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Thom series of contact singularities

By L. M. Fehér and R. Rimányi
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Abstract

Thom polynomials measure how global topology forces singularities.

The power of Thom polynomials predestine them to be a useful tool not

only in differential topology, but also in algebraic geometry (enumerative

geometry, moduli spaces) and algebraic combinatorics. The main obstacle

of their widespread application is that only a few, sporadic Thom poly-

nomials have been known explicitly. In this paper we develop a general

method for calculating Thom polynomials of singularities. Along the way,

relations with the equivariant geometry of (punctual, local) Hilbert schemes

and with iterated residue identities are revealed.

1. Introduction

For a holomorphic map F : Nn → P p between compact complex mani-

folds, one can consider the set of points η(F ) in the source manifold N where

the map has a certain kind of singularity η. The Thom polynomial Tp(η) of

η is a multivariate polynomial depending only on η, with the property that

the cohomology class represented by the closure of η(F ) is equal to the spe-

cialization of Tp(η) at the characteristic classes ci(N), F ∗(ci(P )). For this

statement to hold, the map F must satisfy transversality conditions. There is

an analogous theory for real smooth maps, where one studies a polynomial of

the Stiefel-Whitney classes of TN and F ∗TP expressing [η(F )] ∈ H∗(N ;Z2).

These real Thom polynomials can be calculated from the complex Thom poly-

nomials [BH61]. Hence we restrict our study to the complex case.

We must specify what the singularity η means. For the definition of η(F )

to make sense, η must be a subset of E0(n, p), the vector space of holomorphic

map germs (Cn, 0) → (Cp, 0), invariant under the action of the holomorphic
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reparametrization groups of (Cn, 0) and (Cp, 0). A natural choice for such a

subset is obtained by considering those germs whose local algebras (see def-

inition below) are isomorphic. Subsets obtained this way are called contact

singularities. In the language of equivariant cohomology, the Thom polyno-

mial of the first paragraph is the GL(n)×GL(p)-equivariant cohomology class

represented by the closure of the contact class η in H∗GL(n)×GL(p)(E0(n, p)).

Thom polynomials have applications in various parts of differential topol-

ogy, algebraic geometry, and algebraic combinatorics. Let us just allude to

the simplest case, the celebrated Giambelli-Thom-Porteous formula, where η

is the set of germs with corank k differential. The present paper is devoted to

the problem of calculating Thom polynomials in the n ≤ p case, as well as the

study of their interior structure.

As discussed above, Thom polynomials are parametrized by an algebra Q
and two integers, n and p; we will call such a Thom polynomial TpQ(n, p). It

turns out that the corresponding η ⊂ E0(n, p) is finite codimensional if and only

if Q is a finite dimensional, commutative, local algebra. We recently showed

in [FR07] that—under technical conditions—the Thom polynomials TpQ(n, p)

for the same Q but varying n and p can be organized into a formal power

series in infinitely many variables (cf. Section 7.3). The direct application of

the method of Restriction Equations [Rim01] yields certain individual Thom

polynomials, but not the calculation of whole Thom series (unless Q has very

small dimension; see Section 3).

In a recent paper [BS12] Bérczi and Szenes introduced a new method of

studying Thom polynomials of so-called Morin singularities, i.e., singularities

corresponding to algebras Q = C[[x]]/(xi). One of their key ideas is the us-

age of (improved versions of) equivariant localization formulas. Their method

naturally presents the whole Thom series. As a result, they reduced the cal-

culation of the Thom series of Morin singularities to a finite set of data, as

well as determined this data for i ≤ 7. Another important novelty of [BS12] is

the encoding of the Thom series of Morin singularities by iterated residues of

certain rational functions.

In the present paper we revisit a partial resolution construction of J. Da-

mon for all contact singularities. The Bérczi-Szenes equivariant localization

formula applied to this construction leads to our main result, a Localization

Formula for TpQ(n, p); see Theorem 6.1. The form of this formula implies dif-

ferent stabilization properties of Thom polynomials, including the long-hidden

d-stability property of Thom series. The inputs of the Localization Formula

for a fixed Q is a finite set of various Euler classes inside of a Grassmannian,

or Hilbert scheme, showing how a finite set can encode a whole Thom series.

Below we develop different techniques to find these Euler classes, and hence we

will calculate several new Thom series. These examples include Thom series
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corresponding to local algebras of dimension < 6, as well as a two-parameter

list of algebras.

The present work relies on the recent rapid developments of Thom poly-

nomial theory, such as the method of restriction equations of the authors and

the various extensions and applications made by M. Kazarian. It is, however,

particularly triggered by the new ideas and results of Bérczi and Szenes [BS12].

1.1. Notation. Various (related) notions of Thom polynomials will be con-

sidered in this paper, with various notations. To help the reader, we give a

brief summary of these notations. For germs or jets g, the corresponding Thom

polynomial will be denoted by Tp(g). This lives in Z[a1, . . . , an, b1, . . . , bp] =

Z[α1, . . . , αn, β1, . . . , βp]
Sn×Sp . Here ai (bi) is the ith elementary symmetric

polynomial of the αi’s (βi’s). The (contact class of the) germ g can be spec-

ified by an algebra Q and two integers, n and p. Then, instead of Tp(g), we

will write TpQ(n, p). Thom polynomials belong to a subalgebra Z[c1, c2, . . .]

where 1+c1t+c2t
2 + · · · = (1+b1t+b2t

2 + · · · )/(1+a1t+a2t
2 + · · · ). When we

express Thom polynomials in the c variables we will write tp(g) or tpQ(p−n).

(It turns out that this form only depends on p− n, not n and p individually.)

1.2. The plan of the paper. In Section 2 we recall contact singularities and

give a firm foundation of their Thom polynomial theory, via finite dimensional

approximations of the space of germs. In Section 3 we summarize known Thom

polynomials. In Sections 4, 5, and 6 we review Damon’s partial resolution of

contact singularities and explain how it yields an equivariant Localization For-

mula for Thom polynomials. In Section 7 we explore stabilization properties

that our main formula implies. In Section 8 we develop geometric and algebraic

techniques to calculate the inputs of the Localization Formula. In Section 9

we explain the connection with the equivariant geometry of the local punc-

tual Hilbert scheme. Section 10 presents the calculation of Thom series of

singularities Φn,r. In Section 11 we study generating functions of Thom series,

iterated residue formulas, and their relations to geometry (as well as iterated

residue identities they depend on). The remarkable phenomena of formally

applying Thom polynomial formulas to dimensions where they are not defined

is discussed in Section 12. Throughout the paper we will work in the complex

analytic category. Cohomology will be meant with rational coefficients.
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2. Thom polynomials of contact singularities

2.1. Contact equivalence of finite germs. Consider E0(n, p), the vector

space of holomorphic map germs (Cn, 0) → (Cp, 0). Throughout the paper

we assume that n ≤ p, with the exception of Section 12 where we treat

some cases with n > p (and the necessary extra considerations). The vec-

tor space E0(n) := E0(n, 1) is an algebra without an identity. The space

E0(n, p) is a module over E0(n). A map germ g ∈ E0(n, p) induces a pullback

g∗ : E0(p)→ E0(n) by composition.

Definition 2.1. The ideal Ig of a germ g ∈ E0(n, p) is the ideal in E0(n)

generated by g∗ E0(p). The quotient algebra Qg of a germ g ∈ E0(n, p) is defined

by Qg = E0(n)/Ig.

Here, and in the whole paper, an ideal generated by some ring elements

is the smallest ideal containing the specified ring elements, even if the ring

has no identity. In singularity theory one usually considers the one dimen-

sion larger local algebra—defined as Qg := E(n)/Ig, where E(n) is the ring

of function germs (Cn, 0) → C—that has an identity. The two versions can

easily be obtained from each other, but the quotient algebra comes up more

naturally in our geometric setting. We will be concerned with germs g for

which the quotient algebra is finite dimensional. We call these germs finite.

Finite germs only exist for n ≤ p; this is the reason of our overall assump-

tion of n ≤ p. Finiteness is also equivalent to the property that the ideal

(g∗ E0(p)) contains a power of E0(n). For a finite germ, in local coordinates

g = (g1(x1, . . . , xn), . . . , gp(x1, . . . , xn)), we have

Qg = E(n)/(g1, . . . , gp) and Qg = E0(n)/(g1, . . . , gp).

For finite germs, the quotient algebra is nilpotent, so we will also call Qg the

nilpotent algebra of the germ g to distinguish it from the local algebra.

The invertible holomorphic germs (Cn, 0)→ (Cn, 0) form the right group

R(n). This group acts on E0(n) by composition, and hence it acts on the set

of ideals of E0(n).

Definition 2.2. Two germs f, g ∈ E0(n, p) are contact equivalent if their

ideals are in the same R(n) orbit. An equivalence class η ⊂ E0(n, p) is called

a (contact) singularity.

In singularity theory one considers the so-called contact group [AVGL93,

Ch. 3, 1.6]

K = K(n, p) = {(h,M) : h ∈ R(n),M is a germ (Cn, 0)→ (GL(p), 1)},

acting on the vector space E0(n, p) by
Ä
(h,M)g

ä
(x) = M(x)g(h−1(x)), and

defines germs to be contact equivalent if they are in the same orbit. It is a
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theorem of Mather [Mat69, Th. 2.9] that for finite germs the two definitions

are equivalent. Hence we will denote the contact equivalence class of a germ g

by Kg. Equivalently,

Theorem 2.3 (Mather). The finite germs f, g ∈ E0(n, p) are contact

equivalent if and only if their nilpotent algebras are isomorphic.

Indeed, suppose that we have and isomorphism φ : Qf → Qg, and let [xi]

denote the image of xi ∈ E0(n) in Qf . Pick pi ∈ E0(n) such that [pi] = φ[xi]

in Qg. It is easy to check that the pi’s can be chosen in such a way that

h = (p1, . . . , pn) ∈ E0(n, n) is an element of R(n) and hIf = Ig.

2.2. Thom polynomials. Given a map F : Nn → P p between complex

manifolds, and a point x ∈ N , we can choose charts around x and F (x) and

consider the germ of F at x in these charts. The contact singularity of this

germ does not depend on the choice of the charts. Indeed, it is a consequence

of Mather’s theorem cited above that after reparametrizing the source (Cn, 0)

and target (Cp, 0) spaces, the ideal of the germ will be in the same R(n) orbit.

Equivalently, we can refer to the fact that the group K(n, p) contains the group

R(n)×R(p) of holomorphic reparametrizations of the source (Cn, 0) and target

spaces (Cp, 0). (In this context the group R(p) is usually called the left group

and denoted by L(p).)

Therefore, it makes sense to talk about the contact singularity of F at

a point x ∈ N . Hence, for a map F : Nn → P p and a contact singularity

η ⊂ E(n, p), we define the singularity subsets

η(F ) = {x ∈ N | the germ of F at x is in η}.

After some preparations (Sections 2.3–2.4), in Theorem 2.20 we explain the

following statements.

If F satisfies certain transversality conditions, then the subset

η(F ) defines a cohomology class [η(F )] ∈ H∗(N). Moreover,

this class can be expressed as a universal polynomial (the Thom

polynomial, Tp(η)) of the Chern classes of TN and f∗TP .

First, in Section 2.3, we will discuss degeneracy loci and how universal coho-

mology classes are associated with them. Then we will interpret η(F ) as a

degeneracy locus in Section 2.4. These two sections serve as a rigorous defini-

tion of the Thom polynomial for a contact singularity class.

2.3. Poincaré dual, equivariant cohomology, and degeneracy loci. In this

section we discuss degeneracy loci and the cohomology class represented by

them. First recall that subvarieties Y ⊂ X represent cohomology classes in

the underlying space (see, e.g., [Ful97, p. 219]).
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Proposition 2.4 (Definition). If X is a smooth algebraic variety and Y

is an irreducible subvariety of complex codimension d, then there is a unique

element [Y ⊂ X] ∈ H2d(X) such that

(1) [Y ⊂ X] is supported on Y , i.e., [Y ⊂ X] restricted to X \ Y is zero;

(2) [Y ⊂ X]|X\Sing Y = [Y o ⊂ (X \ Sing Y )].

Here Sing Y denotes the singular subvariety of Y and Y o = Y \ Sing Y . The

cohomology class [Y o ⊂ (X \ Sing Y )] is defined by extending the Thom class

of a tubular neighbourhood of the proper submanifold Y o ⊂ (X \ Sing Y ) via

excision.

If Y has several components Yi (usually of the same codimension), then

[Y ⊂ X] is defined to be the sum of the classes [Yi ⊂ X]. When the underlying

space X is clear from the context, we denote [Y ⊂ X] by [Y ]. The class [Y ] is

the “smallest” cohomology class supported on Y in the following sense.

Proposition 2.5. If Y ⊂ X has complex codimension d and β ∈ Hn(X)

for n < 2d is supported on Y , then β = 0.

We need the equivariant version of Proposition 2.4 above. Let G be a com-

plex algebraic Lie group. If X is a smooth algebraic variety with a G-action

and Y is a G-invariant subvariety, then Y represents a G-equivariant cohomol-

ogy class in the equivariant cohomology of X, as follows (see, e.g., [Kaz97] or

[EG97], or a recent account [Ful]).

Theorem 2.6 (Definition). Let X be a smooth algebraic variety with a

G-action, and let Y ⊂ X be a G-invariant irreducible subvariety of complex

codimension d. Then there is a unique element [Y ⊂ X]G ∈ H2d
G (X) (called

the G-equivariant Poincaré dual of Y in X) such that for all algebraic principal

G-bundles π : P →M over a smooth algebraic variety M with classifying map

k : M → BG, we have

(1) [P ×G Y ⊂ P ×G X] = k̃∗[Y ⊂ X]G,

where k̃ : P ×G X → EG×G X is induced by k.

Intuitively [Y ⊂ X]G is the class represented by EG ×G Y in EG ×G X.

From the next section on, we will be mainly interested in the case when X is

a vector space. Then H∗G(X) ∼= H∗(BG) canonically. The class [Y ⊂ X]G has

various definitions and names in the literature. (See [FP09] for an account.)

We will also use the notation [Y ]G or simply [Y ] for [Y ⊂ X]G, when the

underlying space X and the group action is clear from the context.

Remark 2.7. We can make this construction more explicit for the torus

T = GL(1)r. (This is the case we need in the Localization Formula below.)

Repeat the construction above for the principal T -bundle P =
Ä
Cd+1 \{0}

är →
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(Pd)r. Here the classifying map k is the standard inclusion (Pd)r → (P∞)r =

BT . It is not difficult to show that

k̃∗ : Hj(ET ×T X)→ Hj(P ×T X)

is bijective for j ≤ 2d. So for large enough d, equation (1) defines [Y ⊂ X]T
uniquely:

[Y ⊂ X]T = (k̃∗)−1[P ×T Y ⊂ P ×T X].

Definition 2.8. Suppose now that s : M → E is a section of the fiber

bundle ϕ : E = P ×G X → M . If Y ⊂ X is a G-invariant subset, then

we use the notation Y (ϕ) := P ×G Y for the set of “Y -points” in E and

Y (s) := s−1
Ä
Y (ϕ)

ä
for the set of “Y -points of s.” We call Y (s) the degeneracy

locus corresponding to Y and s.

To make a statement about the class represented by Y (s) ⊂ M (Corol-

lary 2.11) we need to discuss transversality.

Definition 2.9. Let f : A → B be an algebraic map between algebraic

manifolds and Y ⊂ B be a subvariety of complex codimension d. The map

f is (homologically) transversal to Y if it is transversal to the manifold Y o =

Y \ Sing Y and f−1(Sing Y ) has complex codimension greater than d.

The following is a straightforward consequence of Definitions 2.4, 2.9, and

Proposition 2.5.

Proposition 2.10. If f : A→ B is transversal to Y ⊂ B, then f∗([Y ]) =

[f−1(Y )].

Using the fact that BG can be approximated by smooth algebraic vari-

eties (see, e.g., [EG97]), the equivariant class [Y ]G determines the class of the

degeneracy locus Y (s).

Corollary 2.11. If the section s : M → E of the vector bundle ϕ : E =

P ×G X →M is transversal to Y (ϕ) = P ×G Y , then [Y (s)] = k∗[Y ]G, where

k : M → BG is the classifying map of P .

Proposition 2.9 easily generalizes to the equivariant setting.

Proposition 2.12. Let the G-equivariant map f : A→ B be transversal

to the G-invariant subvariety Y ⊂ B. Then f∗([Y ]G) = [f−1(Y )]G.

Remark 2.13. In the complex algebraic setting the existence of a transver-

sal section is not guaranteed. Nevertheless, k∗[Y ]G is always an obstruction.

If k∗[Y ]G is nonzero, then there is no section s with Y (s) = ∅, since k∗[Y ]G is

supported on Y (s). The theory can be extended to the real smooth category.
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In that case the existence of the Poincaré dual is not automatic, but a generic

section is transversal (if transversality is appropriately defined).

2.4. Jet approximation : reduction to finite dimension. In this section we

interpret η(F ) (from Section 2.2) as a degeneracy locus. For this we need a

finite dimensional approximation of E0(n, p), and related notions.

The vector space of k-jets is defined to be the vector space of degree k

polynomials (Cn, 0)→ (Cp, 0). That is, we have

Jk(n, p) =
k⊕
i=1

Hom(SymiCn,Cp),

where SymiCn is the ith symmetric power of the vector space Cn. Let Jk(n) =

Jk(n, 1). The map E0(n, p)→ Jk(n, p), defined by taking the degree k Taylor

polynomial at 0, will be denoted by jk. The space Jk(n) is an algebra (without

identity) with multiplication h1 · h2 = jk(h1 · h2). The jk-image (“k-jets”) of

elements in R(n) form a group Rk(n). The group Rk(p) will also be denoted

by Lk(p). The group Rk(n) acts on the algebra Jk(n) by

α · h = jk(h ◦ α−1),
Ä
α ∈ Rk(n), h ∈ Jk(n)

ä
.

Hence the group Rk(n) also acts on the set of ideals of Jk(n). Similarly, we

can define the group Kk = Kk(n, p) acting on the vector space Jk(n, p).

Let h ∈ Jk(n, p). The ideal in Jk(n), generated by the coordinate func-

tions of h, will be denoted by Ih. We call Qh = Jk(n)/Ih the nilpotent algebra

of the jet h. Two k-jets are defined to be contact equivalent if their ideals are

in the same Rk(n)-orbit.

Proposition 2.14 ([Mat69, Th. 2.9, 2.1]). Two k-jets are contact equiv-

alent if and only if they are in the same Kk-orbit if and only if their nilpotent

algebras are isomorphic.

The proof is the same as of Proposition 2.3.

Next we define invariants of germs and jets. The dimension of the quotient

algebra µ(f) := dim(Qf ) of a finite germ (or k-jet) f plays a crucial role in

our study.

We say that f has depth d (depth(f) = d) if d is the smallest i for which

E0(n)i+1 ⊂ If (or (Jk(n))i+1 ⊂ If for the k-jet case). It is an application of

the Nakayama lemma that depth(f) ≤ µ(f).

Definition 2.15. A germ f ∈ E0(n, p) is k-determined if for every g ∈
E0(n, p), the germ g is contact equivalent to f if their k-jets are equal.

Our main objects—the finite germs—are finitely determined due to the

following
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Theorem 2.16 ([Gaf75], [Wal81, Th. 1.2]). Any finite germ (or k-jet) f

is depth(f) + 1-determined.

Using the observation that

(2) jk(H(g)) = jk(H)(jk(g))

for any H ∈ K(n, p), g ∈ E0(n, p)), we immediately get the following

Proposition 2.17. Suppose that f ∈ E0(n, p) is k-determined. Then f

is contact equivalent to g if and only if jkf is contact equivalent to jkg.

In fact, the previous statements also imply that if k ≥ depth(f) + 1, then

Qf ∼= Qjkf .

Now we can give the degeneracy locus description of the singularity set

η(F ) promised in Section 2.2. Given a map F : Nn → P p between manifolds,

and a positive integer k, we construct a fiber bundle

φF : {(x, h) : x ∈ N, h is the k-jet of a germ (N, x)→ (P, F (x))} → N,

(3)

(x, h) 7→ x,

with fiber Jk(n, p). For k = 1, this is the vector bundle Hom(TN,F ∗TP ).

In general, the fiber is a vector space, but the structure group (the left-right

group Rk(n)×Lk(p) acting on Jk(n, p) by composition on the two sides) does

not act linearly. The bundle φF has a natural section

(4) jkF : x 7→ (x, jk(germ of F at x)).

Now let g ∈ E0(n, p) be a k-determined germ, let η = Kg be its contact

equivalence class, and let ηk be the contact equivalence class of jkg ∈ Jk(n, p).
Since ηk is Rk(n)×Lk(p)-invariant, it defines a degeneracy locus in the sense

of Definition 2.8. Corollary 2.17 implies that we have the following degeneracy

locus description of the η singularity subset of a map F :

(5) η(F ) = ηk(jk(F )).

2.5. Definition of the Thom polynomial. Now we are ready to define the

Thom polynomial of a contact singularity. Let g ∈ E0(n, p) be a k-determined

finite germ. Let ηk ⊂ Jk(n, p) be the closure of Kkjkg. Notice that Kk is a

connected algebraic group acting algebraically, so the orbit-closure is the same

in the Zariski and the metric topology. Connectedness implies that the closure

of the orbit is irreducible.

Definition 2.18. The Thom polynomial Tp(g) of the k-determined finite

germ g ∈ E0(n, p) (or a k-jet) is defined to be the class represented by ηk in

the Rk(n)× Lk(p)-equivariant cohomology of Jk(n, p).
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Since the contact class of g depends only on the quotient algebra of g,

we will also use the notation TpQ(n, p) := Tp(g) for any g ∈ Jk(n, p) with

Qg ∼= Q.

The space Jk(n, p) is a vector space (hence contractible) andRk(n)×Lk(p)
is homotopy equivalent to GL(n)×GL(p). Therefore, we have

Tp(g) = [ηk ⊂ Jk(n, p)]Rk(n)×Lk(p)

= [ηk ⊂ Jk(n, p)]GL(n)×GL(p) ∈ H∗
Ä
B(GL(n)×GL(p))

ä
.

The degree of the Thom polynomial is the codimension of ηk in Jk(n, p).

We will also refer to this degree as the codimension of the germ g. The notion

of Thom polynomial can be easily generalized to more general sets of germs.

Definition 2.19. Suppose that the set Y ⊂ E0(n, p) is a pullback of a set

Y k ⊂ Jk(n, p) with Y k being open and dense in its (Zariski-)closure. Then

Tp(Y ) := [Y k ⊂ Jk(n, p)].

By Proposition 2.12 the definition is independent of the choice of k. Notice

that in the definition we have not assumed that n ≤ p. Examples satisfying

the pullback condition are the contact orbits of finite germs (as we have just

showed), Thom-Boardman classes, and classes defined explicitly as pullbacks.

We will study some examples in Section 12.

The cohomology ring H∗
Ä
B(GL(n)×GL(p))

ä
is a polynomial ring gener-

ated by the universal Chern classes a1, . . . , an, b1, . . . , bp of the groups GL(n),

GL(p). Hence the Thom polynomial is indeed a polynomial.

The meaning of the Thom polynomial is enlightened by putting together

expression (5) with Definition 2.6. We obtain the following

Proposition 2.20. Let g ∈ E0(n, p) be a k-determined germ, ηk the clo-

sure of Kk(jkg) in Jk(n, p), and let F : Nn → P p be a map between com-

pact complex manifolds. Suppose that the section jkF (see (4)) is transver-

sal to ηk(φF )—the ηk-points of the fibration (3). Then the cohomology class

[η(F ) ⊂ N ] represented by the η-points—where η = Kg—of the map F is equal

to the Thom polynomial of g evaluated at the Chern classes of TN and F ∗TP .

We have not included the letter k in the notation Tp(g), since clearly

the Thom polynomial does not depend on the choice of k, as long as g is

k-determined.

3. Examples and known results

Suppose that a complex, commutative, finite dimensional, local algebra Q
is given. Then there exists a contact singularity in E0(n, p) with local algebraQ
for each n, and p if n and p−n are large enough. A general Thom polynomial is
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a formula (containing n, and p as parameters) expressing the Thom polynomial

of all these singularities together. For example, the Thom polynomial of a

singularity in E0(n, p) with local algebra Q = C[[x]]/(x3) is

c2
l+1 +

∞∑
i=1

2i−1cl+1−icl+1+i,

where l = p− n, and the classes ci are defined by

(6) 1 + c1t+ c2t
2 + · · · = 1 + b1t+ b2t

2 + · · ·+ bpt
p

1 + a1t+ a2t2 + · · ·+ antn

and the conventions c0 = 1, c<0 = 0. Using Schur polynomials

(7) ∆λ1≥λ2≥···≥λr := det (cλi+j−i)i,j=1,...,r ,

we can further write the Thom polynomial in the form

∆l+1,l+1 + 2∆l+2,l + 4∆l+3,l−1 + · · · .

This example displays four important properties:

• the Thom polynomial can be expressed in the “quotient variables” (6);

• when the Thom polynomial is expressed in quotient variables, then the

dependence on p and n is only through l = p− n;

• if the general Thom polynomial is expressed in quotient variables and

the indexes are shifted by l + 1 (i.e., substituting di = cl+1+i), the

expression does not depend on l either;

• the coefficients of Thom polynomials in the basis of Schur polynomials

are nonnegative.

The general Thom polynomial after shifting the indices by substituting di =

cl+1+i is called the Thom series of the local algebra Q, and it is denoted by

TsQ. For example,

TsC[[x]]/(x3) = d2
0 + d−1d1 + 2d−2d2 + 4d−3d3 + · · · .

Alternatively we can work with nilpotent algebras. We will also use the nota-

tion TsQ for Q being a nilpotent algebra.

All four properties above hold in general. The first three we will prove in

Section 7. The first two are classical facts; we will call them the Thom-Damon-

Ronga theorem. The third (in a special case) is a theorem from [FR07]. The

fourth property was recently proved in [PW07].

Several individual Thom polynomials are known for small values of l (see,

e.g., [Rim01], [Kaz03]), but hardly any general Thom polynomials, i.e., Thom

series, are known. Here is a complete list of nilpotent algebras whose Thom

series is known:

• Σn = E0(n)/ E0(n)2 (Giambelli-Thom-Porteous formula);

• A2 [Ron72];

• A3 [BFR03] (announced), [Pra05] (sketched), [BS12], [LP10] (proved);



1392 L. M. FEHÉR and R. RIMÁNYI

• A4, A5, A6 [BS12];

• the Thom-Boardman classes Σn,1 [FK06];

• I2,2 [FR07, Pra07, Kaza].

Here and in what follows we use standard notations of singularity theory, as fol-

lows: Ai = E0(1)/(xi+1), Ia,b = E0(2)/(xy, xa+yb), IIIa,b = E0(2)/(xy, xa, yb).

For Thom series of Thom-Boardman classes, see also Section 12.

Below we will develop a method to calculate general Thom polynomials.

It leads to formulas where the stability properties are not apparent, as these

formulas are given in Chern roots. In Section 10.2 we show how to find formulas

in quotient variables. In Section 11 we explore even more compact descriptions

in terms of generating functions.

4. A partial resolution

In this section we introduce the key geometric idea leading to our coho-

mological localization formula. We present a partial resolution (i.e., a bira-

tional map of varieties) of contact invariant subvarieties of Jk(n, p), in par-

ticular, of closures of contact singularities. The construction is originally due

to J. Damon [Dam72]. Similar ideas are present in works of J. Mather on

Thom-Boardman singularities [Mat73]. The idea is that a contact invariant

subvariety of Jk(n, p) is the union of large linear subspaces.

Let m be a nonnegative integer, and let Grm = Grm(Jk(n)) be the Grass-

mannian of m-codimensional linear subspaces of Jk(n).

Definition 4.1. Let Y ⊂ Grm be a subvariety, and fix p ≥ 1. The corre-

spondence variety of Y is

C(Y ) = {(I, g) ∈ Grm×Jk(n, p) | I ∈ Y, Ig ⊂ I}.

We have now the following diagram:

(8) C(Y ) � � i //

��

Grm×Jk(n, p)

π1

��

π2 // Jk(n, p)

Y � � // Grm,

where π1, π2, i are the obvious projections and embedding. The projection

C(Y )→ Y makes C(Y ) a vector bundle with fiber CI = I⊗Cp ⊂ Jk(n)⊗Cp =

Jk(n, p).

Proposition 4.2. Let g ∈ Jk(n, p) with µ(g) := codim Ig = m. Let Y be

RIg ⊂ Grm for R = Rk(n). Then

φ = π2 ◦ i : C(RIg)→ Kg

is a birational map.
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Proof. For K̃g := {(Ih, h) : h ∈ Kg}, we see that φ|K̃g : K̃g → Kg is a

bijection, so it is enough to show that K̃g ⊂ C(RIg) is open (and therefore

dense since C(RIg) is irreducible). For this it is enough to show that K̃g
intersected with a fiber is open in the fiber; hence we need the following lemma.

Lemma 4.3. For any jet g ∈ Jk(n, p), the set Ag := {h ∈ Ig ⊗Cp : Ih =

Ig} is Zariski open in Ig ⊗Cp.

Proof. Let h = (h1, . . . , hp) ∈ Ig ⊗ Cp, and let aji be the coefficients of

hi in some linear basis of Ig. The property that the hi’s generate Ig as an

ideal is equivalent to the property that an appropriate matrix, whose entries

are linear functions of the aji ’s, has full rank. Therefore, the property that the

hi’s generate Ig cuts out a Zariski open subset. �

This finishes the proof of Proposition 4.2. �

Using the Gysin (or pushforward) map φ∗, we have that φ∗(1) = [K̃g] =

Tp(g). Details on the properties of the equivariant Gysin map can be found

in [Ful]. We calculate the Gysin map using localization in the next section.

5. Singular-base equivariant localization

In this section we recall a version of the Berline-Vergne-Atiyah-Bott Equi-

variant Localization Formula, due to Bérczi and Szenes. For completeness we

give a proof. This version presents the “localization” of an equivariant coho-

mology class on the total space of a vector bundle over a compact singular base

space.

Let V be a vector space. Suppose that M is a compact algebraic manifold

and Y ⊂ M a subvariety. Let E → Y be a sub-vector bundle of the trivial

bundle M × V → M restricted to Y . Let π2 : M × V → V be the projection,

i : E ⊂M × V the embedding, and φ = π2 ◦ i, as in the diagram

E � � i //

φ

%%

��

M × V

��

π2 // V

Y � � // M.

Recall that for A ⊂ B, by [A] or [A ⊂ B] we mean the cohomology class

represented by A in the cohomology of B.

Proposition 5.1 ([BS12, (3.8)]). Suppose that the torus T acts on all

spaces in the diagram above and that all maps are T -equivariant. Assume
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that the fixed point set F (M) of the T -action on M is finite. Then for the

push-forward map φ∗ : H∗T (E)→ H∗T (V ), we have

(9) φ∗(1) =
∑

f∈F (M)

[Y ⊂M ]|f · [Ef ⊂ V ]

e(TfM)
=

∑
f∈F (Y )

[Y ⊂M ]|f · [Ef ⊂ V ]

e(TfM)
.

Consequently, if φ is birational to its image, then the right-hand side of (9) is

equal to [φ(E)] ∈ H∗T (V ).

Proof. We have to calculate the integral π2∗(i∗(1)) =
∫
M i∗(1) =

∫
M [E ⊂

M ×V ] (we identify the cohomology of M ×V with the cohomology of M) for

which we apply the Berline-Vergne-Atiyah-Bott Localization Formula, which

we recall now.

Proposition 5.2 ([AB84]). Suppose that M is a compact manifold and T

is a torus acting smoothly on M , and the fixed point set F (M) of the T -action

on M is finite. Then for any cohomology class α ∈ H∗T (M),

(10)

∫
M
α =

∑
f∈F (M)

α|f
e(TfM)

.

Here e(TfM) is the T -equivariant Euler class of the tangent space TfM . The

right side is considered in the fraction field of the polynomial ring of H∗T (point)

= H∗(BT ). (See more on details in [AB84].) Part of the statement is that the

denominators cancel when the sum is simplified.

We complete the proof of Proposition 5.1 by noticing that

(11) [E ⊂M × V ]|f = [Ef ⊂ V ] · [Y ⊂M ]|f ,

where f ∈M ⊂M × V . The second equality in (9) follows from the fact that

the cohomology class [Y ⊂ M ] is supported on Y , so other fixed points give

zero contribution. �

Notice that the same argument gives a localization formula for the case of

smooth base and singular fiber.

Remark 5.3. If φ decreases the dimension, then φ∗(1) is zero—since sup-

ported on a too small subset—so the right-hand side of (9) is zero.

Remark 5.4. If f is a smooth point of Y , then

e(TfM)

[Y ⊂M ]|f
= e(TfY ).

Hence if Y is smooth, then formula (9) further simplifies to

φ∗(1) =
∑

f∈F (M)

[Ef ⊂ V ]

e(TfY )
.
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This formula holds in the general case too, if we define the virtual (tangential)

Euler class e(TfY ) to be
e(TfM)

[Y⊂M ]|f even if f is not a smooth point of Y . Notice

that e(TfY ) depends only on Y and can be calculated using any (even only

locally defined) embedding of Y .

Remark 5.5. The moral of Proposition 5.1 is that if we want to calculate

the equivariant class of a variety with localization, we should look for high-

dimensional linear spaces in it. More precisely, we need an other variety,

birational to the original, which is the total space of a vector bundle over a

compact base space. The higher the rank of the bundle, the simpler the formula

is. Usually the variety we start with is a cone; hence there is a canonical line

bundle whose total space is birational to it. Therefore, formula (9) can be

applied to find the Thom polynomial. This case is used in [FNR06]. Certain

quiver varieties are birational to total spaces of vector bundles with higher rank,

over a smooth compact space [Rei03]. Hence formula (9) can be effectively

applied, yielding similar formulas for quiver polynomials as in [KS06].

6. Localization for contact classes

Now we apply the equivariant localization formula above to a the con-

struction of Section 4. This is different from the resolution used in [BS12] for

Morin singularities; it is more general (it covers all contact singularities), but

numerically less effective.

Let G(n, p) = GL(n) × GL(p). Recall that the spaces in diagram (8)

have G(n, p)-actions and the maps in the diagram are G(n, p)-equivariant. Let

T (n, p) = T (n)× T (p) ∼= U(1)n × U(1)p be the maximal torus of G(n, p), and

restrict the action on the spaces and maps of diagram (8) to T (n, p). Recall

also that the map H∗G(n,p)(pt) → H∗T (n,p)(pt) is injective (splitting lemma);

hence by this restriction, we do not loose any cohomological information. Now

we can apply Propositions 5.1 and 4.2 to the diagram (8), and we obtain our

main result. Let F denote the set of monomial ideals in Grm being the fixed

points of the T (n, p)-action on Grm (where T (p) acts trivially).

Theorem 6.1 (Localization Formula). Let g ∈ Jk(n, p) be a k-jet. Then

Tp(g) =
∑
I∈F

[CI ⊂ Jk(n, p)] · [RIg ⊂ Grm]|I
e(TI Grm)

.

Using the virtual tangent Euler classes, we get

(12) Tp(g) =
∑
I∈F

[CI ⊂ Jk(n, p)]
e(TIRIg)

.

In the rest of this section we present two lemmas in which we study the

factors [CI ⊂ Jk(n, p)] and e(TI Grm) in the Localization Formula. For this
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we choose the following notations. Let

H∗T (n,p)(J
k(n, p)) = H∗T (n,p)(pt) = Z[α1, . . . , αn, β1, . . . , βp],

where αi (resp βi) denotes the universal first Chern class in the ith factor of

H∗T (n)(pt) = ⊗ni=1H
∗(BU(1)) (resp. H∗T (p)(pt) = ⊗pi=1H

∗(BU(1))). We call the

αi’s and the βi’s the Chern roots of the group T (n, p). As usual, we identify

weights of a T (n, p)-representation with linear combinations of the Chern roots.

For a T (n, p)-representation A, let WA denote the multiset of its weights. The

Euler class of a representation A is e(A) =
∏
w∈WA

w.

We define resultants by Res(S|T ) =
∏
s∈S,t∈T (s−t) for the finite multisets

S and T . For example, the representation of T (n, p) on the vector space

Hom(Cn,Cp) by (A,B) · F = B ◦ F ◦A−1 has weights

WHom(Cn,Cp) = {βi − αj : i = 1, . . . , p; j = 1, . . . , n}

and Euler class Res({β1, . . . , βp}|{α1, . . . , αn}). (In the rest of the paper, we

will drop the brackets { } from the notation.) Similarly,

WJk(n,p) =

βi −
n∑
j=1

aijαj : i = 1, . . . , p; aij ≥ 0, 1 ≤
n∑
j=1

aij ≤ k


and for the T (n)-representation on Jk(n), we have

WJk(n) =

−
n∑
j=1

ajαj : aj ≥ 0, 1 ≤
n∑
j=1

aj ≤ k

 .
The equivariant cohomology class represented by an invariant linear sub-

space in a representation space is the Euler class of the factor representation.

Hence we have the following lemma.

Lemma 6.2. Let I be a monomial ideal. Then

[CI ⊂ Jk(n, p)] = e(QI ⊗Cp) =
p∏
i=1

∏
w∈WQI

(βi + w) = Res(β1, . . . , βp| −WQI ),

where QI is the quotient space Jk(n)/I . If I is monomial, then QI is equipped

with the induced representation of T (n) ≤ GL(n).

Notice that all coefficients in WQI are negative, so in applications the form

Res(β1, . . . , βp| −WQI ) seems more natural.

The tangent bundle of a Grassmannian is Hom(A,B), where A and B are

the tautological sub- and quotient bundles. Therefore, the following lemma

calculates the denominator of the Localization Formula explicitly.

Lemma 6.3. We have

e(TI Grm) = Res(WQI |WI).
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Again, if we want positive coefficients, we can write

e(TI Grm) = Res(−WI | −WQI ).

The factor [RIg ⊂ Grm]|I in the Localization Formula is a subtle invariant

of the set RIg at I. Its calculation is difficult in general. In Section 8 we

calculate special cases.

6.1. A special case of the Localization Formula. Let g ∈ Jk(n, p) be the jet

with the degree d monomials as coordinate functions for k ≥ d and p =
(n+d−1

d

)
.

That is, Ig = (J)d, where J = Jk(n). The ideal Ig is a fixed point of the right

group R, so the Localization Formula immediately gives

(13) [(J)d(n, p)] = Res(β1, . . . , βp| −WQ((J)d)),

where −WQ((J)d) = {∑ aiαi : ai ≥ 0, 0 <
∑
ai < d}. One does not really need

the Localization Formula for this result, since the closure of the contact orbit

of g is a linear subspace.

The singularity whose k-jet is g is called the Thom-Boardman singularity

Σn,...,n(n, p). (The number of n’s in the superscript is d − 1.) Hence (13) is

the Thom polynomial of this singularity. This is not a new result, though it

might be the first appearance in the literature in this generality. The d = 2

case recovers a special case of the Giambelli-Thom-Porteous formula (cf. The-

orem 7.12) in the Chern root format: TpΣn(n, p) = Res(β1, . . . , βp|α1, . . . , αn).

7. Stability properties of the Thom polynomial

7.1. Dependence of the Localization Formula on k. As we mentioned ear-

lier, for a k-determined germ g, we can use its l-jet for any l ≥ k to calculate

Tp(g). However, this condition can be weakened, which will be useful in cal-

culations.

Theorem 7.1. Suppose that g ∈ J l(n, p) and depth(Ig) = k ≤ l, i.e.,

(J)k+1 ⊂ Ig , where J = J l(n). Then

Tp(jkg) = Tp(g),

where jk : J l(n, p)→ Jk(n, p) is the projection.

Proof. To be able to use Proposition 2.10 we need to show that

(jk)−1Kk(jkg) = Kl(g).

Using the same notation jk for the projection Kl → Kk, we have that

(14) jk(H(f)) = jk(H)(jk(f)),

where H ∈ Kl and f ∈ J l(n, p), which implies that jk(Klf) = Kkjk(f). There-

fore, it is enough to show that jk(f) = jk(g) implies f ∈ Kl(g). The equality

jk(f) = jk(g) implies that If + (J)k+1 = Ig + (J)k+1. By the assumption
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on g, we have that Ig + (J)k+1 = Ig, which implies that If ⊂ Ig, which further

implies f ∈ Kl(g) by Lemma 4.3. �

7.2. Dependence of Thom polynomials on p− n. In this section we prove

the classical stability result—Theorem 7.2—on Thom polynomials of contact

singularities. Let σ : Jk(n, p)→ Jk(n+ 1, p+ 1) denote the stabilization map

σg(x1, . . . , xn+1) :=
Ä
g1(x1, . . . , xn), . . . , gp(x1, . . . , xn), xn+1

ä
.

Theorem 7.2 (Stability). We have

Tp(g) = σ∗Tp(σg),

where σ∗ : H∗G(n,p) → H∗G(n+1,p+1) is the homomorphism induced by the map

G(n, p)→ G(n+ 1, p+ 1), (M,N) 7→
ÄÄ

M 0
0 1

ä
,
Ä
N 0
0 1

ää
.

The reason we include the proof here is twofold. First, we would like to

strengthen the stability theorem and show that these Thom polynomials are

supersymmetric. Second, it gives us a chance to study the geometry related to

the Localization Formula.

The Localization Formula gives the Thom polynomial in Chern roots;

i.e., in generators of H∗T (n,p)
∼= Z[α1, . . . , αn, β1, . . . , βp]. Since Tp(g) is in the

image of H∗G(n,p) → H∗T (n,p), it is symmmetric in both the α and the β variables.

However it has more symmetry.

Definition 7.3. The polynomial q ∈ Z[α1, . . . , αn, β1, . . . , βp] is supersym-

metric (see [Las81]) if

(1) symmmetric in both the α and the β variables;

(2) q(α1, . . . , αn−1, t, β1, . . . , βp−1, t) does not depend on t.

Theorem 7.4. The Thom polynomial of a finite germ is supersymmetric.

An important property of supersymmetric polynomials is that they can

be expressed in quotient variables. We define a map

ρn,p : Z[c1, . . . , ci, . . . ]→ Z[α1, . . . , αn, β1, . . . , βp]

by the formal power series

(15) 1 + c1t+ c2t
2 + · · · =

∏p
j=1(1 + tβj)∏n
i=1(1 + tαi)

;

i.e., ρn,p(c1) = β1 + · · · + βp − α1 − · · · − αn and so on. We say that q ∈
Z[α1, . . . , αn, β1, . . . , βp] can be expressed in quotient variables if it is in the

image of ρn,p.

Theorem 7.5 (Lascoux [Las81]). The polynomial

q ∈ Z[α1, . . . , αn, β1, . . . , βp]

is supersymmetric if and only if it can be expressed in quotient variables.
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The expression of supersymmetric polynomials in terms of the quotient

variables is unique if the degree of q is not too high compared to n and p.

Proposition 7.6. If ρn,p(h) = 0 for a nonzero polynomial

h ∈ Z[c1, . . . , ci, . . . ],

then deg(h) ≥ (n+ 1)(p+ 1) with the convention deg ci = i.

In fact, the kernel of ρn,p is known explicitly (see [Pra88, §4.2]): ker(ρn,p) =

〈∆λ : (n+ 1)(p+1) ⊂ λ〉, where 〈 〉 means the generated Z-module. (For the

definition of ∆, see (7).)

Now we translate supersymmetry to geometry. Notice that the stabi-

lization map σ : Jk(n, p) → Jk(n + 1, p + 1) is G′-equivariant for G′ =

G(n, p) × GL(1), where GL(1) acts trivially on Jk(n, p) and diagonally on

the last variables of elements of Jk(n+ 1, p+ 1). Supersymmetry and stability

is equivalent to the following strengthening of the stability Theorem 7.2.

Theorem 7.7 (Strong stability). For any g ∈ Jk(n, p),

TpG′(g) = TpG′(σg).

This theorem immediately follows from the two lemmas below and Propo-

sition 2.12 on the transversal pullback of Thom polynomials.

Lemma 7.8. The stabilization map σ is transversal to every contact class

in Jk(n+ 1, p+ 1).

Lemma 7.9. We have σ−1(Kσg) = Kg for any g ∈ Jk(n, p).

Proof of Lemma 7.8. The results of Section 4 imply that for g ∈ Jk(n, p),
the tangent space of its contact class is

(16) TgKg = Ig ⊗Cp +TgRg,

where

(17) TgRg =

{
n∑
i=1

pi∂ig : pi ∈ Jk(n)

}
.

Applying this to the germ σg ∈ Jk(n + 1, p + 1) we see that transversality is

equivalent to the property that the three subspaces Iσg ⊗Cp+1, TσgRσg and

σJk(n, p) span Jk(n+ 1, p+ 1).

Let h =
∑p+1
i=1 hi ⊗ ei be any element of Jk(n + 1, p + 1), where {ei : i =

1, . . . , p + 1} is the standard basis of Cp+1 and hi ∈ Jk(n + 1). We can write

hi in the form hi = ai + bixn+1, where ai ∈ Jk(n) and bi ∈ Jk(n + 1). Since

xn+1 ∈ Iσg, it is enough to show that ai ⊗ ei is in the span. For i ≤ p, we

have ai ⊗ ei ∈ σJk(n, p). For the last coordinate, notice that ap+1∂n+1σg =

ap+1 ⊗ ep+1. �
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Proof of Lemma 7.9. The statement follows from Proposition 2.14 and

that Qσg ∼= Qg for any g ∈ Jk(n, p). �

The proof of Theorem 7.7—and hence Theorems 7.2 and 7.4—is complete.

These facts imply the Thom-Damon-Ronga theorem of Section 3. Analogously

to Thom polynomials of contact classes, it is possible to define Thom polyno-

mials for right-left classes, and they cannot be expressed in quotient variables

in general. Recall that µ(g) = codim(Ig ⊂ Jk(n)).

Proposition 7.10. Let g ∈ Jk(n, p) with n ≥ µ(g)− 1. Then there is a

unique polynomial tp(g) ∈ Z[c1, c2, . . . ] such that ρn,p(tp(g)) = Tp(g).

Proof. Theorem 7.5 implies existence. Since deg(tp(g))=µ(g)p−dim(Rg),

we have deg(tp(g)) < (n+1)(p+1), and Proposition 7.6 implies uniqueness. �

Definition 7.11. If the condition n ≥ µ(g) − 1 is not satisfied, then we

can take an iterated stabilization of g to get a unique polynomial, which we

will also denote by tp(g). Also, we will use the notation tpQ(l) := tp(g),

where g ∈ Jk(n, p), such that its nilpotent algebra Qg is isomorphic to Q, and

p− n = l. Stability justifies this notation.

As we already remarked, formula (13) implies that for p ≥
(n+1

2

)
,

(18) TpΣn(n, p) = Res(β1, . . . , βp|α1, . . . , αn).

Since µ(Σn(n, p)) = n, Proposition 7.10 can be applied. We obtain that the

polynomial in quotient variables that is equal to the right-hand side of (18)

will express the Thom polynomial of any Σn(∗, ∗ + l) (at least for l ≥
(n

2

)
).

This argument proves again the following classical theorem.

Theorem 7.12 (Giambelli-Thom-Porteous). The Thom polynomial of Σn

in quotient variables is

(19) tpΣn(l) = ∆n+l,...,n+l︸ ︷︷ ︸
n

= det(cn+l+j−i)1≤i,j≤n.

7.3. Dependence of Thom polynomials on p. In this section we study the

relation between the Thom polynomial of the jets g and δg where

δ : Jk(n, p)→ Jk(n, p+ 1), δg : (x1, . . . , xn) 7→ (g1, . . . , gp, 0).

In other words we are interested in the dependence of the Thom polynomial

tpQ(l) on l. In [FR07] we showed that under a technical condition one can

calculate tp(g) from tp(δg) by “lowering the indices.” Notice that Qδg ∼= Qg.

Consequently the Thom polynomials of all germs with a given quotient algebra

Q (or local algebra Q) can be arranged into a series that we called the Thom

series of Q. The variables of this series are normalized Chern classes that we

denoted by di. Hence this stabilization property will be called d-stability.
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Definition 7.13. Fix m ∈ N. Assume that the polynomial q ∈ Z[c0, c1, . . . ]

has width m, i.e.,

q =
∑
|K|=m

aKc
K , where K ∈ Nm and cK =

m∏
i=1

cKi ,

using the c0 = 1 convention. We define the lowering operator [ = [(m) by

q[ :=
∑
|K|=m

aKc
K[
, where K[

i = Ki − 1,

using the c−1 = 0 convention.

For example, for m = 2 and q = c2
2 + c1c3 + 2c4, we have q[ = c2

1 + c2,

where we did not write out the c0 = 1 factors.

Theorem 7.14. Let g be a jet with µ(g) = m. Then tp(g) has width m

and
tp(δg)[ = tp(g).

A simple calculation shows (see [FR07, 2.3]) that to prove Theorem 7.14

it is enough to prove the following.

Proposition 7.15. Let g∈ Jk(n, p) with µ(g) = m, and write

Tp(δg)(α1, . . . , αn, β1, . . . , βp, βp+1) =
∑

piβ
m−i
p+1

for pi ∈ Z[α1, . . . , αn, β1, . . . , βp. Then p0 = Tp(g).

Proof. Notice that changing g to δg in the Localization Formula only

changes the factors [CI ] by multiplying them with Res(βp+1| −WQI ); i.e., if

Tp(g) =
∑
I∈F

aI for aI being the local contribution at the fixed point I, then

Tp(δg) =
∑
I∈F

aI Res(βp+1| −WQI ),

which implies the proposition, therefore the theorem. �

We can rephrase Theorem 7.14 in terms of Thom series. Let Q be an

m-dimensional nilpotent algebra over C, and let l ≥ 0 such that there exist

a jet g(n, p) ∈ Jk(n, p) with Qg ∼= Q and l = p − n. If k > m, n ≥ m and

p ≥ b(Q) − a(Q) + n, where a(Q) is the minimal number of generators for Q

and b(Q) is the minimal number of relations for Q, then such a jet exists.

Theorem 7.16. Let Q be an m-dimensional nilpotent algebra over C.

Then there is a unique homogeneous (deg di = i) formal power series

TsQ =
∑
|K|=m

aKd
K ∈ Z[[. . . , d−i, . . . , d0, . . . , di, . . . ]]

such that the Thom polynomials tpQ(l) can be obtained by substituting di =

ci+l+1 with the usual c0 = 1, ci = 0 for i < 0 conventions.
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This is an improvement of [FR07, Th.4.1], where the assumption of nonzero

normal Euler class was assumed. The degree of TsQ can be calculated by

finding the degree of TpQ(n, p) for some n and p, which requires the calculation

of the dimension of an R-orbit (or, equivalently, of the corresponding unfolding

space).

From this proof we can see that the d-stability property is not as deep

as stability. It is a curious fact of the history of Thom polynomials that it

remained hidden for so long.

Remark 7.17. The Localization Formula and Proposition 7.10 show that

if we know the tangent Euler classes of RIg for g ∈ Jk(m−1, p) with µ(g) = m

at the monomial ideals (the number of these depend only on m and not on p;

for a precise formulation, see Proposition 8.4), then we have a simple algorithm

to calculate the Thom series of Qg. But to give a closed formula for TsQ in the

d-variables is a different problem in algebraic combinatorics. The difficulty is

to move from formulas in Chern roots to formulas in Chern classes. There are

many unsolved problems in this context, such as expressing Chern classes of

various vector bundle constructions in terms of the Chern classes of the input

bundles (see, e.g., [Pra96, §.2]). It is sometimes a question of taste which form

one prefers. In some cases we succeeded to find formulas in the d-variable; see

Section 10.2.

8. Further calculations

8.1. Extrapolation. The tangent Euler classes e(TIRIg) are difficult to

calculate directly. At this point we do not have a general method to do it.

One of our strategies is to use the Localization Formula backwards: knowing

the Thom polynomial TpQ(n, p) for some n and p, we can calculate the tangent

Euler classes, and then we can calculate the whole Thom series. This method

is based on relating the tangent Euler classes to incidences (in the sense of

[Rim01]).

We will use the following shorthand notations for the tangent Euler classes:

e(g, f) = e(TIfRIg), e(g, I) = e(TIRIg), e(Q, I) = e(TIηQ),

where ηQ ⊂ Grm is the closure of the set of ideals I with quotient algebra

QI = Jk(n)/I isomorphic to Q and dim(Q) = m. We also use the Qf = QIf
notation.

Theorem 8.1 (Interpolation Formula). Let g ∈ Jk(n, p), and let f ∈
Jk(n, p) be a monomial germ with µ(f) = µ(g). Then

e(g, f) =
Res(Wf |WQf )

Tp(g)|f
,
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where Wf = {w1, . . . , wp}, wi =
∑
wi,jαj with fi =

∏
x
wi,j
j and |f denotes the

restriction to the n-dimensional subtorus T (f) of K fixing f , identifying the

generators of H∗T (f) with α1, . . . , αn. In other words, αi|f = αi and βi|f =∑
wi,jαj .

Proof. Restricting the Localization Formula, we obtain

Tp(g)|f =
∑
I∈F

Res(Wf | −WQI )

e(g, I)
.

If I is a monomial ideal different from If with µ(I) = µ(f), then there is a

wi ∈ −Wf ∩WQI ; therefore, Res(Wf | −WQI ) = 0. �

The next lemma will further simplify our calculations by allowing us to

use as small an n as possible. Recall that the stabilization map σ : Jk(n, p)→
Jk(n+ 1, p+ 1) is defined by

σg(x1, . . . , xn+1) =
Ä
g1(x1, . . . , xn), . . . , gp(x1, . . . , xn), xn+1

ä
.

Lemma 8.2 (Tangent Lemma). Let f, g ∈ Jk(n, p), and let f be a mono-

mial germ. Then

e(σg, σf) = e(g, f) Res(αn+1| −WQf ).

Proof. Theorem 7.7 on strong stability implies that Tp(σg)|σf = Tp(g)|f .

Using the interpolation Theorem 8.1, we get

e(σg, σf) =
Res(Wσf | −WQσf )

Tp(σg)|σf
=

Res(Wf | −WQf ) Res(αn+1| −WQf )

Tp(g)|f
by noticing that Wσf = Wf ∪ {αn+1} and Qσf = Qf . �

Now we sketch a geometric proof, based on a suggestion of M. Kazarian.

Let V < Jk(n) be a complementary invariant subspace to If . (Take the span

of monomials not in If .) Then for any v ∈ V , the jet

gv(x1, . . . , xn+1) =
Ä
g1(x1, . . . , xn), . . . , gp(x1, . . . , xn), xn+1 + v

ä
is contact equivalent to σg. By checking the dimension we can see that in the

affine neighbourhood U ∼= Hom(Iσf , V ) of Iσf ∈ Grµ defined by the decompo-

sition Jk(n+ 1) = Iσf ⊕ V , we have

R(n+ 1)σg ∼= R(n)g ×Hom(Cxn+1, V ).

This local product structure immediately implies the Tangent Lemma. �

Using the Localization Formula it is easy to see that the Tangent Lemma

is equivalent to Theorem 7.7, so the second proof of the Tangent Lemma gives

a direct proof of the strong stability.
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Example 8.3 (The Thom polynomial of A3). The first case not covered

in Section 6.1 is the Thom series of the Morin singularity A3, the contact

class corresponding to the algebra C[[x]]/(x4). Since µ(g) = 3, it is enough

to write down the Localization Formula for n = 2 (see Remark 7.17). The

monomial ideals for n = 2 can be identified with partitions of µ + 1 = 4:

(4), (31), (211), (22), (1111). These monomial ideals will be denoted by I4 =

(x4
1, x2), I31 = (x3

1, x1x2, x
2
2), I211 = (x2

1, x1x2, x
3
2), I22 = (x2

1, x
2
2), and I1111 =

(x1, x
4
2). Germs with these monomial ideals will be denoted by f4, f31, f211,

f22, and f1111.

Since f4 is the suspension (cf. Section 7.2) of the jet x1 7→ x4
1 ∈ J4(1, 1),

we can apply the Tangent Lemma 8.2. The ideal (x4
1) of Jk(1) is a fixed point

of the R-action, so e(x4
1, x

4
1) = 1. Therefore,

e(f4, f4) = Res(α1, 2α1, 3α1|α2).

The Euler class at f1111 can be obtained by switching α1 and α2 in e(f4, f4).

For I22 = (x2
1, x

2
2), we use the interpolation formula. The ideal I22 has two

generators so we need that tpA3
(0) = c3

1+3c1c2+2c3. We write this polynomial

in the Chern roots α1, α2, β1, β2 and restrict to f22 (β1 7→ 2α1, β2 7→ 2α2); i.e.,

make the substitutions

c1 = 2α1 + 2α2 − α1 − α2 = α1 + α2, c2 = α1α2 − α2
1 − α2

2,

c3 = (α1 + α2)(α2 − α1)2,

and we get that

TpA3
(2, 2)|f22 = (α1 + α2)α1α2.

The interpolation theorem implies that

e(f4, f22) =
Res(α1, α2, α1 + α2|2α1, 2α2)

(α1 + α2)α1α2
=

(α2 − α1)2(2α1 − α2)(α1 − 2α2)

α1 + α2
.

We also need to calculate the Euler class at f31 = (x3
1, x1x2, x

2
2). (The Euler

class at f211 can be obtained by permuting α1 and α2.) The ideal of I31 has

three generators, so we need tpA3
(1) to apply the interpolation formula. This

calculation is better to do with computer; the result can be found in Section 8.2

at µ = 3.

This method of calculating all the ingredients of the Localization Formula

from a concrete Thom polynomial tpQ(l) (for an appropriate l) will be called

the extrapolation method. Now we estimate the value of l for which this method

works.

Proposition 8.4. Let I be a monomial ideal in Jk(n), and assume that

a(Q)—the minimal number of generators of Q = Jk(n)/I—is at most µ(Q)−1.

Then b(Q)—the minimal number of relations of Q—is at most
(µ(Q)

2

)
.
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Proof. If a(Q) = µ(Q)−1, then I contains all but one quadratic monomial.

They are all generators and, if the missing monomial is of the form x2
i , there

can be one extra generator, all together maximum
(µ(Q)

2

)
generators. If a(Q) <

µ(Q)− 1, then “cut off” a maximal degree monomial from Q. Let us call the

resulting algebra Q′. Then µ(Q′) = µ(Q) − 1 and a(Q′) ≤ a(Q) < µ(Q) − 1,

so by an induction argument we can assume that b(Q′) ≤
(µ(Q)−1

2

)
. Hence

b(Q) ≤ b(Q′) + (µ(Q)− 2) <
(µ(Q)

2

)
. �

Corollary 8.5. To calculate the Thom series of the nilpotent algebra Q

with the Extrapolation method, it is enough to know tpQ(
(µ(Q)−1

2

)
).

We saw already that the Thom series depends only on the finite data of

tangent Euler classes at monomial ideals for n = µ(Q)−1. Now we see that the

same information is stored in the polynomial tpQ(
(µ(Q)−1

2

)
) in a compact way.

This argument shows that it is theoretically possible to calculate a closed

formula for any Thom series, as we have an algorithm based on Groebner

degeneration to calculate any Thom polynomial. However this algorithm is

extremely ineffective for explicit calculations (works only for trivial cases).

There is a remarkable relation among the tangent Euler classes e(Q, I) for

different monomial ideals I. Consider the Berline-Vergne-Atiyah-Bott Equi-

variant Localization Formula 5.2 for [ηQ] ∈ H∗T (Grµ):

(20) π∗[ηQ] =
∑
I

1

e(Q, I)
,

where π : Grµ → ∗ is the collapse map. The Gysin map π∗ decreases the

degree by the dimension of Grµ, so the left-hand side of (20) is 0 unless ηQ is

0-dimensional; i.e., a fixed point of R(n), when (20) reduces to a tautology.

These cases were treated in Section 6.1.

8.2. Thom polynomials corresponding to algebras of small dimension. In

what follows the ring E0(i) will be considered to be a subset of E0(i + 1).

If I ⊂ E0(i) is an ideal, we define its descendant in E0(i+ 1) as I + (xi+1).

Descendants of descendants are also called descendants. Observe that the

factor ring of E0(i) by I is isomorphic to the factor ring of E0(i + 1) by the

descendant of I; in particular, codim(I ⊂ E0(i)) = codim(I ′ ⊂ E0(i + 1)) for

the descendant I ′ of I.

Recall also that we consider the right group R(i) acting on E0(i); in par-

ticular, the symmetric group Si ⊂ GL(i) ⊂ R(i) also acts on E0(i).

Let us fix µ ≥ 1. Consider a list of monomial ideals Ii⊂E0(n(i)) (n(i)≤µ)

such that

• codim(Ii ⊂ E0(n(i))) = µ;

• no ideal in the GL(n(i))-orbit of Ii is the descendant of an ideal in

E0(n(i)− 1);
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• the Sµ-orbits of the descendants of Ii’s in E0(µ) form a no-repetition,

complete list of the codimension µ monomial ideals of E0(µ).

Example 8.6. Here are examples for small µ, with the notation x, y, z, . . . =

x1, x2, x3, . . . .

µ = 1: I1 = (x2) ⊂ E0(1).

µ = 2: I1 = (x3) ⊂ E0(1), I2 = (x2, xy, y2) = E0(2)2 ⊂ E0(2).

µ = 3: I1 = (x4) ⊂ E0(1), I2 = (x2, y2) ⊂ E0(2), I3 = (x2, xy, y3) ⊂ E0(2),

I4 = E0(3)2 = (x2, y2, z2, xy, yz, zx) ⊂ E0(3).

µ = 4: I1 = (x5) ⊂ E0(1), I2 = (x2, xy, y4) ⊂ E0(2), I3 = (x3, xy, y3) ⊂ E0(2),

I4 = (x2, xy2, y3) ⊂ E0(2), I5 = (x2, y2, z3, xy, yz, zx) ⊂ E0(3),

I6 = (x2, y2, z2, xy, xz) ⊂ E0(3), I7 = E0(4)2 ⊂ E0(4).

Remark 8.7. Monomial ideals I of E0(n) can be visualized by the set

{(i1, i2, . . . , in) ∈ Zn :
∏n
j=1 x

ij
j 6∈ I}. This set can be viewed as the n-dimen-

sional generalization of (two dimensional) Young diagrams of partitions. In

this language, the list Ii for a given µ is the list of all “shapes” of cardinality

µ+ 1 Young diagrams of dimension at most µ.

The Localization Formula (12) can now be rephrased as follows.

Theorem 8.8. Let µ be a positive integer and Ii be a list of monomial

ideals described above. Then for a nilpotent algebra of dimension µ, we have

(21) TpQ(n, p) =
∑
i

SymIi

Res(β1, . . . , βp| −WQIi
)

e(Q, Ii) · Res(αn(i)+1, . . . , αn| −WQIi
)
,

where e(Q, Ii) is the virtual tangent Euler class of the closure of the set

{I /Grµ(E0(n(i))) : E0(n(i))/I ∼= Q}

at the point Ii. The symmetrizer operator acts on a polynomial p by

SymIi

Ä
p(α1, . . . , αn)

ä
=

1

|{σ ∈ Sn : σ(Ii) = Ii}|
∑
σ∈Sn

p(ασ(1), . . . , ασ(n)).

If n(i) > n, or e(Q, Ii) = ∞ for some i, then the ith term in the sum in (21)

is defined to be 0.

Corollary 8.9. The finitely many rational functions e(Q, Ii) determine

the Thom polynomials TpQ(n, p) of the nilpotent algebra Q for all n and p.

Using the convention x, y, z, . . . = x1, x2, x3, . . . and the following names

of nilpotent algebras:

Ai = E0(1)/(xi+1), Ia,b = E0(2)/(xy, xa + yb),

IIIa,b = E0(2)/(xa, xy, yb), Σ2,1 = E0(2)/(x2, xy2, y3),

here is a list of some Euler classes:
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µ = 1: e(A1, (x
2)) = 1.

µ = 2:
I = (x3) (x2, xy, y2)

e(A2, I) = 1 1
3(α1 − 2α2)(α2 − 2α1)

µ = 3:

I = (x4) (x2, y2) (x2, xy, y3)

e(A3, I) = 1
(α1 − α2)2(2α1 − α2)(α1 − 2α2)

(α1 + α2)
1
2 (3α2 − α1)(α1 − α2)2

e(I2,2, I) = ∞ −(α1 − α2)2 2(α1 − α2)2

e(III2,3, I) = ∞ ∞ α1 − α2

µ = 4:
e(A4, (x

5)) = 1,

e(A4, (x
2, xy, y4)) = 1

5 (α1 − α2)(α1 − 2α2)(α1 − 4α2)(3α2 − 2α1),

e(A4, (x
3, xy, y3)) = 1

5 (α1 − α2)2(2α1 − 3α2)(3α1 − 2α2),

e(A4, (x
2, xy2, y3) = 2(α1−2α2)(2α1−α2)(α1−3α2)(α1−α2)

2

5(α1+α2)
,

e(A4, (x
2, y2, z2, xy, xz)) = ♣ · (α2+α3−2α1)(α2−2α3)(α3−2α2)

5(α2+α3)
,

e(A4, (x
2, y2, z3, xy, yz, zx))

= ♠ · −2(α1+α2−2α3)(3α3−α2)(3α3−α1)(α1−2α2)(α2−2α1)
5(4α3

1−9α
2
1α3−5α2

1α2−4α1α2
3+15α1α2α3−5α1α2

2−4α2α2
3−9α

2
2α3+4α3

2+9α3
3)
.

e(I2,3, (x
5)) = ∞,

e(I2,3, (x
2, xy, y4)) = (α1 − α2)(α1 − 2α2)(2α1 − 3α2),

e(I2,3, (x
3, xy, y3)) = (α1−α2)

2(2α1−3α2)(3α1−2α2)
α1+α2

,

e(I2,3, (x
2, xy2, y3)) = (α1 − α2)2(2α2 − α1),

e(I2,3, (x
2, y2, z2, xy, xz)) = ♣ · (2α3−α2)(α3−2α2)(2α1−α2−α3)

α1α2+α1α3+4α2
2+4α2

3−16α2α3
,

e(I2,3, (x
2, y2, z3, xy, yz, zx)) = ♠ · AB ,

where

A = 2(α1 + α2 − 2α3)(3α3 − α1)(3α3 − α2)(α1 − 2α2)(α2 − 2α1)

B = 4(α4
1 + α4

2)− 6α2
1α

2
2 − 5α1α2(α2

1 + α2
2)

+ α3(−25(α3
1 + α3

2) + 39α1α2(α1 + α2))

+ α2
3(29(α2

1 + α2
2)− 59α1α2) + α3

3(α1 + α2).

e(III2,4, (x
5)) = ∞,

e(III2,4, (x
3, xy, y3)) = ∞,

e(III2,4, (x
2, xy, y4)) = (α1 − α2)(α1 − 2α2),

e(III2,4, (x
2, xy2, y3)) = (α1 − α2)(2α2 − α1),

e(III2,4, (x
2, y2, z2, xy, xz)) = ♣ · (α2−2α3)(α3−2α2)

α1α2+α1α3−4α2
2−4α

2
3+4α2α3

,

e(III2,4, (x
2, y2, z3, xy, yz, zx)) = ♠ · −(α1−3α3)(α2−3α3)

2(α2
1+α

2
2+α

2
3−2α1α3−2α2α3−α1α2)

.
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e(III3,3, (x
5)) = ∞,

e(III3,3, (x
2, xy, y4)) = ∞,

e(III3,3, (x
3, xy, y3)) = −(α1 − α2)2,

e(III3,3, (x
2, xy2, y3)) = 2(α1 − α2)2,

e(III3,3, (x
2, y2, z2, xy, xz)) = ♣ · (−1),

e(III3,3, (x
2, y2, z3, xy, yz, zx)) = ♠ · 2(α1−2α2)(α2−2α1)

2α2
1+2α2

2−3α
2
3−2α1α2+α1α3+α2α3

.

e(Σ2,1, (x5)) = ∞,

e(Σ2,1, (x2, xy, y4)) = ∞,

e(Σ2,1, (x3, xy, y3)) = ∞,

e(Σ2,1, (x2, xy2, y3)) = α1 − α2,

e(Σ2,1, (x2, y2, z2, xy, xz)) = ♣ · 1
2(α1−α2−α3)

,

e(Σ2,1, (x2, y2, z3, xy, yz, zx)) = ♠ · 1
α1+α2−α3

,

where

♣ = (α1 − α2)(α1 − α3)(α1 − 2α2)(α1 − 2α3)(α2 − α3)2,

♠ = (α1 − α3)2(α2 − α3)2(α1 − α2 − α3)(α2 − α1 − α3).

Theorem 8.8 and the list of e(Q, I)-classes above give the Thom polyno-

mial of all singularities whose associated algebra has dimension at most 4, with

the following exceptions:

• We did not include e(Q, I) classes for Q = E0(i)/ E0(i)2 = Σi for

i = 2, 3, 4, since those Thom polynomials (Giambelli-Thom-Porteous

formulas) are known; see (19).

• For µ = 3 and µ = 4, we did not include the classes e(Q, E0(µ)2), since

they can be calculated using (20).

• There are three other algebras with µ = 4; namely

E0(3)/(x2, y2, z3, xy, yz, zx), E0(3)/(x2, y2, z2, xz, yz),

E0(3)/(xy, xz, yz, x2 − y2, x2 − z2).

Their Thom polynomials will be studied in Section 10 (under the names

Φ3,2, Φ3,1, Φ3,0).

9. Returning to geometry

In this section we use some simple geometric observations to calculate

the Localization Formula for some singularities. We believe that this is just

the beginning. In a similar fashion one can transform the deep geometric

knowledge of singularity theorists into further formulas.
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9.1. The punctual Hilbert scheme. The Localization Formula reduces the

Thom polynomial calculations to the study of the space of ideals Hm(n) =

Hm(n, k) in Grm(Jk(n)). It is clear that these spaces are isomorphic for all

k ≥ m. We assume that k ≥ m. Therefore we can suppress k from the notation.

The variety Hm(n) was studied under the name local punctual Hilbert scheme

(with the reduced scheme structure) by A. Iarrobino, J. Damon, A. Galligo,

T. Gaffney, and others (see [Iar72a], [DG76], [Gaf88]). The connection of

this Hilbert scheme with singularity theory is well known; however, the R(n)-

equivariant theory needed for Thom polynomial calculations is not developed

yet. We do not pursue this approach here, but we believe that it would lead

to strong results.

The structure of Hm(n) is complicated. In general, even its dimension

is not known. It has many components, one of which is the closure of the

orbit R(n)(xm+1
1 , x2, . . . , xn). For n = 2, this is the only component. For

n ≥ 3, there can be others. Nevertheless, we can see that the calculation of

the Thom polynomials of the Morin singularities Am is related to the study of

the singularities of this component at monomial ideals.

The Hilbert scheme Hm(n) has many smooth R(n)-invariant subvarieties.

For the corresponding contact classes, we can easily calculate the Localization

Formula.

9.2. Subgrassmannians. Let V be a d-dimensional subspace of

P := Hom(Symk+1 Cn,C)

for d < dim(P ) =
(n+k
k+1

)
. Let N ≥ 1, and consider the ideal IV < Jk+N (n)

generated by V and Hom(Symk+2 Cn,C). We have the GL(n)-equivariant

embedding j : V 7→ IV mapping the Grassmannian Grd(P ) into the Hilbert

scheme Hm(n), where m =
∑k+1
i=2

(n+i−1
i

)
− d. These subgrassmannians were

used by Iarrobino in [Iar72b] to give a lower bound on the dimension of Hm(n).

The corresponding contact classes

Σnk(d)(n, p) = Σ

k︷ ︸︸ ︷
n, . . . , n(d)(n, p) := {g ∈ Jk+N (n, p) : Ig ∈ j(Grd(P ))}

were studied by J. Damon in [Dam72]. He also calculated the Thom polynomial

of some of these classes. The Localization Formula gives the answer for all of

these cases.

Let W be the set of nonnegative integer n-tuples w = (w1, . . . , wn) with∑
wi = k + 1, and let αw denote the weight

∑
wiαi. Then {αw : w ∈ W} is

the set of weights of P = Hom(Symk+1 Cn,C). The T (n)-fixed points of the

Grassmannian Grd(P ) are identified with the d-element subsets of W . For a
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fixed point S, let

[ES ] =
p∏
i=1

∏
σ∈S

(βi − ασ) and eS = e(TS Grd(P )) =
∏
σ∈S

∏
σ′∈W\S

(ασ − ασ′).

Then by the Localization Formula, we get

(22) [Σnk(d)(n, p)] = [Σnk(n, p)] ·
∑
S

[ES ]

eS
.

Notice that the result is independent of N in accordance with Theorem 7.1.

For the choice N = 1, we get IV = V .

Recall that we calculated [Σnk(n, p)] in Section 6.1.

10. Thom series of Φm,r singularities

If k = 1 and d =
(n+1

2

)
− 1, then by Proposition 7.10 we can calculate the

stable Thom polynomial of Φn,0 := Σn(d) from (22). In this section we study

a family Φm,r including these classes.

The subgrassmannian jGr1(Hom(Sym2 Cm,C)) ∼= P(Sym2 Cm) splits

into orbits X(m, r) according to the corank of the symmetric matrices in

Sym2 Cm. The orbits correspond to the following algebras.

Definition 10.1. Let m > r be nonnegative integers. The quotient of

J2(m) by the ideal

Jm,r =

 ∑
1≤i≤j≤m

aijxixj :
m∑
r+1

aii = 0


will be denoted by Φm,r.

A finite generator set of Jm,r (as an ideal but also as a vector space) is

given by

Jm,r =
¨
xixj , x

2
k, x

2
r+1 − x2

l : 1 ≤ i < j ≤ m, 1 ≤ k ≤ r, r + 2 ≤ l ≤ m
∂

for r < m− 1, and

Jm,m−1 =
¨
xixj , x

2
k : 1 ≤ i < j ≤ m, 1 ≤ k ≤ m− 1

∂
.

Observe that for small values of the parameters m, r, we recover familiar alge-

bras:

Φ1,0 = A2, Φ2,0 = I2,2, Φ2,1 = III2,3.

Following our previous convention, the singularities corresponding to the alge-

bras Φm,r in E0(n, n+ l) will be denoted by Φm,r(n, n+ l). Calculation shows

that

codim
Ä
Φm,r(n, n+ l) ⊂ E0(n, n+ l)

ä
= (m+1)l+

ÇÇ
m+ 1

2

å
+

Ç
r + 1

2

å
+ 1

å
.
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10.1. Thom polynomials of Φn,r in terms of Chern roots. To calculate the

Thom polynomials of these classes—using the Localization Formula—we need

the GL(n)-equivariant cohomology classes [X(n, r) ⊂ P(Sym2 Cn)] restricted

to the T (n)-fixed points of P(Sym2 Cn). The cohomology class of the cone of

X(n, r) was calculated in [HT84] and [JLP81]:

[ConeX(n, r) ⊂ Sym2 Cn] = 2r∆r,r−1,...,2,1,

where ∆r,r−1,...,2,1 = det(cr+1+j−2i)i,j=1,...,r denotes the Schur polynomial in

the Chern classes c1, . . . , cn, corresponding to the partition (r, r − 1, . . . , 2, 1).

Using [FNR05, §6], we can calculate the T (n)-equivariant projective Thom

polynomial

[X(n, r) ⊂ P(Sym2 Cn)] = 2r∆r,r−1,...,2,1

Å
α1 −

1

2
ξ, . . . , αn −

1

2
ξ

ã
in

H∗T (n)(P(Sym2 Cn)) ∼= Z[α1, . . . , αn, ξ]/
∏

(αi + ξ).

We need the restriction of this class to the fixed points {fij : 1 ≤ i ≤ j ≤ n}
of P(Sym2 Cn):

(23) [X(n, r)]|fij = 2r∆r,r−1,...,2,1

Å
α1 −

1

2
(αi + αj), . . . , αn −

1

2
(αi + αj)

ã
.

The other components of the Localization Formula are

[Eij ] = Res(β1, . . . , βp|αi + αj), e
(n)
ij = Res(K

(n)
ij |αi + αj),

for

K
(n)
ij = {αk + αl : k ≤ l, (k, l) 6= (i, j)}.

Hence the interpolation formula yields to the following

Theorem 10.2. The Thom polynomial of Φn,r is

(24) TpΦn,r(n, p) = Res(β1, . . . , βp|α1, . . . , αn)
∑

1≤i≤j≤n

[Eij ]

e
(n)
ij

[X(n, r)]|fij .

10.2. Thom polynomials of Φm,r in terms of quotient Chern classes. Since

µ(Φn,r) = n + 1, the polynomial TpΦn,r(n, p) determines the Thom series of

Φn,r by Proposition 7.10. We devote this section to the calculation of these

Thom series.

10.2.1. Notations from algebraic combinatorics. Let

An = {α1, . . . , αn}, Bp = {β1, . . . , βp}.

For a partition λ = (λ1, . . . , λs) and variables x1, . . . , xt, we define

∆λ(x1, . . . , xt) = det(σλi+j−i)1≤i,j≤s,
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where σi = σi(x1, . . . , xt) is the ith elementary symmetric polynomial of x1, . . .

. . . , xt (i.e., σ1 =
∑
xi, σ2 =

∑
i 6=j xixj , etc.). The symbol ∆λ without argu-

ments (as before, in (7)) will denote the determinant

∆λ = det(cλi+j−i)1≤i,j≤s

with entries the quotient variables (6), (15). We will use partitions, and their

notations are as in [Ful97]. For example, λ will denote the conjugate partition

of λ. Addition of partitions is defined coordinatewise, ab means b copies of a,

and concatenation is indicated by a comma. For example, (34 +(2, 1), (1, 1)) =

(5, 4, 3, 3, 1, 1). We will need the staircase partition

ρs = (s, s− 1, . . . , 2, 1).

Definition 10.3. The Schur coefficients of the equivariant Segre classes of

Sym2 Cn will be denoted by double brackets; namely,

1∏
1≤i≤j≤n(1− αi − αj)

=
∑
I

((I))∆I−ρn−1
(α1, . . . , αn).

Here I runs through all length n sequences I = (i1, i2, . . . , in) with i1 > i2 >

· · · > in ≥ 0.

The numbers ((I)) are positive; their combinatorics, as well as recursion

and Pfaffian formulas, are studied in [Pra88, LLT89, Pra96]. For practical

purposes, the following recursion is most useful:

r((i1, . . . , ir))− 2
r∑

k=1

((i1, . . . , ik−1, ik − 1, ik+1, . . . , ir))

=

0 ir > 0

((i1, . . . , ir−1)) ir = 0,

together with the conventions ((0)) = 1, and the fact that ((I)) = 0 if I does

not satisfy i1 > i2 > · · · > in ≥ 0. For example, ((i)) = 2i, ((i, 0)) = 2i − 1,

((2, 1)) = 3, ((3, 1)) = 10.

Now we are ready to present the Thom series corresponding to the algebras

Φm,m−s.

Theorem 10.4. We have

(25) tpΦm,m−s(l) =
∑
I

((I))∆I′ ,

where

I ′= ((l + s)s + I − ρs−1, (l +m)m−s, l +m+ 1− s− |I|)
= (l + 1 + i1, l + 2 + i2, . . . , l + s+ is, l +m, . . . , l +m︸ ︷︷ ︸

m− s
, l +m+ 1− s− |I|),



THOM SERIES OF CONTACT SINGULARITIES 1413

and the summation is for sequences I = (i1, . . . , is) with i1 > i2 > · · · > is ≥
m− s and |I| = i1 + · · ·+ is ≤ l +m− s+ 1.

The special case m = s = 2 (the singularity I2,2) was proved in [Pra07].

Remark 10.5. We can formally change the summation for all sequences I

with i1 > i2 > · · · > is ≥ 0 without changing the sum. Indeed, if |I| is larger

than l + m − s + 1, then the ∆ polynomial is zero, since the last part in the

partition is negative. If is < m − s, then in the determinant expansion of ∆

the sth row coincides with one of the next m− s rows; hence, again ∆ = 0.

Remark 10.6. The sum of the parts of all the partitions I ′ above is

l(m+ 1) +

Ç
m+ 1

2

å
+

Ç
m− s+ 1

2

å
+ 1,

which is consistent with the fact that this is the codimension of the singularity

Φm,m−s(∗, ∗+ l) in E0(∗, ∗+ l).

Remark 10.7. The formula gets particularly simple if r = m− 1:

(26) tpΦn,n−1
(l) = 2n−1

l+1∑
i=0

2i∆n+l+i,n+l,...,n+l︸ ︷︷ ︸
n−1

,l+1−i,

which recovers the Ronga-formula for A2 = Φ1,0 and gives the Thom series of

III2,3 = Φ2,1 for n=3. The Thom series of III2,3 was also calculated recently

in [Özt10].

Proof. First we prove Theorem 10.4 for the case s = m. This is a direct

geometric argument, not using localization. We want to calculate the equivari-

ant Poincaré dual of the Φm,0-jets Xm,0 ⊂ Hom(Cm,Cp)⊕Hom(Sym2 Cm,Cp).

By definition,

[Xm,0] = e
Ä

Hom(Cm,Cp)
ä
· [Σ1(Sym2 Cm,Cp)],

where Σ1(V,W ) denotes the corank 1 linear maps from V to W . We have that

e
Ä

Hom(Cm,Cp)
ä

=Res(Bp|Am) and [Σ1(Sym2 Cm,Cp)]=cq(C
p	Sym2 Cm),

where q = p−
(m+1

2

)
+ 1 and cq(C

p	 Sym2 Cm) denotes the qth (equivariant)

Chern class of the formal difference Cp	Sym2 Cm. The second statement is

the Giambelli-Thom-Porteous formula. Now

cq((Sym2 Cm,Cp)) =
q∑
i=0

cq−i(C
p)si(Sym2 Cm),

where si denote the Segre classes, which are defined by the identity

(1 + c1t+ c2t
2 + c3t

3 + · · · ) · (1− s1t+ s2t
2 − s3t

3 +− · · · ) = 1.
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As we mentioned in Definition 10.3, the Segre classes of Sym2 Cm can be

expressed from the Chern roots of Cm:

si(Sym2 Cm) =
∑
I

((I))∆I−ρm−1
(α1, . . . , αm),

where I runs through all length m sequences I = (i1, i2, . . . , im) with i1 > i2 >

· · · > in ≥ 0 with |I| −
(m

2

)
= i. We finish the proof of the formula (25) for

s = m by recalling the Factorization Property of Schur polynomials.

Lemma 10.8 ([Mac98, I.3] (Factorization Formula)). Let n, p be nonneg-

ative integers, and let the quotient Chern classes be defined as in (6). Suppose

that (pn + λ, µ) is a partition. Then

∆pn+λ,µ = Res(An, Bp)∆µ(Bp)∆λ(An).

For m = 2, we have Φ2,0 = I2,2. The Thom series of I2,2 was calculated

by several authors [FR07], [Pra07], [Kaza].

Now we go on with the proof of Theorem 10.4. An interpretation of what

we proved so far is that the expression in (24) is equal to the expression in (25)

for s = m. In the remainder of the proof we will use this statement to prove

that expression (24) agrees with expression (25) for any m > s. As before, bj
will denote the jth elementary symmetric polynomial of the βi’s.

The equality of formula (24) with (25) for s = m can be written—using

the Factorization Formula, Lemma 10.8—as

(27)
∑

1≤i≤j≤s

Res(Bs+l|αi + αj)

Res(K
(s)
i,j |αi + αj)

=
∑
I

((I))bl+1−|I|∆I−ρs−1
(α1, . . . , αs).

What we want to prove is the equality of these two formulas for any m and s,

that is (using the Factorization Formula again),

∑
1≤i≤j≤m

Res(Bm+l|αi + αj)

Res(K
(m)
i,j |αi + αj)

2m−s∆ρm−s

Ä
α1 −

αi + αj
2

, . . . , αm −
αi + αj

2

ä(28)

=
∑
I

((I))bl+1+m−s−|I|∆I−(m−s)s−ρs−1
(α1, . . . , αm).

Checking the coefficients of bs+l−k and bm+l−k respectively, in these equa-

tions we can reduce the theorem to the following problem: Knowing

(29)
∑

1≤i≤j≤s

(αi + αj)
k

Res(K
(s)
i,j |αi + αj)

=
∑

|I|=k+1−s
((I))∆I−ρs−1

(α1, . . . , αs),
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we want to prove

∑
1≤i≤j≤m

(αi + αj)
k

Res(K
(m)
i,j |αi + αj)

2m−s∆ρm−s

Ä
α1 −

αi + αj
2

, . . . , αm −
αi + αj

2

ä(30)

=
∑

|I|=k+1−s
((I))∆

I−(m−s)s−ρs−1
(α1, . . . , αm).

We recall the Gustafson-Milne identity.

Lemma 10.9 ([GM83], [CL96]). Let m ≥ s be nonnegative integers. If

H ⊂ {1, . . . ,m}, then the set {αh}h∈H will be denoted by αH and the set

{α1, . . . , αm} \ αH will be denoted by αH . Let the partition µ = (µ1, µ2, . . .)

satisfy µ1 ≤ s. Then we have

∆µ(α1, . . . , αm) =
∑

H⊂{1,...,m},|H|=s

∆sm−s,µ(αH)

Res(αH |αH)
.

The Gustafson-Milne identity implies that the right-hand side of (30) is

obtained from the right-hand side of (29) by the following operation:

p(α1, . . . , αs) 7→
∑

H⊂{1,...,m},|H|=s

p(αH)

Res(αH |αH)
.

Hence it is enough to show that the same operation maps the left-hand sides

into each other, too. That is, we need to prove

∑
H⊂{1,...,m},|H|=s

∑
i≤j∈H

(αi+αj)
k

Res(KH
i,j |αi+αj)

Res(αH |αH)

(31)

=
∑

1≤i≤j≤m

(αi+αj)
k

Res(K
(m)
i,j |αi+αj)

2m−s∆ρm−s

Ä
α1 −

αi+αj
2

, . . . , αm −
αi + αj

2

ä
.

For this, the following lemma will be useful.

Lemma 10.10. Let m > s be nonnegative integers, and consider the vari-

ables γ1, . . . , γm, y. For a subset H ⊂ {1, . . . ,m}, we set H = {1, . . . ,m}−H ,

γH = {γi}i∈H , γH = {γi}i∈H . We have

∑
H⊂{1,...,m},|H|=s

∆ρs(γH)

Res(γH , γH)

∏
i∈H

∏
j∈H

(γi + γj) = ∆ρs(γ1, . . . , γm, y,−y).

Proof. In this proof we use the Thom polynomials of the representation of

GLm on Λ2 Cm; see, e.g., [FNR05, §3]. Consider the canonical exact sequence
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of vector bundles 0 → S → E → Q → 0 over the Grassmannian GrsC
m, and

the diagram of maps

Λ2Q � � i //

φ

((

��

Λ2E

��

π2 // Λ2 Cm

GrsC
m id // GrsC

m,

with the action of the n-torus. Using the fact that φ(Λ2Q) is the set of two

forms of corank at least s, and the identification Λ2E = Λ2S⊕Λ2Q⊕ (S⊗Q),

Proposition 5.1 gives the statement of the lemma for y = 0. We leave it to

the reader to prove the fact that the right-hand side is independent of y. (One

way of proving this is the identification of the right-hand side with an incidence

class of two orbits of the representation of GLm+2 on Λ2 Cm+2; see [FP09].) �

Lemma 10.10 (with the substitution γu = αu − (αi + αj)/2) can be used

to show that the coefficient of (αi + αj)
k are the same on the two sides for all

i ≤ j. This completes the proof of Theorem 10.4. �

11. Iterated residue formulas and generating functions

In [BS12, §6.2] (see also [Sze98]) Bérczi and Szenes used one rational

function—we will call it generating function—and the iterated residue opera-

tion to encode the Thom polynomial of all singularities corresponding to the

same nilpotent algebra of type Ad. We show that generating functions can be

assigned to other singularities. We give some examples and indicate how the

generating function can be a useful tool in future studies of Thom polynomials.

Certain rational functions in the variables z1, . . . , zµ generate polynomi-

als in the quotient variables through the iterated residue operation, which we

describe now, following [BS12]. Consider Cµ with coordinates z1, . . . , zµ. Let

ω1, . . . , ωN be linear forms on Cµ, and let h(z1, . . . , zµ) be a polynomial. We

define the iterated residue operator by
(32)

RESµ
h(z1, . . . , zµ)∏N

i=1 ωi
= (−1)µ

∫
|z1|=R1

· · ·
∫
|zµ|=Rµ

h(z1, . . . , zµ)dz1 · · · dzµ∏N
i=1 ωi

,

where 0� R1 � R2 � · · · � Rµ. We have, for example, RESµ(1/(z1 · · · zµ))

= 1. We will use the notations Dj =
∑∞
i=0

ci
zij

and discµ =
∏µ−1
i=1

∏µ
j=i+1(zj−zi).

The following conjecture is an extension of Theorem (7.2) in [BS12], where

it is proved for Morin singularities. We arrived at this conjecture while dis-

cussing the problem with M. Kazarian. He informed us that in his work in

progress [Kazb], he will prove it.
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Conjecture 11.1. Let Q be a µ-dimensional, commutative, nilpotent

algebra with deg(tpQ(l)) = µ · l + γ.

(a) There exists a rational function kQ—called the generating function of

Q—in the variables z1, . . . , zµ, of degree γ −
(µ+1

2

)
such that

(33) tpQ(l) = RESµ

(
kQ · discµ ·

µ∏
i=1

zliDi

)
.

(b) The generating function kQ has the form

(34) kQ(z1, . . . , zµ) =
h(z1, . . . , zµ)∏

a∈A(zsa − zia − zja)
,

where h is a polynomial and {(sa, ia, ja)}a∈A is a repetition-free list of

indexes with sa > ia ≥ ja for all a ∈ A.

The function kQ is not unique in general. The Giambelli-Thom-Porteous

formula (19) can be encoded by setting

kΣr =
r−1∏
i=1

zr−ii (here µ = r, γ = r2).

Formula (7.2) of [BS12] can be interpreted as the the existence of kQ for

Q = Ai, (i = 1, 2, . . .), as well as a concrete form of its denominator (all indices

with ia + ja ≤ sa). For the Ai singularity, µ = γ = i. Hence the degree of kAi
is −

(i
2

)
. Moreover, Bérczi and Szenes calculated kAi for i = 1, .., 6. Here are

the first three of their results:

kA1 = 1, kA2 =
1

z2 − 2z1
, kA3 =

1

(z2 − 2z1)(z3 − 2z1)(z3 − z1 − z2)
.

In Section 10 the singularities Φm+r,r were considered (r = 0, 1, . . ., m =

1, 2, . . .). For these singularities, we have µ = m + r + 1 and γ =
(m+r+1

2

)
+(r+1

2

)
+ 1, and hence deg kΦm+r,r =

(r
2

)
−m. The results of Section 10.2 can be

summarized by the following generating functions:

kΦm+r,r(z1, . . . , zm+r+1) =

∏r−1
i=1 z

r−i
m+i

2m−1(zm+r+1 − 2z1)
∏m−1
i=1 (zm+r+1 − zi − zi+1)

.

For example, we have kΦ2,0 = kI2,2 = 1
2(z3−2z1)(z3−z1−z2) and kΦ2,1 = kIII2,3 =

1
z3−2z1

. With some experimenting with the computer, one can find generating

functions for the remaining nilpotent algebras with µ ≤ 4:

kIII2,4 =
1

(z2 − 2z1)(z3 − z1 − z2)(z4 − 2z1)(z4 − z1 − z2)
,

kIII3,3 =
1

4(z3 − 2z1)(z3 − z1 − z2)(z4 − 2z1)(z4 − z1 − z2)
,
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kI2,3 =
1

(z4 − 2z1)(z3 − 2z2)(z4 − 2z2)(z4 − z1 − z2)(z4 − z2 − z3)
,

kΣ2,1 =
1

(z3 − 2z1)(z3 − z1 − z2)(z4 − 2z1)
.

We do not attempt to prove these formulas since the theory developed in

[Kazb] provides generating functions for these cases.

Now we want to explore the connection of the conjectured residue-form

and the localization form of Thom polynomials. Recall that for a nilpotent

algebra Q, and an ideal I, the virtual Euler class e(Q, I) was defined in Re-

mark 5.4. For a function f in variables z1, . . . , zµ, define the asymetrization

operator

ASymµ(f) =
∑
σ∈Sµ

ε(σ)f(zσ(1), . . . , zσ(µ)),

where ε(σ) is the sign of the permutation σ. For a function f with variables

αi, let f |αi:=zi be the same function with the variables changed to zi.

Conjecture 11.2. Suppose Conjecture 11.1(a) holds. Then

ASymµ(kQ) =
discµ

e(Q, E0(µ)2)|αi:=zi
.

If we assume part (b) of Conjecture 11.1 as well, then Conjecture 11.2

reduces to a remarkable (conjectured) identity for iterated residues (or the

Orlik-Salamon algebra) associated with the hyperplane arrangement ∪A{zia +

zja − zsa = 0} ∪ ∪i,j{zi = αj}.

Remark 11.3. Conjecture 11.2 can be used to guess the function kQ, as

soon as the class e(Q, E0(µ)2) is known. In practice, e(Q, E0(µ)2) can be cal-

culated using Theorem 8.1 or equation (20). Its denominator is a symmetric

function, which is a product of factors αi + αj − αs. Then one has finitely

many choices to guess for the denominator of kQ. (That is, for 2α1 − α2, we

can choose 2z1−z2 or 2z3−z5, etc.) Knowing the degree of kQ, we also find the

degree of the numerator. Putting all this together one arrives an oftentimes

effective procedure to find the kQ function.

12. The Localization Formula for the “small p” case

In Theorem 6.1 we gave a localization formula for the Thom polynomial

TpQ(n, p) where Q is a nilpotent algebra. We can evaluate this formula for

any p, even if Q cannot be defined by p relations. Sometimes it is not zero,

and we would like to interpret these “small p” cases.
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Fix n and p, and assume that dim(Q) = m. Then the correspondence

variety—introduced in Definition 4.1—of Q is

C(YQ) = {(I, g) ∈ Grm×Jk(n, p) | I ∈ YQ, Ig ⊂ I},

where YQ = {I ∈ Grm : QI ∼= Q}. We have the restriction of the second pro-

jection,

(35) φ : C(YQ)→ ηQ(n, p) := φ(C(YQ)).

In other words,

ηQ(n, p) = {g ∈ Jk(n, p) : ∃ I ∈ YQ such that Ig ⊂ I}.

We showed in Proposition 4.2 that if n ≥ a(Q) (minimal number of generators

of Q) and p ≥ b(Q) (minimal number of relations of Q), then φ is birational. In

some cases φ is birational for smaller p as well. In these cases the Localization

Formula still calculates [ηQ(n, p)].

12.1. The singularities IIIa,b and Ia,b. Consider the nilpotent algebra

IIIa,b = E0(2)/(xy, xa, yb). Germs g : (Cn, 0) → (Cp, 0) with this algebra

only exist if p ≥ n+ 1. Yet, consider p = n and the map

φ : C(YIIIa,b)→ ηIIIa,b(n, n)

of (35). Clearly the Ia,b germ g = (xy, xa + yb, x3, . . . , xn) is in ηIIIa,b(n, n).

Therefore, Kg ⊂ ηIIIa,b(n, n). Checking their dimensions we get that, in

fact, Kg = ηIIIa,b(n, n). One can verify that the only ideal in the R-orbit of

(xy, xa, yb, x3, . . . , xn) containing the ideal (xy, xa+yb, x3, . . . , xn) is (xy, xa, yb,

x3, . . . , xn) itself. Therefore, φ is generically one to one. It implies that (see

Section 7.3)

Theorem 12.1. For a, b ≥ 2,

tpIa,b(0) = tpIIIa,b(1)[(a+b−2).

The Thom polynomials occurring in Theorem 12.1 are only known for

small values of a and b.

For a = b = 2, this theorem was known, because it follows from the

following simple fact. If p = n, then the contact singularities with algebra I2,2

form an open subset of the Σ2 germs, while if p > n, then the singularities

with algebra III2,2 form an open subset of the Σ2 germs. Hence the theorem

reduces to the obvious tpΣ2(0) = tpΣ2(1)[(2).

The Thom polynomials tpI2,3(0), tpIII2,3(1) are calculated in [Rim01], but

their relation is not noticed there.
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12.2. Lowering the Thom polynomial of Φn,n−1. Recall formula (26), the

Thom polynomial of Φn,n−1:

tpΦn,n−1
(l) = 2n−1

l+1∑
i=0

2i∆n+l+i,n+l,...,n+l︸ ︷︷ ︸
n−1

,l+1−i.

Germs (Cn, 0)→ (Cn+l, 0) with this algebra only exist with l ≥
(n

2

)
. Yet,

choose m = n+ 1, k = 2, and l = −1, and consider the map

φ : C(YΦn,n−1)→ ηΦn,n−1(n, n− 1) ⊂ J2(n, n− 1)

of (35). One may check that the image of this map is Hom(Sym2 Cn,Cn−1) ⊂
J2(n, n− 1), whose cohomology class is e(Hom(Cn,Cn−1)) = ∆n−1,...,n−1︸ ︷︷ ︸

n

. On

the other hand, applying l + 1 times the lowering operator [(n + 1) to the

polynomial tpΦn,n−1
(l), we get 2n−1∆n−1,...,n−1︸ ︷︷ ︸

n

(using the elementary fact that

∆
[(m)
(i1,...,im) = ∆(i1−1,...,im−1)). Comparing these two cohomology classes implies

that the map φ is a covering with 2n−1 sheets.

Now we show the classical geometry reason for deg φ = 2n−1. The defini-

tion of Φn,n−1 implies that YΦn,n−1 ⊂ P(Sym2 Cn) ⊂ Grn+1(J2(n)) is identified

with the projectivization of the set of rank 1 symmetric matrices. This closed

variety is the image of the Veronese map P(Cn) → P(Sym2 Cn). Denote the

two obvious projections of C(YΦn,n−1) by π1 and π2. For a generic g in the

image of φ, the set π1(π−1
2 (g)) intersects P(Sym2 Cn) ⊂ Grn+1(J2(n)) in an

n−1-codimensional linear subspace. Hence, the number of φ-preimages of g is

the degree of the Veronese variety. This degree is known to be 2n−1 (see, e.g.,

[Har92, p. 231]), agreeing with our result above.

Notice that if we define Φn,n−1(n, n−1) ⊂ E0(n, n−1) as the set of germs

with 2-jets in ηΦn,n−1(n, n − 1), then we have found that tpΦn,n−1
(n, n − 1) =

∆n−1,...,n−1︸ ︷︷ ︸
n

in the sense of our general Thom polynomial Definition 2.19.

12.3. Thom series for Thom-Boardman classes. Let ΣK denote the Thom-

Boardman class corresponding to K = (i1, . . . , is) for i1 ≥ · · · ≥ is ≥ 1 (see,

e.g., [Mat73]). For n ≥ i1 and p ≥ p0 (p0 depending on K), there is a jet

gK(n, p) ∈ Jk(n, p), such that KkgK is open in ΣK , and hence Tp(gK(n, p)) =

TpΣK (n, p). The nilpotent algebra of any of these gK(n, p) jets are isomorphic;

it will be denoted by QK . For n − i1 < p < p0, the Thom-Boardman class

ΣK(n, p) is still not empty, but it may split into families of lower dimensional

contact classes. The question was raised in [FR07] whether the Thom series of

gK calculates [ΣK(n, p)] for n− i1 < p < p0, too. (Notice that these classes are

defined via their s-jet, so their Thom polynomial is defined.) Consider such a
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small p, a sufficiently large k, and the map φ : C(YQK )→ ηQK (n, p) ⊂ Jk(n, p)
from (35). The image ηQK (n, p) can be identified with the ΣK germs in

Jk(n, p). The dimensions of the source and target spaces of φ are the same.

Moreover, φ has a well-known section, g 7→ β(g) := the Boardmanization of g

(see [Mat73, §2]). Since the correspondence variety C(YQK ) is connected, this

implies that φ has degree 1, and we have the following

Theorem 12.2. The Thom series TsgK calculates the Thom polynomial

of ΣK(n, p) for all n, p.

We can call TsgK the Thom series Ts(ΣK) of ΣK . Notice that in this way

we obtain Thom polynomials for p < n as well. This case is not covered by the

Localization Formula. We should mention that at this point, this is only a the-

oretical possibility as Ts(ΣK) is known only in the few cases listed in Section 3.

12.4. Nets of conics. The 1-parameter family of jets

gλ = (x2 − λyz, y2 − λxz, z2 − λxy) for λ(λ3 − 1)(8λ3 + 1) 6= 0

was studied by Mather in [Mat70] and Wall in [Wal77]. This is the smallest

codimensional example of a family of nonequivalent jets for n = p. The contact

class of gλ has codimension 10; their union is open in the Thom-Boardman class

Σ3(3, 3). Thom polynomials of contact classes contained in Σ3(n, n) (for any n)

are linear combinations of ∆µ where the Young diagram of the partition µ

contains a 3×3 square (see [Pra88, §4.2]). Therefore, tp(gλ) = A∆3331+B∆433

for some A,B ∈ N. The restriction equation tp(gλ)|gµ =0 implies that 2A=B.

Theorem 12.3. The Thom polynomial of gλ for generic λ is

(36) tp(gλ) = 4∆3331 + 8∆433.

Sketch of the proof. The ideal Iλ of gλ in Jk(3), where k ≥ 3, has depth 3,

and we have µ(gλ) = 7. Consider the ideal I ′λ = Iλ + (Jk(3))3, whose depth is

2. This ideal can only be generated by at least four polynomials. Hence the

6-dimensional nilpotent algebra Qλ := J3(3)/I ′λ does not corresponds to any

germ with p = n. Yet, consider n = p = 3 and the map

φ : C(YQλ)→ ηQλ(3, 3)

from (35). The only ideal of codimension 7 in I ′λ is Iλ. This implies that

φ is a birational map to the closure of the contact orbit of gλ. We have

YQλ ⊂ X := j(Gr3(Hom(Sym2 C3,C))), where j is the obvious embedding

Gr3(Hom(Sym2 C3,C))→ Gr6 discussed in Section 9.2 on subgrassmannians.

The action of the right group R(3) on the 9-dimensional X is studied in

[Mat70]. It is shown there that the action is equivalent to the action of the

8-dimensional Lie group PGL(3), and the orbit closure Oλ of I
′
λ is 8-dimen-

sional, i.e., a hypersurface. Ideas of [Wal77] can be used to show that the

degree of Oλ for generic λ is 4 (and there is one orbit closure with degree 2).
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Either the Localization Formula or the idea of projective Thom polynomials

([FNR05, §6]) can be used to obtain that this degree is equal to the coefficient

of ∆3331 in the the Thom polynomial of gλ. �

A detailed exposition of the case of nets of conics will be published later

in [DFR11].

13. Final remarks

The results and examples of this paper may give the wrong impression

that now the Thom polynomials of all singularities are calculated. Although we

indeed reached beyond the previously known Thom polynomials (and series),

let us demonstrate the boundaries of our knowledge by some open problems.

We do not know how to calculate the Thom series of An for n > 6. For n >

9, we do not even know the first Thom polynomial tpAn(0). We do not know

the Thom series of the Thom-Boardman class Σ211. Are there closed formulas

for classes of singularities, for example {An : n ≥ 0} or {Ia,b : a, b ≥ 2}? We

repeat a conjecture of the second author [Rim01] in a slightly strengthened

form.

Conjecture. Every coefficient of the Thom polynomials tpAn(l) (writ-

ten as a linear combination of Chern monomials) is nonnegative, and all co-

efficients of width at most n are strictly positive. (By d-stability, the other

coefficients are 0.)

In [BS12, §8.7] this conjecture is verified for n = 3 and 4.
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210, Birkhäuser, Boston, MA, 2003, pp. 325–344. MR 1985731. Zbl 1078.

16010.
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