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A combination theorem for
special cube complexes

By Frédéric Haglund and Daniel T. Wise

Abstract

We prove that certain compact cube complexes have special finite cov-

ers. This means they have finite covers whose fundamental groups are

quasiconvex subgroups of right-angled Artin groups. As a result we obtain

linearity and the separability of quasiconvex subgroups for the groups we

consider. Our result applies, in particular, to a compact negatively curved

cube complex whose hyperplanes do not self-intersect. For a cube com-

plex with word-hyperbolic fundamental group, we show that it is virtually

special if and only if its hyperplane stabilizers are separable. In a final

application, we show that the fundamental groups of every simple type

uniform arithmetic hyperbolic manifolds are cubical and virtually special.
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1. Introduction

In this paper we give a high-dimensional generalization of the 1-dimen-

sional work in [Wis02]. The main result there can be loosely reformulated as

follows: the 2-complex built by amalgamating two graphs along a malnormal

immersed graph is “virtually special.” Recall that a subgroup H ⊂ G is

malnormal if gHg−1 ∩ H = {1} for each g 6∈ H, and an immersed subgraph

is malnormal if its π1 maps to a malnormal subgroup. More precisely, we

consider two combinatorial graph immersions A ← M and M → B and form

a nonpositively curved square complex X = A ∪M B by attaching a copy of

M × [−1, 1] to A and B using the maps A ← M × {−1} and M × {1} → B.

The main result of [Wis02] can be reformulated as

Proposition 1.1. If π1M is malnormal in π1A and π1B, then X =

A ∪M B is virtually special.

From a group theoretical viewpoint, two particularly salient features of a

graph Γ are that Γ retracts onto its connected subgraphs and that any finite

immersed subgraph embeds in a finite cover of Γ. These features lead to notions

of canonical completion and retraction for graphs that were studied in [Wis02].

The special cube complexes introduced in [HaW08] are higher dimension spaces

that also admit canonical completion and retraction. Simple aspects of these

notions and their peculiar properties were verified and extended to higher

dimensions in [HaW08], and more difficult such aspects are treated in this

paper. Using these, we prove the following statement, which is reformulated

and proven in Theorem 8.2.

Theorem 1.2. Let A and B be compact virtually special cube complexes

with word-hyperbolic π1, and let A ← M and M → B be local isometries of

cube complexes such that π1M is quasiconvex and malnormal in π1A and π1B.

Let X = A∪M B be the cube complex obtained by gluing A and B together with

M × [−1, 1]. Then X is virtually special.
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The specificness of Proposition 1.1 is misleading; in fact, it was surpris-

ingly widely applicable to many 2-dimensional groups appearing in combina-

torial group theory. We expect Theorem 1.2 to be even more powerful and dy-

namic, both because it can reach higher-dimensional groups and also because

sometimes 2-dimensional groups are not fundamental groups of 2-dimensional

special cube complexes, but require the greater flexibility of higher-dimensions.

A VH-complex X is (up to double cover) a square 2-complex with the

property that the link of each vertex is bipartite. Furthermore, X is negatively

curved if each link has girth ≥ 5. An immediate application of Proposition 1.1

is that negatively curved VH-complexes are virtually special. In higher di-

mensions, this naturally extends to negatively curved “foldable complexes” as

defined in [BŚ99]. The cube complex X is foldable if there is a combinatorial

map X → Q onto a cube Q. X is negatively curved if the link of each vertex

is a flag complex, and moreover, any 4-cycle in the link bounds the union of

two 2-simplices.

Theorem 1.3. Let C be a compact negatively curved foldable cube com-

plex. Then C has a finite cover “C such that “C is a special cube complex.

The work in [Wis02] led to connections between negative curvature and

residual finiteness. Our paper extends this connection considerably, since it is

now understood that surprisingly many of the groups studied in combinatorial

group theory actually act properly and cocompactly on CAT(0) cube complexes

and are thus approachable through these results.

A subgroup H is separable in a group G if H is the intersection of finite

index subgroups of G. In particular, G is residually finite if {1G} is separable.

Theorem 1.4. Let C be a compact nonpositively curved cube complex,

and suppose that π1C is word-hyperbolic. Then C is virtually special if and

only if π1D is separable in π1C for each immersed hyperplane D → C .

Using the already known properties of virtually special cube complexes

we get the following corollary.

Theorem 1.5. Let C be a compact nonpositively curved cube complex.

Suppose that π1C is word-hyperbolic and that π1D is separable in π1C for each

immersed hyperplane D → C . Then π1C ⊂ GL(n,Z) for some large n and

every quasiconvex subgroup of π1C is separable.

In a final application we apply Theorem 1.4 to obtain an interesting struc-

tural result about certain arithmetic hyperbolic lattices.

Theorem 1.6. Let G be a uniform arithmetic hyperbolic lattice of “simple

type.” Then G has a finite index subgroup F that is the fundamental group of

a compact special cube complex.
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Hidden inside Theorem 1.6 is the claim that every such lattice acts prop-

erly and cocompactly on a CAT(0) cube complex, which was not known pre-

viously. But combining with results from [HaW08], we obtain the following

subgroup separability consequence.

Corollary 1.7. Let G be a uniform arithmetic hyperbolic lattice of “sim-

ple type.” Then each quasiconvex subgroup of G is a virtual retract and is thus

closed in the profinite topology.

Partial results were made towards separability of arithmetic hyperbolic

lattices in low dimensions in [ALR01]. Their method is similar to ours in that

they virtually embed such groups into right-angled hyperbolic Coxeter groups.

The results have been substantially extended by Ian Agol to deal with various

lattices in up to eleven dimensions that satisfy an orthogonality condition

on certain of their hyperplanes [Ago06]. Perhaps the paucity of hyperbolic

reflection groups has limited the scope of Scott’s method.

The application towards uniform arithmetic lattices was not the original

intention of this research, but it emerged as a consequence of our combination

theorem. This application does not require the full strength of our main theo-

rem, and in a future paper, using a method more specific to the situation, we

will give an account of the virtual specialness of nonuniform simple arithmetic

hyperbolic lattices.

As an application of the cubulation of uniform lattices of the real hyper-

bolic space we get the following result.

Theorem 1.8. Every word-hyperbolic group is quasi-isometric to a uni-

formly locally finite CAT(0) cube complex.

Proof. Let Γ be a word-hyperbolic group. Then by the work of Bonk and

Schramm (see [BS00]) there exists a quasi-isometric embedding Γ→ Hn for n

large enough. Consider any standard arithmetic uniform lattice G of Hn. We

let G act freely cocompactly on a locally finite CAT(0) cube complex X. Then

Hn is quasi-isometric to G, which is quasi-isometric to X.

We thus get a quasi-isometric embedding of Γ into X. The image of Γ

in X is a quasiconvex subset Y ⊂ X. Now X is a uniformly locally finite,

Gromov-hyperbolic CAT(0) cube complex and Y ⊂ X is quasiconvex. Thus

by Theorem 4.2 the combinatorial convex hull Z of Y inside X stays at finite

hausdorff distance of Y . �

It is not very difficult to prove that a Gromov-hyperbolic uniformly locally

finite CAT(0) cube complex embeds in a product of finitely many trees (see,

for example, [Hag]), and the embedding is isometric on the 1-skeleton equipped

with the combinatorial distance. Thus, as a corollary of Theorem 1.8, we see
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that every word-hyperbolic group has a quasi-isometric embedding in a product

of finitely many trees, a result which was first proved by Buyalo and Schroeder

(see [BS05]).

2. Special cube complexes

In this section we review definitions related to special and nonpositively

curved cube complexes. See [Sag95], [HaW08].

2.A. Nonpositively curved cube complex.

Definition 2.1. A 0-cube is a single point. A 1-cube is an isometric copy

of [−1, 1] and has a cell structure consisting of 0-cells {±1} and a single 1-cell.

An n-cube is an isometric copy of [−1, 1]n, and has the product cell structure,

so each closed cell of [−1, 1]n is obtained by restricting some of the coordinates

to +1 and some to −1.

A cube complex is obtained from a collection of cubes of various dimen-

sions by isometrically identifying certain subcubes. We shall often call 0-cubes

vertices and 1-cubes edges. A map between cube complexes is combinatorial

if it isometrically maps open cubes to open cubes. Note that we are using the

Euclidean metric on open cubes only to rigidly specify our maps between cubes.

A flag complex is a simplicial complex with the property that every finite

set of pairwise adjacent vertices spans a simplex.

Let X be a cube complex. The link of a vertex v in X is a complex built

from simplices corresponding to the corners of cubes adjacent to v. One can

think of link(v) as being the “ε-sphere” about v in X.

The cube complex X is nonpositively curved if link(v) is a flag complex

for each v ∈ X0. A (finite dimensional) simply-connected nonpositively curved

cube complex has a CAT(0) metric in which each n-cube is isometric to the

subspace [−1, 1]n ⊂ En (see [Gro87]). We thus refer to simply-connected non-

positively curved cube complexes as CAT(0) cube complexes. Similarly, a (fi-

nite dimensional) nonpositively curved cube complex admits a locally CAT(0)

metric, and hence the choice of terminology for the combinatorial flag complex

condition.

A combinatorial map f : X → Y of nonpositively curved cube com-

plexes is a local isometry if link(v,X) maps injectively to a full subcomplex

of link(f(v), Y ) for each v ∈ X0. Recall that a subcomplex of a simplicial

complex is full if it is spanned by its set of vertices.

2.B. Hyperplanes.

Definition 2.2. A midcube D in a cube C is the subspace obtained by

restricting exactly one coordinate to 0. For instance, [−1, 1]× [−1, 1]× {0} ×
[−1, 1] is a midcube in [−1, 1]4.
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Given a cube complex X, consider the disjoint union of all midcubes

of X, and let Y be the cube complex obtained by identifying lower-dimensional

midcubes with their images as subcubes of higher-dimensional midcubes. The

connected components of Y are the hyperplanes of X.

It is not difficult to check that when X is nonpositively curved, then

each hyperplane of X is nonpositively curved. Moreover, using the metrics of

nonpositive curvature, the natural map H → X is a local isometry. When this

local isometry is injective we say that H embeds.

When X is CAT(0), each hyperplane of X is itself CAT(0) and embeds.

2.C. Right-angled Artin groups.

Definition 2.3. The right-angled Artin group presentation associated to a

simplicial graph Γ is defined to be:¨
a : a ∈ V(Γ) | [a, b] : {a, b} ∈ E(Γ)

∂
.

The associated right-angled Artin group will be denoted by A = A(Γ).

For each clique of n pairwise adjacent vertices in Γ, we add an n-cube to

the standard 2-complex of the presentation above to obtain a nonpositively

curved cube complex, which we shall denote by R = R(Γ). We call any such

complex R an Artin cube complex.

Specifically, for each vertex a of V(Γ), let Sa denote a graph with a sin-

gle vertex and a single edge. Then R is a subcomplex of the combinatorial

torus
∏
a∈V(Γ) Sa. Namely, R equals the union of all subtori corresponding to

complete subgraphs of Γ. To obtain an isomorphism A → π1R we choose an

orientation for the edges of the circles Sa.

2.D. Special cube complex.

Definition 2.4. A special cube complex is a cube complex C such that

there exists a combinatorial local isometry C → R where R = R(Γ) for some

simplicial graph Γ.

Observe that if C → D is a local isometry of nonpositively curved cube

complexes and D is special, then so is C (by composing local isometries).

We give below an intrinsic combinatorial characterization of the special

property. We first introduce the adapted notations and definitions.

We denote with an arrow the oriented edges of a cube complex. The

(unoriented) edge associated with an oriented edge −→a will always be denoted

by a. We denote by ι(−→a ) and τ(−→a ) the initial vertex and terminal vertex of

the oriented edge −→a .

Definition 2.5 (parallelism). Two oriented edges of a Euclidean unit square

are parallel if the associated unit vectors are the same. Then the parallelism
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of oriented edges in a cube complex C is the equivalence relation generated by

parallelism inside a square. By forgetting orientation we also get a parallelism

relation on (unoriented) edges of C. Note that two edges of C are parallel if

and only if their midpoints belong to the same hyperplane.

An embedded hyperplane Y in X is 2-sided if its open cubical neigh-

borhood is isomorphic to the product Y × (−1, 1), where we identify Y with

Y × {0}. For each y ∈ Y 0, the 1-cell in X whose open 1-cell corresponds to

y × (−1, 1) is dual to Y . An oriented edge −→a is dual to Y if a is dual to Y .

When Y is 2-sided, the projection map Y × (−1, 1) → (−1, 1) allows us to

choose an orientation on each 1-cell dual to Y so that all corresponding ori-

ented edges are parallel. In other words, no oriented edge dual to Y is parallel

to its opposite edge.

The 2-sided hyperplane Y directly self-osculates if there are distinct ori-

ented dual edges −→a and
−→
b such that ι(−→a ) = ι(

−→
b ). The hyperplane Y self-

osculates if there are distinct dual edges a and b that share a vertex. Thus

self-osculation of 2-sided hyperplanes consists of direct self-osculation, and also

indirect self-osculation, where there are distinct oriented dual edges −→a and
−→
b

such that ι(−→a ) = τ(
−→
b ).

Consider two distinct oriented edges −→a ,
−→
b with origin a given vertex v.

Identify −→a ,
−→
b with vertices of link(v). When −→a ,

−→
b span an edge of link(v) we

say that −→a ,
−→
b are perpendicular at v. When −→a ,

−→
b are not joined in link(v)

we say that −→a ,
−→
b osculate at v. We say that two edges a, b are perpendicular

[osculate] when there are orientations −→a ,
−→
b such that −→a ,

−→
b are perpendicular

[osculate] at some vertex.

Two hyperplanes A,B intersect (i.e., cross) if they have perpendicular

dual edges a, b. The graph of hyperplanes of the cube complex X is the graph

ΓX whose vertices are the hyperplanes of X, and where an edge joins A,B

precisely when A,B intersect.

Two hyperplanes A,B osculate if they have osculating dual edges a, b.

Two hyperplanes A and B inter-osculate if they both intersect and osculate.

See Figure 1.

Lemma 2.6. A nonpositively curved cube complex is special if and only if

(S1) Each hyperplane embeds.

(S2) Each hyperplane is two-sided.

(S3) No hyperplane directly self-osculates.

(S4) No two hyperplanes interosculate.

For a nonpositively curved cube complex C satisfying (S1), (S2), (S3), (S4),

consider the graph of hyperplanes ΓC . We let R(C) denote the Artin cube

complex associated with ΓC .
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Figure 1. From left to right, the diagrams above correspond to the

excluded pathologies enumerated in Lemma 2.6. The third and fourth

diagrams illustrate direct self-osculation and indirect self-osculation.

Sketch. Let R = R(C). Choose arbitrary orientations for the edges of R.

Then there is a map C → R induced by sending an oriented edge −→a of C to

the oriented edge of R corresponding to the hyperplane that −→a is dual to. It is

not difficult to verify that conditions (S1), (S2), (S3), (S4) imply that this map

is a local isometry.

Conversely, if C → D is a local isometry of nonpositively curved cube com-

plexes, then it is easy to verify that ifD satisfies conditions (S1), (S2), (S3), (S4),

then C does. The lemma follows since it is easy to check that an Artin cube

complex R(C) always satisfies conditions (S1), (S2), (S3), (S4). We refer to

[HaW08] for details. �

If X is a special cube complex, then the cube complex obtained by sub-

dividing X along a hyperplane is still special. This is an easy consequence of

Lemma 2.6.

3. Canonical completion and retraction and wall projections

3.A. Canonical completion and retraction. In this section we recall how

to factorize some combinatorial immersions X → Y as the composition of

an inclusion and a covering map. The key point here is to give a canonical

construction that can be used as an elementary machine in more elaborate

constructions. Due to its naturality, the construction will enjoy many nice

formal properties.

The possibility of lifting an immersion X → Y to an inclusion X → Y ′

in a finite cover Y ′ → Y is related to the separability of π1X < π1Y . In

a residually finite group, any virtual retract is separable (indeed retracts of

hausdorff topological spaces are closed). We show below that when Y is a

special cube complex it is possible to lift a local isometry X → Y to an in-

clusion X → C(X,Y ), where C(X,Y )→ Y is a “canonically” defined covering

and, furthermore, C(X,Y ) “canonically” retracts to X. This construction has

been made for graph immersions in [Wis02] and generalized to arbitrary local

isometries of special cube complexes in [HaW08]. We first recall the case of

graphs.
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Definition 3.1 (canonical completion and retraction for immersion of graph

to bouquet). Let Ab → b be an immersion of graphs where b consists of a single

loop and Ab is finite. Each component of Ab is either already a cover of b or

can be completed to a cover of b by the addition of a single edge. We define

C(Ab, b) → b to be the resulting covering space. Note that Ab ⊂ C(Ab, b) and

that there is a retraction map C(Ab, b)→ Ab defined by sending each new open

edge e to the component I(e) of Ab that it was attached along. We choose the

map e→ I(e) to have constant speed.

Let A → B be an immersion of graphs where B is a bouquet of circles

and A is finite. For each loop b in B, let Ab denote the preimage of b in A.

Observe that A0 = A0
b = (C(Ab, b))

0, and consider the natural embedding of

A0 into the graph C(Ab, b) defined above. We define C(A,B) to be the quotient

of tb∈edges(B)C(Ab, b) obtained by identifying the embedded copies of A0. The

induced map C(A,B) → B is a covering space. Note that A ⊂ C(A,B) and

that the retraction maps C(Ab, b)→ Ab induce a retraction map C(A,B)→ A.

In conclusion, by adding edges in a “canonical” manner, we have completed A

to a finite degree covering of B that furthermore retracts onto A.

Definition 3.2 (canonical completion and retraction for local isometries

of cube complexes in an Artin complex). Let X → R be a local isometry

of cube complexes where R is an Artin cube complex and X is finite. We

have already defined canonical completions and retractions of graphs to obtain

X1 ← C(X1, R1) → R1. Using the local isometry assumption, a case-by-

case inspection shows that the boundary of a square in R always lifts to a

closed curve in C(X1, R1). More specifically, there is a local isometry [0, n]×
[0,m] → X such that the images of the four sides [0, n] × {0}, {n} × [0,m],

[0, n]× {m}, {0} × [0,m] coincide with the images of the four sides of the lift

under the retraction map. See [HaW08] for a written argument and Figure 2,

where we depict possible scenarios. Thus we can extend the previous covering

C(X1, R1) → R1 to a covering map of square complexes C(X,R)2 → R2.

The 2-skeleton of each higher-dimensional cube of R lifts to C(X,R)2, and we

attach all such corresponding cubes. The resulting space C(X,R) covers R and

contains X.

The graph retraction X1 ← C(X1, R1) extends naturally to a retraction

X2 ← C(X,R)2 but, in general, this retraction cannot be made cellular; see

Figure 2 for a square that maps onto a rectangle. We remedy this later in

Definition 3.5 by subdividing C(X,R)2. Note that when X and R are compact

then so is C(X,R).

Definition 3.3 (fiber-product). Given a pair of combinatorial mapsX →W

and Y →W (between cube complexes), we define their fiber-product X ⊗W Y
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Figure 2. Each new square in C(X1, R1) is associated with a local

isometry Y → T where T is a torus of R. Typically, Y is an m × n-

grid like the 4× 2-grid on the left, but in degenerate cases, Y may be

a cylinder, or m,n may be zero. Canonical retraction sends the new

square to Y .

to be a cube complex, whose i-cubes are pairs of i-cubes in X,Y that map to

the same i-cube in W . There is a commutative diagram

X ⊗W Y → Y

↓ ↓
X → W.

Note that X⊗W Y is the complex in X×Y that is the preimage of the diagonal

D ⊂ W ×W under the map X × Y → W ×W . Note that D is naturally a

cube complex since for any cube Q, the diagonal of Q2 is isomorphic to Q by

either of the projections.

We remark that when X →W and Y →W are covering maps, then so is

X⊗W Y →W . Moreover, in this case π1

Ä
X⊗W Y, (x, y)

ä
= π1(X,x)∩π1(Y, y).

We emphasize that X ⊗W Y may not be connected even when X and Y are

connected.

We will use the universal property of X ⊗W Y , which is that any commu-

tative diagram as displayed below is the pull-back under some combinatorial

map C → X ⊗W Y of the diagram with X ⊗W Y (which is thus minimal):

C → Y

↓ ↓
X → W.

Definition 3.4 (canonical completion and retraction of local isometries).

Let A → B be a local isometry of cube complexes, where A is finite, B is

special, and let R = R(B). By composition we get a local isometry A → R,

and we already know how to complete A to a cover C(A,R)→ R.

Our plan is to pull back C(A,R)→ R through B → R to obtain C(A,B)

→ B, and we note that the map A → B lifts to an inclusion in C(A,B). In

order to investigate the formal properties of this construction, we will use the

fiber-product language.

We thus set C(A,B) := B ⊗R C(A,R). The local isometry A → B and

the inclusion map coincide on R and thus define an inclusion A → C(A,B).
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Figure 3. The figure corresponds to the following commutative diagram:

C(A,B) → C(A,R) ⊃ C(A1, R1)

↗ ↓ ↓ ↓
A → B → R ⊃ R1.

The map C(A,B) → B is a covering because C(A,R) → R is a covering.

We define the canonical retraction map C(A,B) → A to be the composition

C(A,B)→ C(A,R)→ A.

We will now describe a cubical subdivision C�(A,B) of C(A,B). It is the

minimal subdivision so that C�(A,B)→ B is cellular, mapping cubes to cubes

by possibly collapsing some dimensions. This subdivision is used here only to

support the proof of Corollary 3.11. We have C(A,B) = C�(A,B) precisely

when there is no concatenable pair of oriented edges −→a 1,
−→a 2 in A whose images−→

b 1,
−→
b 2 are parallel oriented edges of B. And when C(A,B) 6= C�(A,B), the

covering map C�(A,B)→ B is no longer combinatorial.

Definition 3.5 (The subdivision C�(A,B)). Our choice of subdivision is

determined by the 1-skeleton, so let us first revisit the details of the construc-

tion given in Definition 3.1: When the interval I(e) consists of m ≥ 1 edges we

subdivide e into m edges and then r induces a combinatorial isomorphism of

the subdivided edge e onto I(e). We will denote by C�(Ab, b) the correspond-

ing subdivision of C(Ab, b). The retraction map C�(Ab, b)→ Ab is now cellular,

and the inclusion map Ab → C�(Ab, b) is an embedding of subgraphs. We then

define C�(A,B) to be the quotient of tb∈edges(B)C�(Ab, b)) obtained by iden-

tifying the copies of A0. Note that the graph C�(A,B) can also be obtained
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by subdividing certain edges of C(A,B). The retraction map C�(A,B) → A

is cellular, and the inclusion map A→ C�(Ab, b) is combinatorial.

We now revisit the details in the construction of Definition 3.2. The

attaching map of each square in C(X,R)2 is an immersion of a 4-cycle in

C(X1, R1). We subdivide the square to obtain a rectangle of the form [0, p]

× [0, q] so that the attaching map becomes a combinatorial immersion into

C�(X1, R1). Attaching these rectangles to the graph C�(X1, R1) yields a

square complex C�(X,R)2 that is a square subdivision of C(X,R)2. Since

no square of X was subdivided, the inclusion map X2 → C�(X,R)2 is combi-

natorial. We will denote by C�(X,R) the unique cubical subdivision of C(X,R)

whose 2-skeleton is C�(X,R)2.

The same case-by-case inspection as in Definition 3.2 shows that the

cellular retraction map X1 ← C�(X1, R1) extends to a cellular retraction

X2 ← C�(X,R)2. More precisely, the image of a square of X2 is itself, and the

image of a new square of C(X,R)2 corresponding to a rectangle [0, p]× [0, q] in

C�(X,R)2 is a rectangle [0, n]×[0,m] with n = p or n = 0, and m = q or m = 0.

The cellular retraction X2 ← C�(X,R)2 extends naturally to X ← C�(X,R).

Forgetting the subdivision, we thus get the (original) topological retraction

X ← C(X,R).

Finally, we revisit the details in the construction of Definition 3.4. We

let C�(A,B) denote the unique cubical subdivision of C(A,B) such that the

induced map C�(A,B) → C�(A,R) is a combinatorial local isometry. The

induced retraction map C�(A,B)→ A is cellular.

Definition 3.6 (projective). A map f : X → Y between cube complexes

is projective if for each cube Q of X, there is a face Q′ < Q such that f is

combinatorial on Q′, and for any x ∈ Q, we have f(x) = f(x′), where x′ is the

orthogonal projection of x onto Q′.

Remark 3.7. Being projective is essentially determined by the 2-skeleton.

Indeed if f : X → Y is projective, then so is f : X2 → Y . Conversely, if Y

is nonpositively curved, then any projective map f : X2 → Y extends to a

unique projective map f : X → Y .

Note also that projective maps preserve parallelism. More precisely, let

f : X → Y be projective and let a, b denote parallel edges of X. If f(a) is an

edge, then so is f(b) and, furthermore, f(a), f(b) are parallel edges of Y .

Lemma 3.8 (projective retraction). Let A→ B be a local isometry of cube

complexes with A finite and B special. Then the retraction map A← C�(A,B)

is projective.

Proof. Let R = R(B). We claim that C�(A,R) → A is projective. By

Remark 3.7 it suffices to examine 2-skeleta. The squares of C(A,R) that are
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already contained in A are not subdivided in C�(A,R), and the retraction

map is the identity on them. The new squares of C�(A,R) are subdivided

to Euclidean rectangles [0, p] × [0, q], on which the retraction map consists of

orthogonal projection to one of {0} × {0}, [0, p]× {0}, {0} × [0, q], or [0, p]×
[0, q]. Thus C�(A,R)2 → A2 is projective. The retraction C�(A,B) → B is

then projective since it is the composition of the local isometry C�(A,B) →
C�(A,R) with the projective map C�(A,R)→ A. �

Lemma 3.9 (retraction of walls). Let B be a special cube complex, and let

A→ B be a local isometry. Then any edge e′ of C�(A,B) parallel with an edge

e of A is retracted onto an edge e′′ of A that is parallel to e within A.

Proof. By Remark 3.7, projective maps preserve parallelism. �

Definition 3.10 (wall-injective). A combinatorial map D → C of (special)

cube complexes induces a map VD → VC between the sets of hyperplanes. We

say that the map D → C is wall-injective if the map VD → VC is injective.

Corollary 3.11 (wall-injective in completion). Let C be a special cube

complex, and let D → C be a local isometry. Then D is wall-injective in both

C�(D,C) and C(D,C).

Proof. The wall-injectivity of D in C�(D,C) is an immediate consequence

of Lemma 3.9. Consider a sequence of edges e0, e1, . . . , en with e0, en edges of

D and ei, ei+1 opposite in some square of C(D,C). Since e0 is an edge of D, it

follows that no ei edge is subdivided in C�(D,C). Thus e0 and en are parallel

in C�(D,C). �

In the sequel we will often consider C(D,D), which is the canonical com-

pletion of the identity map D → D. Note C(D,D) is a complicated object:

it contains a copy of D but also other components, which can be nontrivial

covers of D (see Figure 4). This complexity is (part of) the price to pay for

the useful functorial properties of the canonical completion.

Lemma 3.12. Suppose D → C is a wall-injective local-isometric embed-

ding of cube complexes with D finite and C special. Then there is a natural

embedding of C(D,D) in C(D,C) that is consistent with the inclusion, retrac-

tion, and covering maps so that we have the following two diagrams :

(z)

D = D

∩ ∩
C(D,D) ⊂ C(D,C)

↓ ↓
D → C,

D = D

↑ ↑
C(D,D) ⊂ C(D,C).
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Figure 4. The above two figures illustrate the commutative diagrams

in Equation (z). The complex D is a circle, and the complex C

is obtained from D × I by removing a single square. The fibers of

vertices under the retraction map are indicated in different colors on

the right.

We refer to Figure 4, which illustrates these commutative diagrams in a

simple case.

Proof. The wall-injective local isometry D → C induces an embedding

VD → VC and a combinatorial embedding R(D) ⊂ R(C) (which is not neces-

sarily a local isometry).

We first check that there is a well-defined map C(D,R(D))→ C(D,R(C))

and begin with the 1-skeleta. Note that D1 is a subgraph of both C(D1, R(D)1)

and C(D1, R(C)1). Let a be an edge of C(D1, R(D)1) not contained in D1, and

let b denote the image of a inside R(D)1. We let Db denote the subgraph of

D1 such that Db ∪ a is a circle. Then b is also an edge of R(C), and Db is

also a connected component of the preimage of b under D → RC . Thus by

construction there is a unique edge a′ in C(D1, R(C)1) such that Db ∪ a′ is a

circle. We then map a to a′ by the unique homeomorphism compatible with

a→ b and a′ → b.

We have now extended the embeddingD1 ⊂ C(D1, R(C)1) to a combinato-

rial map C(D1, R(D)1)→ C(D1, R(C)1), which by construction is compatible

with retractions onto D1and such that the following diagram commutes:

C(D1, R(D)1) → C(D1, R(C)1)

↓ ↓
R(D)1 ⊂ R(C)1.

The map C(D1, R(D)1) → C(D1, R(C)1) is injective on the 0-skeleton

and it is locally injective, thus it is injective. It sends the boundary of a
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square of C(D,R(D)) onto the boundary of a square of C(D,R(C)), by the

very definition of the squares in canonical completion. The same happens

for higher-dimensional cubes. Thus we get an injective combinatorial map

C(D,R(D))→ C(D,R(C)), compatible with retractions onto Dand such that

the following diagram commutes:

C(D,R(D)) ⊂ C(D,R(C))

↓ ↓
R(D) ⊂ R(C).

Now the composition maps

C(D,D)→ D → C, C(D,D)→ C(D,R(D))→ C(D,R(C))

are compatible with the projections onto R(C). Thus we get a map C(D,D)→
C(D,C). Injectivity follows from the injectivity of the maps C(D,D) → D ×
C(D,R(D)), D → C, and C(D,R(D))→ C(D,R(C)). Chasing diagrams, one

verifies that this map has the other desired properties. �

Lemma 3.13. Let C be a special cube complex, and let D ⊂ C be a wall-

injective locally convex subcomplex. Then the preimage of D in C(D,C) is

(isomorphic to) C(D,D).

Proof. By definition, the preimage of D in C(D,C) is D⊗R(C)C(D,R(C)).

The image of a cube Q ⊂ D in R(C) is in fact a cube of the subcomplex R(D).

It follows that D ⊗R(C) C(D,R(C)) = D ⊗R(D) C(D,R(D)) = C(D,D). �

3.B. Wall projections. We now study the notion of a wall projection of one

subcomplex onto another. This will play the role of the intersection between

subgraphs of a graph.

Definition 3.14 (parallel cubes and wall-projection). Let X denote a cube

complex. Recall that 1-cubes a, b are parallel in X provided they are dual to

the same immersed hyperplane.

Let A and B be subcomplexes of X. We define WProjX(A→ B), the wall

projection of A onto B in X, to equal the union of B0 together with all cubes

of B whose 1-cubes are all parallel to 1-cubes of A.

We say the wall projection WProjX(A → B) is trivial when any closed

loop of WProjX(A→ B) is homotopically trivial inside X.

Remark 3.15 (locally convex wall projection). Assume that B is a locally

convex subcomplex of a nonpositively curved cube complex X. Let A be any

subcomplex. Then WProjX(A → B) is locally convex. Indeed let Q denote a

cube of B, and let v be a vertex of Q. Then by definition, Q ⊂WProjX(A→ B)

if and only if each edge of Q at v belongs to WProjX(A→ B).
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Figure 5. The above examples illustrate a length 3 interval A whose

wall projection onto B is all of B. On the left B is circle and on the

right it is a 3-cube. The reader can show that for any B, there is

a cube complex X containing B and a subcomplex A ∼= I such that

WProjX(A→ B) = B.

Lemma 3.16 (wall-projection controls retraction). Let A and D be sub-

complexes of a special cube complex B. Assume A is locally convex. Let “D
denote the preimage of D in C(A,B), and let r : C(A,B)→ A be the canonical

retraction map. Then r(“D) ⊂WProjB(D → A).

Proof. Consider an edge b̂ of “D. By definition, b̂ consists of a pair (b, b′)

where b is an edge of D ⊂ B and b′ is an edge of C(A,R(B)), and b, b′ map

to the same edge e in R(B). Let Ae be the linear subgraph of C(A,R(B))

such that Ae ∪ b′ is a circle and r(b̂) = Ae. Assume Ae is not a vertex. By

assumption, Ae ∪ b′ is a connected component of the preimage of the loop

e; thus each edge of Ae is parallel to b in B and r(b̂) ⊂ WProjB(D → A).

Let Q be any cube of C�(A,B) contained inside “D. Since the retraction map

r : C�(A,B) → A is projective, there is a face Q′ < Q such that r(Q) =

r(Q′) is a cube of A isomorphic to Q′. We already know the edges of r(Q′)

belong to WProjB(D → A). Since WProjB(D → A) contains A0 and is locally

convex, we deduce that WProjB(D → A) contains r(Q′) = r(Q), and the

lemma follows. �

3.C. Elevations. We now indicate some terminology related to covering

spaces.

Definition 3.17 (elevations). Let X̄ → X denote a covering map. Let

A ⊂ X denote a connected subspace. An elevation of A to X̄ is a connected

component of the preimage of A under X̄ → X.

Let A → X denote a map with A connected. Consider two commutative

diagrams:

(D1) :

Ā1 → X̄

↓ ↓
A → X,

(D2) :

Ā2 → X̄

↓ ↓
A → X,

where Āi → A are connected covers, and write (D1) ≤ (D2) if there is a map

Ā2 → Ā1 whose composition with Ā1 → X̄, Ā1 → A gives Ā2 → X̄, Ā2 → A.
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Say two diagrams (D1), (D2) are equivalent if (D1) ≤ (D2) and (D2) ≤ (D1).

Then, up to equivalence, ≤ is a partial order. An elevation of A→ X to X̄ is

a minimal diagram.

Here is a more concrete description. Let Ā be a connected component of

the fiber-product A ⊗X X̄. The projections induce two maps, Ā → X̄ and

Ā→ A. The latter is a covering map, so we get a diagram as above:

(E) :

Ā → X̄

↓ ↓
A → X.

Then any elevation is equivalent to such a diagram (E), and any such (E) is an

elevation.

When the map A → X is injective, the associated map A ⊗X X̄ → X̄

is also injective. More generally, we say that a map A → X has embedded

elevations with respect to a cover X̄ → X if the associated map A⊗X X̄ → X̄

is injective. In this case each elevation is injective, and two distinct components

of A⊗X X̄ have disjoint images so that connected components of A⊗X X̄ are

in 1-to-1 correspondence with equivalence classes of elevations. We may thus

identify the elevations with their images inside X̄, and we recover the case of

connected subspaces A ⊂ X.

For example, let A ⊂ X denote a locally convex subcomplex, with A com-

pact and X special. Then the subcomplex A ⊂ C(A,X) is an elevation of A

to C(A,X). By Lemma 3.13, the other elevations of A are the remaining com-

ponents of C(A,A) ⊂ C(A,X). We regard A ⊂ C(A,X) as the base elevation

of A. In general, when A,X, X̄ have basepoints and A → X, A → X̄ are

basepoint preserving maps, the base elevation refers to the based space Ā and

basepoint preserving map Ā→ X̄ of the diagram E.

4. Connected intersection theorem

The goal of this section is to prove Theorem 4.25 and its corollary, which

will play an important role in Section 5. Given based local isometries Bj → X

where 1 ≤ j ≤ n, Theorem 4.25 explains how to choose a based finite cover “X
such that their injective based elevations have connected intersection in “X.

4.A. Some geometric lemmas on cubical complexes. The distance d(u, v)

between two vertices in a connected cube complex X is the length of the

shortest combinatorial path joining them. A geodesic between u and v is a

combinatorial path whose length is d(u, v). For subcomplexes U, V , we let

d(U, V ) denote the length of the shortest geodesic connecting points u ∈ U, v ∈
V . For a subset S ⊂ X, its cubical neighborhood N(S) is defined to be the

union of closed cubes intersecting S.
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We recall the following concerning the combinatorial geometry of a CAT(0)

cube complex ‹X. (For details see, for example, [Hag08].)

A combinatorial path in ‹X is a geodesic if and only if the sequence of

hyperplanes it crosses has no repetition. A path σ in a nonpositively curved

cube complex X whose lift σ̃ is a combinatorial geodesic of the universal cover‹X will be called a local geodesic.

— A full subcomplex Y ⊂ ‹X is convex if and only if it is combinatori-

ally convex, in the sense that any combinatorial geodesic of ‹X with

endpoints in Y has all of its vertices inside Y . A subcomplex A in a

cubical complex Z is full provided that a cube of Z belongs to A if and

only if its vertices do.

— For any convex subcomplex Y ⊂ ‹X, its cubical neighborhood N(Y ) is

again a convex subcomplex.

Let S be a subset of ‹X. We define S+0 to be the smallest subcomplex of‹X containing S. For R ≥ 1, we define S+R = N(S+(R−1)) to be the cubical

R-thickening of S in ‹X. When Y is a convex subcomplex, we have Y +0 = Y ,

and consequently Y +R is convex for each R. For a 0-cell v, the subcomplex

v+R is called the cubical ball with center v and radius R. We note that each

cubical ball about v is convex whereas combinatorial metric balls are often not

convex. Note that H+0 = N(H) when H is a hyperplane and, in this case,

N(H) is actually a convex subcomplex, and consequently H+R is convex for

each R.

— Every combinatorial path with initial point v and length ≤ R is con-

tained in v+R.

— The convex hull of a subcomplex Y ⊂ ‹X is the intersection of all convex

subcomplexes containing Y .

Remark 4.1. If X has dimension ≤ D, then any vertex x in v+R is joined

to v by an edge-path of length ≤ DR. In particular, v+R has diameter ≤ 2DR.

A fundamental result is then

Theorem 4.2 (convex hull). Let X denote a CAT(0) cube complex. As-

sume that X is uniformly locally finite, in the sense that there is a uniform

bound on the number of edges containing a given vertex. Then there exists a

function L 7→ R(L) with the following property.

For any subcomplex Y ⊂ X , if Y is L-quasiconvex, then the convex hull

of Y is contained inside Y +R(L).

Here we say that Y is L-quasiconvex if any vertex of a combinatorial

geodesic with endpoints inside Y is at combinatorial distance ≤ L of some

vertex in Y . For a proof of Theorem 4.2 see, for instance, [Hag08].
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We will also make use of the following fundamental fact, which the reader

can find in [Ger97] and [Rol].

Theorem 4.3. Let Y1, . . . , Yr be convex subcomplexes of the CAT(0) cube

complex X . Suppose that Yi ∩ Yj is nonempty for each i, j. Then ∩r1Yi is

nonempty.

Definition 4.4 (R-embeddings). Let X be a nonpositively curved, con-

nected cube complex. Let Y → X denote any local isometry with Y connected.

There is an induced equivariant isometric embedding ‹Y → ‹X. We have already

defined the cubical R-thickening ‹Y +R of ‹Y in the simply-connected ‹X. For

any integer R ≥ 0, the cubical R-thickening of Y is Y +R := π1(Y )\‹Y +R.

The map Y → X induces a local isometry Y +R → X, which will play

an important role below. When Y +R → X is an embedding, we say that

Y → X is an R-embedding , In particular, a locally convex subcomplex Y ⊂ X
is R-embedded when the inclusion Y ↪→ X is R-embedding. In this case, we

identify Y +R with its image in X and refer to this locally convex subcomplex

as the R-thickening of Y in X. Lifting the situation to the universal cover, we

see that a locally convex subcomplex Y ⊂ X fails to be R-embedded precisely

when there is a point p̃ ∈ ‹Y +R and an element g ∈ π1X − Stabilizer(‹Y ) such

that gp̃ ∈ ‹Y +R.

The embedding radius of Y ⊂ X is the supremum of the integers R ≥ 0

for which Y ⊂ X is R-embedded. The injectivity radius of X is the minimum

of the embedding radii of vertices, denoted by InjRad(X). In other words,

InjRad(X) ≥ R if and only if v+R → X is injective for any vertex v.

When H → X is a hyperplane, we likewise define the R-thickening of

H → X to be H+R := π1(H)\‹H+R. There is an induced local isometry

H+R → X, and when it embeds, we identify H+R with its image and call it

the R-thickening of H in X.

The hyperplane embedding radius of X is the minimum of the embedding

radii of hyperplane neighborhoods, denoted by HEmbRad(X). In other words,

HEmbRad(X) ≥ R if and only if for any hyperplane H of X with cubical

neighborhood N(H), we have that H+R embeds in X.

Note that Y +R is compact provided Y is compact and X is locally finite.

Lemma 4.5. Let A,B be locally convex connected subcomplexes of the

connected nonpositively curved cube complex X . Suppose that A and B are

R-embedded and that A ∩B is connected. Then

(1) A ∩B is R-embedded.

(2) (A ∩B)+R equals the component of A+R ∩B+R containing A ∩B.

Proof. We choose a basepoint x in C = A∩B and let ‹A, ‹B, ‹C be the based

elevations at x̃ ∈ ‹X. It follows from convexity that ‹C = ‹A ∩ ‹B.
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We prove the first statement. Let p̃ ∈ ‹C+R and g ∈ π1X such that

gp̃ ∈ ‹C+R. We show that g ∈ π1C = Stabilizer(‹C). Observe that gp̃ ∈ ‹A+R,

and so since A is R-embedded, we see that g ∈ Stabilizer(‹A). Likewise, g ∈
Stabilizer(‹B). Thus g ∈ Stabilizer(‹C) as claimed.

We now prove the second statement. Let σ be a path in A+R ∩ B+R

starting at x ∈ A∩B and ending at some point p ∈ A+R ∩B+R. Let σ̃ be the

elevation of σ at x̃, and let p̃ be the endpoint of σ̃. Observe that σ̃ lies entirely

in ‹A+R and, consequently, p̃ ∈ ‹A+R. Thus p̃+R ∩ ‹A is nonempty. Similarly,

p̃+R∩‹B is nonempty. Applying Theorem 4.3 we see that p̃+R∩‹C = p̃+R∩ ‹A∩‹B
is nonempty, and so taking the images in X, we see that p ∈ (A ∩B)+R. �

Lemma 4.6. Let X be a nonpositively curved cube complex with InjRad(X)

≥ R. Let Y ⊂ X be any connected subcomplex where any vertex is joined by a

path with ≤ R edges to some fixed vertex y. Then Y is null-homotopic in X .

Proof. Indeed the CAT(0) complex y+R embeds in X and contains Y .

�

Lemma 4.7 (short self-connections ⇒ small embedding radius). Let R>0

be an integer. Let H denote a hyperplane of a nonpositively curved cube com-

plex X . Let β be a local geodesic of length k ≤ 2R between two vertices of

N(H). If β is not contained in N(H), then the embedding radius of H is < R.

Proof. Any lift of β to the universal cover ‹X is a combinatorial geodesic

β̃ connecting the cubical neighborhoods of hyperplanes ‹H,›H ′ projecting onto

H in X. Note that ‹H 6= ›H ′, otherwise by convexity of cubical neighborhoods

of hyperplanes, the path β would stay inside N(H).

By assumption there is a vertex x (on β̃) at distance ≤ R of both N(‹H)

and N(›H ′). Choose g ∈ π1X such that g›H ′ = ‹H, and note that g 6∈ π1H.

Then the vertex x′ = gx is not identified with x in H+R = π1H\‹H+R, but

x, x′ are identified in X. �

Using the fundamental group interpretation for elevations and the fact

that the natural map Y → Y +R is a π1-isomorphism, we get

Lemma 4.8 (elevations of neighborhoods). Let X denote a connected,

nonpositively curved cube complex, and let Y → X denote a local isometry

with Y connected. Assume X ′ → X is a cover, and let R ≥ 0 denote some

integer. For any elevation Y ′ → X ′ of Y → X , the map Y ′+R → X ′ is an

elevation of Y +R → X .

In particular, any elevation of an R-embedding is an R-embedding. For

any cover X ′ → X, we always have InjRad(X ′) ≥ InjRad(X) and HEmbRad(X ′)

≥ HEmbRad(X).
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Lemma 4.9 (virtually high embedding radius). Let X denote a compact,

connected, nonpositively curved special cube complex. Let Y → X denote a

local isometry of compact cube complexes. Then for each integer R ≥ 0, there

is a finite cover XY,R → X such that for any further cover X ′ → XY,R, any

elevation Y ′ → X ′ of Y → X is an R-embedding.

Note that for R = 0, Lemma 4.9 provides a finite cover where each eleva-

tion is injective.

Proof. We canonically complete the local isometry Y +R → X. We thus

get a finite cover C(Y +R, X)→ X such that Y → C(Y +R, X) is an R-embed-

ding. We now let XY,R → X denote any regular finite cover factoring through

C(Y +R, X) → X. By Lemma 4.8 some elevation of Y ⊂ X to XY,R is an

R-embedding. But by regularity all elevations are. Thus the lemma holds for

X ′ = XY,R. Applying again Lemma 4.8, we deduce that the lemma holds for

arbitrary X ′ → XY,R. �

Corollary 4.10 (virtually high (hyperplane) injectivity radius). Let X

denote a compact, connected, nonpositively curved special cube complex. Then

for any integer R ≥ 0, there is a finite cover X ′ → X such that for any further

cover X ′′ → X ′, we have InjRad(X ′′) ≥ R and HEmbRad(X ′′) ≥ R.

Proof. For Y any singleton {v} or any hyperplane neighborhood, we con-

sider a finite cover XY,R → X as in Lemma 4.9. We then let X ′ → X denote

any finite cover factoring through the finitely many finite covers XY,R → X.

We conclude as above with Lemma 4.8. �

Lemma 4.11 (embedding radius of convex amalgams). Let A,B be con-

nected, locally convex subcomplexes of a nonpositively curved cube complex X

such that A ∪ B is connected and locally convex. Assume the embedding radii

of A,B are ≥ R and each component of A+R ∩B+R intersects a component of

A ∩B. Then the embedding radius of A ∪B is ≥ R.

Proof. Set Y = A ∪B. Let ‹Y be some lift of Y to the universal cover ‹X.

Let γ ∈ π1X map p̃ ∈ ‹Y +R to p̃′ ∈ ‹Y +R, and let us show that γ stabilizes ‹Y .

We fix a base vertex x̃ in ‹Y mapping inside A ∩ B and denote by ‹A, ‹B
the lifts of A,B at x̃. The subspace ‹Y is covered by the translates g‹A, h‹B for

g, h ∈ π1Y ; thus ‹Y +R is covered by the translates g‹A+R, h‹B+R. The stabilizer

of ‹Y is identified with π1Y .

We may assume that p̃ ∈ (g‹A)+R. There are two possibilities for p̃′. The

first possibility is that there exists h ∈ π1Y such that p̃′ ∈ (h‹A)+R. In this

case we note that h−1γg‹A+R intersects ‹A+R. Since the embedding radius of

A is ≥ R it follows that h−1γg ∈ π1A ⊂ π1Y , and thus γ ∈ π1Y .

The second possibility is that there exists h ∈ π1Y such that p̃′ ∈ (h‹B)+R.

Since both g, h ∈ π1Y , we have γ ∈ π1Y ⇐⇒ h−1γg ∈ π1Y . In other words,
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we may assume g = h = 1. Let p denote the common image in X of p̃ and

p̃′, and note that p ∈ A+R ∩ B+R. By the relative connectedness assumption,

there is a path σ inside A+R ∩ B+R connecting p to q ∈ A ∩ B. Choose a

path α̃ ⊂ ‹A+R connecting x̃ to p̃, then compose its image α inside X with σ.

Since A ⊂ A+R is a π1-isomorphism, the product ασ is homotopic with fixed

endpoints inside A+R to a path a contained in A. Thus up to translating by an

element of Stabilizer(‹A), the point p̃ is the endpoint of the lift at x̃ of the path

aσ−1. Similarly, up to translating by an element of Stabilizer(‹B), there is a

path b ⊂ B connecting x to the endpoint of σ such that p̃′ is the endpoint of the

lift at x̃ of the path bσ−1. It follows that γ ∈ π1Aa
−1bπ1B, and so γ ∈ π1Y . �

4.B. Quasiconvex amalgams. In a δ-hyperbolic space X, any local quasi-

geodesic segment is uniformly near to a geodesic with the same endpoints.

This implies that a concatenation of geodesics whose overlaps are sufficiently

small yields a quasigeodesic of X. This well-known fact can be used to show

that a subspace obtained by combining various quasiconvex subspaces of X is

still quasiconvex. Below, we give two precise statements of this type where X

is a CAT(0) cube complex.

Lemma 4.12 (quasiisometric line of spaces). Let X be a CAT(0) cube

complex that is δ-hyperbolic. There exist R0 ≥ 0 and L0 ≥ 1 with the following

property.

Let Y0, . . . , Ym be a sequence of convex subcomplexes of X such that Zi+1 :=

Yi ∩ Yi+1 is nonempty for each 0 ≤ i < m. Let Y = Y0 tZ1 Y1 tZ2 · · · tZm Ym,

and note that there is an induced map φ : Y → X .

If d(Zi, Zi+1) > R0 for each 0 ≤ i < m, then for y0 ∈ Y0, ym ∈ Ym, we

have dX(φ(y0), φ(ym)) ≤ dY (y0, ym) ≤ L0dX(φ(y0), φ(ym)).

Proof. This is implicit in the proof of the quasiconvex amalgam assertion

proven in [HaW08, Lemma 8.11]. See also [Git99]. �

Lemma 4.13 (quasiisometric tree of spaces). Let X be a δ-hyperbolic

CAT(0) cube complex. There exist R0 ≥ 0 and L0 ≥ 1 with the following

property.

Let Γ be a graph with universal cover Γ̃. For each v ∈ Γ0, let Yv denote

a convex subcomplex of X . For each edge {u, v} of Γ, we let Y{u,v} = Yu ∩ Yv .
Suppose that each such Y{u,v} is nonempty.

Let YΓ denote the abstract union of the Yv along their pairwise inter-

sections, and let Y
Γ̃

be the corresponding tree of spaces. Consider the map

Y
Γ̃
→ X obtained by composing the universal cover Y

Γ̃
→ YΓ with the natural

map YΓ → X .

If d(Y{u,v}, Y{v,w}) > R0 for each pair of distinct adjacent edges {u, v},
{v, w}, then Y

Γ̃
→X is an (L0, 0)-quasiisometric embedding (that is, an L0-bi-

lipschitz embedding). It follows, in particular, that Γ is a tree.
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Proof. This follows from Lemma 4.12. �

Lemma 4.14 (immersed quasiconvex amalgam). Let X be a compact non-

positively curved cube complex. Assume the universal cover ‹X is δ-hyperbolic.

Then there are constants R0,K0 depending only on ‹X such that the following

holds.

Let A,B,C be (nonempty) connected locally convex subcomplexes of X

such that C is a connected component of A∩B. Consider the space S = A∪CB
and the natural map f : S → X . If both A and B are R0-embedded, then

S → X factors through an embedding S → T and a local isometry T → X

such that T is compact, S → T is a π1-isomorphism, and every point p ∈ T is

at distance ≤ K0 of a point of S.

In particular, S → X is π1-injective.

Proof. The universal cover S̃ consists of a collection of copies of universal

covers of ‹A and ‹B. The nerve of this covering of S̃ by this collection of

subspaces is a tree Γ. The map S → X induces a map S̃ → ‹X, putting us

in the framework of Lemma 4.13. We can thus conclude that S̃ → ‹X is an

(L0, 0)-quasiisometric embedding.

We now regard S̃ as a subcomplex of ‹X. Since (L0, 0)-quasigeodesics κ-

fellow travel- geodesics for some K0 = K0(L0, δ), we see that S̃ is actually

K0-quasiconvex.

Apply Theorem 4.2 to S̃ ⊂ ‹X to obtain a convex π1S-invariant subcomplex‹T that is contained in the combinatorial R(L0)-neighborhood of S̃ and is thus

π1S-cocompact. We let T = π1S\‹T and note that S→X factors as S→T→X

to satisfy our claim with K0 = R(L0) ×
»

dim(X), which accounts for the

difference between the combinatorial neighborhoods considered here and the

CAT(0) metric balls. �

Corollary 4.15 (embedded quasiconvex amalgam). Let X be a com-

pact nonpositively curved special cube complex. Assume the universal cover‹X is Gromov-hyperbolic. Then there are constants R ≥ K such that the fol-

lowing holds.

Let A,B,C be (nonempty) connected locally convex subcomplexes of X

such that C is a connected component of A∩B. Consider the space S = A∪CB
and the natural map f : S → X . If the embedding radii of A and B are

≥ R, then there exists a finite cover X ′ → X such that S → X factors as

S ⊂ X ′ → X , and there is a connected wall-injective locally convex subcomplex

T of X ′ that contains S, with every point p ∈ T at distance ≤ K of S, and

S ⊂ T is a π1-isomorphism. Furthermore, T is the union of two locally convex

subcomplexes A,B such that

(1) A ⊂ A ⊂ A+K and B ⊂ B ⊂ B+K .

(2) A ∩B is connected and A ∩B ⊂ (A ∩B)+K = C+K ⊂ X ′.
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We say that T ⊂ X ′ is an embedded locally convex thickening of the amal-

gam S → X.

Remark 4.16. Note that C → X ′ is an R-embedding by Lemma 4.5.1 so,

in particular, C+K ⊂ X ′ is an embedding. Note also that C → A ∩ B is a

π1-isomorphism. Indeed composing C → A ∩ B with A ∩ B → C+K yields a

π1-isomorphism.

Proof of Corollary 4.15. Let R0,K0 be the constants of Lemma 4.14. Since

X is finite dimensional, let K be an integer such that for any convex sub-

complex ‹Y ⊂ ‹X, the cubical neighborhood (‹Y )+K contains each point whose

CAT(0) distance to ‹Y is ≤ K0. Let R = max (R0,K), and let A,B be subcom-

plexes of X with embedding radius ≥ R. We apply Lemma 4.14 to X,A,B,C

to extend the amalgam S → X to a local isometry that we denote by T → X.

For any choice of a lift ‹A to ‹T ⊂ ‹X, the intersection with ‹T of the cubical

K-thickening of ‹A inside ‹X is π1A-invariant, and we let A = π1A\
Ä
(‹A)+K∩‹Tä.

Since R ≥ K, the natural local isometry A→ T is injective. We define B ⊂ T
similarly. We then have T = A ∪ B since each point in T is at distance ≤ K0

of either A or B.

We now show that A ∩B is connected. Let C denote the connected com-

ponent of C inside A ∩ B. Form the space S := A ∪C B. Since S → T is

π1-surjective, the composition S → S→ T shows that S→ T is π1-surjective.

If A ∩ B is not connected, then there are nontrivial connected covers of T to

which S lifts isomorphically. But this implies that the image of π1S inside π1T

is a proper subgroup, which is impossible.

Since we have shown that A∩B is connected, it follows from Lemma 4.5.2

that (A∩B) ⊂ (A∩B)+K . Finally, T ⊂ X ′ is wall-injective by Corollary 3.11.

�

4.C. Virtually connected intersection. Corollary 4.15 above is a precise

statement of the following idea: given two locally convex subcomplexes A,B

of a compact special cube complex X and a connected component C of A∩B,

we are able to embed A,B in a finite cover X ′ → X so that their intersection

in X ′ is just C. Our goal in this section is to adapt this construction to an

arbitrary finite collection B1, . . . , Bn of locally convex subcomplexes of X that

all contain a given vertex. We will do this where X is a compact special

cube complex with word-hyperbolic fundamental group, but in the simple case

where X is a graph, our statement reads

Proposition 4.17 (connected intersection property for subgraphs). Let

X be a finite graph with base vertex v. Let B1, . . . , Bn be connected subgraphs

containing v. Then there is a finite cover X ′ → X based at v′ such that any two

of the elevations B′1, . . . , B
′
n of B1, . . . , Bn at v′ have a connected intersection.
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Moreover, the elevation C ′ at v′ of the connected component C of v inside

B1 ∩ · · · ∩Bn maps isomorphically onto C .

When n ≥ 3, our elevations of the Bi’s to the finite cover X ′ → X cannot

always remain isomorphic to Bi. (Think of B3 = X and B1∩B2 not connected.)

The proof in the general case may be thought of as a thickening of the graph

case.

Lemma 4.18 (à la Helly). Suppose the nonpositively curved cube com-

plex C deformation retracts to the locally convex connected subcomplex C . Let

B1, . . . , Bn be locally convex connected subcomplexes of C such that Bi ∩ C is

nonempty for each i. Then

(1) Bi ∩ C is connected.

(2) Each component of B1 ∩B2 contains a point of C .

(3) If ∩i(Bi ∩ C) is connected, then ∩iBi is connected.

Proof. We first prove the first claim. Let γ be a local geodesic in Bi that

starts and ends on Bi ∩ C. Let γ̃ be a lift of γ. Let ‹Bi be the lift of Bi that

contains γ̃. Note that since C deformation retracts onto C, there is only one

component ‹C in the preimage of C. It follows that the geodesic path γ̃ is

contained in the convex subcomplex ‹C. Thus γ̃ ⊂ ‹Bi ∩ ‹C, and so γ ⊂ Bi ∩ C.

We now prove the second claim. For i ∈ {1, 2}, let σi be a path in Bi
from Bi ∩ C to p ∈ B1 ∩ B2. Since C deformation retracts to C, we can let

σ be a path in C that is path homotopic to σ1σ
−1
2 , and so σσ2σ

−1
1 lifts to

a closed path σ̃σ̃2σ̃
−1
1 in C̃. Let ‹Σi be the smallest convex subcomplex of C

containing σ̃i, and note that ‹Σi ⊂ ‹Bi. Similarly, let ‹Σ be the smallest convex

subcomplex containing σ̃ and note that ‹Σ ⊂ ‹C. The closed path σ̃σ̃2σ̃
−1
1 shows

that the convex subcomplexes ‹Σ1,‹Σ2,‹Σ have nonempty pairwise intersection,

and so Helly’s Theorem 4.3 shows that ‹Σ1∩‹Σ2∩‹Σ is nonempty. The image of‹Σ1 ∩ ‹Σ2 is thus a connected subspace of B1 ∩B2; moreover, it passes through

p and some point of C.

The third claim follows from the following statement:

(3′) Each component of ∩iBi contains a point of C.

This follows from (2) by induction on n. Indeed given any family of sub-

complexes B1, . . . , Bn, Bn+1 satisfying the assumption of the lemma, let B′n
be any component of Bn ∩ Bn+1. By (2) the inductive hypothesis applies to

B1, . . . , Bn−1, B
′
n. �

The profinite topology on a group G is generated by the basis of finite

index cosets. The profinite topology is hausdorff exactly when G is residually

finite, which holds exactly when {1G} is separable. A subset S ⊂ G is separable

if S is closed in the group G relative to the profinite topology. Equivalently,
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Figure 6. The cover “Xi → X is partially illustrated above.

S is separable provided that for each g 6∈ S, there is a finite quotient G → Ḡ

such that ḡ 6∈ S̄. Typically, S is a subgroup of G or a double coset AB ⊂ G

where A,B are subgroups.

Remark 4.19. When X is compact virtually special and π1X is word-

hyperbolic, the quasiconvex subgroups of π1X are separable [HaW08], and

consequently the double quasiconvex cosets are separable as proven by Mi-

nasyan [Min06].

Separability of a subgroup can often be applied to reduce self-intersections

of a lifted subspace in a finite cover. Suppose Y is compact and Y → X lifts to

an embedding Y ↪→ “X in a covering space “X → X with π1
“X separable in π1X.

As explained by Scott [Sco78], there then exists a finite intermediate cover“X → X such that Y lifts to an embedding in “X. Along this vein, the following

lemma uses double coset separability to reduce intersections in a cover.

Lemma 4.20 (separating D from stuff). Let X be a compact connected

nonpositively curved cube complex with basepoint p. Suppose B1, . . . , Bn,D are

locally convex, connected, subcomplexes of X containing p. Suppose π1Dπ1Bi
is separable in π1X for each i.

Then there is a based finite cover “X such that, letting “D, “B1, . . . , “Bn denote

the based elevations, we have “D ∼= D and, moreover, each intersection “D ∩ “Bi
is connected.

Proof. It suffices to prove the result for n = 1. For then, treating each

pair D, Bi independently, for each i we have a finite based cover “Xi → X in

which “Di
∼= D and the based elevation of Bi has connected intersection with“Di. The fiber-product of the covers “Xi → X has the desired property. We

write B for B1 below.

The base component B ∩ D contains the basepoint p. Let pk denote a

point in each other component Ck of B ∩D. For each k, let βk denote a local

geodesic in B from p to pk, and let δk denote a local geodesic in D from p

to pk.
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Figure 7. Synchronism fails on the left but succeeds on the right.

Observe that δkβ
−1
k 6∈ π1Dπ1B. Indeed suppose bβk is homotopic to dδk

for some b ∈ π1B and d ∈ π1D. Their lifts to ‹X are homotopic to geodesic

paths δ, β. But then δ = β by uniqueness of geodesics, so pk and p must lie in

the same component of B ∩D.

By separability, let N be a finite index normal subgroup of π1X such that

for each k, we have δkβ
−1
k 6∈ Nπ1Dπ1Bi. Let (“X, p̂) → (X, p) be the finite

based cover corresponding to Nπ1D, and let “D, “B denote the based elevations

of D, B. Note that “D ∼= D.

Suppose “D ∩ “B has a component not containing p̂. Then there is a path

β̂ inside “B from p̂ to some preimage of pk. The path ĝ = δkβ̂
−1 is closed in“X, thus ĝ ∈ Nπ1D. We also have ĝ = δkβ

−1
k b for some b ∈ π1B, which is a

contradiction. �

In our applications of Lemma 4.20 the cube complex X is special and π1X

is word-hyperbolic, and we may thus use Corollary 4.15 to get an alternative

argument.

Let X have a basepoint x. We say Y ⊂ X is a based subspace to mean

that x ∈ Y and that x is the basepoint of Y .

Definition 4.21. Let V,U,U be connected based subspaces of X. We say

V,U is synchronized with V,U , if for each based cover “X and based elevations“V , “U,“U, the subspace “V ∩ “U is connected relative to “V ∩ “U in the sense that

each component of “V ∩ “U contains a component of “V ∩ “U .

By definition, the property of being synchronized is stable under further

cover.

Example 4.22. Let U denote a pair of pants, let V denote a circle, and let

X = U ∨ V denote their wedge along a boundary point of U. As illustrated

on the left of Figure 7, synchronism can fail if we let U denote a circle, but as

illustrated on the right, synchronism succeeds if we let U denote a π1-surjective

graph in U.

Lemma 4.23 (relatively connected intersection + π1-surjective ⇒ syn-

chronized). Let V,U,U be connected based subspaces of X . Suppose U ⊂ U.

Suppose π1U → π1U is surjective and V ∩ U is connected relative to V ∩ U .

Then V,U is synchronized with V,U .
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Proof. Let f : “X → X be a cover whose basepoint p̂ maps to the basepoint

p of X and “V , “U,“U be the based elevations. Let pi be a point in each component

of U ∩ V . Note that “U ∩ “V is the disjoint union of components covering

components of U∩V . So by the relative connectivity of U∩V , each component

of “U ∩ “V contains a point of f−1(pi) ∩ “U. But since π1U → π1U is surjective,

f−1(pi)∩“U = f−1(pi)∩ “U . Consequently each component of “U∩ “V contains a

component of “U ∩ “V . �

Lemma 4.24 (intermediate synchronism). Let V and U ⊂ U ⊂ U+ be

connected locally convex based subcomplexes of X , and assume that U → U+

is π1-surjective. If V,U+ is synchronized with V,U , then V,U is synchronized

with V,U .

Proof. Let “X be a connected cover, and note that “V and “U ⊂ “U ⊂ “U+ are

connected and locally convex. Let q ∈ “V ∩“U. Since V,U+ is synchronized with

V,U , we see that there is a path σ in “U+∩“V from q to p ∈ “U . By π1-surjectivity

σ can be homotoped to a local geodesic γ in “U. By local convexity γ lies in “V .

Thus the component of “V ∩ “U containing q also contains p ∈ “V ∩ “U . �

Theorem 4.25 (virtually connected intersection). Let X be a compact

special cube complex with ‹X δ-hyperbolic. Let (B0, . . . , Bn, A) be connected

locally convex subcomplexes containing the basepoint of X . Suppose that A ⊂⋂
j∈{0,...,n}Bj . Then there are a based finite cover X̄ and based elevations

B̄0, . . . , B̄n with Ā ∼= A such that ∩j∈J B̄j is connected for each J ⊂ {0, . . . , n}.

The p-component of S denoted by [S]p, is the component of S containing

the point p, and we use the notation [S] = [S]b, where b is the basepoint.

When indices are clear from the context, we will use the notation BJ =

∩j∈JBj and B̈J = ∩j∈J B̈j , etc. Given a subspace A ⊂ X containing the

basepoint, and a based cover “X, we will employ the notation “A to denote the

based elevation of A. Likewise, Ẍ, Ä and X̄, Ā, etc. Using these notations we

have [“BJ ] = ‘[BJ ].

Proof. The reader may wish to first understand the proof under the sim-

plifying assumption that X is a graph. In that case the proof is easier since no

thickening is necessary to ensure local convexity: we take R = 0 in the argu-

ment below. We thus avoid Steps 0 and 1, and the proof consists of Steps 2–6,

with C = C,D = D,B0 = B̂0.

Step 0: Ensuring large embedding radii and synchronism. Let R ≥ K be

the constants in Corollary 4.15. For each I ⊂ {0, . . . , n}, using the separability

of π1[BI ], the local isometry [BI ]
+R → X can be extended to a finite cover

ẌI → X. The smallest cover Ẍ → X factoring through each ẌI → X has

finite degree. Moreover, Ä ∼= A and by Lemma 4.8, each [B̈I ]
+R embeds.
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Let I, J ⊂ {0, . . . , n}, and apply Lemma 4.20 to [B̈I ], [B̈J ]+R to obtain a

finite cover
./
X such that [

./
BJ ] ∼= [B̈J ] and [

./
BI ]

+R have connected intersection.

In particular,
./
A∼= A. By Lemma 4.23, in any further cover Ẋ →

./
X, the pair

of subspaces [ḂI ]
+R, [ḂJ ] is synchronized with [ḂI ], [ḂJ ], and by Lemma 4.24,

the same holds if we replace [ḂI ]
+R by a deformation retract containing [ḂI ].

For each I, J ⊂ {0, . . . , n}, we apply the above construction to obtain

a finite cover
./
XIJ→ X. Let Ẋ be a finite cover that factors through each

./
XIJ with Ȧ ∼= A; for instance, the based fiber-product of the

./
XIJ→ X. We

complete the proof by applying the following claim to Ẋ with (Ḃ0, . . . , Ḃn, Ȧ).

The remainder of the proof will focus on verifying this claim.

Claim. Let X be a compact special cube complex with ‹X δ-hyperbolic.

Let (B0, . . . , Bn, C) be locally convex connected subcomplexes containing the

basepoint of X. Suppose that C ∩ BJ is connected for each J ⊂ {0, . . . , n}.
Suppose that each [BI ]

+R embeds in X, and suppose that [BI ], [BJ ]+R is

synchronized with [BI ], [BJ ] for each I, J ⊂ {0, . . . , n}. Then there is a based

cover X̄ with C̄ ∼= C such that B̄J = ∩j∈J B̄j is connected for each J ⊂
{0, . . . , n}.

The claim holds for n = 0 with X̄ = X, and it will be proven by induction

on n.

Step 1: Embedding neighborhoods of C and ensuring connected intersec-

tions with neighborhoods of each ~Bj . We first pass to a finite cover of X such

that C+R embeds. We then apply Lemma 4.20 several times to obtain a finite

cover ~X such that

(1) C+R ∼= ~C+R embeds in ~X.

(2) ~C+R ∩ ~Bj is connected for each j.

(3) ~C+K ∩ ~B+K
j is connected for each j.

As a consequence, the following holds by Lemma 4.5 as we have just enforced

that C is R-embedded, and ~C ∩ ~B0 is connected and B0 is R-embedded by

hypothesis of the claim that

(4) (~C ∩ ~B0)+R embeds.

Step 2: Making intersections connected in B0. Consider the subspaces

[ ~B0 ∩ ~Bi] for i ∈ {1, . . . , n}. We claim that
Ä
∩j∈J [ ~B0 ∩ ~Bj ]

ä
∩ ~C is connected

for any J ⊂ {1, . . . , n}. Indeed using the connectivity hypothesis, we have the

following inclusions, which are thus equalities:

~BJ∪{0} ∩ ~C ⊆
Ä
∩j∈J [ ~B0 ∩ ~Bj ]

ä
∩ ~C = ∩j∈J [ ~B0 ∩ ~Bj ] ∩ ~C

⊆ ∩j∈J ~B0 ∩ ~Bj ∩ ~C = ~BJ∪{0} ∩ ~C.
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Observe that
î
∩j∈J [ ~B0∩ ~Bj ]

ó
= [∩j∈J∪{0} ~Bj ]. Indeed,

î
∩j∈J [ ~B0∩ ~Bj ]

ó
⊂

[∩j∈J∪{0} ~Bj ] because ∩j∈J [ ~B0 ∩ ~Bj ] ⊂ ∩j∈J( ~B0 ∩ ~Bj) = ∩j∈J∪{0} ~Bj . The

reverse inclusion [∩j∈J∪{0} ~Bj ] ⊂
î
∩j∈J [ ~B0∩ ~Bj ]

ó
holds because ∩j∈J∪{0} ~Bj ⊂

~B0∩ ~Bj for each j ∈ J , and so [∩j∈J∪{0} ~Bj ] ⊂ [ ~B0∩ ~Bj ], and so [∩j∈J∪{0} ~Bj ] ⊂
∩j∈J [ ~B0 ∩ ~Bj ].

The above two observations show that the hypotheses of our claim hold

for the family
Ä
[ ~B0 ∩ ~B1], . . . , [ ~B0 ∩ ~Bn], ~C

ä
. Thus, by induction there is a

finite covering space “Xo → ~X and an isomorphic based elevation “C → ~C such

that the collection of subspaces ◊�[ ~B0∩ ~Bj ] = [“B0 ∩ “Bj ] has the connected multiple

intersection property: ∩j∈J [“B0 ∩ “Bj ] is connected for each J ⊂ {1, . . . , n}.
We will ensure that in each further cover the based elevation of B0 remains

isomorphic with ”B0.

Step 3: Formation of D. Let D = “B0 ∪ “C, and since “B0 and “C are

R-embedded, let D be the locally convex thickening of D provided by Corol-

lary 4.15 (where D,D, “Xo, “X correspond to S, T , X, X ′, respectively).

Furthermore, D decomposes as D = B0 ∪ C, where “B0 ⊂ B0 ⊂ “B+K
0 and“C ⊂ C ⊂ “C+K (Corollary 4.15.1). The inclusions “B0 ⊂ B0 ⊂ “B+K
0 and“C ⊂ C ⊂ “C+K are homotopy equivalence by local convexity, and we shall soon

use this. Moreover, (“B0 ∩ “C) ⊂ B0 ∩C ⊂ (“B0 ∩ “C)+K where the locally convex

intersection B0 ∩ C is connected. Since the intermediate subcomplex B0 ∩ C

is locally convex and connected, it deformation retracts to “B0 ∩ “C; indeed the

inclusion is a π1-isomorphism by Remark 4.16.

Step 4: Making D have connected intersection with each of “B1, . . . , “Bn.

Apply Lemma 4.20 to pass to a finite cover X̌ such that Ď ∼= D and such that

each B̌j ∩ Ď is connected.

Step 5: Multiple intersections are connected in Ď. Recall that B̌J de-

notes ∩j∈J B̌j . Our goal now is to show that Ď ∩ B̌J is connected for each

J ⊂ {1, . . . , n}. This intersection can be expressed as the union of two sets

containing the basepoint p:

Ď ∩ B̌J = (Č ∪ B̌0) ∩ B̌J = (Č ∩ B̌J) ∪ (B̌0 ∩ B̌J),

and it therefore suffices to verify the connectivity of both (Č ∩ B̌J) = (Č ∩
(∩j∈J B̌j)) and (B̌0 ∩ B̌J) = (B̌0 ∩ (∩j∈J B̌j)).

To reach this goal we aim to apply Lemma 4.18.3 to the families (Č∩B̌j)j∈J
and (B̌0∩B̌j)j∈J , respectively contained in Č, B̌0, where Č deformation retracts

to Č and B̌0 deformation retracts to B̌0 (as we have seen in Step 3).

We will be done after verifying the connectedness of each of the following:

(a) Č ∩ B̌j ,
(b) Č ∩ B̌J ,
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(c) B̌0 ∩ B̌j ,
(d) B̌0 ∩ B̌J .

(a) We now show that Č∩ B̌j is connected. By choice of ~X, we know that
~C+K ∩ ~Bj is connected. Since ~C ⊂ ~C+K is a homotopy equivalence, it follows

by Lemma 4.18.1 that ~C ∩ ~Bj is connected, and we are done.

(b) By assumption, Č ∩ B̌J is connected. At this point we already have

that each Č ∩ B̌J is connected.

(c) We now show that B̌0 ∩ B̌j is connected for each j. Let q ∈ B̌0 ∩ B̌j .
By assumption, B̌j , B̌

+R
0 is synchronized with B̌j , B̌0. Thus by Lemma 4.24,

[B̌0 ∩ B̌j ]q intersects B̌0. Since B̌j ∩ Ď is connected, we see that [B̌0 ∩ B̌j ]q
intersects B̌0 ∩ Č at some point r. Recall that

(B̌0 ∩ Č) ∼= (B0 ∩ C) ⊂ (B+K
0 ∩ C+K)

is connected. Apply Lemma 4.18.2 to see that the r-component of (B̌0 ∩ Č) ∩
[B̌0∩ B̌j ]q contains a point s of B̌0∩ (B̌0∩ Č)∩ [B̌0∩ B̌j ]q. But s ∈ B̌0∩ B̌j ∩ Č,

which we proved is connected and which contains p.

(d) We now show that ∩j∈J(B̌0 ∩ B̌j) is connected. Since B̌0 ∩ B̌j is

connected, it follows from Lemma 4.18.1 that B̌0 ∩ B̌j is connected, and so

[B̌0 ∩ B̌j ] = B̌0 ∩ B̌j . We thus see that ∩j∈J(B̌0 ∩ B̌j) = ∩j∈J [B̌0 ∩ B̌j ], but

the latter is connected since ∩j∈J [“B0 ∩ “Bj ] is connected by choice of “X.

Step 6: Applying induction again. We now apply the inductive assump-

tion to the family (B̌1, . . . , B̌n, Ď). There is a finite covering space X̄ → X and

an isomorphic based elevation D̄ ∼= Ď such that letting B̄j denote the based

elevation of B̌j , then for any nonempty subset J ⊂ {1, . . . , n} the intersection

B̄J is connected.

For any subset J={0}∪I with I⊂{1, . . . , n}, we have B̄J =∩i∈I(B̄0∩B̄i).
Since B̄0 ⊂ D̄, the map B̄0 → B̌0 is an isomorphism, and we have already

shown in Step (5d) that ∩i∈I(B̌0 ∩ B̌i) is connected. �

Corollary 4.26 (virtually connected intersection for local isometries).

Let X be a compact special cube complex with ‹X δ-hyperbolic. Let (B0 →
X, . . . , Bn → X,A → X) be local isometries of connected complexes. Suppose

that A → X is injective and factors as A → Bj → X for each j. Then

there is a finite cover X̄ with an elevation Ā ∼= A such that the elevations

B̄0 → X̄, . . . , B̄n → X̄ at Ā→ X̄ are injective, and the intersection ∩j∈J B̄j of

each subcollection of their images is connected.

Proof. For each i, let Xi = C(Bi, X), and let “X denote the component

of the fiber-product of X0 → X, . . . ,Xn → X that contains “A ∼= A. Each

elevation “Bi embeds in “X and contains A. We may thus apply Theorem 4.25

to (“B0, . . . , “Bn, “A). �
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5. Trivial wall projections

5.A. Introduction. This section is devoted to proving Corollary 5.8, which

is a higher-dimensional generalization of the following

Proposition 5.1. Let A→ X,B → X be immersions of finite connected

graphs to the connected graph X . Suppose that all conjugates of π1A and π1B

have trivial intersection in π1X . Then there is a finite cover “X → X such that

each pair of distinct elevations “A, “B embed and intersect in a forest.

In Corollary 5.8 we have a similar statement for local isometries of com-

plexes of (virtually) special cube complexes (with word hyperbolic fundamental

groups) by substituting “trivial wall projection” for “forest intersection.” In

the case of graphs the wall projection of A onto B equals B0 ∪ (A ∩ B) so

that the statement in Proposition 5.1 is really about trivial wall projections.

While the proof of Proposition 5.1 is rather simple (see, for example, [Wis02]),

we found its generalization to special cube complexes to be a very challenging

part of this paper. The reader might choose to skip this lengthy section at first

reading, after becoming familiar with Corollary 5.8, which of course uses the

language of elevations from Definition 3.17.

The conclusion of Proposition 5.1 still holds in any further cover X ′ → Ẍ.

Trivial wall projection is also preserved under covering.

Lemma 5.2. Suppose X ′ → Ẋ is a covering map of connected cube com-

plexes. Let Ȧ, Ḃ ⊂ Ẋ denote connected subcomplexes, and let A′, B′ ⊂ X ′

denote elevations of those. If ProjẊ(Ḃ → Ȧ) is trivial, then ProjX′(Ḃ′ → Ȧ′)

is trivial.

Proof. This holds as WProjX′(B′ → A′) maps to WProjẊ(Ḃ → Ȧ) under

X ′ → Ẋ. �

The main work in proving Corollary 5.8 will be to prove the following

theorem, which focuses on a single local isometry. In fact this is a special case

of Corollary 5.8 when B consist of a single 0-cell. Observe that the following

result is immediate when A → X is an injection of graph. The difficulty in

higher dimensions comes from the reach of wall-projections, even when A→ X

is injective.

Theorem 5.3 (trivial wall projections). Let X be a compact virtually

special cube complex, and let A → X be a local isometry with A compact and

π1A ⊂ π1X malnormal. Assume π1X is word hyperbolic. Then there exists a

finite cover A0 → A such that any further finite cover Ā→ A0 can be completed

to a finite special cover X̄ → X with the following properties :

(1) all elevations of A→ X to X̄ are injective,

(2) Ā is wall-injective in X̄ ,

(3) every elevation of A distinct from Ā has trivial wall-projection onto Ā.
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Figure 8. Â1 and Â2 are the bold pentagons.

One of the difficulties in proving Theorem 5.3 is that the triviality of

WProj
X̂

(B → “A) for elevations B, “A of A is not stable under taking fur-

ther covers. Lemma 5.2 gives no control in the case that Ȧ = Ḃ. For then

WProjẊ(Ḃ → Ȧ) = Ȧ can be nontrivial, and indeed, there can be elevations

B′ 6= A′ with nontrivial wall projection onto A′. This behavior is exhibited

in the following example, which illustrates the delicacy of Theorem 5.3. This

example shows that, in general, there does not exist a finite cover “X → X with

the property that we have trivial wall projections in any further cover.

Example 5.4. Let X denote the standard 2-complex of 〈a, b, c | a−1b−1ac〉
so X is obtained from a cylinder by identifying two points on distinct bounding

circles. Let A denote the subcomplex consisting of the 0-cell and the 1-cell

labeled by a, and note that π1A is malnormal in the free group π1X.

Consider any based finite cover “X → X. Let “A denote the based elevation

of A. Observe that for some n, there is an immersionD → X whereD is formed

from “A by attaching a distinct strip In×I to each 1-cell of “A along both {0}×I
and {n}×I. For instance, we could let n denote the order of the image of π1X

in the left coset representation on π1
“X.

Let “D denote the double cover ofD corresponding to the morphism π1D →
Z/2Z that maps the loop corresponding to “A to 0 and that is nontrivial on

each simple loop contained in one of the annuli attached to “A. The preimage

of “A in “D consists of two isomorphic components “A1, “A2. It is easy to see that

WProj
D̂

(“A1 → “A2) consists of all of “A2. Now let X̄ denote a cover of “X that

contains “D, and we see that “A2 = WProj
D̂

(“A1 → “A2) ⊂ WProjX̄(“A1 → “A2)

⊂ “A2. This construction is partially illustrated in Figure 8.

5.B. Narrow wall-projection. We say hyperplanes H,K of X are M -close

if d(N(H), N(K)) ≤ M , where we recall that d(U, V ) is the length of the

shortest combinatorial path with endpoints on U, V .

Lemma 5.5 (narrow implies trivial). Suppose X is virtually special and

compact. Let A→ X be a local isometry with A compact, and let M > 0 be a

positive number. There exists a finite cover X0 → X with a based elevation A0
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such that all elevations of A to X0 are injective and such that for any further

cover (X̄, Ā)→ (X0, A0), the following holds.

Let Ā′ 6= Ā be another elevation of A to X̄ . If all pairs of hyperplanes

intersecting both Ā and Ā′ are M -close, then Ā′ has trivial wall-projection

onto Ā.

Remark 5.6. The hypothesis that X is compact can be relaxed to a hy-

pothesis of finitely many hyperplanes. Furthermore, the hypothesis that A is

compact can be relaxed to the following hypothesis: A → X factors through

a local isometry Ā → X̄ such that the preimage of π1Ā equals π1A, and Ā is

compact, and X̄ is virtually special.

Proof of Lemma 5.5. By Lemma 4.9 and Corollary 4.10, there is a finite

special cover X ′ → X such that all elevations of A to X ′ are injective and

all hyperplanes of X ′ have embedding radius > M . Let L denote the number

of hyperplanes in X ′. Let A0 → A be a finite cover factoring through X ′

such that the finite CAT(0) complex v+(L+1) → A0 embeds as a subcomplex

for each vertex v ∈ A0 and such that v+(L+1) is wall-injective in A0. Let

X0 = C(A0, X
′). Note that each v+(L+1) is then wall-injective in X0.

Let (X̄, Ā)→ (X0, A0) be any further cover. For each v̄ in Ā, the CAT(0)

cubical ball v̄+(L+1) is still a CAT(0) and wall-injective subcomplex of X̄.

Consider an edge-path σ̄ in Ā of length L + 1, and assume that any two

hyperplanes dual to edges of σ̄ are M -close. Then σ̄ has two distinct edges

dual to hyperplanes H̄1, H̄2 that project to the same hyperplane H ′ of X ′. Let

τ̄ be a path of length ≤M between N(H̄1) and N(H̄2). Since τ̄ projects to a

short path τ ′ from N(H ′) to itself, we see by Lemma 4.7 that τ ′ is homotopic

into N(H ′) and thus H̄1 = H̄2. The cubical (L + 1)-ball B̄ of Ā centered at

the origin of σ̄ is wall-injective in X̄, and thus there is a B̄-hyperplane dual

to two distinct edges of σ̄. Since B̄ is CAT(0), it follows that σ̄ is not a local

geodesic.

By the local convexity of wall projections (Remark 3.15), the above argu-

ment shows that for any distinct elevation Ā′ whose common hyperplanes with

Ā are M -close, each component of WProjX̄(Ā′ → Ā) is contained in a cubical

L-ball; thus it is trivial. �

While Example 5.4 shows that the property of having trivial wall projec-

tions for arbitrary elevations is not stable under further covers, the following

shows how to obtain this stability for all nearby elevations.

Lemma 5.7 (nearby elevations). Let A→ X be a local isometry of special

cube complexes with A compact. Assume π1A → π1X is malnormal and the

universal cover ‹X is Gromov-hyperbolic. Then for any positive number D > 0,

there is a finite cover X1 → X with a based elevation A1 with the following

properties.
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All elevations of A → X to X1 are injective, and for any further cover

(“X, “A) → (X1, A1) and any elevation “A′ 6= “A, if d(“A′, “A) ≤ D, then “A′ has

trivial wall-projection onto “A.

In the argument below malnormality is employed to ensure that the hy-

perplanes between A1 and A′1 are close enough. It then suffices to apply

Lemma 5.5.

Proof. We will use the constants R,K of Corollary 4.15. By Lemma 4.9,

we may pass to an initial finite cover Ẋ → X so that all elevations of A→ X

to Ẋ are embedded and have embedding radius > D + R. Let Ȧ be a fixed

elevation of A to Ẋ. Since the embedding radius of Ȧ is > D+R, we see that

Ȧ+D embeds in Ẋ. Let Ȧi be an elevation intersecting Ȧ+D, and let Cij be

the various components of Ȧ+D∩ Ȧi. Let M = maxij
Ä
diameter(C+K

ij )
ä
, which

is obviously finite.

We apply Lemma 5.5 to Ȧ ⊂ Ẋ with the constant M in order to obtain

the finite cover X̄ and elevation Ā such that if Ā′ 6= Ā is an elevation whose

common hyperplanes with Ā are M -close, then Ā′ has trivial wall projection

onto Ā in X̄, and this persists in further covers.

Since the embedding radius of Ā is > D+R, the space (Ā)+D embeds in X̄.

For any distinct elevation Āk within distance D of Ā, we choose a connected

component C̄k` of the nonempty intersection Ā+D ∩ Āk, and we form a space

Sk` by attaching Ā+D with Āk along C̄k`. By malnormality of π1A, each Cij
is simply-connected, and so each C̄k` factors isomorphically through some Cij .

Consequently diameter(C̄+K
k` ) ≤M always holds.

The embedding radius of Āk inside X̄ is > D + R ≥ R. The embedding

radius of Ā+D inside X̄ is > (D + R) −D = R. Thus by Corollary 4.15, the

natural map Sk` → X̄ factors as Sk` → Tk` ↪→ Xk` → X̄, where Xk` → X̄ is a

finite cover, Sk` → Tk` is an injective π1-isomorphism, Tk` ⊂ Xk` is a connected,

wall-injective locally convex subcomplex, and any path in Tk` connecting Āk
to Ā+K enters C̄+K

k` .

Since Tk` ⊂ Xk` is wall-injective, it follows that any hyperplane of Xk`

from Āk to Ā enters C̄+K
k` , and thus any two such hyperplanes are M -close.

Consequently the wall projection from Āk to Ā is trivial.

We consider the various covers Xk` → X̄ associated to the finitely many

choices of Ck`. Each finite cover Xk` contains an isomorphic elevation of Ā,

and we denote by (X1, A1)→ (X̄, Ā) the Ā-component of the fiber-product of

the various covers {Xk` → X̄}. Note that A1
∼= Ā.

The cover X1 → X has the desired properties. Indeed consider any further

cover (“X, “A)→ (X1, A1) and any elevation “A′ 6= “A with d(“A′, “A) ≤ D.

In X̄ the embedding radius of Ā is > D. Since “A′ 6= “A and d(“A′, “A) ≤ D,

it follows that the image of “A′ inside X̄ is distinct from Ā and thus equals one
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of the Āk discussed above. Let A′1 be the image of “A′ in X1, and again note

that A′1 6= A′ — indeed it maps to Āk 6= Ā in X̄.

Observe that X1 → X̄ factors through Xk` and A′1 maps onto Āk ⊂
Tk` ⊂ Xk`. Since the wall-projection of Āk onto Ā inside Xk` is trivial, it

follows by Lemma 5.2 that WProjX1
(A′1 → A1) is trivial, and hence so is

WProj
X̂

(“A′ → “A). �

5.C. Proof of Theorem 5.3.

Step 1: Preparation. Let R ≥ K be the constants of Corollary 4.15.

Choose constants D>(3K+1)dim(X), M≥4Kdim(X), and R1≥max(K+R,

4K + 2).

We first pass to a finite cover (X0, A0)→ (X,A) such that

(1) X0 is special.

(2) Each elevation of A to X0 is injective.

(3) Each elevation of A to X0 has embedding radius > R1. Each hyperplane

of X0 has embedding radius > R1.

(4) Let (X̄, Ā) → (X0, A0) be any further cover. Then for each elevation

Ā′ 6= Ā with d(Ā′, Ā) ≤ D, the wall projection WProjX̄(Ā′ → Ā) is trivial.

(5) Let (X̄, Ā)→(X0, A0) be any further cover. Then for any other elevation Ā′

of A, if the hyperplanes between Ā, Ā′ are M -close, then WProjX̄(Ā′ → Ā)

is trivial.

These properties are stable under covers, so we obtain them consecutively.

First we choose a finite special coverX1 → X. Let A1 be an elevation of A→ X

to X1. We form the canonical completion C(A1, X1) → X and note that its

based elevation is injective. Let X2 → X be a finite regular cover factoring

through C(A1, X1)→ X, and note that all elevations of A to X2 are injective.

Then we apply Lemma 4.9 and Corollary 4.10 to get a finite cover X3 → X2

with arbitrarily high embedding radii of the desired subcomplexes. To get the

two last properties we consecutively apply Lemmas 5.7 and 5.5.

Let Ā → A0 be the further finite cover in the statement of Theorem 5.3.

Using separability we complete Ā→ X0 to a finite cover Ẋ → X0. We alert the

reader to the following simplification of notation: in any further cover X̌ → Ẋ,

we will always consider a preferred elevation of A that is isomorphic to Ā, and

we will still denote this elevation by Ā. By Lemma 4.8, the subspace Ā ⊂ X̌

is R1-embedded, and so for any radius 0 ≤ R′ ≤ R1 we have (Ā)+R′ ⊂ X̌.

Moreover, if X̌ → Ẋ factors through X̂ → Ẋ, then the covering map X̌ → X̂

induces an isomorphism between the R′-thickenings of Ā.

Step 2: Connected intersection of thickened elevations and hyperplanes.

We claim that there is a further finite cover Ẍ → Ẋ with an isomorphic

elevation of Ā such that the following holds: for any hyperplane Ḧ of Ẍ dual to
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an edge of Ā and for any pair of connected locally convex subcomplexes Ÿ , Z̈ ⊂
Ẍ satisfying Ā ⊂ Ÿ ⊂ (Ā)+R1 , N(Ḧ) ⊂ Z̈ ⊂ N(Ḧ)+R1 , the intersection Ÿ ∩ Z̈
is connected.

Indeed for any hyperplane Ḣ of Ẋ dual to an edge e of Ā and for any

pair of connected locally convex subcomplexes Ẏ , Ż ⊂ Ẋ satisfying Ā ⊂ Ẏ ⊂
(Ā)+R1 , N(Ḣ) ⊂ Ż ⊂ N(Ḣ)+R1 , let CẎ Ż denote the component of Ẏ ∩ Ż
containing e. By Lemma 4.20, there is a finite cover ẊḢ,Ẏ ,Ż → Ẋ with an

isomorphic elevation of Ẏ (and hence of Ā) such that the elevation of Ż at e

intersects Ẏ connectedly. The fiber-product of the various covers ẊḢ,Ẏ ,Ż → Ẋ

contains a natural isomorphic elevation of Ā that is contained in a connected

component Ẍ of the fiber-product.

We claim that Ẍ has the required connectedness property. This is clear

for Ÿ arbitrary and Z̈ = N(Ḧ) or Z̈ = N(Ḧ)+R1 , because in that case Ÿ , Z̈

cover subcomplexes Ẏ , Ż. The result follows for an intermediate N(Ḧ) ⊂ Z̈ ⊂
N(Ḧ)+R1 using Lemma 4.18.

Step 3: Geometric properties of the union of Ā and a hyperplane. We now

consider the collection of spaces Ü1, . . . , Ük, V̈1, . . . , V̈` that are subspaces of Ẍ

that arise in the following two ways:

• the union Üi of Ā and a hyperplane Ḧ passing through it;

• the union V̈j of Ā, a distant elevation Ä′, and a hyperplane H passing

through both.

Here we say that an elevation Ä′ of A is distant if d(Ä′, Ā) > D.

Each Üi, V̈j is quasiconvex, and we consider their locally convex thicken-

ings B̈i → Ẍ, C̈j → Ẍ. Below we describe precisely these constructions.

Observe that Ā is wall-injective in Ẍ and a similar property holds more

generally for any intermediate locally convex subcomplex Ā ⊂ Ÿ ⊂ (Ā)+R1 .

Indeed let e1, e2 be 1-cells of Ÿ dual to a hyperplane Ḧ that is also dual to

some edge of Ā. Since Ÿ ∩N(Ḧ) is connected by Step 2, there is a path p in

Ÿ ∩ N(Ḧ) from e1 to e2. By local convexity, e1pe2 travels on a sequence of

squares of Ÿ dual to Ḧ, and we deduce that e1, e2 are parallel inside Ÿ . In

particular, any hyperplane Ḧ that intersects Ā actually meets Ā along a single

hyperplane of Ā, which we denote by ḦĀ.

We then form the space Ü by gluing Ā and N(Ḧ) along their connected

intersection. By construction, the embedding radii of both Ā and Ḧ in Ẍ are

> R1. Recall that R,K denote the constants of Corollary 4.15 and at the very

beginning of Step 1 we chose R1 ≥ R. By Corollary 4.15, the map Ü → Ẍ

factors through a local isometry B̈ → Ẍ so that Ü → B̈ is an injective π1-

isomorphism. Furthermore, there are connected locally convex subcomplexes

AḦ , Ḧ of B̈ such that Ā ⊂ AḦ ⊂ (Ā)+K , N(Ḧ) ⊂ Ḧ ⊂ (N(Ḧ))+K , B̈ = AḦ∪
Ḧ; the intersection AḦ ∩ Ḧ is connected and contained inside

Ä
Ā∩N(Ḧ)

ä+K
.
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Since R1 ≥ R ≥ K, the map B̈ → Ẍ is injective on both AḦ , Ḧ. We

claim that, in fact, B̈ → Ẍ is injective. By local injectivity of B̈ → Ẍ, it

suffices to check that AḦ ∩ Ḧ is a connected subspace of Ẍ. This follows

from Step 2, where we established the connectedness of AḦ ∩ Ḧ provided

Ā ⊂ AḦ ⊂ (Ā)+R1 , N(Ḧ) ⊂ Ḧ ⊂ N(Ḧ)+R1 . (Recall that K ≤ R1.)

Since AḦ ⊂ Ā+K , we see that the embedding radius of AḦ is ≥ R1 −
K ≥ R, and likewise Ḧ has embedding radius ≥ R. Since Ā ⊂ (AḦ)+R ⊂
(Ā)+R1 and N(Ḧ) ⊂ Ḧ+R ⊂ (N(Ḧ))+R1 , Step 2 implies that (AḦ)+R ∩ Ḧ+R

is connected. We can now apply Lemma 4.11 to see that the embedding radius

of B̈ is ≥ R.

Assume now that Ḧ cuts an elevation Ä′ with d(Ä′, Ā) > D. Let γ be

a connected component of B̈ ∩ Ä′ that contains an edge dual to Ḧ. Let Ẅ

be the space obtained by attaching B̈ to Ä′ along γ. We denote by V̈ ⊂ Ẅ

the π1-surjective subspace Ü ∪ Ä′. By Corollary 4.15, the map Ẅ → Ẍ

factors through a local isometry C̈ → Ẍ so that Ẅ → C̈ is an injective π1-

isomorphism. Furthermore, there are connected locally convex subcomplexes

B,A′γ of C̈ such that B̈ ⊂ B ⊂ B̈+K , Ä′ ⊂ A′γ ⊂ (Ä′)+K , C̈ = B ∪ A′γ ; the

intersection B ∩A′γ is connected and contained inside γ+K .

Step 4: Construction of X̄ → X . The inclusion Ā → Ẍ factors through

the various local isometries B̈i, C̈j → Ẍ. We apply Corollary 4.26 to the

collection of local isometries {B̈i → Ẍ}, {C̈j → Ẍ} relative to Ā. This yields a

cover (X̄, Ā) in which their elevations {B̄i, C̄j} are injective and have pairwise

connected intersection.

We note that Ā is wall-injective in X̄. Indeed assume two edges ā1, ā2 of

Ā are dual to a hyperplane H̄ of X̄. By projecting H̄ to the hyperplane Ḧ of

Ẍ, we note that ā1, ā2 are also parallel in Ẍ. Since Ā is wall-injective in Ẍ,

there is a hyperplane of Ā dual to both ā1, ā2. The conclusion follows since

X̄ → Ẍ induces an isomorphism Ā→ Ā.

Step 5: Verifying that wall projections are trivial. Let Ā′ 6= Ā be an

elevation of A, and let Ä′ denote the image of Ā′ inside Ẍ. If d(Ä′, Ā) ≤ D

and Ä′ 6= Ā, then WProjẌ(Ä′ → Ā) is already trivial by Step 1 and we are

done by Lemma 5.2. Otherwise either Ä′ = Ā or Ä′ is distant from Ā (in the

sense that d(Ä′, Ā) > D). In each of these cases we will deduce the triviality of

the wall-projection by showing M -closeness of the hyperplanes cutting through

both Ā and Ā′.

In the first case consider any two hyperplanes H̄1, H̄2 that pass through

both Ā and Ā′. Their images in Ẍ are Ḧ1, Ḧ2. For each i, let Üi and B̈i be

the spaces from Step 3 associated to (Ā, Ḧi). Since Ā′ maps to Ā and H̄1, H̄2

map to Ḧ1, Ḧ2, we have Ā′ ⊂ Ū1 ∩ Ū2 ⊂ B̄1 ∩ B̄2 where Ūi ⊂ B̄i denotes the

elevation of Üi that contains Ā.
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There is an edge-path σ̄ inside the connected subcomplex B̄1 ∩ B̄2 that

starts at Ā and ends in Ā′. Since B̈1 = (AḦ1
∪Ḧ1) ⊂ (Ā+K∪Ḧ+K

1 ), the locally

convex subcomplex B̄1 is contained in a union of elevations of Ā+K and Ḧ+K
1 .

Since R1 ≥ K+1, we have Ā+K∩Ā′ = ∅. Thus there is a first vertex p̄ on σ̄ that

is not in Ā+K . Note that p̄ ∈ Ā+(K+1). Since R1 ≥ 2K + 1, this vertex p̄ does

not belong to any elevation of Ā+K ⊂ Ẍ to X̄. Thus p̄ ∈ (ē′1)+K , where ē′1 is

an edge dual to a hyperplane H̄ ′1 mapping to the hyperplane Ḧ1 and contained

inside B̄1. We now check that H̄ ′1 = H̄1. Given an edge ē1 dual to H̄1 and

contained in Ā, we have ē′1, ē1 ⊂ Ā+(2K+2). The images ë′1, ë1 of these edges

under X̄ → Ẍ are both dual to Ḧ1. Since R1 ≥ 2K+2, we have seen in Step 3

that ë′1, ë1 are parallel inside Ā+(2K+2). Since X̄ → Ẍ induces an isomorphism

Ā+(2K+2) → Ā+(2K+2), it follows that ē′1, ē1 are dual to the same hyperplane

of Ā+(2K+2), and so H̄ ′1 = H̄1. Similarly p̄ ∈ H̄+K
2 . It follows that there is a

path of length ≤ 2Kdim(X) from N(H̄1) to N(H̄2) and so H̄1, H̄2 are M -close.

See Remark 4.1 for the relationship between combinatorial neighborhoods and

cubical thickenings.

The second case (when d(Ä′, Ā) > D) is similar except that we use locally

convex thickenings C̈1, C̈2 of the spaces built from Ā, Ä′, together with Ḧ1, Ḧ2

respectively. There is no difference from the previous explanation at the vertex

of σ̄ leaving the K-thickening of Ā: it comes within a uniform distance of both

H̄1 and H̄2. And such a vertex exists because D is large enough. We shall now

provide the details.

Consider any two hyperplanes H̄1, H̄2 cutting both Ā and Ā′. Choose an

edge ā′i of Ā′ dual to H̄i, and denote by a′i the image of ā′i inside Ẍ. The

images of H̄1, H̄2 in Ẍ are Ḧ1, Ḧ2. For each i, let B̈i be the locally convex

thickening of Ā ∪ N(Ḧi). We let γi denote the connected component of a′i
inside B̈i ∩ Ä′. Let V̈i, Ẅi, C̈i be the immersed spaces associated to B̈i, Ä

′, γi
that we constructed in Step 3. Since Ā′ maps to Ä′ and H̄1, H̄2 map to Ḧ1, Ḧ2,

we have Ā′ ⊂ W̄1 ∩ W̄2 ⊂ C̄1 ∩ C̄2.

There is an edge-path σ̄ inside the connected subcomplex C̄1 ∩ C̄2 that

starts at Ā and ends in Ā′. The following inclusion shows that the locally

convex thickening C̄1 is contained in the union of elevations of Ä′+K , elevations

of Ā+2K ⊂ Ẍ, and elevations of Ḧ+2K
1 :

C̈1 = B1 ∪A′1 ⊂
Ä
AḦ1

∪ Ḧ
ä+K ∪ Ä′+K ⊂ Ā+2K ∪ Ḧ+2K

1 ∪ Ä′+K .

Since D > (2K)dim(X), we have Ā+2K∩Ā′ = ∅, thus there is a first vertex

p̄ on σ̄ that is not in Ā+2K . Since R1 ≥ 4K+1, this vertex p̄ does not belong to

the 2K-thickening of any elevation of Ā ⊂ Ẍ. Since D > (3K+ 1)dim(X), the

point p̄ does not belong to the K-thickening of any elevation of Ä′ contained

in C̄1. It follows that p̄ belongs to the 2K-thickening of an elevation of N(Ḧ1).

Equivalently, p̄ ∈ (ē′1)+2K for some edge ē′1 dual to a hyperplane H̄ ′1 mapping
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to the hyperplane Ḧ1 and contained inside B̄1. The argument ends in the same

manner as in the first case: since R1 ≥ 4K + 2, we have H̄ ′1 = H̄1, and so any

two hyperplanes between Ā and Ā′ are within a distance 4Kdim(X) ≤ M .

�

5.D. A variation on the theme. Later, we will need the following result,

which is a consequence of Theorem 5.3.

Corollary 5.8. Let X be a compact virtually special cube complex, and

let A,B → X be compact local isometries with π1A ⊂ π1X malnormal, π1B ⊂
π1X malnormal. Each conjugate of π1A has trivial intersection with π1B.

More precisely, if a → A and b → B are immersed circles that are homotopic

to each other in X , then they are null-homotopic.

Assume π1X is word hyperbolic. Then there exists a finite cover A0 → A

such that any further finite cover Ā → A0 can be completed to a finite special

cover X̄ → X with the following properties :

(1) All elevations of A→ X,B → X to X̄ are injective.

(2) Ā is wall-injective.

(3) Every elevation of A distinct from Ā has trivial wall-projection onto Ā.

(4) Every elevation of B has trivial wall-projection onto Ā.

Proof. Step 1: The auxiliary pair C → Y . We choose base points ā, b̄ in

A,B, and let a, b be their images inside X. We then consider the space Y

obtained by adding a single 1-cube e to X with origin at a and with endpoint

at b. We also form a connected cube complex C by setting C = A t [0, 1] t
B/ā=0,b̄=1. We denote by ē the image of [0, 1] inside C. Mapping ē to e we get

a natural map C → Y .

Step 2: Geometric properties of Y . Observe that ‹Y is a hyperbolic CAT(0)

cube complex and C → Y is a local isometry. Indeed the universal cover ‹Y is

a tree-like space, where the vertex spaces are disjoint copies of ‹X, connected

by the edges mapping to e.

Step 3: π1C ⊂ π1Y is malnormal. This can be proven by either simple disc

diagram arguments, combinatorial group theory arguments involving normal

forms, or geometric considerations in the universal cover. We leave the details

to the reader.

Step 4: Y is virtually special. Let “X → X be a special cover of finite

degree d. The preimage of a consists of d points, and the preimage of b consists

of d points. We then choose a one-to-one correspondence between preimages of

a and preimages of b, and glue d edges accordingly. The resulting cube complex“Y covers Y , and it is special. Indeed the union of special cube complexes

meeting along vertices is itself special since it straightforwardly satisfies the

condition of Lemma 2.6.
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Step 5: Constructing A0. We can now apply Theorem 5.3 to the local

isometry C → Y . We thus obtain a finite cover C0 → C such that any further

finite cover C̄ → C0 extends to a finite special cover Ȳ → Y where all elevations

of C → Y are injective and have trivial wall-projection onto C̄, provided they

are distinct from C̄, and moreover C̄ ⊂ Ȳ is wall-injective. We choose A0 ⊂ C0

to be a fixed elevation of A ⊂ C to the covering space C0 → C.

Step 6: Conclusion. We now verify that A0 → A has the desired property.

Let Ā → A0 be any finite cover. C0 is special since it is a locally convex

subcomplex of the special complex Y0, and thus A → A0 ⊂ C0 extends to a

finite cover C̄ → C0.

We next further complete C̄ → C0 to a finite special cover Ȳ → Y with

the properties of Theorem 5.3. We denote by X̄ the elevation of X ⊂ Y that

contains Ā, and we claim that X̄ has the desired properties.

X̄ is special since it is a locally convex subcomplex of the special cube

complex Ȳ . Note that Ā is wall-injective in C̄, thus also in Ȳ and a fortiori

in X̄. Each elevation of A → X or B → X to X̄ extends to an elevation of

C → Y , and is thus injective.

Consider an elevation E 6= Ā of either A or B to X̄. Let C̄ ′ be the elevation

of C containing E. We first treat the case that C̄ ′ = C̄. Observe that E and

Ā have no common hyperplane in C̄ since C̄ is the disjoint union of covers

of A and B attached together along isolated 1-cells. The wall injectivity of

C̄ ⊂ X̄ implies that E and Ā have no common hyperplane in X̄ either. Thus

WProjX̄(E → Ā) = Ā0 and is thus trivial.

In the other case where C̄ ′ 6= C̄, we see that WProjX̄(E → Ā) is contained

in WProjȲ (C̄ ′ → C̄) and is thus trivial. �

6. The main technical result: A symmetric covering property

Let P be an embedded 2-sided hyperplane in the cube complex Q. Let

No(P ) be the open cubical neighborhood of P consisting of all open cubes of

X intersecting P . Note that No(P ) ∼= P × (−1, 1) ⊂ P × [−1, 1]. The map

No(P ) ↪→ Q extends to a map φ : P × [−1, 1]→ Q.

Let A and B denote P × {−1} and P × {+1}. We refer to A,B as the

sides of P . Let X = Q − No(P ). Let α : A → X and β : B → X denote

the restrictions of φ. Let p denote a basepoint of P , and let a, b = (p,±1)

be the corresponding basepoints in A,B. We regard the images of a, b to be

corresponding basepoints of X.

Theorem 6.1. Let Q be a compact connected nonpositively curved cube

complex, and let P be a hyperplane in Q such that the following hold :

(1) π1Q is word-hyperbolic.

(2) P is an embedded, nonseparating, 2-sided hyperplane in Q.
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(3) π1P is malnormal in π1Q.

(4) X = Q−No(P ) is virtually special.

For any finite cover “X of X , there is a finite regular cover
./
X factoring through“X such that

./
X→ X induces the same cover on each side A,B of P .

Proof. We will show that for each finite cover “X, there is a finite regular

cover
./
X factoring through “X such that the isomorphism γ = βα−1 from A to

B lifts to an isomorphism
./
γ from some elevation

./
A to some elevation

./
B.

Step 1: (Covers with trivial wall projection onto “Aa and “Bb). There exist

special, connected, finite based covers “Xa and “Xb factoring through “X such

that

(1) The based elevation “Aa of A to “Xa is injective and wall-injective in “Xa.

(2) The based elevation “Bb of B to “Xb is injective and wall-injective in “Xb.

(3) The isomorphism γ : A→ B lifts to an isomorphism γ̂ : “Aa → “Bb.
(4) WProj

X̂a
(B̆ → “Aa) is trivial for each elevation B̆ of B to “Xa.

(5) WProj
X̂a

(Ă → “Aa) is trivial for each elevation Ă of A to “Xa with

Ă 6= “Aa.
(6) WProj

X̂b
(Ă→ “Bb) is trivial for each elevation Ă of A to “Xb.

(7) WProj
X̂b

(B̆ → “Bb) is trivial for each elevation B̆ of B to “Xb with

B̆ 6= “Bb.
This follows by Corollary 5.8.

Step 2: We form the following canonical completions and note that the

inclusion maps hold by Lemma 3.12 and the isomorphism is obtained from the

isomorphism “Aa ∼= “Bb:
C(“Aa, “Xa)←↩ C(“Aa, “Aa) ∼= C(“Bb, “Bb) ↪→ C(“Bb, “Xb).

Step 3: There exist based covers Ā→ A and B̄ → B such that

(1) The isomorphism γ : A→ B lifts to an isomorphism γ̄ : Ā→ B̄ so we

have the following commutative diagram:

Ā → B̄

↓ ↓“Aa → “Bb.
(2) Ā factors through each elevation of A to C(“Aa, “Xa) and to C(“Bb, “Xb).

(3) B̄ factors through each elevation of B to C(“Aa, “Xa) and to C(“Bb, “Xb).
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Indeed we simply choose based covers of A and B that factor through all

elevations, and then a common cover using the isomorphism γ : A→ B.

Step 4: The canonical retraction map C(“Aa, “Xa) together with the cover

Ā → “Aa induces the covers
¤�
C(“Aa, “Xa) and

⁄�
C(“Aa,“Aa). Similarly, we obtain⁄�

C(“Bb, “Xb) and
⁄�
C(“Bb, “Bb) so we have the following commutative diagrams:¤�

C(“Aa, “Xa) → Ā

↓ ↓
C(“Aa, “Xa) → “Aa, ⁄�

C(“Aa,“Aa) → Ā

↓ ↓
C(“Aa, “Aa) → “Aa,⁄�

C(“Bb, “Bb) → B̄

↓ ↓
C(“Bb, “Bb) → “Bb, ⁄�

C(“Bb, “Xb) → B̄

↓ ↓
C(“Bb, “Xb) → “Bb.

The isomorphism between Ā→ “Aa and B̄ → “Bb, and the isomorphism between

the C(“Aa, “Aa) → “Aa and C(“Bb, “Bb) → “Bb induce the following commutative

diagram: ¤�
C(“Aa, “Xa) ←↩

⁄�
C(“Aa,“Aa) ∼= ⁄�

C(“Bb, “Bb) ↪→ ⁄�
C(“Bb, “Xb)

↓ ↓ ↓ ↓
C(“Aa, “Xa) ←↩ C(“Aa, “Aa) ∼= C(“Bb, “Bb) ↪→ C(“Bb, “Xb).

Step 5:

— Let
./
Xa be the smallest regular cover factoring through each component

of
¤�
C(“Aa, “Xa).

— Let
./
Xb be the smallest regular cover factoring through each component

of
⁄�
C(“Bb, “Xb).

— Let
./
X be the smallest regular cover factoring through

./
Xa and

./
Xb.

— Let
./
A be the smallest regular cover factoring through each component

of
⁄�
C(“Aa,“Aa).

— Let
./
B be the smallest regular cover factoring through each component

of
⁄�
C(“Bb, “Bb).

— Let
./
Aa and

./
Ab denote the elevations of A to

./
Xa and

./
Xb.

— Let
./
Ba and

./
Bb denote the elevations of B to

./
Xa and

./
Xb.

It is clear that the isomorphism γ : A → B lifts to an isomorphism
./
γ :
./
A→

./
B.

We will show that
./
A∼=

./
Aa since they factor through each other and that

./
A

factors through
./
Ab. It will follow that each elevation of A to

./
X is isomorphic
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to
./
A. An analogous argument shows that

./
B∼=

./
Bb and that

./
B factors through

./
Ba. Consequently, each elevation of B to

./
X is isomorphic to

./
B.

Since
⁄�
C(“Aa,“Aa) ⊂ ¤�

C(“Aa, “Xa), it is obvious that
./
Aa factors through

./
A.

Since
./
Xa is the smallest regular cover induced by

¤�
C(“Aa, “Xa), to see that

./
A

factors through
./
Aa, it suffices to check that

./
A factors through each elevation

of A to
¤�
C(“Aa, “Xa).

There are two cases to consider, according to the history of A, as it follows

a sequence of elevations indicated below:

A3 → A2 → A1 → A

↓ ↓ ↓ ↓¤�
C(“Aa, “Xa)→ C(“Aa, “Xa) → “Xa → X.

If A1 = “Aa is the base elevation of A, then by Lemma 3.13, A2 ⊂
C(“Aa, “Aa) ⊂ C(“Aa, “Xa). Since A3 is contained in

⁄�
C(“Aa,“Aa), we see that

./
A

factors through A3.

If A1 6= “Aa, then WProj
X̂a

(A2 → “Aa) is trivial, and so by Lemma 3.16, A2

is nullhomotopic in the retraction map C(“Aa, “Xa)→ “Aa. Thus A3
∼= A2. But

./
A factors through Ā, which factors through A2, which is isomorphic to A3.

To see that
./
A factors through

./
Ab, we show that Ā factors through

./
Ab by

showing Ā factors through each elevation of A to
⁄�
C(“Bb, “Xb). Again consider

the history of elevations of A to
⁄�
C(“Bb, “Xb):

A3 → A2 → A1 → A

↓ ↓ ↓ ↓⁄�
C(“Bb, “Xb)→ C(“Bb, “Xb) → “Xb → X.

Observe that A1 has trivial wall projection onto “Bb, and so by Lemma 3.16, A2

is nullhomotopic in the retraction map C(“Bb, “Xb) → “Bb. Thus A3
∼= A2. But

Ā factors through A2, and hence
./
A factors through Ā, which factors through

A3
∼= A2. �

7. Subgroup separability of quasiconvex subgroups

Without hyperbolicity, the conclusion of Theorem 6.1 permits a proof of

residual finiteness of π1Q using the normal form theorem for graphs of groups.

In this section we prove the following stronger property from this conclusion

together with hyperbolicity.
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Theorem 7.1. Let Q be a compact nonpositively curved cube complex with

π1Q word-hyperbolic. Let P be an embedded nonseparating 2-sided hyperplane

in Q. Let X = Q−No(P ) be the cube complex obtained from Q by deleting the

open cubical neighborhood of P .

Assume that π1X has separable double cosets of quasiconvex subgroups.

Suppose that for each finite cover “X → X , there is finite regular cover
./
X→ X

factoring through “X such that
./
X induces the same cover on each side A,B

of P . Then every quasiconvex subgroup of π1Q is separable.

Definition 7.2. The space Y has the cocompact convex core property with

respect to a subgroup H of π1Y if for each compact subset C ⊂ ‹Y , there

is a convex subcomplex S of ‹Y such that C ⊂ S and S is H-stable and

H-cocompact.

Lemma 7.3. Let X be a compact nonpositively curved cube complex X

with π1X word-hyperbolic. Then X has the cocompact convex core property

with respect to each quasiconvex subgroup.

Proof. This follows from Theorem 4.2. �

The proof of Theorem 7.1 follows the scheme for proving subgroup separa-

bility given in [Wis00], and as was done there, it is possible to relax the initial

hypotheses a bit. For instance, we actually show that π1Q is separable with

respect to subgroups H whenever Q has the convex core property with respect

to H, under the assumption that ‹X has separable double cosets of subgroups

with the cubical convex core property.

Proof of Theorem 7.1. We regard Q as a graph of spaces, whose open edge

space is No(P ), and whose vertex space is X. Note that the attaching maps

of the edge space are A→ X and B → X.

Choose a basepoint in Q that also lies in X. Let Q̇ denote the based

cover corresponding to a quasiconvex subgroup of π1Q. Let σ ∈ π1Q − π1Q̇,

and let σ̇ be the based lift of σ. The space Q̇ has an induced graph of space

structure whose vertex spaces are components of the preimage of X and whose

open edge spaces are components of the preimage of No(P ). Since π1Q̇ is

finitely generated, we can let Q̇′ be a π1-isomorphic locally-convex subspace

corresponding to a finite subgraph of spaces such that Q̇′ contains σ̇. Note

that the vertex and edge spaces of Q̇′ are isomorphic to vertex and edge spaces

of Q̇. By the cocompact convex core property for Q, let Y be a compact core

of Q̇ containing σ̇ and also containing a preimage of the basepoint within each

vertex space of Q̇′. Note that we can assume that Y ⊂ Q̇′ since Q̇′ is itself

locally convex.

Since vertex and edge spaces of Q̇ are connected and locally convex, the

intersection of Y with each vertex and edge space of Q̇ is a connected and
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locally convex subcomplex by Lemma 4.18.1. These intersections correspond

precisely to the vertex and edge spaces of a graph of space structure for Y .

Let Yi = Y ∩ Ẋi denote the vertex spaces of Y where Ẋ1, . . . , Ẋn denote the

vertex spaces of Q̇ that have nonempty intersection with Y . We emphasize

that Yi ↪→ Ẋi induces a π1-isomorphism.

For each i, we shall now use the separability of certain double cosets to

produce a finite cover “Xi → X with the following injectivity properties:

(1) Ẋi → X factors as Ẋi → “Xi → X and Yi ⊂ Ẋi embeds in “Xi under

this map.

(2) The distinct elevations Ȧij → Ẋi of A → X whose images intersect

Yi ⊂ Ẋi factor through distinct elevations in “Xi.

(3) The distinct elevations Ḃik → Ẋi of B → X whose images intersect

Yi ⊂ Ẋi factor through distinct elevations in “Xi.

We first determine the double cosets related to Properties (2) and (3).

There are finitely many elevations of A whose images intersect Yi since A and

Yi are compact (and similarly for B). For each i, these distinct elevations

correspond precisely to finitely many double cosets of the form π1Ẋiαijπ1A

and π1Ẋiβikπ1B. More accurately, we assume that the basepoint of Q and X

is the image of the basepoint of A and that δ is a path from this A-basepoint

to the B-basepoint. The second collection of double cosets are of the form

π1Ẋiβikδπ1Bδ
−1.

We now determine the cosets related to Property (1). Enumerate the

finitely many pairs p`, q` of distinct vertices of Yi that map to the same vertex

of X, and for each `, let ω` be a path in Yi from the basepoint to p` and let σ`
be a path from p` to q`. Note that the projections of the paths ω`, σ`, ω

−1
` to

X are concatenatable to a closed path γ` = ω`σ`ω
−1
` . A based lift of Yi embeds

in a based cover of Ẍ of X precisely if each path γ` 6∈ π1Ẍ.

By double coset separability (note that these compact local isometries

have quasiconvex fundamental groups), for each i, we are able to choose a

finite index normal subgroup Ni < π1X such that the Niπ1Ẋiαijπ1A are all

disjoint from each other, the Niπ1Ẋiβikδπ1Bδ
−1 are all disjoint from each

other, and finally each Niπ1Ẋiγi` is disjoint from Niπ1Ẋi. It follows that the

based covering space “Xi with π1
“Xi = Niπ1Ẋi has the properties enumerated

above.

Let Z denote the space obtained from Y by extending each Yi to “Xi, so

Z is the quotient of the disjoint union Y t (ti “Xi) obtained by identifying each

Yi with its embedded image in “Xi. Note that there is an induced map Z → Q.

If all elevations of A,B to the “Xi were isomorphic, then we could “close” Z to

a finite cover Q̄ → Q. We would then have Y ⊂ Q̄, thus σ 6∈ π1Q̄, and also

H ⊂ π1Q̄, and we would be done.
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Let “X denote a finite cover factoring through each “Xi. By hypothesis,

let
./
X→ “X be a finite regular cover such that

./
X induces the same cover

./
A,

./
B

on each side A,B of P . Choose a one-to-one correspondence between the

elevations of A and B to
./
X, and attach copies of

./
P ×I to form a finite based

cover
./
Q→ Q whose vertex space is

./
X.

Let
./
Z= Z⊗Q

./
Q be the based component of the fiber-product of

./
Q→ Q

and Z → Q. Note that each vertex space of
./
Z is isomorphic to

./
X since it is

a component of the fiber-product of “Xi and
./
X. Moreover, note that for each

edge space of
./
Z, its two ends are contained in copies of

./
A and

./
B. We extend

this edge space to a copy of
./
P ×I.

The remaining copies of
./
A and

./
B do not have incident edge spaces, and

a quick count shows that there are the same number of each. We attach edge

spaces between them using an arbitrary one-to-one correspondence.

The result is a finite based cover Q̄ of Q. Indeed the construction gives

a natural combinatorial map Q̄ → Q that is a local isomorphism. The key

point to understanding that this is a covering map is that there is exactly one

incoming and outgoing edge space (at a vertex space) for each elevation of A,B.

If we had not been careful to maintain the partial one-to-one correspondence

between elevations when we constructed Z from Y , then extending edge spaces

of
./
Z to finite covers of edge spaces of Q could result in multiple incoming or

outgoing edge spaces attached along the same elevation of
./
A or

./
B.

Finally, observe that the element σ is separated from π1Q̇ in the right

representation on cosets of π1Q̄. Indeed the endpoint of σ̄ is not in the preimage

of the basepoint of Y in
./
Z⊂ Q̄. Thus π1Y is separated from σ in the right

coset representation since they act differently on the base coset. �

Corollary 7.4. Let Q be a compact connected nonpositively curved cube

complex, and let P be a hyperplane in Q such that the following hold :

(1) π1Q is word-hyperbolic.

(2) P is an embedded 2-sided hyperplane in Q.

(3) π1P is malnormal in π1Q.

(4) Each component of Q−No(P ) is virtually special.

Then every quasiconvex subgroup of π1Q is separable.

Proof. The Corollary follows when P is not separating by combining The-

orems 7.1 and 6.1. The double coset separability hypothesis holds as in Re-

mark 4.19.

Assume now that P is separating. Let Q′ be obtained from Q by adding a

new 1-cube that connects the components of X. Observe that Q→ Q′ is a local
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isometry. Obviously π1Q
′ is word-hyperbolic. It is easy to verify that π1P is

still malnormal in π1Q
′. And Q′−No(P ) is virtually special: the disjoint union

of connected special finite covers of the two connected components attached

together by a collection of 1-cubes provides a special cover. We conclude

using the nonseparating case since any quasiconvex subgroup of π1Q maps to

a quasiconvex subgroup of π1Q
′. �

8. Main theorem: Virtual specialness of malnormal cubical

amalgams

In [HaW08] we proved the following criterion.

Proposition 8.1. Let C be a compact nonpositively curved cube complex,

and suppose that π1C is word-hyperbolic. Then C is virtually special if and only

if every quasiconvex subgroup of π1C is separable.

Combining Corollary 7.4 and Proposition 8.1 we obtain the following re-

sult.

Theorem 8.2. Let Q be a compact connected nonpositively curved cube

complex, and let P be a hyperplane in Q such that the following hold :

(1) π1Q is word-hyperbolic.

(2) P is an embedded 2-sided hyperplane in Q.

(3) π1P is malnormal in π1Q.

(4) Each component of Q−No(P ) is virtually special.

Then Q is virtually special.

Let us reconsider the statement of Theorem 1.2. The cube complex A∪MB
equals the quotient of A t

Ä
M × [−1, 1]

ä
t B by using the maps A ← M and

M → B to identify M × {±1} with the images of M in A,B. Note that the

nonpositive curvature of A ∪M B holds because the attaching maps are local

isometries. Thus the statement of Theorem 1.2 corresponds to the separating

case of Theorem 8.2 by letting P = M × {0} be the hyperplane of A ∪M B so

that No(P ) = M × (−1, 1).

Theorem 8.3. A compact nonpositively curved cube complex C is virtu-

ally special provided the following hold :

(1) π1C is word-hyperbolic,

(2) each hyperplane of C is 2-sided and embeds,

(3) π1D is malnormal in π1C for each hyperplane D of C .

Proof. We repeatedly cut along hyperplanes and apply Theorem 8.2. Here

it is convenient to remove open regular neighborhoods of hyperplanes when

cutting. The base case where Q consists of a single vertex is reached after

finitely many cuts. �
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Remark 8.4. We note that a “malnormal hyperplane hierarchy” gives a

more general formulation using Theorem 8.2.

We now present a generalization of Theorem 8.2 that works in the presence

of torsion. While the statement of Theorem 8.2 could be recast elegantly in

terms of “cubical orbihedra,” we will instead work in the universal cover to

avoid extra definitions. We emphasize that the hypothesis in the statement

below is equivalent to that of Theorem 8.2 when G is torsion-free.

Theorem 8.5. Let G act properly and cocompactly on a CAT(0) cube

complex ‹Q. Let ‹P be a hyperplane, and let H = Stabilizer(‹P ). Suppose the

following hold :

(1) G is word-hyperbolic.

(2) H is an almost malnormal subgroup of G.

(3) g‹P ∩ ‹P = ∅ unless g ∈ H .

(3′) H\‹P embeds in H\N(‹P ) as a 2-sided hyperplane.

(4) For each component ‹X in ‹Q − GNo(‹P ) the group Stabilizer(‹X) has a

torsion-free finite index subgroup J such that J\‹X is special.

Then G has a torsion-free finite index subgroup G′ such that G′\‹Q is special.

All steps in the proof of Theorem 8.2 and its supporting results generalize

to this torsion permitting context. The reader may wish to read through the

proofs with the ‹X or orbihedra viewpoint in mind, as it leads to a logically

simpler proof. We will instead hitch the proof to a torsion-free scenario by

using the proof of Theorem 6.1.

Proof. Without loss of generality, we will assume that G acts transitively

on the components of ‹Q − GNo(‹P ). Let ‹A and ‹B be two sides of ‹P in ‹Q,

and choose g ∈ G such that ‹A and g‹B both lie on the same complementary

component ‹X. Let Jo = Stabilizer(‹X), let J1 ⊂ J be a finite index subgroup

of the hypothesized torsion-free special group J , and let X1 = J1\(‹X). Let

A1 = (J1 ∩ H)\‹A, and let B1 = (J1 ∩ Hg)\‹B. We concede that A1 and B1

are unlikely to be isomorphic. However, we then pass to a finite cover “X2

with elevations A2, B2 of A1, B1 such that A2 and B2 are isomorphic with an

isomorphism “induced by ‹P .” The various translates of ‹A in ‹X project to

a family of subspaces A2 = A20, A21, . . . , A2m in X2, and there is likewise a

family B2 = B20, B21, . . . , B2n. We emphasize that these subspaces form a

malnormal family. We now apply the proof of Theorem 6.1 to obtain a finite

cover
./
X→ X2 corresponding to a normal subgroup of Jo and such that the

elevations
./
A,

./
B of A2, B2 are isomorphic (as induced by ‹P ). The finite index

normal subgroup π1

./
X of Jo induces a virtually free quotient G → Ḡ, and

all torsion in G survives in the quotient Ḡ. Let Ḡ∗ be a torsion-free finite
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index subgroup of Ḡ, and let G∗ denote its preimage in G. Let X = G∗\‹X.

Let P1, . . . , P` denote the finitely many 2-sided embedded disjoint hyperplanes

that are images of translates of ‹P . Note that each π1Pi is malnormal in π1X.

The result now follows using ` applications of Theorem 8.2. �

9. Virtually special ⇔ separable hyperplanes

A subgroup H of K is almost malnormal if Hk ∩ H is finite for each

k ∈ K −H.

Lemma 9.1. Let H be a separable quasiconvex subgroup of a word-hyper-

bolic group G. Then G has a finite index subgroup K that contains H as an

almost malnormal subgroup.

Proof. As proven in [GMRS98] (see also [HrW09]), there are finitely many

double cosets HgiH such that giHg
−1
i ∩H is infinite. By separability, we can

choose K containing H but not containing any gi. Thus H is almost malnormal

in K. �

We are now able to obtain the following characterization of virtual spe-

cialness in the word-hyperbolic case. It remains an open problem whether such

a characterization holds in general. See [HaW08] for a characterization using

double hyperplane cosets.

Theorem 9.2. Let C be a compact nonpositively curved cube complex

such that π1C is word-hyperbolic. Then C is virtually special if and only π1D

is separable in π1C for each immersed hyperplane D of C .

Proof. For each hyperplane Di, apply Lemma 9.1 to obtain a finite cover

Ci → C such that π1Di is malnormal in π1Ci. Then let C ′ be a regular cover

factoring through all the Ci’s, and observe that each hyperplane of Ci has

malnormal fundamental group. We can then pass to a finite cover C̄ such that

each hyperplane is embedded.

Indeed for each immersed hyperplane D → C, let N → C denote its

immersed cubical regular neighborhood. By convexity of ‹N ⊂ ‹C, we see that

N embeds in the cover “CN with π1
“C ∼= π1N . By separability, we see that N

embeds in a finite cover C̄N of C.

We now let C̄ be a finite regular cover factoring through C̄N as N varies

over all regular neighborhoods of immersed hyperplanes. At this stage produc-

ing a further cover in which hyperplanes are 2-sided is easily done [HaW08].

We conclude by applying Theorem 8.3. �

10. Uniform arithmetic hyperbolic manifolds of simple type

The main goal of this section is to show that certain arithmetic lattices

in Hn = Isom(Hn) are virtually special. In the first subsection we describe
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conditions on a hyperbolic lattice that imply virtual specialness. Assuming

that there are sufficiently many codimension-1 immersed closed geodesic sub-

manifolds, we can cubulate the group and then apply Theorem 9.2 to obtain

virtual specialness. In the second subsection we verify that uniform arithmetic

hyperbolic lattices of simple type satisfy this geodesic submanifold criterion

and are thus virtually special.

Our application to subgroup separability of quasiconvex subgroups gen-

eralizes earlier results in [ALR01] as well as more recent work of Agol [Ago06]

that remarkably pushed Scott’s original reflection group idea to handle many

arithmetic examples up to dimension 11.

10.A. Criterion for virtual specialness of closed hyperbolic manifolds.

Theorem 10.1. Let G be a uniform lattice in Hn. Let H1, . . . ,Hk be

isometric copies of Hn−1 in Hn. Suppose that StabilizerG(Hi) acts cocompactly

on Hi for each i. Suppose there exists D such that any length D geodesic

intersects gHi for some g ∈ G and 1 ≤ i ≤ k. Then G acts properly and

cocompactly on a CAT(0) cube complex C . Moreover, G contains a finite

index subgroup F such that F\C is a special cube complex.

The cubulation utilizes Sageev’s construction, and can be deduced from

the following formulation which we quote from [HrW10].

Proposition 10.2. Let G act cocompactly on a δ-hyperbolic CAT(0)

space X . Let H1, . . . ,Hk in X be a set of convex hyperplanes in X . Sup-

pose that the union of their translates T = {gHi : g ∈ G, 1 ≤ i ≤ k} is

locally finite in X . Suppose there exists D such that any geodesic segment

of length D crosses some hyperplane gHi. Then G acts properly and co-

compactly on a CAT(0) cube complex C . Moreover, the distinct hyperplanes

Y of C are in one-to-one correspondence with distinct hyperplanes gHi, and

Stabilizer(Y ) = Stabilizer(gHi).

Lemma 10.3. Let G be a finitely generated subgroup of Hn. Let H be

an isometric copy of Hn−1 in Hn. Then Stabilizer(H) is a separable subgroup

of G.

Proof. Let r be the reflection along H. Let G′ = 〈G, r〉, and observe

that G′ is finitely generated and hence residually finite since it is linear. Ob-

serve that the centralizer CentG′(r) is a separable subgroup of G′. Indeed if

k 6∈ CentG′(r), then [r, k] 6= 1. Let G′ → Ḡ′ be a finite quotient in which

[r̄, k̄] 6= 1̄. Then the preimage of CentḠ′(r̄) in G′ separates k from CentG′(r).

Finally, observe that StabilizerG(H) = CentG′(r)∩G is separable in G. Indeed,

StabilizerHn(H) = CentHn(r). �
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Proof of Theorem 10.1. The proper and cocompact action ofG on a CAT(0)

cube complex C follows from Proposition 10.2. The stabilizer of each hyper-

plane of C equals the stabilizer of a hyperplane gHi in Hn and is therefore

separable by Lemma 10.3. Since G is residually finite, and there are finitely

many torsion elements, we can pass to a finite index subgroup G′ that is

torsion-free. We can then apply Theorem 9.2 to G′\C to obtain a finite index

subgroup F of G′ such that F\C is special. �

10.B. Uniform arithmetic hyperbolic lattices of “simple type”. The results

in this subsection were motivated by the possibility of cubulating arithmetic

hyperbolic manifolds of simple type using the plethora of totally geodesic sub-

manifolds. We are grateful to Nicolas Bergeron for pointing out that the den-

sity of the commensurator was an easy way to see that there are sufficiently

many such submanifolds to apply our criterion. After we developed this view-

point on the virtual specialness of these lattices, an alternate treatment was

proposed in [BHW11], which uses the double coset separability criterion along

the lines of the proof of virtual specialness of Coxeter groups [HaW10].

Theorem 10.4. Let G be a uniform arithmetic lattice in Hn of simple

type. Then

(1) G acts properly and cocompactly on a CAT(0) cube complex C .

(2) G contains a finite index subgroup F such that F\C is special.

Proof. This follows from Lemma 10.10, where we verify the criterion of

Theorem 10.1. �

Combining with [HaW08], we obtain the following consequence.

Corollary 10.5. Every quasiconvex subgroup of G is a virtual retract

and is hence separable.

To prove Theorem 10.4, we will show that G contains sufficiently many

subgroups acting on codimension-1 hyperplanes. Before embarking on the

proof, it will be helpful to state an explicit characterization of a simple type

arithmetic lattice and to note two of their elementary properties.

Remark 10.6 (simple type arithmetic lattices in SO(1, n)). Let F be a

totally real algebraic number field. Let O be the ring of integers in F, and let

a1, . . . , an ∈ O be such that

(1) each aj is positive,

(2) each σ(aj) is negative for every place σ 6= 1.

Let G = SO(a1x
2
1 + · · ·+ anx

2
n − x2

n+1;R) ∼= SO(n, 1), and let GO ⊂ G be the

subgroup corresponding to matrices with entries in O and with determinant 1.

Then GO is an arithmetic lattice of simple type in G. Moreover, GO is uniform

(i.e., cocompact) if and only if (0, . . . , 0) is the only solution in On+1 to the

equation a1x
2
1 + · · ·+ anx

2
n − x2

n+1 = 0.
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Up to commensurability and conjugation, the “simple type lattices” are

given precisely by the previous construction, which we quote from [Mor12].

Aside from some exceptional families that appear for n = 3, 7, these simple

type lattices are the only arithmetic lattices in Hn for odd n. For even n, there

is an additional family of uniform lattices arising from quaternion algebras.

By imposing the restriction xj = 0 for some 1 ≤ j ≤ n, and noting

that the corresponding equation x2
n+1 =

∑
i 6=j aix

2
i still admits only the trivial

solution, we obtain the following immediate corollary of the result specified in

Remark 10.6.

Corollary 10.7. Let GO be a uniform arithmetic lattice of simple type

in SO(1, n). Then GO contains a subgroup K ′ that stabilizes an isometric copy

of Hn−1 in Hn and is itself a uniform arithmetic lattice (of simple type).

Definition 10.8. The commensurator of a subgroup H in G is the following

subgroup of G:

Comm(H,G)={g ∈ G : [H : H ∩ gHg−1]<∞ and [gHg−1 : H ∩ gHg−1]<∞}.

Since Comm(GO,H
n) obviously contains SO(1, n;Q), the following result

is readily verified for arithmetic lattices of simple type.

Proposition 10.9. Let G be an arithmetic lattice in Hn. Then the group

Comm(G,Hn) is dense in Hn.

Dense means that Hn is the closure of the subspace Comm(G,Hn), where

we view Hn as a topological space in the ordinary way as a Lie group. In fact,

the converse to Proposition 10.9 holds and is a deeper result of Margulis, which

we do not need.

Lemma 10.10. Let G be a uniform arithmetic hyperbolic lattice in Hn of

simple type. There are totally geodesic codimension-1 submanifolds H1, . . . ,Hk

(which we call hyperplanes) such that

(1) StabilizerG(Hi) acts cocompactly on Hi.

(2) The set of hyperplanes {gHi : g ∈ G, 1 ≤ i ≤ k} is locally finite.

(3) There exists D such that any length D geodesic crosses some gHi.

Proof. By Corollary 10.7, there is an (n−1)-dimensional hyperplane H ⊂
Hn such that StabilizerG(H) acts properly and cocompactly on H. Let c ∈
Comm(G). We claim that StabilizerG(cH) acts cocompactly on cH. Indeed

let S denote the stabilizer of H in Hn. Since [G : G ∩ Gc] < ∞, we have

[StabilizerG(cH) : StabilizerG(cH) ∩ Gc] < ∞, and it is enough to prove that

StabilizerG(cH) ∩ Gc is cocompact on cH. Now StabilizerG(cH) ∩ Gc = Sc ∩
G ∩ Gc. By assumption G ∩ Gc is of finite index in Gc, thus Sc ∩ G ∩ Gc is
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of finite index in Sc. Since S is cocompact on H, it follows that Sc — the

stabilizer of cH in Gc — is also cocompact on cH, which ends the argument.

By choosing various elements ci ∈ Comm(G), we are thus able to produce

a collection of hyperplanes Hi = ciH, each of which has cocompact stabilizer

in G.

Let us check that the cocompactness of StabilizerG(H) on H implies the

local finiteness of the family of subsets {gH}g∈G. By cocompactness, there is

a ball A centered at some point of H such that for any p ∈ H, there exists

h ∈ StabilizerG(H) with h−1p ∈ A. For any ball B of Hn and any g such

that gH ∩ B 6= ∅, there exists an h ∈ StabilizerG(H) such that ghA ∩ B = ∅.
Since G acts properly, it follows that the set {g ∈ G, gH ∩B 6= ∅} is the union

of finitely many cosets g1 StabilizerG(H) ∪ · · · ∪ gk StabilizerG(H). Thus only

finitely many translates of H meet B.

It thus remains to verify that the third property holds for an appropriate

choice of c1, . . . , ck. Since G is uniform, we can choose a closed radius r ball

A such that GA = Hn. Let B,C denote the balls with same center as A and

with radius r + 1, r + 2.

As any closed convex subset of Hn, B is the intersection of the closed

half-spaces containing B. In this intersection we may restrict to the family of

half-spaces whose complement meets the sphere ∂C in a nonempty open subset.

By compactness of ∂C, there is a finite collection of half-spaces K1, . . . ,Km

containing B and such that the union of the complements of Kj covers ∂C. In

other words, the polytope Π0 = ∩iKi is contained in the interior of C.

We now approximate the polyhedron Π (containing B) by a polyhedron

Π′ whose faces span hyperplanes that are translates of H by elements of the

commensuratorand such that A ⊂ Π′ ⊂ C. The complements of the Ki provide

an open covering of the sphere ∂C. By density of the commensurator, there

exists c1, . . . , cm ∈ Comm(G) such that Hi := ciH is so near to ∂Ki that each

Hi is disjoint of A, and the complements of the half-spaces K ′i of Hn bounded

by Hi and containing A provide a covering of ∂C. This exactly means that we

have A ⊂ Π′ ⊂ C.

We now show that any geodesic γ of length D = 2(r + 2) intersects some

gHi. Since D is the diameter of C, any geodesic with initial point in A ⊂ Π′ ⊂
C and length > D has its terminal point outside C, thus crosses the boundary

of Π′, which means it intersects some bounding hyperplane Hi. Now by the

choice of A, the initial point of any geodesic may be translated into A by an

element of G. Thus the geodesic intersects some translate of some Hi. �

Acknowledgement. We are grateful to Ian Agol, Nathan Dunfield, Piotr

Przytycki, and especially to the referee for many helpful corrections that im-

proved the exposition.



A COMBINATION THEOREM FOR SPECIAL CUBE COMPLEXES 1481

References

[Ago06] I. Agol, untitled, 2006, in preparation.

[ALR01] I. Agol, D. D. Long, and A. W. Reid, The Bianchi groups are separable

on geometrically finite subgroups, Ann. of Math. 153 (2001), 599–621.

MR 1836283. Zbl 1067.20067. http://dx.doi.org/10.2307/2661363.
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