗
(R)→ tθ∗(R)→ tH(R)

determined by the restriction of N : T → Tθ∗ to θ∗-invariants and the chosen

admissible isomorphism Tθ∗ → T1/Z1. Write YH for the image of Y ∗, so that

we have
tδ0(R) 3 Y ↔ Y ∗ ↔ N(Y ∗)↔ YH ∈ tH(R).

Write Y1 ∈ t1(R) as Y1 = YH + Yz1 . Then the following is immediate.

Lemma 6.2. Assume that γ0 is a T1-norm of δ0 and Y1 ∈ t1(R). Then

the element

γ0(Y1) = γ0. expY1 = expY1.γ0

in the γ0-component of T1(R) is a T1-norm of the element

δ0(Y ) = expY.δ0 = δ0. exp θY.

The cochain v(σ) attached to γ0 also serves for γ0(Y1), while the attached

element of T is

δ∗(Y ) = δ∗0. expY ∗ = expY ∗.δ∗0.
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Now we consider all tori T1 containing a given semisimple element γ0 in

H1(R). Let δ0 be a θ-semisimple element of G(R). We call γ0 a norm of δ0 (or,

for emphasis on the ambient group, a G-norm of δ0) if there exists a norm

group T1 such that γ0 is a T1-norm of δ0. Otherwise we say that γ0 is not a

(G-) norm. The following will be proved after Lemma 6.6.

Lemma 6.3. Let γ0 be a semisimple element in H1(R) and let δ0, δ
′
0 be

θ-semisimple elements of G(R). Then (i) if γ0 is a G-norm of δ0, then so are

all stable conjugates of γ0 in H1(R), and (ii) if γ0 is a G-norm of both δ0 and

δ′0, then δ0 and δ′0 are stably θ-conjugate.

Remark. By δ′0 is stably θ-conjugate to δ0 we mean that we may write

δ′0∈G(R) as xδ0θ(x)−1, where x ∈ G and Int(x) :Gθδ0→Gθ
δ′0

is an inner twist.

Remark. As pointed out by a referee, the converse statement for (ii) in

Lemma 6.3 is false in general.

Assume now that semisimple γ0 ∈ H1(R) is a T1-norm of δ0 ∈ G(R). Fix

admissible T1 → Tθ∗ and choose g, δ∗0 as in the definition of T1-norm. Then

Int(g) ◦ ψ is an isomorphism of Gθδ0 with (G∗)θ
∗

δ∗0
. We will abbreviate (slightly)

the notation for the latter group as Gθ
∗

δ∗0
. We have required that Int(g)◦ψ maps,

over R, the maximal torus T δ0 over R in Gθδ0 to the maximal torus (T θ
∗
)0 in

Gθ
∗

δ∗0
. In the case that Gθδ0 is of Dynkin type A1 we claim that this requirement

ensures first that Gθ
∗

δ∗0
is defined over R and then that Int(g) ◦ ψ : Gθδ0 → Gθ

∗

δ∗0

is an inner twist. Indeed, Int(g) ◦ ψ transports the two roots of T δ0 in Gθδ0 ,

either both imaginary or both real, to the roots of (T θ
∗
)0 in Gθ

∗

δ∗0
which must

be of the same type. An argument with root vectors then finishes the proof.

With no restriction on the Dynkin type of Gθδ0 , we will prove the next

lemma at the end of this section.

Lemma 6.4. Suppose that semisimple γ0 ∈ H1(R) is a T1-norm of δ0 ∈
G(R) and that T1 → Tθ∗ is an admissible homomorphism. Then we may

choose the elements g, δ∗0 so that (i) σ(δ∗0)δ∗−1
0 is central in G∗, and (ii) v(σ) =

gu(σ)σ(g)−1 lies in the product of the torus (Tsc)
θ∗sc with the center of G∗sc.

In particular, if G is of adjoint type, then we may arrange that δ∗0 lies in

T (R). In general, for any g, δ∗0 as in this lemma, the group Gθ
∗

δ∗0
is defined over

R and Int(g) ◦ ψ : Gθδ0 → Gθ
∗

δ∗0
is an inner twist.

Before continuing with the case that Gθδ0 is of Dynkin type A1, we record

an explicit analysis of the roots of Gθδ0 and Gθ
∗

δ∗0
following Steinberg (see [KS99,

Chap. 1],). By a restricted root we will mean the restriction αres of a root α

of T in G∗ to the torus (T θ
∗
)0. This torus is maximal in each of the reductive



ENDOSCOPIC TRANSFER 1943

groups (G∗θ
∗
)0 and Gθ

∗

δ∗0
. The set of all restricted roots forms a nonreduced

root system in general. As in Section 1.3 of [KS99], we call α of type R1 if

neither 2αres nor 1
2αres is a restricted root, of type R2 if 2αres is a restricted

root, or of type R3 if 1
2αres is a restricted root. Also following [KS99], we may

identify a root α1 = ((α∨)res)
∨ of T1 in H1, or of T1/Z1 w Tθ∗ in H1/Z1, as

Nα or 2Nα. If α is of type R1, R3, then α1 = Nα, and if α is of type R2,

then α1 = 2Nα. Recall that Nα denotes the sum of all distinct roots in the

θ∗-orbit of α. Assume α1 is a root of T1 in the identity component (H1)γ0 of

the centralizer of γ0 in H1. The identification of roots then implies that

α1(γ0) = Nα(δ∗0) = 1

if α is of type R1 or R3 and that

α1(γ0) = Nα(δ∗0)2 = 1

if α is of type R2. Write this second case as R2,± according as Nα(δ∗0) = ±1.

We use Int(g) ◦ ψ to identify roots of T δ0 in Gθδ0 with roots of (T θ
∗
)0 in

Gθ
∗

δ∗0
. Let α be a root of T in G∗. Then αres is a root of T δ0 in Gθδ0 if and only

if Nα(δ∗0) = 1 in the cases α is of type R1, R2, or if and only if Nα(δ∗0) = −1

in the case α is of type R3. We conclude the following.

Lemma 6.5. Assume that α1 = ((α∨)res)
∨ is a root of T1 in (H1)γ0 , i.e.,

that α1(γ0) = 1. Then (i) α0 = rααres is a root of T δ0 in Gθδ0 , where rα = 1 if

α is of type R1 or R2,+, rα = 2 if α is of type R2,−, and rα = 1
2 if α is of type

R3. Also, (ii) if α is of any type except R2,−, then Nα(δ∗0) = 1 and α0 is a root

of (T θ
∗
)0 in (G∗θ

∗
)0. Finally, (iii) if α is of type R2,−, then Nα(δ∗0) = −1 and

αres = 1
2α0 is a root of (T θ

∗
)0 in (G∗θ

∗
)0.

Remark. We will often write Nα(δ0) for Nα(δ∗0). Notice we may make a

definition of Nα that is intrinsic to G by using the automorphism Int(δ0) ◦ θ
and the maximal torus T † = Cent(T δ0 , G).

Next, we assume also that γ0 is semiregular; i.e., ±α1 are the only roots

of T1 in (H1)γ0 . We will say that γ0 is G-semiregular if ±α0 are the only roots

of T δ0 in Gθδ0 ; i.e., both (H1)γ0 and Gθδ0 are of Dynkin type A1. Explicitly, the

extra condition is that if root β of T is not in the Q-span of the θ∗-orbit of α,

then Nβ(δ0) 6= 1 if β is of type R1 or R2, and Nβ(δ∗0) 6= −1 if β is of type R3.

Notice that if β is of type R2, then Nβ(δ∗0) = −1 implies that 2βres is a root

of Gθδ0 , and so we conclude that for β of type R2, the extra condition can be

rewritten as β1(γ0) = Nβ(δ∗0)2 6= 1, and then that the condition for β of type

R3 is redundant. We may now write the G-semiregularity condition directly

in terms of γ0 as
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α1(γ0) = 1 and β1(γ0) 6= 1 for all roots β of type R1 or R2 not

in the Q-span of the θ∗-orbit of α.

If semiregular γ0 ∈ T1(R) is not a norm, we will use this condition as our

definition of G-semiregularity (which coincides with the more natural definition

using the map AG/H of [KS99, Th. 3.3.A]).

We return to the setting of Theorem 5.1, where α1 is imaginary and s1 is

a Cayley transform with respect to α1. Because of the stability of the transfer

factor ∆(γ1, δ) in its first argument γ1 [KS99, Lemma 5.1.B], the argument of

the last paragraph of the proof of Theorem 4.2 shows that there is no harm

(for the proof of Theorem 5.1) in assuming α1 itself is noncompact and that

s1 is a Cayley transform within (H1)γ0 . Then also γs10 = γ0; i.e., γ0 lies in

T1 ∩ T s11 .

An element γ1 in T1(R) is G-regular in the sense of [KS99] if and only if

β1(γ1) 6= 1 for all roots β of type R1 or R2. Because γ0 is assumed G-semi-

regular, the elements

γν = γ0 exp(νaα1(α1)∨)

in the γ0-component of T1(R) and the elements

γs1,ν = γ0 exp(νaα′1(α′1)∨),

where α′1 = αs11 , in the γ0-component of T s11 (R) are easily checked to be

G-regular for all real nonzero ν with |ν| sufficiently small. We gather the

following observations with some special cases of Theorem 5.1 in mind (see

Lemma 7.2).

Lemma 6.6. Suppose γ0 is a G-semiregular element in a Cartan subgroup

T1(R) of H1(R) annihilated by a noncompact imaginary root α1. Suppose that

s1 is a Cayley transform for α1 in (H1)γ0 . Then (i) if γ0 is not a G-norm, then

the G-regular elements γν and γs1,ν are not norms, (ii) if T s11 is a norm group

for (G, θ), then T1 is also a norm group for (G, θ), (iii) if γ0 is a G-norm of

δ0 in G(R), then γ0 is a T1-norm of δ0, (iv) if γ0 is a G-norm of δ0 in G(R),

then γ0 is a T s11 -norm of δ0 if and only if Gθδ0 is split modulo center, and (v)

if T s11 is not a norm group for (G, θ), then the group Gθδ0 is compact modulo

center for each δ0 in G(R) with T1-norm γ0.

Proof. For (i), assume γ0 is not a G-norm. We then apply Lemma 6.1 to

γ0 as element of T1 to conclude that γν is not a norm, and to γ0 as element of

T s11 to conclude that γs1,ν is not a norm.

For (ii), assume that T s11 is a norm group for (G, θ). By Lemma 6.1, there

is a component of T s11 (R) consisting of T s11 -norms. Choose a G-semiregular

element γ2 of this component annihilated by the real root αs11 , and suppose

it is a T s11 -norm of δ2. There are θ∗-stable maximal tori T, T ′ in G∗ defined

over R and admissible homomorphisms T1 → Tθ∗ , T
s1
1 → T ′θ∗ . Since T s11 is a
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norm group for (G, θ), there is also an isomorphism Int(g2)◦ψ : T ′δ2 → (T ′θ
∗
)0

defined over R, where δ∗2 = g2m(δ2)θ∗(g2)−1 lies in T ′ and N(δ∗2) is the image of

γ2 under T s11 → T ′θ∗ . Recall that Gθ
∗

δ∗2
is defined over R and Int(g2) ◦ψ : Gθδ2 →

Gθ
∗

δ∗2
is an inner twist. The root α′0 of T ′δ2 in Gθδ2 corresponding to α′1 = αs11

is also real: σα′0 corresponds to σα′1 = α′1 and so equals α′0. Let t ∈ Gsc

define an inverse Cayley transform in (Gθδ2)sc for α′0. On the other hand, the

θ∗-stable pairs (B, T ) and (B′, T ′) defining T1 → Tθ∗ , T
s1
1 → T ′θ∗ are conjugate

under (G∗sc)
θ∗sc (by Steinberg’s structure results; see [KS99, Th. 1.1.A]) and so

they determine an element t∗ of (G∗sc)
θ∗sc such that Int(t∗) maps T ′ to T , T ′θ∗

to Tθ∗ and completes a commutative diagram with Int(s1)−1 : T s11 → T1 and

the admissible homomorphisms T1 → Tθ∗ , T
s1
1 → T ′θ∗ . Then t∗ is an inverse

Cayley transform for the real root rα′0 of (T ′θ
∗
)0 in (G∗θ

∗
)0, where r = 1 or

1
2 since the action of σ(t∗)−1t∗ on (T ′θ

∗
)0 coincides with the dual transport of

σ(s1)s−1
1 which acts on T s11 as the Weyl reflection for α′1; this dual transport

coincides with the Weyl reflection for rα′0. Here we define dual transport using

the bijection (1.3.8) of [KS99]. We may arrange the choices so that t∗ is

standard; i.e., t∗ lies in the image of SL2 in (G∗sc)
θ∗sc corresponding to the

root rα′0. The action of σ(t∗)−1t∗ on (T ′θ
∗
)0 coincides with the transport by

Int(g2) ◦ ψ of the action of σ(t)−1t on T ′δ2 (t is the inverse Cayley transform

defined earlier in the present paragraph) since again each acts as the same Weyl

reflection. Let T δ2 be the image of T ′δ2 under t. This property of t, t∗ (via our

definition of Cayley transform in Section 3) implies that if g3 = t∗.g2.ψ(t−1),

then the composition

Int(g3) ◦ ψ : T δ2 → (T θ
∗
)0

is defined over R and that

g3m(δ2)θ∗(g3)−1 = Int(t∗)(δ∗2) = δ∗3

lies in T . Finally, N(δ∗3) is the image of (γ2)s
−1
1 ∈ T1(R), so that (γ2)s

−1
1 is a

T1-norm of δ3. In particular, T1 is a norm group for (G, θ), and (ii) is proved.

For (iii), assume γ0 is a G-norm. Then because (H1)γ0 is of type A1, we

see that γ0 must be either a T1-norm or T s11 -norm. The argument for (ii) with

γ2 = γ0 shows that if γ0 is a T s11 -norm of an element δ0, then it is also a

T1-norm of δ0.

For (iv), we return to the argument for (ii), except that now T1 in place of

T s11 is assumed a norm group for (G, θ). We replace the element δ2 by δ0 and,

as usual, write T δ0 for the image of (T θ
∗
)0 under the embedding into Gθδ0 . If

Gθδ0 is split modulo center, which implies that the root α0 of T δ0 is noncompact

imaginary, then we may construct a Cayley transform s1 in (Gθδ0)sc and argue

along the same lines as (ii) to write γ0 as a T s11 -norm of δ0. For the converse,
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assume γ0 is also a T s11 -norm of δ0. Then the argument for (ii) shows that Gθδ0
contains a torus T ′δ0 which has a real root and so is split modulo center.

Lemma 6.1 shows that (v) is a consequence of (iv) and the lemma follows.

�

Proof of Lemma 6.3. Suppose semisimple γ0 is a T ′1-norm of δ0, where T ′1
is arbitrary. By definition, T ′1 lies in (H1)γ0 . If T ′1 is not fundamental in (H1)γ0 ,

then it has a real root. Now we argue similarly as for (ii) in Lemma 6.6, with

γ0 in place of γ2 and δ0 in place of δ2, to display γ0 as a T1-norm of δ0, with

T1 of split rank one less than that of T ′1. Repeating this argument until real

roots are exhausted, we conclude that if γ0 is a G-norm of δ0, then γ0 is a

T1-norm of δ0, where T1 = Tfund is fundamental in (H1)γ0 . Recall that a stable

conjugate of γ0 in H1(R) may be written as wγ0w
−1, where the restriction of

Int(w) to Tfund is defined over R [She83, Lemma 2.5.1]. Then (i) follows.

To prove (ii), let semisimple γ0 be a G-norm of δ0, δ
′
0. Then by the last

paragraph we may use an admissible homomorphism T1 → Tθ∗ , with T1 fun-

damental in (H1)γ0 , to attach g, g′ ∈ G∗sc and δ∗0, (δ
′
0)∗ ∈ T to δ0, δ

′
0 respec-

tively. Following the proof for (i) ⇒ (ii) in Lemma 6.1, we use the elements

g, g′ to define strongly θ-regular δ3, δ
′
3 and corresponding elements δ∗3, (δ

′
3)∗ in

δ∗0.(T
θ∗)0(R) and (δ′0)∗.(T θ

∗
)0(R) respectively, such that N(δ∗3) = N((δ′3)∗).

That construction allows us to assume (δ′3)∗ = δ∗3tθ
∗(t)−1, where t ∈ T sat-

isfies (δ′0)∗ = δ∗0 t θ
∗(t)−1. Set x = ψ−1(g′−1tg). Then xδ3θ(x)−1 = δ′3 and

xδ0θ(x)−1 = δ′0. From the first of these two equations (the strongly regu-

lar case) we conclude that σ(x)−1x lies in the product of Gθδ3 = T δ0 with

θ-invariants in the center of G, and so δ′0 is stably θ-conjugate to δ0. �

We turn now to the proof of Lemma 6.4. Our first remark is that the

elements v(σ) = gu(σ)σ(g)−1 and δ∗0 = gm(δ0)θ∗(g)−1 from the statement

of the lemma are unchanged when the inner twist ψ : G → G∗ is replaced

by Int(x) ◦ ψ, where x ∈ G∗sc, provided we replace u(σ) by xu(σ)σ(x)−1 and

gθ by θ∗(x)gθx
−1. Recall that u(σ), gθ were discussed in the first paragraph

of the present section. Notice also that the change in ψ does not affect our

assumption there about u(σ), gθ. We are thus free to choose ψ as we wish

within its inner class. Our choice will use fundamental splittings, as in [She11]

but without the cuspidality assumption. The definitions are as follows.

Let TG be a fundamental maximal torus over R in G and BG be a Borel

subgroup of G containing TG. Then we call the pair (BG, TG) fundamental if

the set of BG-simple roots of TG in G is preserved by the action of −σT on

X∗(T ). Such pairs exist; see [Kot82, §10.4]. We will review this below as we use

it. Consider a splitting splG = (BG, TG, {Xα}) for G. Here Xα is a root vector

for the BG-simple root α. Denote by X−α the root vector for −α completing

Xα and the coroot Hα to a simple triple. There are two possibilities: α is
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complex and |{±α,±σTα}| = 4 or α is imaginary and |{±α,±σTα}| = 2. We

call splG fundamental if the pair (BG, TG) is fundamental and σXα = XσTα for

all BG-simple roots that are complex or noncompact imaginary, σXα = −XσTα

for all BG-simple roots that are compact imaginary. A fundamental pair may

be extended to a fundamental splitting; see [She11, §3] regarding imaginary

roots. Suppose that η is an automorphism of G that preserves the fundamental

splitting splG. If the restriction of η to TG is defined over R, then an argument

with root vectors shows that η is defined over R as automorphism of G.

The automorphism θ∗ ofG∗ preserves a (fixed) R-splitting (B∗, T ∗, {Xα∗}).
Here T ∗ is a maximally split maximal torus defined over R and B∗ is also de-

fined over R. We may construct a θ∗-stable fundamental pair (B, T ) for G∗ as

follows. Consider the identity component G1 of the group of fixed points of θ∗

in G∗. Then G1 has an R-splitting that extends the pair (G1 ∩ B∗, G1 ∩ T ∗).
Following Sections 10.3, 10.4 of [Kot86], we apply a rationality theorem of

Steinberg to find a fundamental pair (B1, T 1) for G1: choose h ∈ (G∗sc)
θ∗sc such

that hσ(h)−1 preserves G1 ∩ T ∗ and acts on G1 ∩ T ∗ as the longest element of

the Weyl group of G1∩T ∗ in G1, and then set B1 = h−1B∗h, T 1 = h−1T ∗h. Let

(B, T ) be the corresponding θ∗-stable pair for G∗. Then T is fundamental since

a real root would provide a real root for the fundamental torus T 1, and further

the pair (B, T ) is fundamental, again by Steinberg’s structure theorem. We ex-

tend (B, T ) to a fundamental splitting spl. Then θ∗ preserves spl up to an inner

automorphism by an element of Tsc; this inner automorphism is defined over R.

Returning to the inner twist ψ : G→ G∗, we adjust ψ within its inner class

so that the restriction of ψ−1 to T is defined over R. Set BG = ψ−1(B), TG =

ψ−1(T ). Then (BG, TG) is a fundamental pair. We may further adjust ψ by

an inner automorphism by an element of Tsc so that ψ−1 transports the fun-

damental splitting spl of G∗ to a fundamental splitting splG of G extending

(BG, TG). With these adjustments to ψ we now conclude that θG = ψ−1 ◦θ∗ ◦ψ
is defined over R. Then θ = Int(hθ) ◦ θG, where hθ = ψ−1

sc (g−1
θ ). Both Int(hθ)

and Int(gθ) are defined over R, and we may take u(σ) to be fixed by θ∗sc since

(Tsc)
θ∗sc → (Tad)θ

∗
ad is surjective. Then the cocycle zσ of Lemma 3.1.A of [KS99]

is simply ψsc(h
−1
θ σ(hθ)). Returning to the assumption of the first paragraph

of this section, we adjust the choice of gθ, u(σ) by central elements in G∗sc to

arrange that zσ = 1 [KS99, p. 26].

Remark. Since θG has finite order, it follows that θ may be written as the

product of an inner automorphism and an automorphism of finite order, where

each automorphism is defined over R. This result was pointed out by a referee

who also supplied another proof.

We will also make use of connectivity properties of real points of funda-

mental tori. We continue with the same setting. From Sections 10.3, 10.4
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of [Kot86] we see that Tsc(R) is connected: because (B, T ) is a fundamen-

tal pair, X∗(Tsc) has a base preserved by −σT , namely the coroots of the

B-simple roots of T , and so each σT -invariant element of X∗(Tsc) lies in

(1 + σT )X∗(Tsc), which implies that Tsc(R) has one component. The same

argument for X∗(Tad), using fundamental coweights in place of coroots, shows

that Tad(R) is connected. Finally, recall that (B, T ) is θ∗-stable. The image

in X∗(Tad)/(1 − θ∗ad)X∗(Tad) = X∗((Tad)θ∗ad) of the chosen base for X∗(Tad)

is a base for X∗((Tad)θ∗ad) since it has the correct cardinality, by Steinberg’s

structure theorem. Thus (Tad)θ∗ad(R) is connected.

Proof of Lemma 6.4. First observe that (ii) follows once we have proved (i).

The equation σ(δ∗)δ∗−1 = (θ∗ − 1)v(σ) from [KS99, Lemma 4.4.A] (see the

proof of Lemma 6.1) implies that the image v(σ)ad of v(σ) in Tad is an element,

in fact a cocycle, in (Tad)θ
∗
ad . Since (Tsc)

θ∗sc and (Tad)θ
∗
ad are both connected, the

natural projection Tsc → Tad projects (Tsc)
θ∗sc onto (Tad)θ

∗
ad , and (ii) follows.

For the proof of (i), it is sufficient to consider the case that the endoscopic

group is basic, i.e., attached to the trivial endoscopic data (G1, G
∨
1 oWR, 1) for

the pair (G, θ), where G∨1 denotes the identity component of the fixed points of

θ∨ in G∨: if H1 is any endoscopic group and H = H1/Z1, then an admissible

embedding TH → Tθ∗ determines an admissible embedding TG1 → Tθ∗ (see

[KS99, §3.3]), with same data g, δ∗0 attached to the same (strongly G-regular)

element in Tθ∗(R).

Assume then that H1 is basic. There exists an admissible embedding

TH → Tθ∗ , where (B, T ) is a θ∗-stable fundamental pair, and thus there exist

strongly G-regular T1-norms; here TH = T1/Z1. Suppose strongly G-regular

γ1 ∈ T1(R) is a norm of δ ∈ G(R). Attach g ∈ G∗sc and δ∗ ∈ T as usual.

Then Nδ∗ ∈ Tθ∗(R). Passing to the adjoint form G∗ad of G∗, we have that

δ∗ad has image in (Tad)θ∗ad(R) under Nad. Since Nad : Tad(R) → (Tad)θ∗ad(R)

is surjective (domain and target are connected), we may then find δ∗∗ ∈ T

such that σ(δ∗∗)δ∗∗−1 is central in G∗ and δ∗∗ ≡ δ∗(1− θ∗)T. Multiplying δ∗∗

by a suitable central element allows us to replace (1 − θ∗)T by the image of

(1 − θ∗sc)Tsc. Then multiplying g by a suitable element of Tsc, we obtain a

replacement for the pair g, δ∗ with the desired property (i). Lemma 6.1 shows

that the assumption of strongly G-regularity is unnecessary.

We remove the assumption that T is fundamental using induction on the

split rank of T θ
∗
. By Lemma 6.1 we may assume that γ0, δ0 are the elements

γ2, δ2 of the proof of (ii) in Lemma 6.6, with attached g2, δ
∗
2. We construct

g3, δ
∗
3 and adjust them using the induction hypothesis, then replace g2, δ

∗
2

accordingly. Then δ∗2 = Int(t∗)−1(δ∗3). Recall that σ(δ∗2)δ∗−1
2 is the image in G∗

of the element (θ∗sc−1)v2(σ) in G∗sc and σ(δ∗3)δ∗−1
3 is the image of (θ∗sc−1)v3(σ).

We claim that we can adjust g2 again to arrange that (θ∗sc − 1)v2(σ) and

(θ∗sc−1)v3(σ) are the same central element of G∗sc. This will both complete our
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inductive proof of (i) and provide a modification of the hypercocycle property

that is useful for the proof of the main lemma of Section 9.

To justify the claim, we return to Lemma 4.4.A of [KS99] and argue with

Gsc instead of G. We replace δ0 by δsc ∈ Gsc with image δ0 up to a central

element. Then σ(δsc) = z0δsc, where z0 is central in Gsc. Passing to a suitable

strongly Gsc-regular element in each case, we find that

(θ∗sc − 1)v2(σ) = ψsc(z0)σ(δ∗2,sc)(δ
∗
2,sc)

−1

and

(θ∗sc − 1)v3(σ) = ψsc(z0)σ(δ∗3,sc)(δ
∗
3,sc)

−1,

where δ∗2,sc = g2msc(δsc)θ
∗
sc(g2)−1 has image δ∗2 up to a central element in

G∗ and δ∗2,sc = g3msc(δsc)θ
∗
sc(g3)−1 has image δ∗3 up to the same central ele-

ment in G∗. Moreover, δ∗2,sc = Int(t∗)−1(δ∗3,sc) and σ(δ∗3,sc)(δ
∗
3,sc)

−1 is central.

To prove the claim, we observe that Int(t∗)−1(σ(δ∗3,sc)(δ
∗
3,sc)

−1) coincides with

σ(δ∗2,sc)(δ
∗
2,sc)

−1 up to an element of (1− θ∗sc)T
′
sc, so that we may adjust g2 as

desired. �

Definition. Choose g, δ∗0 satisfying (i), and thus (ii), of Lemma 6.4. Then

we will call (T1 → Tθ∗ , g) toral data at γ0.

7. Application to Theorem 5.1

We return to the normalized sum of twisted integrals

Φ1(γ1) =
∣∣∣det(Ad(γ1)− I)h1/t1

∣∣∣1/2 ∑
δ,θ-conj

∆(γ1, δ) O
θ,$(δ, f)

for γ1 strongly G-regular. This was rewritten in Section 5 as

∆I(γ1)∆II(γ1)
∑

δ,θ-conj

∆III(γ1, δ; γ, δ) Φθ,$(δ, f),

where the twisted integrals themselves are now normalized, and the terms

∆I ,∆II , and ∆III come from the twisted transfer factor ∆.

Fix a maximal torus T1 over R in H1, a G-semiregular element γ0 in the

Cartan subgroup T1(R) annihilated by an imaginary root α1, and a Cayley

transform s1 for α1.

Our next step is to write Φ1(γ1) for strongly G-regular γ1 in the γ0-compo-

nent of T1(R) in a way that will be useful both for extending Φ1 to all G-regular

elements and for jump analysis around γ0.

If γ0 is not a T1-norm, then Φ1(γ1) = 0 for all strongly G-regular γ1 in

the γ0-component of T1(R), and so we define Φ1(γ1) = 0 also for the remaining

G-regular elements in the component. Assume then that γ0 is a T1-norm of

the θ-semisimple element δ0 of G(R). Let (T1 → Tθ∗ , g) be toral data at γ0. As

in Lemma 6.2, we have the element δ = δ0(Y ) = (expY )δ0 with given norm
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γ1 = γ1(Y1) = γ0 exp(YH + Yz1) in the γ0-component of T1(R). Suppose γ1

is strongly G-regular, so that δ is strongly θ-regular. We fix representatives

δ′ for the θ-conjugacy classes in the stable θ-conjugacy class of δ and then

define inv(δ, δ′) and κδ as in the preamble to Theorem 5.1.D of [KS99], which

also describes how these two objects are paired. (For more on the definitions,

see the proof of Lemma 9.6.) Then by (1) of that theorem, Φ1(γ1) may be

rewritten as

∆I(γ1)∆II(γ1)∆III(γ1, δ; γ, δ)
∑
δ′

〈
inv(δ, δ′), κδ

〉
Φθ,$(δ′, f).

Suppose, slightly more generally, that δ′ is stably θ-conjugate to strongly

θ-regular δ = εδ0, where ε ∈ T δ0(R). We may write

δ′ = δ(w) = w−1δθ(w) = w−1εw.w−1δ0θ(w),

where w ∈ G(C) (we stress C in notation just for this paragraph) and σ(w)w−1

lies in Centθ(δ,G(C)). As earlier, let T † = Cent(T δ0 , G). Then strong θ-regu-

larity implies that Centθ(δ,G) coincides with the group Tδ0 of fixed points of

Int(δ0) ◦ θ in T †. Set

Aθ(T δ0 ) = {w ∈ G(C) : σ(w)w−1 ∈ Tδ0(C)}.

Then, via the map w → δ(w),

Dθ(T δ0 ) = Tδ0(C)\Aθ(T δ0 )/G(R)

parametrizes the θ-conjugacy classes in the stable θ-conjugacy class of δ.

If now we assume only that δ = δ0(Y ) is θ-regular, then by definition (see

the remark after Lemma 6.3),

{δ(w) : w ∈ Aθ(T δ0 )}

is the stable θ-conjugacy class of δ. We will define Φ1(γ1) to be∣∣∣det(Ad(γ1)− I)h1/t1

∣∣∣1/2∑
w

∆(γ1, δ(w))Oθ,$(δ(w), f),

where
∑
w indicates summation over a set of representatives w for Dθ(T δ0 ) and

∆(γ1, δ(w)) = lim
γ†1→γ1

∆(γ†1, δ
†(w)).

In this limit, the variable γ†1 = γ1 expY † is a strongly G-regular element in the

γ0-component of T1(R). This element γ†1 is a norm of each (strongly θ-regular)

element δ†(w), where δ† = (expY ††) δ. Here Y †† ↔ YH , where Y † = YH + Yz1
as in Lemma 6.2. To see that the limit exists, we just have to recall how the

term ∆(γ†1, δ
†(w)) depends on Y †. First,

∆(γ†1, δ
†(w)) =

¨
inv(δ†, δ†(w)), κδ†

∂
∆(γ†1, δ

†).
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The first term is a constant sign and so can be ignored. The term ∆(γ†1, δ
†) is

a product

∆I(γ1 expY †)∆II(γ1 expY †)∆III(γ1 expY †, (expY ††)δ; γ, δ)∆IV (γ1 expY †).

The new first term is a constant sign. The term ∆II∆IV is a quotient of

generalized Weyl denominators for G and H1 (see [KS99, §4.3]). It is well

defined, smooth, and nonzero on the subset of all G-regular elements in T1(R).

It remains then to examine ∆III(γ1 expY †, (expY ††)δ; γ, δ). A check of defi-

nitions shows that it is the product of a constant and a character on T δ0(R)

evaluated at expY ††; see the beginning of the proof of Lemma 9.3 where we in-

troduce more detailed notation for an analysis of ∆III . We conclude then that

lim
γ†1→γ1

∆(γ†1, δ
†(w)) is well defined, which completes our (smooth) extension

of Φ1 to the full G-regular set in T1(R).

Let w ∈ Aθ(T δ0 ), and write w−1δ0θ(w) as δ0(w). Then Int(w−1) : Gθδ0 →
Gθδ0(w) is an inner twist and δ0(w) is stably conjugate to δ0. The inner type

of the group Gθδ0(w) of Dynkin type A1, either split modulo center or compact

modulo center, depends only on the double coset of w in Dθ(T δ0 ). We may

ignore those w for which Gθδ0(w) is compact modulo center, as they contribute

nothing to the final limit formula (see Section 8). We have the following

generalization of Lemma 4.2 of [She79a]. Again α0 denotes the multiple of αres

that is a root of T δ0 in Gθδ0 .

Lemma 7.1. If both Gθδ0 and Gθδ0(w) are split modulo center (i.e., both α0

and wα0 are noncompact imaginary roots), then there exists g ∈ G(R) such

that Int(g) maps Gθδ0 to Gθδ0(w) and T δ0 to T δ0(w) , and w−1α0 = ±gα0.

Proof. We follow the proof of Lemma 4.2 in [She79a]. First, a simple

argument with root vectors shows that we can arrange that Int(w−1) : Gθδ0 →
Gθδ0(w) is defined over R; see the first paragraph of the cited proof. Let s be

the standard Cayley transform in (Gθδ0)sc = SL(2) relative to the root α0 of

T δ0 in Gθδ0 , and set T ′δ0 = (T δ0 )s. We may argue in the untwisted setting with

w ∈ A(T ′G), where T ′G is the maximal torus Cent(T ′δ0 , G) in G, to choose g1

in G(R) so that Int(g1) maps T ′δ0 to w−1T ′δ0w and acts on the maximal split

torus in T ′δ0 as Int(w−1). Then Int(g−1
1 w−1) normalizes the derived group of

Gθδ0 (by another argument with root vectors) as well as T ′δ0 . Then Int(g−1
1 w−1)

normalizes Gθδ0 itself. Multiplying g1 by a suitable element of Gθδ0(R), we obtain

g in G(R) such that Int(g−1w−1) normalizes both Gθδ0 and T δ0 . Then w−1α0

coincides with ±gα0. �

We will need a twisted version of Proposition 4.6 of [She79a] in order

to match the elements of Dθ(T δ0 ) contributing to jumps with the elements

of Dθ(T
′δ0 ), where T ′δ0 = (T δ0 )s. Assume α0 is noncompact and that s is
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standard in (Gθδ0)sc = SL(2). Let w be an element of Dθ(T δ0 ) such that Gθδ0(w)

is split modulo center for some, and hence every, w representing w. Then,

following the last lemma, we may choose w so that w normalizes Gθδ0 and T δ0 ,

and w−1α0 = ±α0. Now consider those w with representative w such that

w−1α0 = α0. Suppose w0 is an element of Centθ(δ0, G) normalizing T δ0 for

which the action of Int(w0) on T δ0 realizes the Weyl reflection relative to α0.

Then w and ww0 represent the same element of Dθ(T δ0 ) if and only if we may

choose w0 in G(R), i.e., in Centθ(δ0, G)(R). If that is so, then we say that

the Weyl reflection relative to α0 is realized in G(R), keeping in mind that

this notion depends on the choice of δ0. The elements w of Dθ(T δ0 ) with a

representative w such that w−1α0 = α0 are then exactly those w such that

Gθδ0(w) is split modulo center for each representative w. We denote this subset

of Dθ(T δ0 ) by Dθ(α0). On the other hand, if the Weyl reflection relative to α0 is

not realized in G(R), then for each element w of Dθ(T δ0 ) with representative

w such that w−1α0 = α0, there is an element w−, distinct from w, with

representative w− = ww0 such that w−1
− α0 = −α0. In this case, Dθ(α0) will

denote the set of pairs {w,w−}.
Consider w′ in Dθ(T

′δ0 ). Again following on from the proof of Lemm 7.1,

since αs0 is a real root, we may find a representative w′ for w′ such that w′ nor-

malizes both T ′δ0 and Gθδ0 , and w′−1αs0 = αs0. We can then further arrange that

w′ centralizes (Gθδ0)der. Thus w = s−1w′s = w′ lies in Aθ(T δ0 ) and w−1α0 = α0.

Let w be the class of w in Dθ(T δ0 ). Then another argument with root vec-

tors shows that w′ → w is a well-defined bijective map of Dθ(T
′δ0 ) to those

w ∈ Dθ(T δ0 ) with representative w such that w−1α0 = α0. This provides us

with a bijection of Dθ(T
′δ0 ) with Dθ(α0).

Before continuing with the analysis, we finish the proof of Theorem 5.1

for some special cases.

Lemma 7.2. All limits in Theorem 5.1 are zero if

(i) γ0 is not a norm, or if

(ii) γ0 is a norm but T s11 is not a norm group for G, or if

(iii) γ0 is a norm, T s11 is a norm group for G, but γ0 is not a T s11 -norm.

Proof. For (i), we have only to apply (i) of Lemma 6.6: Φ1(γν) = 0 and

Φ1(γs1,ν) = 0 for |ν| sufficiently small and nonzero. On the other hand, for

(ii) and (iii) we have, in general, only that Φ1(γs1,ν) = 0 for |ν| sufficiently

small. Thus it remains to show limν→0 Φ1(γν) = 0. By Lemma 6.6, each

group Gθδ0(w)(R) is compact modulo center and so each unnormalized integral

Oθ,$(δ(w), f) appearing in Φ1(γν) is bounded as ν → 0 (see Section 8). Thus

the limit of Φ1(γν) exists and is zero. �
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For our analysis of the limits in Theorem 5.1, we may now assume that

both T1 and T s11 are norm groups and that γ0 is both a T1-norm and a

T s11 -norm. Recall that we assume also that the root α1 of T1 annihilating

γ0 is noncompact and that s1 is a Cayley transform in ((H1)γ0)sc = SL(2).

We return to the setting established at the end of the proof of Lemma 6.4.

We may suppose γ0 is both a T s11 -norm and a T1-norm of an element δ0 of

G(R) for which Gθδ0 is split modulo center, as there. We have admissible

homomorphisms T1 → Tθ∗ , T
s1
1 → T ′θ∗ and inverse Cayley transform t∗ in

(G∗sc)
θ∗sc which maps (T ′θ

∗
)0 to (T θ

∗
)0, T ′ to T , T ′θ∗ to Tθ∗ and completes a

commutative diagram with Int(s1)−1 : T s11 → T1 and T1 → Tθ∗ , T
s1
1 → T ′θ∗ .

Also t ∈ Gsc defines an inverse Cayley transform in (Gθδ0)sc for α′0, where α′0
is the root of T ′δ0 in Gθδ0 corresponding to α′1 = αs11 . Then, with g2, g3 as at

the end of the proof of Lemma 6.6, we choose g = g3 and g′ = g2. There is

another requirement that will be useful since it makes the limits we consider

for ∆I ,∆III in Lemmas 9.3 and 9.5 both equal to one. Namely we insist that

if a complex root of (T ′θ
∗
)0 is positive in the ordering determined by the toral

data and our choice of R-splitting for (Gθ
∗
)0, then its complex conjugate is also

positive. That this is possible follows from a familiar argument using a suitable

lexicographic ordering of roots for the R-splitting. (Start with toral data for a

maximally split torus in H1, identify inverse Cayley transforms needed to reach

(T ′θ
∗
)0 through H1, adjust the R-splitting accordingly via Cayley transforms

from the torus attached to the maximally split torus in H1, and prescribe toral

data for T s11 using the inverse transforms.)

We call the data of the last paragraph toral descent data at γ0.

8. Jump analysis for twisted orbital integrals

The limit formulas for the individual twisted orbital integrals guide our

analysis of the transfer factors, and so we write them next. Formulas of this

type are well known. We need only to extend the setting and to write the

results in a way that fits well with our transforms.

We continue with the toral descent data at γ0 from the end of the last

section: γ0 is both a T s11 -norm and a T1-norm of an element δ0 of G(R) for

which Gθδ0 is split modulo center and of Dynkin type A1. Now s will be the

Cayley transform t−1 in (Gθδ0)sc. Fix an element of Dθ(T
′δ0 ). Our choice in the

last section of representative w′, along with w and w0, ensures that Gθδ0(w) =

Gθδ0(ww0) = Gθδ0 and that the points δ0(w), δ0(ww0), δ0(w′) all coincide. We will

make a descent from G(R) to Centθ(δ0, G)(R), then into Gθδ0(R), around δ0(w).

This generalizes the descent used in Section 4 of [She79a] for the untwisted

case. Notice that because the twisting character $ is trivial on both Cartan

subgroups T δ0(R), T ′δ0(R) in Gθδ0(R) [KS99, Lemma 4.4.C] (more generally,
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$ is trivial on both Tδ0(R), T ′δ0(R) by [KS99, Th. 5.1.D]), we have that $ is

trivial on Gθδ0(R).

We may write α0 as rααres, where α1 = ((α∨)res)
∨ and the coefficient rα

is described in Lemma 6.5. As in [KS99] (see Section 9 also), we use the same

a-data and χ-data for all multiples of αres and write χ, a, χ′, and a′ for data

χαres
, aαres , χαsres , and aαsres .

Assume δ is a θ-regular element in T δ0(R)0δ0. For α0 of type R1, set

∆α0(δ) = χ

Ç
Nα(δ)− 1

a

å
|Nα(δ)− 1|1/2

∣∣∣Nα(δ)−1 − 1
∣∣∣1/2 ,

which we abbreviate as

χ

Ç
Nα(δ)− 1

a

å ∣∣∣Nα(δ)1/2 −Nα(δ)−1/2
∣∣∣ .

For α0 of type R2 or R3, we include the contribution from the orbits of all

multiples of αres to the numerators of ∆II ,∆IV :

∆α0(δ) = χ

Ç
Nα(δ)2 − 1

a

å ∣∣∣Nα(δ)−Nα(δ)−1
∣∣∣ .

On the other hand, the roots ±α′0 of T ′δ0 form two Galois orbits and we

include them both. Thus if δ′ is a θ-regular element in T ′δ0(R)0δ0, then we

define ∆α′0
(δ′) as we have ∆α0(δ), but using only the contribution from +α′0

for the absolute value term. Set

∆±α′0(δ′) = ∆α′0
(δ′).∆−α′0(δ′)

= χ′
Ç
Nα′(δ′)r − 1

a′

å
.
∣∣Nα′(δ′)r − 1

∣∣1/2
.(χ′)−1

Ç
Nα′(δ′)−r − 1

−a′

å
.
∣∣∣Nα′(δ′)−r − 1

∣∣∣1/2
= χ′(Nα′(δ′)r).

∣∣∣(Nα′(δ′)r/2 −Nα′(δ′)−r/2∣∣∣ ,
where r = 1 if α0 is of type R1 and r = 2 if α0 is of type R2 or R3.

For ν ∈ R, set δν = exp(νY (aα∨1 )).δ0, where Y (aα∨1 ) ∈ tδ0(R)) corre-

sponds under the bijection of Lemma 6.2 to the multiple aα∨1 of the coroot α∨1
regarded as an element of tH(R). Then δν has as T1-norm the element γν from

the statement of Theorem 5.1. Also,

δν(w) = w−1δνθ(w) = exp(νY (aα∨1 )).w−1δ0θ(w)

since wα0 = α0 implies that w−1.Y (aα∨1 ) = Y (aα∨1 ). Again starting with δ0,

define δs,ν with γs,ν as T ′1-norm, and δs,ν(w′) similarly. For |ν| sufficiently

small but nonzero, the elements δν(w), δs,ν(w′) are θ-regular.

Since s is a Cayley transform mapping T δ0 to T ′δ0 within the group Gθδ0 ,

we require that the Haar measures on T δ0(R) and T ′δ0(R) are compatible in the
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sense of [She79a]. (Also see Section 1.4 of [LS87]; we may start with differential

forms, attach measures and define compatibility using a/ |a| in place of i.)

Lemma 8.1. Let f ∈ C(G(R), θ). Then for any choice of χ, a, χs and as
we have

lim
ν→0+

∆α0(δν)Oθ,$(δν(w), f)− lim
ν→0−

∆α0(δν)Oθ,$(δν(w), f)

= d(α0) lim
ν→0

∆±α′0(δs,ν)Oθ,$(δs,ν(w′), f),

where d(α0) = 2 if w0 is realized in G(R) in the sense of Section 7, and

d(α0) = 1 otherwise.

For the proof, we first replace the version of Harish-Chandra’s compactness

principle in Section 4 of [She79a] by the following.

Lemma 8.2. If C is a compact subset of G(R), then there exist a neighbor-

hood Y of 0 in gθδ0(R) and a compact subset C of Centθ(δ0, G)(R)\G(R) such

that if g ∈ G(R), Y ∈Y , and g−1(expY )δ0 θ(g)∈C , then Centθ(δ0, G)(R)g∈C.

Proof. We follow the argument for Theorem 8.1.4.1 of [War72] in our

setting, noting the arguments for Proposition 3.1 of [Ren97]. �

Proof of Lemma 8.1. Notice that the choice of χ, a, χ′, and a′ does not

matter, by an argument as in the first step of the proof of Theorem 4.2. In

particular, there is no harm in taking χ′ trivial and a′ = 1.

By a continuity argument (see the appendix), it is enough to consider

the case that f ∈ C∞c (G(R), θ). Using Lemma 8.2 with δ0 replaced by δ0(w),

we may then apply a variant of Harish-Chandra’s descent argument (specifi-

cally, we generalize step by step the arguments of [She79a, §4]) to write the

normalized twisted integrals Φθ,$(δν(w), f) and Φθ,$(δs,ν(w′), f) as the nor-

malized ordinary orbital integrals of a function φ in C∞c (G(δ0)+), evaluated at

exp(νY (aα∨1 )) and exp(νY (a′(α′1)∨)), respectively. Here G(δ0)+ denotes the

identity component of the derived group of Gθδ0(R). In the descent we may

replace δν(w) by an element δ = εδ0 with ε sufficiently close to the identity

in exp tδ0(R) so that δ is θ-regular. There will be no harm in assuming fur-

ther that δ is strongly θ-regular, so that Centθ(δ,G) = Tδ0 . (Otherwise we

use Tδ0(R) in place of Centθ(δ,G)(R) in the definition of twisted orbital inte-

gral.) We may do the same in T ′δ0 , replacing δs,ν(w′) by an appropriate element

δ′ = ε′δ0.

The constant d(α0) appears when we generalize Proposition 4.4 of [She79a].

We have Tδ0 = ZθT δ0 , T ′δ0 = ZθT ′δ0 , and an argument with root vectors shows

that we also have Centθ(δ0, G) = ZθGθδ0 . (Here Zθ denotes the θ-invariants

in the center of G.) Denote the center of Gθδ0 by Zδ0 , and write G for the

product Zδ0(R).G(δ0)+. Then the three indices, all finite, that concern us are
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[Centθ(δ0, G)(R) : G], [Tδ0(R) : Tδ0 ∩ G], and [T ′δ0(R) : T ′δ0 ∩ G]. We use them

to replace the three indices in the statement of Proposition 4.4. Arguing as

in [She79a], we see that a coset of G in Centθ(δ0, G)(R) has a representative

g which normalizes T δ0 and T δ0∩ G(δ0)+, so that gα0 = ±α0. Suppose w0 ∈
Centθ(δ0, G) realizes the Weyl reflection for α0. Either g or w0g lies in Tδ0 , and

Tδ0 ∩G = T δ0(R). Suppose we cannot choose w0 in Centθ(δ0, G)(R); i.e., w0 is

not realized in G(R) in the sense of Section 7. Then we conclude that all three

indices are the same. Suppose we may choose w0 in Centθ(δ0, G)(R). Then the

first index is twice the second, and further the first equals the third. Now we

can proceed with the descent along the same lines as in Section 4 of [She79a],

and the constant d(α0) will persist to the final jump formula in the statement

of Lemma 8.1.

Let Y0(a) = aα∨0 ∈ tδ0(R) and Y ′0(a′) = a′(α′0)∨ ∈ t′δ0(R). (We could

drop a′ from notation since we have assumed a′ = 1.) Then the familiar jump

formula at the identity element for the ordinary orbital integrals of φ may be

rewritten as

lim
ν→0+

∆(exp νY0(a))O(exp νY0(a), φ)− lim
ν→0−

∆(exp νY0(a))O(exp νY0(a), φ)

= lim
ν→0

∆′(exp νY ′0(a′))O(exp νY ′0(a′), φ),

where ∆(exp νY0(a)) is given by

χ

Ç
α0(exp νY0(a))− 1

a

å ∣∣∣(α0(exp νY0(a))1/2 − α0(exp νY0(a))−1/2)
∣∣∣

= χ(
e2νa − 1

a
)
∣∣∣eνa − e−νa∣∣∣ ,

and

∆′(exp νY ′0(a′)) =
∣∣∣eν − e−ν ∣∣∣ .

The vectors Y (aα∨1 ), Y (a′(α′1)∨) are positive multiples of Y0(a), Y ′0(a′),

and so it remains to check that the (germs at the identity of the) normalizing

factors ∆,∆′,∆α0 ,∆±α′0 behave correctly under a rescaling of the variable ν.

Rather than write down the evident general principle, we record explicit cal-

culations for each of the three types for α.

Assume first that α0 = αres, where α is a root of T in G∗ of type R1.

Here, as in Section 6, we have transported the root α0 of T δ0 in Gθδ0 to (T θ
∗
)0

by the twist Int(g) ◦ ψ : Gθδ0 → Gθ
∗

δ∗0
, without change in notation. We similarly

identify the elements Y and Y ∗ of Lemma 6.2. The coroot of α0 is N(α∨), the

sum of the coroots in the θ∨-orbit of α∨, so that Y0(a) = aN(α∨). The root

α1 of T1 in H1 has coroot (α∨)res. In the Lie algebra t1 w tθ∗ = t/(θ∗ − 1)t,

we identify (α∨)res with the coset of α∨ ∈ t. Then Y (aα∨1 ) must be the real

θ∗-invariant a
lα
N(α∨) = 1

lα
Y0(a), where lα is the cardinality of the θ∨-orbit of
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α∨ (or θ∗-orbit of α). Since Nα(δ0) = Nα(δ∗0) = 1 and 〈Nα,N(α∨)〉 = 2lα,

we have that

∆α0(δν) = ∆α0(exp(νY (aα∨1 )))

= χ

Ç
Nα(exp(νalαN(α∨))) − 1

a

å
·
∣∣∣∣∣Nα

Å
exp

Å
νa

lα
N(α∨)

ãã1/2

−Nα
Å

exp

Å
νa

lα
N(α∨)

ãã−1/2
∣∣∣∣∣

= χ

Ç
e2νa − 1

a

å ∣∣∣eνa − e−νa∣∣∣ .
By the same argument, Y (a′(α′1)∨) = 1

lα
Y ′0(a′) and

∆±α′0(δs,ν) = ∆±α′0(exp(Y (a′(α′1)∨))) =
∣∣∣eν − e−ν ∣∣∣ .

We can now finish the proof for the case α0 is of type R1. In the limit

formula for the orbital integrals of φ, replace the variable ν throughout by 1
lα
ν.

Rewrite the quotient of

χ

Ç
e2νa − 1

a

å ∣∣∣eνa − e−νa∣∣∣
by

χ

Ç
e2νa/lα − 1

a

å ∣∣∣eνa/lα − e−νa/lα∣∣∣ ,
as

χ(eνa(1−1/lα))χ

Ç
sin(νb)

sin(νb/lα)

å
sin(νb)

sin(νb/lα)
,

where a = ib. Since χ is trivial on positive real numbers, the second term in

this product is trivial, and so the quotient extends continuously at ν = 0 with

nonzero value lα. The same is true, with same value lα, for the analogue∣∣∣eν − e−ν ∣∣∣ ∣∣∣eν/lα − e−ν/lα∣∣∣−1
=

sinh(ν)

sinh(ν/lα)

on the other Cartan subgroup. This allows us to replace ∆(exp 1
lα
νY0(a)) by

∆α0(δν) and ∆′(exp 1
lα
νY ′0(a′)) by ∆±α′0(δs,ν) when computing limits, and so

we get the desired formula.

Suppose that α0 is of type R3, so that α0 again has coroot N(α∨), and

Y0(a) = aN(α∨). Here the root α1 of T1 in H1 has coroot (β∨)res in the notation

of Section 1.3 of [KS99], where (α∨)res = 2(β∨)res (see Lemma 6.2). Thus

Y ∗(aα∨1 ) =
a

lβ
N(β∨) =

a

2lα
N(α∨) =

1

2lα
Y0(a).

Again

∆α0(δν) = ∆α0(exp(νY (aα∨1 ))),
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since Nα(δ∗0)2 = (−1)2 = 1. Also, 〈Nα,N(α∨)〉 = 2lα and so we again get the

formula

∆α0(δν) = χ

Ç
e2νa − 1

a

å ∣∣∣eνa − e−νa∣∣∣ .
After the substitution of 1

2lα
ν for ν, we have to examine the quotient of

χ

Ç
e2νa − 1

a

å ∣∣∣eνa − e−νa∣∣∣
by

χ

Ç
eνa/lα − 1

a

å ∣∣∣eνa/2lα − e−νa/2lα∣∣∣ ,
and we may proceed as for R1.

Suppose that α0 is of type R2. In keeping with the notation of the last

paragraph, we write the coroot of α0 as 2N(β∨) and Y0(a) = 2aN(β∨). Now the

coroot α∨1 may be either (β∨)res or (α∨)res = 2(β∨)res. Suppose α∨1 = (β∨)res.

Then

Y ∗(aα∨1 ) =
a

lβ
N(β∨) =

1

2lβ
Y0(a).

Also, 〈
Nβ,N(β∨)

〉
= 2lα = lβ,

so that

∆α0(δν) = χ

Ç
e2νa − 1

a

å ∣∣∣eνa − e−νa∣∣∣ .
Suppose α∨1 = (α∨)res. Then

Y ∗(aα∨1 ) =
a

lα
N(α∨) =

1

2lα
Y0(a) =

1

lβ
Y0(a),

∆α0(δν) = χ

Ç
e4νa − 1

a

å ∣∣∣e2νa − e−2νa
∣∣∣ ,

and once again we finish the argument the same way. �

For any w ∈ Aθ(T δ0 ), we may also do a similar descent (i.e., find φ as in

the proof above) around δ0(w) in Cent(δ0(w), G)(R). If Cent(δ0(w), G)(R) is

compact modulo center, then we conclude that Oθ,$(δν(w), f), like the ordi-

nary orbital integral for φ, is bounded as ν → 0 and so contributes nothing to

the jump formula for Φ1. This remark also applies to the proof of Lemma 7.2

for the setting where every Oθ,$(δν(w), f) is of this type.
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9. Twisted transfer factors

We now examine the various terms ∆I , . . . , ∆IV of the twisted transfer

factor ∆(γ1, δ) in the setting of toral descent data at γ0 (last paragraph of Sec-

tion 7). For the relative analysis, we have three associated Cayley transforms.

First, there is s1 : T1 → T s11 associated with the root α1 in H1. Second, there

is t∗−1 = s∗ : T → T ′ in (Gθ
∗
)0 associated with the least positive multiple of

αres that is a root, and, finally, there is t−1 = s : T δ0 → T ′δ0 for the root α0

in Gθδ0 . Details of the construction of the terms ∆I and ∆III will be included

where they are used in proofs. There is a last ingredient for our setting, a

twisted analogue of the s-compatible data sets of Sections 5–7. The results

for ∆II and ∆IV then follow quickly (Corollary 9.2), while the analysis for ∆I

and ∆III takes longer. The proof of the main lemma, Lemma 9.3, will consist

of several steps to remove parts (which we show to be trivial) of a particular

∆III term until we arrive finally at a term we can compute explicitly and also

show to be trivial.

We choose a-data and χ-data following Section 1.3 of [KS99]. These are

data for the system of restricted roots βres of T in G∗. We use the same pair

aβres
, χβres

for any positive multiple of βres that is also a restricted root and

the same data for coroots of the restrictions and for the restrictions of coroots

aβres
= a(β∨)res = a(βres)

∨

and

χβres
= χ(β∨)res = χ(βres)

∨ .

This provides us then with data for the roots and coroots of T1 in H1. We make

the same choices for the torus T ′ and define s∗-compatibility for the twisted

data set {aβres
}, {χβres

}, {aβ′res}, {χβ′res} as in Section 3. Our constructions

ensure that s∗-compatible data (which we also call s-compatible) provide data

for T1, T
s1
1 that are s1-compatible.

Following p. 36 of [KS99], we write ∆II in quotient form

∆II = ∆num
II /∆denom

II ,

where ∆num
II is a term attached to (G, θ) and ∆denom

II is from standard endoscopy

for the group H1. We now prefer to index the contributions to ∆num
II by the

orbits O of reduced restricted roots αres. Thus the formulas of p. 36 of [KS99]

yield

∆num
II (γ1, δ) =

∏
O
χαres

(
Nα(δ∗)r − 1

aαres

),

where αres represents O, and r = 1 or r = 2 according as αres is of type R1 or

of type R2.



1960 D. SHELSTAD

Remark 1. Waldspurger [Wal09] has pointed out that a correction is needed

in the definition of twisted transfer factors in the nonarchimedean case and that

it can be made by the insertion of 2 in certain contributions to ∆II when the

system of restricted roots αres is not reduced. This has no effect in our present

archimedean case; see [KS12, §1] for details. An alternate way of making the

correction, which involves ∆I instead and makes sense in all characteristics, is

presented in [KS12]. It also has no effect on the definitions in the archimedean

case [KS12, Prop. 3.5.2].

Remark 2. First we observe an error on p. 137 of [KS99] pointed out to

us by Waldspurger. The exponent −1 in the formula (A.3.13) does not belong

there. We emphasize that by the term Langlands’ pairing in the statement

of (A.3.13) we mean the pairing from [Lan97]. The source of this error is

on p. 131, where what is described as the Langlands map is the reciprocal of

that defined in [Lan97]. To be explicit in the case at hand, if T is a torus

defined over R, then the isomorphism H1(C×, X∗(T ))→ X∗(T )⊗ C× = T (C)

defined in the middle of p. 131 of [KS99] has an exponent −1 not present in

the isomorphism defined in [Lan97]. (An explicit formula is found on p. 243 of

[Lan97] after the first commutative diagram.) We resolve this by inverting the

formula for the pairing in (A.3.9). Then the formula (A.3.13) is true as stated

in [KS99]. Now, in principle, we should insert an exponent −1 in the formula

(A.3.14) involving Tate-Nakayama duality, but here in the archimedean case

the term is simply a sign, and so we may use the formula as stated in [KS99].

Our resolution agrees with that suggested to us by Waldspurger for the general

case; i.e., our ∆ coincides with the term ∆′ of (5.4.1) in [KS12]. It also gives

the correct shift in infinitesimal character for Langlands functoriality of the

dual spectral transfer [She11].

Returning now to our analysis of the various terms ∆I , . . . , ∆IV , we ob-

serve the following generalization of Lemma 4.1.

Lemma 9.1. For any s-compatible twisted data set {aβres
}, {χβres

}, {aβ′res},
{χβ′res} we have∏

O
χβres

Ç
(Nβ(δ0)r − 1)

aβres

å
=
∏
O′
χβ′res

Ç
(Nβ′(δ0)r − 1)

aβ′res

å
.

On the left, the product is over all Galois orbits O of reduced restricted

roots for T δ0 (i.e., of types R1 or R2) except those containing a multiple of

α0. Each term is independent of the choice of representative βres for O; r = 1

if βres is of type R1 and r = 2 if βres is of type R2. The right side is defined

analogously, using all Galois orbits O′ of reduced restricted roots for T ′δ0 except

those containing a multiple of α′0. For the precise meaning of Nβ(δ0), see the

remark after Lemma 6.5.
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Proof. We match contributions to each side of the formula orbit by orbit

as in the proof of Lemma 4.1. �

Because we will eventually consider derivatives of the transforms Ψa,χ and

Ψa′,χ′ , we use the variables δ0(Y ), γ0(Y1), etc. from Lemma 6.2 in our limit

formulas for terms of the transfer factors. Each of ∆II and ∆IV is defined as a

quotient of a term associated with G and a term associated with H1 (Sections

4.3 and 4.5 of [KS99]). Each denominator cancels with an identical term in

one of the transforms Ψa,χ and Ψa′,χ′ of Theorem 5.1. Denote the numerators

as ∆II,num and ∆IV,num. These numerators contribute the factors ∆α0 ,∆±α′0
from the orbits in Qα0, Qα′0 for the twisted transforms in the jump formulas

of the last section, and so these terms will also be removed. In the case of ∆II ,

what remains is each side of the equation in Lemma 9.1. There is a similar

assertion for ∆IV . Thus

Corollary 9.2. For an s-compatible data set and toral descent data at

γ0 we have

lim
Y1→0

∆II,num(γ0(Y1))∆IV,num(δ0(Y ))∆α0(δ0(Y ))−1

= lim
Y ′1→0

∆II,num(γ0(Y ′1))∆IV,num(δ0(Y ′))∆±α′0(δ0(Y ′))−1.

Lemma 9.3 (Main lemma). For an s-compatible data set and toral descent

data at γ0, we have

lim
Y1,Y ′1→0

∆III(γ0(Y1), δ0(Y ); γ0(Y ′1), δ0(Y ′)) = 1.

Transitivity of the relative transfer factor (Lemma 5.1.A of [KS99]) then

implies immediately the following about the terms of type ∆III which appear

in the limit formulas of Theorem 5.1 and Lemmas 10.1 and 10.2.

Corollary 9.4. In the same setting, we have

lim
Y1→0

∆III(γ0(Y1), δ0(Y ); γ, δ) = lim
Y ′1→0

∆III(γ0(Y ′1), δ0(Y ′); γ, δ).

Proof of Lemma 9.3. We start by showing that

∆III(γ0(Y1), δ0(Y ); γ0(Y ′1), δ0(Y ′)),

defined as the term 〈V1,A1〉 on p. 43 of [KS99], is the product of a term

independent of Y1, Y
′

1 , which we will denote

∆III(γ0, δ0;T1, T
′
1),

and a term which has limit 1 as Y1, Y
′

1 approach 0. A longer argument will

then show that

∆III(γ0, δ0;T1, T
′
1) = 1.
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Recall Remark 2 earlier in this section: the pairing 〈−,−〉 is now defined by

the reciprocal of the formula displayed on p. 135 of [KS99]. First we factor

V1 as V0.V(Y ). The tori U, S, and S1 are attached to T, T ′ in Section 4.4

of [KS99]. Notice that our T1, T
′
1 are labeled TH1 , T

′
H1

there. The element V1

belongs to the hypercohomology group denoted H1(Γ, U
1−θ−−→ S1). It is the class

of the pair (V,D1), where V = V (σ) is a Galois 1-cocycle in U and D1 is an

element in S1, and the hypercocycle identity (1−θ)V = σ(D1)D−1
1 is satisfied.

We have defined 1-cochains v(σ), v′(σ) in Section 6. The pair (v(σ)−1, v′(σ))

lies in Tsc × T ′sc. Its image under the projection to

U = Tsc × T ′sc/{(z−1, z) : z ∈ Zsc}

is, by definition, V . (Our modification at the end of Section 6 does not af-

fect V .) To describe D1 we start with the elements δ∗0(Y ), (δ∗0)′(Y ′) of T, T ′

(Lemma 6.2). To resolve a notational conflict with [KS99], we write the pull-

back torus T1 of p. 42 of [KS99] as T2. Then (δ∗0(Y ), γ0(Y1)) lies in T2 and

((δ∗0)′(Y ′), γ0(Y ′1)) lies in T ′2. The element

((δ∗0(Y ), γ0(Y1))−1, ((δ∗0)′(Y ′), γ0(Y ′1)))

of T2 × T ′2 factors as

((δ∗0, γ0)−1, ((δ∗0)′, γ0)).((expY ∗, expY1)−1, (expY ∗′, expY ′1)).

This factoring persists for images in the quotient S1 (defined on p. 42 of [KS99]),

and we write the factoring in S1 as D1 = D0.D(Y1, Y
′

1). Because Y ∗, etc.,

lie in the real Lie algebras of the relevant tori, we also have a factoring of

hypercocycles:

(V,D1) = (V,D0).(1, D(Y1, Y
′

1)).

Then V0 will denote the class of (V,D0) and V(Y1, Y
′

1) will denote the class of

(1, D(Y1, Y
′

1)).

Define

∆III(γ0, δ0;T1, T
′
1) = 〈V0,A1〉 ,

so that

〈V1,A1〉 = ∆III(γ0, δ0;T1, T
′
1).
〈
V(Y1, Y

′
1),A1

〉
.

To see that the complementary term 〈V(Y1, Y
′

1),A1〉 has limit 1 as Y1, Y
′

1

approach 0, we recall that the element A1 in the hypercohomology group

H1(WR, S
∨
1

1−θ∨−−−→ U∨) is represented by the pair (A−1, sU ) specified on p. 45 of

[KS99]. In particular, A is a 1-cocycle of WR in S∨1 . The pairing for hyperco-

homology is compatible with the Langlands parametrization of characters on

S1(R) ([KS99, A.3.13] , as corrected in Remark 2). This allows us to compute
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〈V(Y1, Y
′

1),A1〉 as the value of the character attached to the class of A−1 in

H1(WR, S
∨
1 ) on the image D(Y1, Y

′
1) of

((expY ∗, expY1), (expY ∗′, expY ′1))

in S1(R). The limit assertion is now immediate.

Thus it remains to show that 〈V0,A1〉 = 1. We factor each of (V,D0)

and (A−1, sU ) further, and so reduce to calculations with familiar pairings in

cohomology.

Recall from the end of Section 7 that we have arranged that the 1-cochains

v(σ), v′(σ) are such that (θ∗ − 1)v(σ) and (θ∗ − 1)v′(σ) are the same central

element, so that V (σ) is θ∗-invariant. Thus V is a 1-cocycle in U θ
∗
. We then

have (or may check directly) that D0 ∈ S1(R), so that (V,D0) factors as

(V, 1).(1, D0). Turning to the dual side, we have from the hypercocycle equation

that the element sU determines a Γ-invariant element in U∨θ = U∨/(1−θ∨)U∨,

and hence an element sU,θ in π0((U∨θ )Γ). The group U θ
∗

is a torus since the

usual isomorphism of U with Tsc × T ′ad (see p. 38 of [KS99]) is θ∗-equivariant

and the invariants for each factor in the product torus are connected. The dual

of U θ
∗

is U∨θ . Write 〈V, sU,θ〉 for the Tate-Nakayama pairing of the class of V in

H1(Γ, Uθ
∗
) with sU,θ ∈ π0((U∨θ )Γ) and Λ for the character on S1(R) attached

to A−1 by the Langlands correspondence. Then we may compute 〈V0,A1〉 as

the product 〈V, sU,θ〉 .Λ(D0) (see p. 135 of [KS99]). We check now that each

term in this product equals 1.

The image v′ad(σ) of the cochain v′(σ) in T ′ad is a cocycle in the torus

(T ′ad)θ
∗
ad . As usual, we identify the cocharacters of this torus with the θ∗-invar-

iant coweights of T ′ad. Under the Tate-Nakayama isomorphism

H−1(Γ, X∗((T
′
ad)θ

∗
ad))→ H1(Γ, (T ′ad)θ

∗
ad),

v′ad(σ) is cohomologous to the cup product of the fundamental 2-cocycle for

C/R with a θ∗-invariant coweight x′cw for T ′ad such that σx′cw = −x′cw, i.e., to

(−1)x
′
cw . Write

v′ad(σ) = (−1)x
′
cw(σ(t′)t′−1)ad,

where t′ lies in the torus (T ′sc)
θ∗sc . Extend the root α′0 trivially to Zsc. Then

our assumptions on g′ ensure that

α′0(v′(σ)) = α′0(v′ad(σ)) = 1.

Thus α′0(σ(t′)t′−1) = 1. Apply the inverse Cayley transform t∗ to x′cw to obtain

a θ∗-invariant coweight xcw for Tad. Then σxcw = −xcw and a calculation shows

that

vad(σ) = (−1)xcw((−1)εα
∨
0 σ(t′′)t′′−1)ad,

where ε ∈ {0, 1} and t′′ ∈ (Tsc)
θ∗sc . To recall the characters and cocharacters of

U , we use t∗ to identify T ′ with T over C. The characters may be identified as
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pairs (λ, µ), where each of λ and µ is a weight of Tad and λ− µ is an integral

combination of roots, while the cocharacters may be identified as pairs (λ∨, µ∨)

of coweights such that λ∨ + µ∨ is an integral combination of coroots. The

canonical pairing is〈
(λ, µ), (λ∨, µ∨)

〉
=
〈
λ− µ, λ∨

〉
+
〈
µ, λ∨ + µ∨

〉
.

Set

x = (−xcw − εα∨0 , xcw).

(Recall x′cw has now been identified with xcw.) Then x lies in X∗(U
θ∗), σx =

−x, and, by evaluating characters on both sides of the following, we see that

(−1)x = V (σ).σ(u)u−1, where u is the image in U θ
∗

of (t′′, t′)−1. Thus σ →
(−1)x is cohomologous to V .

We may now compute 〈V, sU,θ〉 by evaluating x, as character on (U θ
∗
)∨ =

U∨θ , at the element sU,θ. In the notation of p. 39 of [KS99] where sU is defined,

we have arranged that s̃T = s̃T ′ , so that to show 〈V, sU,θ〉 = 1, it is enough

to show that α∨0 (sT ) = 1; i.e., N(α∨)(sT ) = 1 if α0 is of type R1 or R3, or

N(α∨)(sT )2 = 1 if α0 is of type R2. But if α0 is of type R1 or R3, then the

corresponding root α1 of H1 is of type R1 or R2 only, so that N(α∨)(sT ) = 1,

as desired. If α0 is of type R2, then the corresponding root α1 is of type R2

or R3, and N(α∨)(sT ) = ±1 accordingly. Since we need only N(α∨)(sT )2 = 1,

we are done. This remark, namely that α∨0 (sT ) = 1, will be useful again.

Also, a partial converse result (see the proof of Lemma 11.1) provides a crucial

cancellation in the final steps of our proof of the main theorem.

It remains then to show that Λ(D0) = 1. Here s-compatibility of the

χ-data plays a key role, along with an extension of the comparison arguments

of Section 4 of [LS90] already used in the definition of A in Section 4 of [KS99].

Our (second) argument for Lemma 9.5 below will have a similar structure,

using the first lemma of comparison from [LS90] in place of the second.

The element D0 of S1(R) is the image of ((δ∗0, γ0)−1, ((δ∗0)′, γ0)) under

T2×T ′2 → S1. As before, we will use t∗ to identify T ′ with T , and then T ′2 with

T2, over C. The element ((δ∗0)′, γ0) is thus identified with (δ∗0, γ0). As on p. 42

of [KS99], we identify S1 as T ′2 × Tad (T ′2 is labelled T1 in the reference) and

then as T2× Tad. The Galois action on the first component is the transport σ′

of that on T ′2, while on the second component we use the twisted action

(1, tad)→ (ψw0
(σ′(tad)), σ(tad)).

Here ψw0
: Tad → T2 is defined as follows. Pick t2 ∈ T2 in the inverse image

of tad under the surjection T2 → T → Tad. Then ψw0
(tad) = w0(t2)t−1

2 is

independent of the choice for t2. The chosen Galois action makes

T2 × T ′2 → S1 → T2 × Tad : (t2, t
′
2)→ (t2t

′
2, (t2)ad)
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defined over R. Write δad for the image of (δ∗0, γ0)−1 in Tad. Then δad is fixed by

σ and σ′ (recall our assumptions on δ∗0, (δ
∗
0)′), and ψw0

(δad) = 1, also because

of our assumptions on δ∗0, (δ
∗
0)′. Notice that D0 ∈ S1(R) is identified with

(1, δad) ∈ (T2 × Tad)(R).

As in [KS99], we identify S∨1 as T∨2 × T∨sc, with Galois action

(t2, tsc)→ (σ′(t2), ϕw0
(σ′(t2))σ(tsc)).

(Recall we have chosen T ′2 rather than T2 to be the torus T1 in [KS99].) Here

ϕw0
: T∨2 → T∨sc is the dual of ψw0

. (This is the variant of the definition of α(w0)

in [KS99] needed when U is replaced by S1, and we will recall how to compute

it when needed below.) The 1-cocycle A(w) of WR in S∨1 is constructed as the

element (aT ′2(w), xsc(w)) of T∨2 × T∨sc, where xsc(w) is a product

τ̂(w0, σ
′).b̂(w0)−1.w0(c′(w)).c(w)−1.ϕw0

(aT ′2(w)).

To begin examining these terms, we observe that we may replace the

cocycles aT2(w), aT ′2(w) by cocycles a−(w), a′−(w) for which ϕw0
(a′−(w)) = 1.

Then A(w) will be replaced by

A−(w) = (a′−(w), τ̂(w0, σ
′).b̂(w0)−1.w0(c′−(w)).c−(w)−1),

and there is now no twist in the Galois action on the first component. This

ensures that the second component is a cocycle for the action by σ.Our strategy

then will be to examine that cocycle and see that the attached character on

Tad(R) takes the value 1 at δad, which is sufficient to complete the proof of the

lemma.

To define a−(w), a′−(w), it is more convenient to view S∨1 as a subtorus

of T∨2 × T∨2 , with Galois actions σ′, σ on the first and second components

respectively. The cocycle A(w) = (aT ′2(w), aT2(w)) lies in S∨1 . By construction,

T∨ × T∨ embeds in T∨2 × T∨2 , and S∨1 contains the image of the standard

homomorphism T∨sc × T∨sc → T∨ × T∨. Consider a cocycle in S∨1 which is the

image of a cocycle (a′+(w), a+(w)) in T∨sc×T∨sc. We will write this image also as

(a′+(w), a+(w)). To evaluate the corresponding character on S1(R) under the

Langlands correspondence on the element D0 we may, by functoriality of the

correspondence, evaluate at (δad, δad) the character on Tad(R)× Tad(R) (σ′ is

the action for the first component, σ for the second) attached to (a′+(w), a+(w))

as cocycle in T∨sc×T∨sc. We will choose (a′+(w), a+(w)) so that the resulting value

is 1, and thus Λ(D0) is unchanged when we divide A(w) by (a′+(w), a+(w)).

The cocycles a′+(w), a+(w) will come from c′(w), c(w).

The cochain c′(w) is defined as a quotient r′1(w)/r′s(w) of terms from

constructions in Section 2.5 of [LS87]. First, r′1(w) is the term rp(w) for the

group G∨∗ = ((G∨)θ
∨
)0, Galois action σ′ and gauge p associated to our choice
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of positive roots (that determined by our fixed Γ-splitting of G∨ preserved by

θ∨ and our choice of toral data). Then

r′1(w) = sp/p0(w)
∏
r±O′(w),

where the product is over pairs ±O′ of orbits for σ′ in the roots of T∨∗ =

((T∨)θ
∨
)0 in G∨∗ . The term r′s(w) is defined similarly, using the roots of T∨∗ in

H∨. In the next paragraph, we will keep track of contributions after cancella-

tion, using the pairs ±O′ of orbits of roots in G∨∗ (the reduced restricted roots)

to index them.

We claim that there are nontrivial contributions from ±O′,±2O′ to c′(w)

only in the following two cases: (i) neither ±O′,±2O′ belongs to H∨, and

(ii) ±2O′ belongs to H∨. Recall we have fixed the root α0 = αres of Gθδ0 and

(reduced) α∗ is the multiple of α0 that is a root of (Gθ
∗
)0. Now on the dual

side, we set α∗∗ to be the multiple of (α∨)res that is a root of T∨∗ in G∨∗ and

denote by β∗∗ = (β∨)res a root of T∨∗ in G∨∗ distinct from ±α∗∗. The coroot of

β∗∗ is rNβ, where r = 1 unless β (and hence also β∨) is of type R2, in which

case r = 2. The term r±O′(w) is constructed in Section 2.5 of [LS87]. We will

need its explicit form only for symmetric orbits. Then

r±O′(w) = χβ∗∗(u0(w))rNβ,

where β∗∗ represents O′ and u0(w) is defined in Section 2.5 of [LS87]. This

applies also if β∗∗ is not reduced (as in case (ii)). Now to check the claim we

examine the various possibilities as in the argument on p. 49 of [KS99]. We see

that the contribution in case (i) is r±O′(w), while in case (ii) it is r±2O′(w)−1.

In the remaining cases, it is 1, as asserted. We of course define c(w) in the

same way as c′(w), using instead the action σ.

The terms sp/p0(w) are, in general, different for G∨∗ and H∨. We have as-

sumed that our toral data have the property that complex conjugates (relative

to σ′ only) of positive complex roots are positive. Then both terms sp/p0(w)

contributing to c′(w) , but not necessarily those contributing to c(w), are trivial

(see Section 2.4 of [LS87] for their definition) and will be deleted in notation.

We will deal with sp/p0(w) for the action defined by σ in the last paragraph of

our proof.

Suppose O′ 6= {±α∗∗} is asymmetric and not orthogonal to α∗∗. Our

plan is to remove a cocycle for each ±O′ contributing to c′(w) and then to

remove a matching cocycle from c(w). Because there exist trivial χ-data for

±O′, the contribution r±O′(w) must be a cocycle (see also Corollary 2.5.B of

[LS87]), and we may compute the corresponding character Λ±O′ on Tad(R)

as in Section 3.3 of [LS87]. Assume β∗∗ belongs to ±O′. Suppose first that

σ′β∗∗ = −w0β∗∗ 6= ±β∗∗ (i.e., β∗∗ is complex for σ′ and imaginary for σ). Then

according to Lemma 3.3.D of [LS87], Λ±O′(δad) = χβ∗∗(Nβ(δad)r). To extract
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a matching cocycle from c(w) we may simply write down any cocycle that

gives the correct character value. We will, however, take time to motivate our

construction, as we will use the result later. Namely, we consider the (distinct,

symmetric) σ-orbits O and w0O of β∗∗ and w0β∗∗. The contributions r±O(w)

and r±w0O(w) to c(w) are not cocycles. However, because we use compatible

χ-data, r±O(w)r±w0O(w) is of the form

χβ∗∗(u0(w))rNβχw0β∗∗
(u0(w))rw0Nβ = χβ∗∗(u0(w))r(Nβ + w0Nβ).

But

Nβ + w0Nβ ≡ 2NβmodNα.

We extract χβ∗∗(u0(w))2rNβ from c(w). This is a cocycle since χ2
β∗∗

is trivial

on R× (Lemma 2.5.B of [LS87]). The value of the corresponding character at

δad is χβ∗∗(x
2), where x/x = Nβ(δad)r; see the calculations of Section 3.3 of

[LS87]. Since

χβ∗∗(x
2) = χβ∗∗(x/x.xx) = χβ∗∗(x/x) = Λ±O′(δad),

we have removed an appropriate pair of cocycles from c′(w), c(w).

In the next step of the definition of a′+(w), a+(w) we consider the asym-

metric orbits O′ not orthogonal to α∗∗ for which the σ-orbit O of β∗∗ ∈ O′ is

also asymmetric. Then both r±O′(w) and r±O(w) are cocycles. If O′,O are of

the same cardinality (i.e., both consist of a complex root and its conjugate),

then the corresponding characters have the same value at δad, and so we re-

move r±O′(w), r±O(w) from c′(w), c(w) respectively. It remains to consider

the case that σ′β∗∗ = β∗∗ and β∗∗ is not orthogonal to α∗∗. Then w0β∗∗ also

has this property, is distinct from β∗∗, and has same σ-orbit as β∗∗. Here we

remove both r±O′(w) and r±w0O′(w) from c′(w), and r±O(w) from c(w). The

requirement of s-compatibility that χβ∗∗ = χ′β∗∗ ◦ Nm ensures that the cor-

responding characters match at δad (see Section 3.3 of [LS87]), and so we are

done.

The final step in the definition of a′+(w), a+(w) is needed only for the

case where α∗∗ is of type R2 and 2α∗∗ is a root of H∨, so that {±α∗∗} satisfies

the requirements of case (ii) above. Then r±2O′(w)−1 is a cocycle which we

include in a′+(w), i.e., discard from c′(w), since the method of Section 3.3 of

[LS87] shows that the value of the corresponding character at δad is 1.

We observe next that c′−(w) = c′(w)/a′+(w) has contributions only from

orbits which are orthogonal to α∗∗, so that c′−(w) is fixed by w0. Moreover, by

construction [LS87], each contribution is the image of an w0-invariant in T∨sc.

Turning now toA−(w), we verify that ϕw0
(a′−(w)) = 1. The cocycle aT ′2(w)

takes values in the torus T∨2 , which is the quotient of T∨1 ×T∨ by the diagonally

embedded torus T∨H . It may be written as the image of the pair (t1(w), t(w)−1)

on p. 45 of [KS99]. To compute ϕw0
on this image, we may choose an element
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tH(w) of T∨H so that t1(w)tH(w) lies in the center of H∨1 and then compute

ϕw0
(t(w)−1tH(w)). In this last formula, ϕw0

denotes the standard homomor-

phism T∨ → T∨sc : t→ w0(tsc)t
−1
sc , where tsc has same image as t in T∨ad. Then

ϕw0
(a′−(w)) = ϕw0

(aT ′2(w).a′+(w)−1) = ϕw0
(t(w)−1tH(w).a′+(w)−1).

Notice that ϕw0
(c′−(w)) = 1. Our claim now is that

ϕw0
(t(w)−1tH(w).a′+(w)−1) = 1.

To provide a more explicit description of t(w), and of our choice for tH(w),

we review the construction of aT ′2(w). We fix a Γ-splitting of G∨ that is pre-

served by θ∨ and assume that the endoscopic datum s lies in the maximal torus

of this splitting (which we identify with T∨ using our chosen toral data). Then

we use the attached Γ-splittings for G∨∗ and H∨. Let wH denote the action of

1×w ∈ LH on H∨. Then wH acts on T∨H = T∨∗ and thus on T∨ = Cent(T∨∗ , G
∨)

as ω(wH)wG, where wG is the action of 1×w ∈ LG (or LG∗) and ω(wH) lies in

the Weyl group of G∨∗ . Let M∨∗ be the Levi group in G∨∗ containing T∨∗ and with

root system consisting of those β∗∗ for which σβ∗∗ = −β∗∗. (Recall we use σ

as an abbreviation for σT .) Then ω(wH) lies in the Weyl group of M∨∗ , and so

we construct n(ω(wH)) in M∨∗ acting as ω(wH) as in [LS87]. Further, we may

find t1H(w) in T∨∗ ∩ (M∨∗ )der so that h(w) = t1H(w)n(ω(wH))×w ∈ LG lies in H
(part of the endoscopic data e) and acts on H∨ as wH . Then for the embedding

ξ1 : H → LH1 (part of the z-pair), we have ξ1(h(w)) = z1(w)×w, where z1(w)

is central in H∨1 . The embedding ξT ′1 :L T1 →L H1 has the property

ξT ′1(1× w) = r′s(w)ns(ω
′
H(w))× w

= z1(w)−1r′s(w).ns(ω
′
H(w)).ξ1(h(w))

= z1(w)−1r′s(w).ξ1(ns(ω
′
H(w)).h(w)).

Here σ′ acts as ω′H(σ).σH on T∨H , and ω′H(w) = ω′H(σ) if w → σ underWR → Γ,

while ω′H(w) = 1 if w → 1. Notice that ω′(σ) also lies in the Weyl group of

M∨∗ (although we construct ns(ω
′
H(w)) in H∨). We have to compare ξT ′1 with

the embedding ξT ′∗ : LT ′∗ →L G∗ which extends naturally to ξT ′ : LT ′ →L G.

Write the action of σ′ on T∨H = T∨∗ as ω′G(σ).σG. Construct n(ω′G(w)) in M∨∗ ,

and notice that ω′G(w) = ω′H(w).ω(wH). Then

ξT ′∗(1× w) = r′1(w)n(ω′G(w))× w

= r′1(w)ω′H(w)(t1H)−1n(ω′G(σ))n(ω(wH))−1h(w).

We claim that

n(ω′G(σ))n(ω(wH))−1 = t2H(w)ns(ω
′
H(w)),

where t2H(w) ∈ T∨∗ ∩ (M∨∗ )der. To prove this, we compare the left side to

n(ω′H(w)) using Lemma 2.1.A of [LS87]. For the right side, there is a routine



ENDOSCOPIC TRANSFER 1969

generalization of Lemma 4.3.A of [LS90] to the twisted case that allows us to

compare ns(ω
′
H(w), an element in the Levi group of H∨ corresponding to the

appropriate multiples of roots in M∨∗ , to n(ω′H(w)), an element of M∨∗ . The

claim then follows. Thus

ξT ′∗(1× w) = r′1(w)ω′H(w)(t1H)−1t2H(w).ns(ω
′
H(w))h(w).

Turning now to aT ′2(w), we set

t1(w) = z1(w)−1r′s(w), tH(w) = r′s(w)−1

and

t(w) = r′1(w)ω′H(w)(t1H)−1t2H(w).

Then

ϕw0
(t(w)−1tH(w).a′+(w)−1) = ϕw0

(ω′H(w)(t1H)−1t2H(w)) = 1

since

ω′H(w)(t1H)−1t2H(w) ∈ T∨∗ ∩ (M∨∗ )der

and ϕw0
is trivial on T∨∗ ∩ (M∨∗ )der.

Our last step is to examine the second component

τ̂(w0, σ
′).b̂(w0)−1.w0(c′−(w)).c−(w)−1

of A−(w). Consider

w0(c′−(w)).c−(w)−1 = c′−(w)c−(w)−1.

If O′ is orthogonal to α∗∗, then O′ is also a σ-orbit O, and r±O′(w) = r±O(w).

Thus all that remains in w0(c′−(w)).c−(w)−1 is a term in (C×)rNα and the term

sp/p0(w) for the action σ. We compare sp/p0(w) with τ̂(w0, σ
′).b̂(w0)−1. Recall

our assumption that if β∗∗ > 0, then σ′β∗∗ > 0 unless σ′β∗∗ = −β∗∗. Then

β∗∗ > 0 and σβ∗∗ > 0 requires w0β∗∗ = σ′σβ∗∗ > 0. Thus the sum defining

τ̂(w0, σ
′) is empty, so that τ̂(w0, σ

′) = 1. Next, we use a routine generalization

of Lemma 4.3.B in [LS90]. This shows that the term b̂(w0) is a product of an

element of order two and an element in (C×)rNα. The element of order two is

of the form
∏
β∗∗

(−1)β
∨
∗∗ , where the product is over representatives for the pairs

{β∗∗,−w0β∗∗} with the property that β∗∗ > 0 and −w0β∗∗ > 0. If we consider

just those pairs where β∗∗,−w0β∗∗ are also complex roots (if one is, the other

is), then we obtain sp/p0(w). See Section 2.5 of [LS87], and cancel terms for

G∨, H∨ appropriately. Assume now that β∗∗ is imaginary. Then (−1)β
∨
∗∗ is a

Galois cocycle which inflates to a cocycle of WC/R of order at most two. To

evaluate the corresponding character at δad, we use the method of Section 3.2

of [LS87] to reduce the calculation to evaluation at the element Nβ(δad)r of

a character of order at most two on the real points of a 1-dimensional torus

T β∗∗ . Since T β∗∗(R) is compact, the (cocycle and) character must be trivial.

Notice that here the canonical constructions of [LS87] have allowed us to avoid
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the more complicated setting in Theorem 6.1.1 of [She81b], where case-by-case

computations were needed. Thus we may discard the pairs {β∗∗,−w0β∗∗} for

which β∗∗, and hence also −w0β∗∗, is imaginary. Since no real roots contribute,

we conclude that, after the discard, τ̂(w0, σ
′).b̂(w0)−1.w0(c′−(w)).c−(w)−1 is

a cocycle with values in (C×)rNα. It remains to evaluate the corresponding

character at δad. We again use the method of Section 3.2 of [LS87] to reduce

this to the value of a character on a 1-dimensional torus Tα∗∗ at the element

Nα(δad)r. If α∗∗ is of type R1, then Nα(δad)r = Nα(δad) = 1, and if α∗∗ is of

type R2, then Nα(δad)r = Nα(δad)2 = (±1)2 = 1 also. Thus the value is 1,

and we have finished the proof of Lemma 9.3. Notice that we could have based

our last calculation on the coroot of the root α1 of H1 in place of the reduced

α∗∗. Then we arrive at the evaluation of a character at α1(γ0) = 1. �

Lemma 9.5. For an s-compatible data set and toral descent data at γ0,

we have

∆I(γ0(Y1), δ0(Y )) = ∆I(γ0(Y ′1), δ0(Y ′))

for all Y1 ∈ t1(R) and Y ′1 ∈ t′1(R).

Proof. Given our choices, the sign ∆I depends only on the torus T1 or T
′
1

to which the first argument, γ0(Y1) or γ0(Y ′1), belongs. The lemma asserts that

not even that matters. There are two ways we can argue this. The first is to

observe that the proof in [She82], [LS90] of geometric transfer (with the transfer

factors of [LS87]) for untwisted endoscopy avoids Lemma 9.5, using instead

regular unipotent analysis and the local hypothesis. We deduce Lemma 9.5 in

the untwisted case from the cited proof together with Corollaries 9.2 and 9.4

above: if transfer exists and all terms but ∆I are known to match correctly

then ∆I must match correctly. We then prove Lemma 9.5 in the general case

with the observation from Section 4.2 of [KS99] that ∆I for the twisted case

may be interpreted as ∆I for a case of standard endoscopy.

Our second proof for Lemma 9.5 is a direct argument, allowing us to

complete a proof for geometric transfer that works as well for, rather than

assumes, standard endoscopy. The starting point is the observation cited above

for twisted ∆I . We consider standard endoscopy for the quasi-split group

Gθ
∗
sc = (G∗sc)

θ∗sc (denoted Gx in [KS99]) and the datum sT,θ defined on p. 32

of [KS99]. The two maximal tori T θ
∗
sc , T ′θ

∗
sc in G

θ∗sc
sc are norm (image) groups

for the endoscopic group J . Our toral data and a-data provide data for this

setting also. Write α∗ for the multiple of α0 that is a root of T θ
∗
sc and define

α′∗ similarly. Recall that the inverse Cayley transform t∗ carries α′∗ to α∗.

Pick a Gθ
∗
sc-semiregular element ε of T ′θ

∗
sc(R) with image εJ in J(R). Then

we make an endoscopic descent around the pair (ε, εJ) as in [LS90]. By

construction, the connected centralizers of ε, εJ are isomorphic over R, so that

the base endoscopy is trivial up to passage to z-extensions. In particular, each



ENDOSCOPIC TRANSFER 1971

∆I term is trivial. Our setting satisfies the requirements for the comparison

formulas of Section 3.3 of [LS90], including the condition (3.3.2). The formula

of Lemma 9.5 is the same as the corresponding formula for G
θ∗sc
sc relative to

the tori T θ
∗
sc , T ′θ

∗
sc . Thus it is enough to show that the quotient of the two

terms in the formula divided by the (trivial) quotient for the centralizers, or

the quotient of the terms ΘI of [LS90] for T ′θ
∗
sc and T θ

∗
sc , is trivial. Lemma

3.3.D of [LS90] describes a class v in H1(Γ, T θ
∗
sc) with which we may pair sT,θ,

by the Tate-Nakayama pairing, to obtain this quotient of the ΘI . It remains

thus to examine v (which we will write as v∗) and conclude that, because of

our particular choice of a-data, this class is represented by a cocycle (−1)εα
∨
∗ ,

where ε ∈ {0, 1}. Since α∨∗ is a root of J∨, the pairing yields 1, and the lemma

is then proved.

We use, just for this paragraph, α to denote a reduced root of T θ
∗
sc different

from ±α∗. (We argue in G
θ∗sc
sc with no reference to H∨ or the endoscopic data.)

Identify T ′θ
∗
sc with T θ

∗
sc via t∗, and write σ for the Galois action on T θ

∗
sc , σ′

for the transport of the Galois action on T ′θ
∗
sc , and a′α for the a-data for T ′θ

∗
sc .

Then σ = w0σ
′, where w0 is the Weyl reflection for α∗, and

v∗(σ) = τ(w0, σ
′).b(w0)−1.w0(y′(σ)).y(σ)−1.

Here

τ(w0, σ
′) =

∏
α>0, w0α<0, σα>0

(−1)α
∨
.

Up to multiplication by an element of (C×)α
∨
∗ , the term b(w0) is

∏
(−1)α

∨
,

where the product is over representatives for pairs {α,−w0α} such that α > 0,

w0α < 0 (see Lemma 4.3.A of [LS90]). Here the order on the roots is obtained

by transport of that determined by our choice of an R-splitting. The choice of

splitting does not affect the quotient of ∆I terms, and there is no harm in our

assumption that if α > 0 and σ′α 6= −α, then σ′α > 0. (Or see Lemma 2.3.A

of [LS87], and note that the assumption (3.3.2) of [LS90] is retained.) Finally,

y′(σ) =
∏

α>0, σ′α<0
(a′α)α

∨

and

y(σ) =
∏

α>0, σα<0
(aα)α

∨
.

Suppose α > 0, σ′α < 0, so that α contributes to w0(y′(σ)). Then α = −σ′α
and w0α = α = −σ′α = −σα, so that α is imaginary for both T ′θ

∗
sc and

T θ
∗
sc . By t∗-compatibility of our a-data, we have a′α = aα, and the contribution

from α to w0(y′(σ)) cancels that to y(σ). There are two remaining types of

contribution to y(σ). The first is for α > 0, such that α = −σα and w0α 6= α.

Then w0α = −w0σα = −σ′α < 0 since −σ′α 6= α. Thus we also have −w0α>0,
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and −w0α is of same type as α. The contribution to y(σ) from {α,−w0α} is

(aα)α
∨
(a−w0α)−w0α∨ = (aα)α

∨−w0α∨(−1)−w0α∨

since a−w0α = −aw0α = −aα. The first term in the product lies in (C×)α
∨
∗ and

the second cancels with a term in b(w0) up to multiplication by an element

of (C×)α
∨
∗ . The second type of contribution to y(σ) is from α > 0 such that

σα < 0 and σα 6= −α. Then each of α and −σα contributes and their joint

contribution is

(aα)α
∨
(a−σα)−σα

∨
= (aα)α

∨
(aα)−σα

∨
(−1)−σα

∨
.

Since (aα)α
∨
(aα)−σα

∨
is a coboundary, we may ignore it. Let β = −σα. Then

β > 0, σβ < 0. Also w0β = −σ′α < 0 since α > 0 and σ′α 6= −α. Thus

(−1)−σα
∨

= (−1)β
∨

cancels with the corresponding term in b(w0), and so we

conclude that, up to coboundaries, the cocycle v∗(σ) lies in (C×)α
∨
∗ . The lemma

now follows. �

Finally, the following equalities will be used in assembling the jump for-

mulas in the next section. The terms were introduced in Section 7.

Lemma 9.6. Under the assumptions of the present section, we have¨
inv(δ0(Y ), δ0(Y )(w)), κδ0(Y )

∂
=
¨
inv(δ0(Y ), δ0(Y )(ww0)), κδ0(Y )

∂
=
¨
inv(δ0(Y ′), δ0(Y ′)(w′)), κδ0(Y ′)

∂
.

Proof. The representatives w′, w were defined in the paragraph before

Lemma 7.2, and w0 lies in Gθδ0 . Write the three inv terms in the statement as

inv(w), inv(ww0), inv(w′). To define inv(w) we start with the Galois cocycle

σ(w)w−1 in the maximal torus Aδ0 = Cent(T δ0 , G) of G. (Earlier we used

the notation T † for Aδ0 .) Notice that Aδ0 is preserved by θ0 = Int(δ0) ◦ θ and

Int(δ0(Y ))◦θ acts as θ0 on Aδ0 . Let Aδ0sc be the corresponding torus in Gsc. Then

we factor w in the usual manner, as the product of the image of an element

wsc of Gsc and a central element z. The pair (σ(wsc)w
−1
sc , (θ0 − 1)z) represents

inv(w), an element of H1(Γ, Aδ0sc
ϕ
−→ Bδ0). Here Bδ0 is the image of Aδ0 under

θ0 − 1 and ϕ is the composition of θ0 − 1 with the projection Aδ0sc → Aδ0 .

We have arranged that σ(ww0)(ww0)−1 coincides with σ(w)w−1.(−1)α
∨
0 up

to coboundaries in Aδ0 ∩ (Gθδ0)der = T δ0 ∩ (Gθδ0)der. Thus we can factor the

corresponding hypercocycle as (σ(wsc)w
−1
sc , (θ0 − 1)z).((−1)α

∨
0 , 1). The usual

argument (see the proof of Lemma 9.3) shows that the second term in the

statement of the present lemma is α∨0 (sT ) times the first. Since α∨0 (sT ) = 1

(see the proof of Lemma 9.3 again), we are done with the first equality.

Our choices ensure that inv(w) is represented by a hypercocycle (asc(σ),

(θ0− 1)z) and inv(w′) is represented by (s(asc(σ)), (θ0− 1)z). Here, recall that
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s is a Cayley transform in (Gθδ0)sc. Since we have also to analyze the dual data,

we use our chosen toral data to pass from G to G∗. Then in place of H1(Γ, Aδ0sc
ϕ
−→ Bδ0) we consider H1(Γ, Tsc → (θ∗ − 1)T ), etc., and we identify T ′ with

T over C using the inverse Cayley transform t∗ = (s∗)−1. Consider the pair

(inv(w)−1, inv(w′)) in

H1(Γ, Tsc × T ′sc → (θ∗ − 1)(T × T ′)).
It is represented by

((tsc(σ), (θ∗ − 1)z)−1, (tsc(σ), (θ∗ − 1)z)),

where tsc(σ) is the image of asc(σ) under our identification of Aδ0 with T. To

prove that the (equal) first and second terms in the statement of the lemma

coincide with the third, we show that (inv(w)−1, inv(w′)) pairs trivially with

the class in
H1(WR, [(θ

∗ − 1)(T × T ′)]∨ → T∨ad × (T ′∨)ad)

represented by
((bT (w)−1, sad), (bT ′(w)−1, sad)),

where bT , bT ′ are as constructed on p. 55 of [KS99]. (We will describe them in

detail shortly.) Recall

S = S(T, T ′) = T × T ′/{(z−1, z) : z ∈ Z(G∗)}.
The projection (θ∗ − 1)(T × T ′)→ (θ∗ − 1)S determines a map on hypercoho-

mology groups under which the image of (inv(w)−1, inv(w′)) is represented (in

the obvious manner) by ((tsc(σ)−1, 1), (tsc(σ), 1)). Thus by functoriality of the

pairing, it is enough to show that ((bT (w)−1, sad), (bT ′(w)−1, sad)) represents a

class in the image of

H1(WR, [(θ
∗ − 1)S]∨ → T∨ad × (T ′∨)ad)

under the (dual) map on dual hypercohomology groups. Thus it is enough to

show that the cocycle (bT (w), bT ′(w)) in [(θ∗−1)(T ×T ′)]∨ lies in the subtorus

[(θ∗ − 1)S]∨.

Recall the cocycle (aT2(w), aT ′2(w)) of WR in T∨2 ×T∨2 from the construction

of ∆III ; see the proof of Lemma 9.3 and p. 45 of [KS99]. Also, the torus

[(θ∗ − 1)(T × T ′)]∨ may be identified with T∨2 × T∨2 / T∨1 × T∨1 (see p. 55 of

[KS99]). Then (bT (w), bT ′(w)) is, by definition, the image of (aT2(w), aT ′2(w))

under the natural projection

proj : T∨2 × T∨2 → T∨2 × T∨2 /T∨1 × T∨1 .

By construction, (aT2(w), aT ′2(w)) lies in S∨1 (identified as a subtorus of T∨2 ×
T∨2 ). We denote by θ2 the extension of θ∗ to T2, T

′
2 (p. 42 of [KS99]). The torus

(θ∗ − 1)T may be identified as the (isomorphic) image of (θ2 − 1)T2 under the

projection T2 → T, and so (θ∗ − 1)S may be identified with (θ2 − 1)S1 under

S1 → S. Since [(θ2− 1)S1]∨ coincides with the image of S∨1 under proj, we are

done. �
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10. Proof of Theorem 5.1 and extension to derivatives

To complete the proof of Theorem 5.1 we return to the formulas of Sections

7 and 8, and we combine them with the results of Section 9. We have only

to consider the case that γ0 is both a T s11 -norm and a T1-norm, and maintain

the toral descent data attached to γ0, along with the s-compatible data sets,

in Section 7. Write Φ1(γν) as∣∣∣det(Ad(γν)− I)h1/t1

∣∣∣1/2∑
w

∆(γν , δν(w)) Oθ,$(δν(w), f)

= ∆I(γν) ∆II(γν) ∆III(γν , δν ; γ, δ) ∆IV,num(δν)

×
∑
w

〈inv(δν , δν(w)), κδν 〉 Oθ,$(δν(w), f).

To pass to the transform Ψa,χ(γν), we simply replace ∆II(γν) by ∆II,num(γν).

Without changing notation, we drop the terms for those classes in Dθ(T δ0 )

with no representative w for which wα0 = ±α0. Since

〈inv(δν , δν(w)), κδν 〉 = 〈inv(δν , δν(ww0)), κδν 〉

(Lemma 9.6), we may then replace the sum by a sum over representatives w

for Dθ(α0) and examine

∆I(γν).∆II,num(γν)∆IV,num(δν)∆α0(δν)−1.∆III(γν , δν ; γ, δ)

× (2/d(α0))
∑
w

〈inv(δν , δν(w)), κδν 〉 ∆α0(δν) Oθ,$(δν(w), f).

On the other hand,

Ψa′,χ′(γ
′
ν) = ∆I(γ

′
ν).∆II,num(γ′ν)∆IV,num(δ′ν)∆±α′0(δ′ν)−1.∆III(γ

′
ν , δ
′
ν ; γ, δ)

×
∑
w′

¨
inv(δ′ν , δ

′
ν(w′)), κδ′ν

∂
∆±α′0(δ′ν)Oθ,$(δ′ν(w′), f),

where the summation is over representatives w′ for the elements of Dθ(T
′δ0 ).

From Lemma 8.1, Corollaries 9.2, 9.4, and Lemmas 9.5, 9.6, we conclude that

lim
ν→0+

Ψa,χ(γν)− lim
ν→0−

Ψa,χ(γν) = 2 lim
ν→0

Ψa′,χ′(γ
′
ν).

For the final step in the proof of Theorem 5.1, we notice that the Weyl

reflection w1 for α1 provides a stable conjugation of γ−ν with γν . Since Φ1 is

invariant under stable conjugacy, it is enough to examine the factor

∏
O1

χβ1

Ç
(β1(γ1)− 1)

aβ1

å
,

where γ1 is regular in T1(R). There is no change in the total contribution from

the orbits O1 6= {±α1} when γ1 is replaced by γw1
1 since the definition of

s-compatible data ensures that χw1β1
= χβ1

and aw1β1
= aβ1

; the contribution
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from the orbit of β1 is interchanged with that from the orbit of w1β1. For the

case O1 = {±α1}, we have

χα1

Ç
(α1(γw1

1 )− 1)

aα1

å
= −χα1

(α1(γ1))−1χα1

Ç
(α1(γ1)− 1)

aα1

å
.

Since χα1
(α1(γ0)) = χα1

(1) = 1,

lim
ν→0−

Ψa,χ(γν) = − lim
ν→0+

Ψa,χ(γν),

and so we are done with the proof of Theorem 5.1. �

To consider limit formulas for derivatives, let S(t1) denote the symmetric

algebra of t1. Denote by D → “D the automorphism of S(t1) determined by the

map Y1 → Y1 − n1α1(Y1)I of t1 into S(t1), where 2n1 is the odd integer given

by χα1
(z) = (z/z)n1 = (z/ |z|)2n1 .

For γ1 = γ0 expY1 near γ0, define χα1
(α1(γ1))1/2 to be χα1

(exp 1
2α1(Y1)).

Then the function (germ)“Ψa,χ(γ1) = χα1
(α1(γ1))−1/2Ψa,χ(γ1)

is defined for G-regular γ1 near γ0 in T1(R). (Recall the smooth extension from

strongly G-regular elements to all G-regular elements in Section 7.) Moreover,

this function is odd: “Ψa,χ(γw1
1 ) = −“Ψa,χ(γ1).

Lemma 10.1. For all D ∈ S(t1), we have that both limν→0−
“DΨa,χ(γν)

and limν→0+
“DΨa,χ(γν) exist. If Dw1 = −D, then

lim
ν→0−

“DΨa,χ(γν) = lim
ν→0+

“DΨa,χ(γν),

and if Dw1 = D, then

lim
ν→0−

“DΨa,χ(γν) = − lim
ν→0+

“DΨa,χ(γν).

Proof. Existence of each limit in the statement follows from the basic

estimates (see the appendix). The twist “D of D was defined expressly to

obtain the property“DΨa,χ(γ0 expY1) = χα1

Å
exp

1

2
α1(Y1)

ã
.D“Ψa,χ(γ0 expY1).

Thus we have

lim
ν→0±

“DΨa,χ(γν) = lim
ν→0±

D“Ψa,χ(γν).

The desired equations are then immediate from the oddness of “Ψa,χ. �

We may choose the χ′-datum χα′1 nontrivial. Because α′1 is real, we define“Ψa′,χ′ by “Ψa′,χ′(γ
′
1) = χα′1(α′1(γ′1))−1Ψa′,χ′(γ

′
1)
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for G-regular γ′1 near γ0 in T ′1(R). The Cayley transform s1 provides us with

an isomorphism D → D′ from S(t1) to S(t′1). We write D̂′ for the image of D′

under the automorphism given by Y ′1 → Y ′1−zα′1(Y ′1)I, where z is the complex

number given by χα′1(x) = (sgnx)ε |x|z . Then for all D ∈ S(t1), we have that

lim
ν→0

D̂′Ψa′,χ′(γ
′
ν) = lim

ν→0
D′“Ψa′,χ′(γ

′
ν)

exists.

Lemma 10.2. If Dw1 = D then, for any s-compatible data set,

lim
ν→0+

“DΨa,χ(γν) = lim
ν→0

D̂′Ψa′,χ′(γ
′
ν).

Proof. For this we return to the formulas obtained by descent in Section 8

and use Harish-Chandra descent for operators in the center of the universal

enveloping algebra of the complex Lie algebra of G as well, extending the

arguments for Proposition 4.5 of [She79a] via results of Bouaziz (see Theorem

2.4.1 of [Bou87]). The formula then follows by repeating the steps at the start

of this section. �

This concludes then our extension of Theorem 5.1 to derivatives of Ψa,χ.

The extension applies, in particular, to the setting of Theorem 4.2.

11. Completion of proof of the main theorem

We recall once again that if

S(γ1) =
∑

δ,θ-conj

∆(γ1, δ)O
θ,$(δ, f),

then we have the normalized integral

Φ1(γ1) =
∣∣∣det(Ad(γ1)− I)h1/t1

∣∣∣1/2 S(γ1)

and the transform

Ψa,χ(γ1) = ∆a,χ(γ1)S(γ1).

Recall also that S(γ1), defined initially for strongly G-regular elements

γ1, was extended smoothly to all G-regular elements. Next, we extend S to a

smooth function around all regular elements in T1(R). Since ∆a,χ is nonvan-

ishing and thus smooth on the regular set in T1(R), we may replace S by Ψa,χ

for this extension.

Assume that γ0 is regular in T1(R), so that (H1)γ0 = T1. If γ0 is not a

norm, then Ψa,χ(γ1) = 0 for G-regular γ1 near γ0 in T1(R) by Lemma 6.1, and

so S extends trivially. Suppose now that γ0 is a T1-norm of δ0 ∈ G(R). We

consider the case that δ0 is θ-semiregular, by which we mean that Gθδ0 is of type

A1. As before, we denote by ±α0 the roots of T δ0 in Gθδ0 . If the root α0 is real

or totally compact, then we follow our earlier descent arguments (and include
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derivatives) to see that Ψa,χ extends smoothly around γ0. Suppose then that

α0 is imaginary and not totally compact. By passage to a stable θ-conjugate of

δ0, we may assume that α0 itself is noncompact. Again we rely on the earlier

descent arguments, except that Lemma 9.6 is replaced by the following.

Lemma 11.1. In the present setting, we have α∨0 (sT ) = −1, and then¨
inv(δ0(Y ), δ0(Y )(w)), κδ0(Y )

∂
= −

¨
inv(δ0(Y ), δ0(Y )(ww0)), κδ0(Y )

∂
.

Proof. Since σα0 = −α0, we also have that σ(Nα∨) = −Nα∨, and then

Nα∨(sT )2 = 1 since sT is Γ-invariant. Suppose α is of type R2. If Nα∨(sT ) = 1,

then α1 is a root of H1 and α1(γ0) = Nα(δ0)2 = 1 contradicting the regularity

of γ0. Thus Nα∨(sT ) = −1 is the only possibility. In fact, then the coroot

β1 of 2(α∨)res is a root of H1 and β1(γ0) = Nβ(δ0) = Nα(δ0) = ±1. Since

β1(γ0) 6= 1, we must have Nα(δ0) = −1, a contradiction since α is of type

R2. We conclude that α cannot be of type R2. Suppose α is of type R3. If

Nα∨(sT ) = 1, then β1 is a root of H1, where now β1 denotes the coroot of
1
2(α∨)res. This implies β1(γ0) = Nβ(δ0)2 = Nα(δ0)2 = 1, which contradicts

the regularity of γ0. Thus Nα∨(sT ) = −1 = α∨0 (sT ). Finally if α is of type R1,

then α∨0 (sT ) = Nα∨(sT ) = −1 since α1 cannot be a root of H1. �

The argument of Section 10.1 now shows that

lim
ν→0−

“DΨa,χ(γν) = + lim
ν→0+

“DΨa,χ(γν)

for all D ∈ S(t1). Thus Ψa,χ extends smoothly around γ0.

We then have that Ψa,χ extends smoothly around all regular elements γ0 in

T1(R) that are norms of θ-semiregular elements in G(R). Next, Ψa,χ extends to

a smooth function around all regular elements γ0 in T1(R) that are norms of θ-

semisimple elements in G(R). For this, Lemma 6.2 implies immediately that we

may apply a familiar principle of Harish-Chandra, which we call semiregular

is sufficient ; see, for example, [Var77, §6 of Part I, §13 of Part II] and also

[War72, Lemma 8.4.4.6 and §8.5]. We conclude then that Ψa,χ, and thus S

itself, extends to a smooth function on the full regular set of T1(R).

To finish the proof of the main theorem, Theorem 2.1, we check that

S satisfies all requirements of our characterization theorem for stable orbital

integrals on H1(R), i.e., PropertiesI–IV of Theorem 12.1 with G = H1, g0 = 1.

Recall that we use Haar measures attached to invariant differential forms of

highest degree defined over R, as in [She79a, §4] and [LS87, §1.4], and use

provided inner twists or R-isomorphisms to transport forms when needed (for

example, in the formulation of Property I). We assume that the forms on g, h1

are products corresponding to the Lie algebra decompositions g=zθ + (1− θ)z
+ gder, h1 = z1 + h. Suppose strongly G-regular γ1 is a norm of strongly

θ-regular δ. We require that Haar measures on Gθδ(R) and T1(R) be compatible
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in the following sense. First the underlying forms are to respect gθδ = zθ +

(gθδ ∩ gder), t1 = z1+ tH . Because the constant |det(Int(δ) ◦ θ − I)Cent(gθδ ,g) / gθ
δ
|

or, more simply, |det(θ∗ − I)t / tθ
∗ | was omitted from the normalizing factor

∆IV , we include it now by requiring that the form on tH be obtained by

transport of [det(θ∗ − I)t / tθ
∗ ]−1 times the form on gθδ . For the Haar measure

on Cent(δ,G)(R), we extend that on Gθδ(R).

For Property III, it remains to consider Ψa,χ around a T1-norm γ0 annihi-

lated only by real or complex roots. Again we use the semiregular is sufficient

principle to assume that the root is real and unique up to sign and that both

(H1)γ0 and Gθδ0 are of Dynkin type A1. Then descent finishes the argument.

As in Section 14 of [She08a] for the standard (untwisted) case, an alternative

proof that Ψa,χ extends to an $1-Schwartz function on T1(R)im−reg may be

given via formulas for parabolic descent (see [Mez12], [She11]).

By Theorem 5.1 and its extension to derivatives, S satisfies Property IV

under the additional assumption that γ0 is G-semiregular. Our (stronger)

statements of limit formulas for transfer factors in Section 9 allow us to remove

the assumption by an application of the semiregular is sufficient principle, and

then we are done with the proof of the main theorem. �

12. The general case: slightly twisted norms

Without the assumption at the beginning of Section 6, the norms of

strongly θ-regular elements in G(R) lie in a certain coset of H1(R) in H1(C),

rather than in H1(R) itself. This feature requires only a minor modification

in the formulation of transfer, as we will recall from [KS99, §5.4]. We consider

arbitrary (G, θ, a$), endoscopic data e, and z-pair (H1, ξ1) (see Section 1).

We return to the first paragraph of Section 6. Recall that we work with

the variant m : G → G∗ of the inner twist ψ defined by m(δ) = ψ(δ)g−1
θ .

Without the assumption of the first paragraph, we have that

σ(m)(δ) = z(σ)u(σ)−1m(δ)θ∗(u(σ)),

where z(σ) is a 1-cochain of Γ in Z∗sc. (As usual, we have used the same notation

for the image of z(σ) in G∗.) The image of z(σ) in (Z∗sc)θ∗sc is a 1-cocycle zθ(σ).

As in (5.4) of [KS99], zθ(σ) determines a 1-cocycle zH(σ) in the center of H

which we assume splits in H, since otherwise the transfer statement is empty.

Let zH(σ)=h−1
0 σ(h0). Then there is a 1-cocycle z1(σ)=h−1

1 σ(h1) in the center

of H1 which projects to zH(σ) under H1→H. Write θ1 for the automorphism

Int(h1). We replace H1(R) by the coset H1(R)h1 in the formulation of transfer.

First we extend the definition of stable orbital integral to this setting and

describe a characterization theorem. Until after Theorem 12.1, we return to

G as notation for the group on which we consider orbital integrals. Since

it is enough for our purposes (i.e., for the case G = H1), we also assume G

quasi-split over R and with simply-connected derived group. Then the complex
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points of centralizers of semisimple elements are connected and there are no

totally compact imaginary roots.

Fix an element g0 in G(C) such that σ(g0)−1g0 is central, so that θ =

Int(g0) lies in Gad(R) and G(R)g0 lies in the inverse image of Gad(R) under

the projection G → Gad. There will be no harm in assuming that θ preserves

the pair (Bspl, Tspl), where Bspl, Tspl are from a chosen R-splitting of G. Then

g0 lies in the maximal torus Tspl of the splitting. There is also no harm in

assuming g0 lies in Gder. Then σ(g0)−1g0 = z(σ) lies in the center Zder = Zsc

of Gder = Gsc.

Let γ ∈ G(R)g0 ⊂ G(C). Then Cent(γ,G) is defined over R since σ(γ)−1γ

= σ(g0)−1g0 = zσ. Suppose γ is regular semisimple, so that Tγ = Cent(γ,G) is

a maximal torus defined over R. If γ = γ′g0, then right translation by g0 maps

bijectively the Int(g0)-twisted conjugacy class of γ′ to the G(R)-conjugacy class

of γ. It also maps the intersection of G(R) with the Int(g0)-twisted conjugacy

class of γ′ in G(C) to the intersection of G(R)g0 with the conjugacy class of γ

in G(C). We will call this last set the stable conjugacy class of γ (again since

Gder is simply-connected). The G(R)-conjugacy classes in the stable conjugacy

class of γ are parametrized by untwisted D(Tγ), as for the case γ ∈ G(R).

Let T be a maximal torus over R in G. Then T contains an element γ in

G(R)g0 if and only if zσ splits in H(Γ, Tder) = H(Γ, Tsc). In that case, T (R)γ

also lies in G(R)g0 and moreover T (R)γ = T ∩ G(R)g0. Write T (g0) for the

collection of all such T. Clearly, Tspl ∈ T (g0) and the set of regular semisimple

elements in G(R)g0 is the union over T ∈ T (g0) of the (open, dense) regular

set (T ∩ G(R)g0)reg in T ∩ G(R)g0. Suppose T ∈ T (g0), γ0 ∈ T ∩ G(R)g0 is

semiregular, and α(γ0) = 1, where α is an imaginary root of T . On replacing

γ0 by a stable conjugate we may assume that α is noncompact, i.e., that

Cent(γ0, G) is split modulo center. If T ′ is a maximally split maximal torus

over R in Cent(γ0, G), then clearly T ′ ∈ T (g0). It then follows that if T ∈ T (g0)

and s is any Cayley transform relative to an imaginary root α of T , then

T s ∈ T (g0). Also, if γ0 ∈ T ∩ G(R)g0 is semiregular and α(γ0) = 1, then

(γ0)s ∈ T s ∩G(R)g0. We denote by (T ∩G(R)g0)im−reg the set of all elements

in T ∩G(R)g0 such that α(γ0) 6= 1 for all imaginary roots α of T .

Let S(γ, dtγ , dg) be a complex-valued function defined for regular semisim-

ple γ in G(R)g0 and Haar measures dtγ on T γ(R) = Cent(γ,G)(R), dg on G(R).

Write Φ for the normalized version of S:

Φ(γ, dtγ , dg) =
∣∣∣det(Ad(γ)− I)g/tγ

∣∣∣1/2 S(γ, dtγ , dg).

Since it is useful for our application, we assume that there is a central torus

Z1 and character $1 on Z1(R) such that

S(z1γ, dtγ , dg) = $1(z1)−1S(γ, dtγ , dg)

for all z1 ∈ Z1(R), regular semisimple γ in G(R)g0, and all dtγ , dg.
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Consider the following properties (I)–(IV):

(I) S is invariant under stable conjugacy.

This means that if w ∈ G(C) is such that γw = w−1γw lies in G(R)g0 and

dtγw is obtained from dtγ by transport under w, then

S(γw, dtγw , dg) = S(γ, dtγ , dg).

(II) S transforms under change of measures according to the rule

S(γ, λdtγ , µdg) =
µ

λ
S(γ, dtγ , dg).

Here λ, µ are positive real numbers.

Next, let T ∈ T (g0). For γ in (T ∩ G(R)g0)reg and fixed Haar measures

dt, dg on T (R), G(R) respectively, set ST (γ) = S(γ, dt, dg) and ΦT (γ) =

Φ(γ, dt, dg).

(III) ΦT is a $1- Schwartz function on (T ∩ G(R)g0)reg and extends to a

$1-Schwartz function on (T ∩G(R)g0)im−reg.

Here the notion of $1-Schwartz function is clear since T (R)γ0 lies in the

inverse image of Tad(R) in T (C).

The final property concerns behavior at the imaginary walls. It is simpler

to state if we assume (I), (III). Suppose T ∈ T (g0), γ0 ∈ T ∩ G(R)g0 is

semiregular and α(γ0) = 1, where α is an imaginary root of T . Let s be a

Cayley transform for α (in the sense of Section 3), and fix s-compatible a-

data, χ-data for T, T s = T ′. (We again use ′ in place of s in notation.) The

Haar measure on T ′(R) is to be obtained by transport under s from that on

T (R) in our earlier sense (Section 8). We have defined the generalized Weyl

denominator ∆a,χ(γ) for γ ∈ T (R). Notice that ∆a,χ(γ) depends on the image

of γ under the natural map T → Tad rather than on γ itself. We may therefore

extend the definition of ∆a,χ to the inverse image of Tad(R) in T (C) and so to

T (R)γ0. We also extend ∆a′,χ′ to T ′(R)γ′0. Thus we may define the transforms

Ψa,χ,Ψa′,χ′ on (T (R)γ0)reg, (T
′(R)γ′0)reg respectively, as before. For ν real and

nonzero, set γν = exp(νaαα
∨).γ0 and γ′ν = exp(νaα′α

′∨).γ′0. Denote by w the

Weyl reflection for α. To a differential operator D in S(t) attach D′ in S(t′)

and define the twists “D, D̂′ as in Section 10.

(IV) If Dw = D, then

lim
ν→0+

“DΨa,χ(γν) = lim
ν→0

D̂′Ψa′,χ′(γ
′
ν).

With the assumption of (I) and (III), there will be no harm in assum-

ing in (IV) that α is noncompact and that the Cayley transform comes from

the simply-connected cover SL(2) of Cent(γ0, G). Then γ′0 = γ0. Also, the

argument of Section 10, along with (I) and (III), shows that if Dw = ±D, then

lim
ν→0−

“DΨa,χ(γν) = ∓ lim
ν→0+

“DΨa,χ(γν).
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Suppose now that f is a $1-Schwartz function on G(R)g0. (Again the

notion is clear, or see the appendix.) Then the stable orbital integrals

SO(γ, f) = SO(γ, f, dtγ , dg) =
∑

γ′∈ D(Tγ)

∫
T γ′ (R)\G(R)

f(g−1γ′g)
dg

dtγ

transform by $−1
1 under translation by Z1(R) and satisfy (I)–(IV). A proof of

this requires only a very minor variant of the standard argument; see the next

proof or the appendix for more general results. Extension of our main theorem

to the present setting rests on the converse theorem.

Theorem 12.1. Suppose S transforms by $−1
1 under translation by Z1(R)

and satisfies (I)–(IV). Then there exists f ∈ C(G(R)g0, $1) such that

S(γ, dtγ , dg) = SO(γ, f, dtγ , dg)

for all regular semisimple γ in G(R)g0, and all dtγ , dg. If also S vanishes off

the orbits of some set Z1(R)B, where B is a bounded subset of the regular

semisimple set of G(R)g0, then f may be chosen in C∞c (G(R)g0, $1).

Proof. To find f in C(G(R)g0, $1) we prove an analog of Lemma 4.8 of

[She79a] in which f is constructed satisfying a weaker condition, and we then

finish by using the inductive argument for the proof of Theorem 4.7 in [She79a].

Assume T ∈ T (g0). Then an argument shows that we may replace g0 by an

element of G(R)g0∩T if necessary and assume g0 ∈ T. It is now straightforward

to extend the wave packet construction in the proof of Lemma 4.8 to G(R)g0

and thus find the desired f in C(G(R)g0, $1). To pass to a C∞c -function when

the support is appropriate, we reduce to Bouaziz’s characterization theorem

on Gad(R). �

Finally, the extension of Theorem 2.1 requires a recasting of the norm cor-

respondence and transfer factors. This again is straightforward (and described

in Section 5.4 of [KS99]). First, for the norm correspondence we consider

strongly G-regular elements γ1 of H1(R)h1, assuming such elements exist, and

strongly θ-regular elements δ of G(R). Then γ1 is a norm of δ if the θ-conjugacy

class of δ in G(C) is the image (under the canonical map) of the conjugacy class

of γ1 in H1(C). Let T1 = Cent(γ1, H1), a maximal torus over R in H1. Then

there are toral data (T1 → Tθ∗ , g) as in Section 6 for which δ∗ = gm(δ)θ∗(g)−1

has the property that N(δ∗) is the image of γ1 under T1 → Tθ∗ . The cochain

v(σ) in Tsc now has the extra term z(σ) from Zsc, but that does not affect

the assertions of the lemmas in Section 6 when we now take semisimple γ0 in

H1(R)h1 instead of H1(R). Nor does it affect the definition of the relative term

∆III in transfer factors, since (z(σ)−1, z(σ)) represents the identity element of

the torus U of Section 4.4 of [KS99]. The results of Sections 6, 7 and 9 thus ap-

ply. After adjusting the definition of Trans(f) and Transc(f), we conclude then
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Theorem 12.2. The assertions of the main theorem (Theorem 2.1) and

corollary (Corollary 2.2) remain true in the general setting of Section 6.

13. Appendix: Harish-Chandra Schwartz functions

We return to the setting of Section 1, where fθ is a smooth function on

G(R)θ. As pointed out by a referee, θ is the product of an inner automorphism

defined over R and an automorphism of finite order also defined over R; see

the remark near the end of Section 6. We may further assume that the inner

automorphism is of the form Int(g), where g ∈ Gsc(R). There will be no harm

then in assuming that θ itself is of finite order. Following [HC75], let V = exp v,

where v is the maximal R-split subalgebra of the Lie algebra z(R) of Z(R), so

that we have G(R) as a direct product (1 − θ)V.V θ.◦G(R), where θ acts as

automorphism of each factor. Then G(R)θ is a direct product (1 − θ)V.G1,

where G1 = V θ.◦G(R)θ; G1 embeds smoothly as an open subset of the Lie

group V θ.◦G(R)o 〈θ〉 to which the results of [Bou87] apply. We will start with

the space C(G(R)θ,$), where we require fθ to transform by $−1 under the

twisted conjugacy action of V since we will need such a space for the twisted

orbital integrals. Thus we require fθ(vθ(v)−1gθ) = fθ(vgθv
−1) = $(v)−1fθ(gθ)

for v ∈ V, g ∈ G(R). (Since we assume a nonempty norm correspondence, the

character $ is trivial on V θ, the kernel of the action.) Call fθ a $-Schwartz

function if the restriction of fθ to G1 is Schwartz in the Harish-Chandra sense

[HC75]: the functions σ and Ξ appearing in Harish-Chandra’s seminorms are

well defined on G1 (see Sections 3.4, 3.5 of [Bou87]). We write C(G(R)θ,$)

for the Fréchet space of all such functions equipped with the Harish-Chandra

seminorms. If O is open in G(R)θ and invariant under translation by (1− θ)V,
we define C(O, $) analogously. It is clear also how to define the space C(G(R)θ)

of (purely) Schwartz functions on G(R)θ.

We need a twisted analogue of Theorem 16.1 of [HC75], which asserts that

f → ′Ff is a well-defined continuous map on the appropriate Schwartz spaces.

To shorten the presentation (but also make it clumsier than necessary), we take

our (θ,$)- twisted transform to depend on the endoscopic group also, or more

precisely, on endoscopic data and z-pair. To use pieces of the transfer factors

in the definition, we will start with familiar constructions on G(R) and then

translate to G(R)θ. Fix a strongly θ-regular element δ0 of G(R) with norm γ0

in H1(R), along with toral data, a-data and χ-data associated with the torus

Cent(γ0, H1). It will be enough for our purposes to define a transform Ψδ0
f on

the θ-regular elements δ in Gθδ0(R)0δ0, although extension to a larger set is

easy. If δ = expY.δ0, then we set γ1 = expYH .γ0 (see Section 6) and define

Ψδ0
f (δ) = ∆III(γ0, δ0; γ, δ).∆num

II (δ).Φθ,$(δ, f).

We have omitted the term ∆I since fixed toral data and a-data guarantee that

∆I is a constant that plays no role here. The term ∆num
II (from Section 9) is a
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twisted version of the Weyl denominator of Section 3. The presence of the con-

stant ∆III(γ0, δ0; γ, δ) ensures that if g ∈ G(R), then Ψ
g−1δ0θ(g)
fθ

(g−1δθ(g)) =

Ψδ0
fθ

(δ), provided we follow the usual conventions in the choice of Haar mea-

sures. If we replace δ0 by (strongly) θ-regular δ′0 in Gθδ0(R)0δ0, we obtain

a translate of Ψδ0
fθ

which does not matter for the Schwartz properties we

seek. (For translation-invariance arguments, see, for example, Section 8.5 of

[War72].) To pass to G(R)θ, we set Φ$(δθ, fθ) = Φθ,$(δ, f) and Ψδ0
fθ

(δθ) =

Ψδ0
f (δ) for all regular δθ in Conn(δ0θ) = Gθδ0(R)0δ0θ, a connected component of

Cent(δ0θ,G(R)θ). It is now routine to define Conn(δ0θ)im−reg. Our assertion is

that Theorem 16.1 of [HC75] together with the work of Bouaziz already cited

implies that fθ → Ψδ0
fθ

is a well-defined continuous mapping from C(G(R)θ)

(or from C(G(R)θ,$)) to C(Conn(δ0θ)im−reg, $). Theorem 16.1 is proved in

[Var77] following Harish-Chandra’s original argument. (The final steps are in

Part II, Section 12.) An alternative argument not dependent on the construc-

tion of discrete series characters has been given by Wallach (see Chapter 7

of [Wal88]). Since an analogue for the otherwise needed discrete series result

has not yet appeared, we follow step by step the arguments of [Wal88]. In

particular, the crucial Lemma 7.4.3 extends to our setting by preparation from

Sections 1–3 of [Bou87]. This is enough to finish the argument.
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