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2-source dispersers for no(1) entropy,
and Ramsey graphs beating the

Frankl-Wilson construction

By Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson

Abstract

The main result of this paper is an explicit disperser for two indepen-

dent sources on n bits, each of min-entropy k = 2logβ n, where β < 1 is

some absolute constant. Put differently, setting N = 2n and K = 2k, we

construct an explicit N×N Boolean matrix for which no K×K sub-matrix

is monochromatic. Viewed as the adjacency matrix of a bipartite graph,

this gives an explicit construction of a bipartite K-Ramsey graph of 2N

vertices. This improves the previous bound of k= o(n) of Barak, Kindler,

Shaltiel, Sudakov and Wigderson. As a corollary, we get a construction of a

2n
o(1)

(nonbipartite) Ramsey graph of 2n vertices, significantly improving

the previous bound of 2Õ(
√
n) due to Frankl and Wilson.

We also give a construction of a new independent sources extractor that

can extract from a constant number of sources of polynomially small min-

entropy with exponentially small error. This improves independent sources

extractor of Rao, which only achieved polynomially small error.

Our dispersers combine ideas and constructions from several previous

works in the area together with some new ideas. In particular, we rely on

the extractors of Raz and Bourgain as well as an improved version of the

extractor of Rao. A key ingredient that allows us to beat the barrier of

k =
√
n is a new and more complicated variant of the challenge-response

mechanism of Barak et al. that allows us to locate the min-entropy con-

centrations in a source of low min-entropy.
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1. Introduction

In this paper we give new explicit constructions of certain combinatorial

objects. The results can be described in two equivalent ways. The first, which

is simpler and has a longer history, is the language of Ramsey graphs, graphs

that do not have large cliques or independent sets. The second is the language
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of randomness extractors and randomness dispersers. While a bit more compli-

cated to state, this latter form is key to both the computer science motivation

of the problem and our actual techniques.

1.1. Ramsey and Bipartite Ramsy graphs. We start by describing our re-

sults in the language of Ramsey graphs.

Definition 1.1. A graph on N vertices is called a K-Ramsy graph if it

contains no clique or independent set of size K.

In 1928 Ramsey [Ram30] proved that there does not exist a graph on

N = 2n vertices that is n/2 Ramsey. In 1947 Erdős published his paper

inaugurating the Probabilistic Method with a few examples, including a proof

that complemented Ramsey’s discovery: most graphs on 2n vertices are 2n-

Ramsey. The quest for constructing Ramsey graphs explicitly has existed ever

since and led to some beautiful mathematics. By an explicit construction we

mean an efficient (i.e., polynomial time) algorithm that, given the labels of two

vertices in the graph, determines whether there is an edge between them.1

Prior to this work, the best record was obtained in 1981 by Frankl and

Wilson [FW81], who used intersection theorems for set systems to construct

N -vertex graphs that are 2Ω̃(
√
n)-Ramsey.2 This bound was matched by Alon

[Alo98] using the Polynomial Method, by Grolmusz [Gro00] using low rank

matrices over rings, and also by Barak [Bar06] boosting Abbot’s method with

almost k-wise independent random variables (a construction that was inde-

pendently discovered by others as well). Remarkably all of these different

approaches got stuck at essentially the same bound. In recent work, Gopalan

[Gop06] showed that other than the last construction, all of these can be viewed

as coming from low-degree symmetric representations of the OR function. He

also showed that any such symmetric representation cannot be used to give a

better Ramsey graph, suggesting why these constructions achieved such simi-

lar bounds. Indeed, as we will discuss in a later section, the
√
n min-entropy

bound initially looked like a natural obstacle even for our techniques, though

eventually we were able to surpass it.

One can make an analogous definition for bipartite graphs.

Definition 1.2. A bipartite graph on two sets of N vertices is a bipartite

K-Ramsy graph if it has no K ×K complete or empty bipartite subgraph.

1Almost all of the constructions mentioned below (including our own) achieve this defi-

nition, with the exception of the papers [Bar06], [PR04], which achieve a somewhat weaker

notion of explicitness.
2We use Õ and Ω̃ notations when neglecting polylogarithmic factors.
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Given a bipartite K-Ramsey graph G on 2N vertices, one can easily trans-

form it into a nonbipartite K/2-Ramsey graph H on N vertices.3 Thus, the

problem of explicitly constructing bipartite Ramsey graphs is at least as hard

as the problem of constructing nonbipartite Ramsey graphs. Indeed, while

Erdős’ result on the abundance of 2n-Ramsey graphs holds as is for bipartite

graphs, the best explicit construction of bipartite Ramsey graphs only recently

surpassed the bound of 2n/2 that is given by the Hadamard matrix. The bound

was first improved to o(2n/2) by Pudlak and Rődl [PR04] and then to 2o(n) by

Barak, Kindler, Shaltiel, Sudakov and Wigderson [BKS+10].

The main result of this paper is a new bound that improves the state of

affairs for both the bipartite and nonbipartite cases.

Theorem 1.3 (Main Theorem). There is an absolute constant α0 > 0

and an explicit construction of a bipartite 22log1−α0 n
= 2n

o(1)
-Ramsey graph

over 2 · 2n vertices for every large enough n ∈ N.

As discussed above, this corollary follows easily.

Corollary 1.4. There is an absolute constant α0 > 0 and an explicit

construction of a 22log1−α0 n
= 2n

o(1)
Ramsey graph over 2n vertices for every

large enough n ∈ N.

1.2. Randomness extractors. We now describe our results in a different

language — the language of randomness extractors and randomness dispersers.

We start with some background. The use of randomness in computer science

has gained tremendous importance in the last few decades. Randomness now

plays an important role in algorithms, distributed computation, cryptography

and many more areas. Some of these applications have been shown to inher-

ently require a source of randomness. However, it is far from clear where the

randomness that is needed for these applications can be obtained.

An obvious approach is to use a natural source of unpredictable data such

as users’ typing rates, radioactive decay patterns, fluctuations in the stock

market, etc. However, when designing randomized algorithms and protocols,

it is almost always assumed that a sequence of unbiased and independent coin

tosses is available, while natural unpredictable data do not necessarily come

in that form.

3The N ×N adjacency matrix of a bipartite Ramsey graph is not necessarily symmetric

and may contain ones on the diagonal. This can be fixed by using only the upper triangle

of the matrix (e.g., by placing an edge {a, b} in H, where a < b, if the ath vertex on the left

side is connected to the bth vertex on the right side in G). It is easy to verify that this indeed

yields a K/2-Ramsey graph.
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One way to attempt to close this gap is to apply some kind of hash func-

tion that is supposed to transform the unpredictable/high entropy data into

a distribution that is equal (or at least close to) the uniform distribution. To

formalize this approach, let us model weak sources as probability distributions

over n bit strings that have sufficient min-entropy k.4 Such a source is referred

to as a k-source. One then seeks a function f , called an extractor, that maps

{0, 1}n to {0, 1}m (for m as large as is feasible) such that for every random

variable X with sufficient min-entropy, f(X) is close to the uniform distribu-

tion. Unfortunately this goal can never be met; it is impossible even if we want

to output just a single bit from distributions of very high min-entropy (i.e.,

random variables over {0, 1}n with min-entropy n − 1), as for every function

f : {0, 1}n → {0, 1}, we can find 2n/2 inputs on which f is constant. Thus,

the uniform distribution over these inputs is a distribution on which f fails to

extract randomness.

One way to break out of this conundrum, suggested by Santha and Vazi-

rani [SV86] and Chor and Goldreich [CG88], is to use more than one input

source of randomness. That is, we consider the case that the extractor function

gets samples from several independent sources of randomness. The probabilis-

tic method can be used to show that, in principle, two independent sources

suffice — for every n ∈ N, ε > 0 and k ≥ 2 log n + 10 log 1/ε, there exists a

function f : ({0, 1}n)2 → {0, 1}0.9k such that for every two independent distri-

butions X,Y , each having min-entropy at least k, f(X,Y ) is within ε statistical

distance5 to the uniform distribution over {0, 1}0.9k. Such a function f is called

a 2-source extractor. Formally, we make the following definition.

Definition 1.5. Let n, c, k ∈ N and ε > 0. A function f : ({0, 1}n)c →
{0, 1}m is called a c-source extractor for min-entropy k with error ε if, for

every independent random variables X1, . . . , Xc, each having min-entropy at

least k,

|f(X1, . . . , Xc)− Um| < ε,

where Um denotes the uniform distribution over {0, 1}m.

4It turns out that min-entropy, and not Shannon entropy, is the right notion of entropy

to use in this context. A random variable X has min-entropy at least k if for every x in

X’s range, Pr[X = x] ≤ 2−k. A special case is flat distributions. (These are distributions

that are uniformly distributed over some subset of {0, 1}n that is of size 2k.) Note that

for flat distributions, entropy and min-entropy coincide. Furthermore, any distribution with

min-entropy k is a convex combination of such flat distributions, and therefore the reader

can without loss of generality assume that all sources of randomness are flat distributions.
5The statistical distance of two distributions W,Z over some range R, denoted by |W−Z|,

is defined to be 1/2
∑

r∈R |Pr[W = r]− Pr[Z = r]|.



1488 BOAZ BARAK, ANUP RAO, RONEN SHALTIEL, and AVI WIGDERSON

The probabilistic method shows the existence of an excellent extractor in

terms of all the parameters. However, to be useful in computer science appli-

cations, the extractor needs to be efficiently computable. In other words, we

need an explicit construction that matches, or at least gets close to, the bounds

achieved by the probabilistic method. Beyond the obvious motivations (po-

tential use of physical sources for randomized computation), extractors have

found applications in a variety of areas in theoretical computer science where

randomness does not seem an issue, such as in efficient constructions of commu-

nication networks [WZ99], [CRVW02], error correcting codes [TSZ04], [Gur04],

data structures [MNSW98] and more. (Many of the applications and construc-

tions are for a related notion called seeded extractors, which are 2-source ex-

tractor in which the second source is very short but assumed to be completely

uniform; see [Sha02] for a survey of much of this work.)

Until a few years ago, essentially the only known explicit construction

for a constant number of sources was the Hadamard extractor Had defined by

Had(x, y) = 〈x, y〉 mod 2. It is a 2-source extractor for min-entropy k > n/2

as observed by Chor and Goldreich [CG88] and can be extended to give Ω(n)

output bits as observed by Vazirani [Vaz85]. Roughly 20 years later, Barak,

Impagliazzo and Wigderson [BIW06] constructed a c = O(log(n/k))-source

extractor for min-entropy k with output m = Ω(k). Note that this means that

if k = δn for a constant δ, this extractor requires only a constant number of

sources. The main tool used by Barak et al. was a breakthrough in additive

number theory of Bourgain, Katz and Tao [BKT04] who proved a finite-field

sum product theorem, a result which has already found applications in diverse

areas of mathematics, including analysis, number theory, group theory and

extractor theory. Building on these works, Barak et al. [BKS+10] and Raz

[Raz05] independently gave constructions of extractors for just three sources

with min-entropy k = δn for any constant δ > 0. This was followed by a result

of Rao [Rao09], who showed how to extract from O(log n/ log k) independent

k-sources. This is an extractor for O(c) sources as long as k is larger than

n1/c. His extractor did not rely on any of the new results from additive number

theory. In this paper we extend Rao’s results by improving the error parameter

from ε = k−Ω(1) to ε = 2−k
Ω(1)

, a result which was also obtained independently

by Chung and Vadhan [CV].

Theorem 1.6. There is a polynomial time computable c-source extractor

f : ({0, 1})c → {0, 1}Ω(k) for min-entropy k > log10 n, c = O( logn
log k ) and ε =

2−k
Ω(1)

.

Rao also gave extractors that can extract randomness from two “block-

sources” with O(log n/ log k) blocks. An important ingredient in our main

results is extending these results so that only one of the sources needs to be a
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block-source while the other source can be a general source with min-entropy k.

We elaborate on block-sources and their role in our main construction later on.

While the aforementioned works achieved improvements for more than two

sources, the only improvement for two source extractors over the Hadamard

extractor is by Bourgain [Bou05], who broke the “1/2 barrier” and gave such an

extractor for min-entropy .4999n, again with linear output length m = Ω(n).

Theorem 1.7 ([Bou05]). There is a polynomial time computable 2-source

extractor f : ({0, 1}n)2 → {0, 1}m for min-entropy .4999n, m = Ω(n) and

ε = 2−Ω(n).

This seemingly minor improvement plays an important role in Rao’s ex-

tractor for two block-sources and in our improvements.

1.3. Dispersers and their relation to Ramsey graphs. A natural relaxation

of extractors is, rather than requiring that the output is statistically close to

the uniform distribution, simply requiring that it has large support. Such

objects are called dispersers.

Definition 1.8. Let n, c, k ∈ N and ε > 0. A function f : ({0, 1}n)c →
{0, 1}m is called a c-source disperser for min-entropy k and error parameter ε

if for every independent random variables X1, . . . , Xc each having min-entropy

at least k,

|f(X1, . . . , Xc)| ≥ (1− ε)2m .

We remark that in the definition above it is sufficient to consider only

flat sources X1, . . . , Xc. In other words, an equivalent definition is that for

any c sets S1, . . . , Sc ⊆ {0, 1}n such that all sets are of size 2k, |f(S1 × · · · ×
Sc)| ≥ (1 − ε)2m. Dispersers are easier to construct than extractors, and in

the past, progress on constructing extractors and dispersers often has been

closely related. In this paper we will be mostly interested in dispersers with

one bit of output. For such dispersers, we can ignore the error parameter ε,

because for any ε < 1/2, the condition is simply that the disperser outputs

both zero and one with positive probability. (For ε > 1/2, the definition is

meaningless as it holds trivially for any f .) Thus, we say that a function

f : ({0, 1}n)c → {0, 1} is a c-source disperser for min-entropy k if for every

independent random variables X1, . . . , Xc each having min-entropy at least k,

Pr[f(X1, . . . , Xc) = 1] is strictly between 0 and 1.

2-source dispersers are particularly interesting as they are equivalent to

bipartite Ramsey graphs. More precisely, if f : ({0, 1}n)2 → {0, 1} is a 2-source

disperser with one-bit output for min-entropy k, we consider the graph G on

two sets of 2n vertices where we place an edge from x to y if f(x, y) = 1. Note

that any 2k×2k subgraph of this graph cannot be complete or empty as it must

contain both an edge and a non-edge, and therefore G is a bipartite 2k-Ramsey
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graph. Recall that this graph can be easily transformed into a (2k−1)-Ramsey

graph on 2n vertices.

For two sources, Barak et al. [BKS+10] were able to construct dispersers

for sources of min-entropy k = o(n):

Theorem 1.9 ([BKS+10]). There exists a polynomial time computable

2-source disperser f : ({0, 1}n)2 → {0, 1} for min-entropy o(n).

The main result of this paper is a polynomial time computable disperser

for two sources of min-entropy no(1), improving the results of Barak et al.

[BKS+10] (which achieved o(n) min-entropy). By the discussion above, our

construction yields both bipartite Ramsey graphs and Ramsey graphs for K =

2n
o(1)

and improves on Frankl and Wilson [FW81], who built Ramsy graphs

with K = 2Õ(
√
n) (which in this terminology is a disperser for two identically

distributed sources for min-entropy Õ(
√
n)).

Theorem 1.10 (Main theorem, restated). There exists a constant α0 > 0

and a polynomial time computable 2-source disperser D : ({0, 1}n)2 → {0, 1}
for min-entropy 2log1−α0 n.

Even though our main result is a one output bit disperser, we will need

to use the more general definitions of multiple-source and larger outputs dis-

persers and extractors in the course of our construction.

1.4. Organization of this paper. Unfortunately, our construction involves

many technical details. In an attempt to make this paper more readable, we

also include some sections that only contain high level informal explanations,

explanations which are not intended to be formal proofs and can be safely

skipped if the reader so wishes. The paper is organized as follows.

In Section 2 we explain the high level ideas used in our construction with-

out going into the details or giving our construction. In Section 3 we give some

definitions and technical lemmas. We also state results from previous work that

our work relies on. In Section 4 we present two variants of extractors that are

used in our construction. The first is an extractor that extracts randomness

from two independent sources, where one of them is a block-source and the

other is a general source. The second is a “somewhere extractor” with special

properties that, when given two independent sources of sufficient min-entropy,

outputs a polynomial number of strings where one of them is (close to) uni-

formly distributed. In Section 5 we give a detailed informal explanation of our

construction and proof. We hope that reading this section will make it easier

for the reader to follow the formal proof. In Section 6 we present our disperser

construction and prove its correctness. In Section 7 we show how to construct

the extractor from Section 4. Finally we conclude with some open problems.
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2. Techniques

Our construction makes use of many ideas and notions developed in previ-

ous works as well as several key new ones. In this section we attempt to survey

some of these at a high level without getting into precise details. In order to

make this presentation more readable, we allow ourselves to be imprecise and

oversimplify many issues. We stress that the contents of this section are not

used in later parts of the paper. In particular, the definitions and theorems

that appear in this section are restated (using precise notation) in the technical

sections of the paper. The reader may skip to the more formal parts at any

point if she wishes.

2.1. Subsources. Recall that the main goal of this research area is to design

2-source extractors for low min-entropy k. As explained earlier, it is unknown

how to achieve extractors for two sources with min-entropy k < 0.4999n and

this paper only gives constructions of dispersers (rather than extractors). In

order to explain how we achieve this relaxed goal, we first need the notion of

subsources.

Definition 2.1 (Subsource). A distribution X ′ over domain {0, 1}n is a

subsource of a distribution X (over the same domain {0, 1}n) with deficiency-d

if there exists an event A ⊆ {0, 1}n such that Pr[X ∈ A] ≥ 2−d, and X ′ is the

probability distribution obtained by conditioning X to A. (More precisely, for

every a ∈ A, Pr[X ′ = a] is defined to be Pr[X = a|X ∈ A] and for a 6∈ A,

Pr[X ′ = a] = 0.)

In the case X ′ is a subsource of a flat distribution (a distribution that is

uniform on some subset), X is simply a flat distribution on a smaller subset.

It is also easy to see that if X is a k-source and X ′ is a deficiency-d subsource

of X, then X ′ is a (k − d)-source.

We say that a function f : ({0, 1}n)2 → {0, 1} is a subsource extractor if

for every two independent k-sources X and Y , there exist subsources X ′ of X

and Y ′ of Y such that f(X ′, Y ′) is close to uniformly distributed. While f is

not necessarily an extractor, it certainly is a disperser, since f(X,Y ) is both

zero and one with positive probability. Thus, when constructing dispersers, it

is sufficient to analyze how our construction performs on some subsources of

the adversarially chosen sources.

Our analysis uses this approach extensively. Given the initial k-sources X

and Y (which can be arbitrary) we prove that there exist subsources of X,Y

that have a certain “nice structure.” We then proceed to design 2-source ex-

tractors that extract randomness from sources with this nice structure. When

using this approach, we shall be very careful to ensure that the subsources we

use have low deficiency and remain a product distribution.
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2.2. Block-sources. We now describe what we mean by sources that have

nice structure. We consider sources that give samples that can be broken

into several disjoint “blocks” such that each block has min-entropy k even

conditioned on any value of the previous blocks. Called block-sources, these

were first defined by Chor and Goldreich [CG88].

Definition 2.2 (Block-sources [CG88]). A distribution X = (X1, . . . , Xc)

where each Xi is of length n is a c-block-source of block min-entropy k if

for every i ∈ [c], every x ∈ {0, 1}n and every x1, . . . , xi−1 ∈ ({0, 1}n)i−1,

Pr[Xi = x|X1 = x1 ∧ · · · ∧Xi−1 = xi−1] ≤ 2−k.

It is clear that any such block-source is a ck-source. However, the converse

is not necessarily true. Throughout this informal description, the reader should

think of c as very small compared to k or n so that values like ck, k and k/c are

roughly the same. Block-sources are interesting since they are fairly general

(there is no deterministic way to extract from a block-source), yet we have a

better understanding of how to extract from them. For example, when the

input sources are block-sources with sufficiently many blocks, Rao proves that

two independent sources suffice even for the case of lower min-entropy, with

polynomially small error.

Theorem 2.3 ([Rao09]). There is a polynomial time computable extractor

f : ({0, 1}cn)2 → {0, 1}m for two independent c-block-sources with block min-

entropy k and m = Ω(k) for c = O((log n)/(log k)).

In this paper we improve his result in two ways— only one of the two

sources needs to be a c-block-source, and the error is exponentially small. The

other source can be an arbitrary source with sufficient min-entropy.

Theorem 2.4 (Block + general source extractor). There is a polyno-

mial time computable extractor B : ({0, 1}n)2 → {0, 1}m for two independent

sources, one of which is a c-block-source with block min-entropy k and the other

a source of min-entropy k, with m = Ω(k), c = O((log n)/(log k)) and error at

most 2−k
Ω(1)

.

This is a central building block in our construction. This extractor, like

Rao’s extractor above, relies on 2-source extractor constructions of Bourgain

[Bou05] and Raz [Raz05]. We do not describe how to construct the extractor

of Theorem 2.4 in this informal overview. The details are in Sections 4 and 7.

2.3. Existence of block-sources in general sources. Given that we know

how to handle the case of block-sources, it is natural to try to convert a general

k-source into a block-source. Let us first restrict our attention to the case

where the min-entropy is high: k = δn for some constant δ > 0. (These
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are the parameters already achieved in the construction of [BKS+10].) We

make the additional simplifying assumption that for k = δn, the extractor of

Theorem 2.4 requires a block-source with only two blocks (i.e., c = 2).

First consider a partition of the k-source X into t = 1/10δ consecutive

blocks of length n/t and denote the ith block by Xi. We claim that there has to

be an index 1 ≤ j ≤ t such that the blocks (X1 ◦ · · · ◦Xj) and (Xj+1 ◦ · · · ◦Xt)

are a 2-block-source with min-entropy k/4t ≈ δ2n. To meet the definition of

block-sources, we need to pad the two blocks above so that they will be of

length n, but we ignore such technicalities in this overview.

To see why something like this must be true, let us consider the case

of Shannon entropy. For Shannon entropy, we have the chain rule H(X) =∑
1≤j≤tH(Xj |X1, . . . , Xj−1). Imagine going through the blocks one by one and

checking whether the conditional entropy of the current block is at least k/4t.

Since the total entropy is at least k, we must find such a block j. Furthermore,

this block is of length n/t and so has entropy at most n/t < k/10. It follows

that the total entropy we have seen thus far is bounded by t · (k/4t) + k/10 <

k/2. This means that the remaining blocks must contain the remaining k/2

bits of entropy even when conditioned on the previous blocks.

Things become are not so straightforward when dealing with min-entropy

instead of entropy. Unlike Shannon entropy, min-entropy does not have a chain

rule and the claim above does not hold in analogy. Nevertheless, imitating the

argument above for min-entropy gives that for any k-source X, there exists a

small deficiency subsource X ′ of X such that there exist an index j for which

the blocks (X ′1◦· · ·◦X ′j and X ′j+1◦· · ·◦X ′t are a 2-block-source with min-entropy

k/4t ≈ δ2n. As we explained earlier, this is helpful for constructing dispersers,

as we can forget about the initial source X and restrict our attention to the

“nicely structured” subsource X ′.

However, note that in order to use our extractors from Theorem 2.4, we

need to also find the index j. This seems very hard as the disperser we are

constructing is only given one sample x out of the source X, and it seems

impossible to use this information in order to find j. Moreover, the same

sample x can appear with positive probability in many different sources that

have different values of j.

2.4. Identifying high entropy parts in the source. Barak et al. [BKS+10]

devised a technique, which they call “the challenge-response mechanism,” that

in some sense allows the disperser to locate the high entropy block Xj in

the source X. This method also relies on the other k-source Y . An important

contribution of this paper is improving their method and extending it to detect

blocks with much lower entropy. We will not attempt to describe how this

method works within this informal overview as the technique is somewhat
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complicated and it is hard to describe it without delving into details. We do

give a more detailed informal description (which still avoids many technical

issues) in the informal explanation in Section 5.

In this high level overview we will only explain in what sense the challenge-

response method finds the index j. Let us first recall the setup. The disperser

obtains two inputs x and y from two independent k-sources X and Y . We

have that X has a subsource X ′ that is a block-source. More precisely, there

exists an index j such that the blocks (X ′1 ◦ · · · ◦X ′j) and (X ′j+1 ◦ · · · ◦X ′t) are

a 2-block-source with min-entropy k/4t ≈ δ2n.

Using the challenge-response mechanism, one can explicitly construct a

function FindIndex(x, y) such that there exist low deficiency subsources Xgood

of X ′ and Y good of Y such that

• FindIndex(Xgood, Y good) outputs the correct index j (with high probabil-

ity).

• Xgood is a 2-block-source according to the index j above.

Loosely speaking, this means that we can restrict our attention (in the analysis)

to the independent sources Xgood, Y good. These sources are sources from which

we can extract randomness! More precisely, when given x, y that are sampled

from these sources, we can compute FindIndex(x, y) and then run the extractor

from Theorem 2.4 on x, y using the index FindIndex(x, y). The properties

above guarantee that we have a positive probability to output both zero and

one, which ensures that our algorithm is a disperser.

2.5. On extending this argument to k <
√
n. In the informal discussion

above we only handled the case when k = δn for some constant δ > 0, though

in this paper we are able to handle the case of k = no(1). It turns out that

there are several obstacles that need to be overcome before we can apply the

strategy outlined above when k <
√
n.

Existence of block-sources in general sources. The method we used for

arguing that every k-source has a subsource that is a 2-block-source does not

work when k <
√
n. If we partition the source X into t <

√
n blocks, then the

length of each block is n/t > k and it could be the case that all the entropy lies

in one block. (In that case the next blocks contain no conditional entropy.) On

the other hand, if we choose t >
√
n, then our analysis only gives a block-source

with entropy k/4t < 1, which is useless.

In order to handle this problem we use a “win-win” case analysis (which

is somewhat similar to the technique used in [RSW00]). We argue that either

the source X has a subsource X ′ such that partitioning X ′ according to an

index j gives a 2-block-source with min-entropy ≈ k/c, or there must exist a

block j that has entropy larger than ≈ k/c. We now explain how to handle the

second case, ignoring for now the issue of distinguishing which of the cases we
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are in. Note that we partition X into t blocks of length n/t and therefore in

the second case there is a block j where the min-entropy rate (i.e., the ratio of

the min-entropy to the length) increased by a multiplicative factor of t/c� 1.

Loosely speaking, we already have a way to locate the block j (by using

the challenge-response mechanism) and once we find it, we can recursively

call the disperser construction on xj and y. Note that we are indeed making

progress as the min-entropy rate is improving and it can never get larger than

one. This means that eventually the min-entropy rate will be so high that we

are guaranteed to have a block source that we know how to handle.

It is also important to note that this presentation is oversimplified. In

order to perform the strategy outlined above, we need to also be able to distin-

guish between the case where our source contains a block-source and the case

where it has a high entropy block. For this purpose, we develop a new and

more sensitive version of the challenge-response mechanism that is also able to

distinguish between the two cases.

Lack of somewhere extractors for low entropy. In this high level overview

we did not discuss the details of how to implement the function FindIndex using

the challenge-response mechanism. Still, we remark that the implementation

in [BKS+10] relies on certain objects called “somewhere extractors.” While

we do not define these objects here (the definition can be found in the formal

sections), we mention that we do not know how to construct these objects

for k <
√
n. To address this problem we implement the challenge-response

mechanism in a different way, relying only on objects that are available in the

low-entropy case.

3. Preliminaries

The following are some definitions and lemmas that are used throughout

this paper.

3.1. Basic notations and definitions. Often in technical parts of this pa-

per, we will use constants like 0.9 or 0.1 where we could really use any suffi-

ciently large or small constant that is close to 1 or 0. We do this because it

simplifies the presentation by reducing the number of additional variables we

will need to introduce.

In informal discussions throughout this paper, we often use the word en-

tropy loosely. All of our arguments actually involve the notion of min-entropy

as opposed to Shannon entropy.

Random variables, sources and min-entropy. We will usually deal with

random variables that take values over {0, 1}n. We call such a random vari-

able an n-bit source. The min-entropy of a random variable X, denoted
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by H∞(X), is defined to equal minx{− log2(Pr[X = x])}, or equivalently

log2 (1/maxx{Pr[X = x]}). If X is an n-bit source with H∞(X) ≥ k and

n is understood from the context, then we will call X a k-source.

Definition 3.1 (Statistical distance). If X and Y are random variables over

some universe U , the statistical distance of X and Y , denoted by |X − Y |, is

defined to be 1
2

∑
u∈U |Pr[X = u]− Pr[Y = u]|.

We have the following simple lemma.

Lemma 3.2 (Preservation of strongness under convex combination). Let

X,O,U,Q be random variables over the same finite probability space, with U,O

both random variables over {0, 1}m. Let ε1, ε2 < 1 be constants such that

Pr
q←RQ

[|(X|Q = q) ◦ (O|Q = q)− (X|Q = q) ◦ (U |Q = q)| ≥ ε1] < ε2;

i.e., conditioned on Q being fixed and good, X◦O is statistically close to X◦U .

Then we get that |X ◦O −X ◦ U | < ε1 + ε2.

Definition 3.3 (Subsource). Given random variables X and X ′ on {0, 1}n,

we say that X ′ is a deficiency-d subsource of X and write X ′ ⊆ X if there

exists a set A ⊆ {0, 1}n such that (X|A) = X ′ and Pr[X ∈ A] ≥ 2−d.

Definition 3.4 (Block-sources). A distribution X = X1 ◦X2 ◦ · · · ◦Xc is

called a (k1, k2, . . . , kc)-block-source if for all i = 1, . . . , c, we have that for

all x1 ∈ X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . , X
i−1 = xi−1) ≥ ki; i.e.,

each block has high min-entropy even conditioned on the previous blocks. If

k1 = k2 = · · · = kc = k, we say that X is a k-block-source.

Definition 3.5 (Somewhere random sources). A source X = (X1, ..., Xt) is

(t × r) somewhere-random if each Xi takes values in {0, 1}r and there is an i

such that Xi is uniformly distributed.

Definition 3.6. We will say that a collection of somewhere-random sources

is aligned if there is some i for which the ith row of every SR-source in the

collection is uniformly distributed.

Since we shall have to simultaneously use the concept of block-sources

and somewhere-random sources, for clarity we use the convention that the

word block refers to a part of a block-source. The word row will be used to

refer to a part in a somewhere-random source.

Definition 3.7 (Weak somewhere-random sources). A source X = (X1, . . .

. . . , Xt) is (t×r) k-somewhere-random (k-SR-source for short) if each Xi takes

values in {0, 1}r and there is an i such that Xi has min-entropy k.
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Often we will need to apply a function to each row of a somewhere source.

We will adopt the following convention: if f : {0, 1}r × {0, 1}r → {0, 1}m is a

function and a, b are samples from (t× r) somewhere sources, f(~a,~b) refers to

the (t×m) string whose first row is obtained by applying f to the first rows of

a, b, and so on. Similarly, if a is an element of {0, 1}r and b is a sample from

a (t× r) somewhere source, f(a,~b) refers to the (t×m) matrix whose ith row

is f(a, bi).

Many times we will treat a sample of a somewhere-random source as a set

of strings, one string from each row of the source.

Definition 3.8. Given ` strings of length n, x=x1, . . . , x`, define Slice(x,w)

to be the string x′ = x′1, . . . , x
′
` such that for each i, x′i is the prefix of xi of

length w.

3.1.1. Extractors, dispersers and their friends. In this section we define

some of the objects we will later use and construct. All of these objects will

take two inputs and produce one output, such that under particular guarantees

on the distribution of the input, we will get some other guarantee on the

distribution of the output. Various interpretations of this vague sentence lead

to extractors, dispersers, somewhere extractors, block extractors etc.

Definition 3.9 (Two-source extractor). Let n1, n2, k1, k2,m, ε be some

numbers. A function Ext : {0, 1}n1×n2 → {0, 1}m is called an 2-source extractor

with k1, k2 min-entropy requirement, n-bit input, m-bit output and ε-statistical

distance if for every independent sources X and Y over {0, 1}n1 and {0, 1}n2

respectively satisfying

(1) H∞(X) ≥ k1 and H∞(Y ) ≥ k2,

it holds that

(2)

∣∣∣∣Ext(X,Y )− Um
∣∣∣∣ ≤ ε.

In the common case of a seeded extractor we have n2 = k2 (and hence the

second input distribution is required to be uniform). Of course, a nontrivial

construction will satisfy n2 � m (and hence also n2 � k1 < n). Thus,

2-source extractors are strictly more powerful than seeded extractor. However,

the reason seeded extractors are more popular is that they suffice for many

applications and that (even after this work) the explicit construction for seeded

extractors have much better parameters than the explicit constructions for

2-source extractors with k1 � n1 , k2 � n2. (Note that this is not the case for

nonexplicit construction, where 2-source extractors with similar parameters to

the best possible seeded extractors can be shown to exist using the probabilistic

method.)
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Variants. In this paper we will use many variants of extractors to various

similar combinatorial objects. Most of the variants are obtained by giving

different the conditions on the input (1) and the guarantee on the output (2).

Some of the variants we will consider are

Dispersers: In dispersers, the output guarantee (2) is replaced with

|Supp(Ext(X,Y ))| ≥ (1− ε)2m.
Somewhere extractors: In somewhere extractors the output guarantee

(2) is replaced with the requirement that |Ext(X,Y )− Z| < ε, where Z

is a somewhere-random source of t×m rows for some parameter t.

Extractors for block-sources: In extractors for block-sources the input

requirement (1) is replaced with the requirement that X and Y are block-

sources of specific parameters. Similarly, we will define extractors for

other families of inputs (i.e., somewhere-random sources) and extractors

where each input should come from a different family.

Strong extractors: Many of these definition have also a strong variant,

and typically constructions for extractors also achieve this strong vari-

ant. An extractor is strong in the first input if the output requirement

(2) is replaced with |(X,Ext(X,Y ))− (X,Um)| ≤ ε. Intuitively, this

condition means that the output is uniform even on conditioning X.

We define an extractor to be strong in the second input similarly. If the

extractor is strong in both inputs, we simply say that it is strong.

Remark 3.10 (Input lengths). Whenever we have a 2-source extractor

Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m with inputs lengths n1, n2 and entropy

requirement k1, k2, we can always invoke it on shorter sources with the same

entropy, by simply padding it with zeros. In particular, if we have an extractor

with n1 = n2, we can still invoke it on inputs of unequal length by padding one

of the inputs. The same observation holds for the other source types we will

use, namely block and somewhere-random sources, if the padding is done in

the appropriate way (i.e., pad each block for block-sources, add all zero rows

for somewhere-random sources) and it also holds for all the other extractor-

like objects we consider (dispersers, somewhere extractors and their subsource

variant). In the following, whenever we invoke an extractor on inputs shorter

than its “official” input length, this means that we use such a padding scheme.

3.2. Useful facts and lemmas.

Fact 3.11. If X is an (n, k)-source and X ′ is a deficiency-d subsource

of X , then X ′ is an (n, k − d)-source.

Fact 3.12. Let X be a random variable with H∞(X) = k. Let A be any

event in the same probability space. Then

H∞(X|A) < k′ ⇒ Pr[A] < 2k
′−k.
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3.2.1. Fixing functions and projections. Given a source X over {0, 1}n and

a function F : {0, 1}n → {0, 1}m, we often will want to consider subsources of

X where F is fixed to some value, and provide some bounds on the deficiency.

Thus, the following lemma would be useful.

Lemma 3.13 (Fixing a function). Let X be a distribution over {0, 1}n,

F : {0, 1}n → {0, 1}m be a function, and ` ≥ 0 some number. Then there

exists a ∈ {0, 1}m and a deficiency-m subsource X ′ of X such that F (x) = a

for every x in X ′. Furthermore, for every a ∈ Supp(F (X)), let Xa be the

subsource of X defined by conditioning on F (X) = a. Then if we choose a at

random from the source F (X), with probability ≥ 1−2−`, the deficiency of Xa

is at most m+ `.

Proof. Let ` > 0 be some number, and let A be the set of a ∈ {0, 1}m such

that Pr[F (x)=a] < 2−m−`. Since |A| ≤ 2m, we have that Pr[F (X) ∈ A] < 2−`.

If we choose a ←R F (X) and a 6∈ A, we get that X|F (X) = a has deficiency

≤ m + `. Choosing ` = 0, we get the first part of the lemma, and choosing

` = m, we get the second part. �

The following lemma will also be useful.

Lemma 3.14 (Fixing a few bits in X). Let X be an (n, k) source. Let

S ⊆ [n] with |S| = n − n′. Let X|S denote the projection of X to the bit

locations in S. Then for every l, X|S is 2−l-close to a (n − n′, k − n′ − l)

source.

Proof. Let S be the complement of S.

Then X|S is a convex combination over X|S . For each setting of X|S = h,

we condition the distribution X|S |(X|S = h).

Define H = {h ∈ {0, 1}n′ |H∞(X|S |X|S = h) < n′ + k − l}. Notice that

H∞(X|S |X|S = h) = H∞(X|X|S = h). Then by Fact 3.12, for every h ∈ H,

Pr[X|S = h] < 2k−n
′−l−k = 2−(n′+l). Since |H| ≤ 2n

′
, by the union bound we

get that Pr[X|S ∈ H] ≤ 2−l]. �

In some situations we will have a source that is statistically close to having

high min-entropy, but not close enough. We can use the following lemma to

lose something in the entropy and get 0 error on some subsource.

Lemma 3.15. Let X be a random variable over {0, 1}n such that X is

ε-close to an (n, k) source, with ε ≤ 1/4. Then there is a deficiency-2 subsource

X ′ ⊆ X such that X ′ is a (n, k − 3)-source.

Proof. Let t be a parameter that we will pick later. Let H ⊆ Supp(X) be

defined as H = {x ∈ Supp(X)|Pr[X = x] > 2−t}. H is the set of heavy points

of the distribution X. By the definition of H, |H| ≤ 2t.
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Now we have that Pr[X ∈ H]− 2−k|H| ≤ ε, since X is ε-close to a source

with min-entropy k. This implies that Pr[X ∈ H] ≤ ε+ 2−k|H| ≤ ε+ 2t−k.

Now consider the subsource X ′ ⊆ X defined to be X|X ∈ (Supp(X) \H).

For every x ∈ Supp(X ′), we get that

Pr[X ′ = x] = Pr[X = x|X /∈ H] ≤ Pr[X=x]
Pr[X/∈H] ≤

2−t

1− (ε+ 2t−k)
.

Setting t = k − 2, we get that Pr[X ′ = x] ≤ 2−k+2

1−(ε+2−2)
≤ 2−k+3. �

3.2.2. Convex combinations.

Definition 3.16 (Convex combination). Let X be a random variable, and

let {Yi}i∈U be a family of random variables indexed by an element in some

universe U . We say that X is a convex combination of the family {Yi} if there

exists a random variable I over U such that X = YI .

A key observation, which is essential to our results, is that random vari-

ables that are convex combinations of sources with some good property are

usually good themselves. This is captured in the following easy propositions.

Proposition 3.17. Let X,Z be random variables such that X is a convex

combination of sources that are ε-close to Z . Then X is ε-close to Z .

3.2.3. Conditional entropy. If X = X1 ◦ · · · ◦Xt is a random variable (not

necessarily a block-source) over {0, 1}n divided into t blocks in some way and

x1, . . . , xi are some strings with 0 ≤ i < t, we use the notation X|x1, . . . , xi
to denote the random variable X conditioned on X1 = x1,. . .,Xi = xi. For

1 ≤ i < j ≤ t, we denote by Xi,...,j the projection of X into the blocks

Xi, . . . , Xj . We have the following facts about such sources.

Lemma 3.18 (Typical prefixes). Let X = X1◦· · ·◦Xt be a random variable

divided into t blocks, let X ′ = X|A be a deficiency-d subsource of X , and let `

be some number. Then for every 1 ≤ i ≤ t, with probability at least 1− 2−`, a

random prefix x1, . . . , xi in X ′ satisfies Pr[X ∈ A|x1, . . . , xi] ≥ 2−d−`.

Proof. We denote by X1 the first i blocks of X. Let B be the event

determined by X1 that Pr[X ∈ A|X1] < 2−d−`. We need to prove that

Pr[B|A] < 2−`, but this follows since Pr[B|A] = Pr[A∩B]
Pr[A] ≤ 2d Pr[A∩B]. How-

ever, Pr[A ∩B] ≤ Pr[A|B] =
∑
x∈B Pr[A|X1 = x] Pr[X1 = x|B] < 2−d−`. �

As a corollary we get the following

Corollary 3.19 (Subsource of block-sources). Let X = X1 ◦ · · · ◦ Xc

be a k-entropy c-block-source (that is, for every x1, . . . , xi ∈ Supp(X1,...,i),
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H∞(Xi+1|X1,...,i = x1, . . . , xi) > k) and X ′ be a deficiency-d subsource of X .

Then X ′ is c2−l statistically close to being a k − d− l c-block-source.

Proof. Let X ′ = X|A, and define B to be following the event over X ′:

x = x1, . . . , xc ∈ B if for some i ∈ [c], Pr[X ∈ A|x1, . . . , xi] < 2−d−l. By

Lemma 3.18, Pr[X ′ ∈ B] < c2−l. However, for every x = x1, . . . , xc ∈ B̄ =

A \B, we get that Y ′ = X ′i+1|x1, . . . , xi−1 is a source with

H∞(Y ′) ≥ H∞(Y )− d− l ≥ k − d− l.

Hence X ′|B̄ is a k − d− l-block-source of distance c2−l from X ′. �

If X = X1 ◦ · · · ◦ Xt is a source divided into t blocks then, in general,

the entropy of Xi conditioned on some prefix x1, . . . , xi−1 can depend on the

choice of prefix. However, the following lemma tells us that we can restrict to

a low deficiency subsource on which this entropy is always roughly the same,

regardless of the prefix. Thus, we can talk about the conditional entropy of a

block Xi without referring to a particular prefix of it.

Lemma 3.20 (Fixing entropies). Let X = X1 ◦X2 ◦ · · · ◦Xt be a t-block

random variable over {0, 1}n, and let 0 = τ1 < τ2 < · · · < τc+1 = n be

some numbers. Then there is a deficiency-t2 log c subsource X ′ of X and a

sequence ē = e1, . . . , et ∈ [c]t such that for every 0 < i ≤ t and every sequence

x1, . . . , xi−1 ∈ Supp(X ′1,...,i−1), we have that

(3) τei ≤ H∞(X ′i|x1, . . . , xi−1) ≤ τei+1.

Proof. We prove this by induction. Suppose this is true for up to t − 1

blocks. We will prove it for t blocks. For every x1 ∈ Supp(X1), define the

source Y (x1) to be X2,...,i|x1. By the induction hypothesis, there exists a

(t − 1)2 log c deficiency subsource Y ′(x1) of Y (x1) source and ē(x1) ∈ [c]t−1

the sequence such that Y ′(x1) satisfies (3) with respect to ē(x1). Define the

function f : X1 → [c]t−1 that maps x1 to ē(x1), and pick a subsource X ′1 of

X1 of deficiency (t− 1) log c such that f is constant on X ′1. That is, there are

some values e2, . . . , et ∈ [c]t−1 such that F (x1) = e2, . . . , et with probability 1.

We let the source X ′ be X conditioned on the event that X1 ∈ supp(X ′1) and

X2, . . . , Xt ∈ supp(Y (X1)).

The deficiency of X ′ is indeed at most (t−1) log c+(t−1)2 log c < t2 log c.

�

Corollary 3.21. If X in the lemma above is a k-source and ē is as in

the conclusion of the lemma, we must have that
∑t
i=1 τei+1 ≥ k − t2 log c.

Proof. If this were not the case, we could find some string in the support of

X that is too heavy. (Simply take the heaviest string allowed in each successive

block.) �
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Proposition 3.22. Let Ext : {0, 1}n×{0, 1}d→{0, 1}m be a seeded (n, k, ε)

strong extractor. Let X be any (n, k) source. Let {0, 1}d = {s1, s2, . . . , s2d}.
Then Ext(X, s1)◦Ext(X, s2)◦· · ·◦Ext(X, s2d) is ε-close to a (2d×m) somewhere-

random source.

Proof. This follows immediately from the definition of a strong seeded

extractor (Definition 3.9). �

3.3. Some results from previous works. We will use the following results

from some previous works.

Theorem 3.23 ([LRVW03]). For any constant α ∈ (0, 1), every n ∈ N
and k ≤ n and every ε ∈ (0, 1) where ε > exp(−

√
k), there is an explicit (k, ε)

seeded extractor Ext : {0, 1}n × {0, 1}O(logn+log(n/k) log(1/ε)) → {0, 1}(1−α)k.

Theorem 3.24 ([Tre01], [RRV02]). For every n, k ∈ N, ε > 0, there is an

explicit (n, k, ε)-strong extractor Ext : {0, 1}n × {0, 1}d → {0, 1}k−O(log3(n/ε))

with d = O(log3(n/ε)).

Theorem 3.25 ([CG88], [Vaz85]). For all n, δ > 0, there exists a polyno-

mial time computable strong extractor Vaz : {0, 1}n × {0, 1}n → {0, 1}m with

m = Ω(n) and error ε = 2−Ω(n).

Theorem 3.26 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2

with

• n1 ≥ 6 log n1 + 2 log n2,

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2,

• k2 ≥ 5 log(n1 − k1),

• m ≤ δmin[n1/8, k2/40]− 1,

there is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1×
{0, 1}n2 → {0, 1}m for min-entropy k1, k2 with error 2−1.5m.

Theorem 3.27 ([Rao09]). There is a polynomial time computable strong

extractor 2SRExt : {0, 1}tn × {0, 1}tn → {0, 1}m such that for every constant

γ < 1 and n, t with t = t(n), t < nγ , there exists a constant α(γ) < 1 such that

2SRExt succeeds as long as X is a (t× n) SR-source and Y is an independent

aligned (t× n) SR-source, with m = n− nα and error 2−n
1−α

.

4. Ingredients

In this section we describe two new ingredients that are used in our con-

struction.

4.1. Extractor for one block-source and one general source. We construct

an extractor that works for two sources, given an assumption on one of the
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sources. The assumption is that the first source is a block-source, which means

that it is divided into c blocks such that each block has entropy above a cer-

tain threshold even conditioned on all previous blocks. As mentioned in the

introduction, block-sources turn out to be very useful in many settings in

randomness extraction. Rao [Rao09] gave an extractor for two independent

block-sources with few blocks. Here we improve his construction in two ways,

both of which are important for the application to our disperser construction.

• We relax the hypothesis so that we need only one block-source. The

second source can be arbitrary.

• We improve the error of the construction from 1/poly(k) to 2−k
Ω(1)

.

We will prove the following theorem (which is a formal restatement of Theo-

rem 2.4).

Theorem 4.1 (Block + Arbitrary Source Extractor). There are constants

c1, c2 and a polynomial time computable function BExt : {0, 1}cn × {0, 1}n →
{0, 1}m such that for every n, k, with k > log10(n) with c = O( logn

log k ), if X =

X1 ◦ · · · ◦Xc is a k-block-source and Y is an independent k-source, then

|BExt(X,Y )− Um| < 2−k
c1

with m = c2k.

The low error guaranteed by this theorem is important for applications

that require a negligible error. Since the concatenation of independent sources

is a block-source, an immediate corollary of the above theorem is a new ex-

tractor for independent sources with exponentially small error. (The corollary

below is a formal restatement of Theorem 1.6.)

Corollary 4.2 (Independent source extractor). There are constants c1, c2

and a polynomial time computable function BExt : ({0, 1}n)c → {0, 1}m such

that for every n, k, with k > log10(n) with c = O( logn
log k ), if X1, . . . , Xc are

independent (n, k) sources, then

|BExt(X1, . . . , Xc)− Um| < 2−k
c1

with m = c2k.

The proof of Theorem 4.1 appears in Section 7.

4.2. A 2-source somewhere extractor with exponentially small error. A

technical tool that we will need is a somewhere extractor from two independent

sources that has a polynomial number of output rows, but exponentially small

error. This will be used to generate the responses throughout our disperser

construction. Note that we can get a polynomial number of output rows by

using a seeded extractor with just one of the sources, but in this case the

error would not be small enough. In addition, in this section we will prove
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some other technical properties of this construction which will be critical to

our construction.

Theorem 4.3 (Low error somewhere extractor). There is a constant γ

and a polynomial time computable function SE : ({0, 1}n)2 → ({0, 1}m)l such

that for every n, k(n) > log10 n, log4 n < m < γk and any two (n, k) sources

X,Y , we have

Few rows: l = poly(n).

Small error: SE(X,Y ) is 2−10m-close to a convex combination of some-

where-random distributions, and this property is strong with respect to

both X and Y . Formally,

Pr
y←RY

[SE(X, y) is 2−10m-close to being SR] > 1− 2−10m.

Hitting strings: Let c be any fixed m bit string. Then there are sub-

sources X̂ ⊂ X, Ŷ ⊂ Y of deficiency 2m and an index i such that

Pr[c = SE(X̂, Ŷ )i] = 1.

Fixed rows on low deficiency subsources: Given any particular row

index i, there is a subsource (X̂, Ŷ ) ⊂ (X,Y ) of deficiency 20m such that

SE(X̂, Ŷ )i is a fixed string. Further, (X,Y ) is 2−10m-close to a convex

combination of subsources such that for every (X̂, Ŷ ) in the combination,

• X̂, Ŷ are independent.

• SE(X̂, Ŷ )i is constant.

The {Hitting strings} and {Fixed rows on low deficiency sub-

sources} properties may at first seem quite similar. The difference is in the

quantifiers. The first property guarantees that for every string c, we can move

to low deficiency subsources such there exists an index in the output of SE

where the string is seen with probability one. The second property guarantees

that for every index i, we can move to low deficiency subsources where the

output in that index is fixed to some string.

Proof. The algorithm SE is the following

Algorithm 4.4.

SE(x, y)
Input: x, y samples from two independent sources with min-entropy k.

Output: A `×m boolean matrix.

Subroutines:

• A seeded extractor Ext with O(log n) seed length (for example, by The-

orem 3.23), setup to extract from entropy threshold 0.9k, with output

length m and error 1/100.
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• The extractor Raz from Theorem 3.26, setup to extract m bits from an

(n, k) source using a weak seed of length m bits with entropy 0.9m. We

can get such an extractor with error 2−10m.

1. For every seed i to the seeded extractor Ext, output Raz(x,Ext(y, i)).

We will prove each of the items in turn.

Few rows: By construction.

Small error: We will argue that the strong error with respect to Y is small.

Consider the set of bad y’s:

B = {y : ∀i|Raz(X,Ext(y, i))− Um| ≥ 2−γ
′k},

where here γ′ is the constant that comes from the error or Raz’s extractor.

We would like to show that this set is very small.

Claim 4.5. |B| < 20.9k.

Suppose not. Let B denote the source obtained by picking an element

of this set uniformly randomly. Since Ext has an entropy threshhold of

0.9k, there exists some i such that Ext(B, i) is 1/100 close to uniform. In

particular, |Supp(Ext(B, i))| ≥ 0.992m > 20.9m. This is a contradiction,

since at most 20.9m seeds can be bad for Raz.

Thus, we get that

Pr
y←RY

[|Raz(X,Ext(y, i))− Um| < 2−k
γ′

] < 20.9k/2k = 2−0.1k.

Setting γ = γ′/10, we get that 10m < 10γk < γ′k and 10m < 0.1k.

Hitting strings: The proof for this fact follows from the small error property.

Let Ỹ = Y |(Y /∈ B), where B is the set of bad y’s from the previous item.

Then we see that for every y ∈ Supp(Ỹ ), there exists some i such that

|Raz(X,Ext(y, i)) − Um| < 2−10m. By the pigeonhole principle, there must

be some seed s and some index i such that

Pr
y←RỸ

[Ext(y, i) = s] ≥ 1

l2m
.

Fix such an i and string s, and let Ŷ = Ỹ |Ext(Ỹ , i) = s. This subsource

has deficiency at most 1+m+log l < 2m from Y . Thus, Ext(Ŷ , i) is fixed and

|Raz(X,Ext(y, i)) − Um| < 2−10m. Note that the ith element of the output

of SE(X, Ŷ ) is a function only of X. Thus, we can find a subsource X̂ ⊂ X
of deficiency at most 2m and string c ∈ {0, 1}m such that SE(X̂, Ŷ )i = c.

Fixed rows on low deficiency subsources: Let i be any fixed row. For

any m-bit string a, let Ya ⊂ Y be defined as Y |(Ext(Y, i) = a). By

Lemma 3.13, for any `>1, Pra←RExt(Y,i)[Ya has deficiency more than m+ `]

< 2−`.
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Let A={a : Ya has deficiency more than m+ `}. Then by Lemma 3.13,

we see that Y is 2−`-close to a source Y , where Pr[Ext(Y , i) /∈ A] = 1, and

Y has min-entropy at least k−1. We break up Y into a convex combination

of variables Ŷa=Y |(Ext(Y , i)=a), each of deficiency at most m+ `.

Similarly, we can argue that X is 2−`-close to a random variable Xa with

min-entropy k − 1, where Xa is a convex combination of subsources X̂a,b

with deficiency at most m+ ` such that Raz(X̂a,b, a) is constant and equal

to b.

Thus, we obtain our final convex combination. Each element X̂a,b, Ŷb
of the combination is associated with a pair (a, b) of m bit strings. By

construction, we see that the ith row SE(X̂a,b, Ŷb)i = a and that X̂a,b, Ŷb
each have min-entropy k −m− `. �

5. Informal overview of the construction and analysis of the

disperser

In this section we give a detailed yet informal description of our construc-

tion and analysis. On the one hand, this description presents the construction

and steps of the analysis in a very detailed way. On the other hand, the fact

that this section is not a formal proof allows us to abstract many tedious techni-

cal details and parameters and to focus only on what we consider to be central.

This section complements Section 2 and provides a detailed explanation of the

challenge-response mechanism.

The structure of this presentation closely imitates the way we formally

present our construction and proof in Section 6, and we make use of “informal

lemmas” in order to imitate the formal presentation and make the explanation

more clear. We stress that these “informal lemmas” should not be interpreted

as formally claimed by this paper (and these lemmas typically avoid being

precise regarding parameters). We furthermore stress that the content of this

section is not used in the latter part of the paper and the reader may safely

skip to the formal presentation in Section 6 if she wishes.

The setup. We are given two input sources X,Y that have some min-

entropy, and we would like to output a nonconstant bit. The idea behind the

construction is to try to convert the first source X into a block-source or at

least find a subsource (Definition 3.3) Xgood ⊂ X which is a block-source. Once

we have such a block-source, we can make use of some of the technology we

have developed for dealing with block-sources (for instance, the extractor BExt

of Theorem 4.1).

One problem with this approach is that there is no deterministic procedure

that transforms a source into a block-source, or even to a short (e.g., of length



2-SOURCE DISPERSERS FOR no(1) ENTROPY 1507

much less than n
k ) list of sources, one of which is guaranteed to be a block-

source. Still, as we will explain shortly, we will manage to use the second

source Y to “convert” X into a block-source. Loosely speaking, we will show

that there exist independent subsources Xgood ⊂ X and Y good ⊂ Y such that

Xgood is a block-source and our construction “finds” this block-source when

applied on Xgood, Y good. This task of using one source to find the entropy in

the other source while maintaining independence (on subsources) is achieved

via the “challenge-response mechanism.”

We describe our construction in two phases. As a warmup, we first discuss

how to use the challenge-response mechanism in the case when the two sources

have linear min-entropy. (This was first done by Barak et al. [BKS+10].) Then

we describe how to adapt the challenge-response mechanism for the application

in this paper.

5.1. Challenge-response mechanism for linear min-entropy. The challenge-

response mechanism was introduced in [BKS+10] as a way to use one source of

randomness to find the entropy in another source. Since they only constructed

2-source dispersers that could handle linear min-entropy, they avoided several

complications that we will need to deal with here. Still, as an introduction

to the challenge-response mechanism, it will be enlightening to revisit how to

use the mechanism to get dispersers for linear min-entropy. Below we will give

a sketch of how we might get such a disperser using the technology that is

available to us at this point. Note that the construction we discuss here is

slightly different from the one originally used by Barak et al.@

We remind the reader again of the high level scheme of our construc-

tion. We will construct a polynomial time computable function Disp with the

property that for any independent linear entropy sources X,Y , there exist

subsources Xgood ⊂ X,Y good ⊂ Y with the property that Disp(Xgood, Y good) is

both 0 and 1 with positive probability. Since Xgood, Y good are subsources of

the original sources, this implies that Disp is a disperser even for the original

sources. Now let us describe the construction.

Let us assume that for linear min-entropy our extractor BExt requires only

two blocks; so we have at our disposal a function BExt : {0, 1}n × {0, 1}n →
{0, 1} with the property that if X1 ◦ X2 is a block-source with linear min-

entropy, and Y is an independent block-source, BExt(X1 ◦X2, Y ) is exponen-

tially close to being a uniform bit.

We are given two sources X,Y that are independent sources with min-

entropy δn, where δ is some small constant. We would be in great shape if we

were given some additional advice in the form of an index j ∈ [n] such that

X[j] ◦ X is a block-source with min-entropy say δn/10. (That is, the first j

bits of X have min-entropy δn/10 and, conditioned on any fixing of these bits,
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the rest of the source still has min-entropy at least δn/10.) In this case we

would simply use our block-source extractor BExt and be done. Of course, we

do not have any such advice. On the other hand, the good news is that it can

be shown that such an index j does exist.

Step 1: Existence of a structured subsource. We associate a tree of parts

with the source X. In this warmup this will be a tree of depth 1, with the

sample from X at the root of the tree. We break the sample from the source

X into a constant t � 1/δ number of equally sized parts x = x1, . . . , xt,

each containing n/t consecutive bits. These are the children of the root. Our

construction will now operate on the bits of the source that are associated with

the nodes of this tree.

In the first step of the analysis, we use standard facts (Lemma 3.20 and

Corollary 3.21) to show that

Informal Lemma 5.1. If X has min-entropy δn, there is a j ∈ [t] and

a subsource X̂ ⊂ X in which

• X̂i is fixed for i < j.

• H∞(X̂j) ≥ δ2n/10).

• (X̂j+1, . . . , X̂t) has conditional min-entropy at least δ2n/10 given any

fixing of X̂j .

Given this lemma, our goal is to find this index j (which is the “advice”

that we would like to obtain). We will be able to do so on independent sub-

sources of X̂, Y . This is achieved via the challenge-response mechanism.

Step 2: Finding the structure using the challenge-response mechanism.

Here are the basic pieces we will use to find the index j:

1. A polynomial time computable function Challenge : {0, 1}n × {0, 1}n →
{0, 1}clen. In view of the final construction, we view the output of this

function as a matrix with one row of length clen. We also require the

following properties:

Output length is much smaller than entropy: clen� δ20n.

Output has high min-entropy: Given X̂, Ŷ that are independent

sources with min-entropy δ2n/100 each, Challenge(X̂, Ŷ ) is statisti-

cally close to having min-entropy Ω(clen).

In extractor terminology, these conditions simply say that Challenge is

a condenser for two independent sources. In [BKS+10] such a function

(in fact, a somewhere-random extractor) was constructed using results

from additive number theory.

2. A polynomial time computable function Response : {0, 1}n × {0, 1}n →
({0, 1}clen)`. We interpret the output as a list of ` matrices that have the

same dimensions as the challenge matrix given by the Challenge function
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above. We use the somewhere extractors from Theorem 4.3 as the func-

tion Response. Below, we recall that this function satisfies the following

properties (which will also be used in our final construction):

Few matrices: ` = poly(n).6

Hitting matrices: Given X̂, Ŷ independent sources with min-entropy

δ3n each and any fixed matrix α ∈ {0, 1}clen, there there exist i

and low deficiency subsources X ′ ⊂ X̂, Y ′ ⊂ Ŷ such that in these

subsources Response(X ′, Y ′)i = α with probability 1.

Fixed matrices on low deficiency subsources: Given any index i

and any independent sources X̂, Ŷ , we can decompose (X̂, Ŷ ) into

a convex combination of low deficiency independent sources such

that for every element of the combination X ′, Y ′, Response(X ′, Y ′)i
is fixed to a constant.

Given the explicit functions Challenge and Response satisfying the prop-

erties above, we can now discuss how to use them to find the index j given

samples x←R X and y ←R Y .

Definition 5.2. Given a challenge matrix and a list of response matrices,

we say that the challenge is responded by the response if the challenge matrix

is equal to one of the matrices in the response.

To find the index j,

1. Compute the response Response(x, y).

2. For every i ∈ [t], compute a challenge Challenge(xi, y).

3. Set r to be the smallest i for which Challenge(xi, y) was not responded

by Response(x, y).

We remind the reader that we will prove that the disperser works by

arguing about subsources of the original adversarially chosen sources X,Y .

Recall that we are currently working with the subsource X̂ ⊂ X that has the

properties guaranteed by Informal Lemma 5.1. Using the functions Challenge

and Response, we can then prove the following lemma.

Informal Lemma 5.3. There exist low deficiency subsources Xgood ⊂
X̂, Y good ⊂ Y such that in these subsources, r = j with high probability.

Proof Sketch. The lemma will follow from two observations.

Informal Claim 5.4. There are subsources Xgood ⊂ X̂, Y good ⊂ Y in which

for every i < j, Challenge(Xgood
i , Y good) is responded by Response(Xgood, Y good)

6In [BKS+10] the component they use for this step has an ` that is only constant. We

can tolerate a much larger ` here because of the better components available to us.
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with probability 1. Furthermore, Xgood is a block-source (with roughly the

same entropy as X) and Y good has roughly the same entropy as Y .

Proof Sketch. Note that for i < j, X̂i is fixed to a constant, and so

Challenge(X̂i, Y ) is a function only of Y . Since the output length of Challenge

is only clen bits, this implies (by Lemma 3.13) that there exists a subsource

Ŷ ⊂ Y of deficiency at most clen ·t such that Challenge(X̂i, Ŷ ) is fixed for every

i < j.

We can then use the {Hitting matrices} property of Response to find

smaller subsources X ′ ⊂ X̂, Y ′ ⊂ Y such that there exists an index h1 for which

Pr[Challenge(X ′1, Y
′) = Response(X ′, Y ′)hi ] = 1. Repeating this, we eventually

get subsources Xgood ⊂ X̂, Y good ⊂ Y such that for every i < j, there exists an

index hi such that Pr[Challenge(Xgood
i , Y good) = Response(Xgood, Y good)hi ] = 1;

i.e., the challenge of every part of the source before the jth part is responded

with probability 1 in these subsources.

The fact thatXgood remains a block-source follows from Corollary 3.19. �

Informal Claim 5.5. With high probability, Challenge(Xgood
j , Y good) is not

responded by Response(Xgood, Y good).

Proof Sketch. The argument will use the union bound over ` events, one

for each of the ` matrices in the response. We want to ensure that each

matrix in the response is avoided by the challenge. Consider the ith matrix

in the response Response(Xgood, Y good)i. By the {Fixed matrices on low

deficiency subsources} property of Response, we know that Xgood, Y good is a

convex combination of independent sources in which the ith matrix is fixed to

a constant. For every element of this convex combination, the probability that

the challenge is equal to the ith response is extremely small by the property

that the output of Challenge has high min-entropy. �

Step 3: Computing the output of the disperser. The output of the disperser

is then just BExt(x[r]◦x, y). To show that our algorithm outputs a distribution

with large support, first note that BExt(Xgood

[r] ◦ X
good, Y good) is a subsource

of BExt(X[r] ◦ X,Y ). Thus, it is sufficient to show that that BExt(Xgood

[r] ◦
Xgood, Y good) has a large support. However, by our choice of r, r = j with high

probability in Xgood, Y good. Thus, BExt(Xgood

[r] ◦ X
good, Y good) is statistically

close to BExt(Xgood

[j] ◦ X
good, Y good) and hence is statistically close to being

uniform. �

5.2. The challenge-response mechanism in our application. Let us sum-

marize how the challenge-response mechanism was used for linear min-entropy.

The first step is to show that in any general source there is a small deficiency
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subsource that has some “nice structure.” Intuitively, if the additional struc-

ture (in the last case the index j) was given to the construction, it would

be easy to construct a disperser. The second step is to define a procedure

(the challenge-response mechanism) that is able to “find” the additional struc-

ture with high probability, at least when run on some subsource of the good

structured subsource. Thus, on the small subsource it is easy to construct a

disperser. Since the disperser outputs two different values on the small sub-

source, it definitely does the same on the original source.

Now we discuss our disperser construction. In this discussion we will often

be vague about the settings of parameters, but we will give pointers into the

actual proofs where things have been formalized.

There are several obstacles to adapting the challenge-response mechanism

as used above to handle the case of min-entropy k = no(1), which is what we

achieve in this paper. Even the first step of the previous approach is problem-

atic when the min-entropy k is less than
√
n. There we found a subsource of

X that was block-source. Then we fixed the leading bits of the source to get

a subsource that has a leading part that is fixed (no entropy), followed by a

part with significant (medium) entropy, followed by the rest of the source that

contains entropy even conditioned on the medium part.

When k <
√
n, on the one hand, to ensure that a single part of the source

Xi cannot contain all the entropy of the source (which would make the above

approach fail), we will have to make each part be smaller than
√
n bits. On

the other hand, to ensure that some part of the source contains at least one

bit of min-entropy, we will have to ensure that there are at most
√
n parts,

otherwise our construction will fail for the situation in which each part of the

source contains k/
√
n bits of entropy. These two constraints clearly cannot be

resolved simultaneously. Thus, it seems like there is no simple deterministic

way to partition the source in a way that nicely splits the entropy of the source.

The fix for this problem is to use recursion. We will consider parts of very

large size (say n0.9), so that the parts may contain all the entropy of the source.

We will then develop a finer grained challenge-response mechanism that we can

use to handle three levels of entropy differently: low, medium or high for each

part of the source. If we encounter a part of the source that has low entropy,

as before we can fix it and ensure that our algorithm correctly identifies it as

a block with low entropy. If we encounter a part that has a medium level of

entropy, we can use the fact that this gives a way to partition the source into

a block-source to produce a bit that is both 0 and 1 with positive probability.

We will explain how we achieve this shortly. We note that here our situation

is more complicated than [BKS+10] as we do not have an extractor that can

work with a block-source with only two blocks for entropy below
√
n. Finally,

if we encounter a part of the source that has a high entropy, then this part of
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the source is condensed ; i.e., its entropy rate is significantly larger than that

of the original source. Following previous works on seeded extractors, in this

case we run the construction recursively on that part of the source (and the

other source Y ). The point is that we cannot continue these recursive calls

indefinitely. After a certain number of such recursive calls, the source that

we are working with will have to have such a high entropy rate that it must

contain a part with a medium level of entropy.

Although this recursive description captures the intuition of our construc-

tion, to make the analysis of our algorithm cleaner, we open up the recursion

to describe the construction and do the analysis.

Now let us give a more concrete description of our algorithm. Let c(δ) be

the number of blocks the extractor BExt of Theorem 4.1 requires for entropy

k = nδ, and let t be some parameter to be specified later. (Think of t as a very

small power of k.)

We define a degree-t tree with depth log n/ log t < log n tree Tn,t, which

we call the n, t partition tree. The nodes of Tn,t are subintervals of [1, n] defined

in the following way:

1. The root of the tree is the interval [1, n].

2. If a node v is identified with the interval [a, b] of length greater than k1/3,

we let v1, . . . , vt denote the t consecutive disjoint length-|v|/t subinter-

vals of v. That is, vi = [a+ b−a
t (i− 1), a+ b−a

t i]. We let the ith child of

v be vi.

For a string x ∈ {0, 1}n and a set S ⊆ [1, n], we will denote by xS the

projection of x onto the coordinates of S. If v is a node in Tn,t, then xv denotes

the projection of x onto the interval v.

Step 1 of analysis. In analogy with our discussion for the case of linear

min-entropy, we can show that any source X with min-entropy k contains a

very nice structured low deficiency subsource X̂. We will show that there is a

vertex vb in the tree such that

• Every bit of X̂ that precedes the bits in vb is fixed.

• There are c children i1, . . . , ic of vb such that X̂i1 , X̂i2 , . . . , X̂ic is a

c-block-source with entropy at least
√
k in each block (even conditioned

on previous blocks).

• There is an ancestor vmed of vb such that X̂vmed , X̂ is a block-source with

k0.9 entropy in each block.

These three properties are captured in Figure 1. This is done formally in Step 1

of the analysis.

As in the case of linear min-entropy, we would be in great shape if we

were given vb, vmed, i1, . . . , ic. Of course, we do not know these and even worse,

this time we will not even be able to identify all of these with high probability
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Figure 1. Finding two related medium parts in Xmed.

in a subsource. Another obstacle to adapting the construction for linear min-

entropy to the case of k = no(1) is that we do not have a simple replacement for

the function Challenge that we had for the case of linear min-entropy. However

we will be able to use the components that are available to us to compute

challenge matrices that are still useful.

The construction will proceed as follows:

1. For every vertex v of the tree, we will compute a small (nrows × clen)

challenge matrix Challenge(xv, y) of size len = nrows · clen; this challenge

matrix will be a function only of the bits that correspond to that vertex

in x and all of y.

2. For every vertex v of the tree, we will associate a response Response(xv, y),

which is interpreted as a list of poly(n) matrices each of size len = nrows ·
clen.

For every vertex v in the tree, we will call the set of vertices whose intervals

lie strictly to the left of v (i.e., the interval does not intersect v and lies to

the left of v) and whose parent is an ancestor of v, the left family of v. In

Step 2 of the formal analysis, we will find low deficiency subsources Xgood ⊂
X̂, Y good ⊂ Y such that for every vertex v that is in the left family of vb,

Challenge(Xgood
v , Y good) is a fixed matrix that occurs in Response(Xgood

par(v), Y
good)

with probability 1.
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In Step 3 of the formal analysis, we will show that for every vertex v

that lies on the path from vb to the root, Challenge(Xgood
v , Y good) is statistically

close to being somewhere random. For technical reasons, we will actually

need a property that is stronger than this. We will actually show that for

every vertex v that lies on the path from vb to the root and all low deficiency

subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good, Challenge(X ′v, Y
′) is statistically close to

being somewhere random.

At this point we will have made a lot of progress in the construction and

analysis. We have found subsources Xgood, Y good such that the challenges for all

the vertices that occur to the left of the path to vb have been fixed. Moreover

the challenges for vertices on this good path have high min-entropy, even if we

move to any subsources of small deficiency X ′, Y ′. In some sense we will have

identified the good path that goes to vb in these subsources, though we still do

not know where vb, vmed are on this path. From here we will need to do only a

little more work to compute the output of the disperser.

Now let us describe how we compute the challenges and ensure the prop-

erties of Xgood, Y good that we discussed above more concretely. We will need

the following components:

1. To generate the challenges, we will need a polynomial time computable

function BExt : ({0, 1}n)c × {0, 1}n → {0, 1}clen that is an extractor for a

(c,
√
k) block-source and an independent

√
k source. Here think of clen as

roughly k0.9.

2. The second component is exactly the same as the second component from

the case of linear min-entropy and will be used to generate the responses.

We need a polynomial time computable function Response : {0, 1}n ×
{0, 1}n → ({0, 1}len)` (the output is interpreted as a list of ` nrows× clen

matrices) with the property that

Few outputs: ` = poly(n).

Hitting matrices: Given X̂, Ŷ independent sources with min-entropy√
k each and any fixed nrows×clen matrix c, there there exist i and low

deficiency subsources X ′ ⊂ X̂, Y ′ ⊂ Ŷ such that in these subsources

Response(X ′, Y ′)i = c with probability 1.

Fixed matrices on low deficiency subsources: Given any indepen-

dent sources X̂, Ŷ and an index i, (X̂, Ŷ ) is a convex combination

of low deficiency independent sources such that for every element

(X ′, Y ′) of the combination, Response(X ′, Y ′)i is fixed to a constant.

As before, we will use the function SE promised by Theorem 4.3 for this

component.

For every node v of the tree, we define a relatively small challenge matrix

Challenge(xv, y) with nrows rows of length clen each. We will set up the size

of these challenge matrices as roughly len = k0.9.
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We let xv1 , . . . , xvt be the division of xv to t sub-parts. Then we let

Challenge(xv, y) contain one row that is equal to BExt(xvi1 ◦· · ·◦xvic , y) for every

possible c-tuple 1 ≤ i1 < i2 < · · · < ic ≤ t. If v is a leaf, then Challenge(xv, y)

has no other rows and we will pad the matrix with 0’s to make it of size

nrows·clen. If v is a non-leaf, then we let Challenge(xv1 , y), . . . ,Challenge(xvt , y)

be the challenges of all the children of v in the tree. We will append the rows

of Challenge(xvi , y) to Challenge(xv, y), where i is the smallest index such that

Challenge(xvi , y) does not equal any of the matrices in Response(xv, y). Again,

if the matrix we obtain contains fewer than nrows rows, we pad it with 0’s

to ensure that it is of the right size. Note that in this way, every challenge

Challenge(xv, y) is indeed only a function of the bits in xv, y. This will be

crucial for our analysis.

Step 2 of analysis : ensuring that challenges are responded in left family.

The following claim is proved in Step 2 of the analysis (Claim 6.12).

Informal Claim 5.6 (Left family challenges are responded). There are sub-

sources Xgood ⊂ X̂, Y good ⊂ Y in which for every vertex w to the left of vb whose

parent par(w) lies on the path from vb to the root, Challenge(Xgood
w , Y good) is

responded by Response(Xgood

par(w), Y
good) with probability 1.

Proof Sketch. Note that for the w that is to the left of vb, X̂w is fixed

to a constant, so Challenge(X̂w, Y ) is a function only of Y . Since the out-

put length of Challenge is only len bits, this implies (by Lemma 3.13) that

there exists a subsource Ŷ ⊂ Y of deficiency at most len · t log n such that

Challenge(X̂w, Ŷ ) is fixed for every such w. Then since X̂v, Ŷ are still high

entropy sources for every v on the path from vb to the root, we can repeatedly

use the {Hitting matrices} property of Response to find smaller subsources

Xgood ⊂ X̂, Y good ⊂ Ŷ such that for every w to the left of v, there exists l such

that Pr[Challenge(X̂w, Ŷ ) = Response(X̂par(w), Ŷ )l] = 1. �

Step 3 of analysis : ensuring that challenges along the good path are some-

where random. We argue that the challenges along the good path are statisti-

cally close to being somewhere random in Xgood, Y good. This is done formally

in in Lemma 6.13, Step 3. The intuition for this is that first the challenge asso-

ciated with the vertex vb is somewhere random since vb has children that form

a block-source. We will then show that with high probability this challenge of

vb appears in the challenge matrix of every ancestor of vb.

Informal Claim 5.7 (Challenges along path to vb are somewhere random).

For all low deficiency subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good and any vertex v that

is on the path from vb to the root, Challenge(X ′v, Y
′) is statistically close to

being somewhere random.
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Proof Sketch. We will prove this by induction on the distance of the vertex

v from vb on the path. When v = vb, note that Challenge(X ′
vb
, Y ′) contains

BExt(xvi1 ◦ · · · ◦ xviu , y) for every c-tuple of children vi1 , . . . , vic of vb. By the

guarantee on X̂, we know that there exist i1, . . . , ic such that X̂vi1
, . . . , X̂vic is

a c-block-source. Since X ′ is a low deficiency subsource of X̂, X ′vi1
, . . . , X̂ ′vic

must also be close to a c block-source by Corollary 3.19. Thus, we get that

Challenge(X ′
vb
, Y ′) is statistically close to somewhere random.

To do the inductive step we show that Challenge(X ′par(v), Y
′) is close to

being somewhere random given that Challenge(X ′′v , Y
′′) is somewhere random

for even smaller subsources X ′′ ⊂ X ′, Y ′′ ⊂ Y ′.
The argument will use the union bound over ` events, one for each of

the ` strings in the response. We want to ensure that each string in the re-

sponse is avoided by the challenge. Consider the ith string in the response

Response(X ′par(v), Y
′)i. By the {Fixed matrices on low deficiency sub-

sources} property of Response, we know that X ′, Y ′ is a convex combination

of independent sources in which the ith string is fixed to a constant.

Now every element of this convex combination X ′′, Y ′′ is a subsource of the

original sources. The probability that Challenge(X ′′v , Y
′′) is equal to the ith re-

sponse is extremely small by the property that the output of Challenge(X ′′v , Y
′′)

has high min-entropy. Thus, with high probability, Challenge(X ′par(v), Y
′) con-

tains Challenge(X ′v, Y
′) as a substring. This implies that Challenge(X ′par(v), Y

′)

is statistically close to being somewhere random. �

Step 4 of analysis : ensuring that the disperser outputs both 0 and 1. The

output for our disperser is computed in a way that is very different from what

was done for the case of linear min-entropy. The analysis above included the

following two kinds of tricks:

• When we encountered a part of the source that had a low amount of

entropy, we went to a subsource where the part was fixed and the cor-

responding challenge was responded with probability 1.

• When we encountered a part of the source that had a high level of

entropy, we went to a subsource where the corresponding challenge is

not responded with high probability

The intuition for our disperser is that if we encounter a part of source

(such as vmed above) that both has high min-entropy and such that fixing that

part of the source still leaves enough entropy in the rest of the source, we can

ensure that the challenge is both responded and not responded with significant

probability. We will elaborate on how to do this later on. This is very helpful

as it gives us a way to output two different values! By outputting “0” in case

the challenge is responded and “1” in case it is not, we obtain a disperser. Now

let us be more concrete.
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Definition 5.8. Given two nrows × clen matrices and an integer 1 ≤ q ≤
clen, we say that one matrix is q-responded by the other if the first q columns

of both matrices are equal.

The first observation is the following claim, which is proved formally in

Step 4 (Lemma 6.14). The claim will be used with q � clen, len.

Below, we use the symbol ∼< to denote an inequality that is only approxi-

mate in the sense that in the formal analysis there are small error terms (which

may be ignored for the sake of intuition) that show up in the expressions.

Informal Claim 5.9. For every vertex v on the path from vb to the root,

Pr[Challenge(Xgood
v , Y good) is q-responded by Response(Xgood

par(v), Y
good)] ∼< 2−q.

Proof Sketch. As before, we will use the {Fixed matrices on low defi-

ciency subsources} property of Response and the fact that Challenge(X ′v, Y
′)

is somewhere random for any low deficiency subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good

to argue the probability that for every index q,

Pr[Challenge(Xgood
v , Y good) is q-responded by Response(Xgood

par(v), Y
good)q] ∼< 2−q.

Then we just apply a union bound over the poly(n) response strings to

get the claim. �

Next we observe that for the vertex vmed, its challenge is responded with

a probability that behaves very nicely. In particular, note that we get that the

challenge is both responded and not responded with noticeable probability.

This is Lemma 6.16 in the formal analysis.

Informal Claim 5.10. 2−q·nrows
∼<Pr[Challenge(Xgood

vmed , Y
good) is q-responded

by Response(Xgood

par(vmed)
, Y good)] ∼< 2−q.

Proof Sketch. The idea is thatXgood

par(vmed)
is a convex combination of sources

X ′
par(vmed)

in which X ′
par(vmed)

is fixed, but X ′ still has a significant amount of

entropy. Thus, we are in the situation where we proved Claim 5.6. We can

then show that X ′, Y good are a convex combination of sources X ′′, Y ′′ such that

Challenge(X ′′
vmed , Y

′′) is fixed to a constant. Thus

Pr[Challenge(X ′′
vmed , Y

′′)

is q-responded by

Response(X ′′
par(vmed)

, Y ′′) ∼> 2−q·nrows.

This implies that
Pr[Challenge(Xgood

vmed , Y
good)

is q-responded by

Response(Xgood

par(vmed)
, Y good) ∼> 2−q·nrows.

The upper bound is just a special case of Claim 5.9. �
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Given these two claims, we define the output of the disperser as follows:

1. We define a sequence of decreasing challenge lengths: clen � clen1,0 �
clen1,1 � clen1,2 � clen2,0 � clen2,1 � clen2,2 � clen3,0 · · · .

2. If v is not a leaf, let v1, . . . , vt be v’s t children. Let q be the depth of v.

If for every i Challenge(xvi , y) is clenq,0-responded by Response(xvi , y), set

val(xv, y) = 0. Else let i0 be the smallest i for which this does not happen.

Then

(a) If Challenge(xvi0 , y) is clenq,1-responded by Response(xv, y), then set

val(xv, y) = 1.

(b) Else if Challenge(xvi0 , y) is clenq,2-responded but not clenq,1-responded

by Response(xv, y), then set val(xv, y) = 0.

(c) Else set val(xv, y) = val(xvi0 , y).

3. The disperser outputs val(x, y).

Let h be the depth of vmed. The correctness is then proved by proving two

more claims.

Informal Claim 5.11. The probability that val(Xgood

vmed , Y
good) differs from

val(Xgood, Y good) is bounded by 2−clenh,0 .

Proof Sketch. In fact, we can argue that with high probability,

val(Xgood

vmed , Y
good) = val(Xgood

par(vmed)
, Y good)

= val(Xgood

par(par(vmed))
, Y good) = · · · = val(Xgood, Y good).

The reason is that by Claim 5.9, for any vertex v on the path from vmed to the

root at depth q,

Pr[val(Xgood
v , Y good) 6= val(Xgood

par(v))] ∼< 2−clenq,0 � 2−clenh,0 .

Thus, by the union bound, we get that with high probability all of these are

in fact equal. �

Next, we will argue that val(Xgood

vmed , Y
good) is both 0 and 1 with signif-

icant probability. This will complete the proof because this will show that

val(Xgood, Y good) is both 0 and 1 with significant probability.

Informal Claim 5.12.

Pr[val(Xgood

vmed , Y
good)] = 1] ∼> 2−clenh,1 ,

Pr[val(Xgood

vmed , Y
good)] = 0] ∼> 2−clenh,2

Proof Sketch. Informal Claim 5.12 follows from Informal Claim 5.10. The

probability that val(Xgood

vmed , Y
good) = 1 is lowerbounded by the probability that

Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

par(vmed)
, Y good) mi-

nus the probability that Challenge(Xgood

vmed , Y
good) is clenh,0-responded by
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Response(Xgood

par(vmed)
, Y good). By Claim 5.10, we can ensure that this difference

is significantly large. The argument for the 0 output is very similar. �

These two claims then ensure that overall Pr[val(Xgood, Y good) = 1] ∼>
2−clenh,1 and Pr[val(Xgood, Y good) = 0] ∼> 2−clenh,2 . Thus, val(X,Y ) = {0, 1} as

required.

6. Construction and analysis of the disperser

In this section we present the construction of the new 2-source disperser.

We also prove that this construction works, thus proving our main theorems

Theorem 1.10, Theorem 1.3 and Corollary 1.4. The formal presentation below

closely follows the informal overview in Section 5.

6.1. Parameters.

Setting the parameters. We first list the various parameters involved in

the construction and say how we will set them. See also Table 1.

• Let n be the length of the samples from the sources.

• Let k be the entropy of the input sources. Set k = 2log0.9 n.

• Let c1 be the error constant from Theorem 4.1.

• Let c = O
Ä

logn
log k

ä
be the number of blocks that the extractor BExt of

Theorem 4.1 requires to extract from
√
k entropy. (See Corollary 6.2

below for the precise parameters we use BExt for.) Without loss of

generality, we assume that c1 � 1/c.

• We use t to denote the branching factor of the tree. We set t = n1/c4 .

• We use nrows = tc log n to denote the maximum number of rows in any

challenge matrix.

• We use clen to denote the length of every row in a challenge matrix. We

set clen = n1/c2 .

• We use len = nrows · clen to denote the total size of the challenge ma-

trices.

• For r = 0, 1, 2, we use clenq,r to denote smaller challenge lengths and

analogously define lenq,r = nrows · clenq,r. We set clenq,r = n
1

(3q+r)c2 .

Note that clenq,0 � clenq,1 � clenq,2.

Constraints needed in analysis. Here are the constraints that the above

parameters need to satisfy in the analysis.

• t1/c4 ≥ 20c, used in the proofs of Lemmas 6.9 and 6.10.

• k
(10t2·c)2 ≥ k0.9, used at the end of Step 1 in the analysis.

• clen3 = o(k0.9), used at the end of Step 1 in the analysis and in the

proof of Lemma 6.13.

• clen = o(kc1), used in the proof of Lemma 6.15.
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Name Description Restrictions Notes

n Input length

k Entropy k ≥ 2log
0.9 n

c Number of blocks for

BExt

c = O(log n/ log k) We always invoke BExt

with entropy ≥
√
k

t Degree of partition tree t = n1/c
4

c1 Error parameter of BExt c1 � 1/c Inherited from BExt

Corollary 6.2.

nrows No. of rows in challenges

and responses

nrows ≤ (log n)tc

clen Length of each row in

challenges and responses

clen = n1/c
2

clenq,r Shorter challenge lengths clenq,r = n
1

(3q+r)c2 r ∈ {0, 1, 2}, q ranges

from 1 to the depth of the

partition tree.

Table 1. Parameters used in the construction.

• t · len · log n = o(clen2.1)⇔ tc+1 · log2 n = o(clen1.1), used at the end of

Step 2 in the analysis.

• For any positive integers q, r, nrows = o(clenq,r/clenq,r+1) and nrows =

o(clenq,r+2/clenq+1,r), used in the proof of Lemma 6.17.

The following definition will be useful in our construction.

Definition 6.1. Given a challenge string Challenge interpreted as a d× len

boolean matrix with d ≤ nrows, a response string Response interpreted as a

nrows × len boolean matrix and a parameter q, we say that Challenge is q-

responded by Response if the d× q sub-matrix of Challenge obtained by taking

the first q bits from each row is equal to the d × q sub-matrix of Response

obtained by taking the first q bits each from the first d rows of Response.

Note that if a challenge is q-responded, then it is also q′-responded for

every q′ ≤ q.

6.2. Formal construction. We now turn to fully describing our disperser

construction.

6.2.1. Components. Our construction uses the following components.

Block extractor: We will use the following corollary of Theorem 4.1.

Corollary 6.2 (Block extractor). There is a constant c1 and a poly-

nomial-time computable function BExt : {0, 1}cn × {0, 1}n → {0, 1}out such

that if the parameters c, n, k are as above, then for every independent source
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X ∈ {0, 1}cn and Y ∈ {0, 1}n with H∞(Y ) ≥
√
k and X = X1 ◦ · · · ◦Xc a

√
k

block-source,7 ∣∣∣BExt(X,Y )− Uclen

∣∣∣ < 2−k
c1
.

Somewhere extractor with small error: We will use the following corol-

lary of Theorem 4.3 to generate our responses. We will set up SE to be

a somewhere extractor of output length clen for inputs of length at most

n with entropy at least
√
k.8 For every string x of length at most n and

string y ∈ {0, 1}n, we define Response(x, y) to be the list of strings ob-

tained from SE(x, y), by interpreting each row of the output of SE(x, y) as

an nrows× clen boolean matrix.

Corollary 6.3 (Somewhere extractor to generate responses). For every

n, k, len that satisfies the constraints above, there is a polynomial time com-

putable function Response : ({0, 1}n)2 → ({0, 1}len)` (here the output is inter-

preted as a nrows × clen matrix) with the property that for any two (n,
√
k)

sources X,Y ,

Few outputs: ` = poly(n).

Small error: Response(X,Y ) is 2−10len-close to a convex combination of

somewhere-random distributions and this property is strong with respect

to both X and Y . Formally,

Pr
y←RY

[Response(X, y) is 2−10len-close to being SR ] > 1− 2−10len,

Pr
x←RX

[Response(x, Y ) is 2−10len-close to being SR ] > 1− 2−10len.

Hitting matrices: Let c be any fixed nrows × clen matrix. Then there are

deficiency-2len subsources X̂ ⊂ X, Ŷ ⊂ Y such that Pr[c ∈ SE(X̂, Ŷ )] = 1.

Fixed matrices on low deficiency subsources: Given any particular in-

dex i, there are 20len deficiency subsources X̂ ⊂ X, Ŷ ⊂ Y such that

Response(X̂, Ŷ )i is a fixed matrix. Further, X,Y is 2−10len-close to a con-

vex combination of subsources such that for every X̂, Ŷ in the combination,

• X̂, Ŷ are independent.

• Response(X̂, Ŷ )i is constant.

• X̂, Ŷ are of deficiency at most 20len.

6.2.2. The tree of parts. We define a degree-t tree Tn,t with depth log n/ log t

< log n, which we call the n, t partition tree. The nodes of Tn,t are subintervals

of [1, n] defined in the following way:

7That is, for every i < c and x1, . . . , xi ∈ Supp(X1,...,i), H∞(Xi+1|x1, . . . , xi) > 10clen5.
8Note that although Theorem 4.3 is stated for inputs of length exactly n, we can always

pad a shorter input with zeroes to make it long enough.
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1. The root of the tree is the interval [1, n].

2. If a node v is identified with the interval [a, b] of length greater than k1/3,

we let v1, . . . , vt denote the t consecutive disjoint length-|v|/t subinter-

vals of v. That is, vi = [a+ b−a
t (i− 1), a+ b−a

t i]. We let the ith child of

v be vi.

For a string x ∈ {0, 1}n and a set S ⊆ [1, n], we will denote by xS the

projection of x onto the coordinates of S. If v is a node in Tn,t, then xv denotes

the projection of x onto the interval v.

The following definitions will be useful.

Definition 6.4 (Path to a vertex). Given a partition tree Tn,t and a vertex v,

let Pv denote the path from the vertex v to the root in the tree Tn,t; that is,

the set of nodes (including v) on the path from v to the root.
Definition 6.5 (Parent of a vertex). Given a partition tree Tn,t and a ver-

tex v, let par(v) denote the parent of v.

Definition 6.6 (Left family of v). Given a partition tree Tn,t and a vertex v,

let Lv denote the left family of v; i.e., if v is the interval [c, d], define Lv =

{[a, b] ∈ Tn,t : a ≤ c and par(w) ∈ Pv}. Note that for every vertex v, |Lv| =

O(t log n) since the number of vertices in Pv is at most log n.

6.2.3. Operation of the algorithm Disp. We now define the operation of

our 2-source disperser Disp.

Algorithm 6.7.

Disp(x, y)
Inputs: x, y ∈ {0, 1}n, Output: 1 bit.

1. On inputs x, y ∈ {0, 1}n, the algorithm Disp, working from the leaves

upwards, will define for each node v in the tree Tn,t a boolean challenge

matrix (Challenge(xv, y)) with at most nrows rows, each of length clen

in the following way:

(a) If v is a leaf, then Challenge(xv, y) is the matrix with a single all 0’s

row.

(b) If v is not a leaf, then Challenge(xv, y) is computed as follows. Recall

that v1, . . . , vt denote v’s t children.

(i) For each c-tuple 1 ≤ i1 < i2 < · · · < ic ≤ t, let S = vi1 ∪
vi2 ∪ · · · ∪ vic and append the row BExt(xS , y) to the matrix

Challenge(xv, y).

(ii) If there exists an i such that Challenge(xvi , y) is not clen-

responded by Response(xv, y), let i0 be the smallest such i and

append all the rows of Challenge(xvi0 , y) to Challenge(xv, y).

2. Next Disp will make a second pass on the tree, again working from the

leaves upwards. This time it will define for each node v in the tree Tn,t
a bit val(xv, y) in the following way:
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(a) If v is a leaf, then val(xv, y) = 0.

(b) If v is not a leaf, let v1, . . . , vt be v’s t children. Let q be the

depth of v. If for every i Challenge(xvi , y) is clenq,0-responded by

Response(xvi , y), set val(xv, y) = 0. Else let i0 be the smallest i for

which this does not happen. Then

(i) If Challenge(xvi0 , y) is clenq,1-responded by Response(xv, y),

set val(xv, y) = 1.

(ii) Else if Challenge(xvi0 , y) is clenq,2-responded but not clenq,1-

responded by Response(xv, y), set val(xv, y) = 0.

(iii) Else set val(xv, y) = val(xvi0 , y).

3. The output of Disp is val(x[1,n], y).

6.3. Formal analysis. We now prove Theorem 1.10, which is the main

Theorem of this paper. We need to prove that Disp is a 2-source disperser

for min-entropy k = 2log0.9 n. We show that given two independent k-sources

X and Y over n bits, Disp(X,Y ) outputs both zero and one with positive

probability.

The analysis proceeds in several steps. In each step we make a restriction

on one or both of the input sources. When we are done, we will get the desired

subsources Xgood, Y good on which

Pr[Disp(Xgood, Y good) = 1] ∈ 1/2± o(1) .

6.3.1. Step 1: Preprocess X . The first step involves only the first sourceX.

We will restrict X to a “mediocre” subsource Xmed, which will have some at-

tractive properties for us. We will ensure that in Xmed there are a couple of

parts that have entropy but do not have all the entropy of the source. We first

prove a general lemma — Lemma 6.8 — and then use it to prove Lemmas 6.9

and 6.10 to show that we obtain the desired subsource Xmed.

Lemma 6.8 (Two-types lemma.). Let X be a general k source over {0, 1}n
divided into t parts X = X1 ◦ · · · ◦Xt. Let c be some positive integer, and let

k′ < k be such that (c+ 1)k′ + 4t2 ≤ k. Then there exists a subsource X ′ ⊆ X
of deficiency at most d = ck′+2t2 that satisfies one of the following properties :

Either

Somewhere high source — one high part: There exists i ∈ [t] such

that the first i− 1 parts of X ′ (namely X ′1, . . . , X
′
i−1) are constant, and

H∞(X ′i) ≥ k′

or

Somewhere block-source — c medium parts: There exist 0 < i1 <

i2 < · · · < ic ≤ t such that the first i1 − 1 parts of X ′ are constant for

every j ∈ [c], and X ′i1 , X
′
i2
, . . . , X ′ic is a (C, k′/t) block-source.
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Proof. We let τ1 = 0, τ2 = k′/t, τ3 = k′ and τ4 = n and use Lemma 3.20

to reduce X to a deficiency 2t2 source X ′′ such that for every i ∈ [t] and every

x1, . . . , xi−1 ∈ Supp(X ′′1,...,i−1), the conditional entropy H∞(X ′′i |x1, . . . , xi−1)

always falls into the same interval of [0, k′/t], [k′/t, k′] and [k′, n], regardless of

the choice x1, . . . , xi. We call parts where this conditional entropy falls into the

interval [0, k′/t) “low,” parts where this entropy falls into the interval [k′/t, k′)

“med” and parts where it is at least k′ “high.” We divide into two cases:

Case 1: If there are at most c−1 medium parts before the first high part,

we let i be the position of the first high part and fix the first i − 1

parts to their most typical values. The conditional entropy X1 given

this prefix is still at least k′. Furthermore, since we fixed at most t

low parts and at most c medium parts, the overall deficiency is at most

(c− 1)k′ + tk′/t = ck′.

Case 2: If there are at least c medium parts in the source, we let i be the

position of the first medium part and fix the first i − 1 parts to their

most typical value. All medium parts remain medium conditioned on

this prefix, and the entropy we lose is at most tk′/t ≤ k′. �

We will now use Lemma 6.8 to show that we can restrict the input source

X to a subsource X sb (for “somewhere block”) satisfying some attractive prop-

erties.

Lemma 6.9. Let X be a source over {0, 1}n with min-entropy k. Let c, t

be values satisfying t1/c
4 ≥ 20c. Then there exist a deficiency k/10 + 4t2 log n

subsource X sb of X and a vertex vmed of Tn,t with the following properties :

• For every v in the left family of v Lvmed (see Definition 6.6), X sb
v is fixed

to a constant.

• The source X sb
par(vmed)

is a (c, k

20tcn1/c4
)-somewhere block-source.

• X sb
vmed is the first block of the block-source in X sb

par(vmed)
.

Proof. We prove the lemma by induction on dlog(n/k)e = dlog n− log ke.
If n = k, then this is the uniform distribution and everything is trivial. We

invoke Lemma 6.8 with parameter k′ = k/(20c) to obtain a deficiency k/20+4t2

subsource X ′ that is either k′-somewhere high or (c, k′/t)-somewhere block-

source.

If X ′ is (c, k′/t)-somewhere block-source, then set X sb = X ′ and vmed

corresponding to the first part of the block-source given by Lemma 6.8 (and

hence par(vmed) = [1, n]). Since k′/t = k/(20tc), we see that X sb, vmed satisfy

the properties in the conclusion of the lemma.

The second possibility is that X ′ is a k′-somewhere high source. We let

i be the index of the high block of entropy k′ and let vi be the corresponding

interval. Note that for all j < i, X ′vj attains some fixed value with probability 1.
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Fixed parts

par(V       )med

Figure 2. Finding a medium part in X sb.

Let n′ = |vi| = n/t. Since n′

k′ = n
k

20c
t < n

4k , we have that log(n′/k′) <

log(n/k)−2 and so can assume by the induction hypothesis that the statement

holds for the source Z = X ′vi . This means that we have a subsource Z ′ ⊂ Z

of deficiency k′/10 + 4t2 log n′ of Z and a node par(vmed) in the tree Tn′,t such

that (below we use the fact that t1/c
4 ≥ 20c):

• For every v ∈ Lvmed , Z ′v is fixed to a constant.

• The source Z ′
par(vmed)

is a
Ä
c, k′

20tcn′1/c4
= k

20tcn1/c4
· t1/c

4

20c ≥
k

20tcn1/c4

ä
-

somewhere block-source.

• Z ′
vmed is the first block of the block-source in Z ′

par(vmed)
.

We define X sb to be the natural extension of the subsource Z ′ to a sub-

source of X ′. (That is, X sb is defined by restricting X ′vi to X ′.) Then we see

that X sb ⊂ X ′ is of deficiency at most k′/10+4t2 log n′. Since log n′ ≤ log n−1

and k′/10 < k/20, k′/10 + 4t2 log n′ ≤ k/20 + 4t2(log n− 1). Hence X sb ⊂ X is

a source of deficiency at most k/10+4t2 log n. It is clear that X sb and par(vmed)

satisfy our requirements. �

Note that by our setting of parameters, the entropy of the medium part

promised by the above lemma is actually k

20tcn1/c4
= k

20t2c
.

Next we show that by invoking the above lemma twice, we can move to a

subsource Xmed that has even more structure.

Lemma 6.10. Let X be a source over {0, 1}n with min-entropy k. Let c, t

be as above. Then there exists a deficiency k/5 + 8t2 log n subsource Xmed of

X and three vertices par(vmed), vmed and vb = [a, b] of Tn,t with the following

properties :
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high

med

high

med

Vmed

X med

Fixed parts

Vb

par(V       )med

Figure 3. Finding two related medium parts in Xmed.

• vmed is an ancestor of vb.

• The source Xmed
par(vmed)

is a (c, k

40tcn1/c4
)-somewhere block-source, and Xmed

vmed

is the first medium block in this source.

• The source Xmed
vb

is a
Ä
c, k

(20tcn1/c4 )2

ä
-somewhere block-source.

• There is a value x ∈ {0, 1}a−1 such that Xmed
[1,a−1] = x with probability 1.

Proof. We prove this lemma by invoking Lemma 6.9 twice. We start with

our source X and invoke Lemma 6.9 to find a subsource X sb and vertices

par(vmed), vmed as in the conclusion of the lemma. Next we apply the lemma

again to X sb
vmed .

Since X sb
vmed is a source on n′ < n bits with min-entropy k

20tcn1/c4
, we

get that there is a subsource Xmed ⊂ X sb with deficiency at most k

400tcn1/c4
+

4t2 log n and a vertex vb that is a somewhere block-source. Since X sb ⊂ X was

of deficiency at most k/10 + 4t2 log n, we get that Xmed ⊂ X is a subsource of

X with deficiency at most k/5 + 8t2 log n. Further, note that

H∞(Xmed
vmed) ≥ k

20tcn1/c4
− k

400tcn1/c4
− 4t2 log n

≥ k

30tcn1/c4
− 4t2 log n ≥ k

40tcn1/c4

by our choice of parameters. �

We apply Lemma 6.10 to the input source X with our parameters k, t as

chosen in Section 6.1. We obtain a deficiency-k/4 subsource (since 4t2 = o(k))
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Xmed of X, and three nodes par(vmed), vmed, vb = [a, b] in the tree Tn,t satisfying

(by our choice of parameters):

Result of Step 1: A deficiency-k/4 subsource Xmed ⊂ X satisfying

vmed is the leading block in a block-source: Xmed
par(vmed)

is a (c, k

40tcn1/c4

≥ k0.9)-somewhere block-source, with a sub-block Xmed
vmed that is the first

nonconstant “good” sub-block.

Xmed
vb

has a block-source: The source Xmed
vb

is a (c, k
(10t2c)2 ≥ k0.9)-some-

where block-source.

Fixed left family: For every w ∈ Lvb (Definition 6.6), Xmed
w is fixed.

6.3.2. Step 2: Ensuring that challenges from the left family are properly

responded. Our desired good subsources Xgood and Y good will be deficiency-

clen3 subsources of Xmed and Y . We will ensure that in the final subsources,

for every element w ∈ Lvb , Challenge(Xgood
w , Y good) is clen-responded by the

response Response(Xgood

par(w), Y
good) with probability 1.

First we will show that we can move to a subsource where the relevant

challenges are fixed.

Claim 6.11. There is a subsource Y ′ ⊂ Y of deficiency at most t·len·log n

such that every challenge Challenge(Xmed
w , Y ′) for w ∈ Lvb is fixed to a constant

string in the subsources Xmed, Y ′.

Proof. By the {Fixed left family} property after Step 1, we have that

for every w ∈ Lvb , Xmed
w is fixed. Note that Challenge(Xmed

w , Y ) is a function

only of Xmed
w and Y . Thus, for every w ∈ Lvb , Challenge(Xmed

w , Y ) is a function

only of Y .

There are at most |Lvb | ≤ t log n challenges to consider, each of length len

bits. Thus, by Lemma 3.13, we can ensure that there is a deficiency-t · len · log n

subsource Y ′ ⊂ Y in which all the challenges are also fixed. �

Next we will prove that there are even smaller subsources in which each

of these challenges is responded with probability 1.

Claim 6.12. There are deficiency-O(t·len·log n) subsources Xgood ⊂ Xmed

and Y good ⊂ Y ′ in which every challenge Challenge(Xgood
w , Y good), w ∈ Lvb is

clen-responded with probability 1 by the response Response(Xgood

par(w), Y
good).

Proof. Let Lvb = {w1, w2, . . . , wd}. We will prove the stronger statement

that for every i with 1 ≤ i ≤ d, there are subsources X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′ of

deficiency at most 2leni in which each Challenge(X ′′wj , Y
′′) is clen-responded by

Response(X ′′par(wj), Y
′′) for 1 ≤ j ≤ i. We prove this by induction on i.

For the base case of i = 1, note that Challenge(Xmed
w1

, Y ′) is fixed to a

constant in the source Xmed. Since H∞(Xmed
par(w1)) ≥ H∞(Xmed

vb
) ≥ k0.9 and

H∞(Y ′) ≥ k − t · len · log n ≥ k0.9, we get that Xmed
par(w), Y

′ are sources that
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have enough entropy for our somewhere extractor SE to succeed. By the

{Hitting matrices} property of Corollary 6.3, we can then ensure that there

are deficiency-2len subsources X ′′⊂Xmed, Y ′′⊂Y ′ in which Challenge(X ′′w1
, Y ′′)

is clen-responded by the Response(X ′′par(w1),Y ′′ with probability 1.

For i > 1, we use the inductive hypothesis to find subsources X̂ ⊂
Xmed, Ŷ ⊂ Y ′ of deficiency at most 2len(i− 1) on which all the previous chal-

lenges are clen-responded. Then since H∞(X̂par(wi)) ≥ H∞(Xmed
vb

)−2len(i−1)

≥ k0.9 and H∞(Ŷ ) ≥ k− t · len · log n−2len(i−1) ≥ k0.9, we get that X̂par(w), Ŷ

are sources that have enough entropy for our somewhere extractor SE to suc-

ceed. Thus, we can find deficiency-2len · i subsources X ′′ ⊂ Xmed, Y ′′ ⊂ Y ′

in which even Challenge(X ′′wi , Y
′′) is clen-responded by Response(X ′′par(wi), Y

′′).

�

Together, the claims give that Xgood ⊂ Xmed, Y good ⊂ Y are subsources in

which all the challenges of the left family are responded with probability 1 and

are of deficiency at most O(t · len · log n) < clen2.1 by our choice of parameters.

Since we only went down to a clen2.1 deficiency subsource of Xmed in all

of these steps, by Corollary 3.19, we still retain the block-source structure of

Xmed
vb

. In particular, the corollary implies that Xgood

vb
is 2−19clen3

close to being

a (c, k0.9 − 20clen3 ≥ k0.8)-somewhere block-source.

Similarly, H∞(Xgood

vmed) ≥ H∞(Xmed
vmed) − clen3 ≥ k0.9 − clen3 ≥ k0.8 and

conditioned on any fixing of Xgood

vmed , H∞(Xgood

par(vmed)
) ≥ k0.9 since Xmed

par(vmed)
was

shown to be a block-source with min-entropy k0.9.

Result of Step 2: At this point we have Xgood and Y good, which are defi-

ciency-k/4 + clen3 subsources of the sources X and Y satisfying

Xgood

vmed ◦Xgood is a block-source: H∞(Xgood

vmed) ≥ k0.8 and Xgood

par(vmed)
has en-

tropy greater than k0.9 even conditioned on any fixing of Xgood

vmed .

Xgood

vb
has a block-source: The source Xgood

vb
is 2−19clen3

close to being a

(c, k0.8)-somewhere block-source.

Low blocks are correctly identified: For every w∈Lvb , Challenge(Xgood
w ,

Y good) is clen-responded with probability 1 by Response(Xgood

par(w), Y
good).

6.3.3. Step 3: Ensuring that challenges along the path are somewhere ran-

dom. We argue that in Xgood, Y good, for every w ∈ Pvb , Challenge(Xgood
w , Y good)

is 2log2 n(2−k
c1 + 2−clen)-close to having min-entropy clen. In fact, something

even stronger is true.

Lemma 6.13 (The challenges along the good path are somewhere ran-

dom). Let X ′ ⊂ Xgood, Y ′ ⊂ Y good be any deficiency-20len subsources. Then

in these subsources, if w ∈ Pvb is an ancestor of vb, Challenge(X ′w, Y
′) is

2log2 n(2−k
c1 + 2−clen)-close to being somewhere random.
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Proof. We will prove the lemma by induction on the vertices in Pvb , start-

ing from vb and moving up the path. Let h be the depth of vb in the tree. (Note

that h = O(log n).) Let ` be the number of matrices in the output of Response

(note that ` = poly(n) by Corollary 6.3). For w ∈ Pvb at a distance of i from

vb, we will prove that as long as X ′ ⊂ Xgood, Y ′ ⊂ Y good are of deficiency at

most (h− i− 1)20len, Challenge(X ′w, Y
′) is (2`)i(2−k

c1 + 2−clen)-close to being

somewhere random.

For the base case, note that by Corollary 3.19, X ′
vb

is 2−19clen3
+2−20clen3

<

2−18clen3
-close to being a (c, k0.8 − (h − 1)20len − 20clen3 >

√
k) somewhere

block-source and Y ′ is an independent source with min-entropy k − (k/4 +

clen3 + (h−1)20len) >
√
k. Thus, in the subsources X ′, Y ′, Challenge(X ′

vb
, Y ′)

is 2−18clen3
+ 2−k

c1 < (2−clen + 2−k
c1 )-close to being somewhere random by

Corollary 6.2.

Now let w be an ancestor of vb and let w′ be its child on the path to vb. We

want to show that the challenge has entropy even on deficiency-(h− i−1)20len

subsources X ′ ⊂ Xgood, Y ′ ⊂ Y good.

We will show that with high probability, Challenge(X ′w, Y
′) contains

Challenge(X ′w′ , Y
′) as a substring. By the induction hypothesis, we will then

get that Challenge(X ′w, Y
′) must be statistically close to being somewhere ran-

dom also. By our construction, to ensure that this happens we merely need to

ensure that Challenge(X ′w′ , Y
′) is clen unresponded by Response(X ′w, Y

′). We

will argue this using the union bound. Fix an index j and consider the jth

response string Response(X ′w, Y
′)j .

By the {Fixed matrices on low deficiency subsources} property of

Corollary 6.3, we get that X ′, Y ′ is 2−10len close to a convex combination of

independent sources X̂, Ŷ , where each element of the convex combination is of

deficiency at most 20len and the jth response string Response(X̂w, Ŷ )j is fixed

to a constant on these subsources. Each element of this convex combination

then has a deficiency of at most (h− i−1)20len+20len = (h− (i−1)−1)20len

from Xgood, Y good.

By induction hypothesis, we get that Challenge(X̂w′ , Ŷ ) is (2`)i−1(2−k
c1 +

2−clen)-close to being somewhere random. Therefore, the probability that

Challenge(X ′w′ , Y
′) is responded by Response(X ′w, Y

′) is at most

2−clen + (2`)i−1(2−k
c1

+ 2−clen) < 2 · (2`)i−1(2−k
c1

+ 2−clen).

Thus, by the union bound over the ` response strings, we get that the proba-

bility that the challenge is responded is at most (2`)i(2−k
c1 + 2−clen).

Note that the length of the path to vb from the root is o(log(n)), so we will

need to repeat the induction only log(n) times. We get that the challenge is

(2`)h(2−k
c1 +2−clen) < 2log2 n(2−k

c1 +2−clen)-close to being somewhere random.

�
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Result of Step 3: At this point we have Xgood and Y good, which are defi-

ciency-k/4 + clen3 subsources of the sources X and Y satisfying

Challenges along the path are somewhere random, even on sub-

sources: If X ′ ⊂ Xgood, Y ′ ⊂ Y good are deficiency-20clen subsources,

Challenge(X ′w, Y
′) is 2log2 n(2−k

c1 + 2−clen) close to being somewhere

random in X ′, Y ′ for every vertex w ∈ Pvmed .

6.3.4. Step 4: Ensuring that Disp outputs both 0 and 1. We will ensure

that our disperser outputs both 1 and 0 with significant probability. There are

two remaining steps:

• We will ensure that in our good subsources Xgood, Y good, with high prob-

ability (say 1− γ), val(Xgood

[1,n], Y
good) = val(Xgood

vmed , Y
good).

• We will ensure that in our good subsourcesXgood, Y good, val(Xgood

vmed , Y
good)

is both 0 and 1 with significant probability (say γ1/10).

By the union bound these two facts imply that the disperser outputs both

0 and 1 with positive probability.

Lemma 6.14. For every vertex v on the path from vmed to the root and

for any 1 ≤ q ≤ clen,

Pr[Challenge(Xgood
v , Y good) is q-responded by Response(Xgood

par(v), Y
good)]

≤ 2−q + 2log2 n(2−k
c1

+ 2−clen).

Proof. By the {Fixed matrices on low deficiency subsources} prop-

erty of Corollary 6.3, we get that Xgood, Y good is 2−10len-close to a convex

combination of independent sources, where each element X ′, Y ′ of the con-

vex combination is of deficiency at most 20len and the jth response string

Response(X ′par(v), Y
′)j is fixed to a constant on these subsources. Thus, by

Lemma 6.13,

Pr[Challenge(X ′v, Y
′) is q-responded by Response(X ′par(v), Y

′)]

< 2−q + 2log2 n(2−k
c1

+ 2−clen). �

Lemma 6.15 (val(Xgood

vmed , Y
good) propagates to the root). Let h be the depth

of vmed in the tree. Then

Pr
Xgood,Y good

[val(xvmed , y) 6= val(x[1,n], y)] < 2−clenh,0 .

Proof. We will show that for every w ∈ Pvmed , w 6= [1, n],

Pr[val(Xgood
w , Y good) 6= val(Xgood

par(w), Y
good)] < 2−clenh,0/ log2 n.

Then we will apply a union bound over all the edges in the path from the root

to vmed to get the bound for the lemma.
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Let h′ be the depth of w in the tree. Now note that by our construction,

Pr[val(Xgood
w , Y good) 6= val(Xgood

par(w), Y
good)]

< Pr[Challenge(Xgood
w , Y good) is clenh′,2-responded by Response(Xgood

par(w), Y
good)]

≤ 2−clenh′,2 + 2log
2 n(2−k

c1
+ 2−clen),

where the last inequality is by Lemma 6.14. Using the union bound over all

poly(n) response strings, we then get that the probability that the challenge

is responded is at most poly(n)(2−clenh′,2 + 2log2 n(2−k
c1 + 2−clen) + 2−10len) <

(1/ log2 n)2−clenh,0 by our choice of parameters. Applying a union bound over

the path from the root of the tree to vmed, we get the bound claimed by the

lemma. �

Finally we argue that the probability that val(xvmed , y) is 0 or 1 is signifi-

cantly higher than 2−clenh,0 . We do this by showing that for any q, the proba-

bility that Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good)

can be bounded from above and below.

Lemma 6.16. Let

p = Pr[Challenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

par(vmed)
, Y good)].

Then

2−q·nrows − 2−10len − 2−20len ≤ p ≤ 2−q + 2log2 n(2−k
c1

+ 2−clen).

Proof. In Step 2 of the analysis we showed that Xgood

vmed ◦X
good

par(vmed)
is block-

source with block entropy k0.9. Thus, Xgood is a convex combination of sources

where for every element of the combination X̂,

• X̂vmed is fixed.

• X̂par(vmed) has min-entropy k0.8.

For every such subsource X̂, Challenge(X̂med
v , Y good) is a function only of

Y good. Thus, by Lemma 3.13, for every such subsource X̂, Y good is 2−20len close

to a convex combination of sources where for each element of the combination,

Ŷ is of deficiency at most 21len and Challenge(X̂med
v , Ŷ ) is fixed to a constant.

Thus, overall we get a convex combination of sources where for each element

of the convex combination,

• In X̂, Ŷ , Challenge(X̂med
v , Ŷ ) is fixed.

• X̂par(vmed), Ŷ are independent sources with min-entropy k0.8 each.

By Corollary 6.3, we get that Response(X̂par(vmed), Ŷ ) is 2−10len-close to

being somewhere random, implying that the challenge is q-responded with
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probability at least 2−q·nrows − 2−10len in these subsources. Thus, we get that

PrChallenge(Xgood

vmed , Y
good) is q-responded by Response(Xgood

vmed , Y
good)]

≥ 2−q·nrows − 2−10len − 2−20len.

The upper bound follows from Lemma 6.14. �

This lemma then implies that val(Xgood

vmed , Y
good) takes on both values with

significant probability.

Lemma 6.17 (val(Xgood

vmed , Y
good) is both 0 and 1 with significant probabil-

ity). Specifically,

Pr[val(Xgood

vmed , Y
good) = 1] > (0.5)2−lenh,1 ,

Pr[val(Xgood

vmed , Y
good) = 0] > (0.5)2−lenh,2 .

Proof. Note that

Pr[val(Xgood

vmed , Y
good) = 1]

≥ Pr[Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

par(vmed)
, Y good)]

− Pr[Challenge(Xgood

vmed , Y
good) is clenh,0-responded by Response(Xgood

par(vmed)
, Y good)]

≥ 2−clenh,1·nrows − 2−10len − 2−20len

− 2−clenh,0 + 2log
2 n(2−k

c1
+ 2−clen)

≥ 2−lenh,1 − 2−10len − 2−20len − 2 · 2−clenh,0

≥ (0.5)2−lenh,1 .

Similarly,

Pr[val(Xgood

vmed , Y
good) = 0]

≥ Pr[Challenge(Xgood

vmed , Y
good) is clenh,2-responded by Response(Xgood

vmed , Y
good)]

− Pr[Challenge(Xgood

vmed , Y
good) is clenh,1-responded by Response(Xgood

vmed , Y
good)]

≥ 2−lenh,2 − 2−10len − 2−20len − 2 · 2−clenh,1

> (0.5)2−lenh,2 . �

This concludes the proof that Disp(X,Y ) outputs both zero and one proving

Theorem 1.10.

7. Proof of Theorem 4.1

In this section we prove Theorem 4.1 (which gives an extractor for one

block-wise source and one general source). Our techniques rely on those of Rao

[Rao09]. In particular, we will obtain our extractor by reducing the problem to

the one of constructing an extractor for two independent somewhere-random

sources, a problem which was solved in [Rao09].
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We first discuss the new ideas that come into obtaining the improvement

in the error parameter (which can be also be applied directly to Rao’s [Rao09]

extractor). We then give the full construction for the new extractor.

7.1. Achieving small error. The lower error is achieved by a careful anal-

ysis of our construction. A somewhat similar observation was made by Chung

and Vadhan [CV], who noted that the construction of Rao can more directly

be shown to have low error.

In our construction, we will actually prove the following theorem, which

gives an extractor for a block-source and an independent somewhere-random

source.

Theorem 7.1 (Somewhere random + block-source extractor). There exist

constants α, β, γ < 1 and a polynomial time computable function SR + BExt :

{0, 1}cn × {0, 1}tk → {0, 1}m such that for every n, t, k, with k > log10 t, k >

log10 n with c = O( log t
log k ) such that if X = X1 ◦ · · · ◦Xc is a (k, . . . , k) block-

source and Y is an independent (t× k) (k − kβ)-SR-source, then

|X ◦ SR + BExt(X,Y )−X ◦ Um| < ε,

|Y ◦ SR + BExt(X,Y )− Y ◦ Um| < ε,

where Um is independent of X and Y , m = k − kα, ε = 2−k
γ
.

Note that we can get an extractor from a block-source and a general inde-

pendent source from Theorem 7.1 by using the fact that a general source can

be transformed into a somewhere-random source (Proposition 3.22). However,

using this transformation spoils the error, since the transformation has only

polynomially small error. In order to bypass this difficulty, we use a more care-

ful analysis. We first use Theorem 7.1 to prove the following theorem which is

weaker than Theorem 4.1. We will then obtain Theorem 4.1.

Theorem 7.2 (Block + arbitrary source extractor ). There exist absolute

constants c1, c2, c3 > 0 and a polynomial time computable function BExt :

{0, 1}cn×{0, 1}n′ → {0, 1}m such that for every n, n′, k, with k > log10(n+n′)

with c = c1
logn
log k , such that if X = X1 ◦ · · · ◦Xc is a k block-source and Y is an

independent (n′, k)-source, there is a deficiency-2 subsource Y ′ ⊆ Y such that

|X ◦ BExt(X,Y ′)−X ◦ Um| < ε,

|Y ′ ◦ BExt(X,Y ′)− Y ′ ◦ Um| < ε,

where Um is independent of X and Y , and for m = c2k and ε = 2−k
c3 .

Proof. The idea is to reduce to the case of Theorem 7.1. We convert

the general source Y into an SR-source. To do this we will use a strong

seeded extractor and Proposition 3.22. If we use a strong seeded extractor
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that requires only O(log n) bits of seed, the SR-source that we get will have

only poly(n) rows. This adds a polynomial amount of error. By Lemma 3.15,

we can go to a deficiency-2 subsource Y ′ ⊆ Y that has high entropy in some

row. This is good enough to use our extractor from Theorem 7.1 and get the

better error. �

Proof of Theorem 4.1. We prove the theorem by showing that any extrac-

tor that satisfies the conclusions of Theorem 7.2 (i.e., low strong error on a

subsource) must satisfy the seemingly stronger conclusions of Theorem 4.1.

Let BExt be the extractor from Theorem 7.2, set up to extract from a

k/2 block-source and a k/2− 2 general source. Then we claim that when this

extractor is run on a k block-source and a k general source, it must succeed

with much smaller error.

Given the source X, let BX ⊂ {0, 1}n
′

be defined as

BX = {y : |BExt(X, y)− Um| ≥ ε}.

Then

Claim 7.3. |BX | < 2k/2.

Proof. The argument for this is by contradiction. Suppose |BX | ≥ 2k/2.

Then define Z to be the source that picks a uniformly random element of BX .

By the definition of BX , this implies that |Z ′ ◦ BExt(X,Z ′)− Z ′ ◦ Um| ≥ ε for

any subsource Z ′ ⊂ Z. This contradicts Theorem 7.2. �

Thus, Pr[Y ∈ BX ] < 2k/2−k = 2−k/2.

This implies that |BExt(X,Y ) − Um| < ε + 2−k/2, where ε is the ε from

Theorem 7.2. �

Remark 7.4. In fact, the above proof actually implies the extractor from

Theorem 4.1 is strong with respect to Y ; i.e., |Y ◦ BExt(X,Y ) − Y ◦ Um| <
ε+ 2−k/2.

7.2. Extractor for general source and an SR-source with few rows. Here we

will construct the extractor for Theorem 7.1. The main step in our construction

is the construction of an extractor for a general source and an independent

SR-source that has few rows. Once we have such an extractor, it will be

relatively easy to obtain our final extractor by iterated condensing of SR-

sources.

First, we prove the following theorem.

Theorem 7.5. There are constants α, β < 1 and a polynomial time com-

putable function BasicExt : {0, 1}n × {0, 1}kγ+1 → {0, 1}m such that for every

n, k(n) with k > log10 n, and constant 0 < γ < 1/2, if X is an (n, k) source
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and Y is a (kγ × k) (k − kβ)-SR-source, then

|Y ◦ BasicExt(X,Y )− Y ◦ Um| < ε

and

|X ◦ BasicExt(X,Y )−X ◦ Um| < ε,

where Um is independent of X,Y , m = k − kΩ(1) and ε = 2−k
α
.

Proof. We are trying to build an extractor that can extract from one

(kγ × k) kβ-SR-source Y and an independent (n, k) source X. We will reduce

this to the case of two independent aligned SR-sources with few rows, for which

we can use Theorem 3.27.

The plan is to use the structure in the SR-source Y to impose structure

on the source X. We will first use Y and X to get a list of candidate seeds,

such that one seed in the list is close to uniformly random and independent of

both X and Y . Once we have this list, we can readily reduce the problem to

that of extracting from independent aligned SR-sources with few rows.

In the following discussion, the term slice refers to a subset of the bits

coming from an SR-source that takes a few bits of the SR-source from every

row ( Definition 3.8). We also remind the reader of the following notation: if

f : {0, 1}r × {0, 1}r → {0, 1}m is a function and a, b are samples from (t × r)
somewhere sources, f(~a,~b) refers to the (t×m) matrix whose ith row is f(ai, bi).

Similarly, if c is an element of {0, 1}r and b is a sample from a (t×r) somewhere

source, f(c,~b) refers to the (t×m) matrix whose ith row is f(c, bi).

We first write down the algorithm for our extractor. Then we shall de-

scribe the construction in words and give more intuition.

Algorithm 7.6.

BasicExt(x, y)
Input: x, a sample from an (n, k) source and y a sample from a (kγ × k)

kβ-somewhere-random source.

Output: z

Let w,w′, w′′, l, d, β1 be parameters that we will pick later. These will

satisfy w′′ > w > kγ and w − kγ > w′.

Let Raz1 : {0, 1}n×{0, 1}w → {0, 1}w′ be the extractor from Theorem 3.26

setup to extract w′ bits from an (n, k) source, using a (w, 0.9w) source as seed.

Let Raz2 : {0, 1}w′ × {0, 1}w′′ → {0, 1}d be the extractor from Theo-

rem 3.26, setup to extract d bits from a (w′, w′) source and an independent

(w′′, 0.9w′′) source.

Let Ext1 : {0, 1}n×{0, 1}d → {0, 1}k−kβ1 and Ext2 : {0, 1}k1+γ ×{0, 1}d →
{0, 1}k−2kβ1 be strong seeded extractors from Theorem 3.24, each set up to

extract from min-entropy k − kβ1 with error 2−k
Ω(1)

.
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Let 2SRExt : {0, 1}kγ(k−2kβ1 )×{0, 1}kγ(k−2kβ1 ) → {0, 1}m be the extractor

from Theorem 3.27, setup to extract from two aligned (kγ × k − 2kβ1) SR-

sources. Let Slice be the function defined in Definition 3.8.

1. Set s = Slice(y, w).

2. Treating s as a list of kγ seeds, use it to extract from x to get q =

Raz1(x,~s). The result is a string with kγ rows, each of length w′.

3. Set r = Slice(y, w′′).

4. Let h = Raz2(~q, ~r), i.e., h is a list of kγ strings, where the ith string is

Raz2(qi, ri).

5. Let x′ = Ext1(x,~h), y′ = Ext2(y,~h).

6. Use 2SRExt to get z = 2SRExt(x′, y′).

The first target in the above algorithm is to generate a list of candidate

seeds (S) from the sources, one of which will be close to uniformly random. To

generate the list of seeds that we want, we will first take a small slice of the bits

from Y ; i.e., we take Slice(Y,w), where w is a parameter that we will pick later.

(Think of w as kµ for small µ.) We will be able to guarantee that at least one

of the rows of Slice(Y,w) has high entropy. We can then use Raz’s extractor

Theorem 3.26 with these bits to extract from X. This gives us a (kγ × w′)
SR-source Q, where w′ = kθ(1) � w is some parameter that we will pick later.

The two sources that we have now (Q and Y ) are not independent, but note

that when we fix the slice of bits (S) that we used, we get two independent

sources. Y conditioned on the value of S could potentially lose entropy in its

high entropy row. Still, we can expect this high entropy row to have about

k − kβ − wkγ bits of entropy since we fixed only wkγ bits of Y in S. In the

next step we take a wider slice of Y and call it R = Slice(Y,w′′). Note that

on fixing S to a typical value, we get that Q,R are two independent aligned

somewhere high entropy sources. We then use Raz’s extractor again to convert

Q,R into a somewhere-random source H, by applying the extractor to each

pair of rows from Q,R. Since Raz’s extractor is strong, we will be able to

guarantee that one of the rows in the resulting SR-source is independent of

both input sources. Further, we can fix a random variable that determines the

value of H, yet does not break the independence between X,Y .

Thus, once we have H, we can use it with a strong seeded extractor to

extract from both X and Y to get independent aligned SR-sources of the type

that Theorem 3.27 can handle.

We will prove the following lemma.

Lemma 7.7. For every (n, k) source X and a (kγ × k) kβ-somewhere-

random source Y as in Theorem 7.5, we can pick w,w′, w′′, l, d, β1 and a con-

stant β such that (X ◦ Y ) is 2−k
Ω(1)

-close to a convex combination of sources

such that for any source in the convex combination, (X ′ ◦ Y ′) in Step 5 above,
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1. X ′ is independent of Y ′.

2. X ′ is a (kγ × k − kβ) SR-source.

3. Y ′ is a (kγ × k − kβ) SR-source.

Given the lemma, we have reduced the problem to one of extracting from

aligned somewhere-random sources. Theorem 7.5 then follows by the proper-

ties of 2SRExt.

Proof of Lemma 7.7. We assume that we have some fixed random vari-

ables X,Y that satisfy the hypotheses of the lemma. We will make several

claims about the various random variables involved in the construction, set-

ting w,w′, w′′, l, d, β1 along the way to ensure that our lemma is true. In the

rest of this proof, a capital letter represents the random variable for the cor-

responding small letter in the construction above.

Recall that kβ (we are allowed to set β < 1 to anything we want) is the

randomness deficiency of the random row in Y . Note that

Claim 7.8. For any w > 2kβ , S is 2−k
β

close to a (kγ × w) (w − 2kβ)-

SR-source

Proof. This follows from an application of Lemma 3.14. �

We set w = kα1 for some constant α1 such that α1 +γ < 1 and α1 > β and

set w′ = w/10. Note that Theorem 3.26 does give an extractor for a (w,w−2kβ)

source and an independent (n, k) source with output length w/10.

Now Q is correlated with both X and Y . However, when we fix S, Q

becomes independent of Y ; i.e., (X ◦ Q)|S = s is independent of Y |S = s for

any s. Since Raz1 is a strong extractor, Q still contains a random row for a

typical fixing of S.

Claim 7.9. There exists some constant α2 < 1 such that Prs←RS [Q|S=

s is 2−k
α2 close to a (kγ × w′) SR-source] > 1− 2−k

α2 .

Thus, with high probability, Q is independent up to convex combinations

from Y .

Next, set w′′ = kα3 , where 1 > α3 > α1 +γ is any constant. Now consider

the random variable R.

Claim 7.10. R is 2−k
β

close to a (kγ × w′′) (w′′ − 2kβ)-SR-source.

Proof. This follows from an application of Lemma 3.14. �

Now we assume that R is in fact a w′′−2kβ-SR-source. (We will add 2−k
β

to the final error.) After we fix S, R can lose entropy in its random row, but

not much. We can expect it to lose as many bits of entropy as there are in S,
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which is only kα1+γ . Since we picked w′′ = kα3 � kα1+γ , we get that R still

contains entropy.

Claim 7.11. Prs←RS [R|S = s is a (kγ × w′′) (w′′ − 2kα3)-SR-source ] >

1− 2−k
α3 .

Proof. By Fact 3.12, we get that

Pr
s←RS

[R|S=s is a (kγ × w′′) (w′′ − kα1+β − l)-SR-source ] > 1− 2l.

Setting l = kα3 gives the claim. �

Thus, up to a typical fixing of S, (Q,R) are statistically close to two

aligned sources, Q a (kγ × w′) SR-source, and R an independent (kγ × w′′)
(0.1w′′)-SR source. If we set d = w′/10, we see that our application of Raz2

above succeeds. In the aligned good row, Raz2 gets two independent (after

fixing S) sources that are statistically close to having extremely high entropy.

The result of applying Raz2 is the random variable H.

Claim 7.12. H is 2−Ω(d) close to a (kγ ,Ω(d)) SR-source.

In addition, we argue that the random row of H is independent of both

X and Y . Without loss of generality, assume that H1 is the random row of H.

Let α4 > 0 be a constant such that 2−k
α4 is an upperbound on the error of

Ext1,Ext2. Then for a typical fixing of Q,R, we get that X,Y are independent

sources, and the random row of H (which is determined by (Q,R)) is a good

seed to extract from both sources.

Claim 7.13. With high probability, H contains a good seed to extract from

each of the sources :

Pr
(q,r)←R(Q,R)

[|Ext2((Y |R=r), h1(q, r))− Um| ≥ 2−k
α4

]] < 2−k
α4
,

Pr
(q,r)←R(Q,R)

[|Ext1((X|S=s(r), Q=q), h1(q, r))− Um| ≥ 2−k
α4

] < 2−k
α4
.

Sketch of proof. There are two ways in which the claim can fail. Either

S,Q,R steal a lot of entropy from X,Y , or they produce a bad seed in H

to extract from X|S = s,Q = q or Y |R = r. Both events happen with small

probability.

Specifically, we have that there exist constants β1, β2 such that

• By Lemma 3.13, Prr←RR[H∞(Y |R = r) < k − kβ1 ] < 2−k
β2 .

• By Lemma 3.13, Pr(q,r)←RR
[H∞(X|R = r,Q = q) < k − kβ1 ] < 2−k

β2 .

• By our earlier claims, Prr←RR[H|R = r is 2−k
β2 -close to being some-

where random].
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• By our earlier claims, Pr(s,q)←R(S,Q)[H|S = s,Q = q is 2−k
β2 -close to

being somewhere random].
• By the properties of the strong seeded extractor Ext1, for any s, q such

that H∞(X|S = s,Q = q) ≥ k − kβ1 and H|S = s,Q = q is 2−k
β2 -close

to being somewhere random,

Pr
h←RH|Q=q,S=s

[|Ext1((X|S = s,Q = q), (H|S = s,Q = q))− Um| ≥ 2−k
β2

] < 2 · 2−k
β2
.

• By the properties of the strong seeded extractor Ext2, for any r such that

H∞(Y |R = r) ≥ k−kβ1 and H|R = r is 2−k
β2 -close to being somewhere

random,

Pr
h←RH|R=r

[|Ext2((Y |R = r), (H|R = r))− Um| ≥ 2−k
β2

] < 2 · 2−kβ2
.

Thus, we can use the union bound to get our final estimate. �

This concludes the proof of Theorem 7.5. �

Proof of Theorem 7.1. As in [Rao09], the theorem is obtained by repeated

condensing of SR-sources. In each condensing step, we will consume one block

of X to reduce the number of rows of the SR-source by a factor of kΩ(1). Thus,

after O(log t/ log k) steps, we will have reduced the number of rows to just one,

at which point extraction becomes trivial.

Algorithm 7.14.

Cond(x, y)
Set γ � 1/2 to some constant value. Let β be the constant guaranteed

by Theorem 7.1.

For these γ, β, let BasicExt be the function promised by Theorem 7.5. Let

m, ε be the output length and error of BasicExt respectively.

Input: x = x1 ◦ x2 ◦ · · · ◦ xc, a sample from a block-source and y a sample

from a (t× k) SR-source.

Output: z = x2 ◦ x3 ◦ · · · ◦ xc and y′ a ((t/kγ) ×m) sample that we will

claim comes from a SR-source.

1. Partition the t rows of y equally into t/kγ parts, each containing kγ

rows. Let y(j) denote the jth such part.

2. For all 1 ≤ j ≤ t/kγ , let y′j = BasicExt(x1, y(j)).

3. Let y′ be the string with rows y′1, y
′
2, . . . , y

′
t/kγ .

GivenX = X1◦· · ·◦Xc and Y , the above algorithm usesX1 to condense Y .

Even though this introduces dependencies between X and Y , once we fix X1,

the two output distributions are once again independent. Formally, we will

argue that after applying the condenser, the output random variables Z and

Y ′ above are statistically close to a convex combination of independent sources,

where Z is a block-source with one less block than X and Y ′ is an SR-source

with much fewer rows than Y .
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Lemma 7.15. Let X,Y be as above. Let ε be the error of BasicExt. Then

(Z = X2 ◦ . . . ◦Xc, Y ′) is 2
√
ε-close to a convex combination of sources where

each source in the combination has

1. Z is a (k, . . . , k) block-source.

2. Y ′ is a (t/kγ ,m) SR-source.

3. Z is independent of Y ′.

Proof. Let h ∈ [t/kγ ] be such that Y (h) contains the random row. Consider

the random variable X1. We will call x1 good if |BasicExt(Y (h), x1)−Um| <
√
ε,

where m, ε are the output length and error of BasicExt respectively.

Then we make the following easy claims.

Claim 7.16. For good x1,

1. Z|X1 = x1 is a (k, . . . , k) block-source.

2. Y ′|X1 = x1 is a
√
ε-close to being a ((t/kγ)×m) SR-source.

3. Z|X1 = x1 is independent of Y ′|X1 = x1.

Proof. The first and third property are trivial. The second property is

immediate from the definition of good. �

Claim 7.17. Pr[X1 is not good ] <
√
ε.

Proof. This is an immediate consequence of Theorem 7.5. �

These two claims clearly imply the lemma. �

Now we use Cond repeatedly until the second source contains just one row.

At this point we use the one row with Raz’s extractor from Theorem 3.26 with

X to get the random bits.

To see that the bits obtained in this way are strong, first note that Raz’s

extractor is strong in both inputs. Let O be the random variable that denotes

the output of our function BExt(X,Y ). Let Q denote the concatenation of

all the blocks of X that were consumed in the condensation process. Let Um
denote a random variable that is independent of both X,Y . Then we see

that these variables satisfy the hypothesis of Lemma 3.2; i.e., on fixing Q to a

good value, Raz’s extractor guarantees that the output is independent of both

inputs; thus, we must have that the output is close to being independent of

both inputs. The dominant error term in BExt comes from the first step, when

we convert Y to an SR-source. �

8. Open problems

Better Independent Source Extractors: A bottleneck to improving

our disperser is the block versus general source extractor of Theorem 2.4.
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A good next step would be to try to build an extractor for one block-

source (with only a constant number of blocks) and one other indepen-

dent source that works for polylogarithmic entropy, or even an extractor

for a constant number of sources that works for sub-polynomial entropy.

Simple Dispersers: While our disperser is polynomial time computable,

it is not as explicit as one might have hoped. For instance the Ramsy

graph construction of Frankl-Wilson is extremely simple. For a prime p,

let the vertices of the graph be all subsets of [p3] of size p2 − 1. Two

vertices S, T are adjacent if and only if |S∩T | ≡ −1 mod p. It would be

nice to find a good disperser that beats the Frankl-Wilson construction,

yet is comparable in simplicity.

9. Acknowledgements

We would like to thank David Zuckerman for useful comments.

References

[Alo98] N. Alon, The Shannon capacity of a union, Combinatorica 18 (1998),

301–310. MR 1721946. Zbl 0921.05039. http://dx.doi.org/10.1007/

PL00009824.

[Bar06] B. Barak, A simple explicit construction of an nõ(logn)-Ramsey graph,
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