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Operator monotone functions and
Löwner functions of several variables

By Jim Agler, John E. McCarthy, and N. J. Young

Abstract

We prove generalizations of Löwner’s results on matrix monotone func-

tions to several variables. We give a characterization of when a function of d

variables is locally monotone on d-tuples of commuting self-adjoint n-by-n

matrices. We prove a generalization to several variables of Nevanlinna’s

theorem describing analytic functions that map the upper half-plane to it-

self and satisfy a growth condition. We use this to characterize all rational

functions of two variables that are operator monotone.

1. Introduction

In 1934, K. Löwner published a very influential paper [25] studying func-

tions on an open interval E ⊆ R that are matrix monotone; i.e., functions

f with the property that whenever S and T are self-adjoint matrices whose

spectra are in E, then

(1.1) S ≤ T ⇒ f(S) ≤ f(T ).

This property is equivalent (see Section 1.3) to being locally matrix monotone;

i.e., if S(t) is a C1-arc of self-adjoint matrices with σ(S(t)) ⊂ E, then

(1.2) S′(t) ≥ 0 ⇒ d

dt
f(S(t)) ≥ 0.

Roughly speaking, Löwner showed that if one fixes a dimension n and

wants (1.1) or (1.2) to hold for n-by-n self-adjoint matrices, then certain ma-

trices derived from the values of f must all be positive semi-definite. As n

increases, the conditions become more restrictive. In the limit as n → ∞
(equivalently, if one passes to self-adjoint operators on an infinite-dimensional

Hilbert space), then a necessary and sufficient condition is that the function

f must have an analytic continuation to a function F that maps the upper

half-plane to itself.
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The goal of this paper is to extend the above notions to several variables.

In particular, we want to study functions of d variables applied to d-tuples of

commuting self-adjoint operators. Given two d-tuples S = (S1, . . . , Sd) and

T = (T 1, . . . , T d), we shall say that S ≤ T if and only if Sr ≤ T r for every

1 ≤ r ≤ d. We want to study functions that satisfy (1.1) or (1.2) for d-tuples.

Before we can describe our results, we must first give a more detailed

description of the one-dimensional case. We recommend the book [14] by

W. Donoghue for a well-written account from a modern perspective. See also

the paper [31].

Note that there is another approach to extending Löwner’s results to sev-

eral variables where the operators S1, . . . , Sd act on different spacesH1, . . . ,Hd,
and f(S) is interpreted to act on H1 ⊗ · · · ⊗ Hd. We refer the reader to the

papers [16], [36], [23] and references therein.

1.1. Dimension one. Let E be an open set in R, and let n ≥ 2 be a natural

number. The Löwner class L1
n(E) is the set of C1-functions f : E → R with

the property that, whenever {x1, . . . , xn} is a set of n distinct points in E,

then the matrix A, defined by

Aij =


f(xj)−f(xi)

xj−xi if i 6= j,

f ′(xi) if i = j,

is positive semi-definite.

We shall let Mn denote the n-by-n complex matrices, SAMn the self-

adjoint n-by-n matrices, and SA the bounded self-adjoint operators on an

infinite-dimensional separable Hilbert space.

Definition 1.1. A function f is locally n-matrix monotone on the open set

E ⊂ R if, whenever S is in SAMn with σ(S) consisting of n distinct points in

E, and S(t) is a C1-curve in SAMn with S(0) = S and d
dtS(t)|t=0 ≥ 0, then

d
dtf(S(t))|t=0 ≥ 0.

Remark 1.2. This definition is slightly different from the one in the first

paragraph, where the eigenvalues were not required to be distinct. We use

this definition to be consistent with the multivariable Definition 1.7 below.

However, using formula (6.6.31) in [18] for d
dtf(S(t)), it is easy to show that in

the one variable case the two different definitions are equivalent.1

1This formula says that for a C1-arc S(t) = U(t)Λ(t)U∗(t), with U(t) unitary and Λ(t)

diagonal with diagonal entries λ1(t), . . . , λn(t), and a C1 function f , then

d

dt
f(S(t)) = U(t)

(
[∆f(λi(t), λj(t))] ◦ [U(t)∗S′(t)U(t)]

)
U(t)∗,

where ∆ means the matrix of divided differences and ◦ denotes the Schur product.
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We shall say that f is n-matrix monotone on E, or Mn-monotone, if,

whenever S and T are in SAMn and all their eigenvalues lie in E, then (1.1)

holds. To emphasize the difference from locally monotone, we shall also call

n-matrix monotone functions globally Mn-monotone. Replacing SAMn by SA,

we get the definitions of locally operator monotone and operator monotone.

Theorem 1.3 (Löwner). Let E ⊆ R be open, and let f ∈ C1(E). Then f

is locally n-matrix monotone on E if and only if f is in L1
n(E).

We shall use Π to denote the upper half-plane, {z ∈ C : Im z > 0}.
Definition 1.4. Let E ⊆ R be open. The Pick class on E, denoted P(E),

is the set of real-valued functions f on E for which there exists an analytic

function F that maps Π to Π, the closure of Π, and such that F extends

analytically across E and2

lim
y↘0

F (x+ iy) = f(x) ∀ x ∈ E.

Theorem 1.5 (Löwner). Let E ⊆ R be open, and let f ∈ C1(E). The

following are equivalent :

(i) The function f is locally operator monotone on E.

(ii) The function f is in L1
n(E) for all n.

(iii) The function f is in P(E).

1.2. Dimension d ≥ 2: Local results. We shall let CSAMd
n denote the set

of d-tuples of commuting self-adjoint n-by-n matrices and CSAd be the set of

d-tuples of commuting self-adjoint bounded operators. If S is a commuting

d-tuple of self-adjoint operators acting on the Hilbert space H and f is a real-

valued continuous (indeed, measurable) function on the joint spectrum of S in

Rd, then f(S) is a well-defined self-adjoint operator on H.

Definition 1.6. Let E be an open set in Rd and let f be a real-valued

C1-function on E. Say f is locally operator monotone on E if, whenever S is

in CSAd with σ(S) ⊂ E, and S(t) is a C1-curve in CSAd with S(0) = S and
d
dtS(t)|t=0 ≥ 0, then d

dtf(S(t))|t=0 exists and is ≥ 0.

We shall not concern ourselves in this paper with what conditions on f

guarantee that f(S(t)) is differentiable; for these see, e.g., [28].

Definition 1.7. Let E be an open set in Rd and f be a real-valued C1-

function on E. We say f is locally Mn-monotone on E if, whenever S is in

CSAMd
n with σ(S) = {x1, . . . , xn} consisting of n distinct points in E, and S(t)

is a C1-curve in CSAMd
n with S(0) = S and d

dtS(t)|t=0 ≥ 0, then d
dtf(S(t))|t=0

exists and is ≥ 0.

2The notation y ↘ 0 means y decreases to 0. The notation r ↗ 1 means r increases to 1.
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We define the Löwner classes in d variables, Ldn(E), by

Definition 1.8. Let E be an open subset of Rd. The set Ldn(E) consists of

all real-valued C1-functions on E that have the following property: whenever

{x1, . . . , xn} are n distinct points in E, there exist positive semi-definite n-by-n

matrices A1, . . . , Ad so that

Ar(i, i) =
∂f

∂xr

∣∣∣∣
xi

and

f(xj)− f(xi) =
d∑
r=1

(xrj − xri )Ar(i, j) ∀ 1 ≤ i, j ≤ n.

Theorem 1.9. Let E be an open set in Rd and f be a real-valued C1-func-

tion on E. Then f is locally Mn-monotone if and only if f is in Ldn(E).

In generalizations of Theorem 1.5, there turns out to be a difference be-

tween the case d = 2 and d > 2.

Definition 1.10. The Löwner class, Ld, is the set of functions F : Πd → Π

with the property that there exist d positive semi-definite kernel functions

Ar, 1 ≤ r ≤ d, on Πd such that

F (z)− F (w) = (z1 − w̄1)A1(z, w) + · · ·+ (zd − w̄d)Ad(z, w).

When d = 1 or 2, the Löwner class coincides with the set of all analytic

functions from Πd to Π, but for d ≥ 3 it is a proper subset (see Remark 2.18).

Definition 1.11. Let E ⊆ Rd be open. The class L(E) is the set of real-

valued functions f on E for which there exists an analytic function F in Ld
such that F extends analytically across E and

lim
y↘0

F (x1 + iy, . . . , xd + iy) = f(x1, . . . , xd) ∀ x ∈ E.

We prove the following result as Theorem 8.1.

Theorem 1.12. Let E be an open set in Rd and f be a real-valued

C1-function on E. The following are equivalent :

(i) The function f is locally operator monotone on E.

(ii) The function f is in Ldn(E) for all n.

(iii) The function f is in L(E).

1.3. Local to global. In one variable, provided E is an interval, local mono-

tonicity implies global monotonicity immediately. Indeed, suppose S ≤ T , and

let S(t) = (1− t)S + tT . Then S′(t) = T − S ≥ 0, so

(1.13) f(T )− f(S) =

∫ 1

0

d

dt
f(S(t)) dt ≥ 0.
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If E is not convex, this argument fails. Indeed, the function −1/x is locally

n-matrix monotone on R\{0} for all n; but it is only globally monotone on sets

that lie entirely on one side of 0. A result of Chandler [11] says that functions

that are globally operator monotone on a set E always extend to be globally

monotone on the convex hull of E.

For intervals, (1.13) shows that the word “locally” can be dropped in both

Theorems 1.3 and 1.5. One problem in going to several variables is that this

simple argument no longer works, because one may not be able to connect S

and T by a path of commuting d-tuples. Indeed, the following example shows

that there need not be any commuting tuples between two given ones.

Example 1.14. Let S and T be pairs in CSAM2
2 given by

S =

ÇÇ
0 0

0 5

å
,

Ç
1 0

0 0

åå
,

T =

ÇÇ
4 2

2 6

å
,

Ç
2 2

2 4

åå
.

If R is in CSAM2
2 and S ≤ R ≤ T , it can be shown that either R = S or

R = T .

We have been unable to resolve the question of whether the n-matrix

monotone functions on a connected open set E are a proper subset of the

locally n-matrix monotone functions on E. However, as n tends to infinity

and we pass to locally operator monotone functions, analyticity enters the

picture, and makes the problem more tractable; see Section 1.5.

1.4. The Nevanlinna representation. To prove (iii)⇒ (i) in Theorem 1.5,

one must understand analytic functions that map the upper half-plane to itself.

A key fact is a characterization due to R. Nevanlinna [26] which says that,

provided they have some regularity at infinity, they are all Cauchy transforms

of measures on the line.

Theorem 1.15 (Nevanlinna). If F : Π→ Π is analytic and satisfies

lim sup
y→∞

y |F (iy)− C| <∞

for some C ∈ R, then there exists a unique finite positive Borel measure ν on

R so that

(1.16) F (z) = C +

∫
dν(t)

t− z
.

Nevanlinna’s theorem was used by M. Stone to prove the spectral theorem

[37], but one can adopt the reverse viewpoint and write (1.16) in terms of
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the resolvent of a self-adjoint. Indeed, let X be the self-adjoint operator of

multiplication by the independent variable on L2(ν), and let v be the vector

in L2(ν) that is 1 almost everywhere. Then (1.16) can be rewritten as

(1.17) F (z) = C + 〈(X − z)−1v, v〉.

This representation turns out to be useful in studying operator monotonicity,

because then

(1.18) F (S) = CI +R∗v(I ⊗X − S ⊗ I)−1Rv,

where Rv : H → H⊗M is given by Rv : ξ 7→ ξ ⊗ v.

There is a several variable analogue of Theorem 1.15. It may require first

perturbing F .

Definition 1.19. For each real number t, define

ρt(z) =
z + t

1− tz
.

For F ∈ Ld, define Ft by

Ft(z
1, . . . , zd) := ρt ◦ F (ρt(z

1), . . . , ρt(z
d)).

The following theorem follows from Theorem 6.33. We shall say that a

function F on Πd is analytic on a neighborhood of infinity if the function

F (1/z1, . . . , 1/zd) extends to be analytic on a neighborhood of the origin. In

Theorem 6.33, a weaker assumption is placed on F than being analytic in a

neighborhood of infinity.

Theorem 1.20. Let F be in Ld, and assume that F is analytic in a neigh-

borhood of infinity. Then for all sufficiently small t, with at most countably

many exceptions, the function Ft has the following representation. There is

a Hilbert space M, a densely defined self-adjoint operator X on M, a vec-

tor v in M, a real constant C , and d orthogonal projections P 1, . . . , P d with∑d
r=1 P

r = IM so that

(1.21) Ft(z) = C +

∞(
X −

d∑
r=1

zrP r
)−1

v, v

∫
.

1.5. Dimension d ≥ 2: Global operator monotonicity. If E is an open set

in Rd, we shall say that a real-valued function f defined on E is globally operator

monotone, or just operator monotone for short, if, for every n, whenever S and

T are in CSAMd
n, with S ≤ T , and the joint eigenvalues of both S and T lie

in E, then

f(S) ≤ f(T ).

Using the representation (1.21), we can prove results on (global) operator

monotonicity. With notation as in Theorem 1.20, let us say that the µ-resolvent
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of X is the set of points

{(z1, . . . , zd) ∈ Cd : X −
d∑
r=1

zrP r has a bounded inverse}.

We prove the following result as Theorem 9.2.

Theorem 1.22. Let X be a densely-defined self-adjoint operator on a

Hilbert space M, let v be a vector in M, let C be a real constant, and let

P 1, . . . , P d be projections with orthogonal ranges that sum to the identity. Let

F be given by

F (z) = C +

∞(
X −

d∑
r=1

zrP r
)−1

v, v

∫
.

Let E be an open box in Rd that is in the µ-resolvent of X . Then F is globally

operator monotone on E.

As an application, we can give a complete characterization of the rational

functions of two variables that are operator monotone on rectangles. This is

Theorem 9.6.

Theorem 1.23. Let F be a rational function of two variables. Let Γ be

the zero-set of the denominator of F . Assume F is real-valued on R2 \ Γ. Let

E be an open rectangle in R2 \ Γ. Then F is globally operator monotone on E

if and only if F is in L(E); that is, if and only if F is the restriction to E of

an analytic function from Π2 to Π that extends analytically across E.

2. Some notation

Let D be the unit disk in the complex plane, Π the upper half-plane

{z : Im (z) > 0}, and H the right half-plane {z : Re (z) > 0}. Let α denote

the linear fractional map

(2.1) α(λ) = i
1 + λ

1− λ
that maps D to Π, and let

(2.2) β(z) =
z − i
z + i

denote its inverse.

We shall let d denote the number of variables. If z is a point in Πd, we

shall use z1, . . . , zd to denote its components; likewise, λ = (λ1, . . . , λd) will

be a point in Dd. We shall write S = (S1, . . . , Sd) for a d-tuple of matrices or

operators and use ‖S‖ for max1≤r≤d ‖Sr‖. We shall also use α and β to denote

the maps from Dd to Πd and back again that are defined by applying α and β

coordinate-wise.
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A kernel on a set E is a map K : E × E → C with the property that for

every finite set {λ1, . . . , λN} of distinct points in E, the matrix [K(λj , λi)] is

positive semi-definite.

Definition 2.3. The Pick class, Pd, is the set of analytic functions F :

Πd → Π.

Definition 2.4. The Schur class, Sd, is the set of analytic functions ϕ :

Dd → D.

Definition 2.5. The Carathéodory class, Cd, is the set of analytic functions

ψ : Dd → H.

Definition 2.6. The Löwner class, Ld, is the set of functions F : Πd → Π

with the property that there exist d kernel functions Ar, 1 ≤ r ≤ d on Πd such

that

(2.7) F (z)− F (w) = (z1 − w̄1)A1(z, w) + · · ·+ (zd − w̄d)Ad(z, w).

Definition 2.8. The Schur-Agler class, Ad, is the set of functions ϕ : Dd→D
with the property that there exist d kernel functions Br, 1 ≤ r ≤ d on Dd such

that

(2.9) 1− ϕ(λ)ϕ(µ) = (1− λ1µ̄1)B1(λ, µ) + · · ·+ (1− λdµ̄d)Bd(λ, µ).

When the dimension is clear, we shall drop the superscript d.

Remark 2.10. If we exclude the constant function 1 from S, we have the

identification

(2.11) F ∈ P ⇐⇒ β ◦ F ◦ α ∈ S ⇐⇒ −iF ◦ α ∈ C.

Moreover, we also have (again excluding the constant function 1)

(2.12) F ∈ L ⇐⇒ β ◦ F ◦ α ∈ A

(see Lemma 2.13). As all our results are trivial for constant functions, we

shall use (2.11) and (2.12) without explicitly mentioning the exclusion of the

constant function 1.

The following change of variables formula is in [20]. A function is in Ad if

and only if it is analytic and maps d-tuples of commuting strict contractions to

contractions; a function is in Ld if and only if it is analytic and maps d-tuples

of commuting operators with strictly positive imaginary parts3 to operators

with positive imaginary parts.

3 We say an operator T has strictly positive imaginary part if there exists α > 0 such that

(T − T ∗)/2i ≥ αI.
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Lemma 2.13. The function F : Πd → C is in the Löwner class if and

only if ϕ := β ◦ F ◦ α is in the Schur-Agler class Ad.

Proof. Define ϕ = β ◦F ◦α. Then ϕ is in Ad if and only if there are kernels

Br on D such that

(2.14) 1− ϕ(λ)ϕ(µ) =
d∑
r=1

(1− λrµ̄r)Br(λ, µ).

When z = α(λ) and w = α(µ), (2.14) becomes

(2.15) 1− β ◦ F (z)β ◦ F (w) =
d∑
r=1

Ç
1−
ï
zr − i
zr + i

ò ï
wr − i
wr + i

òå
Br(β(z), β(w)).

Rearranging (2.15), we get

(2.16) F (z)− F (w) =
d∑
r=1

(zr − w̄r) F (z) + i

zr + i

F (w)− i
wr − i

Br(β(z), β(w)).

If Ar is defined for r = 1, . . . , d by

Ar(z, w) =
F (z) + i

zr + i

F (w)− i
wr − i

Br(β(z), β(w)),

then (2.16) becomes

(2.17) F (z)− F (w) =
d∑
r=1

(zr − w̄r)Ar(z, w),

which means F is in Ld. Reversing the argument gives the converse. �

Remark 2.18. It is known that Ad = Sd for d = 1 or 2 and that for d ≥ 3,

Ad ( Sd [13], [38], [2]. It follows similarly that the Löwner class equals the

Pick class in dimensions 1 and 2, and is strictly contained in it for d ≥ 3. By

Theorem 5.5.1 of [32], rational inner functions are dense in the unit ball of Sd
in the topology of uniform convergence on compacta. Therefore there must be

rational inner functions in Sd \ Ad for d ≥ 3. By (2.11) and (2.12), it follows

that for each d ≥ 3, there are rational functions that are real on Rd and that

are in Pd \ Ld.

3. Models, B-points and C-points

For a function ϕ inAd, we can take the representation (2.9) and decompose

the Br’s as Gramians to get a Hilbert space model for ϕ. That means we find

a separable Hilbert space M, an orthogonal decomposition of M,

(3.1) M =M1 ⊕ · · · ⊕Md,
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and an analytic map u : Dd →M such that

(3.2) 1− ϕ(µ)ϕ(λ) =
d∑
r=1

(1− µrλr)〈urλ, urµ〉Mr

for all λ, µ ∈ Dd, where we write uλ for u(λ), P r for the projection onto Mr,

and urλ for P r[uλ].

We shall view (3.1) interchangeably as a graded Hilbert space (i.e., one

with a given orthogonal decomposition) or as a single Hilbert space with d

given projections P 1, . . . , P d that are orthogonal and add up to the identity.

In general, if η ∈ M, we set ηr = P r[η]. If λ ∈ Cd, we may regard λ as

an operator on M by letting

(3.3) λη = λ1η1 + · · ·+ λdηd.

Equation (3.2) can then be rewritten as

(3.4) 1− ϕ(µ)ϕ(λ) = 〈(1− µ∗λ)uλ, uµ〉.

A lurking isometry argument yields the following result [2].

Theorem 3.5. If (M, u) is a model of ϕ ∈ Ad, then there exist a ∈ C,

vectors β, γ ∈M and a linear operator D :M→M such that the operatorñ
a 1⊗ β

γ ⊗ 1 D

ô
is a contraction on C⊕M and, for all λ ∈ Dd,

(1−Dλ)uλ = γ,(3.6)

ϕ(λ) = a+ 〈λuλ, β〉.(3.7)

With notation as in Theorem 3.5, we shall call (a, β, γ,D) a realization of

(M, u).

One can rewrite (3.6) and (3.7) as

(3.8) ϕ(λ) = a+ β∗λ(I −Dλ)−1γ.

How one can go from (3.8) to (3.2) is discussed in [9] and [7].

If we start instead with the representation (2.7) of a function F in Ld, we

can decompose the kernels Ar as the Gramians of some vectors vr in auxiliary

separable Hilbert spaces N r. Then we get, in the analogous notation to above,

F (z)− F (w) =
d∑
r=1

(zr − w̄r)Ar(z, w)(3.9)

=
d∑
r=1

(zr − w̄r)〈vrz , vrw〉N r

= 〈(z − w∗)vz, vw〉N .
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This decomposition leads to a lurking self-adjoint argument, which we shall

discuss in Section 6.

In [4] we introduced the concept of a B-point for S. Let us give a unified

definition for each of the classes S,P, and C; notice that it depends on the

codomain of the function.

Definition 3.10. Let U and V be fixed domains and f : U → V be an

analytic function. A point τ in ∂U is called a B-point of f if there is a

sequence λn of points in U that converge to τ and such that

(3.11)
dist(f(λn), ∂V )

dist(λn, ∂U)

is bounded.

So, for example, a point τ in ∂Πd is a B-point for a function F in Pd if

there exists some sequence zn in Πd that tends to τ and such that the quantity

ImF (zn)

minr∈{1,...,d}(Im zrn)

is bounded.

For a function in Ld (resp. Ad) we shall call a point τ a B-point if it is a

B-point for the function thought of as an element of Pd (resp. Sd).
For each of the three classes S,P, and C, it follows from results of F. Jafari

[19] and M. Abate [1] that if τ is a B-point, then the ratio (3.11) remains

bounded for every sequence λn that tends to τ nontangentially. Moreover, the

function f will then have a nontangential limit at τ . (A sequence λn in U tends

to the point τ nontangentially if λn tends to τ and dist(λn,τ)
dist(λn,∂U) is bounded.)

The following result was proved in [4] for d = 2, but the proof generalizes

to any d. We shall need it in the proof of Theorem 6.26.

Lemma 3.12. Let ϕ ∈ Ad and τ ∈ Td. Let (M, u) be a model for ϕ and

(a, β, γ,D) be a realization. The following are equivalent :

(i) τ is a B-point for ϕ.

(ii) For some sequence λn converging to τ nontangentially, the sequence

‖uλn‖ is bounded.

(iii) For any sequence λn converging to τ nontangentially, the sequence

‖uλn‖ is bounded.

(iv) The vector γ is in the range of (I −Dτ).

Moreover, if uλn converges to a vector weakly as λn tends to τ nontangentially,

then uλn converges in norm. The vector uτ := limr↗1 urτ exists for every

B-point τ .

A stronger condition than being a B-point is being a C-point.
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Definition 3.13. A point x ∈ Rd is a C-point for F ∈ L if there are

complex numbers η1, . . . , ηd and a real number c so that

(3.14) F (z)− c−
d∑
r=1

ηr(zr − xr) = o(‖z − x‖)

as z tends to x nontangentially.

In particular, if F is differentiable at x and F (x) is real, then x is a C-point

for F , since (3.14) then holds as z tends to x from any direction.

The following result was proved in [4].

Proposition 3.15. Suppose F ∈ L has a model as in equation (3.9). If

x is a C-point for F , then as z converges to x nontangentially from Πd, the

vectors vz converge in norm to some vector vx in N .

4. Analytically continuing Pick functions

Suppose F is analytic on Πd and E is an open set in Rd. What con-

ditions on F guarantee that it can be analytically continued across E? The

edge-of-the-wedge theorem (see Theorem 4.10 below) is a common tool to give

such extensions. Checking the hypotheses, however, requires knowledge of the

values of F as one approaches points of E not just nontangentially but also

tangentially. If F is in the Pick class Pd, Theorem 4.8 says that it suffices to

know that every point of E is a B-point (which can be checked by looking at

the values of F on the inward-pointing normal).

As we are using bars to denote closure, we shall use stars for the complex

conjugate of a set and write Π∗ for the lower half-plane.

4.1. One dimension. To understand the situtation, let us first consider

the one-dimensional case. Let ψ : D → H be nonconstant. Then ψ has a

Herglotz representation; if we assume ψ(0) is positive, then

(4.1) ψ(z) =

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

for some positive measure µ. There is an elegant analysis of when ψ has

B-points in the paper [35] by D. Sarason, where the following two propositions

are proved. Proposition 4.2 is originally due to M. Riesz [30], and Proposi-

tion 4.4 is due to R. Nevanlinna [27].

Proposition 4.2. Let ψ be given by equation (4.1), and let τ be a point

in T. Then ψ has a B-point at τ if and only if

(4.3)

∫
1

|eiθ − τ |2
dµ(θ) < ∞.
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If ϕ = β ◦ (iψ) is the Cayley transform of ψ, there is a distinction between

B-points where ϕ(τ) equals 1, corresponding to ψ(τ) =∞, and all other cases.

Proposition 4.4. Let ϕ = ψ−1
ψ+1 , where ψ is given by equation (4.1), and

let τ be a point in T. Then ϕ has a B-point at τ with ϕ(τ) 6= 1 if and only if

inequality (4.3) holds. The function ϕ has a B-point at τ with ϕ(τ) = 1 if and

only if τ is a mass point of µ.

Suppose now that ϕ : D → D has an open arc I of B-points. Can ϕ be

extended analytically across I? If we know that ϕ omits a value on I, then

the answer is yes. Indeed, after a Möbius map, we can assume that ϕ is the

Cayley transform of some ψ as (4.1). If condition (4.3) holds on an open arc

I, then µ must vanish on I by Lemma 4.5. But then the formula (4.1) gives

an analytic function on the extended plane less T \ I.

However, without the assumption that ϕ omits a value, the answer may

be no, as Example 4.6 shows.

Lemma 4.5. Suppose µ is a measure on [−π, π) and inequality (4.3) holds

for τ = eix for every x in an open arc I ⊂ [−π, π). Then µ(I) = 0.

Proof. For µ almost every point x in I, there is a constant c > 0 such that

µ

ï
x− 1

k
, x+

1

k

ò
≥ c

2

k

by [34, Thms. 8.6 and 8.10]. For such an x, we have∫ π

−π

1

|eiθ − τ |2
dµ(θ) ≥

∫ x+1/k

x−1/k

1

|eiθ − τ |2
dµ(θ)

≥ 1

|1− ei/k|2
µ[x− 1

k
, x+

1

k
]

≥ ck.

Letting k tend to infinity, the integral would be infinite; so µ must put no mass

on I. �

Example 4.6. Here is an example of a function in the Schur class of one

variable that has B-points at every point of T but that cannot be analytically

continued across every arc.

Let τn = eixn be a sequence in T that converges to 1. Let cn = 2−n|1−τn|2.

Then for every λ ∈ T, the quantity
∣∣∣ 1−τnλ−τn

∣∣∣ is less than or equal to 1 for all but

finitely many values of n. Therefore,

(4.7)
∑

2−n
∣∣∣∣ 1− τnλ− τn

∣∣∣∣2 < ∞

for every λ.
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Let µ =
∑

2−nδxn , let F be the Herglotz transform of µ, and let ϕ = F−1
F+1 .

By Proposition 4.4, we have that ϕ has every point of T as a B-point, but ϕ

cannot be analytically continued across any arc containing 1, as it takes the

value 1 infinitely often on any such arc.

4.2. d dimensions. Our goal is to prove the following analytic continuation

theorem.

Theorem 4.8. Let E be an open subset of Rd. Then there is an open set

U in Cd that contains Πd ∪ E ∪ Π∗d with the following property : whenever F

is in the Pick class, and every point of E is a B-point for F , then there is an

analytic function G on U that agrees with F on Πd.

This theorem immediately implies the omit-a-value theorem. Let us say

that a subset E′ of Td is a B-set for ϕ in Sd if every point of E′ is a B-point

for ϕ.

Theorem 4.9. Let E′ be an open subset of Td. Then there is an open set

U in Cd containing Dd ∪E′ ∪ {C \ D̄}d such that the following two statements

are equivalent for any ϕ in the Schur class :

(1) there is an analytic function ψ on U that agrees with ϕ on Dd;
(2) the set E′ is a B-set for ϕ, and for every point τ in E′, there exists a

neighborhood V of τ in Td and a point ω in T such that no nontangential

limit of ϕ at any point of V is equal to ω.

Condition (2) says that every point of E′ has a neighborhood where the

nontangential limits of ϕ omit some value in T.

We need a version of the edge-of-the-wedge theorem (Theorem C from

[33]). We write R+ for the interval (0,∞).

Theorem 4.10 (Edge-of-the-wedge). Let E be an open subset of Rd.
Then there is an open set U in Cd that contains Πd ∪ E ∪ Π∗d and is such

that whenever H is an analytic function on Πd with the property that for every

g in C∞c (E),

(4.11) lim
Rd
+3y→0

∫
E
g(x)ImH(x+ iy)dx = 0,

then there is an analytic function G on U that agrees with H on Πd.

Proposition 4.12. Let E be an open subset of Rd. Then there is an open

set U in Cd that contains Πd ∪ E ∪ Π∗d with the following property : if J is

a nonempty interval in R, F is in the Pick class, F has nontangential limits

at almost every point of E, and these limits are all in R \ J , then there is an

analytic function G on U that agrees with F on Πd.
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Proof. Precomposing F with a Möbius transformation of Π if necessary,

we can assume that J is an interval about infinity, so the nontangential limits

are in some compact set [−M,M ] almost everywhere.

Let H(z)=log(1+M+F (z)). Then H maps Πd into {z∈C : 0< Im z<π},
and

lim
y→0

H(x+ iy) ∈ [0, log(2M + 1)] a.e. x ∈ E.

As H has bounded imaginary part, we can pass the limit inside the integral

on the left-hand side of (4.11), and as H has real boundary values, we get that

the limit is 0. Therefore, by Theorem 4.10 we get an analytic extension of H,

and hence F , to the desired open set U . �

Proof of Theorem 4.8. We can extend F to Π∗d by letting F (z) = F (z̄) on

Π∗d. The difficulty is in showing that the definitions of F on the two disjoint

domains Πd and Π∗d are analytic continuations of each other across E. This

is a local property. If we can show that every point of E has a neighborhood

on which the boundary values of F take values in a bounded set, we can apply

Proposition 4.12 to conclude that the reflection of F is an analytic continuation

of F across this neighborhood in E. Since this is true at every point, the

conclusion of the theorem will follow.

For convenience, we will change variables and consider the function ϕ(λ) =

(−i)F ◦ α, which is in Cd.
We can normalize to assume that ϕ(0, . . . , 0) = 1 and that the point of

interest for ϕ is β(0, . . . , 0) = (−1, . . . ,−1). So for some 0 < c < π
5 , the set

(4.13) {(eiθ1 , . . . , eiθd) : ∀ 1 ≤ r ≤ d, |θr| ≥ π − 5c}

consists of B-points for ϕ. In what follows, we shall choose arg to take values

in [−π, π).

For each τ in the set

{τ ∈ Td−1 : | arg(τ j)| < 2c, ∀ 1 ≤ j ≤ d− 1},

define gτ in C1 by

gτ (z) = ϕ(z, τ1z, τ2z, . . . , τd−1z).

Then for each τ , the set

I3c = {σ ∈ T : | arg(σ)| > π − 3c}

is a set ofB-points for gτ , and gτ (0) = 1. Each gτ has a Herglotz representation,

and by the results of Section 4.1, the corresponding measure is supported off

the set I3c. So

gτ (z) =

∫ π−3c

−π+3c

eiθ + z

eiθ − z
dµτ (θ)
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for some probability measure µτ . Therefore, if σ is in the arc Ic = {σ ∈ T :

| arg(σ)| > π − c}, then

|gτ (σ)| ≤
∫ π−3c

−π+3c

∣∣∣∣∣eiθ + σ

eiθ − σ

∣∣∣∣∣ dµτ (θ)

≤ sec c.

Therefore, on the set (Ic)
d we conclude that the nontangential limits of ϕ take

values in the bounded set [− sec c, sec c].

Notice that c does not depend on F : we have shown that for any F ,

normalized to have F (i, . . . , i) = i, if F has B-points on the set α((I5c)
d),

then F is bounded on α((Ic)
d). By Proposition 4.12, this latter set now has a

neighborhood to which F can be analytically extended, and this neighborhood

can be chosen independently of F . So every point x in E has a neighborhood Ux
to which all functions F in the Pick class with B-points on E can be extended;

let U be the union of all the Ux as x ranges over E. �

5. The Löwner classes

We shall single out functions that have a representation on subsets of Rd
as in (2.7).

Definition 5.1. Let E ⊆ Rd be a nonempty open set, and let n be a positive

integer. We define Ln(E) to be the set of real valued differentiable functions

that have the following property: whenever x1, . . . , xn are n distinct points in

E, there exist positive semi-definite n-by-n matrices A1, . . . , Ad so that

Ar(i, i) =
∂f

∂xr

∣∣∣∣
xi

,(5.2)

f(xj)− f(xi) =
d∑
r=1

(xrj − xri )Ar(i, j) ∀ 1 ≤ i, j ≤ n.(5.3)

We shall give an alternative description of L(E). We shall temporarily

call it L∂(E), but we shall show in Proposition 5.11 that it coincides with the

set L(E) from Definition 1.11.

Definition 5.4. Let E ⊆ Rd be a nonempty open set. We shall let L∂(E)

denote the set of differentiable real valued functions f on E for which there

exist positive semi-definite functions A1, . . . , Ad : E × E → C so that

Ar(z, z) =
∂f

∂xr

∣∣∣∣
z

(5.5)

and

f(z)− f(w) =
d∑
r=1

(zr − wr)Ar(z, w).(5.6)
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If E ⊆ Rd, a function f in L∂(E) can be extended to a function F in

L that has f as its nontangential boundary values on E. We shall use the

abbreviation nt for nontangential.

Proposition 5.7. Let E ⊆ Rd be open, and let f ∈ L∂(E). Then there

exists F ∈ Ld such that every point of E is a B-point for F and such that

(5.8) lim
z
nt→t
F (z) = f(t) ∀ t ∈ E.

Proposition 5.7 follows immediately from the corresponding result on the

polydisk, Theorem 5.9, which was proved by J. A. Ball and V. Bolotnikov [6].

(We are changing their language slightly; they did not explicitly use the notion

of B-point.)

Theorem 5.9 (Ball-Bolotnikov). Let E′ ⊆ Td, and let ψ : E′ → C.

Suppose there are positive semi-definite functions B1, . . . , Bd : E′ × E′ → C
such that, for all λ, µ in E′,

(5.10) 1− ψ(λ)ψ(µ) = (1− λ1µ̄1)B1(λ, µ) + · · ·+ (1− λdµ̄d)Bd(λ, µ).

Then there is a function ϕ in A such that every point of E′ is a B-point for ϕ

and

lim
λ
nt→τ
ϕ(λ) = ψ(τ) ∀ τ ∈ E′.

Moreover, if ϕ is defined to equal ψ on E′, the kernels Br can be extended to

E′ ∪ Dd so that, for all λ, µ in E′ ∪ Dd,

1− ϕ(λ)ϕ(µ) = (1− λ1µ̄1)B1(λ, µ) + · · ·+ (1− λdµ̄d)Bd(λ, µ).

We can pass back and forth between regarding functions in L(E) as func-

tions in the Löwner class Ld that have B-points on E (and so can be ana-

lytically extended across E), and as functions that are characterized by their

values on E by (5.4) and can then be analytically extended into Πd.

Proposition 5.11. Let E ⊆ Rd be a nonempty open set. The following

four sets coincide:

(i) ∩∞n=1Ln(E).

(ii) The set L∂(E) defined by Definition (5.4).

(iii) The set L(E) defined by Definition (1.11).

(iv) The functions f on E for which there exists a function F in Ld such

that every point x of E is a B-point of F and the nontangential limit

of F at x is f(x).

Proof. It is immediate that (ii) ⊆ (i). Theorem 4.8 asserts that (iii) = (iv).

Proposition 5.7 says that (ii) ⊆ (iv).
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To show (iii) ⊆ (ii), choose a model for F so that equation (3.9) holds on

Πd ×Πd:

F (Z)− F (W ) = 〈(Z −W ∗)vZ , vW 〉 ∀ Z,W ∈ Πd.

As every point in E is a C-point for F , we can let Z and W tend to points in

E nontangentially, z and w respectively. By Proposition 3.15, the vectors vZ
and vW converge to vz and vw. Let

Ar(z, w) = 〈vrz , vrw〉,

and one gets equation (5.6). To get equation (5.5), let z be in E and let W in

Πd tend to z nontangentially. As F is analytic at z, we have

(5.12) F (W )− F (z) =
∑

(W r − zr) ∂f

∂xr

∣∣∣∣
z

+ o(‖z −W‖).

From the model,

F (W )− F (z) = 〈(W − z)vW , vz〉(5.13)

= 〈(W − z)vz, vz〉+

〈(W − z)(vW − vz), vz〉.

The second term on the right of equation (5.13) is o(‖z −W‖), so comparing

with equation (5.12), we conclude that

∂f

∂xr

∣∣∣∣
z

= 〈vrz , vrz〉,

and hence equation (5.5) holds.

To prove (i) ⊆ (ii), we need to show that if equations (5.5) and (5.6) hold

on every finite set, with perhaps a different choice of Ar’s each time, then we

can make one choice for the Ar’s that works everywhere.

Let f ∈ ∩∞n=1Ln(E). Consider any finite set {z1, . . . , zn} of distinct points

in E. By Definition 5.1 there exist kernels A1, . . . , Ad on E such that equa-

tions (5.2), (5.3) hold, and we have

Ar(i, i) ≤ ∂f

∂xr
(zi), i = 1, . . . , n, r = 1, . . . , d.

Since the matrices Ar are positive semi-definite, we also obtain bounds on the

off-diagonal entries of all the Ar. Hence the set K of all d-tuples (A1, . . . , Ad)

for which equations (5.2), (5.3) hold is a compact nonempty subset of Md
n.

Moreover, if (B1, . . . , Bd) is a d-tuple of kernels on any finite superset Z of

{z1, . . . , zn} for which the analogs of equations (5.2), (5.3) hold, then the choice

of Ar to be the principal submatrix of Br corresponding to {z1, . . . , zn} gives

a d-tuple that belongs to K. Therefore, by Kurosh’s theorem [5, p. 74] or [3,

p. 30], there is a d-tuple (A1, . . . , Ad) of kernels on E such that equations (5.2)

and (5.3) hold for all points zi, zj ∈ E. �
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6. The µ-spectral theorem

A function in the Pick class of one variable, i.e., an analytic function from

Π to Π, has an integral representation that can be obtained from the Herglotz

representation (4.1) of functions from D to H by a change of variables [17].

Theorem 6.1 (Herglotz). An analytic function F : Π→ Π has a unique

representation of the form

(6.2) F (z) = c + dz +

∫
1 + zt

t− z
dµ(t),

where Im c ≥ 0 and d ≥ 0, and µ is a finite positive Borel measure on R.

Conversely any function of this form is in the Pick class of one variable.

If in addition F decays up the imaginary axis, one gets that F is the

Cauchy transform of a finite measure on R. This is called the Nevanlinna

representation and was proved by R. Nevanlinna [26].

Theorem 6.3 (Nevanlinna). If F : Π→ Π is analytic and satisfies

(6.4) lim sup
y→∞

|yF (iy)| <∞,

then there exists a unique finite positive Borel measure ν on R so that

F (z) =

∫
dν(t)

t− z
.

Remark 6.5. If one considers ψ = −iF ◦ α : D → H, then d in Theo-

rem 6.1 is the mass assigned to the point 1 in the Herglotz representation of

ψ. Nevanlinna’s condition (6.4) in Theorem 6.3 is equivalent to saying that

ϕ = β ◦ F ◦ α : D→ D has a B-point at 1 with ϕ(1) = −1.

One can prove the spectral theorem for a (possibly unbounded) self-adjoint

operator by showing that if Rz is the resolvent, then for any vector u, the

function 〈Rzu, u〉 is in the one variable Pick class and satisfies Nevanlinna’s

growth condition. Then Theorem 6.3 gives the scalar spectral measure. See [14,

Chap. V] or [24, Chap. 32]. Conversely, if X is the operator of multiplication

by the independent variable on L2(µ) and v is the constant function 1, then

(6.2) becomes

(6.6) F (z) = c + dz + 〈(1 + zX)(X − z)−1v, v〉.

In several variables, there is also a connection between Pick functions and

self-adjoint operators, which could be called a µ-spectral theorem (Theorem 6.9

below).

Definition 6.7. Let M be a Hilbert space, with a fixed decomposition as

M =M1 ⊕ · · · ⊕Md. Let T be a densely defined linear operator on M. For
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z = (z1, . . . , zd) in Cd, define the µ-resolvent of T at z to be

(T − z)−1 = (T − [z1IM1 ⊕ · · · ⊕ zdIMd ] )−1.

The µ-spectrum of T is the complement of the set of points in Cd for which

the µ-resolvent is bounded.

The expressions “µ-resolvent” and “µ-spectrum” are not standard, but

they are suggested by usage in control engineering. The notion of µ-analysis

provides an approach to robust stabilization in the presence of “structured

uncertainty” [15]. Corresponding to the projections P 1, . . . , P d, one defines

the “cost function” µ(X) by

1

µ(X)
=inf{‖T‖ : T ∈ B(M), each P rM reduces T, and 1−TX is singular}.

In what follows, we shall write z for z1IM1 ⊕ · · · ⊕ z2IMd and z∗ for

z̄1IM1 ⊕ · · · ⊕ z̄dIMd . Let us recall Definition 1.19.

Definition 1.19. For each real number t, define

(6.8) ρt(z) =
z + t

1− tz
.

For F ∈ Ld, define

Ft := ρt ◦ F ◦ ρt.

Note that, similarly to the maps α and β, we use ρt on Cd to mean the

component-wise action.

Theorem 6.9. Let F be in Ld and z0 be a point in Πd. For all except

at most a countable number of real numbers t, there is a Hilbert space M =

M1 ⊕ · · · ⊕Md, a self-adjoint operator X on M, a vector v in M, and a real

number c so that

(6.10) Ft(z) = c + 〈zv, v〉 + 〈(z − z∗0)(X − z)−1(z − z0)v, v〉.

Conversely, if z0 is a point in Πd, c is a real number, X is a densely defined

self-adjoint operator on a Hilbert space M =M1⊕· · ·⊕Md, and v is a vector

in M, then the function of z given by the right-hand side of equation (6.10) is

in Ld.

Proof. (⇒) Let ϕ = β ◦ F ◦ α in Ad, where α and β are defined in (2.1)

and (2.2). Choose a model for ϕ so that (3.2) holds:

1− ϕ(µ)ϕ(λ) =
d∑
r=1

(1− µrλr)〈urλ, urµ〉Mr(6.11)

= 〈(1− µ∗λ)uλ, uµ〉M.
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Define a linear operator V by

V :

Ç
1

λuλ

å
7→
Ç
ϕ(λ)

uλ

å
,

and extend it by linearity to finite linear combinations of vectors of the formÇ
1

λiuλi

å
,

where the points λi range over Dd.
V is defined on a subspace of C⊕M, and by (6.11) it is isometric on its

domain. If the codimensions of the closures of the domain and range of V are

the same, V can be extended to a unitary U . If they are different, after the

addition of a separable infinite-dimensional summand to one of the spacesMr,

the codimensions become equal, and one can then extend V to a unitary U .

So we can assume that we have a unitary U : C⊕M→ C⊕M such that

(6.12) U :

Ç
1

λuλ

å
7→
Ç
ϕ(λ)

uλ

å
.

Now, let τ be a point in the unit circle that is not in the point spectrum of U ,

and let

t = −i1− τ
1 + τ

.

As C ⊕ M is separable, the point spectrum of U is countable, so all but

countably many real numbers t will arise in this way.

Let

Y = −i(U − τ)−1(U + τ) : (U − τ)η 7→ −i(U + τ)η.

Then Y is densely defined and self-adjoint. Its domain D is ran (U − τ).

Moreover, by definition,

Y :

(
ϕ(λ)− τ

(1− τλ)uλ

)
7→

(
− i(ϕ(λ) + τ)

− i(1 + τλ)uλ

)
.

Therefore,

(6.13) Y :

Ü
1

1− τλ
ϕ(λ)− τ

uλ

ê
7→

á
− i ϕ(λ) + τ

ϕ(λ)− τ

− i 1 + τλ

ϕ(λ)− τ
uλ

ë
.

Let

ṽz =
1− τβ(z)

β ◦ F (z)− τ
uβ(z).

Then one can rewrite (6.13) as

(6.14) Y :

Ç
1

ṽz

å
7→
Ç

ρt ◦ F (z)

−ρ−t(z)ṽz

å
.
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Now let

vz = ṽρt(z).

Then (6.14) becomes

(6.15) Y :

Ç
1

vz

å
7→
Ç
Ft(z)

−zvz

å
.

As Y is self-adjoint, (6.15) implies that

(6.16) Ft(z)− Ft(w)∗ = 〈(z − w∗)vz, vw〉.

Let X be the compression of −Y toM. By Lemma 6.24, X is self-adjoint

with dense domain equal to D ∩M.

If γ is in D ∩M, then

Y

Ç
0

γ

å
=

Ç
L(γ)

−Xγ

å
for some linear functional L.

Define v = vz0 , and let a = Ft(z0). Then

Y

Ç
1

v

å
=

Ç
a

−z0v

å
.

For z ∈ Πd, let

Y

Ç
1

vz

å
= Y

Ç
1

v

å
+ Y

Ç
0

vz − v

å
=

Ç
a

−z0v

å
+

Ç
L(vz − v)

−X(vz − v)

å
.

By (6.15), we get the equations

Ft(z) = a+ L(vz − v),(6.17)

zvz = z0v +X(vz − v).(6.18)

For γ ∈ D ∩M, ÆÇ
0

γ

å
,

Ç
a

−z0v

å∏
=

ÆÇ
0

γ

å
, Y

Ç
1

v

å∏
=

Æ
Y

Ç
0

γ

å
,

Ç
1

v

å∏
=

ÆÇ
L(γ)

−Xγ

å
,

Ç
1

v

å∏
.

Therefore,

(6.19) L(γ) = −〈γ, z0v〉+ 〈Xγ, v〉.
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If z is in Πd, then by Lemma 6.25, X − z is invertible, so (6.18) yields

(6.20) vz − v = (X − z)−1(z − z0)v.

Combining equations (6.17) to (6.20), we get

Ft(z) = a− 〈vz − v, z0v〉+ 〈zvz − z0v, v〉(6.21)

= a− 〈vz − v, z0v − z∗v〉+ 〈(z − z0)v, v〉
= a+ 〈(X − z)−1(z − z0)v, (z∗ − z0)v〉

+ 〈(z − z0)v, v〉.

By (6.16),

a− ā = Ft(z0)− Ft(z0) = 〈(z0 − z∗0)v, v〉,

so c := a− 〈z0v, v〉 is real. Then (6.21) becomes (6.10), as desired.

(⇐) To prove the converse, suppose X is a self-adjoint operator on M
with dense domain D′. Let F (z) be given by the right-hand side of (6.10).

Define vz by (6.20); i.e.,

(6.22) vz = v + (X − z)−1(z − z0)v.

Define a linear functional L on D′ by

L(γ) = −〈γ, z0v〉+ 〈Xγ, v〉.

Let D be the linear span in C ⊕M of the vector ( 1
v ) and the vector space

0⊕D′. Let a = c+ 〈z0v, v〉. Finally, define Y on D by

Y

Ç
t

γ + tv

å
= t

Ç
a

−z0v

å
+

Ç
L(γ)

−X(γ)

å
for t in C. It is routine to verify that Y is symmetric. Moreover, by (6.22),

(vz − v) is in the domain of X − z and therefore in D′. So
(

1
vz

)
is in D for

every z in Π, and therefore

(6.23)

Æ
Y

Ç
1

vz

å
,

Ç
1

vw

å∏
=

ÆÇ
1

vz

å
, Y

Ç
1

vw

å∏
.

Expanding (6.23) and rearranging, one gets

F (z)− F (w) = 〈(z − w∗)uz, uw〉,

and hence F is in Ld. �

Lemma 6.24. With notation as in the proof of the forward direction of

Theorem 6.9, the domain of X is D ∩ M. This domain is dense, and the

operator X is self-adjoint.
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Proof. Since D is dense in C⊕M, there are vectors ξn inM that converge

to zero and such that
Ä

1
ξn

ä
are in D. If γ is any vector inM, there are vectors

( anηn ) in D that converge to
Ä

0
γ

ä
, hence so do the vectorsÇ

an
ηn

å
− an

Ç
1

ξn

å
=

Ç
0

ηn − anξn

å
.

Therefore D ∩M is dense in M.

Let P be the projection from C ⊕M onto M. Let X = −PY |M with

domain D′ = D ∩M. Then for γ, η in D′, we have

〈Xγ, η〉=−〈PY γ, η〉
=−〈Y γ, η〉
=−〈γ, Y η〉
= 〈γ,Xη〉.

So X is symmetric.

To prove X is self-adjoint, it remains to show that X and X∗ have the

same domain. Assume that there is some vector η in M such that

|〈Xγ, η〉| ≤ C‖γ‖

for all γ ∈ D′. Then for every vector ( cδ ) in D of norm at most one, we have

|〈Y
Ç
c

δ

å
,

Ç
0

η

å
〉|= |〈Y

ñÇ
0

δ − cξ1

å
+ c

Ç
1

ξ1

åô
,

Ç
0

η

å
〉|

≤C‖δ − ξ1‖+ |c| ‖Y
Ç

1

ξ1

å
‖ ‖η‖ ≤ C ′.

So
Ä

0
η

ä
is in D, and therefore η is in D′. �

Lemma 6.25. Let X be a densely defined self-adjoint operator onM. The

µ-spectrum of X is disjoint from Πd ∪Πd∗. Moreover,

‖(X − z)−1‖ ≤ 1/ min
1≤r≤d

(|Im zr|) ∀ z ∈ Πd ∪Πd∗.

Proof. Let X be self-adjoint on M =M1 ⊕ · · · ⊕Md, and let z = (x1 +

iy1, . . . , xd + iyd) be a point in Πd ∪Πd∗. Then for any v = v1⊕· · ·⊕ vd inM,

〈(X − z)v, v〉 = 〈(X − x)v, v〉 − i(y1‖v1‖2 + · · ·+ yd‖vd‖2).

The first summand on the right is real, so X−z is bounded below by min(|yr|),
and therefore has a left inverse. Applying the same argument to z∗, we get

that X − z∗ has a left inverse, and taking adjoints we get that X − z has a

right inverse also. �
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When F decays at infinity, we can sharpen Theorem 6.9 to get a theorem

like Nevanlinna’s Theorem 6.3. (It has long been known that the lim sup in

Nevanlinna’s theorem can be replaced by a lim inf.)

Let us write 1 for (1, 1, . . . , 1), and s1 for (s, s, . . . , s), etc.

Theorem 6.26. Let F be in Ld, and assume F has a representation as

in (6.10) with t = 0. Then the following are equivalent :

(i) lim infy→∞ y|F (iy1)| < ∞.
(ii) There exists a vector v1 in M so that

(6.27) F (z) = 〈(X − z)−1v1, v1〉 z ∈ Πd.

(iii) The function ϕ = β ◦ F ◦ α in S has a B-point at 1 and

ϕ(1) = −1.

(iv) limy→∞ F (iy1) = 0 and the vectors v(iy1) defined by (6.22) satisfy

lim inf
y→∞

y‖v(iy1)‖ < ∞.

(v) The vector v is in the domain of X , and limy→∞ F (iy1) = 0.

Proof. (i)⇒ (iii) Let ϕ = β ◦ F ◦ α. Condition (i) becomes

(6.28) lim inf
s→1

1 + s

1− s

∣∣∣∣∣1 + ϕ(s1)

1− ϕ(s1)

∣∣∣∣∣ < ∞.
The left-hand side of (6.28) dominates

1− |ϕ(s1)|
1− s

,

so 1 is a B-point. In order for (6.28) to hold, we must have ϕ(1) = −1.

(iii)⇔ (iv) As the proof of Proposition 2.13 shows, one can pass between

a model (M, u) for ϕ and a model (M, v) for F by letting

vrz =

Ç
F (z) + i

zr + i

å
urβ(z),(6.29)

urλ =

Ç
1− ϕ(λ)

1− λr

å
vrα(λ) r = 1, . . . , d.

By Lemma 3.12, ϕ having a B-point at 1 is equivalent to u(r1) being

bounded as r → 1−. Moreover, ϕ(r1) tending to −1 is the same as F (iy1)

tending to 0 as y → ∞. And as long as F (iy1) has a finite limit, (6.29) says

that u(r1) is bounded if and only if [y v(iy1)] is.

(iv)⇒ (v) As X is densely defined and self-adjoint, it is closed. By (6.18),

the vectors vz−v all lie in D′, the domain of X. Let z = (iy1), and let y →∞.

Then v − v(iy1) tends to v. Moreover, X(v − v(iy1)) = z0v − iyv(iy1) contains

a bounded sequence as y → ∞ and, therefore, a subsequence that converges
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weakly to some vector, w say. So (v, w) is in the weak closure of the graph of

X, therefore in the graph of X, and hence v is in D′.
(v)⇒ (ii) If v ∈ D′, then (6.19) becomes

(6.30) L(γ) = 〈γ,Xv − z0v〉.

Let v1 = (X − z0)v. Then (6.18) says

(6.31) (X − z)vz = v1.

Combining (6.17), (6.30), and (6.31), we get

(6.32) Ft(z) = a− 〈v, v1〉+ 〈(X − z)−1v1, v1〉.

Now let z = (iy1) in (6.32), and let y →∞. By Lemma 6.25, the last term on

the right tends to zero, so we must have a− 〈v, v1〉 = 0.

(ii)⇒ (i) Lemma 6.25 implies that

‖F (z)‖ ≤ ‖v1‖2/min(|Im zr|),

and so (i) follows. �

For later use, let us record a slight variant of Theorem 6.26; it is proved

in the same way.

Theorem 6.33. Let F be in Ld, and assume F has a representation as

in (6.10) with t = 0. Then the following are equivalent :

(i) There exists a constant C ∈ R so that

lim inf
y→∞

y|F (iy1) − C| < ∞.

(ii) There exists a vector v1 in M and a constant C in R so that

F (z) = C + 〈(X − z)−1v1, v1〉 z ∈ Πd.

(iii) The function ϕ = β ◦ F ◦ α in S has a B-point at 1, and ϕ(1) 6= 1.

(iv) limy→∞ F (iy1) = C ∈ R, and

lim inf
y→∞

y‖v(iy1)‖ < ∞.

(v) The vector v is in the domain of X .

7. Locally matrix monotone functions

Recall the definition of locally n-matrix monotone.
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Definition 1.7. Let E be an open set in Rd and f be a real-valued C1-func-

tion on E. Say f is locally Mn-monotone on E if, whenever S is in CSAMd
n

with σ(S) = {x1, . . . , xn} consisting of n distinct points in E, and S(t) is a

C1-curve in CSAMd
n with S(0) = S and d

dtS(t)|t=0 ≥ 0, then d
dtf(S(t))|t=0

exists and is ≥ 0.

If S is in CSAMd
n, we can choose an orthonormal basis of eigenvectors

that diagonalize all the Sr’s simultaneously, so

(7.1) Sr =

Ü
xr1

. . .

xrn

ê
∀ 1 ≤ r ≤ d.

If S(t) is a C1-curve of commuting self-adjoints, then S(0) + t ddtS(t)|t=0 com-

mutes to first order; i.e., the commutators are all o(t).

For any X ∈ Mn, we define diag X to be the diagonal matrix in Mn

with diagonal entries Xii, and for any ∆ ∈ SAMd
n, we define diag ∆ to be

(diag ∆1, . . . ,diag ∆d).

Definition 7.2. We shall say that S in CSAMd
n is generic if its spectrum

consists of n distinct points.

Lemma 7.3. Let S be in CSAMd
n and ∆ be in SAMd

n, with S generic.

Then there exists a C1-curve S(t) of commuting self-adjoints with S(0) = S

and S′(0) = ∆ if and only if

(7.4) [Sr,∆s] = [Ss,∆r] ∀ 1 ≤ r 6= s ≤ d.

Proof. (⇒): If S(t) = S + t∆ + o(t) is commutative, calculate

[Sr(t), Ss(t)] = t ([Sr,∆s]− [Ss,∆r]) + o(t).

The coefficient of t must vanish, giving (7.4).

(⇐): Suppose S is as in (7.1), suppose and (7.4) holds. This means

(7.5) ∆s
ij(x

r
j − xri ) = ∆r

ij(x
s
j − xsi ) ∀ r 6= s,

so

(7.6) ∆r
ij

1

xrj − xri
= ∆s

ij

1

xsj − xsi
if xrj − xri 6= 0 6= xsj − xsi .

Define a skew-selfadjoint matrix Y by

(7.7) Yij = ∆r
ij

1

xrj − xri
for any r such that xrj − xri 6= 0.

For any i 6= j, there is some r with xrj − xri 6= 0, so (7.7) defines Yij ; (7.6) says

it does not matter which r we choose. Let all the diagonal terms of Y be 0.
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Define

(7.8) Sr(t) = etY (Sr + t diag ∆r)e−tY .

Since etY is a unitary matrix and Sr + t diag ∆r is diagonal, S(t) ∈ CSAMd
n

and
d

dt
Sr(t)|t=0 = [Y, Sr] + diag ∆r = ∆r. �

If S and ∆ satisfy (7.4) and S is generic, then for any function f that is

C1 on a neighborhood of σ(S), we define the directional derivative of f at S

in direction ∆ by

(7.9) D∆f(S) =
d

dt
f(S(t))|t=0,

where S(t) is the curve given by equations (7.8) and (7.7). We shall show in

Proposition 7.18 that (7.9) is actually unchanged if S(t) is replaced by any

other curve that agrees with it to first order. First, let us show that the

right-hand side of (7.9) exists. Indeed,

(7.10) f(S(t)) = etY f(S + t diag ∆)e−tY .

Since S + t diag ∆ is diagonal, f(S + t diag ∆) is diagonal, with the ith entry

f(xi + t∆ii) = f(xi) + t
d∑
r=1

∆r
ii

∂f

∂xr
(xi) + o(t).

In other words,

f(S + t diag ∆) = f(S) + t
d∑
r=1

(diag ∆r)
∂f

∂xr
(S) + o(t).

Hence, on differentiating equation (7.10) at 0, we obtain

d

dt
f(S(t))|t=0 = [Y, f(S)] +

d∑
r=1

(diag ∆r)
∂f

∂xr
(S).

We have shown the following.

Proposition 7.11. Let S be a generic d-tuple of commuting self-adjoint

matrices in Mn. Fix an orthonormal basis of eigenvectors so that every Sr is

diagonal :

Sr =

Ü
xr1

. . .

xrn

ê
.



OPERATOR MONOTONE FUNCTIONS 1811

Let ∆ be a d-tuple of self-adjoints satisfying (7.4). Let f be C1 on a neighbor-

hood of {x1, . . . , xn} in Rd, where each xj is the d-tuple (x1
j , . . . , x

d
j ). Then

(7.12) [D∆f(S)]ij =

∆r
ij
f(xj)−f(xi)
xrj−x

r
i

if i 6= j, where xrj 6= xri ,∑d
r=1 ∆r

ii
∂f
∂xr |xi if i = j.

Corollary 7.13. For S,∆ as in Proposition 7.11, if f, g are C1-functions

that agree to first order on σ(S), then D∆f(S) = D∆g(S).

Lemma 7.14. Let R and S be in CSAMd
n. For every point µ in the joint

spectrum of R there is an xp in the joint spectrum of S with

(7.15) ‖µ− xp‖ ≤
√
dn‖R− S‖.

Proof. Choose an orthonormal basis that diagonalizes S, so that S is as

in (7.1). Let ∆ = R− S. Let µ be a joint eigenvalue of R with corresponding

eigenvector ξ = (ξ1, . . . , ξn)t. Choose p so that |ξp| ≥ |ξj | for all 1 ≤ j ≤ n.

Then for each 1 ≤ r ≤ d, we have

Rrξ = µrξ = (Sr + ∆r)ξ.

So, in particular,
n∑
j=1

Rrpjξj = µrξp.

Therefore,

(µr − xrp)ξp =
n∑
j=1

∆r
pjξj .

So

|µr − xrp| ≤
n∑
j=1

|∆r
pj |

≤
√
n
√∑

j

|∆r
pj |2

≤
√
n‖∆r‖,

and hence
d∑
r=1

|µr − xrp|2 ≤ dn‖∆‖2. �

Lemma 7.16. If R(t) is a Lipschitz path in CSAMd
n, 0 ≤ t < 1, with

R(0) = S generic, then there exists ε > 0 and Lipschitz maps X1, . . . , Xn :

[0, ε)→ Rd such that σ(R(t)) = {Xj(t) : j = 1, . . . , n}.
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Proof. Choose an orthonormal basis that diagonalizes S so that S is as in

(7.1). The joint eigenvalues of S are the points xi = (x1
i , . . . , x

d
i ), and genericity

means ‖xi − xj‖ > 0 if i 6= j. Choose ε so that for all 0 ≤ t ≤ ε,

(7.17)
√
dn‖R(t)− S‖ ≤ 1

3
min
i 6=j
‖xi − xj‖.

By Lemma 7.14, for every joint eigenvalue x of S, there is a joint eigenvalue

µ of R(t) within distance
√
dn‖R(t)−S‖ of it. By (7.17), this means that R(t)

is also generic, and it makes sense to talk of the joint eigenvalue of R(t) that

is closest to xj . Let us call these joint eigenvalues Xj(t). We have proved that

‖Xj(t)− xj‖ ≤
√
dn‖R(t)− S‖ ∀ 0 ≤ t ≤ ε.

Repeating the argument with R(t1) in place of S, we get

‖Xj(t2)−Xj(t1)‖ ≤
√
dn‖R(t2)−R(t1)‖ ∀ 0 ≤ t1, t2 ≤ ε.

As R is assumed to be Lipschitz, we get that each Xj is Lipschitz also. �

Proposition 7.18. If S is generic in CSAMd
n, ∆ is in SAMd

n, and they

satisfy the commutation relations (7.4), then for any C1-path R(t) ∈ CSAMd
n

such that R(0) = S, R′(0) = ∆, and any f ∈ C1,

(7.19)
d

dt
f(R(t))|t=0 = D∆f(S).

Proof. If g is a monomial, then a simple calculation shows that

d

dt
g(R(t))|t=0

exists and depends only on g, S, and ∆. It follows that for any polynomial g,

(7.20)
d

dt
g(R(t))|t=0 =

d

dt
g(S(t))|t=0 = D∆g(S).

Consider any f ∈ C1, and pick a polynomial g that agrees with f to first

order on σ(S). By Corollary 7.13,

(7.21) D∆f(S) = D∆g(S).

We claim that

(7.22)
d

dt
g(R(t))|t=0 =

d

dt
f(R(t))|t=0.

By Lemma 7.16, there exist Lipschitz functions X1, . . . , Xn : [0, ε) → Rd such

that σ(R(t)) = {X1(t), . . . , Xn(t)} for all t. Then f(S) = g(S) and

‖(f − g)(R(t))‖= max
i
|(f − g)(Xi(t))|

= o(max
i
‖Xi(t)−Xi(0)‖)

= o(t).
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Hence ∥∥∥∥∥f(R(t))− f(S)

t
− g(R(t))− g(S)

t

∥∥∥∥∥→ 0 as t→ 0.

In view of equation (7.20),

f(R(t))− f(S)

t
→ d

dt
g(R(t))|t=0 = D∆g(S) as t→ 0.

On combining this relation with equation (7.21), we obtain equation (7.19). �

Corollary 7.23. A real-valued C1-function f on an open set E ⊆ Rd is

locally Mn-monotone if and only if

D∆f(S) ≥ 0

for every generic S in CSAMd
n with spectrum in E and every ∆ in SAMd

n such

that ∆ ≥ 0 and

[Sr,∆s] = [Ss,∆r] ∀ 1 ≤ r 6= s ≤ d.

The statement follows immediately from Definition 1.7 and Proposition 7.18.

If one drops the genericity assumption on S, the situation becomes sig-

nificantly more complicated. Nonetheless, K. Bickel has recently analyzed this

situation and has shown that both Lemma 7.3 and Proposition 7.18 remain

true without the generic assumption on the eigenvalues of S [10]. Passing from

differentiating functions of matrices to differentiating functions of operators

brings up another set of issues. See [29] for a discussion of these.

We can now characterize locally matrix monotone functions.

Theorem 7.24. Let E be an open set in Rd and f be a real-valued C1-func-

tion on E. Then f is locally Mn-monotone if and only if f is in Ldn(E).

Proof. (⇐) We must show: if S is generic with σ(S) ⊂ E, if ∆ is a positive

d-tuple, and if [Sr,∆s] = [Ss,∆r] for all r, s, then D∆f(S) ≥ 0.

Let σ(S) = {x1, . . . , xn}. Choose Ar as in Definition 5.1. For i 6= j,

assume without loss of generality that x1
j 6= x1

i . Then

[D∆f(S)]ij = ∆1
ij

f(xj)− f(xi)

x1
j − x1

i

=
∆1
ij

x1
j − x1

i

(
d∑
r=1

(xrj − xri )Ar(i, j)
)

=
d∑
r=1

∆r
ij A

r(i, j).

(We get the last line by using (7.6).) By (7.12) the same formula holds for

[D∆f(S)]ij when i = j, so D∆f(S) is the sum of the Schur products of ∆r

with Ar, so is positive.
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(⇒) Let f be locally Mn-monotone, and fix {x1, . . . , xn} distinct points

in E. Let S be given by (7.1). We wish to find positive semi-definite matrices

Ar such that (5.3) and (5.2) hold.

Let G be the set of all skew-symmetric real n-by-n matrices Γ with the

property that there exists a d-tuple A of real positive semi-definite matrices

satisfying

Ar(i, i) =
∂f

∂xr

∣∣∣∣
xi

1 ≤ i ≤ n, 1 ≤ r ≤ d,(7.25)

d∑
r=1

(xrj − xri )Ar(i, j) = Γij 1 ≤ i 6= j ≤ n.(7.26)

Let Λ be the matrix Λij = f(xi)− f(xj). We wish to show Λ is in G.

Notice that G is a closed convex set. Moreover, it is nonempty, because
∂f
∂xr

∣∣∣
xi

is always greater than or equal to 0. (This last assertion can be seen by

letting ∆ be 0 except in the rth slot, where it is I, and calculating D∆f(S).)

So if Λ is not in G, by the Hahn-Banach theorem there is a real linear

functional L : Mn → R that is nonnegative on G and negative on Λ. Any such

linear functional is of the form L(T ) = tr(TK) for some matrix K. Replacing

K by (K − Kt)/2 will not change the value of L on skew-symmetric real

matrices, so we can assume that there is a real skew-symmetric matrix K such

that tr(ΓK) ≥ 0 for all Γ in G, and tr(ΛK) < 0.

Define ∆ by
∆r
ij = (xrj − xri )Kji.

Then ∆ is in SAMd
n, and

[∆s, Sr]ij = (xsj − xsi )Kji(x
r
j − xri ) = [∆r, Ss],

so ∆ satisfies (7.4).

Moreover ∆ ≥ 0. Indeed, fix s between 1 and d, and let c1, . . . , cn be

complex numbers. We want to show that

(7.27)
n∑

i,j=1

cic̄j∆
s
ij ≥ 0.

For r 6=s, let Ar be the diagonal matrix with entries given by (7.25). Define As

to be the sum of the diagonal matrix from (7.25) with the rank one matrix [cic̄j ].

Define Γ by (7.26). Then Γ is in G, and since K and ∆s both vanish on the

diagonal,

tr(ΓK) =
n∑

i,j=1

(xsj − xsi )As(i, j)Kji

=
∑
i,j

∆s
ijcic̄j

≥ 0,

yielding (7.27).
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As f is locally Mn monotone, we must then have that D∆f(S) ≥ 0.

But

0 > tr(ΛK) =
∑

1≤i 6=j≤n
[f(xj)− f(xi)]Kji

=
∑

1≤i 6=j≤n

f(xj)− f(xi)

xrj − xri
∆r
ij

=
∑

1≤i,j≤n
[D∆f(S)]ij ,

which is a contradiction. �

As the dimension of the matrices increases, the condition that a function

f be locally monotone becomes more stringent. On an infinite-dimensional

Hilbert space, the requirement becomes that f be in the Löwner class, as we

shall see in the next section.

8. Locally operator monotone functions

We defined locally operator monotone functions in Definition 1.6. We

shall show that being locally operator monotone is the same as being locally

Mn-monotone for all n, which in turn is the same as being in the Löwner

class L(E).

Theorem 8.1. Let E be an open set in Rd and f be a real-valued C1-func-

tion on E. The following are equivalent :

(i) The function f is locally Mn-monotone on E for all n ≥ 1.

(ii) The function f is in L(E).

(iii) The function f is locally operator monotone on E.

The equivalence of (i) and (ii) follows from Theorem 7.24 and Propo-

sition 5.11. The implication (iii) ⇒ (i) is obvious. We need to prove that

(ii)⇒ (iii). First we need some preliminary results.

Proposition 8.2. Let E be an open set in Rd, and let f ∈ L(E). Then

there is a model (M, v) for f such that vz is locally Lipschitz on E.

Proof. By Proposition 5.11 we can extend f to a function F in L that

extends analytically across E and agrees with f on E. For this F we have a

model (M, v) so that

(8.3) F (z)− F (w) = 〈(z − w∗)vz, vw〉M ∀ z, w ∈ E ∪Πd,

and by Proposition 3.15, if w is in E, then vw is the limit of vz as z tends to

w nontangentially from inside Πd.
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Fix w in E (so F (w) is real). Then, by analyticity, for z close to w, we

have

(8.4) F (z)− F (w) =
d∑
r=1

∂f

∂xr

∣∣∣∣
w

(zr − wr) +
∑
|α|≥2

∂αf

∂xα

∣∣∣∣
w

(z − w)α

α!
.

From (8.3), we get

F (z)− F (w) = 〈(z − w)vz, vw〉

=
d∑
r=1

(zr − wr)〈vrw, vrw〉+
d∑
r=1

(zr − wr)〈vrz − vrw, vrw〉.

As z tends to w nontangentially, the second term is o(‖z −w‖), so comparing

with (8.4), we see that

(8.5) ‖vrw‖2 =
∂f

∂xr

∣∣∣∣
w

∀ 1 ≤ r ≤ d.

Now let z and w both be in E. Comparing (8.3) and (8.4), we get

(8.6) 〈(z − w)vz, vw〉 − 〈(z − w)vw, vw〉 =
∑
|α|≥2

∂αf

∂xα

∣∣∣∣
w

(z − w)α

α!
.

Swapping z and w, we get

(8.7) 〈(w − z)(vw − vz), vz〉 =
∑
|α|≥2

∂αf

∂xα

∣∣∣∣
z

(w − z)α

α!
.

Subtracting (8.6) from (8.7), we get

(8.8)

〈(z − w)(vz − vw), (vz − vw)〉 =
∑
|α|≥2

Å
(−1)|α|

∂αf

∂xα

∣∣∣∣
z
− ∂αf

∂xα

∣∣∣∣
w

ã
(z − w)α

α!
.

But since f is analytic,Å
∂αf

∂xα

∣∣∣∣
z
− ∂αf

∂xα

∣∣∣∣
w

ã
= O(‖z − w‖),

and so the right-hand side of (8.8) is O(‖z − w‖3). Therefore,

(8.9) 〈(z − w)(vz − vw), (vz − vw)〉 = O(‖z − w‖3).

If all the differences |zr − wr| are comparable, we can conclude immediately

that ‖vz − vw‖ = O(‖z −w‖). If they are not, we can get round this difficulty

by connecting z to w by two line segments.

Indeed, suppose max1≤r≤d |zr − wr| = ε. Choose numbers ar and br with

modulus between 1/2 and 2 so that

zr − wr = (ar − br)ε ∀ 1 ≤ r ≤ d.

Let

xr = wr + arε = zr + brε.
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Then applying (8.9) to the pairs (z, x) and (x,w), we get

‖vz − vw‖ ≤ ‖vz − vx‖+ ‖vx − vw‖
= O(‖z − x‖+ ‖x− w‖)
= O(‖z − w‖),

as desired. �

Suppose now E, f , and (M, v) are as in Proposition 8.2. So v : z 7→ vz is

a map from E to M. Let S be a d-tuple of bounded commuting self-adjoint

operators on a Hilbert space H, with σ(S) ⊂ E. We want to define an operator

ṽ(S) ∈ B(H,H⊗M).

We do this by choosing an orthonormal basis for M, and writing

(8.10) v(z) := vz =

Ü
v1(z)

v2(z)
...

ê
.

We must caution the reader that the subscripts on the right-hand side of (8.10)

run over the dimension of M, and they are not interchangeable with the su-

perscripts on v that identify which piece ofM1, . . . ,Md one is in. After using

the orthonormal basis to identify M with `2, we have

vz =


v1
z
...

vdz

 =

Ü
v1(z)

v2(z)
...

ê
.

Then

(8.11) ṽ(S) :=

Ü
v1(S)

v2(S)
...

ê
: H → H⊗M.

The operator ṽ(S) is bounded, because if S has spectral measure Λ and ξ is a

unit vector in H, then

‖ṽ(S)ξ‖2 =
∑
j

∫
σ(S)
|vj |2d〈Λξ, ξ〉(8.12)

=

∫
σ(S)

d∑
r=1

∂f

∂xr
d〈Λξ, ξ〉

≤ sup
z ∈σ(S)

d∑
r=1

∂f

∂xr

∣∣∣∣∣∣
z

,(8.13)

and the last sum is finite because σ(S) is compact and f is C1.



1818 JIM AGLER, JOHN E. MCCARTHY, and N. J. YOUNG

The operator ṽ(S) does not depend on the choice of orthonormal basis

in M. A simple calculation shows that for any h ∈ H and m ∈M,

ṽ(S)∗(h⊗m) = 〈m, v(·)〉(S)h.

This gives a coordinate-free expression for ṽ(S)∗, hence also for ṽ(S).

Lemma 8.14. Let E, f and (M, v) be as in Proposition 8.2, and let S

be a d-tuple of bounded commuting self-adjoint operators on a Hilbert space H,

with σ(S) ⊂ E. Then

(8.15) ‖ṽ(S)‖ ≤
(

sup
σ(S)

d∑
r=1

∂f

∂xr

)1
2

.

Moreover, ṽ is continuous.

Proof. Inequality (8.15) has been proved in (8.13). To prove continuity of

ṽ, let K be a compact subset of E with σ(S) ⊂ int(K) ⊂ E. Let ε > 0.

As v is continuous on K and K is compact, there exists N such that∑∞
j=N+1 |vj(z)|2 ≤ ε2/9 on K. For 1 ≤ j ≤ N , there is a polynomial pj such

that ‖pj − vj‖∞ ≤ ε/9N on K. There exists δ > 0 so that if ‖T r − Sr‖ ≤ δ,

then σ(T ) ⊆ K and ‖pj(T )− pj(S)‖ ≤ ε/9N for each 1 ≤ j ≤ N .

Let ṽN (S) be the operator 

v1(S)
...

vN (S)

0
...

 .

Then ‖ṽN (S) − ṽ(S)‖ ≤ ε/3 by (8.12), and similarly ‖ṽN (T ) − ṽ(T )‖ ≤ ε/3.

As

‖vj(T )− vj(S)‖ ≤ ‖vj(T )− pj(T )‖+ ‖pj(T )− pj(S)‖+ ‖pj(S)− vj(S)‖,
and each entry is at most ε/9N ,

‖ṽN (S)− ṽN (T )‖ ≤ N
Å
ε

9N
+

ε

9N
+

ε

9N

ã
=
ε

3
,

and hence

‖ṽ(T )− ṽ(S)‖ ≤ ε. �

We assume that M is decomposed as M =M1 ⊕ · · · ⊕Md and that P r

is the orthogonal projection fromM ontoMr. If S = (S1, . . . , Sd) is a d-tuple

of operators on H, we shall write

(8.16) S � I := S1 ⊗ P 1 ⊕ · · · ⊕ Sd ⊗ P d,

which is an operator on H⊗M.
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Proposition 8.17. Let E be open in Rd, let f ∈ L(E), and assume

(M, v) is a model of f for which v is continuous. Let S and T be d-tuples

of commuting self-adjoint operators on a Hilbert space H with spectrum in E.

Then

(8.18) f(T )− f(S) = ṽ(S)∗ [T � I − S � I] ṽ(T ).

Proof. First assume that S and T are (separately) diagonalizable. Let ξ

be an eigenvector of S and η be an eigenvector of T , so for some numbers

zr, wr, we have

Srξ=wrξ,

T rη= zrη ∀ 1 ≤ r ≤ d.

Then

〈[f(T )− f(S)] η, ξ〉H = 〈[f(z)− f(w)∗] η, ξ〉H.
Also,

〈ṽ(S)∗ [T � I − S � I] ṽ(T )η, ξ〉H
= 〈[T � I − S � I] η ⊗ v(z), ξ ⊗ v(w)〉H⊗M

=
d∑
r=1

〈η, ξ〉H 〈(zr − w̄r)vr(z), vr(w)〉Mr

= (f(z)− f(w))〈η, ξ〉H.

So both sides of (8.18) agree if you apply them to an eigenvector of T and then

take the inner product with an eigenvector of S. By linearity, this is true also

for linear combinations of eigenvectors, and as these are assumed dense, we get

that (8.18) holds.

If S and T are not diagonalizable, by the spectral theorem we can approx-

imate them in norm by operators that are, and as ṽ and f are both continuous,

one gets (8.18) in the limit. �

Proof of Theorem 8.1. Assume f is in L(E), and S(t) is a curve of com-

muting self-adjoint d-tuples with S(0) = S and S′(0) = ∆ ≥ 0. Choose a

model (M, v) with v locally Lipschitz. Then by Proposition 8.17,

f(S(t))− f(S) = ṽ(S)∗ [(S(t)− S)� I] ṽ(S(t)).

As

S(t) = S + t∆ + o(t),

we get

d

dt
f(S(t))

∣∣∣∣
0

= lim
t→0

ṽ(S)∗ [∆� I] ṽ(S(t)) + lim
t→0

ṽ(S)∗ [o(1)] ṽ(S(t))

= ṽ(S)∗ [∆� I] ṽ(S).



1820 JIM AGLER, JOHN E. MCCARTHY, and N. J. YOUNG

Hence f(S(t)) is differentiable at 0, and its derivative is a positive semi-definite

operator. �

9. Globally operator monotone functions

Definition 9.1. Let E be an open set in Rd and f be a real-valued C1-func-

tion on E. Say f is globally operator monotone on E if, whenever S and T are

d-tuples of commuting bounded self-adjoint operators on a Hilbert space with

σ(S) ∪ σ(T ) ⊂ E, and S ≤ T , then f(S) ≤ f(T ).

If F has the form in Theorem 6.26, then it is globally monotone on boxes

in the µ-resolvent of X.

Theorem 9.2. Let X be a densely-defined self-adjoint operator on a graded

Hilbert space M =M1 ⊕ · · · ⊕Md, let v ∈M, and let F be given by

F (z) = 〈(X − z)−1v, v〉.

Let E be an open box in Rd that is in the µ-resolvent of X . Then F is globally

operator monotone on E.

Proof. First observe that if S is a commuting d-tuple of self-adjoint oper-

ators on H and σ(S) ⊂ E, then

(9.3) F (S) = R∗v(IH ⊗X − S � I)−1Rv,

where � is as in equation (8.16) and

Rv : H→H⊗M
h 7→ h⊗ v.

Thus equation (9.3) means that for any vectors ξ and η in H,

(9.4)
〈
F (S)η, ξ

〉
H

=

Æ(
IH ⊗X −

d∑
r=1

Sr ⊗ P r
)−1

η ⊗ v, ξ ⊗ v
∏
H⊗M

.

Indeed, if η is an eigenvector of S with eigenvalues ar, then F (S)η = F (a)η,

so the left-hand side of (9.4) is F (a)〈η, ξ〉. But we have(
IH ⊗X −

d∑
r=1

Sr ⊗ P r
)−1

η ⊗ v = η ⊗ (X − a)−1v,

as one can verify by applying (IH ⊗X −
∑d
r=1 S

r ⊗ P r) to both sides. So the

right-hand side of (9.4) is

〈η, ξ〉〈(X − a)−1v, v〉,

which is the same as the left-hand side of (9.4). If S has a spanning set of

eigenvectors, our claim is proved. If it does not, one can approximate it in

norm by a d-tuple that does, and the claim follows by continuity.
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Now let S and T be d-tuples of commuting self-adjoint operators with

σ(S) ∪ σ(T ) ⊂ E and ∆ := T − S ≥ 0. Let

Rr(t) = (1− t)Sr + tT r, 1 ≤ r ≤ d.

Then for t in the range (0, 1), the d-tuple R(t) will consist of self-adjoint

operators that need not commute with each other. Nonetheless, letting

Y (t) = (IH ⊗X −R(t)� I) ,

then R∗vY (t)−1Rv still makes sense by Lemma 9.5. Moreover,

d

dt
Y (t)−1 = Y (t)−1(∆� I) Y (t)−1,

and so is positive. Therefore,

F (T )− F (S) = R∗vY (1)−1Rv −R∗vY (0)−1Rv

= R∗v

∫ 1

0

d

dt
Y (t)−1dtRv

=

∫ 1

0
R∗vY (t)−1(∆� I)Y (t)−1Rvdt

≥ 0. �

Lemma 9.5. Let ar < br, 1 ≤ r ≤ d, and let X be a densely defined

self-adjoint operator on a graded Hilbert space M = ⊕dr=1Mr. Suppose that

for every t in (0, 1), the point λt = (1− t)a+ tb is not in the µ-spectrum of X .

Let S = (S1, . . . , Sd) be a d-tuple of bounded self-adjoint operators on a Hilbert

space H, with σ(Sr) ⊂ (ar, br) for each r. Then I ⊗ X − ∑d
r=1 S

r ⊗ P r is

invertible, with a bounded inverse.

Proof. First, suppose ar = −1 and br = 1 for each r. Then (−1, 1)∩σ(X)

is empty, and so is (−1, 1) ∩ σ(I ⊗ X). So ‖IH ⊗ Xξ‖ ≥ ‖ξ‖ for every ξ in

H⊗M. But if σ(Sr) ⊂ (−1, 1) for each r, the operator
∑
Sr ⊗ P r has norm

less than one. Therefore I ⊗X −∑d
r=1 S

r ⊗ P r is invertible.

In the general case, let mr be the midpoint and cr be half the length of

the interval (ar, br), so ar = mr − cr, br = mr + cr. Let

Y =

(
d∑
r=1

1√
cr
I ⊗ P r

)(
I ⊗X −

d∑
r=1

mrIH ⊗ P r
)(

d∑
r=1

1√
cr
I ⊗ P r

)
.

If σµ denotes the µ-spectrum,

σµ(Y ) = c−1(σµ(X)−m),

and hence the point (1−t)(−1)+t1 lies in the µ-resolvent set of Y for 0 < t < 1.

Let T r = (1/cr)(Sr −mrIH). Then T r is a strict contraction, and so, by the
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previous case, Y −∑T r ⊗ P r is invertible. As

Y −
d∑
r=1

T r ⊗ P r

=
(∑ 1√

cr
I ⊗ P r

)
(I ⊗X −∑Sr ⊗ P r)

(∑ 1√
cr
I ⊗ P r

)
,

we get the desired result. �

We can now prove a global result for rational functions of two variables.

Theorem 9.6. Let F be a rational function of two variables. Let Γ be

the zero-set of the denominator of F . Assume F is real-valued on R2 \ Γ. Let

E be an open rectangle in R2 \ Γ. Then F is globally operator monotone on E

if and only if F is in L(E).

Proof. Necessity follows from Theorem 8.1. For sufficiency, by Lemma 9.7

it is sufficient to prove the theorem for Ftn with tn ↘ 0, where Ft = ρt ◦F ◦ρt.
Suppose the degree of F is n1 in z1 and n2 in z2. Let ϕ = β ◦F ◦α. By a result

of G. Knese [21], there is a model for ϕ in a Hilbert spaceM =M1⊕M2 with

dim(Mr) = nr for r = 1 and 2; see also the paper [8] by J. A. Ball, C. Sadosky,

and V. Vinnikov.

Accordingly, in Theorem 6.9, we obtain a realization of Ft on M1 ⊕M2

of the form (6.10); sinceM is finite-dimensional, the vector v is in the domain

of X. By Theorem 6.33 (v)⇒(ii), for some v1 ∈M,

Ft(z) = C + 〈(X − z)−1v1, v1〉M,
where dim(Mr) = nr for r = 1 and 2, and Ft(∞,∞) = C < ∞. Then the

pole-set Γt of Ft is contained in the zero-set of det(X − z), which is a rational

function of degree (dim(M1),dim(M2)). As these two algebraic sets have the

same degree, they must be equal. So the µ-resolvent of X is R2 \ Γt, and now

the result follows from Theorem 9.2. �

Let ρt be as in (6.8). The following lemma is elementary.

Lemma 9.7. Let t > 0. Let U be an open set in Rd. Then

(i) The function F is globally operator monotone on U ∩(−1/t,∞)d if and

only if F ◦ ρt is globally operator monotone on ρ−1
t (U) ∩ (−∞, 1/t)d.

(ii) The function F is globally operator monotone on U ∩ F−1(−1/t, 1/t)

if and only if ρt ◦ F is globally operator monotone on the same set.

What happens to Theorem 9.6 in d ≥ 3 variables? It is still true that

rational Löwner functions have finite-dimensional models [12], [8]. However,

a recent example of Knese [22] shows that the minimal dimension nr needed

may be strictly greater than the degree of F in zr. So we cannot rule out the

possibility that the µ-spectrum of X contains some other algebraic sets in Rd
than just the zero set of the denominator of F .
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We now give an example of a nonrational globally operator monotone

function.

Example 9.8. For 0 ≤ s ≤ 1/2, the function (z1z2)s is operator monotone

on (0,∞)× (0,∞). Indeed, if (0, 0) < (A1, A2) ≤ (B1, B2) and s is between 0

and 1/2, then

‖(Ar)s(Br)−s‖ ≤ 1 for r = 1, 2.

Therefore, the norm of

(B1)−s(A1)s(A2)s(B2)−s

is less than or equal to 1, so the largest eigenvalue is less than or equal to 1,

and therefore the largest eigenvalue of

(9.9) (B2)−s/2(B1)−s/2(A1)s(A2)s(B1)−s/2(B2)−s/2

is also less than or equal to 1. But (9.9) is self-adjoint, so less than or equal

to the identity. Therefore,

(A1A2)s ≤ (B1B2)s.

We do not know if (z1z2)s can be approximated by rational functions in

the Löwner class.

Let us close with some questions.

• Is Theorem 9.6 true for rational functions of more than two variables?

• Can E be an arbitrary open set in Theorem 9.2?

• Is every function in L(E) globally operator monotone on E?

• Is every function in Ln(E) Mn-monotone on E?
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2010, pp. 287–324. MR 2743424. Zbl 05872305. http://dx.doi.org/10.1007/

978-3-0346-0347-8 16.
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