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Conformal loop ensembles:
the Markovian characterization
and the loop-soup construction

By Scott Sheffield and Wendelin Werner

Abstract

For random collections of self-avoiding loops in two-dimensional do-

mains, we define a simple and natural conformal restriction property that

is conjecturally satisfied by the scaling limits of interfaces in models from

statistical physics. This property is basically the combination of confor-

mal invariance and the locality of the interaction in the model. Unlike the

Markov property that Schramm used to characterize SLE curves (which

involves conditioning on partially generated interfaces up to arbitrary stop-

ping times), this property only involves conditioning on entire loops and

thus appears at first glance to be weaker.

Our first main result is that there exists exactly a one-dimensional family

of random loop collections with this property — one for each κ ∈ (8/3, 4]

— and that the loops are forms of SLEκ. The proof proceeds in two steps.

First, uniqueness is established by showing that every such loop ensemble

can be generated by an “exploration” process based on SLE.

Second, existence is obtained using the two-dimensional Brownian loop-

soup, which is a Poissonian random collection of loops in a planar domain.

When the intensity parameter c of the loop-soup is less than 1, we show that

the outer boundaries of the loop clusters are disjoint simple loops (when

c > 1 there is almost surely only one cluster) that satisfy the conformal

restriction axioms. We prove various results about loop-soups, cluster sizes,

and the c = 1 phase transition.

Taken together, our results imply that the following families are equiv-

alent:

(1) the random loop ensembles traced by branching Schramm-Loewner

Evolution (SLEκ) curves for κ in (8/3, 4],

(2) the outer-cluster-boundary ensembles of Brownian loop-soups for c ∈
(0, 1],

(3) the (only) random loop ensembles satisfying the conformal restriction

axioms.
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1. Introduction

1.1. General introduction.

SLE and its conformal Markov property. Oded Schramm’s SLE processes

introduced in [31] have deeply changed the way mathematicians and physicists

understand critical phenomena in two dimensions. Recall that a chordal SLE

is a random nonself-traversing curve in a simply connected domain, joining

two prescribed boundary points of the domain. Modulo conformal invariance

hypotheses that have been proved to hold in several cases, the scaling limit of

an interface that appears in various two-dimensional models from statistical

physics, when boundary conditions are chosen in a particular way, is one of

these SLE curves. For instance, in the Ising model on a triangular lattice, if

one connected arc d+ of the boundary of a simply connected region D is forced

to contain only + spins whereas the complementary arc d− contains only −
spins, then there is a random interface that separates the cluster of + spins

attached to d+ from the cluster of − spins attached to d−; this random curve

has recently been proved by Chelkak and Smirnov to converge in distribution

to an SLE curve (SLE3) when one lets the mesh of the lattice go to zero (and

chooses the critical temperature of the Ising model) [41], [7].

Note that SLE describes the law of one particular interface, not the joint

law of all interfaces. (We will come back to this issue later.) On the other

hand, for a given model, one expects all macroscopic interfaces to have similar

geometric properties, i.e., to locally look like an SLE.

Figure 1. A coloring with good boundary conditions (black on

one boundary arc, white on the complementary boundary arc)

and the chordal interface (sketch).
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The construction of SLE curves can be summarized as follows. The first

observation, contained in Schramm’s original paper [31], is the “analysis” of

the problem: Assuming that the two-dimensional models of statistical physics

have a conformally invariant scaling limit, what can be said about the scaling

limit of the interfaces? If one chooses the boundary conditions in a suitable

way, one can identify a special interface that joins two boundary points (as in

the Ising model mentioned above). Schramm argues that if this curve has a

scaling limit, and if its law is conformally invariant, then it should satisfy an

“exploration” property in the scaling limit. This property, combined with con-

formal invariance, implies that it can be defined via iterations of independent

random conformal maps. With the help of Loewner’s theory for slit mappings,

this leads naturally to the definition of the (one-parameter) family of SLE pro-

cesses, which are random increasing families of compact sets (called Loewner

chains); see [31] for more details. Recall that Loewner chains are constructed

via continuous iterations of infinitesimal conformal perturbations of the iden-

tity, and they do not a priori necessarily correspond to actual planar curves.

A second step, essentially completed in [30], is to start from the definition

of these SLE processes as random Loewner chains and to prove that they

indeed correspond to random two-dimensional curves. This constructs a one-

parameter family of SLE random curves joining two boundary points of a

domain, and the previous steps shows that if a random curve is conformally

invariant (in distribution) and satisfies the exploration property, then it is

necessarily one of these SLE curves.

One can study various properties of these random Loewner chains. For

instance, one can compute critical exponents such as in [15], [16], determine

their fractal dimension as in [30], [1], derive special properties of certain SLE’s

— locality, restriction — as in [15], [17], relate them to discrete lattice models

such as uniform spanning trees, percolation, the discrete Gaussian Free Field or

the Ising model as in [18], [40], [41], [5], [34], or to the Gaussian Free Field and

its variants as in [34], [10], [25], [24], etc. Indeed, at this point the literature

is far too large for us to properly survey here. For conditions that ensure

that discrete interfaces converge to SLE paths, see the recent contributions

[12], [39].

Conformal Markov property for collections of loops. A natural question is

how to describe the “entire” scaling limit of the lattice-based model, and not

only that of one particular interface. In the present paper, we will answer the

following question. Supposing that a discrete random system gives rise in its

scaling limit to a conformally invariant collection of loops (i.e., interfaces) that

remain disjoint (note that this is not always the case; we will comment on this

later), what can these random conformally invariant collections of loops be?
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Figure 2. A coloring and the corresponding outermost loops (sketch).

More precisely, we will define and study random collections of loops that

combine conformal invariance and a natural restriction property (motivated

by the fact that the discrete analog of this property trivially holds for the

discrete models we have in mind). We call such collections of loops Conformal

Loop Ensembles (CLE). The two main results of the present paper can be

summarized as follows.

Theorem 1.1.

• For each CLE, there exists a value κ ∈ (8/3, 4] such that with probability

one, all loops of the CLE are SLEκ-type loops.

• Conversely, for each κ ∈ (8/3, 4], there exists exactly one CLE with

SLEκ type loops.

In fact, these statements will be derived via two almost independent steps,

which involve different techniques:

(1) We first derive the first of these two statements together with the

uniqueness part of the second one. This will involve a detailed anal-

ysis of the CLE property and consequences about possible ways to

“explore” a CLE. Here, SLE techniques will be important.

(2) We derive the existence part of the second statement using clusters of

Poisson point processes of Brownian loops (the Brownian loop-soups).

In the end, we will have two remarkably different explicit constructions

of these conformal loop ensembles CLEκ for each κ in (8/3, 4] (one based on

SLE, one based on loop-soups). This is useful, since many properties that seem

very mysterious from one perspective are easy from the other. For example,

the (expectation) fractal dimensions of the individual loops and of the set of

points not surrounded by any loop can be explicitly computed with SLE tools

[36], while many monotonicity results and FKG-type correlation inequalities

are immediate from the loop-soup construction [44]. One illustration of the

interplay between these two approaches is already present in this paper: One
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can use SLE tools to determine exactly the value of the critical intensity that

separates the two percolative phases of the Brownian loop-soup (and to our

knowledge, this is the only self-similar percolation model where this critical

value has been determined).

In order to try to explain the logical construction of the proof, let us

outline these two parts separately in the following two subsections.

1.2. Main statements and outline: The Markovian construction. Let us

now describe in more detail the results of the first part of the paper, cor-

responding to Sections 2 through 8. We are going to study random families

Γ = (γj , j ∈ J) of nonnested simple disjoint loops in simply connected domains.

For each simply connected D, we let PD denote the law of this loop-ensemble

in D. We say that this family is conformally invariant if for any two simply

connected domains D and D′ (which are not equal to the entire plane) and

conformal transformation ψ : D → D′, the image of PD under ψ is PD′ .

We also make the following “local finiteness” assumption: if D is equal to

the unit disc U, then for any ε > 0, there are PU almost surely only finitely

many loops of radius larger than ε in Γ.

Consider two simply connected domains D1 ⊂ D2, and sample a family

(γj , j ∈ J) according to the law PD2 in the larger domain D2. Then, we can

subdivide the family Γ = (γj , j ∈ J) into two parts: those that do not stay

in D1 and those that stay in D1. (We call the latter (γj , j ∈ J1).) Let us

now define D∗1 to be the random set obtained when removing from the set D1

all the loops of Γ that do not fully stay in D1, together with their interiors.

We say that the family PD satisfies restriction if, for any such D1 and D2,

Figure 3. Restriction property (sketch): given the set of loops

intersecting D2 \ D1 (the grey wedge on the left of the right

figure), the conditional law of the remaining loops is an inde-

pendent CLE in each component of the (interior of the) com-

plement of this set.
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the conditional law of (γj , j ∈ J1) given D∗1 is PD∗1 (or more precisely, it is

the product of PD for each connected component D of D∗1). When a family

is conformally invariant and satisfies restriction, we say that it is a Conformal

Loop Ensemble (CLE). The goal of the paper is to characterize and construct

all possible CLEs.

By conformal invariance, it is sufficient to describe PD for one given simply

connected domain. Let us, for instance, consider D to be the upper half-

plane H. A first step in our analysis will be to prove that for all z ∈ H, if Γ is

a CLE, then the conditional law of the unique loop γ(z) ∈ Γ that surrounds z,

conditionally on the fact that γ(z) intersects the ε-neighborhood of the origin,

converges as ε→ 0 to a probability measure P z on “pinned loops,” i.e., loops in

H that touch the real line only at the origin. We will derive various properties

of P z, which will eventually enable us to relate it to SLE. One simple way to

describe this relation is as follows.

Theorem 1.2. If Γ is a CLE, then for any given z ∈ H, the limiting

measure P z indeed exists. Furthermore, there exists κ ∈ (8/3, 4] such that for

each z, P z is also equal to the limit when ε → 0 of the law of an SLEκ from

ε to 0 in H conditioned to disconnect z from infinity in H. (We call this limit

the SLEκ bubble measure around z.)

This shows that all the loops of a CLE are indeed in some sense “SLEκ
loops” for some κ. In fact, the way in which P z will be described (and in

which this theorem will actually be proved) can be understood as follows (this

will be the content of Proposition 4.1) in the case where z = i: Consider A

the lowest point on [0, i]∩ γ(i) and H the unbounded connected component of

the domain obtained by removing from H \ [0, A] all the loops of the CLE that

intersect [0, A). Consider the conformal map Φ from H onto H with Φ(i) = i

and Φ(A) = 0. Then, the law of Φ(γ(i)) is exactly P i.

Theorem 1.2 raises the question of whether two different CLE distributions

can correspond to the same measure P z. We will prove that it is not possible,

i.e., we will describe a way to reconstruct the law of the CLE out of the

knowledge of P z only, using a construction based on a Poisson point process

of pinned loops.

Theorem 1.3. For each κ ∈ (8/3, 4], there exists at most one CLE such

that P z is the SLEκ bubble measure around z.

In a way, this reconstruction procedure can be interpreted as an “excursion

theory” for CLEs. It will be very closely related to the decomposition of a

Bessel process via its Poisson point process of excursions. In fact, this will

enable us to relate our CLEs to the random loop ensembles defined in [39]

using branching SLE processes, which we now briefly describe. Recall that
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i i

Figure 4. Description of P i (sketch).

when κ ≤ 4, SLEκ is a random simple curve from one marked boundary point

a of a simply connected domain D to another boundary point b. If we now

compare the law of an SLE from a to b in D with that of an SLE from a to

b′ in D when b 6= b′, then they clearly differ. It is also immediate to check

that the laws of their initial parts (i.e., the laws of the paths up to the first

time they exit some fixed small neighborhood of a) are also not identical. We

say that SLEκ is not target-independent. However, a variant of SLE(κ) called

SLE(κ, κ−6) has been shown by Schramm and Wilson [38] (see also [39]) to be

target-independent. This makes it possible to couple such processes starting at

a and aiming at two different points b and b′ in such a way that they coincide

until the first disconnection point. This in turn makes it possible to canonically

define a conformally invariant “exploration tree” of SLE(κ, κ − 6) processes

rooted at a and a collection of loops called Conformal Loop Ensembles in

[39]. It is conjectured in [39] that this one-parameter collection of loops indeed

corresponds to the scaling limit of a wide class of discrete lattice-based models

and that for each κ, the law of the constructed family of loops is independent

of the starting point a.

The branching SLE(κ, κ−6) procedure works for any κ ∈ (8/3, 8], but the

obtained loops are simple and disjoint loops only when κ ≤ 4. In this paper,

we use the term CLE to refer to any collection of loops satisfying conformal

invariance and restriction, while using the term CLEκ to refer to the random

collections of loops constructed in [39]. We shall prove the following.

Theorem 1.4. Every CLE is in fact a CLEκ for some κ ∈ (8/3, 4].

Let us stress that we have not yet proved at this point that the CLEκ are

themselves CLEs (and this was also not established in [39]) — nor that the
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law of CLEκ is root-independent. In fact, it is not proved at this point that

CLEs exist at all. All of this will follow from the second part.

1.3. Main statements and outline: The loop-soup construction. We now

describe the content of Sections 9 to 11. The Brownian loop-soup, as defined

in [20], is a Poissonian random countable collection of Brownian loops con-

tained within a fixed simply-connected domain D. We will actually only need

to consider the outer boundaries of the Brownian loops, so we will take the

perspective that a loop-soup is a random countable collection of simple loops.

(Outer boundaries of Brownian loops can be defined as SLE8/3 loops; see [45].)

Let us stress that our conformal loop ensembles are also random collections of

simple loops but that, unlike the loops of the Brownian loop-soup, the loops

in a CLE are almost surely all disjoint from one another.

The loops of the Brownian loop-soup L = (`j , j ∈ J) in the unit disk U are

the points of a Poisson point process with intensity cµ, where c is an intensity

constant and µ is the Brownian loop measure in U. The Brownian loop-soup

measure P = Pc is the law of this random collection L.

When A and A′ are two closed bounded subsets of a bounded domain D,

we denote by L(A,A′;D) the µ-mass of the set of loops that intersect both sets

A and A′, and stay in D. When the distance between A and A′ is positive,

this mass is finite [20]. Similarly, for each fixed positive ε, the set of loops that

stay in the bounded domain D and have diameter larger than ε has finite mass

for µ.

The conformal restriction property of the Brownian loop measure µ (which

in fact characterizes the measure up to a multiplicative constant; see [45])

implies the following two facts (which are essentially the only features of the

Brownian loop-soup that we shall use in the present paper):

(1) Conformal invariance: The measure Pc is invariant under any Moebius

transformation of the unit disc onto itself. This invariance makes it

in fact possible to define the law PD of the loop-soup in any simply

connected domain D 6= C as the law of the image of L under any given

conformal map Φ from U onto D (because the law of this image does

not depend on the actual choice of Φ).

(2) Restriction: If one restricts a loop-soup in U to those loops that stay

in a simply connected domain U ⊂ U, one gets a sample of PU .

We will work with the usual definition (i.e., the usual normalization) of the

measure µ, as in [20]; note that there can be some confusion about a factor 2

in the definition, related to whether one keeps track of the orientation of the

Brownian loops or not. Since we will be talking about some explicit values of

c later, it is important to specify this normalization. For a direct definition of

the measure µ in terms of Brownian loops, see [20].
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Figure 5. Sample of a random-walk loop-soup approximation

[19] of a Brownian loop-soup in a square, by Serban Nacu.

As mentioned above, [44] pointed out a way to relate Brownian loop-

soups clusters to SLE-type loops: Two loops in L are said to be adjacent if

they intersect. Denote by C(L) the set of clusters of loops under this relation.

For each element C ∈ C(L), write C for the closure of the union of all the loops

in C and denote by C the family of all C’s.

We write F (C) for the filling of C, i.e., for the complement of the un-

bounded connected component of C \ C. A cluster C is called outermost if

there exists no C ′ such that C ⊂ F (C ′). The outer boundary of such an

outermost cluster C is the boundary of F (C). Denote by Γ the set of outer

boundaries of outermost clusters of L.

Figure 6. A loop-soup and the fillings of its outermost clusters (sketch).
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Let us now state the main results of this second step.

Theorem 1.5. Suppose that L is the Brownian loop-soup with intensity

c in U.

• If c ∈ (0, 1], then Γ is a random countable collection of disjoint simple

loops that satisfies the conformal restriction axioms.

• If c > 1, then there is almost surely only one cluster in C(L).

It therefore follows from our Markovian characterization that Γ is a CLEκ
(according to the branching SLE(κ, κ − 6) based definition in [39]) for some

κ ∈ (8/3, 4]. In fact, we will also derive the following correspondence.

Theorem 1.6. Fix c ∈ (0, 1], and let L be a Brownian loop-soup of in-

tensity c on U. Then Γ is a CLEκ, where κ ∈ (8/3, 4] is determined by the

relation c = (3κ− 8)(6− κ)/2κ.

1.4. Main statements and outline: Combining the two steps. Since every

κ ∈ (8/3, 4] is obtained for exactly one value of c ∈ (0, 1] in Theorem 1.6, thanks

to Theorem 1.4 we immediately get that the random simple loop configurations

satisfying the conformal restriction axioms are precisely the CLEκ where κ ∈
(8/3, 4], which completes the proof of Theorem 1.1 and shows that the following

three descriptions of simple loop ensembles are equivalent:

(1) the random loop ensembles traced by branching Schramm-Loewner Evo-

lution (SLEκ) curves for κ in (8/3, 4],

(2) the outer-cluster-boundary ensembles of Brownian loop-soups for c ≤ 1,

(3) the (only) random loop ensembles satisfying the CLE axioms.

Let us now list some further consequences of these results. Recall from [1]

that the Hausdorff dimension of an SLEκ curve is almost surely 1+(κ/8). Our

results therefore imply that the boundary of a loop-soup cluster of intensity

c ≤ 1 has dimension

37− c−
√

25 + c2 − 26c

24
.

Note that just as for Mandelbrot’s conjecture for the dimension of Brownian

boundaries [14], this statement does not involve SLE, but its proof does. In

fact, the result about the dimension of Brownian boundaries can be viewed as

the limit when c→ 0 of this one.

Furthermore, we may define the carpet of the CLEκ to be the random

closed set obtained by removing from U the interiors (i.e., the bounded con-

nected component of their complement) of all the loops γ of Γ, and recall that

SLE methods allowed [36] to compute its “expectation dimension” in terms

of κ. The present loop-soup construction of CLEκ enables to prove (see [26])

that this expectation dimension is indeed equal to its almost sure Hausdorff
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dimension d, and that in terms of c,

(1) d(c) =
187− 7c+

√
25 + c2 − 26c

96

The critical loop-soup (for c = 1) corresponds therefore to a carpet of dimen-

sion 15/8.

Another direct consequence of the previous results is the “additivity prop-

erty” of CLE’s: If one considers two independent CLE’s in the same simply

connected domain D with nonempty boundary and looks at the union of these

two, then either one can find a cluster whose boundary contains ∂D, or the

outer boundaries of the obtained outermost clusters in this union form another

CLE. This is simply due to the fact that each of the CLE’s can be constructed

via Brownian loop-soups (of some intensities c1 and c2) so that the union cor-

responds to a Brownian loop-soup of intensity c1 + c2. This gives, for instance,

a clean direct geometric meaning to the general idea (present on various oc-

casions in the physics literature) that relates in some way two independent

copies of the Ising model to the Gaussian Free Field in their large scale limit.

The outermost boundaries defined by the union of two independent CLE3s in

a domain (recall [7] that CLE3 is the scaling limit of the Ising model loops,

and note that it corresponds to c = 1/2) form a CLE4 (which corresponds

to “outermost” level lines of the Gaussian Free Field; see [35], [10] and to

c = 1 = 1/2 + 1/2).

1.5. Further background. In order to put our results in perspective, we

briefly recall some closely related work on conformally invariant structures.

Continuous conformally invariant structures giving rise to loops. There

exist several natural ways to construct conformally invariant structures in a

domain D. We have already mentioned the Brownian loop-soup that will

turn out be instrumental in the present paper when constructing explicitly

CLEs. Another natural conformally invariant structure that we have also just

mentioned is the Gaussian Free Field. This is a classical basic object in Field

Theory. It has been shown (see [34], [10]) that it is very closely related to SLE

processes and that one can detect all kinds of SLEs within the Gaussian Free

Field. In particular, this indicates that CLEs (at least when κ = 4) can in fact

also be defined and found as “geometric” lines in a Gaussian Free Field.

Discrete models. A number of discrete lattice-based models have been

conjectured to give rise to conformally invariant structures in the fine-mesh

limit. For some of these models, these structures can be described by random

collections of loops. We have already mentioned that Smirnov [40], [41], [42] has

proved this conjecture for some important models (percolation, Ising model;

see also [18], [33], [34] for some other cases). Those models that will be directly

relevant to the present paper (i.e., with disjoint simple loops) include the Ising
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model and the discrete Gaussian Free Field level lines ([42], [7], [34], [10]).

The scaling limits of percolation and of the FK-model related to the Ising

model give rise to interfaces that are not disjoint. These are of course also

very interesting objects (see [37], [5], [43] for the description of the percolation

scaling limit), but they are not the subject of the present paper. Conjecturally,

each of the CLEs that we will be describing corresponds to the scaling limit

of one of the so-called O(N) models (see, e.g., [27], [11]), which is one simple

way to define discrete random collections of nonoverlapping loops.

In fact, if one starts from a lattice-based model for which one controls the

(conformally invariant) scaling limit of an observable (loosely speaking, the

scaling limit of the probability of some event), it seems possible (see Smirnov

[41]) to use this to actually prove the convergence of the entire discrete “branch-

ing” exploration procedure to the corresponding branching SLE(κ, κ − 6) ex-

ploration tree. It is likely that it is not so much harder to derive the “full”

scaling limit of all interfaces than to show the convergence of one particular

interface to SLE.

Another quite different family of discrete models that might (more conjec-

turally) be related to the CLEs studied here is the family of “random planar

map” models. These models involve probability measures on the space of planar

graphs together with their embeddings (defined up to topological deformation)

in the plane. It is possible that the CLEs are related to random planar maps

chosen in such a way that they contain “large holes,” as described in [21].

Conformal Field Theory. Note finally that Conformal Field Theory, as

developed in the theoretical physics community since the early eighties [2], is

also a setup to describe the scaling limits of all correlation functions of these

critical two-dimensional lattice models. This indicates that a description of the

entire scaling limit of the lattice models in geometric SLE-type terms could be

useful in order to construct such fields. CLE-based constructions of Conformal

Field Theoretical objects “in the bulk” can be found in Benjamin Doyon’s

papers [8], [9]. It may also be mentioned that aspects of the present paper

(infinite measures on “pinned configurations”) can be interpreted naturally in

terms of insertions of boundary operators.

Part one: the Markovian characterization

2. The CLE property

2.1. Definitions. A simple loop in the complex plane will be the image

of the unit circle in the plane under a continuous injective map. (In other

words, we will identify two loops if one of them is obtained by a bijective

reparametrization of the other one; note that our loops are not oriented.) Note

that a simple loop γ separates the plane into two connected components that we
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call its interior int(γ) (the bounded one) and its exterior (the unbounded one)

and that each one of these two sets characterizes the loop. There are various

natural distances and σ-fields that one can use for the space L of loops. We

will use the σ-field Σ generated by all the events of the type {O ⊂ int(γ)} when

O spans the set of open sets in the unit plane. Note that this σ-field is also

generated by the events of the type {x ∈ int(γ)} where x spans a countable

dense subset Q of the plane. (Recall that we are considering simple loops so

that O ⊂ int(γ) as soon as O ∩Q ⊂ int(γ).)

In the present paper, we will consider (at most countable) collections

Γ = (γj , j ∈ J) of simple loops. One way to properly define such a collection

is to identify it with the point-measure

µΓ =
∑
j∈J

δγj .

Note that this space of collections of loops is naturally equipped with the σ-field

generated by the sets {Γ : #(Γ ∩ A) = k} = {Γ : µΓ(A) = k}, where A ∈ Σ

and k ≥ 0.

We will say that (γj , j ∈ J) is a simple loop configuration in the bounded

simply connected domain D if the following conditions hold:

• For each j ∈ J , the loop γj is a simple loop in D.

• For each j 6= j′ ∈ J , the loops γj and γj′ are disjoint.

• For each j 6= j′ ∈ J , γj is not in the interior of γj′ ; the loops are not nested.

• For each ε > 0, only finitely many loops γj have a diameter greater than ε.

We call this the local finiteness condition.

All these conditions are clearly measurable with respect to the σ-field discussed

above.

We are going to study random simple loop configurations with some special

properties. More precisely, we will say that the random simple loop configura-

tion Γ = (γj , j ∈ J) in the unit disc U is a Conformal Loop Ensemble (CLE) if

it satisfies the following properties:

• Nontriviality : The probability that J 6= ∅ is positive.

• Conformal invariance: The law of Γ is invariant under any conformal

transformation from U onto itself. This invariance makes it in fact possible

to define the law of the loop-ensemble ΓD in any simply connected domain

D 6= C as the law of the image of Γ under any given conformal map Φ from

U onto D. (This is because the law of this image does not depend on the

actual choice of Φ.) We can also define the law of a loop-ensemble in any

open domainD 6= C that is the union of disjoint open simply connected sets

by taking independent loop-ensembles in each of the connected components

of D. We call this law PD.

• Restriction: To state this important property, we need to introduce some

notation. Suppose that U is a simply connected subset of the unit disc.
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Define
I = I(Γ, U) = {j ∈ J : γj 6⊂ U}

and J∗ = J∗(Γ, U) = J \ I = {j ∈ J : γj ⊂ U}. Define the (random) set

U∗ = U∗(U,Γ) = U \ ∪j∈I int(γj).

This set U∗ is a (not necessarily simply connected) open subset of U (be-

cause of the local finiteness condition). The restriction property is that,

for all U , the conditional law of (γj , j ∈ J∗) given U∗ (or alternatively

given the family (γj , j ∈ I)) is PU∗ .

This definition is motivated by the fact that for many discrete loop-models

that are conjectured to be conformally invariant in the scaling limit, the dis-

crete analog of this restriction property holds. Examples include the O(N)

models (and, in particular, the critical Ising model interfaces). The goal of the

paper is to classify all possible CLEs and, therefore, the possible conformally

invariant scaling limits of such loop-models.

The nonnesting property can seem surprising since the discrete models

allow nested loops. The CLE in fact describes (when the domain D is fixed)

the conjectural scaling limit of the law of the “outermost loops” (those that

are not surrounded by any other one). In the discrete models, one can discover

them “from the outside” in such a way that the conditional law of the remaining

loops given the outermost loops is just made of independent copies of the model

in the interior of each of the discovered loops. Hence, the conjectural scaling

limit of the full family of loops is obtained by iteratively defining CLEs inside

each loop.

At first sight, the restriction property does not look that restrictive. In

particular, as it involves only interaction between entire loops, it may seem

weaker than the conformal exploration property of SLE (or of branching

SLE(κ, κ − 6)) that describes the way in which the path is progressively con-

structed. However (and this is the content of Theorems 1.2 and 1.3), the family

of such CLEs is one-dimensional too, parametrized by κ ∈ (8/3, 4].

2.2. Simple properties of CLEs. We now list some simple consequences of

the CLE definition. Suppose that Γ = (γj , j ∈ J) is a CLE in U.

(1) Then, for any given z ∈ U, there almost surely exists a loop γj in Γ such

that z ∈ int(γj). Here is a short proof of this fact. Define u = u(z) to be the

probability that z is in the interior of some loop in Γ. By Moebius invariance,

this quantity u does not depend on z. Furthermore, since P (J 6= ∅) > 0, it

follows that u > 0. (Otherwise, the expected area of the union of all interiors

of loops would be zero.) Hence, there exists r ∈ (0, 1) such that with a positive

probability p, the origin is in the interior of some loop in Γ that intersects the

slit [r, 1]. (We call A this event.) We now define U = U \ [r, 1) and apply the

restriction property. If A holds, then the origin is in the interior of some loop
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of Γ. If A does not hold, then the origin is in one of the connected components

of Ũ and the conditional probability that it is surrounded by a loop in this

domain is therefore still u. Hence, u = p+ (1− p)u so that u = 1.

(2) The previous observation implies immediately that J is almost surely

infinite. Indeed, almost surely, all the points 1 − 1/n, n ≥ 1 are surrounded

by a loop, and any given loop can only surround finitely many of these points

(because it is at positive distance from ∂U).

(3) Let M(θ) denote the set of configurations Γ = (γj , j ∈ J) such that

for all j ∈ J , the radius [0, eiθ] is never locally “touched without crossing” by

γj . (In other words, θ is a local extremum of none of the arg(γj)’s.) Then, for

each given θ, Γ is almost surely in M(θ). Indeed, the argument of a given loop

that does not pass through the origin can, anyway, at most have countably

many “local maxima,” and there are also countably many loops. Hence, the

set of θ’s such that Γ /∈M(θ) is at most countable. But the law of the CLE is

invariant under rotations, so that P (Γ ∈ M(θ)) does not depend on θ. Since

its mean value (for θ ∈ [0, 2π]) is 1, it is always equal to 1.

If we now define, for all r > 0, the Moebius transformation of the unit

disc such that ψ(1) = 1, ψ(−1) = −1 and ψ′(1) = r, the invariance of the CLE

law under ψ shows that for each given r, almost surely, no loop of the CLE

locally touches ψ([−i, i]) without crossing it.

(4) For any r < 1, the probability that rU is entirely contained in the

interior of one single loop is positive. This is because each simple loop γ

that surrounds the origin can be approximated “from the outside” by a loop

η on a grid of rational meshsize with as much precision as one wants. This

implies, in particular, that one can find one such loop η in such a way that the

image of one loop γ in the CLE under a conformal map from int(η) onto U
that preserves the origin has an interior containing rU. Hence, if we apply the

restriction property to U = int(η), we readily get that with positive probability,

the interior of some loop in the CLE contains rU. Since this property will not

be directly used nor needed later in the paper, we leave the details of the proof

to the reader.

(5) The restriction property continues to hold if we replace the simply

connected domain U ⊂ U with the union U of countably many disjoint simply

connected domains Ui ⊂ U. That is, we still have that the conditional law

of (γj , j ∈ J∗) given U∗ (or alternatively given the family (γj , j ∈ I)) is PU∗ .

To see this, note first that applying the property separately for each Ui gives

us the marginal conditional laws for the set of loops within each of the Ui.

Then, observe that the conditional law of the set of loops in Ui is unchanged

when one further conditions on the set of loops in ∪i′ 6=iUi′ . Hence, the sets of

loops in the domains U∗1 , . . . , U
∗
i , . . . are in fact independent (conditionally on

(γj , j ∈ I)).
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3. Explorations

3.1. Exploring CLEs : heuristics. Suppose that Γ = (γj , j ∈ J) is a CLE

in the unit disc U. Suppose that ε > 0 is given. Cut out from the disc a

little given shape S = S(ε) ⊂ U of radius ε around 1. If y is a point on

the unit circle, then we may write yS for y times the set S; i.e., S rotated

around the circle via multiplication by y. The precise shape of S will not

be so important; for concreteness, we may at this point think of S as being

equal to the ε-neighborhood of 1 in the unit disc. Let U1 denote the connected

component that contains the origin of the set obtained when removing from

U ′1 := U \ S all the loops that do not stay in U ′1. If the loop γ0 in the CLE

that surrounds the origin did not go out of U \ S, then the (conditional) law

of the CLE restricted to U1 (given the knowledge of U1) is again a CLE in

this domain. (This is just the CLE restriction property.) We then define the

conformal map Φ1 from U1 onto U with Φ1(0) = 0 and Φ′1(0) > 0.

Now we again explore a little piece of U1. We choose some point y1

on the unit circle and define U ′2 to be the domain obtained when removing

from U1 the preimage (under Φ1) of the shape S centered around y1 (i.e.,

U ′2 = Φ−1
1 (U \ y1S)). Again, we define the connected component U2 that

contains the origin of the domain obtained when removing from U ′2 the loops

that do not stay in U ′2 and the conformal map Φ2 from U2 onto U normalized

at the origin.

We then explore in U2 if γ0 ⊂ U2, and so on. One can iterate this procedure

until we finally “discover” the loop γ0 that surrounds the origin. Clearly, this

will happen after finitely many steps with probability one, because at each step

the derivative Φ′n(0) is multiplied by a quantity that is bounded from below

by a constant v > 1. (This is because at each step, one composes Φn with a

conformal map corresponding to the removal of at least a shape ynS in order

yj

0 0

Figure 7. The first exploration step (sketch).
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to define Φn+1.) Hence, if we never discovered γ0, it would follow from Koebe’s

1/4-Theorem that d(∂Un, 0)→ 0 as n→∞, and this would contradict the fact

that γ0 is almost surely at positive distance from 0.

We call N the random finite step after which the loop γ0 is discovered,

i.e., such that γ0 ⊂ UN but γ0 6⊂ U ′N+1. It it important to notice that at each

step until N , one is in fact repeating the same experiment (up to a conformal

transformation), namely cutting out the shape S from U and then cutting out

all loops that intersect S. Because of the CLE’s conformal restriction property,

this procedure defines an independent identically distributed (i.i.d.) sequence

of steps, stopped at the geometric random variable N , which is the first step

at which one discovers a loop surrounding the origin that intersects U \ yNS.

This shows also that the conditional law of the CLE in U given the fact that

γ0 ∩ S 6= ∅ is in fact identical to the image under y−1
N ΦN of the CLE in UN .

In the coming sections, we will use various sequences yn = yn(ε). One

natural possibility is to simply always choose yn = 1. This will give rise to the

ε radial-explorations that will be discussed in Section 4. However, we first need

another procedure to choose yn(ε) that will enable us to control the behavior

of ΦN(ε), of UN(ε), and of yN(ε) as ε tends to 0. This will then allow us to show

that the conditional law of the CLE in U, given the fact that γ0 ∩ S(ε) 6= ∅,
has a limit when ε→ 0.

3.2. Discovering the loops that intersect a given set. The precise shape of

the sets S that we will use will, in fact, not be really important, as long as

they are close to small semi-discs. It will be convenient to define, for each y

on the unit circle, the set D(y, ε) to be the image of the set {z ∈ H : |z| ≤ ε},
under the conformal map Ψ : z 7→ y(i − z)/(i + z) from the upper half-plane

H onto the unit disc such that Ψ(i) = 0 and Ψ(0) = y. Note that |Ψ′(0)| = 2,

so that when ε is very small, the set D(y, ε) is close to the intersection of a

small disc of radius 2ε around y with the unit disc. This set D(1, ε) will play

the role of our set S(ε).

Suppose that Γ = (γj , j ∈ J) is a given (deterministic) simple loop-

configuration in U. (In this section, we will derive deterministic statements

that we will apply to CLEs in the next section.) We suppose that

(1) In Γ, one loop (which we call γ0) has 0 in its interior.

(2) A ⊂ U is a given closed simply connected set such that U \ A is simply

connected, A is the closure of the interior of A, and the length of ∂A∩ ∂U
is positive.

(3) The loop γ0 does not intersect A.

(4) All γj ’s in Γ that intersect ∂A also intersect the interior of A.

Our goal will be to explore almost all (when ε is small) large loops of Γ

that intersect A by iterating explorations of ε-discs.
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When ε > 0 is given, it will be useful to have general criteria that imply

that a subset V of the unit disc containsD(y, ε) for at least one y ∈ U. Consider

two independent Brownian motions, B1 and B2, started from the origin, and

stopped at their first hitting times T1 and T2 of the unit circle. Consider Ua

and U b the two connected components of U \ (B1[0, T1] ∪B2[0, T2]) that have

an arc of ∂U on their boundary. Note that for small enough ε, the probability

p(ε) that both Ua and U b contain some D(y, ε) is clearly close to 1.

Suppose now that V is a closed subset of U such that U \ V is simply

connected, and let u(V ) be the probability that one of the two random sets

Ua or U b is a subset of V . Then

Lemma 3.1. For all u > 0, there exists a positive ε0 = ε0(u) such that

there exists y ∈ ∂U with D(y, ε) ⊂ V as soon as u(V ) ≥ u.

Proof. The definition of p(ε) and of u(V ) shows that V contains some

D(y, ε) with a probability at least u− (1− p(ε)). Since this is a deterministic

fact about V , we conclude that the set V does indeed contain some set D(y, ε)

for some y ∈ ∂U as soon as p(ε) ≥ 1 − u/2. It therefore suffices to choose ε0

in such a way that u0 = 2(1− p(ε0)). �

Define now a particular class of iterative exploration procedures as follows.

Let U0 = U and Φ0(z) = z. For j ≥ 0,

• Choose some yj on ∂U in such a way that Φ−1
j (D(yj , ε)) ⊂ A.

• Define Uj+1 as the connected component that contains the origin of the

set obtained by removing from U ′j+1 := Uj \Φ−1
j (D(yj , ε)) all the loops in

Γ that do not stay in U ′j+1.

• Let Φj+1 be the conformal map from Uj+1 onto U such that Φj+1(0) = 0

and Φ′j+1(0) > 0.

There is only one way in which such an iterative definition can be brought

to an end; namely, if at some step N0, it is not possible anymore to find a

point y on ∂U such that Φ−1
N0

(D(y, ε)) ⊂ A. (Otherwise, it means that at

some step N , one actually has discovered the loop γ0 so that UN+1 is not well

defined. But we know that this cannot be the case because we have assumed

that γ0 ∩ A = ∅.) Such explorations (Φn, n ≤ N0) will be called ε-admissible

explorations of the pair (Γ, A).

Our goal is to show that when ε gets smaller, the set UN0 is close to Ũ ,

where Ũ is the connected component containing the origin of U \ ∪i∈I(U)γi.

(Here U = U \A.)

The local finiteness condition implies that the boundary of Ũ consists of

points that are either on ∂U or on some loop γj . In this case, we say that this

loop γj contributes to this boundary.
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Figure 8. A domain A, sketch of a completed ε-admissible ex-

ploration of (Γ, A).

Lemma 3.2. For every α > 0, there exists ε′0 = ε′0(Γ, α,A) such that for

all ε ≤ ε′0, every loop of diameter greater than α that contributes to ∂Ũ is

discovered by any ε-admissible exploration of (Γ, A).

Proof. Suppose now that γj is a loop in Γ that contributes to the boundary

of Ũ . Our assumptions on Γ and A ensure that γj therefore intersects both

the interior of A and U \A. This implies that we can define three discs d1, d2,

and d3 in the interior of γj such that d1 ⊂ U \A and d2 ⊂ d3 ⊂ A.

Suppose that for some n ≤ N0, this loop γj has not yet been discovered

at step n. Since γj ∩∂Ũ 6= ∅ and Ũ ⊂ Un, we see that γj ⊂ Un. Since this loop

has a positive diameter, and since Γ is locally finite, we can conclude that with

a positive probability u that depends on (Γ, A, γj , d1, d2, d3), two Brownian

motions B1 and B2 started from the origin behave as follows:

(1) They both enter d1 without hitting A or ∂U or any of the other loops γi
for i ∈ I(U).

(2) They both subsequently enter d2 without going out of int(γj).

(3) They both subsequently disconnect d2 from the boundary of d3 before

hitting it. (This, in particular, guarantees that the curves hit one another

within the annulus d3 \ d2.)

(4) They both subsequently hit ∂U without going out of A.

This shows that one of the sets Ua and U b, as defined before Lemma 3.1, is

contained in A with probability at least u. In fact, if we stop the two Brownian

motions at their first exit of Un instead of on the hitting time of ∂U, the same

phenomenon will hold: One of the two sets Uan and U bn (with obvious notation)

will be contained in Un∩A with probability at least u. By conformal invariance

of planar Brownian motion, if we apply Lemma 3.1 to the conformal images

of these two Brownian motions under Φn, we get that if ε is chosen to be



CONFORMAL LOOP ENSEMBLES 1847

The set A

γj

0

B1

B2

d1

Figure 9. The loop γj , the three discs, and the Brownian mo-

tions (sketch).

sufficiently small, then it is always possible to find an ε-admissible point yn+1.

Hence, N0 > n; i.e., n is not the final step of the exploration.

As a consequence, we see that the loop γj is certainly discovered before

N0, i.e., that γj ⊂ U \UN0 , for all ε ≤ ε′0(γj ,Γ, A). The lemma follows because

for each positive α, there are only finitely many loops of diameter greater than

α in Γ. �

Loosely speaking, this lemma tells us that, indeed, UN0 converges to Ũ

as ε → 0. We now make this statement more precise, in terms of the con-

formal maps ΦN0 and Φ̃, where Φ̃ denotes the conformal map from Ũ onto U
with Φ̃(0) = 0 and Φ̃′(0) > 0. Let us first note that Ũ ⊂ UN0 because the

construction of UN0 implies that before N0 one can only discover loops that

intersect A.

Let us now consider a two-dimensional Brownian motion B started from

the origin and define T (respectively T̃ ) the first time at which it exits U

(resp. Ũ). Let us make a fifth assumption on A and Γ:

(5) Almost surely, BT ∈ ∂U ∪ (∪j int(γj)).

Note that this is indeed almost surely the case for a CLE (because Γ is

then independent of BT so that BT is almost surely in the interior of some

loop if it is not on ∂U). This assumption implies that almost surely, either

T̃ < T (and BT̃ is on the boundary of some loop of positive diameter) or

BT = BT̃ ∈ ∂U. The previous result shows that if T̂ denotes the exit time

of UN0 (for some given ε-admissible exploration), then T̂ = T̃ for all small

enough ε.
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It therefore follows that ΦN0 converges to Φ̃ in the sense that for all proper

compact subsets K of U, the functions Φ−1
N0

converge uniformly to Φ̃−1 in K as

ε→ 0. We shall use this notion of convergence on various occasions throughout

the paper. Note that this corresponds to the convergence with respect to a

distance d; for instance,

d(ϕ1, ϕ2) =
∑
n≥1

2−n max
|z|≤1−1/n

‖ϕ−1
1 (z)− ϕ−1

2 (z)‖.

We have therefore shown that

Lemma 3.3. For each given loop configuration and A (satisfying condi-

tions (1)–(5)), d(ΦN0 , Φ̃) tends to 0 as ε → 0, uniformly with respect to all

ε-admissible explorations of (Γ, A).

Suppose now that γ0 intersects the interior of A. Exactly the same ar-

guments show that there exists ε1 = ε(Γ, A) such that for all “ε-admissible

choices” of the yj ’s for ε ≤ ε1, one discovers γ0 during the exploration (and

this exploration is then stopped in this way).

3.3. Discovering random configurations along some given line. For each

small δ, we define the wedge Wδ = {ueiθ : u ∈ (0, 1) and |θ| ≤ δ}. For each

positive r, let W̃r denote the image of the positive half disc {z ∈ U : Re (z) > 0}
under the Moebius transformation of the unit disc with ψ(1) = 1, ψ(−1) = −1,

and ψ′(1) = r. Note that r 7→ W̃r is continuously increasing on (0, 1] from

W̃0+ = {1} to the positive half-disc W̃1. For all nonnegative integer k ≤ 1/δ,

we then define

Aδ,k = Wδ ∩ W̃kδ.

Suppose that δ is fixed and that Γ is a loop-configuration satisfying conditions

(1)–(5) for all set Aδ,k for k ≤ K, where

K = K(Γ, δ) = max{k : γ0 ∩Aδk = ∅}.

We are going to define the conformal maps Φ̃δ,1, . . . , Φ̃δ,K corresponding to the

conformal map Φ̃ when A is respectively equal to Aδ,1, . . . , Aδ,K .

For each given δ and ε, it is possible to define an ε-admissible chain

of explorations of Γ and Aδ,1, Aδ,2, . . . as follows. Let us first start with an

ε-admissible exploration of (Γ, Aδ,1). If K ≥ 1, then such an exploration does

not encounter γ0, and we then continue to explore until we get an ε-admissible

exploration of (Γ, Aδ,2), and so on, until the last value K ′ of k for which the

exploration of (Γ, Aδ,k) fails to discovers γ0. In this way, we define conformal

maps

Φ̃δ,1
ε , . . . , Φ̃δ,K′

ε
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Figure 10. An exploration-chain and γ0 (sketch).

corresponding to the sets discovered at each of these K ′ explorations. Note

that K ′ ≥ K. One can then also start to explore the set Aδ,K
′+1 until one

actually discovers the loop γ0.

This procedure therefore defines a single ε-admissible exploration (via

some sequence (Φn, yn)) that explores the sets Aδ,j ’s in an ordered way, and

finally stops at some step N , i.e., the last step before one actually discovers γ0.

We call this an ε-admissible exploration chain of Aδ,1, Aδ,2, . . . . Our previous

results show that uniformly over all such ε-admissible exploration-chains (for

each given Γ and δ),

• K ′ = K for all sufficiently small ε.

• limε→0(Φ̃δ,1
ε , . . . , Φ̃δ,K′

ε ) = (Φ̃δ,1, . . . , Φ̃δ,K).

We now suppose that Γ is a random loop-configuration. Then, for each δ,

K = K(Γ, δ) is random. We assume that for each given δ, conditions (1)–(5)

hold almost surely for each of the K sets Aδ1, . . . , A
δ
K . The previous re-

sults therefore hold almost surely; this implies, for instance, that for each

η > 0, there exists ε2(δ) such that for all such ε-admissible exploration-chain

of (Γ, Aδ1, A
δ
2, . . . ) with ε ≤ ε2(δ),

P (K ′ = K and d(Φ̃δ,K
ε , Φ̃δ,K) < η) ≥ 1− η.

We will now wish to let δ go to 0 (simultaneously with ε, taking ε(δ)

sufficiently small) so that we will (up to small errors that disappear as ε and

δ vanish) just explore the loops that intersect the segment [0, 1] “from 1 to 0”



1850 SCOTT SHEFFIELD and WENDELIN WERNER

γ0

1
R

Û

Figure 11. Exploring up to γ0 (sketch).

up to the first point at which it meets γ0. We therefore define

R = max{r ∈ [0, 1] , r ∈ γ0}.

We define the open set Û as the connected component containing the origin of

the set obtained by removing from U \ [R, 1] all the loops that intersect (R, 1].

Note that γ0 ⊂ Û ∪ {R}. We let Φ̂ denote the conformal map from Û onto U
such that Φ̂(0) = 0 and Φ̂′(0) > 0. We also define ŷ = Φ̂(R).

Proposition 3.4. For a well-chosen function ε3 = ε3(δ) (which depends

on the law of Γ only), for any choice of ε(δ)-admissible exploration-chain of

the random loop-configuration Γ and Aδ,1, . . . with ε(δ) ≤ ε3(δ), the random

pair (ΦN , yN ) converges almost surely to the pair (Φ̂, ŷ) as δ → 0.

Proof. Note first that our assumptions on Γ imply that almost surely

Φδ,K → Φ̂ as δ → 0. (This is a statement about Γ that does not involve

explorations.)

We know that γ0 intersects Aδ,K+1\Aδ,K . The local finiteness of Γ and the

fact that any two loops are disjoint therefore implies that the diameter of the

second largest loop (after γ0) of Γ that intersects this set almost surely tends

to 0 as δ → 0. This, in particular, implies that almost surely, the distance

between ΦN and Φ̃δ,K
ε tends to 0 as δ → 0 (uniformly with respect to the

choice of the exploration, as long as ε(δ) tends to 0 sufficiently fast).

Recall finally that for each given δ, Φ̃δ,K
ε → Φδ,K as ε→ 0. Hence, if ε(δ)

is chosen small enough, the map ΦN indeed converges almost surely to Φ̂ as

δ → 0.
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It now remains to show that yN → ŷ. Note that R ∈ UN (because at

that step, γ0 has not yet been discovered) and that R ∈ Aδ,K′+1 \Aδ,K′ (with

high probability, if ε(δ) is chosen to be small enough). On the other hand, the

definition of the exploration procedure and of K ′ shows that

Φ−1
N (D(yN , ε)) ∩ (Aδ,K

′+1 \Aδ,K′) 6= ∅
so that if we choose ε(δ) small enough, then the Euclidean distance between

Φ−1
N (D(yN , ε)) and R tends to 0 almost surely.

Let us look at the situation at step N . The loop ΦN (γ0) in the unit disc is

intersecting D(yN , ε) (by definition of N), and it contains also the point ΦN (R)

(because R ∈ γ0). Suppose that |ΦN (R) − yN | does not almost surely tend

to 0 (when δ → 0); then, with positive probability, we could find a sequence

δj → 0 such that ΦN (R) and yN converge to different points on the unit circle

along this subsequence. In particular, the harmonic measure at the origin of

any of the two parts of the loop between the moment it visits ΦN (R) and

the ε-neighborhood of yN in U is bounded away from 0. Hence, this is also

true for the preimage γ0 under ΦN . γ0 contains two disjoint paths from R to

Φ−1
N (D(yN , ε)) such that their harmonic measure at 0 in U is bounded away

from 0. Recall that Φ−1
N (D(yN , ε)) ⊂ Aδ,K

′+1. In the limit when δ → 0, we

therefore end up with a contradiction, as we have two parts of γ0 with positive

harmonic measure from the origin that join R to some point of [R, 1], which

is not possible because γ0 ∩ (R, 1] 6= ∅ and γ0 is a simple loop. Hence, we can

conclude that |ΦN (R)− yN | → 0 almost surely.

Finally, let us observe that ΦN (R) → Φ̂(R) almost surely. (This follows,

for instance, from the fact that a continuous path that stays inside γ0 and joins

the origin to R stays both in all UN ’s and in Û .) It follows that yN converges

almost surely to ŷ. �

4. The one-point pinned loop measure

4.1. The pinned loop surrounding the origin in U. We will use the previous

exploration mechanisms in the context of CLEs. It is natural to define the

notion of Markovian explorations of a CLE. Suppose now that Γ is a CLE in

the unit disc and that ε is fixed. When γ0 ∩D(1, ε) = ∅, define just as before

the set U1 and the conformal map Φ1 obtained by discovering the set of loops

Γ1 of Γ that intersect D(y0, ε). Then we choose y1 and proceed as before, until

we discover (at step N + 1) the loop γ0 that surrounds the origin. We say

that the exploration is Markovian if for each n, the choice of yn is measurable

with respect to the σ-field generated by Γ1, . . . ,Γn, i.e., the set of all already

discovered loops.

A straightforward consequence of the CLE’s restriction property is that

for each n, conditionally on Γ1, y1, . . . ,Γn, yn (and n ≤ N), the law of the set
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of loops of Γ that stay in Un is that of a CLE in Un. In other words, the

image of this set of loops under Φn is independent of Γ1, y1, . . . ,Γn, yn (on the

event {n ≤ N}). In fact, we could have used this independence property as a

definition of Markovian explorations. (It would allow extra randomness in the

choice of the sequence yn.)

In other words, an exploration is Markovian if we can choose yn as we wish

using the information about the loops that have already been discovered, but

we are not allowed to use any information about the yet-to-be-discovered loops.

This ensures that one obtains an iteration of i.i.d. explorations as argued in

Section 3.1. In particular, if an exploration is Markovian, the random variable

N is geometric:

P (N ≥ n) = P (γ0 ∩D(1, ε) = ∅)n,

and y−1
N Φ−1

N (γ0) is distributed according to the conditional law of γ0 given

{γ ∩D(1, ε) 6= ∅}.
Recall that a CLE is a random loop configuration such that for any given

δ and k ≤ 1/δ, almost surely, all loops that intersect Aδ,k also intersect its

interior. We can therefore apply Proposition 3.4 and use Markovian ε(δ)-

admissible successive explorations of Aδ,1, Aδ,2, . . . . Combining this with our

description of the conditional law of γ0 given {γ ∩ D(1, ε) 6= ∅}, we get the

following result.

Proposition 4.1. When ε → 0, the law of γ0 conditioned on the event

{γ0 ∩D(1, ε) 6= ∅} converges to the law of ŷ−1Φ̂(γ0) (using, for instance, the

weak convergence with respect to the Hausdorff topology on compact sets).

Figure 12. The law of γ0 conditioned on the event {γ0 ∩
D(1, ε) 6= ∅} converges (sketch).
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Note that local finiteness of the CLE ensures that Φ̂(γ0) is a simple loop

in U that intersects ∂U only at ŷ so that ŷ−1Φ̂(γ0) is indeed a loop in U that

touches ∂U only at 1.

This limiting law will inherit from the CLE various interesting properties.

The loop γ0 in the CLE can be discovered along the ray [1, 0] in the unit

disc as in this proposition, but one could also have chosen any other smooth

continuous simple curve from ∂U to 0 instead of that ray and discovered it

that way. This fact should correspond to some property of the law of this

pinned loop. Conformal invariance of the CLE will also imply some conformal

invariance properties of this pinned loop. The goal of the coming sections is

to derive and exploit some of these features.

4.2. The infinite measure on pinned loops in H. We are now going to

associate to each CLE a natural measure on loops that can loosely be described

as the law of a loop “conditioned to touch a given boundary point.” In the

previous subsection, we constructed a probability measure on loops in the

unit disc that was roughly the law of γ0 (the loop in the CLE that surrounds

the origin) “conditioned to touch the boundary point 1.” We will extend

this to an infinite measure on loops that touch the boundary at one point;

the measure will be infinite because we will not prescribe the “size” of the

boundary-touching loop; it can be viewed as a CLE “excursion measure.”

(“Bubble measure” would also be a possible description.) We find it more

convenient at this stage to work in the upper half-plane rather than the unit

disc because scaling arguments will be easier to describe in this setting. We

therefore first define the probability measure µi as the image of the law of Φ̂(γ0)

under the conformal map from U onto the half-plane that maps 0 to i, and ŷ

to 0. (We use the notation µi instead of P i as in the introduction, because

very soon we will be handling measures that are not probability measures.) In

other words, the probability measure µi is the limit as ε→ 0 of the law of the

loop γ(i) that surrounds i in a CLE in the upper half-plane, conditioned by

the fact that it intersects the set Cε defined by

Cε = {z ∈ H : |z| = ε}.

Figure 13. The construction of µi (sketch).



1854 SCOTT SHEFFIELD and WENDELIN WERNER

For a loop-configuration Γ in the upper half-plane and z ∈ H, we denote

by γ(z) the loop of Γ that surrounds z (if this loop exists).

When z = iλ for λ > 0, scale-invariance of the CLE shows that the law

of γ(iλ) conditionally on the event that γ(iλ) intersects the disc of radius λε

around the origin does have a limit as ε → 0 (which is just the image of µi

under scaling).

Let us denote by u(ε) the probability that the loop γ(i) intersects the disc

of radius ε around the origin in a CLE. The description of the measure µi (in

terms of Φ̂) derived in the previous section shows that (i) at least for almost

all λ sufficiently close to one, the loop that surrounds i also surrounds iλ and

i/λ with probability at least 1/2 under µi, and (ii) i/λ as well as λi are almost

surely not on γ(i) (when λ is fixed).

Let Oi denote the interior of the loop γ(i). We know that

lim
ε→0

P (λi ∈ Oi and γ(i) ∩ Cλε 6= ∅)
u(λε)

= µi(λi ∈ Oi).

On the other hand, the scaling property of the CLE shows that when ε→ 0,

P (λi ∈ Oi and γ(i) ∩ Cλε 6= ∅)
u(λε)

=
P (i ∈ Oλi and γ(λi) ∩ Cλε 6= ∅)

u(λε)

=
P (i/λ ∈ Oi and γ(i) ∩ Cε 6= ∅)

u(ε)
× u(ε)

u(λε)

∼ µi(i/λ ∈ Oi)×
u(ε)

u(λε)
.

Hence, for all λ sufficiently close to 1, we conclude that

lim
ε→0

u(λε)

u(ε)
=
µi(i/λ ∈ Oi)
µi(λi ∈ Oi)

.

If we call f(λ) this last quantity, this identity clearly implies that this conver-

gence in fact holds for all positive λ and that f(λλ′) = f(λ)f(λ′). Furthermore,

we see that f(λ)→ 1 as λ→ 1. Hence

Proposition 4.2. There exists a β ≥ 0 (β cannot be negative since ε 7→
u(ε) is nondecreasing) such that for all positive λ,

f(λ) = lim
ε→0

u(λε)

u(ε)
= λβ.

This has the following consequence.

Corollary 4.3. u(ε) = εβ+o(1) as ε→ 0+.

Proof. Note that for any β′ < β < β′′, there exists ε0 = 2−n0 such that

for all ε ≤ ε0,

2β
′
< u(2ε)/u(ε) < 2β

′′
.
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Hence, for all n ≥ 0, it follows that

u(ε0)2−nβ
′′
< u(ε02−n) < u(ε0)2−nβ

′
.

It follows that u(ε02−n) = 2−nβ+o(n) when n → ∞. Since ε 7→ u(ε) is a

nondecreasing function of ε, the corollary follows. �

Because of scaling, we can now define, for all z = iλ, a measure µz on

loops γ(z) that surround z and touch the real line at the origin as follows:

µz(γ(z) ∈ A) = λ−βµi(λγ(i) ∈ A)

for any measurable set A of loops. This is also the limit of u(ε)−1 times the

law of γ(z) in a CLE, restricted to the event {γ(z) ∩ Cε 6= ∅}.
Let us now choose any z in the upper half-plane. Let ψ = ψz now denote

the Moebius transformation from the upper half-plane onto itself with ψ(z) = i

and ψ(0) = 0. Let λ = 1/ψ′(0). Clearly, for any given a > 1, for any small

enough ε, the image of Cε under ψ is “squeezed” between the circles Cε/aλ
and Caε/λ. It follows readily (using the fact that f(a)→ 1 as a→ 1) that the

measure µz defined for all measurable A by

µz(γ(z) ∈ A) = λ−βµi(ψ−1(γ(i)) ∈ A)

can again be viewed as the limit when ε→ 0 of u(ε)−1 times the distribution

of γ(z) restricted to {γ(z) ∩ Cε 6= ∅}.
Finally, we can now define our measure µ on pinned loops. It is the

measure on simple loops that touch the real line at the origin and otherwise

stay in the upper half-plane (this is what we call a pinned loop) such that for

all z ∈ H, it coincides with µz on the set of loops that surround z. Indeed,

the previous limiting procedure shows immediately that for any two points z

and z′, the two measures µz and µz
′

coincide on the set of loops that surround

both z and z′. On the other hand, we know that a pinned loop necessarily

surrounds a small disc. Thus, the requirement that µ coincides with the µz’s

(as described above) fully determines µ.

Let us sum up the properties of the pinned measure µ that we will use in

what follows:

• For any conformal transformation ψ from the upper half-plane onto itself

with ψ(0) = 0, we have

ψ ◦ µ = |ψ′(0)|−βµ.
This is the conformal covariance property of µ. Note that the maps z 7→
−za/(z − a) for real a 6= 0 satisfy ψ′(0) = 1 so that µ is invariant under

these transformations.

• For each z in the upper half-plane, the mass µ({γ : z ∈ int(γ)}) is finite

and equal to ψ′(0)β, where ψ is the conformal map from H onto itself with

ψ(0) = 0 and ψ(z) = i.
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• For each z in the upper half-plane, the measure µ restricted to the set of

loops that surround z is the limit as ε → 0+ of u(ε)−1 times the law of

γ(z) in a CLE restricted to the event {γ(z) ∩ Cε 6= ∅}. In other words,

for any bounded continuous (with respect to the Hausdorff topology, say)

function F on the set of loops,

µ
Ä
1{z is surrounded by γ}F (γ)

ä
= lim

ε→0

1

u(ε)
E
Ä
1{γ(z)∩Cε 6=∅}F (γ(z))

ä
.

Since this pinned measure is defined in a domain with one marked point,

it is also quite natural to consider it in the upper half-plane H but to take the

marked point at infinity. In other words, one takes the image of µ under the

mapping z 7→ −1/z from H onto itself. This is then a measure µ′ on loops

“pinned at infinity, i.e., on double-ended infinite simple curves in the upper

half-plane that go from and to infinity. It clearly also has the scaling property

with exponent β, and the invariance under the conformal maps that preserve

infinity and the derivative at infinity is just the invariance under horizontal

translations.

4.3. Discrete radial/chordal explorations, heuristics, background. We will

now (and also later in the paper) use the exploration mechanism corresponding

to the case where all points yn are chosen to be equal to 1 instead of being

tailored in order for the exploration to stay in some a priori chosen set A as in

Section 3. Let us describe this discrete radial exploration (this is how we shall

refer to it) in the setting of the upper half-plane H. We fix ε > 0, and we wish

to explore the CLE in the upper half-plane by repeatedly cutting out origin-

centered semi-circles Cε of radius ε (and the loops they intersect) and applying

conformal maps. The first step is to consider the set of loops that intersect Cε.

Either we have discovered the loop γ(i) (i.e., the loop that surrounds i), in

which case we stop, or we have not, in which case we define the connected

component of the complement of these loops in H\Cε that contains i, and map

it back onto the upper half-plane by the conformal map ϕε1 such that ϕε1(i) = i

and (ϕε1)′(i) > 0. We then start again, and this defines an independent copy

ϕε2 of ϕε1. In this way, we define a random geometric number N = N(ε) of such

conformal maps ϕε1, . . . , ϕ
ε
N . The N + 1-th map cannot be defined because

one then discovers the loop that surrounds i. The probability that N ≥ n is

equal to (1−u(ε))n. The difference with the exploration procedure of Section 3

is that we do not try to explore “along some prescribed curve,” but we just

iterate i.i.d. conformal maps in such a way that the derivative at i remains a

positive real; i.e., we consistently target the inner point i.

Another natural exploration procedure uses a discrete chordal exploration

that targets a boundary point. We first consider the set of loops in a CLE in

H that intersect Cε. Now, we consider the unbounded connected component
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H1 of the complement in H \ Cε of the union of these loops. We map it back

onto the upper half-plane using the conformal map ϕε1 normalized at infinity,

i.e., ϕε1(z) ∼ z + o(1) as z ∈ H. Then we iterate the procedure, defining an

infinite i.i.d. sequence ϕε1, ϕ
ε
2, . . . of conformal maps and a decreasing family of

domains Hn = (ϕεn ◦· · ·◦ϕε1)−1(H). (Unlike the radial exploration, this chordal

exploration never stops.)

Let us make a little heuristic discussion in order to prepare what follows.

When ε is very small, the law of the sets that one removes at each step in these

two exploration mechanisms can be rather well approximated thanks to the

measure µ. Let us, for instance, consider the chordal exploration. Because of

µ’s scaling property, the µ-mass of the set of loops of half-plane capacity (which

scales like the square of the radius) larger than η should decay as η−β/2. In

particular, in the discrete exploration, the average number of exploration steps

where one removes a set ϕεn(Hn \Hn+1) with half-plane capacity larger than x

is equal (in the ε→ 0 limit) to x−β/2 times the average number of exploration

steps where one removes a set with half-plane capacity larger than one.

Readers familiar with Lévy processes will probably have recognized that

in the ε→ 0 limits, the capacity jumps of the chordal exploration process will

be distributed like the jumps of a (β/2)-stable subordinator. It is important

to stress that we know a priori that the limiting process has to possess macro-

scopic capacity jumps (corresponding to the discovered macroscopic loops).

Since α-stable subordinators exist only for α ∈ (0, 1), we expect that β < 2.

Proving this last fact will be the main goal of this section.

In fact, we shall see that the entire discrete explorations (and not only

the process of accumulated half-plane capacities) converge to a continuous

“Lévy-exploration” defined using a Poisson point process of pinned loops with

intensity µ. However, we defer the more precise description of these Lévy ex-

plorations to Section 7, where we will also make the connection with branching

SLE(κ, κ − 6) processes and show how to reconstruct the law of a CLE using

the measure µ only, i.e., that the measure µ characterizes the law of the CLE.

In fact, the rest of this part of the paper (until the constructive part using

Brownian loop-soups) has two main goals. The first one is to show that the

CLE definition yields a description of the pinned measure µ in terms of SLEκ
for some κ ∈ (8/3, 4]. The second one is to prove that the pinned measure µ

characterizes the law of the entire CLE and also to make the connection with

SLE(κ, κ − 6). We choose to start with the SLE-description of µ; in the next

subsection, we will therefore only derive those two results that will be needed

for this purpose, leaving the more detailed discussion of continuous chordal

explorations for later sections.

For readers who are not so familiar with Lévy processes or Loewner chains,

let us now briefly recall some basic features of Poisson point processes and the
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stability of Loewner chains that will hopefully help making the coming proofs

more transparent.

Stability of Loewner chains. Let S denote the class of conformal maps

ϕ = ϕH from a subset H of the complex upper half-plane back onto the upper

half-plane H such that i ∈ H, ϕ(i) = i and ϕ′(i) is a positive real. Note that

(because H ⊂ H) ϕ′(i) ≥ 1. Let us then define a(ϕ) = logϕ′(i). This is a

decreasing function of the domain H (the smaller H, the larger a), which is

closely related to the conformal radius of the domain. (One can, for instance,

conjugate with z 7→ (i − z)/(i + z) in order to be in the usual setting of the

disc.) It is immediate to check that for some universal constant C, for all

r < 1/2 and for all ϕ such that the diameter of H \H is smaller than r,

a(ϕ) ≤ Cr2.

On the other hand, for some other universal constant C, for all r < 1/2 and

for all H such that ir /∈ H,

a(ϕ) ≥ C ′r2.

Suppose now that ϕ1, . . . , ϕN are N given conformal maps in S. Define

Φ = ϕN ◦ · · · ◦ ϕ1 to be the composition of these conformal maps. It is an

easy fact (that can be readily deduced from simple distortion estimates, or via

Loewner’s theory to approximate these maps via Loewner chains, for instance)

that for any family (ψδ0, . . . , ψ
δ
N )δ>0 of conformal maps in S such that

lim
δ→0

a(ψδ0) + · · ·+ a(ψδN ) = 0,

the conformal maps

Φδ = ψδN ◦ ϕN ◦ ψδN−1 ◦ ϕN−1 ◦ · · ·ϕ1 ◦ ψδ0
converge in Carathéodory topology (viewed from i) to Φ as δ → 0. In other

words, putting some perturbations of the identity between the iterations of

ϕ’s does not change things a lot, as long as the accumulated “size” (measured

by a) of the perturbations is small.

Poisson point processes discrete random sequences. We will approximate

Poisson point processes via discrete sequences of random variables. We will at

some point need some rather trivial facts concerning Poisson random variables,

which we now briefly derive. Suppose that we have a sequence of i.i.d. random

variables (Xn, n ≥ 1) that take their values in some finite set {0, 1, . . . , k} with

P (X1 = 0) > 0. Let N denote the smallest n value at which Xn = 0. For each

j ∈ {1, . . . , k}, let Nj denote the cardinality of {n ∈ {1, . . . , N − 1} : Xn = j}.
We want to control the joint law of (N1, . . . , Nk).

One convenient way to represent this joint law is to consider a Poisson

point process (Xj , Tj)j∈J on A×[0,∞) with intensityM×dt, whereM is some
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σ-finite measure on a space A. Consider disjoint measurable sets A,A1, . . . , Ak
in A with M(A) = 1, M(A1) = a1 <∞, . . . , M(Ak) = ak <∞. We define

T = inf{t > 0 : ∃j ∈ J such that Tj ≤ t and Xj ∈ A};
i.e., loosely speaking, if we interpret t as a time-variable, T is the first time at

which one observes an X in A. Since M(A) = 1, the law of T is exponential

with parameter 1. In particular, P (T > 1) = 1/e. We now define, for j =

1, . . . , k,

Nj = #{j : Tj ≤ T and Xj ∈ Aj},
i.e., the number of times one has observed an X in Aj before the first time

at which one observes an X in A. Then the law of N1, . . . , Nk is the same as

before, where P (X1 = j) = aj/(1 + a1 + · · ·+ aj).

Because of the independence properties of Poisson point processes, the

conditional law of (N1, . . . , Nk) given T is that of K independent Poisson ran-

dom variables with respective means TM(A1), . . . , TM(Ak). Hence, E(Nj) =

E(T )M(Aj) = M(Aj). Furthermore, if we condition on the event {T > 1},
the (joint) conditional distribution of N1, . . . , Nk “dominates” that of k inde-

pendent Poisson random variables of parameter a1, . . . , ak.

4.4. A priori estimates for the pinned measure. Let us denote the “radius”

of a loop γ in the upper half-plane by

R(γ) = max{|z| : z ∈ γ}.
Lemma 4.4. The µ-measure of the set of loops with radius greater than 1

is finite.

Proof. Let us use the radial exploration mechanism. The idea of the proof

is to see that if the µ-mass of the set of loops of radius greater than 1 is

infinite, then one “collects” too many macroscopic loops before finding γ(i)

in the exploration mechanism, which will contradict the local finiteness of the

CLE.

Recall that, at this moment, we know that for any given point z ∈ H, the

measure µz is the limit when ε→ 0 of u(ε)−1 times the law of γ(z) restricted to

the event that γ(z) intersects the ε-neighborhood of the origin. Furthermore,

for any given point z ∈ H, the distance between z and γ is µ-almost always

positive. This implies that for any given finite family of points z1, . . . , zn in H,

the measure µ restricted to the set A = A(z1, . . . , zn) of loops that surrounds

at least one of these points is the limit when ε → 0 of u(ε)−1 times the (sum

of the) laws of loops in A that intersect the ε-neighborhood of the origin.

Suppose now that µ({γ : R(γ) ≥ 1)} =∞. This implies clearly that for

each M > 1, one can find a finite set of points z1, . . . , zn at distance greater

than 1 of the origin such that µ(A(z1, . . . , zn)) > M . Hence, it follows that
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when ε is small enough, at each exploration step, the probability to discover

a loop in A is at least M times bigger than u(ε). The number of exploration

steps before N at which this happens is therefore geometric with a mean at

least equal to M . It follows readily that with probability at least c0 (for some

universal positive c0 that does not depend on ε), this happens at least M/4

times.

Note that the harmonic measure in H at i of a loop of radius at least

1 that intersects also C1/2 is bounded from below by some universal positive

constant c1. If at some step j ≤ N , the radius of H \ (ϕεj)
−1(H) is greater

than 1, then it means that there is a loop in the CLE in H that one explores at

the j-th step that has a radius at least 1 and that intersects C1/2. Its preimage

under ϕεj−1◦· · ·◦ϕε1 (which is a loop of the original CLE that one is discovering)

therefore also has a harmonic measure (in H and at i) that is bounded from

below by c1. Hence, we conclude that with probability at least c0, the original

CLE has at least M/4 different loops such that their harmonic measure seen

from i in H is bounded from below by some universal constant c1.

This statement holds for all M , so that with probability at least c0, there

are infinitely many loops in the CLE such that their harmonic measure seen

from i in H is bounded from below by c1.

On the other hand, we know that γ(i) is almost surely at positive distance

from i, and this implies that for some positive α, the probability that some

loop in the CLE is a distance less than α of i is smaller than c0/2. Hence, with

probability at least c0/2, the CLE contains infinitely many loops that are all at

distance at least α from i and all have harmonic measure at least c1. A similar

statement is therefore true for the CLE in the unit disc if one maps i onto the

origin. It is then easy to check that the previous statement contradicts the

local finiteness (because the diameter of the conformal image of all these loops

is bounded from below). Hence, the µ-mass of the set of pinned loops that

reach the unit circle is indeed finite. �

Let us now list various consequences of Lemma 4.4:

• For all r > 0, let us define Ar := {γ : R(γ) > r}. Because of scaling,

we know that for all r > 0, µ(Ar) = r−βµ(A1). Clearly, this cannot be a

constant finite function of r; this implies that β > 0. Also, we get that for

each fixed r, µ(R(γ) = r) = 0.

• We can now define the function v(ε) as the probability that in the CLE,

there exists a loop that intersects Cε and C1. We know that

(2) lim
ε→0+

v(ε)

u(ε)
= µ(R(γ) ≥ 1)

(because µ(R(γ) = 1) = 0). Hence, it follows that for any δ < 1,

v(δε)/v(ε)→ δβ as ε→ 0. This will be useful later on.
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• We can rephrase, in a slightly more general way, our description of µ in

terms of limits of CLE-loops. Note that Ar = ∪nA(z1, . . . , zn), where

(zn, n ≥ 1) is some given dense sequence on {z : |z| = r}.
For each simple loop configuration Γ, and for each ε, let us define γ̃(ε)

to be the loop in the configuration Γ that intersects the disc of radius ε

and with largest radius. (In case there are ties, take any deterministic

definition to choose one.) We know from (2) that the probability that

R(γ̃(ε)) > r decays like u(ε)× r−βµ(A1) as ε→ 0 (for each fixed r > 0).

Furthermore, we note that the probability that there exist two different

loops of radius greater than r that intersect the circle Cε decays like o(u(ε))

as ε → 0. Indeed, otherwise, for some sequence εn → 0, the probability

that in our exploration procedure two macroscopic loops are discovered

simultaneously remains positive and bounded from below, which is easily

shown to contradict the fact that almost surely any two loops in our CLE

are at positive distance from each other.

Hence, for each n, the measure µ restricted to A(z1, . . . , zn) is the limit

when ε→ 0 of u(ε)−1 times the law of γ̃(ε), restricted to the event that it

surrounds at least one of the points z1, . . . , zn.

We conclude that the measure µ restricted to Ar can be viewed as the

weak limit when ε→ 0 of u(ε)−1 times the law of γ̃(ε) restricted to Ar. In

other words, if we consider the set of pinned loops of strictly positive size

(i.e., the loop of zero length is not in this set) endowed with the Hausdorff

metric, we can say that µ is the vague limit of u(ε)−1 times the law of γ̃(ε).

Let us finally state another consequence of this result, which will turn out

to be useful in the loop-soup construction part of the paper. Consider a CLE

in H, and let us consider the set of loops that intersect the unit circle. Define

R to be the radius of the smallest disc centered at the origin that contains all

these loops. Note that scaling shows that P (R > x) = v(1/x) for x ≥ 1.

Corollary 4.5. If β > 1, then E(R(1+β)/2) <∞.

Proof. Just note that

E(R(1+β)/2) =

∫ ∞
0

drP (R(1+β)/2 ≥ r)

≤ 1 +

∫ ∞
1

dr v(r−2/(1+β))

≤ 1 +

∫ ∞
1

dr

r2β/(1+β)+o(1)
< ∞

because 2β > 1 + β. �

With the 8/κ = 1 + β identification that we will derive later, β > 1

corresponds to κ < 4 and then (1 + β)/2 = 4/κ.
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The next proposition corresponds to the fact that α-stable subordinators

exist only for α ∈ (0, 1).

Proposition 4.6. The scaling exponent β described above lies in (0, 2).

Proof. We use the radial exploration mechanism again. Let us now assume

that β ≥ 2 and focus on the contribution of the “small” loops that one discovers

before actually discovering γ(i).

Let A1, . . . ,Ak be k fixed disjoint (measurable) sets of loops that do not

surround i, with al = µ(Al) <∞. We suppose that all Al’s for l ≤ k belong to

the algebra of events generated by the events of the type {γ : γ surrounds z}.
We let Nε(Al) denote the number of loops in Al that one has discovered in

this way before one actually discovers the loop that surrounds i. Our previous

results show that when ε→ 0, the joint law of Nε(A1), . . . , Nε(Ak) converges to

that of the N1, . . . , Nk that we described at the end of the previous subsection.

For each integer j, we define Aj to be the set of loops that surround 2−ji

but that do not surround any point 2−ki for k < j. The scaling property of µ

implies that for all j, µ(Aj) = 2jβµ(A0). It is easy to check that µ(A0) > 0,

because the loops that surround i have a finite radius so that
∑
j≤0 µ(Aj) ≥

1 > 0. Hence, for all positive j,

µ(Aj) ≥ 4jµ(A0).

Recall that if ψ is a conformal map in S from a simply connected subset H of

H that does contain i but not 2−j0i for some j0 ≥ 1, then

a(ψ) ≥ C ′4−j0 .

Furthermore, for each fixed j0, when ε is small enough, we can compare

the number of loops in A1, . . . ,Aj0 that have been discovered before γ(i)

via the chordal exploration mechanism with i.i.d. Poisson random variables

N1, . . . , Nj0 . Note also that when one composes conformal maps in S, the

derivatives at i get multiplied and the a’s therefore add up.

Hence, it follows immediately that if β ≥ 2, then for each j0, with a

probability that is bounded from below independently of j0, when ε is small

enough,

a(ϕ1 ◦ · · · ◦ ϕN ) ≥ C ′

2

j0∑
j=1

Nj4
−j .

Hence, we conclude that there exists c2 > 0 such that for each M > 0, if one

chooses ε small enough, the probability that a(ϕ1 ◦ · · · ◦ ϕN ) ≥ M is at least

c2. But this contradicts the fact that γ(i) is at positive distance from i (for

instance using Koebe’s 1/4 Theorem). Hence, we conclude that β is indeed

smaller than 2. �
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5. The two-point pinned probability measure

5.1. Restriction property of the pinned measure. We now investigate what

sort of “restriction-type” property the pinned measure µ inherits from the

CLE. Note that µ is an infinite measure on single pinned loops (rather than a

probability measure on loop configurations), so the statement will necessarily

be a bit different from the restriction property of CLE.

Suppose now that A is a closed bounded set such that H \ A is simply

connected, and suppose that d(0, A) > 0. Our goal is to find an alternative

description of the infinite measure µ restricted to the set of loops γ that do

not intersect A.

Suppose that a deterministic pinned (at zero) loop γ (in the upper half-

plane) is given. Sample a CLE Γ# in the upper half-plane. This defines

a random H# which is the connected component that has the origin on its

boundary of the set obtained by removing from H \ A all loops of Γ# that

intersect A. Then, we define a conformal map ψ# from H onto H# such that

ψ#(0) = 0 and (ψ#)′(0) = 1.

In order to fix ψ#, another normalization is needed. We can, for instance, take

ψ#(∞) =∞, but all of what follows would still hold if one replaced ψ# by the

map G# such that G#(z) = z+ o(z2) as z → 0. (We will, in fact, also use this

map in the coming sections.) Finally, we define γ# = ψ#(γ). Clearly, this is a

pinned loop that stays in H# and therefore avoids A almost surely.

Suppose now that we use the product measure µ ⊗ P on pairs (γ,Γ#)

(where P is the law of the same CLE that was used to define the pinned

measure µ). For each pair (γ,Γ#), we define the loop γ# = γ#(γ,Γ#) = ψ#(γ)

as before, and we define µA to be the image measure of µ ⊗ P via this map.

This µA is an infinite measure on the set of loops that do not intersect A.

γ

ψ#(γ)

Figure 14. Construction of µA (sketch).
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We are now ready to state the pinned measure’s restriction property.

Proposition 5.1 (Restriction property of µ). The measure µ restricted

to the set {γ ∩A = ∅} is equal to µA.

Recall that we constructed the pinned measure by “exploring” a CLE in

U until we discover γ0. If we started with a pinned loop — together with a

CLE in the complement of the pinned loop — we might try to “explore” this

configuration until we hit the pinned loop. This would be a way of constructing

a natural measure on loops pinned at two points. We will essentially carry out

such a procedure later on, and the above proposition will be relevant.

Proof. Let us now consider the set A and a CLE Γ#, and define H# and

the map ψ# as before. For each ε, the event that no loop in Γ# intersects both

Cε and A is identical to the event that Cε ⊂ H#. Let us now condition on

the set H# (for a configuration where Cε ⊂ H#); the restriction property of

the CLE tells us that the conditional law of the CLE-loops that stay in H# is

exactly that of an “independent CLE” defined in this random set H#. Hence,

we get an identity between the following two measures:

• The law of γ̃(ε) in the CLE (the loop with largest radius that intersects

Cε) restricted to the event that no loop in the CLE intersects both Cε and

A.

• Sample first a CLE Γ#, define H#, restrict ourselves to the event where

Cε ⊂ H#, define ψ#, consider an independent CLE Γ̃ in the upper half-

plane and its image ψ#(Γ̃), and look at the law of the loop with largest

radius in this family that intersects Cε.

Note that the total mass of these two measures is the probability that no loop

in the CLE intersects both Cε and A.

Now, we consider the vague limits when ε→ 0 of 1/u(ε) times these two

measures. It follows readily from our previous considerations that

• For the first construction, the limit is just µ restricted to the set of pinned

loops that do not hit A.

• For the second construction, the limit is just µA. (Recall that ψ# has been

chosen in such a way that (ψ#)′(0) = 1, so that when ε is small ψ#(Cε) is

very close to Cε.) �

In fact, it will be useful to upgrade the previous result to the space of

“pinned configurations.” We say that (γ̄, Γ̄) is a pinned configuration if γ̄ is

a pinned loop in the upper half-plane and if Γ̄ is a loop-configuration in the

unbounded connected component of H \ γ̄.

Let us define a first natural measure on the space of pinned configurations.

Suppose that one is given a pinned loop γ and a loop-configuration Γ (which

is not necessarily disjoint from γ). Define Hγ as the unbounded connected
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Figure 15. A pinned configuration (sketch).

γ Γ (γ, φγ(Γ))

Figure 16. Construction of (γ̄, Γ̄) (sketch).

component of the complement of γ and φγ as the conformal map from H onto

Hγ that is normalized at infinity (φγ(z) = z + o(1)). Then (γ̄, Γ̄) = (γ, φγ(Γ))

is clearly a pinned loop configuration. We now let µ̄ denote the image of the

product measure µ⊗ P under this map (γ,Γ) 7→ (γ̄, Γ̄). We call it the pinned

CLE configuration measure. Clearly, the marginal measure of γ̄ (under µ̄) is

µ (because P is a probability measure and γ̄ = γ).

Suppose now that A is a set as before. If (γ̄, Γ̄) is a pinned configuration,

then we define

• Γ̃A to be the set of loops of Γ̄ that intersect A,

• H̄A to be the unbounded connected component of H \ (Γ̃A ∪A),

• Γ̄A to be the set of loops of Γ̄ that stay in H̄A.

Hence, when γ̄ ∩ A = ∅, we define a triplet (γ̄, Γ̄A, Γ̃A). Let µ̄A denote the

image of µ̄ (restricted to the set γ̄ ∩A = ∅) under this transformation.

We now construct another measure that will turn out to be identical to

µ̄A. Start on the one hand with a pinned measure configuration (γ̄, Γ̄) and

on the other hand with a loop-configuration in H that we denote by Γ#. We

define ψ# as before (using A and Γ#). We also let Γ#
A denote the loops in

Γ# that intersect A. Then we consider the triplet (ψ#(γ̄), ψ#(Γ̄),Γ#
A). This

triplet is a function of ((γ̄, Γ̄),Γ#). We now define µ#
A to be the image of the

product measure µ̄⊗ P under this mapping.
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(γ̄, Γ̄)

ψ#((γ̄, Γ̄))
Loops of Γ# that intersect A

Figure 17. The measure µ#
A (sketch).

Proposition 5.2 (Restriction property for pinned configurations). The

two measures µ̄A and µ#
A are identical.

If we consider the marginal measures on the pinned loops of µ̄A and µ#
A ,

we recover Proposition 5.1. The proof is basically identical to that of Propo-

sition 5.1: One just needs to also keep track of the remaining loops, and this

is done on the one hand thanks to the CLE’s restriction property and on the

other hand (in the limiting procedure) thanks to the fact that loops are disjoint

and at positive distance from the origin. In order to control the ε→ 0 limiting

procedure applied to loop configurations, one can first derive the result for the

law of finitely many loops in the loop configuration (for instance, those that

surround some given point).

5.2. Chordal explorations. As in the case of the CLE, we are going to pro-

gressively explore a pinned configuration, cutting out recursively small (images

of) semi-circles and trying to make use of the pinned measure’s restriction prop-

erty in order to define a “two-point pinned measure.” However, some caution

will be needed in handling ideas involving independence because µ̄ is not a

probability measure.

Recall that µ̄ is a measure on configurations in a simply connected domain

with one special marked boundary point (i.e., the origin, where the pinned loop

touches the boundary of the domain). It will therefore be natural to work with

chordal ε-admissible explorations instead of radial ones. This will be rather

similar to the radial case, but it is nonetheless useful to describe it in some

detail.

It is convenient to first consider the domain to be the upper half-plane

and to take ∞ as the marked boundary point instead of the origin. Suppose

that Γ is a loop configuration (with no pinned loop) in the upper half-plane H
and choose some bounded closed simply connected set A ⊂ H such that

(1) H \A is simply connected,

(2) A is the closure of the interior of A,
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(3) the interior of A is connected, and

(4) the length of ∂A ∩ ∂H is positive.

Suppose, furthermore, that all γj ’s in Γ that intersect ∂A also intersect the

interior of A.

Here, when x ∈ R, D(x, ε) will denote the set of points in H that are at

distance less than ε from x. We choose some x1 on the real line such that

D(x1, ε) ⊂ A. Then, we define the set H1 to be the unbounded connected

component of the set obtained when removing from H \ D(x1, ε) all loops of

Γ that intersect D(x1, ε). We also define the conformal map g1 from H1 onto

H that is normalized at infinity (g1(z) = z + o(1) as z → ∞), and we let

A2 = g1(H1 ∩A).

Then, we proceed inductively. For each n ≥ 1, we choose (when it is

possible) xn+1 on the real line such that D(xn, ε) ⊂ An. Then we consider the

set Hn+1 to be the unbounded connected component of the set obtained when

removing from H \D(xn, ε) all loops of gn ◦ · · · ◦ g1(Γ) that intersect D(xn, ε).

We also define the conformal map gn+1 from Hn+1 onto H that is normalized

at infinity (gn+1(z) = z+o(1) as z →∞), and we let An+1 = gn+1(Hn+1∩An).

This procedure necessarily has to stop at some step N ; i.e., at this step N ,

it is not possible to find a point x such that D(x, ε) ⊂ HN . This is just because

of additivity of the half-plane capacity under composition of the conformal

maps (and because the half-plane capacity of A is finite). We say that such an

exploration is an ε-admissible (chordal) exploration of (Γ, A) rooted at infinity.

The results of Section 3.2 and their proofs can be immediately adapted to the

present setting. It is, for instance, easy to check that for any given Γ, for any

given loop γj in Γ that intersects such a given A, there exists a positive ε0 =

ε0(Γ, A, γj) such that any ε-admissible chordal exploration of (Γ, A) necessarily

discovers the loop γj as soon as ε ≤ ε0. Hence, after the last step N of this

ε-exploration of (Γ, A), for all positive α, when ε is chosen to be sufficiently

small, one has necessarily discovered all loops of diameter greater than α of Γ

that intersect A.

Let us now suppose that Γ is a loop configuration and A is a set satis-

fying the same conditions as before, except that we also assume that it is at

positive distance of the origin. We can now define chordal ε-explorations of

(Γ, A) that are rooted at 0. These are just the image under z 7→ −1/z of the

previous explorations of (−1/Γ,−1/A), where −1/Γ denotes the loop configu-

ration obtained when one considers the loops (−1/γj). The difference between

the exploration rooted at the origin and the exploration rooted at infinity in

fact only lies in what we call D(x, ε), and how one renormalizes the conformal

maps gn at each step. In the exploration rooted at the origin, D(x, ε) would

have to be replaced by the conformal image of D(x, ε) under the conformal

mapping from H onto H that fixes x, has derivative 1 at x and maps∞ onto 0,
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and the conformal map g−1
n would have to be replaced by the conformal map

Gn from H onto Hn such that Gn(z) = z + o(z2) when z → 0.

Let us describe more precisely an iteration step in this case. Let us define,

for each x ∈ R \ {0} and each small ε, Cε(x) to be the image of Cε under the

Moebius transformation Ix : z 7→ −x/(xz−1) of H that maps 0 onto x and∞
onto 0. Note that for all x and y in R \ {0}, Ix ◦ I−1

y (z) ∼ z when z → 0 and

that Ix ◦ I−1
y (Cε(y)) = Cε(x). When ε is very small, Cε(x) is very close to the

semi-circle of radius x2ε around x (i.e., it is squeezed between to semi-circles

of radii close to x2ε) because I ′x(0) = x2.

Suppose that Hn, Gn are already defined. The choice of xn is then said

to be ε-admissible if Cε(xn) ⊂ G−1
n (Hn ∩ A). We then define Hn+1 to be the

unbounded connected component of the domain obtained by removing from

Hn \Gn(Cε(xn)) all the loops that intersect Gn(Cε(xn)).

Clearly, after the last step N of this exploration rooted at the origin (when

no ε-admissible point can be found), we again have a set HN that is in some

sense close to H (which is the unbounded connected component of the domain

obtained when removing from H \ A all loops that intersect A). One way

to make this more precise is to use the Carathéodory topology “seen from

the origin.” Even if the origin is a boundary point of the simply connected

domains HN and H, we can symmetrize these domains (by considering their

union with their symmetric sets with respect to the real axis) and therefore

view the conformal maps GN and G as conformal maps normalized at the

origin, which is now an inner point of the domain. We will implicitely use this

topology for domains in the upper half-plane “viewed from the origin.” Then,

just as in Section 3.2, we get that (for each given Γ and A) HN converges to H,

when ε→ 0, uniformly with respect to all possible ε-admissible explorations.

5.3. Definition of the two-point pinned measure. We know that the µ-mass

of the set of pinned loops that intersect the segment [1, 1 + i] is positive and

finite. By scaling, we can choose a in such a way that the µ-mass of the

set of pinned loops that intersect [a, a(1 + i)] is equal to 1. On this set of

configurations, µ can therefore be viewed as a probability measure. Similarly,

the pinned configuration measure µ̄ restricted to the set

A = A([a, a+ ia]) = {(γ̄, Γ̄) : γ̄ ∩ [a, a+ ia] 6= ∅}
is a probability measure that we will denote by P̃[a,a+ia].

Let us now consider a pinned configuration (γ̄, Γ̄) in A. Define u = min{y :

a + iy ∈ γ̄} so that a + iu is the lowest point of γ̄ ∩ [a, a + ia]. Let ψ denote

the conformal map from the unbounded connected component Hψ of the set

obtained by removing from H \ [0, a+ iu] all the loops of Γ̄ that intersect this

segment back onto H, normalized by ψ(0) = 0, ψ′(0) = 1 and ψ(a + iu) = 1.

We then define P̃ to be the distribution of γ̃ = ψ(γ̄), i.e., the image of the
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probability measure P̃[a,a+ia] under the transformation (γ̄, Γ̄) 7→ ψ(γ̄). A by-

product of the coming arguments will be that in fact

Proposition 5.3. Under P̃[a,a+ia], the loop γ̃ is independent of ψ.

Define, on the other hand, the probability measure P̃ε to be the measure µ,

restricted to the set of pinned loops that intersect Cε(1) and renormalized, in

order to be a probability measure. The main first goal of this subsection is

to derive the following proposition (which we will later prove together with

Proposition 5.3).

Proposition 5.4 (Definition of the two-point pinned measure P̃ ). As

ε→ 0, P̃ε converges to P̃ .

As we have already indicated, the basic idea of the proof will be similar in

spirit with the construction of the pinned measure itself. We will use discrete

explorations of pinned configurations and use the restriction property of the

pinned measure in order to deduce some independence property between the al-

ready discovered loops and the yet-to-be-discovered ones along the exploration;

this will enable us to conclude.

Suppose now that A is a set that is at positive distance from the origin and

that satisfies conditions (1)–(4) described in the previous subsection. Clearly,

if we define

Ā(A) = {(γ̄, Γ̄) : γ̄ ∩A 6= ∅},
then µ̄(Ā(A)) is finite and positive. We can therefore define P̃A to be µ̄ re-

stricted to this set, and renormalized in order to be a probability measure.

Suppose now thatH⊂H is a simply connected domain with d(0,H\H)>0.

Define φ to be the conformal map from H onto H such that φ(z) = z + o(z2)

when z → 0, and suppose that C ⊂ H is a set such that A := φ(C) satisfies

the same conditions as before. We then define P̃HC to be the image of P̃A under

φ−1. Basically, P̃HC is the “law” of a pinned configuration in H rooted at the

origin and “conditioned” on the event that the pinned loop intersects C.

γ̃ = ψ(γ̄)

γ̄

0 a

a + iu

0 1

Figure 18. The construction of of the two-point pinned loop (sketch).
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Suppose now that B is another set at positive distance of the origin that

satisfies the four conditions described in the previous subsection and such that

A ⊂ B. We are now going to define, for each such B and A, the measure

µ̄B,A to be the measure µ̄ on pinned configurations (γ̄, Γ̄), restricted to the set

Ā(B,A) = Ā(B) \ Ā(A) of configurations such that γ̄ intersects B but not A.

When µ̄(Ā(B)) > µ̄(Ā(A)), we then define P̃B,A to be µ̄B,A normalized to be

a probability measure.

Finally, when we are given Γ̄ and A, we can define the set H̄A as before

(i.e., the unbounded connected component of the set obtained by removing

from H \ A all the loops of Γ̄ that intersect A). Then, it follows immediately

from the pinned measure’s restriction property (Proposition 5.2) that

Corollary 5.5. Suppose that (γ̄, Γ̄) is sampled according to P̃B,A. Then

the conditional law of γ̄ given Γ̃A (i.e., the loops of Γ̄ that intersect A) is P̃HB∩H ,

where H = H̄A.

Suppose now that we are given a configuration (γ̄, Γ̄) that is sampled

according to P̃A. For each given ε, we can perform a “Markovian” ε-admissible

exploration as before. (Markovian can simply mean here that we have chosen

some deterministic procedure to choose each xn.) When γ̄ intersects A, this

exploration procedure can discover γ̄ at some (random) step that we call N̄+1,

and we know that when ε→ 0, the probability that N̄ exists tends to 1.

Corollary 5.5 shows that conditionally on N̄ = n, on Hn and on xn, the

law of γ̄ is P̃HnGn(Cε(xn)). This implies, in particular, that the conditional law of

I1 ◦ I−1
xN̄
◦G−1

N̄
(γ̄) is P̃ε. (Recall that ψN̄ := I1 ◦ I−1

xN̄
◦G−1

N̄
is just the conformal

map from HN̄ onto H that maps the origin onto itself, has derivative at the

origin equal to 1, and that mapsGN̄ (xN̄ ) onto 1.) Hence (on the event N̄ <∞),

ψN̄ (γ̄) is in fact independent of N̄ and of HN̄ .

It is worth stressing at this point that the law of N̄ is not geometric as in

the CLE case and that the iteration steps are not i.i.d. anymore, but this will

not prevent us from now proving Propositions 5.4 and 5.3.

Proof. The arguments are again close in spirit to the definition of the

pinned measure itself. Suppose that K is a large integer, that δ = 1/K, and

consider the rectangles Aδ,k = [a−δ/2, a+δ/2]×[0, akδ] for k = 1, . . . ,K. Note

that because of scale-invariance and translation invariance, for each given δ,

up to a set of configurations of zero measure, all the loops of (γ̄, Γ̄) that inter-

sect some Aδ,k also intersect its interior (when δ is fixed). Furthermore, the

probability measure P̃Aδ,K converges to P̃[a,a(1+i)].

For each fixed δ = 1/K, we can start to explore each (Γ̄ ∪ {γ̄}, Aδ,1) by a

Markovian chordal ε-admissible exploration rooted at 0, then continue explor-

ing (Γ̄ ∪ {γ̄}, Aδ,2), and so on until we either complete a chordal ε-admissible

exploration of Aδ,K = [a − δ, a + δ] × [0, a] or we have discovered γ̄. When
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Figure 19. Exploration of the thin rectangle (sketch).

(γ̄, Γ̄) is sampled according to P̃ , the probability to discover γ̄ is going to 1

as ε → 0+. Let us call (as before) N̄ + 1 the (random) step at which γ̄ is

discovered.

Furthermore, for each given δ, it is possible to choose ε small enough

so that the probability that the exploration processes misses no loop of Γ̄ of

diameter greater than 4δ that intersects [a, a+ ia] is as close to 1 as we want.

The very same arguments as in the proof of Proposition 3.4 then show

that if ε(δ) is chosen to be sufficiently small, then the set HN̄ converges to Hψ

almost surely and that ψN̄ converges almost surely to ψ. We then conclude

using the independence between ψN̄ and ψN̄ (γ̄). We safely leave the details to

the reader. �

A consequence of Proposition 5.4 is that the probability measure P̃ is

invariant under all Moebius transformations of H onto itself that have 0 and

1 as fixed points. This follows immediately from the conformal covariance

property of µ and the description of P̃ as limits of P̃ε given in the proposition.

In fact, our proof of Proposition 5.4 works also if we replace the straight

segment [a, a(1+ i)] by any given other piecewise linear path starting at 1 such

that the µ mass of the set of pinned loops that it intersects is finite. (We can

then just multiply µ by a constant to turn it into a probability measure on this

set.) Suppose that η is some finite piecewise linear path that starts on the real

line, has no double points, and such that all of its segments are horizontal or

vertical. We parametrize it “from the real axis to the tip.”

For each pinned configuration (γ̄, Γ̄) such that γ̄ ∩ η 6= ∅, we can define

the first meeting time T of η with γ̄; i.e., T = min{t : η(t) ∈ γ̄}. Let us

now consider Γ̃η to be the set of loops of Γ̄ that intersect η[0, T ], and let ψ

denote the conformal map as before: It maps the set obtained by removing

from H \ η[0, T ] all the loops of Γ̄ that intersect η[0, T ] back onto H, and it is

normalized in such a way that ψ(0) = 0, ψ′(0) = 1 and ψ(η(T )) = 1. Note
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that ψ(γ̄) is a pinned loop (the map ψ is smooth near the origin) and that the

map “ψ” is smooth near the origin. Note also that µ̄(γ̄∩η 6= ∅) is positive and

finite. Then

Proposition 5.6. If we consider the measure µ̄ on the event {γ̄ ∩ η 6= ∅}
and if we renormalize it to be a probability measure, then under this probability

measure, γ̃ = ψ(γ̄) is distributed according to the two-point pinned distribu-

tion P̃ . Furthermore, γ̃ is independent of the conformal map ψ.

5.4. Independence property of two-point pinned loops. We are now going

to derive the key independence property of the two-point pinned measure.

Suppose that γ̃ is a two-point pinned loop in H that touches the real line at

0 and 1. We can define two simple paths γ∗ and γ∗ from 0 to 1 in H in such

a way that their union is γ̃ and that γ∗ is “below” γ∗. We now define ψ∗ to

be the conformal map from the unbounded connected component H∗ of H \ γ∗
onto H that fixes the three boundary points 0, 1, and ∞. Finally, we define

U(γ̃) = ψ∗(γ
∗).

γ∗

γ∗

ψ∗

U(γ̃) = ψ∗(γ∗)

γ̃

Figure 20. Construction of U(γ̃) (sketch).

Proposition 5.7. If γ̃ is chosen according to the two-point pinned mea-

sure P̃ , then U(γ̃) and γ∗ are independent.

Recall on the one hand that P̃ is the limit of P̃ε when ε→ 0. Let us now

consider a hull A ⊂ H that is attached to the interval (0, 1) and that satisfies

conditions (1)–(4) as before. Let B = A ∪ Cε(1), where ε is sufficiently small

so that Cε(1) ∩ A = ∅. Let us now describe the law of γ̃ conditioned to avoid

A, trying to use Corollary 5.5. Remark first that it is the limit when ε→ 0 of

the pinned measure “renormalized in order to be a probability” on the event

A(B,A); i.e., on the event where γ intersects Cε(1) but not A.

But this measure can be described using Corollary 5.5, and we could use

this to prove Proposition 5.7 directly. However, let us describe first the “ex-

plicit restriction-type-property” for the law P̃ of the two-point pinned loop γ̃.

Suppose that A is such that A ∩ R ⊂ (0, 1), and suppose that H \A is simply

connected. We would like describe the conditional law of γ̃ given that it does

not intersect A.
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In order to do so, let us use a CLE Γ# that is independent of γ̃. We

will use Ẽ, E#, and Ẽ# to denote the expectation with respect to γ̃, to Γ#,

and to both. We define H# as the unbounded connected component of the

set obtained by removing from H \ A all the loops of Γ# that intersect A.

Then, we define the conformal map ϕ# from H# onto H such that ϕ#(0) = 0,

ϕ#(1) = 1, and ϕ′#(1) = 1. It is easy to check that ϕ′#(0) ≤ 1. The loop

ϕ−1
# (γ̃) is clearly the two-point pinned loop that avoids A almost surely.

Proposition 5.8. The conditional law of γ̃ given γ̃ ∩A = ∅ satisfies, for

a bounded continuous function F on the set of loops,

Ẽ(F (γ̃)|γ̃ ∩A = ∅) =
Ẽ#(ϕ′#(0)βF (ϕ−1

# (γ̃)))

E#((ϕ′#(0))β)
.

Proof. Proposition 5.4 shows that

Ẽ(F (γ̃)|γ̃ ∩A = ∅) = lim
ε→0

µ(F (γ)1γ∩A=∅1γ∩Cε(1)6=∅)

µ(1γ∩A=∅1γ∩Cε(1)6=∅)
.

The measure µ restricted to the set of loops that do not intersect A is equal to

µA by Proposition 5.1. Recall that in order to define µA, we use another CLE

Γ#, that we consider the set H# and the conformal map ψ# from H onto H#

such that ψ#(0) = 0, (ψ#)′(0) = 1 and ψ(∞) =∞, and that µA is the image

of the product measure µ⊗ P under the mapping (γ,Γ#) 7→ ψ#(γ). Hence,

Ẽ(F (γ̃)|γ̃ ∩A = ∅) = lim
ε→0

E#(µ(F (ψ#(γ))1ψ#(γ)∩Cε(1)6=∅))

E#(µ(1ψ#(γ)∩Cε(1)6=∅))
.

But when ε is very small, the ε-neighborhood of 1 is not much distorted by

ϕ#. Furthermore, ψ# ◦ ϕ# is a conformal mapping from the upper half-plane

into itself, that depends on Γ# only, that maps the origin onto itself, and its

derivative at the origin is equal to ϕ′#(0). Recall also that µ satisfies conformal

covariance with the exponent β. It follows easily by dominated convergence

that

Ẽ(F (γ̃)|γ ∩A = ∅) = lim
ε→0

E#(ϕ′#(0)βµ(F (ϕ−1
# (γ))1γ∩Cε(1)6=∅))

E#(ϕ′#(0)βµ((1γ∩Cε(1)6=∅)))

= lim
ε→0

(
E#(ϕ′#(0)βµ(F (ϕ−1

# (γ))1γ∩Cε(1)6=∅))

µ(1γ∩Cε(1)6=∅)
× µ(1γ∩Cε(1)6=∅)

E#(ϕ′#(0)βµ(1γ∩Cε(1)6=∅))

)

=
E#(ϕ′#(0)βẼ(F (ϕ−1

# (γ̃))))

E#(ϕ′#(0)β)
. �

We now use this to derive Proposition 5.7.

Proof. Let us consider an independent CLE Γ# as before. For each A as

before, such that A ∩ R ⊂ (0, 1), define ϕ#. It is important to observe that if



1874 SCOTT SHEFFIELD and WENDELIN WERNER

γ∗

γ∗

0 1
A

Figure 21. Proof of independence (sketch).

γ̃ is a two-point pinned loop, then ϕ−1
# (γ̃) is always a two-point pinned loop

and that U(ϕ−1
# (γ̃)) = U(γ̃). Furthermore, note that the event A ∩ γ̃ = ∅ is

identical to the event that A ∩ γ∗ = ∅.
Hence, we get that for every continuous bounded function F on the space

of loops (recall that γ and ϕ# are independent)

Ẽ(F (U(γ̃))|γ∗ ∩A = ∅) =E#(ϕ′#(0)β)−1Ẽ#(ϕ′#(0)βF (U(ϕ−1
# (γ̃))))

=E#(ϕ′#(0)β)−1Ẽ#(ϕ′#(0)βF (U(γ̃)))

=E#(ϕ′#(0)β)−1E#(ϕ′#(0)β)Ẽ(F (U(γ̃)))

= Ẽ(F (U(γ̃))).

Since this is true for all such A, it follows that U(γ̃) and γ∗ are indeed inde-

pendent. �

In the sequel, we call P ∗ the law of U(γ̃). This is a probability measure

on paths joining 1 to 0 in the upper half-plane. Note here that P ∗ is invariant

under the Moebius transformations from H onto itself that preserve 0 and 1.

This follows easily from the corollary and from the fact that the same is true

for the two-point pinned measure.

Let us define P ∗∗ to be the image of P ∗ under the conformal map z 7→
1 − (1/z) of H onto itself (which maps 1 to 0 and 0 to ∞). P ∗∗ is then

a probability measure on simple paths in H from 0 to infinity that is scale-

invariant (because the multiplications by positive constants are the Moebius

transformations in H that leave 0 and ∞ invariant).

6. Pinned loops and SLE excursions

6.1. Two-point pinned measure and SLE paths. The goal of this section

is show that the pinned measure µ associated to a CLE is necessarily one of

the “SLE excursion measures.” Let us first combine the results of the previous

section and reformulate them into a single tractable statement. Consider the

pinned configuration measure µ̄ and some finite piecewise linear path η in H
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that starts on the positive real half-line, has no double points, and such that

all of its segments are horizontal or vertical. We parametrize it “from the real

axis to the tip.” We also suppose that

µ({γ : γ ∩ η 6= ∅}) = 1

so that we can view µ (and µ̄ on the corresponding set of configurations) as a

probability measure.

For each pinned configuration (γ̄, Γ̄) such that γ̄ ∩ η 6= ∅, we can define

the first meeting time T of η with γ̄, i.e., T = min{t : η(t) ∈ γ̄}. Let us now

consider Γ̃η to be the set of loops of Γ̄ that intersect η[0, T ]. We also call γ−
the part of γ (when oriented counterclockwise) between 0 and η(T ), and γ+

the other part. Let us now define the set H− to be the unbounded connected

component of the set obtained by removing from H the union of γ−, η[0, T ]

and the loops of Γ̃η. We let ψ− denote the conformal map from H− onto H
such that ψ−(0−) = 0, ψ−(ηT ) = 1 and ψ−(∞) =∞.

Note that ψ−, γ− and Γ̃η are all deterministic functions of the triple

(γ̄, Γ̄, η). We will sometimes write ψ−,η and γ−,η, γ
+,η to indicate the depen-

dence in η.

γ+

γ−

η

η(T )

Γ̃η

η(0)

Figure 22. Use of independence (sketch).

Proposition 6.1. ψ−(γ+) is independent of ψ− and γ−, and its law is P ∗.

Proof. This is a direct combination of our previous results. Let ψη denote

the conformal map from H\(η[0, T ]∪ Γ̃η) onto H with ψη(0) = 0, ψη(η(T )) = 1

and ψη(∞) = ∞. Conformal invariance of P̃ under the maps that preserve 0

and 1 and the definition of the two-point pinned measure show that ψη(γ) is

independent of ψη and that its law is the two-point pinned measure P̃ .

If we now define γ∗ = ψη(γ−), γ∗ = ψη(γ
+), and ψ∗ (which depends on γ∗

alone) as before, we know from Proposition 5.7 that ψ∗(γ
∗) is independent of

γ∗ and its law is P ∗. Hence, ψ∗(γ
∗) is independent of (γ∗, ψ∗, ψη).
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We can now conclude, noting that ψ∗(γ
∗) = ψ−(γ+) and that γ− =

ψ−1
η (γ∗). �

Suppose now that η : [0, l] → H ∪ η(0) is a finite piecewise linear path

as before, except that µ({γ : γ ∩ η[0, l] 6= ∅}) is not equal to one. We can

use scaling in order to find some constant λ in such a way that we can apply

the previous statement to λη, and it therefore follows that Proposition 6.1

still holds if we consider the measure µ on the event {γ : γ ∩ η[0, l] 6= ∅},
renormalized in order to be a probability measure on this event. Since this is

true for all l, it also follows that

Corollary 6.2. The same statement holds if we consider the measure µ

restricted to the event that γ intersects only the last segment of η (and not the

previous ones) and if we renormalize the measure µ to be a probability measure

on this event.

We now want to deduce from this corollary that P ∗ is the law of some

SLEκ from 1 to 0 in H, i.e., that P ∗∗ is the law of some chordal SLEκ in

H. We will use Oded Schramm’s conformal Markov property characterization

of SLE, which we now briefly recall. Suppose that one is given a continuous

simple curve ξ in H ∪ {0} starting at 0. Let us parametrize ξ according to its

half-plane capacity, i.e., in such a way that for each t, there exists a conformal

map gt from Ht := H \ ξ[0, t] onto H such that gt(z) = z + 2t/z + o(1/z) as

z →∞. Suppose that the half-plane capacity of ξ is not bounded (i.e., that ξ

is defined for all t ≥ 0), and define ft(z) = gt(z) − gt(γt), i.e., the conformal

map from Ht onto H with ft(ξt) = 0 and ft(z) ∼ z at infinity. Then

Lemma 6.3 (Schramm [31]). If the law of ξ is scale-invariant in distribu-

tion (i.e., the law of (λ−1ξλ2t, t ≥ 0) does not depend on λ) and if for all t ≥ 0,

the conditional law of ft(ξ[t,∞)) given ξ[0, t] is identical to the initial law of

ξ, then ξ is an SLE curve.

Recall that this result can be easily understood using Loewner’s theory of

slit mappings, which shows that the curve ξ is characterized by the function t 7→
Wt := gt(ξt). Indeed, the previous conditions imply on the one hand that the

random function t 7→Wt has the Brownian scaling property (because ξ is scale-

invariant in distribution) and on the other hand that it is a continuous process

with independent increments. These two fact imply that W it is a multiple of

a standard Brownian motion. (One can call this multiplicative constant
√
κ.)

As the function W fully characterizes ξ, this determines the law of the path ξ

(up to this one-parameter choice). Furthermore, SLE computations (see [31])

show that the fact that the curve is simple implies that κ ≤ 4.

There are several natural procedures that one can use in order to parame-

trize a pinned loop. We are going to choose one that is tailored for our purpose,
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i.e., to recognize SLE excursions. Let us first define r0 in such a way that

µ(R(γ) ≥ r0) = 1.

Then, the measure µ restricted to the set Q = {γ : R(γ) ≥ r0} is a probability

measure that we will call Q in the present section. Until the rest of the present

subsection, we will assume that γ is sampled from this probability measure.

Suppose now that γ ∈ Q, and let us orient it “counterclockwise,” i.e., γ

starts at 0, makes a simple counterclockwise loop in H, and comes back to 0.

On the way, there is the first intersection point z0 of γ with {z : |z| = r0}. We

define b0 := b0(γ) to be the beginning part of the loop between 0 and z0 (with

the counterclockwise orientation), and we call e0 := e0(γ) the other (end-)part

of the loop γ between z0 and 0.

Let h0 denote the conformal mapping from H \ b0 onto H normalized by

h0(z0) = 0, h0(∞) = 1, and h0(0−) =∞ (where h0(0−) denotes the image of

the left-limit of 0 in H \ b0). The end-part e0 = e0(γ) of the loop between z0

and 0 is a continuous simple path from z0 to 0− in (H \ b0)∪{z0, 0−}. Hence,

its image under h0 is a simple path from 0 to infinity in the upper half-plane

that we now call ξ. We parametrize ξ according to its half-plane capacity as

before (and define the conformal maps gt and ft). This therefore defines (via

the map h−1
0 ) a parametrization of the path e0.

For each t ≥ 0, we now define zt = e0(t):

bt := bt(γ) = b0(γ) ∪ e0[0, t] and et := et(γ) = e0[t,∞).

Let us insist on the fact that bt and et are paths (and not points). ht will

denote the conformal map from H \ bt(γ) with ht(zt) = 0, ht(0−) = ∞ and

ht(∞) = 1. We will now prove the following statement, which we will then

combine with Lemma 6.3.

b0

e0[0, t]

zt = e0(t)
et = e0[t,∞)

z0

Figure 23. Definition of et(γ) and bt(γ) (sketch).
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Lemma 6.4. Under the probability measure Q, for each given t ≥ 0,

ht(et(γ)) = ft(ξ[t,∞)) is independent of bt(γ). Furthermore, its law is P ∗∗.

Proof. Let us fix t ≥ 0. Define ψt to be the conformal map from H \ bt(γ)

on H with ψt(zt) = 1, ψt(∞) = ∞, ψt(0−) = 0. Then, the lemma is clearly

equivalent to the fact that ψt(et) is independent of bt(γ) and that its law is P ∗.

Define bt(γ) as before (when γ is defined under the probability measure Q).

The proof will be based on the independence property of the two-point pinned

measure. In order to use this, we will need to discover the pinned loop via

some grid-based path that turns out to be close to bt. Take n ≥ 1. Let us try

to associate to each b = bt(γ) a grid approximation of bt “from the right side,”

which we will call βn.

First of all, let us note that the diameter of bt+2/n\bt−1/n goes to 0 almost

surely when n→∞ and that we can find some sequence εn → 0 such that

lim
n→∞

Q(d(bt−1/2n, et) ≥ εn) = 1.

(This follows easily from the fact that γ is Q-almost surely a simple curve.)

Here d denotes the usual Euclidean distance. Then, when δ is a mesh-size, we

try to define a particular grid-approximation of bt−1/n on the grid (δN)× (δZ)

as follows. Delete all the edges from the grid that are distance less than δ from

bt−1/n, and consider the unbounded connected component C of the graph that

one obtains. Let f denote the first edge of C that γ hits. (It is therefore after

“time” t − 1/n.) It is clearly on the “boundary of C seen from bt−1/n,” and

one can find the simple nearest-neighbor path from the positive real axis to f

(where f is its last edge) on C that is “closest” to bt−1/n. We call this path

β = β(b, t, n, δ).

Figure 24. Grid-approximation of some bt(γ) (sketch).
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Clearly, when t, n and b are fixed, then when δ → 0, the (Hausdorff)

distance between β and b is going to 0. Hence, we can choose δn in such a way

that

lim
n→∞

Q(dH(β, bt−1/n) ≤ ε2
n) = 1,

where dH denotes the Hausdorff distance.

Once these sequences δn and εn are chosen, we denote for each given n,

the grid approximation β(b, t, n, δn) by βn. The previous estimates also ensure

that

lim
n→∞

Q((γ ∩ βn) ⊂ bt+1/n \ bt−1/n) = 1.

Furthermore, we can observe that if we are given bt and a finite grid-path

η on δnZ × δnN, then in order to check whether βn = η or not, it suffices to

look at the path bt only until the moment it hits η for the first time.

Suppose now that η is some given grid-path that has a positive probability

to be equal to βn. Let us consider a pinned configuration (γ, Γ̄) such that γ

intersects ηT , and let us define ψ− = ψ−,η, γ− = γ−,η and γ+ = γ+,η as before.

(Recall that γ− and γ+ are the two parts of γ, before and after it hits η(T ),

which is the first point of η that intersects γ and that ψ− corresponds to the

domain where one from H\η[0, T ] the loops of Γ̄ that intersect η[0, T ).) Then,

we know on the one hand that ψ−(γ+) is independent of ψ− and γ−, and that

its law is P ∗. On the other hand, we have just argued that the event {βn = η}
is measurable with respect to γ− (this is because γ− contains the part of γ up

to the first time it hits η) so that the conditional law of ψ−(γ+) given {βn = η}
is also P ∗.

When βn = η, we define ψn,− to be this map ψ−, and we also define γn,+

and γn,− to be these γ+ and γ−. Note that when n is very large, the probability

that βn intersects some macroscopic loop of Γ̄ is very small. (This is because

they are all at positive distance of γ̄ and βn is very close to γ.) This, and our

definition of βn, ensures readily that γn,− converges (in Hausdorff topology) to

bt and that ψn,−(γn,+) converges to ψt(et).

We are now almost ready to conclude. For any continuous bounded func-

tions F and G with respect to the Hausdorff topology, we get that

Q(F (bt(γ))G(ψt(et))) = lim
n→∞

Q(F (γn,−)G(ψn,−(γn,+)))

= lim
n→∞

∑
η

Q(1{βn=η}F (γ−,η)G(ψ−,η(γ
+,η)))

= lim
n→∞

∑
η

Q(1{βn=η}F (γ−,η))× P ∗(G)

= lim
n→∞

P ∗(G)×Q(F (γn,−))

=P ∗(G)×Q(F (bt(γ))),
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where we have use the independence property of Corollary 6.2 between the

second and the third line. �

This lemma has a number of consequences. It implies (taking t = 0) that

the law of ξ itself is P ∗∗. We know also that P ∗∗ is scale-invariant. Hence, we

get that ξ is a continuous simple curve from 0 to infinity in the upper half-

plane, that is scale-invariant in law, and such that for all t, the conditional

law of ft(ξ[t,∞)) given ξ[0, t] is the same as the law of ξ itself. The previous

characterization of SLE therefore implies that

Corollary 6.5. The curve ξ is an SLEκ for some κ ∈ [0, 4]. Further-

more, ξ is independent of b0(γ).

The independence between b0(γ) and ξ shows that the probability measure

Q can be constructed as follows. First sample b0(γ); this defines its tip z0. Then

draw an SLEκ (for some given value of κ) from z0 to 0− in H \ b0. Standard

SLE computations (see [32]) show that the probability that an SLEκ from 1

to 0 in H hits the (semi-)circle of radius ρ > 1 around the origin decays like

ρ−(8/κ)+1+o(1) when ρ → ∞. It follows immediately that if κ is the value

associated to the pinned measure µ, then

µ({γ : R(γ) ≥ ρ}) = Q({γ : R(γ) ≥ ρ}) = ρ−(8/κ)+1+o(1)

as ρ→∞. If we compare this with the scaling property of µ, i.e., the fact that

µ({γ : R(γ) ≥ ρ) = ρ−βµ({γ : R(γ) ≥ 1}),

we get that

Corollary 6.6. One necessarily has κ = 8/(1 + β), β ∈ [1, 2) and κ ∈
(8/3, 4].

The last two statements in the corollary are just due to the fact that we

know already that β < 2 (so that κ > 8/3) and also that κ ≤ 4 (because γ

does not touch the boundary anywhere except at the origin), which implies

that β ≥ 1.

6.2. Pinned measure and SLE excursion measure. In order to show that

Corollary 6.5 in fact characterizes the measure µ, let us first recall the follow-

ing rather standard facts concerning SLE processes and excursions of Bessel

processes.

Lemma 6.7. Suppose that κ ∈ (8/3, 4] and that P ε denotes the law of

an SLEκ from ε to 0 in the upper half-plane. Then, the measures ε1−(8/κ)P ε

converge (vaguely) to an infinite measure ν on the set of pinned loops, which

we call the SLEκ excursion measure.
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Vague convergence here means that for all r > 0, when restricted on the

set of paths with diameter greater than r, ε1−(8/κ)P ε converges weakly (with

respect to the Hausdorff topology for instance).

Proof. Let us fix a positive ε and consider an SLEκ curve (for κ ∈ (8/3, 4])

from ε to 0 in H. It is possible to parametrize this curve as a Loewner chain

in the upper half-plane, with time measured via the half-plane capacity. If we

use this parametrization, then the SLE path is defined up to some (random)

time τ , and one can define for each t ≥ 0, the conformal map gt from H\γ[0, t]

normalized at infinity, and it satisfies Loewner’s equation ∂tgt(z) = 2/(gt(z)−
Ut) for all t ≤ τ and z /∈ γ[0, t], where Ut = gt(γt). Note also that τ is the

hitting time of 0 by Ut − gt(0) (because γ is almost surely a simple curve).

It is quite easy to argue that the process Xt := Ut − gt(0) is necessarily

a Markov process with the same scaling property as Brownian motion, and

therefore the multiple of some Bessel process. In fact, direct computations (see,

for instance, [38]) shows that γ is a so-called SLE(κ, κ− 6) process stopped at

its first swallowing time of 0; i.e., that

dUt =
√
κdBt +

κ− 6

Ut − gt(0)
dt

and

dXt =
√
κdBt +

κ− 4

Xt
dt,

where B is a standard Brownian motion. Note that U can be recovered from

X because

Ut − U0 = Xt −X0 +

∫ t

0
2dt/Xt.

An important feature here is (and this follows immediately from Itô’s

formula) that for β = 8/κ−1, (Xt)
β is a local martingale up to its first hitting

time of 0. For instance, when X0 = ε, then the probability that X hits ε′ > ε

before hitting 0 is (ε/ε′)β. This makes it possible (in the standard procedure

to define Bessel excursions; see, for instance, [28]) to define a measure ν on the

space of one-dimensional excursions (Yt, t ≤ τ) (i.e., such that Y0 = Yτ = 0 and

Y (0, τ) ⊂ (0,∞)) in such a way that (i) the ν-mass of the set of paths that reach

level ε (at some time τε) is ε−β and (ii) the (εβν)-law of (Yt+τε , t ∈ [0, τ − τε])
is the law of X as before started from level ε and stopped at its first hitting

of 0. Furthermore, one can check (for instance, via scaling considerations) that

for ν-almost all Y ,
∫ τ

0 dt/Yt <∞.

Each such excursion Y clearly defines (via Loewner’s equation, replacing

X by Y and using the fact that
∫ τ

0 dt/Yt is finite) a two-dimensional pinned

loop γ. Conversely, it is possible to recover Y from γ. This makes it possible

to view the measure ν as a measure on the set of loops, and it satisfies the

following two statements:
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• The ν-mass of the set of pinned loops γ such that the corresponding one-

dimensional excursion Y reaches ε during its life-time is equal to ε−β.

• On this set, the measure νε = εβν is a probability measure. One can

sample γ by first sampling γ[0, τε] and then finishing the curve by an SLEκ
in H \ γ[0, τε] from γ(τε) to 0.

It follows that the difference between the two probability measures νε and

P ε is just due to the mapping by the random conformal mapping normalized

at infinity from H \ γ[0, τε] onto H. But, when ε → 0, this mapping clearly

converges to the identity away from the origin, which proves the claim. �

Proposition 6.8. The pinned measure µ is the multiple of the SLEκ-

excursion measure ν for κ = 8/(1 + β) (where β is the “exponent” associated

to µ) that is normalized in such a way that µ(γ surrounds i) = 1.

A consequence of this proposition is that two CLE’s with the same expo-

nent β have the same pinned measure.

Proof. Recall that we have the following description of µ. (This is just

the combination of the scaling property of µ and of the definition of r0.) For

each ε ≥ 0, the µ-mass of the set of loops with radius at least εr0 is ε−β.

If we restrict ourselves to this set of loops and renormalize µ so that it is a

probability measure on this set, we can first sample the part of γ up to the

point at which it reaches the circle of radius ε and then complete it with an

SLEκ back to the origin in the remaining domain.

We cannote that for some absolute constant K0, if we consider a loop that

does not reach the circle of radius r0, then the corresponding Loewner-type

function Y as before does not reach K0. Let us now sample the beginning of

the loop γ as before up to the first hitting point of the circle of radius εr0.

Then continue the SLE up to the first time (if it exists) at which the function Y

associated to the loop reaches K0ε. A fixed positive fraction K1 (independent

of ε because of scale-invariance) of these SLEs succeed in doing so. Then, after

this point, we still are continuing with an SLEκ in the remaining domain, so

that γ is close to a sample of P ε.

Hence, we conclude readily that µ is a constant multiple of ν (where the

constant is given in terms of K0, K1 and β). Another way to describe this

constant is to recall that µ(γ surrounds i) = 1. �

Let us now make the following comment. Suppose that a CLE in H is

given. This defines a random collection of loops (γj). If we now define the

symmetry S with respect to the imaginary axis (i.e., the map z 7→ −z̄), then

it is clear from our CLE axioms that the family (S(γj)) is also a CLE in H.

We have just seen that each CLE defines a pinned measure µ that happens

to be the (multiple of an) SLEκ excursion measure. But, by construction, the
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pinned measure associated to the CLE (S(γj)) is simply the image of µ by

the map S. Therefore (noting that both these CLEs correspond to the same

exponent β), the CLEs (S(γj)) and (γj) correspond to the same SLE excursion

measure. Hence

Corollary 6.9. If the pinned measure of a CLE is the SLEκ excursion

measure for some κ, then it implies that the law of the corresponding SLEκ
bubble (as defined in the introduction) is reversible. The trace of SLEκ bubble

traced clockwise has the same law as that of an SLEκ bubble traced counter-

clockwise.

It has been proved by Dapeng Zhan that SLEκ for κ ≤ 4 is indeed re-

versible (see [46]), which in fact implies this last statement. The present set-

up therefore provides an alternative approach to reversibility of SLE paths for

these values of κ.

7. Reconstructing a CLE from the pinned measure

The goal of the present section is to show that if one knows µ, then one can

recover the law of the initial CLE. This will conclude the proof of Theorem 1.3.

The rough idea is to use the radial exploration and to use the same idea as

in the proof of the fact that β < 2, but “backwards.” The fact that β < 2 will

ensure that this exploration (described in Section 4.4) can be approximated by

keeping only those steps that discover “large” loops, because the cumulative

contribution of the small ones vanish. Furthermore, these large loops can be

described using a Poisson point process of intensity µ. This will lead to the

description of a “continuous exploration mechanism” that we will relate to

SLE(κ, κ− 6) processes in the next section.

7.1. The law of γ(i). It is useful to first show how one can recover the law

of the loop in the CLE that contains i. Recall that the set-up is the following.

We suppose that we are given the law P of a CLE. The previous sections enable

us to define its pinned measure µ, and we have seen that it is necessarily equal

(up to a multiplicative constant) to the SLEκ excursion measure for some κ in

(8/3, 4].

Lemma 7.1. The pinned measure µ characterizes the law of γ(i) under P .

In other words, if two (laws of ) CLEs define the same pinned measure, then

γ(i) is distributed in the same way for both CLEs.

Proof. Let us use on the one hand the radial exploration mechanism in

H. This defines (for each ε) the geometric number N of exploration steps, the

conformal maps ϕε1, . . . , ϕ
ε
N that are normalized at i (i.e., ϕεn(i) = i, and the

derivative at i is positive). We also define for all n ≤ N ,

Φε
n = ϕεn ◦ · · · ◦ ϕε1
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and Φε = Φε
N . Recall that

• The random variable N is geometric with mean 1/u(ε).

• Conditionally on the value of N , the maps ϕε1, . . . , ϕ
ε
N are i.i.d. (and their

law does not depend on N — these are the maps corresponding to the

CLE exploration conditioned on the fact that γ(i) does not intersect Cε).

• What one “discovers” at the (N + 1)-th step is independent of the value of

N and of the maps ϕε1, . . . , ϕ
ε
N . It is just a CLE conditioned by the event

that the loop surrounding i intersects Cε.

On the other hand, define a Poisson point process of pinned loops (γ̄t, t

≥ 0) with intensity µ, and let T be the first time at which one γ̄t surrounds i.

The µ-mass of the set of loops that surround i is equal to 1, so that T is

an exponential random variable of parameter 1. (See, for instance, [29] for

background on Poisson point processes.) For each of the countably many t in

(0, T ) such that γ̄t exists, we denote by ft the conformal map normalized at i

by ft(i) = i and f ′t(i) > 0, from the unbounded connected component of H \ γ̄t
onto H. The fact that β < 2 shows that

E

(∑
t<T

a(ft)1R(γ̄t)<1/2

)
≤E(T )µ(a(f)1R(γ)<1/2)

≤Cµ(R(γ)21R(γ)<1/2) ≤ C ′
∫ 1/2

0

x2dx

x1+β
< ∞.

Since µ(R(γ) ≥ 1/2) <∞, the number of times t before T at whichR(γ̄t) ≥ 1/2

is almost surely finite, so that almost surely,
∑
t<T a(ft) is finite. (Here and in

this section, we shall re-use notations and arguments that have been presented

in the “stability of Loewner chains” paragraph of Section 4.3.) Hence, if for

each r > 0, we define the iteration Ψr of the finitely many ft’s for t < T (in

their order of appearance, let us call the corresponding times t1(r), . . . , tk(r))

that correspond to pinned loops γ̄tj ’s of radius greater than r, we get that as

r → 0+, the maps Ψr converge (in Carathéodory topology, with respect to

the marked point i) to some conformal map Ψ that can be interpreted as the

iteration of all the conformal maps (ft, t < T ) in their order of appearance.

Note that Ψ maps some open set onto the upper half-plane but that we have

no information at this point on the regularity of the boundary of this open set

(whether it is a curve or not, etc.).

Our goal now is to prove that when ε is small, then Ψ and Φε are very close

(in law — with respect to the Carathéodory topology from i). This will ensure

that the law of γ(i) in the CLE is identical to that of Ψ−1(γ̄T ), i.e., the image

under Ψ−1 of an independent sample of µi. In order to do so, we are going to

introduce the cut-off Ψr as before. For each r > 0, we define n1(r), . . . , nk(r)

to be the steps before N at which one discovers a loop intersecting Cr. (Note

that this number of steps k and the values of the nj ’s are random and depend
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on ε as well.) The description of µ shows that for each fixed r > 0, the joint

law of (ϕεn1(r), . . . , ϕ
ε
nk(ε)(r)

) converges precisely to that of the corresponding

(ft1(r), . . . , ftk(r)); the law of their composition ϕεnk(r) ◦ · · · ◦ ϕεn1(r) therefore

converges to that of Ψr.

It now just remains to control∑
n≤N

1n/∈{n1(r),...,nk(r)}a(ϕεn)

as r → 0, uniformly with respect to ε. We will bound the expected value of

this quantity. Recall that β < 2, that the half-plane capacity of a set contained

in a disc of radius smaller than r around the origin is bounded by a constant

C times r2, that N follows a geometric random variable of mean 1/u(ε), and

that conditionally on N , the maps ϕε1, . . . , ϕ
ε
N are i.i.d. It follows that

E(
∑
n≤N

1n/∈{n1(r),...,nk(r)}a(ϕεn)) ≤ E(N)E(a(ϕε1)1n1(r)6=1)

and that

E(a(ϕε1)1n1(r)6=1) ≤ C × E(R(γ̃(ε))21R(γ̃(ε))≤r).

This last expectation will be controlled thanks to the bound β < 2. Let us first

fix δ = 1/2 and choose some a ∈ (0, (2 − β)/2), for instance, a = (2 − β)/4.

We know that

lim
η→0

v(δη)

v(η)
≥ δ2−2a.

In particular, for some η0 > 0, we get that for all η < η0,

v(δη)

v(η)
≥ δ2−a.

Hence, there exists a constant C ′ such that for all m ≥ n ≥ 1,

v(δm)

v(δn)
≥ C ′(δm−n)2−a.

Hence, if δn0+1 ≤ ε ≤ δn0 ≤ δn1+1 ≤ r ≤ δn1 , we get that

E

Ñ∑
n≤N

1n/∈{n1(r),...,nk(r)}a(ϕεn)

é
≤E(N)× E(R(γ̃(ε))21R(γ̃(ε))2≤r)

≤ C

u(δn0)

∑
j∈[n1,n0]

δ2jP (R(γ̃(δn0)) ≥ δj+1)

≤C ′′
∑

j∈[n1,n0]

δ2j v(δn0−j−1)

u(δn0)

≤C ′′′
∑
j≥n1

δ2j(δj)−2+a

≤C ′′′ra,
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where all the constants do not depend on r and ε, so that this quantity con-

verges to 0 as r → 0+ independently of ε; this completes the proof of the fact

that the law of Φε converges to Ψ (in Carathéodory topology).

Recall that for each ε > 0, the law of γ(i) is described as follows. We

consider on the one hand a sample of the conformal map Φε = Φε
N , and on the

other hand, an independent sample of the loop γ̄ε that surrounds i in a CLE in

H conditioned to intersect Cε. Then, γ(i) is distributed exactly as (Φε)−1(γ̄ε).

We have just seen that Φε converges in law to Ψ, and we have also proved

that the (conditional) law of γ̄ε converges to µi. It follows therefore that the

law of γ(i) is described as the image under Ψ−1 of an independent sample of

µi. This description is based solely on the measure µ, so that the law of γ(i)

can indeed be fully recovered from µ. �

We may observe that the previous proof also shows that if (z1, . . . , zm)

are other points in H, if we restrict ourselves to the event where all these m

other points are surrounded by some macroscopic loops that one discovered in

this radial exploration mechanism before (or at) the N -th step, then the joint

distribution of these m loops (some of which may be the same if some loops

surround several of these points) in the ε → 0 limit is also described via the

Poisson point process of pinned loops, i.e., via µ.

7.2. Several points. We now want to prove the more general result.

Proposition 7.2. Two CLE probability measures that define the same

pinned measure µ are necessarily equal.

In other words, the pinned measure µ characterizes the law of the corre-

sponding CLE. This clearly implies Theorem 1.3.

Proof. Note that the law of the CLE is characterized by its “finite-dimen-

sional marginals,” i.e., by the joint distribution of

(γ(i), γ(z1), γ(z2), . . . , γ(zm))

for any finite set of points z1, . . . , zm in H (if we consider the CLE defined in

the upper half-plane).

Let us first focus on the law of (γ(i), γ(z)) for some given z ∈ H. (The

general case will be very similar.) In order to motivate what follows, let us

informally describe what could happen if we simply try to use exactly the same

procedure as in the previous subsection. That is, we consider the conformal

maps ϕεn, Φε
n for n ≤ N as before. Let K denote the largest k ≤ N such that

z ∈ (Φε
k)
−1(H) (and write K = N if z is not swallowed during the first N

steps). We want to keep track of what happens to z, so we define ak = Φε
k(z)

(which will be defined up to k ≤ K). Let us now fix some small positive δ and

consider ε < δ.
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We will also introduce another step K ′ ≤ K, which is the first step k

at which either |ak| ≤ δ or k = K. Note that if K ′ < K, this means that

after the K ′-th step, neither γ(z) nor γ(i) have been discovered, but that the

points z and i are “conformally” quite far away from each other in the domain

HK′ = (Φε
K′)
−1(H) (i.e., the Green’s function GHK′ (z, i) is small — recall that

δ is small). This can happen if the exploration gets close to one of the two

points i or z in H, or if it almost disconnects one from the other in H. (This

is, in fact, a scenario that might really occur with positive probability, even in

the δ → 0 limit.)

We can subdivide the case K ′ = K into three possibilities: The loop γ(z)

has been discovered before the N -th step (in other words, K < N), the loop

γ(z) is discovered at the N -th step (then with high probability γ(i) = γ(z)

when ε→ 0), or it has still to be discovered after then N -th step. In all these

three cases, the arguments of the previous subsection allow us to conclude that

the joint law of (γ(i), γ(z)) on the event that K ′ = K can be described via the

Poisson point process of pinned loops, i.e., thanks to the knowledge of µ.

When K ′ < K, we could just try to continue the exploration process after

K ′, but at some later step k, it could happen that the exploration procedure

captures z because |ak| ≤ ε. Or more generally, the loop γ(z) could be dis-

covered in the discrete exploration process at some step k via some loop that

intersects Cε and that has a very small radius. (This does not necessarily

contradict the fact the γ(z) is at positive distance of z.) In such a case, the

previous argument will clearly not work, as the exploration step corresponding

to the discovery of γ(z) would not be apparent in the limiting Poisson point

process of “macroscopic” pinned loops.

Here is a simple way of fixing this. At the step K ′, instead of doing an

exploration using the semi-circle Cε, we use the semi-circle C√δ of radius
√
δ.

Note that we are only exploring the loops that hit the semicircle (not all the

loops hitting the semi-disc) and that |aK′ | ≤ δ. The harmonic measure of this

semi-circle in H seen from aK′ or from i is small (if δ is small). After this K ′-th

step, z and i are then in two different domains. Furthermore, the probability

to discover a loop that intersects also Cδ3/4 or Cδ1/4 at this K ′-th step is very

small.

The same arguments as above show convergence (as ε → 0) of the laws

of the Φε
K′ (in the Carathéodory sense, with normalization at i). With high

probability, the K ′-th exploration step changes the log conformal radius viewed

from either z or i by a fraction that goes to 0 when δ → 0. If we keep in mind

that the restriction property still holds for nonsimply connected subsets of H
(this is the final observation of Section 2), we see that we can then continue

the discrete radial exploration (aiming towards i) with ε-semi-circles in the

connected component containing i after the K ′-th step, and independently
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i
z

Φ−1(∂C(
√
δ))

Figure 25. Near separation of z from i (sketch).

another discrete radial exploration (aiming at z) in the domain containing z.

In both cases, we continue until we discover γ(i) and γ(z), and the same

arguments as above allow to approximate the laws of these two loops in the

two respective domains via two Poisson point processes of loops.

We can therefore conclude that up to an error that tends to 0 with δ, the

joint law of (γ(i), γ(z)) on the event where K ′ < K is also fully described via

a procedure that is based on the knowledge of µ only. Hence, the joint law of

(γ(i), γ(z)) is fully determined by the pinned measure µ.

Let us now consider the case where there is more than one additional

point, i.e., when we look at the joint law of (γ(i), γ(z1), . . . , γ(zm)). We then

use the same argument as above, stopping at the first time that at least one of

the images of the other points gets to a distance less than δ from the origin,

i.e., at the step

K ′ = min{k : min(|a1
k|, . . . , |amk |) ≤ δ},

where ajk = Φε
k(zj). Note that at this step, it could happen that several |ajk|

are in fact quite small simultaneously. If we explore as before by cutting out

the semi-circle C√δ, we might be unlucky and have some ajk that lies very close

to this semi-circle. However, it is clear that for at least one semi-circle Cδ1/j

out of the m semi-circles, Cδ1/2 , Cδ1/3 , . . . , Cδ1/m+1 , the harmonic measure of

Cδ1/j in H seen from any of the m points a1
k, . . . , a

m
k is very small (i.e., tends

uniformly to 0 when δ → 0). We therefore choose to use this particular semi-

circle for the (K ′ + 1)-th exploration step. This reduces the problem to two

independent explorations in two new domains as before, and each of the two

domains contains strictly less than m + 1 points. We can then inductively

continue the discrete exploration procedure.
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For each fixed δ, this shows that up to a small error (which vanishes when

δ → 0), the ε→ 0 limit of this exploration procedure is well approximated via

Poisson point processes with intensity µ. This enables us to conclude that the

joint law of (γ(i), γ(z1), . . . , γ(zm)) can be fully described in terms of µ. �

8. Relation to CLEκ’s

It now remains to make the connection with the CLEκ families defined in

[39] via SLE(κ, κ− 6) branching trees. This will prove Theorem 1.4.

8.1. Background about SLE(κ, κ − 6) processes. We first briefly review

some of the properties of SLE(κ, κ − 6) in the case where κ ≤ 4, which we

are focusing on in the present paper. We refer to [39] for the more precise

statements and their proofs. We have already encountered the SLE(κ, κ − 6)

process in Section 6.2. Recall that a process (Xt, t ≥ 0) started from X0 =

x 6= 0 is called a Bessel process of dimension δ ≥ 0 if it is the solution to the

ordinary differential equation

(3) dXt = dBt +
δ − 1

2Xt
dt

and that this process is well-defined up to its first hitting time of the origin

(which is almost surely finite if δ < 2). When δ > 0, it is possible to define it

(uniquely) also after it hits the origin in such a way that Xt ≥ 0 when t ≥ 0

and that the Lebesgue measure of the time spent by X at the origin is 0. This

is the “instantaneously reflected Bessel process,” which can also be defined by

concatenating a Poisson point process (e`)`≥0 of Bessel excursions. (See, for

instance, [29] for background on Bessel processes.) We will also use a variation

of this process obtained when tossing a fair coin for each excursion of the Bessel

process in order to decide if it is positive or negative (this process is therefore

defined on a larger probability space than the Brownian motion B), which is

the “symmetrized Bessel process.”

For each excursion e of the Bessel process of dimension δ, we define J(e)

to be the integral of dt/e(t) on this excursion. Recall that (Xt)
β is a local

martingale as long as Xt stays away from the origin (for β = 2− δ); it follows

from a simple scaling argument that the J(e)’s are finite and that the intensity

of the Poisson point process (J(e`), ` ≥ 0) is a multiple of dx/x1+β/2.

It is already apparent in Section 6.2 that it will be essential to try to make

sense of a quantity like
∫ t

0 ds/Xs when X is a Bessel process. In fact, we will

need to focus on the case where δ = 3− 8/κ ∈ (0, 1] and β ∈ [1, 2), where this

integral is infinite as soon as X starts touching the origin. (This is because∫
0 dx/x

1+(β/2) diverges so that almost surely
∑
`≤1 J(e`) = ∞.) There are

two ways around this problem. The first one involves the notion of “principal

values” and is described in [39]. The other one, which works for all δ ∈ (0, 1],
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is simply to consider the symmetrized Bessel process that chooses its signs

at random according to independent fair coin tosses on each excursion. In

this case, the integral
∫ t

0 ds/Xs is not absolutely convergent, but the process

t 7→ It :=
∫ t

0 ds/Xs nevertheless can be easily defined. (This corresponds

exactly to the existence of symmetric α-stable processes for α ∈ [1, 2), even if

α-stable subordinators do not exist when α ≥ 1.) We refer to [39] for a more

detailed description of the possible options. What we will need here is that in

all these cases, one defines a continuous Markov process (Xt, It)t≥0 such that

• X is a solution to the SDE (3) when it is away from the origin;

• the Lebesgue measure spent by X at the origin is 0;

• on the set of times where Xt is away from the origin, t 7→ It is differentiable

and its derivative is 1/Xt;

• (Xt, It)t≥0 satisfies the Brownian scaling property.

The way to define an SLE(κ, κ− 6) process out of this couple (Xt, It)t≥0

goes as follows. Define, for all t ≥ 0, the continuous process

Ut =
√
κXt + 2It/

√
κ,

and construct the chordal Loewner chain driven by this function; i.e., solve the

Loewner differential equation for all z ∈ H,

∂gt(z) = 2/(gt(z)− Ut),
started from g0(z) = z in order to define a random Loewner chain. If we define

Ot = It/
√
κ, then when Xt is away from the origin, i.e., when Ut 6= Ot, one has

∂tOt = 2/(Ot − Ut), i.e., Ot follows the image of some boundary point under

the Loewner flow. Hence, putting our various equations together (definitions

of Xt, It, Ot, and the relation between κ and δ), we get that on the set of times

where Ot 6= Ut,

dUt =
√
κdBt + (κ− 6)

dt

Ot − Ut
and dOt =

2dt

Ot − Ut
.

This continuous driving function t 7→ Ut defines a Loewner chain, but it is not

clear whether this chain is almost surely generated by a path. However, on

those time-intervals where Xt 6= 0, the law of t 7→ Ut/
√
κ is (locally) absolutely

continuous to that of a standard Brownian motion, and the Loewner chain is

therefore tracing stretches of simple paths during these intervals. In fact, each

of these intervals corresponds to a simple loop traced by the SLE(κ, κ − 6)

Loewner chain. We can say that the positive excursions of X correspond to

counterclockwise loops while the negative ones correspond to clockwise loops.

We have already mentioned that such chordal SLE(κ, κ− 6) chains are of

particular interest because of the following properties [38]: They are target-

independent, and if Xt > 0, then the process locally continues exactly as

an SLEκ targeting g−1
t (Ot). This makes it possible (see [39]) to construct
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a branching SLE(κ, κ − 6) process whose law is invariant under conformal

automorphisms of H that fix the origin. In fact, it is also possible to define a

radial version of the SLE(κ, κ−6) process (see [38], [39]) in order to also explore

the connected components that are “cut out” without having a point on the

boundary of H. This can be either defined using a “radial-chordal” equivalence

(like that of SLE(6)) or viewed as a rather direct consequence of the target-

independence of the (chordal) SLE(κ, κ− 6) (just interpreting the past of the

SLE as new boundary points). The obtained set is then dense in the upper

half-plane, and it is therefore possible to define the family of all loops that are

traced in this way; these are exactly the CLEκ defined in [39]. In particular, for

any given choice of the root (say at the origin i.e., the SLE(κ, κ− 6) is started

from (0, 0)), any given z in the upper half-plane is almost surely surrounded

by an (outermost) loop in this CLEκ. We will denote it by γ̂(z).

Let us make the following simple observation, which will be useful later

on. Suppose that z1 and z2 are two points in the upper half-plane and that the

(random) time τ at which this (branching) SLE(κ, κ− 6) process separates z1

from z2 is finite. Then, there are two possible ways in which this can happen:

• either τ is the end-time of an excursion of X, where the SLE traced a

closed loop that surrounds one of the two points but not the other;

• or the SLE has not yet traced a closed loop that surrounds one of the

two points and not the other, but the Loewner chain traced by the paths

nevertheless separates the two points from one another. This can, for

instance, happen if the SLE(κ, κ− 6) touches the boundary of the domain

at a limit time that occurs after the tracing of infinitely many small loops.

(Recall that the SLE(κ, κ− 6) is not a simple path.)

8.2. SLE(κ, κ − 6) and Poisson point process of pinned loops. The def-

inition of SLE(κ, κ − 6) clearly shows that it is possible to reconstruct the

process (Xt, t ≥ 0) starting from a Poisson point process of (positive) Bessel

excursions (e`)`≥0 of the corresponding dimension. More precisely (for the

symmetrized Bessel process), one defines also an i.i.d. family (ε`)`≥0 (with

P (ε` = 1) = P (ε` = −1) = 1/2) of “random signs” and then defines X by

concatenating the excursions (ε`e`, ` ≥ 0). Each individual excursion corre-

sponds to a pinned loop γ̄` in the upper-half plane. In fact, this pinned loop is

an SLE excursion, and one has tossed the fair coin in order to decide whether

to trace it clockwise or counterclockwise. Hence, an SLE(κ, κ − 6) defines

the same Poisson point process of pinned loops (γ̄`)`≥0 with intensity µ as in

Section 7.1.

But there is a difference in the way this Poisson point process is used in

order to construct the “composition” of the corresponding conformal maps f`.

Here, one does not compose the conformal maps f` that are normalized to have
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real derivative at i. Instead, one keeps track of the previous location of the tip

of the curve and continues growing from there. More precisely, suppose that a

pinned loop γ̄ is given and that one decides to trace it clockwise. Consider the

unbounded connected component H of its complement in H, and let 0+ denote

the boundary point of H defined as “the origin seen from the right.” Define

the conformal map f̃ from H onto H such that f̃(0+) = 0 and f̃(i) = i. If

the loop was traced counterclockwise, just replace 0+ by 0− in this definition

of f̃ .

Then, if one focuses on the radial SLE(κ, κ − 6) only at those times t at

which Xt = 0 and before it draws a loop surrounding i, we have exactly the

iteration of the conformal maps f̃`.

In other words, let us define c` ∈ (−π, π] in such a way that f̃ ′`(i) = eic` .

Then the difference between the radial SLE exploration procedure and the

continuous iteration of maps (f`) described in Section 7.1 is this “Moebius

rotation” at the end of each discovered loop. More precisely, let θc denote the

Moebius transformation of H onto itself with θc(i) = i and θ′c(i) = eic; then

f̃` = θc` ◦ f`.
This gives a motivation to modify the discrete radial exploration mecha-

nism of a CLE that we used in Lemma 7.1, as follows. After each step, instead

of normalizing the maps ϕεn at i by ϕεn(i) = i and (ϕεn)′(i) > 0, we use the

modified map ϕ̃εn defined by ϕ̃εn(i) = i and by tossing a fair coin in order to

decide whether ϕ̃εn(−ε) = 0 or ϕ̃n(ε) = 0. Because the law of a CLE in H is

invariant under Moebius transformations, this does not change the fact that

the (ϕ̃εn)’s are i.i.d., that N is a geometric random variable with mean 1/u(ε),

and that what one discovers at the (N + 1)-th step is independent of the value

of N and of the maps ϕ̃ε1, . . . , ϕ̃
ε
N .

We would now like to see that this discrete exploration mechanism con-

verges (as ε → 0) exactly to the radial SLE(κ, κ − 6) procedure described

before. We already know from the proof of Lemma 7.1 that if we focus on the

discovered pinned loops of radius larger than r (for each fixed r), then the cor-

responding discovered loops converge in law to the corresponding SLE loops

(and that the laws of the corresponding conformal maps therefore converge

too). The point is therefore only to check that the effect of all these additional

“Moebius rotations” remains under control (in other words, that it tends to 0

when r → 0, uniformly with respect to ε). But as we shall now see, this follows

from the same arguments that allow us to define symmetrized Bessel processes

(respectively symmetric α-stable processes) as almost sure limits of processes

obtained by the cut-off of all Bessel excursions of small height or length (resp.

the cut-off of all jumps of small size); i.e., it is a straightforward consequence

of the fact that β < 2. For each n ≤ N , we define ϕεn and ϕ̃εn as before, and

we choose cεn in such a way that ϕ̃εn = θcεn ◦ ϕεn.
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Note that there exists a universal constant such that as soon as R(γ̃(ε)) ≤
1/2, the corresponding cε satisfies |cε| ≤ C ×R(γ̃(ε)) (because harmonic mea-

sure scales like the diameter). It follows, using the independence between the

exploration steps and using the symmetry (i.e., the fact that cε1 and −cε1 have

the same law), that

E

ÑÇ∑
n≤N

1n/∈{n1(r),...,nk(r)}c
ε
n

å2
é

= E(N)E
Ä
(cε1)211 6=n1(r)

ä
≤ C

u(ε)
E
Ä
R(γ̃(ε))21R(γ̃(ε))<r

ä
.

We have already shown in the proof of Lemma 7.1 that this last quantity

goes to 0 as r → 0, uniformly with respect to ε. Note also that m 7→∑
n≤min(m,N) 1n/∈{n1(r),...,nk(r)}c

ε
n is a martingale. Hence, Doob’s inequality en-

sures that uniformly with respect to ε,

lim
r→0+

E

Ç
sup
m≤N

(
∑
n≤m

1n/∈{n1(r),...,nk(r)}c
ε
n)2

å
→ 0.

From this, it follows that forgetting or adding these “rotations” to the explo-

ration procedure does not affect it much (in Carathéodory sense, seen from

i). One can, for instance, use the Loewner chain interpretation of this explo-

ration procedures, and the above bound on the supremum of the cumulative

rotations implies that the radial Loewner driving functions (with or without

these rotations) are very close.

8.3. CLE and the SLE(κ, κ − 6) exploration “tree”. In this section, we

finally complete the proof of Theorem 1.4 by showing that indeed the loops

in CLE necessarily have the same law as the set of loops generated by an

SLE(κ, κ − 6) (as constructed in [39]). As before, it is enough to prove that

for every finite set {z1, . . . , zm} of points in H, the joint law of the γ(zj) is

the same for the CLE as for the CLEκ loops (more precisely, as the outermost

loops surrounding these points in the CLEκ).

Fix the points {z1, . . . , zm} in H, and consider a radial SLE(κ, κ − 6)

targeting z1, say. We do not know whether SLE(κ, κ − 6) is a continuous

curve, but we recall that it is continuous at times in the interior of the loop-

tracing intervals (during the excursions of the Bessel process). For each t > 0,

the hull of the process Kt ⊂ H is compact and its complement Ht = H \ Kt

contains z1. The chain (Kt) also traces loops as explained before. We define τ

to be the first time at which at least one of the points z2, . . . , zm is “swallowed”

by Kt, i.e., separated from z1. We will use Kt− to denote ∪s<tKs. Note that

by the target invariance property, the law of (Kt, t < τ) does not depend on the

fact that we singled out z1; i.e., τ is just the first time at which Kt− separates
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the set of m points into at least two parts. As mentioned earlier, the time τ

can occur in two different ways: either the SLE has traced a loop surrounding

some zj , or it has simply disconnected the domain into two parts.

Lemma 8.1. Consider the following method of generating a random loop

γ̃(zj) surrounding each zj :

(1) For each j, if zj is surrounded by one of the loops traced by (Kt, t ≤ τ),

then we let γ̃(zj) be that loop.

(2) In each component of H \Kτ− that is not surrounded by a loop traced by

(Kt, t ≤ τ), we then construct an independent copy of the CLE (confor-

mally mapped to that ensemble), and for each zj in that component, we let

γ̃(zj) be the loop that surrounds zj in this CLE.

Then, the two sets{γ̃(z1), γ̃(z2), . . . , γ̃(zm)} and {γ(z1), γ(z2), . . . , γ(zm)} have

the same law.

Given this lemma, Theorem 1.4 follows immediately by induction. Indeed,

suppose that the collections {γ̂(z′j), j ≤ m − 1} and {γ(z′j), j ≤ m − 1} agree

in law for all collections of (z′j , j ≤ m − 1). By construction, each component

of H \ Kτ− has fewer than m points. Moreover, conditioned on (Kt, t ≤ τ),

the remainder of the branching radial SLE(κ, κ−6) consists of an independent

radial SLE((κ, κ− 6) in each component of H \Kτ− not surrounded by a loop;

by inductive hypothesis, the loops traced by such a process agree in law with

the γ̃(zj).

We now proceed to prove Lemma 8.1.

Proof. First, we claim that it is enough to prove (for each given δ > 0) the

statement of Lemma 8.1 where the time τ is replaced by τδ defined as follows.

First let σδ denote the first time at which at least one of the images of the zj
gets within distance δ of Ut. Note that typically, at time σδ, the Bessel process

X will be in the middle of some excursion away from 0. Then, let τδ be the

first time t at which either

(1) the SLE(κ, κ− 6) completes a loop that surrounds some zj , or

(2) the SLE completes the loop it is tracing at σδ (i.e., t ≥ σδ and Xt = 0).

Indeed, we know that each of the loops γ(zj) is at finite distance from the zj .

Hence, almost surely, the conformal radius of Hτδ− from each of the zj ’s re-

mains bounded as δ → 0; thus, in the Carathéodory sense seen from zj , the

domain surrounding Hτδ− tends to a limit as δ → 0 almost surely. (Note that

the τδ increase as δ decreases.) It is therefore clear that the law of the γ̃’s (con-

ditioned on Kτδ−) tends to a limit as δ → 0 and also that (by the arguments

of Section 7.2) this limit is indeed that of an independent CLE in each of the

component of Hτδ−.
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Now it remains only to prove the claim for these τδ. To do this, it suffices

to return to the modified radial ε-exploration scheme (the one including the cεn
“rotations”) that we have just defined and studied, and use the fact that for

each fixed δ, up to τδ, it approximates the continuous mechanism corresponding

to the SLE(κ, κ− 6) excursions. �

Part two: construction via loop-soups

9. Loop-soup percolation

We now begin the second part of the paper, focusing on properties of

clusters of Brownian loops. The next three sections are structured as follows.

We first study some properties of the Brownian loop-soup and of the clusters it

defines. The main result of the present section is that when c is not too large

(i.e., is subcritical), the outer boundaries of outermost Brownian loop-soup

clusters form a random collection of disjoint simple loops that does indeed

satisfy the conformal restriction axioms. By the main result of the first part,

this implies that they are CLEκ ensembles for some κ. In Section 10, we

compare how loop-soups and SLEκ curves behave when one changes the domain

that they are defined in, and we deduce from this the relation between κ and

c in this subcritical phase. In Section 11, we show that if the size of the

clusters in a Brownian loop-soup satisfy a certain decay rate property, then

the corresponding c is necessary strictly subcritical. This enables us to show

that the loop-soup corresponding to κ = 4 is the only possible critical one.

This completes the identification of all CLEκ’s for κ ∈ (8/3, 4] as loop-soup

cluster boundaries.

We will, in fact, directly use SLE results on only three distinct occasions:

we use the standard SLE restriction properties from [17], the description of

CLE in terms of SLE excursions (also in Section 10), and we use an estimate

about the size of an SLEκ excursions in Section 11.

Recall that we consider a Brownian loop-soup L in U with intensity c

(which is in fact a random countable collection of simple loops because we take

the outer boundaries of Brownian loops). Note that almost surely, for any two

loops in the loop-soup, either the two loops are disjoint or their interiors are

not disjoint. We say that two loops l and l′ in L are in the same cluster of

loops if one can find a finite chain of loops l0, . . . , ln in L such that l0 = l,

ln = l′, and lj ∩ lj−1 6= ∅ for all j ∈ {1, . . . , n}. We then define C to be the

family of all closures of loop-clusters. Finally, we let Γ denote the family of

all outer boundaries of outermost elements of C (i.e., elements of C that are

surrounded by no other element of C).
The goal of this section is to prove the following proposition.
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Proposition 9.1. There exists a positive constant c0 such that for all c

in (0, c0), the set Γ satisfies the conformal restriction axioms, whereas when c

is (strictly) greater than c0, L has only one cluster almost surely.

Throughout this section, we will use neither SLE-type results nor results

derived earlier in the paper. We will focus on properties of the collection C
of (closures of) the clusters defined by the loop-soup L. The proposition will

follow immediately from a sequence of six lemmas that we now state and prove.

It is easy to see (and we will justify this in a moment) that when c is very

large, there almost surely exists just one cluster, and that this cluster is dense

in U, i.e., that almost surely, C = {U}.
Lemma 9.2. Suppose that Pc(C = {U}) < 1. Let U ⊂ U denote some open

subset of U, and define U∗ to be the set obtained by removing from U all the

(closures of ) loop-soup clusters C that do not stay in U . Then, conditionally

on U∗ (with U∗ 6= ∅), the set of loops of L that do stay in U∗ is distributed like

a Brownian loop-soup in U∗.

Figure 26. Loop-soup clusters that stay in the rectangle U are

dashed (sketch).

Note that we have not yet proved at this point that in this case, Γ is a

locally finite collection of disjoint simple loops. (This fact will be proved later

in this section.)

Proof. For any n ≥ 1, let us define the set U∗n = U∗n(U∗) to be the largest

union of dyadic squares of side-lengths 2−n that is contained in U∗. (Note that

this is a deterministic function of U∗.) For each n ≥ 1 and for each union Vn
of such dyadic squares, the loop-soup restricted to Vn is independent of the

event {U∗n = Vn}. It implies immediately that conditionally on U∗, the set of

loops that do stay in U∗n is distributed like a Brownian loop-soup in U∗n. Since

this holds for all n, the statement of the lemma follows. �
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Lemma 9.3. Suppose that Pc(C = {U}) < 1 and that there is a Pc positive

probability that C contains an element intersecting the boundary of U. Then

for all positive c′, Pc+c′(C = {U}) = 1.

Proof. Assume the hypotheses of the lemma, and let A1 be the union

of all elements of C that intersect some prescribed boundary arc ∂ of U of

positive length. By invariance under rotation, Pc(A1 6= ∅) > 0. Using the

same argument as in the previous lemma, we get that if U is a fixed open set

such that U ⊂ U, then conditioned on the event U ∩ A1 = ∅, the law of the

set of loops in L that are contained in U is the same as its original law (since

changing the set of loops within U has no effect on A1). Since this holds for

any U , conformal invariance of the loop-soup implies that conditioned on A1,

the law of the elements of L that do not intersect A1 is that of independent

copies of L conformally mapped to each component of U \A1. Note that this,

in fact, implies that the event that A1 is empty is independent of L, and hence

has probability zero or one (but we will not really need this).

The conformal radius ρ1 of U \ A1 seen from 0 has a strictly positive

probability to be smaller than one. We now iterate the previous procedure.

We let U2 denote the connected component of U \ A that contains the origin.

Note that the harmonic measure of ∂2 := ∂ ∪ A1 at 0 in U1 is clearly not

smaller than the harmonic measure of ∂ in U at 0 (a Brownian motion started

at the origin that exits U in ∂ will necessarily exit U1 through ∂2). We now

consider the loop-soup in this domain U2, and we let A2 denote the union of

all loop-soup clusters that touch ∂2. We then iterate the procedure and note

that the conformal radius of Un (from 0) is dominated by a product of i.i.d.

copies of ρ1.

This shows that for any positive δ, one can almost surely find in Γ a finite

sequence of clusters C1, . . . , Ck, such that d(Cj , Cj+1) = 0 for all j < k, such

that C1 touches ∂, and d(Ck, 0) ≤ δ. By conformal invariance, it is easy to

check that the same is true if we replace the origin by any fixed point z. Hence,

the statement holds almost surely, simultaneously for all points z with rational

coordinates, for all rational δ, and all boundary arcs of ∂U of positive length.

Note that almost surely, each loop of the loop-soup surrounds some point

with rational coordinates. We can therefore conclude (see Figure 27) that

almost surely, any two clusters in C are “connected” via a finite sequence of

adjacent clusters in C.
If we now augment L by adding an independent Brownian loop-soup L′

of intensity c′ for any given positive c′, the new loops will almost surely join

together any two adjacent clusters of C into a single cluster. (This is just

because any given point z′ ∈ U — for instance, one chosen contact point

between two adjacent clusters of C — will almost surely be surrounded by
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Figure 27. The dark solid loop is part of a crossing of (light

solid) loops from the left boundary segment to the right bound-

ary segment. The dark dotted loop is part of a crossing of loops

from the lower boundary segment to the upper boundary seg-

ment.

infinitely many small loops of L′.) Furthermore, for an analogous reason,

almost surely any loop of L′ intersects some loop of L. It follows that for all

c′ > 0, Pc+c′ almost surely, there exists just one single cluster, i.e., C = {U}. �

Lemma 9.4. There is a critical constant c0 ∈ [0,∞] such that

(1) If c > c0, then Pc(C = {U}) = 1.

(2) If c ∈ (0, c0), then Pc almost surely

(a) C has infinitely many elements.

(b) No element of C intersects the boundary of U.

(c) No two elements of C intersect each other.

Proof. Suppose that Pc(C = {U}) < 1. If there is a Pc positive probability

that two elements of C intersect each other, then (applying Lemma 9.2 to some

U that contains one but not the other with positive probability) we find that

there is a positive probability that an element of C intersects ∂U.

Also, if c > 0 and C has only finitely many elements with positive prob-

ability, then (with the same probability) at least one of these elements must

intersect ∂U (since the loops of L are dense in U almost surely).

Thus, Lemma 9.3 implies that if c0 is the supremum of c for which (a),

(b), and (c) hold almost surely, then L has only one cluster Pc almost surely

whenever c > c0. �
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We say c is subcritical if the (a), (b), and (c) of Lemma 9.4 hold Pc almost

surely. We will later show that c0 is subcritical, but we have not established

that yet. We remark that the proof of Lemma 9.4 shows that in order to prove

that some c is subcritical, it suffices to check (b).

Lemma 9.5. The c0 of Lemma 9.4 lies in (0,∞). Moreover, when c > 0

is small enough, there are Pc almost surely continuous paths and loops in D

that intersect no element of L.

Proof. We first prove the latter statement. For small c > 0, there exist

almost surely simple paths crossing U that intersect no element of L. This will

also imply c0 > 0. To this end we will couple the loop-soup with a well-known

fractal percolation model. The argument is similar in spirit to the one for

multi-scale Poisson percolation in [23, Ch. 8].

Consider the unit square D = (0, 1)2 instead of U. For each n, we will

divide it into 4n (closed) dyadic squares of side-length 2−n. To each such square

C, associate a Bernoulli random variable X(C) equal to one with probability p.

We assume that the X(C) are independent. Then, define

(4) M = [0, 1]2 \
⋃

C:X(C)=0

C.

This is the fractal percolation model introduced by Mandelbrot in [22] (see

also the book [23]). It is very easy to see that the area of M is almost surely

zero as soon as p < 1. Chayes, Chayes, and Durrett [6] have shown that this

model exhibits a phase transition: There exists a pc, such that for all p ≥ pc,

M connects the left and right sides of the unit square with positive probability,

whereas for all p < pc, this is almost surely not the case. (Note that, in fact, if

p ≤ 1/4, then M is almost surely empty by a standard martingale argument.)

Here, we will only use the fact that for p large enough (but less than one), M

connects the two opposite sides of the unit square with positive probability. We

remark that the proof in [6] actually gives (for large p) a positive probability

that there exists a continuous path from the left to right side of the unit square

in M that can be parametrized as t → (x(t), y(t)) where t ∈ [0, 1] and x(t) is

nondecreasing. It also shows (modulo a straightforward FKG-type argument)

that M contains loops with positive probability.

Now, let us consider a loop-soup with intensity c in the unit square. For

each loop l, let d(l) ∈ (0, 1) denote its L1-diameter (i.e., the maximal variation

of the x-coordinate or of the y-coordinate), and define n(l) ≥ 0 in such a way

that d(l) ∈ [2−n−1, 2−n). Note that l can intersect at most four different dyadic

squares with side-length 2−n. We can therefore associate in a deterministic

(scale-invariant and translation-invariant) manner to each loop l ⊂ (0, 1)2 a

dyadic site s = (j2−n(l), j′2−n(l)) ∈ (0, 1)2 such that l is contained in the
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square Sl with side-length 2 × 2−n(l) and bottom-left corner at s. Note that

Sl ⊂ (0, 2)2.

We are first going to replace all loops l in the loop-soup by the squares

Sl. This clearly enlarges the obtained clusters. By the scale-invariance and

the Poissonian character of the loop-soup, for each fixed square

(5) S = [j2−m, (j + 2)2−m]× [j′2−m, (j′ + 2)2−m] ⊂ [0, 2]2,

the probability that there exists no loop l in the loop-soup such that Sl = S is

(at least) equal to exp(−bc) for some positive constant b (which is independent

of m). Furthermore, all these events (when one lets S vary) are independent.

Hence, we see that the loop-soup percolation process is dominated by

a variant of Mandelbrot’s fractal percolation model. Let X̃ denote an inde-

pendent percolation on squares of type (5), with each X̃(S) equal to 1 with

probability p̃ = exp(−bc), and define the random compact set

(6) M̃ = [0, 2]2 \
⋃

S:X̃(S)=0

S.

Note that in the coupling between the loop-soup and M̃ described above, the

distance between M̃ and each fixed loop in the loop-soup is (strictly) positive

almost surely. In particular, M̃ is contained in the complement of the union

of the all the loops (and their interiors).

We now claim that this variant of the percolation model is dominated by

Mandelbrot’s original percolation model with a larger (but still less than 1)

value of p = p(p̃), which we will choose in a moment. To see this, let X̂ be a

p̂-percolation (with p̂ = p1/4) on the set of (C, S) pairs with C a dyadic square

and S a square comprised of C and three of its neighbors. Take

X(C) = min
S:C⊂S

X̂(C, S) and X̃(S) = max
C:C⊂S

X̂(C, S).

Clearly, X(C) is a Bernoulli percolation with parameter p = p̂4 and X̃(S) is a

Bernoulli percolation with parameter 1− (1− p̂)4. Let us now choose p in such

a way that p̃ = 1− (1− p̂)4. Note that p tends monotonically to 1 as p̃ tends

to 1. Hence, by taking p̃ sufficiently close to 1, i.e., c sufficiently small, we can

ensure that p is as close to 1 as we want (so that M contains paths and loops

with positive probability). But in our coupling, by construction we have

X(C) ≤ min
C⊂S

X̃(S),

and thus M ⊂ M̃ .

We have now shown that c0 > 0, but we still have to show that c0 < ∞.

We use a similar coupling with the fractal percolation model. For any dyadic

square that does not touch the boundary of [0, 1]2, we let X(C) be 0 if C is

surrounded by a loop in L that is contained in the set of eight neighboring

dyadic squares to C (of the same size). The X(C) are i.i.d. (for all C whose
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eight neighbors are contained in D) and have a small probability (say smaller

than 1/4) of being 1 when c is taken sufficiently large. We now use the fact,

mentioned above, that if p ≤ 1/4, then M is almost surely empty; from this we

conclude easily that almost surely, for each C (whose incident neighbors are

in D), every point in C is surrounded by a loop in L almost surely. It follows

immediately that almost surely every point in D is surrounded by a loop in L.

This implies that almost surely all loops of L belong to the same cluster (since

otherwise there would be a point on the boundary of a cluster that was not

surrounded by a loop). �

Lemma 9.6. If c is sub-critical, the probability that there are k disjoint

chains of loops in C crossing from the inside to the outside of a fixed annulus

decays exponentially in k.

Proof. We know that c is subcritical, so that for all r < 1, the probability

that there exists a crossing of the annulus {z : r < |z| < 1 − 1/n} by a

chain of loops goes to 0 as n → ∞. Hence, there exists r1 ∈ (r, 1) such that

the probability that there is a single crossing of {z : r < |z| < r1} is strictly

smaller than one. Hence, it follows easily that if we consider any given annulus,

{z : r < |z−z0| < r′} ⊂ U, there exists a positive probability that no cluster of

the loop-soup crosses the annulus. (Just consider the two independent events

of positive probability that the loop-soup restricted to {z : |z − z0| < r′/r1}
contains no crossing of the annulus, and that no loop intersects both the circles

of radius r′ and r′/r1 around z0.) In other words, the probability that there

exists a crossing of the annulus is strictly smaller than one. The result then

follows from the BK inequality for Poisson point processes. (See, for instance,

[3] and the references therein.) �

As a consequence (letting k →∞), we see that for each fixed annulus, the

probability that it is crossed by infinitely many disjoint chains of loops is zero.

We are now ready to state and prove the final lemma of this section.

Lemma 9.7. If c is sub-critical, the set C is almost surely locally finite.

Moreover, when c is sub-critical, then almost surely all elements of Γ are con-

tinuous simple loops.

Proof. If the set C is not locally finite (i.e., if there exists some ε such

that there are infinitely many clusters of diameter at least ε), then for some

positive ε, there exist a point z ∈ U and a sequence Cn of elements of C of

size greater than ε such that d(z, Cn) → 0 as n → ∞. Hence, any annulus

with outer radius less than ε/2 that surrounds z will have infinitely many

crossings by disjoint chains of loops. By Lemma 9.6, the probability that such

a point exists is zero. (This result just follows from the lemma by considering
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a countable collection of annuli such that each point in U is surrounded by

arbitrarily small annuli from this collection.)

Note that by construction, no element of C can have a cut point. (Recall

that almost surely no two loops of L intersect at only a single point and that

the elements of L are all simple loops.)

It therefore remains only to check that the outer boundary of a cluster is

a continuous loop. Several approaches are possible to justify this. Let us first

show that the outer boundary of a cluster can be viewed as the outer bound-

ary of a single continuous (nonsimple) loop. Let (ηk) be any given countable

collection of simple loops in U such that the graph whose vertices are the loops

(with two loops connected if they intersect) is connected. Assume that there

are at most finitely many loops above any given diameter and at most finitely

many disjoint crossings by chains of loops of any given annulus. (Note that all

this holds almost surely when (ηk) is the family of loops in a given sub-critical

loop-soup cluster.) We would like to define a single continuous loop that traces

exactly through all of the points on the closure of the union of the ηk. It is not

so surprising that this is possible, but it requires some justification.

Let T be a spanning tree of the adjacency graph on the ηk, and fix a root

vertex. Now, relabeling appropriately if necessary (for instance, by choosing

η1 to be the root loop and then inductively choosing ηk to be the largest child

in T of η1, . . . , ηk−1), assume that η1, η2, . . . are enumerated in such a way that

for every k > 1, the loop ηk has one of η1, η2, . . . , ηk−1 as a parent in T . We

can inductively define a parametrization of each of the ηk, starting and ending

at a point xk on ηk and taking 2−k time, as follows. Pick a point on η1, and

traverse the loop in time 2−1 starting and ending at an arbitrary point x1 on

the loop. Given the parametrizations up to k − 1, let xk be the location of

the first place that the parametrization of the parent loop of ηk hits ηk. Then

choose an arbitrary parametrization of ηk starting and ending at xk and taking

2−k time.

Now we can define a single loop L that traverses all of the ηj in a total time

1 =
∑∞
j=1 2−j . We define a sequence of loops Li converging to L uniformly.

First L1 is the loop that traverses η1 in order, except that each time it hits

a point which is an xk for some k > 1, it waits at that point for a time

equal to the sum of all the lengths of ηk and all of its descendants. Thus L1

traverses η1 in unit time. We define L2 the same way, except that at each

one of the xk that the L1 loop paused at, we actually traverse the loop ηk
(pausing at each x` on that loop for an amount of time equal to the sum of

the lengths of η` and all of its descendants). Inductively, we similarly define

Lk, which traverses all loops η1, . . . , ηk, and note that the finite diameter and

finite number of annulus crossing conditions imply that L1, L2, . . . converge

uniformly to a limiting continuous loop L whose range contains the range of
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each of L1, L2, . . . , hence each ηj . The range of L is therefore exactly the

closure of ∪kηk.
Now, it is easy to see that the outer boundary of a continuous loop in the

plane is necessarily a continuous loop. (This is, for instance, explained and

used the proof of Theorem 1.5(ii) in [4, p. 1003].) In the case of our loop-soup

clusters, we know that this loop is almost surely simple because the cluster has

no cut point. �

Proposition 9.1 now follows from the results proved in this section. Lemma

9.5 gives the existence of c0, Lemma 9.7 implies that the loops are simple and

locally finite almost surely (which, in particular, also implies the existence of

outermost clusters), and Lemma 9.2 yields the restriction property.

10. Relation between c and κ

The main result of our Markovian characterization, combined with Propo-

sition 9.1, now implies the following.

Corollary 10.1. If c is sub-critical, then the set Γ is a CLEκ for some

κ ∈ (8/3, 4]. In other words, for such c, the Γ is equivalent in law to the loop

ensemble constructed in [39] via branching SLE(κ, κ− 6).

We will now identify κ in terms of c.

Proposition 10.2. For all subcritical c, the set Γ is in fact a CLEκ with

c = (3κ− 8)(6− κ)/2κ.

Note that in our proof, we will not really use the description of CLEκ via

branching SLE(κ, κ − 6). We will only use the description of the conformal

loop-ensemble via its pinned loop measure, as described in the earlier sections.

Suppose that Γ is a random loop ensemble that satisfies the conformal restric-

tion axioms. Consider its version in the upper half-plane H, and consider the

loop γ(i) of Γ that surrounds i. Let us now consider the law of γ(i) condi-

tioned on the event {d(0, γ(i)) ≤ ε}. We have seen that this law converges

when ε → 0 to some limit P i and, furthermore, that for some κ ∈ (8/3, 4],

P i is equal to an SLE-excursion law P i,κ, which we will describe in the next

paragraph. Furthermore, when this is the case, it turns out that the entire

family Γ is a CLEκ for this value of κ.

Consider an SLEκ in the upper half-plane, started from the point ε > 0

on the real axis to the point 0 (on the real axis as well). Such an SLE path

will typically be very small when ε is small. However, one can show that the

limit when ε→ 0 of (the law of) this SLE, conditioned to disconnect i from∞
in the upper half-plane, exists. This limit (i.e., its law) is what we call P i,κ.



1904 SCOTT SHEFFIELD and WENDELIN WERNER

Conformal invariance of SLEκ enables us to define an analogous measure

in other simply connected domains. Suppose, for instance, that H = {z ∈ H :

|z| < 3}. We can again consider the limit of the law of SLEκ in H from ε

to 0, conditioned to disconnect i from 3i. This limit is a probability measure

P i,κH that can also be viewed as the image of P i,κ under the conformal map Φ

from H onto H that keeps the points 0 and i invariant. Note that the same

argument holds for other choices of H, but choosing this particular one will be

enough H to identify the relationship between c and κ.

One can use SLE techniques to compare “directly” the laws of an SLE γ

from ε to 0 in H and of an SLE γ′ also from ε to 0 in H. More precisely, the

SLE martingale derived in [17] shows that the Radon-Nikodym of the former

with respect to the latter is a multiple of

exp(−cL(γ,H \H;H))

on the set of loops γ that stay in H (recall that L(A,A′;D) denotes the µ-mass

of the set of Brownian loops in D that intersect both A and A′), where

c = c(κ) =
(3κ− 8)(6− κ)

2κ
.

This absolute continuity relation is valid for all ε, and it therefore follows that it

still holds after passing to the previous limit ε→ 0, i.e., for the two probability

measures P i,κ and P i,κH . This can be viewed as a property of P i,κ itself because

P i,κH is the conformal image of P i,κ under Φ.

Note that the function κ 7→ c(κ) is strictly increasing on the interval

(8/3, 4]. Only one value of κ corresponds to each value of c ∈ (0, 1]. Hence,

in order to identify the value κ associated to a family Γ of loops satisfying the

conformal restriction axioms, it suffices to check that the probability measure

P i satisfies the corresponding absolute continuity relation for the corresponding

value of c.

Proof. Suppose that c is subcritical, that L is a loop-soup with intensity

c in H, and that Γ is the corresponding family of disjoint loops (i.e., of outer

boundaries of outermost clusters of loops of L). For the semi-circle H defined

above, we denote by L′ the loops of L that stay in H, and we denote by Γ′ the

corresponding family of disjoint loops (i.e., outermost boundaries of outermost

clusters). Note that L′ is a loop-soup in H. Let γ(i) denote the loop in Γ that

surrounds i, and let γ′(i) denote the loop in Γ′ that surrounds i. Note that

if γ(i) 6= γ′(i), then necessarily γ(i) /∈ H. Furthermore, in order for γ(i) and

γ′(i) to be equal, it suffices that

• L \ L′ contains no loop that intersects γ′(i). (Note that the probability of

this event — conditionally on γ′(i) — is exp(−cL(γ′(i),H \H;H).)

• One did not create another disjoint cluster that goes “around” γ′(i) by

adding to L′ the loops of L that do not stay in H. When γ′(i) already
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intersects the disk of radius ε, the conditional probability that one creates

such an additional cluster goes to 0 as ε→ 0 (using the BK inequality for

Poisson point processes, as in the proof of Lemma 9.6).

If we now condition on the event that γ′(i) intersects the disk of radius ε and

let ε → 0, it follows that under the limiting law, P i satisfies the absolute

continuity relation that we are after. On the set of curves γ that stay in

H, the Radon-Nikodym derivative of P i with respect to the measure defined

directly in H instead of H is exp(−cL(γ,H \ H;H)). Hence, one necessarily

has P i = P i,κ for c = c(κ). �

This identification allows us to give a short proof of the following fact,

which will be instrumental in the next section.

Proposition 10.3. c0 is subcritical.

Note that the standard arguments developed in the context of Mandelbrot

percolation (see [23], [6]) can be easily adapted to the present setting in order

to prove that c0 is subcritical, but not in the sense we have defined it. It shows

easily, for instance, that at c0, there exist paths and loops that intersect no

loop in the loop-soup, but nontrivial additional work would then be required

in order to deduce that no cluster touches the boundary of the domain. Since

we have this identification via SLEκ loops at our disposal, it is natural to prove

this result in the following way.

Proof. Let Cc be the outermost cluster surrounding i if the loop-soup (in

H) has intensity c. If we take the usual coupled Poisson point of view in which

the set L = L(c) is increasing in c (with loops “appearing” at random times

up to time c), then we have by definition that almost surely Cc0 = ∪c<c0Cc.
(This is simply because, almost surely, no loop appears exactly at time c0.) Let

d(c) denote the Euclidean distance between Cc and the segment [1, 2]. Clearly

d(c) > 0 almost surely for each c < c0 and d(c0) = limc→c0− d(c).

By the remark after Lemma 9.4, we know that in order to prove that c0

is subcritical, it suffices to show that d(c0) > 0 almost surely. (By Moebius

invariance, this will imply that almost surely, no cluster touches the boundary

of H.) Note that d is a nonincreasing function of the loop-soup configuration

(i.e., adding more loops to a configuration cannot increase the corresponding

distance d). Similarly, the event Eε that the outermost cluster surrounding

i does intersect the ε-neighborhood of the origin is an increasing event (i.e.,

adding more loops to a configuration can only help this event to hold). Hence,

it follows that for each ε, the random variable d(c) is negatively correlated

with the event Eε. Letting ε → 0, we get that (for subcritical c) the law of

d(c) is “bounded from below” by the law of the distance between the curve γ

(defined under the probability measure P i,κ) and [1, 2], in the sense that for
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any positive x,

P (d(c) ≥ x) ≥ P i,κ(d(γ, [1, 2]) ≥ x).

But we also know that c0 ≤ 1, so that κ0 := limc→c0− κ(c) ≤ 4. It follows

readily that for all c < c0 and for all x,

lim
c→c0−

P (d(c) ≥ x) ≥ lim
κ→κ0−

P i,κ(d(γ, [1, 2]) ≥ x) ≥ P i,κ0(d(γ, [1, 2]) ≥ 2x).

But we know that for any κ ≤ 4, the SLE excursion γ stays almost surely away

from [1, 2]. Putting the pieces together, we get indeed that

P (d(c0) > 0) = lim
x→0+

P (d(c0) ≥ x) ≥ lim
x→0+

lim
c→c0−

P (d(c) ≥ x)

≥ lim
x→0+

P i,κ0(d(γ, [1, 2]) ≥ 2x) ≥ P i,κ0(d(γ, [1, 2]) > 0) = 1. �

11. Identifying the critical intensity c0

11.1. Statement and comments. The statements of our main results on

Brownian loop-soup cluster, Theorems 1.5 and 1.6, are mostly contained in

the results of the previous section: Corollary 10.1, Proposition 10.2, Proposi-

tion 10.3. It remains only to prove the following statement.

Proposition 11.1. The critical constant of Lemma 9.4 is c0 = 1 (which

corresponds to κ = 4, by Proposition 10.2).

Propositions 9.1, 10.2 and our Markovian characterization results already

imply that we cannot have c0 > 1, since in this case the Γ corresponding

to c ∈ (1, c0) would give additional random loop collections satisfying the

conformal axioms (beyond the CLEκ with κ ∈ (8/3, 4]), which was ruled out

in the first part of the paper. It remains only to rule out the possibility that

c0 < 1.

The proof of this fact is not straightforward. It requires some new nota-

tion and several additional lemmas. Let us first outline the very rough idea.

Suppose that c0 < 1. This means that at c0, the loop-soup cluster boundaries

are described with SLEκ-type loops for κ = κ(c0) < 4. Certain estimates on

SLE show that SLE curves for κ < 4 have a probability to get ε close to a

boundary arc of the domain that decays quickly in ε and that this fails to hold

for SLE4. (Corollary 4.5, which is the result that we will use in this section, is

a CLE version of the same type of feature.) Hence, one can intuitively guess

that when κ < 4, two big clusters will be unlikely to be very close; i.e., in

some sense, there is “some space” between the clusters. Therefore, adding a

loop-soup with a very small intensity c′ on top of the loop-soup with inten-

sity c0 might not be sufficient to make all clusters percolate, and this would

contradict the fact that c0 is critical.
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We find it convenient in this section to work with a loop-soup in the upper

half-plane H instead of the unit disk. To show that there are distinct clusters

in such a union of two CLEs Γ and Γ′, we will start with the semi-disk A1

of radius 1 centered at the origin. We then add all the loops in Γ that hit

A1, add the loops in Γ′ that hit those loops, add the loops in Γ that hit those

loops, etc., and try to show that in some sense the size of this growing set

remains bounded almost surely. The key to the proof is to find the right way

to describe this “size,” as the usual quantities such as harmonic measure or

capacity turn out not to be well suited here.

11.2. An intermediate way to measure the size of sets. We will now define

a generalization of the usual half-plane capacity. Suppose that α ∈ (0, 1] and

that A is a bounded closed subset of the upper half-plane H. We define

(7) M(A) = Mα(A) := lim
s→∞

sE((ImBis
τ(A))

α),

where Bis is a Brownian motion started at is, stopped at the first time τ(A)

that it hits A ∪ R. Note that M1 = hcap is just the usual half-plane capacity

used in the context of chordal Loewner chains, whereas limα→0+Mα(A) is the

harmonic measure of A∩H “viewed from infinity.” Recall that standard prop-

erties of planar Brownian motion imply that the limit in (7) necessarily exists,

that it is finite, and that for some universal constant C0 and for any r such that

A is a subset of the disk of radius r centered at the origin, the limit is equal

to C0r
−1 ×E((ImBτ(A))

α) where the Brownian motion B starts at a random

point reiθ, where θ distributed according to the density sin(θ)dθ/2 on [0, π].

A hull is defined to be a bounded closed subset of H whose complement

in H is simply connected. The union of two hulls A and A′ is not necessarily

a hull, but we denote by A∪A′ the hull whose complement is the unbounded

component of H \ (A ∪A′).
When A is a hull, let us denote by ΦA : H \ A → H the conformal map

normalized at infinity by limz→∞ΦA(z)− z = 0. Recall that for all z ∈ H \A,

Im (ΦA(z)) ≤ Im (z). Then, when A′ is another hull, the set ΦA(A′ ∩ (H \A))

is not necessarily a hull. But we can still define the unbounded connected

component of its complement in the upper half-plane and take its complement.

We call it ΦA(A′) (by a slight abuse of notation).

It is well known and follows immediately from the definition of half-plane

capacity that for any bounded closed A and any positive a, hcap(aA) =

a2hcap(A). Similarly, for any twoA andA′, hcap(A∪A′) ≤ hcap(A)+hcap(A′).

Furthermore, hcap is increasing with respect to A and behaves additively with

respect to composition of conformal maps for hulls.

We will now collect easy generalizations of some of these four facts. Ob-

serve first that for any positive a, we have

(8) M(aA) = aα+1M(A).
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Similarly, we have that for any two (bounded closed) A and A′,

(9) M(A ∪A′) ≤M(A) +M(A′).

This follows from the definition (7) and the fact that for each sample of the

Brownian motion, we have

(ImBτ(A∪A′))
α = (ImBτ(A)∧τ(A′))

α ≤ (ImBτ(A))
α + (ImBτ(A′))

α.

Applying the optional stopping time theorem to the local supermartingale

(ImBt)
α, we know that

(10) A ⊂ A′ implies M(A) ≤M(A′),

since

E
Ä
(ImBτ(A))

α|Bτ(A′)

ä
≤ (ImBτ(A′))

α.

We next claim that for any three given hulls A′, A1, and A2, we have

(11) M(ΦA1∪A2(A′)) ≤M(ΦA1(A′)).

To verify the claim, note first that for A3 = ΦA1(A2), we have ΦA3 ◦ ΦA1 =

ΦA1∪A2 . Recall that Im ΦA3(z) ≤ Im (z) for all z ∈ H so that, in particular,

Im (ΦA3(Bσ)) ≤ Im (Bσ), where σ is the first hitting time of ΦA1(A′) by the

Brownian motion. We let the starting point of the Brownian motion tend to

infinity as before, and the claim follows.

It will be useful to compare M(A) with some quantities involving dyadic

squares and rectangles that A intersects. (This is similar in spirit to the

estimates for half-plane capacity in terms of hyperbolic geometry given in

[13].) We will consider the usual hyperbolic tiling of H by squares of the

form [a2j , (a + 1)2j ] × [2j , 2j+1] for integers a, j. Let S be the set of all such

squares. For each hull A, we define S(A) to be the set of squares in S that A

intersects, and we let Â be the union of these squares; i.e.,

Â = ∪S∈S(A)S.

Figure 28. A hull A and its corresponding Â.
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Lemma 11.2. There exists a universal positive constant C such that for

any hull A,

CM(Â) ≤M(A) ≤M(Â).

Proof. Clearly, M(Â) ≥M(A) by (10) since A ⊂ Â. On the other hand, if

we stop a Brownian motion at the first time it hits Â i.e., a square S of S(A),

then it has a bounded probability of later hitting A at a point of about the

same height, up to constant factor. This can be seen, for example, by bounding

below the probability that (after this hitting time of Â) the Brownian motion

makes a loop around S before it hits any square of S that is not adjacent

to S which would, in particular, imply that it hits A during that time. This

probability is universal, and the lemma follows. �

Lemma 11.3. There exists a universal positive constant C ′ such that for

any hull A,

C ′
∑

S∈S(A)

M(S) ≤M(A) ≤
∑

S∈S(A)

M(S).

Proof. The right-hand inequality is obvious by (9) and Lemma 11.2. By

Lemma 11.2, it is sufficient to prove the result in the case where A = Â is the

union of squares in S.

For each j in Z, we will call Sj the set of squares that are at height between

2j and 2j+1. We will say that a square S = [a2j , (a+ 1)2j ]× [2j , 2j+1] in Sj is

even (respectively odd) if a is even (resp. odd). We know that

(12)
∑

S∈S(A)

M(S) ≤ lim
s→∞

sE

Ñ ∑
S∈S(A)

(ImBis
τ(S))

α

é
.

To bound this expectation, we note that for each j ∈ Z, for each even square

S ∈ Sj , and for each z ∈ S, the probability that a Brownian motion started

from z hits the real line before hitting any other even square in Sj is bounded

from below independently from z, j, and S. Hence, the strong Markov property

implies that the total number of even squares in Sj hit by a Brownian motion

before hitting the real line is stochastically dominated by a geometric random

variable with finite universal mean (independently of the starting point of the

Brownian motion) that we call K/2. The same is true for odd squares.

Note also that if the starting point z of Bz is in S ∈ Sj and if k ≥ 1, then

the probability that the imaginary part of B reaches 2j+1+k before B hits the

real line is not larger than 2−k. It follows from the strong Markov property

that the expected number of squares in Sj+k+1 that B visits before exiting H
is bounded by K × 2−k. It follows that for a Brownian motion started from z
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with 2j ≤ Im (z) ≤ 2j+1,

E

(∑
S∈S

(ImBz
τ(S))

α

)
≤
∑
k≤1

K(2j+k+1)α +
∑
k≥2

K2−k(2j+k+1)α

≤ C2jα ≤ C(Im z)α

for some universal constant C. (Bear in mind that α < 1 and that for S ∈ Sj+k,
(ImBx

τ(S)) ≤ 2(j+k+1).) If we now apply this statement to the Brownian motion

Bis after its first hitting time τ(A) of A ∪R = Â ∪R, we get that for all large

s and for some universal positive constant C ′,

E
Ä
(ImBis

τ(A))
α
ä
≥ C ′E

Ñ ∑
S∈S(A)

(ImBis
τ(S))

α

é
.

Combining this with (12) concludes the proof. �

For each square S = [a2j , (a + 1)2j ] × [2j , 2j+1] of S, we can define the

union R(S) of S with all the squares of S that lie strictly under S, i.e., R(S) =

[a2j , (a + 1)2j ] × [0, 2j+1]. Note that that scaling shows immediately that for

some universal constant C ′′ and for all S ∈ S,

(13) M(R(S)) = C ′′M(S).

11.3. Estimates for loop-soup clusters. Let us now use these quantities

to study our random loop-ensembles. Suppose that Γ is the conformal loop

ensemble corresponding to any given c ∈ (0, c0]. Given a hull A we denote by

Ã = Ã(A,Γ) the random hull whose complement is the unbounded component

of the set obtained by removing from H \A all the loops of Γ that intersect A.

Local finiteness implies that Ã is itself a hull almost surely.

Figure 29. Construction of ΦA(Ã) (sketch).

Now define

N(A) = Nκ(A) := E(M(ΦA(Ã))).

Recall that if c < 1 and c ≤ c0, then Pc defines a CLEκ with κ < 4. We can

therefore reformulate Corollary 4.5 in terms of c as follows. (This corresponds
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intuitively to the statement that SLE is unlikely to be very close to a boundary

arc when κ < 4.)

Proposition 11.4. If c < 1 and c ≤ c0, then there is an α(c) ∈ (0, 1) such

that if we denote by diam(A) the diameter of A, then we have E(diam(Ã)1+α)

<∞ for all hulls A.

Throughout the remainder of this subsection, we will suppose that c1 < 1

and c1 ≤ c0, and that this c1 is fixed. We then choose α = α(c1), and we define

M and N using this value of α. We will then let c vary in [0, c1]. It follows

from the previous proposition that for all c ≤ c1,

N(A) = E(M(ΦA(Ã))) ≤ E(M(Ã)) ≤ E(diam(Ã)1+α) <∞.
Here is a more elaborate consequence of the previous proposition.

Corollary 11.5. Consider c ≤ c1 and α = α(c1) fixed as above. For

any hull A and any S ∈ S , if AS = A ∩ S, then

E(M(ΦA(ÃS))) ≤ C(c)M(S)

for some constant C(c) depending only on c and tending to zero as c→ 0.

Proof. By scaling, it suffices to consider the case where S = [0, 1] × [1, 2]

and hence R = R(S) is the rectangle [0, 1]×[0, 2]. Proposition 11.4 then implies

that

E(M(ΦA(ÃS))) ≤ E(M(ÃS)) ≤ E(M(R̃)) ≤ E(diam(R̃)1+α) <∞.
We want to prove that E(M(ΦA(ÃS))) tends to zero uniformly with respect

to A as c→ 0. Let E(c) denote the event that some loop-soup cluster (in the

loop-soup of intensity c) intersecting the rectangle R has radius more than ε2.

When E(c) does not hold, then standard distortion estimates yield an ε bound

on the height of (i.e., the largest imaginary part of an element of) ΦA(ÃS). But

we then also know that ÃS is a subset of [−1, 3] × [0, 3], so that a Brownian

motion started from is will hit ÃS before hitting A ∪ R with a probability

bounded by s−1 times some universal constant C. Hence, unless E(c) holds,

we have M(ΦA(ÃS)) ≤ Cεα.

Summing up, we get that

E(M(ΦA(ÃS))) ≤ Cεα + E(1E(c)M(ÃS)) ≤ Cεα + E(1E(c)diam(R̃c1)1+α),

where R̃c1 denotes the R̃ corresponding to a larger loop-soup of intensity c1

that we couple to the loop-soup of intensity c. But P(E(c))→ 0 as c→ 0 and

E(diam(R̃c1)1+α) <∞, so that if we take c sufficiently small,

E(M(ΦA(ÃS))) ≤ 2Cεα

for all hulls A. This completes our proof. �
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We are now ready to prove our final lemma.

Lemma 11.6. For c ≤ c1, there exists a finite constant C1 = C1(c) such

that for all hulls A, N(A) ≤ C1(c)M(A). Furthermore, we can take C1(c) in

such a way that C1(c) tends to zero as c→ 0.

Proof. Putting together the estimates in Lemma 11.3 and Corollary 11.5,

we have

N(A) =E(M(ΦA(Ã)))

=E(M(ΦA(∪S∈S(A)ÃS)))

=E(M(∪S∈S(A)ΦA(ÃS)))

≤E(
∑

S∈S(A)

M(ΦA(ÃS)))

≤
∑

S∈S(A)

C(c)M(S)

≤C(c)(C ′)−1M(A)

and C(c)→ 0 when c→ 0+, whereas C ′ does not depend on c. �

As we will now see, this property implies that for c = c0, N is necessarily

infinite for all positive α; i.e., it shows that the size of clusters at the criti-

cal point cannot decay too fast. This will enable us to conclude the proof of

Proposition 11.1 in the manner outlined after its statement.

Proof. Suppose that c0 < 1. We choose c1 = c0 (and α = α(c1)). We take

c′ to be positive but small enough so that the product of the corresponding

constants C1(c0) and C1(c′) in Lemma 11.6 is less than 1. We will view the

loop-soup L with intensity c0 + c′ as the superposition of a loop-soup L0 with

intensity c0 and an independent loop-soup L′ with intensity c′; i.e., we will

construct Γ via the loop-soup cluster boundaries in Γ0 and Γ′.

Now let us begin with a given hull A (say the semi-disk of radius 1 around

the origin). Suppose that L contains a chain of loops that join A to the

line LR = {z ∈ H : Im (z) = R}. This implies that one can find a finite chain

γ1, . . . , γn (chain means that two consecutive loops intersect) of loops in Γ0∪Γ′

with γ1 ∩A 6= ∅ and γn ∩LR 6= ∅. Since the loops in Γ0 (resp. Γ′) are disjoint,

it follows that the loops γ1, . . . , γn alternatively belong to Γ0 and Γ′.

Consider the loops of Γ0 that intersect A. Let us consider A1 as the hull

generated by the union of A with these loops. (This is the Ã associated to

the loop-soup L0.) Recall that the expected value of M(A1) is finite because

α = α(c1). Then add to A1, the loops of Γ′ that intersect A1. This generates a

hull B2 (which is the Ã1 associated to the loop-soup L′). Then, add to B2 the
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loops of Γ0 that intersect B2. Note that, in fact, one basically adds only the

loops of Γ0 that intersect A1 \ A (the other ones were already in A1) in order

to define a new hull B3, and continue iteratively. Let F be the limiting set

obtained. We can also describe this sort of exploration by writing for all n ≥ 1,

An+1 = ΦAn(Ãn), where Ãn is alternately constructed from An using a loop-

soup with intensity c0 or c′ as n is even or odd. The expected value of M(An)

decays exponentially, which implies (Borel-Cantelli) that M(An) almost surely

decays eventually faster than some exponential sequence.

We note that if A is a hull such that for all z ∈ A, Im (z) ≤ 1, we

clearly have hcap(A) ≤ M(A). On the other hand, we know that if A is a

hull such that there exists z ∈ A with Im (z) ≥ 1, then M(A) ≥ c for some

absolute constant c. Hence, we see that almost surely, for all large enough n,

hcap(An) ≤M(An), which implies that almost surely
∑
n hcap(An) <∞. But

the half-plane capacity behaves additively under conformal iterations so that,

in fact, hcap(F ) =
∑
n≥0 hcap(An). Hence, for large enough R, the probability

that F does not intersect LR is positive, and there is a positive probability

that no chain of loops in L joins A to LR. It follows that Pc0+c′(C = {H}) < 1.

Proposition 9.1 would then imply that c0 + c′ ≤ c0 which is impossible. This

therefore implies that c0 ≥ 1. As explained after the proposition statement,

we also know that c0 cannot be strictly larger than 1, so that we can finally

conclude that c0 = 1. �

As explained at the beginning of this section, this completes the proof of

Theorems 1.5 and 1.6.

12. An open problem

When κ ∈ (4, 8), the CLEκ described in [39] are random collections of

nonsimple loops. However, the outer boundaries of the sets of points traversed

by the outermost loops should be simple loops. We expect (though this was

not established in [39], in part because the CLEκ construction was not shown

there to be starting-point independent) that these random loop collections will

satisfy all of the axioms we used to characterize CLE except that they will

almost surely contain loops intersecting one another and the boundary of the

domain. Are these the only random loop collections for which this is the case?

This is an apparently difficult type of question. We expect that the con-

structions of one-point and two-point pinned measures in the present paper

will have analogs in this nondisjoint setting; however, the pinned loop will

intersect the boundary at other points as well, and our argument for estab-

lishing the connection with SLE does not appear to extend to this setting in

a straightforward way. Moreover, we have no direct analog of the loop-soup

construction of CLEs in the case where κ ∈ (4, 8).
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