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An inverse theorem for
the Gowers U s+1[N ]-norm

By Ben Green, Terence Tao, and Tamar Ziegler

Abstract

We prove the inverse conjecture for the Gowers Us+1[N ]-norm for all

s > 1; this is new for s > 4. More precisely, we establish that if f :

[N ] → [−1, 1] is a function with ‖f‖Us+1[N ] > δ, then there is a bounded-

complexity s-step nilsequence F (g(n)Γ) that correlates with f , where the

bounds on the complexity and correlation depend only on s and δ. From

previous results, this conjecture implies the Hardy-Littlewood prime tuples

conjecture for any linear system of finite complexity.
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1. Introduction

The purpose of this paper is to establish the general case of a conjecture

named the Inverse Conjecture for the Gowers norms by the first two authors

in [19, Conj. 8.3]. If N is a (typically large) positive integer, then we write

[N ] := {1, . . . , N}. For each integer s > 1, the inverse conjecture GI(s), whose

statement we recall shortly, describes the structure of 1-bounded functions f :

[N ]→ C whose (s+ 1)st Gowers norm ‖f‖Us+1[N ] is large. These conjectures,

together with a good deal of motivation and background to them, are discussed

in [15], [16], [19]. The conjectures GI(1) and GI(2) have been known for some

time, the former being a straightforward application of Fourier analysis, and

the latter being the main result of [16] (see also [42] for the characteristic 2

analogue). The case GI(3) was also recently established by the authors in [23].

The aim of the present paper is to establish the remaining cases GI(s) for

s > 3, in particular reestablishing the results in [23].

We begin by recalling the definition of the Gowers norms. If G is a finite

abelian group, d > 1 is an integer, and f : G→ C is a function, then we define

(1.1) ‖f‖Ud(G) := (Ex,h1,...,hd∈G∆h1 · · ·∆hdf(x))1/2d ,

where ∆hf is the multiplicative derivative

∆hf(x) := f(x+ h)f(x)

and Ex∈Xf(x) := 1
|X|
∑
x∈X f(x) denotes the average of a function f : X → C

on a finite set X. Thus, for instance, we have

‖f‖U2(G) :=
Ä
Ex,h1,h2∈Gf(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

ä1/4
.

One can show that Ud(G) is indeed a norm on the functions f : G → C for

any d > 2, though we will not need this fact here.

In this paper we will be concerned with functions on [N ], which is not

quite a group. To define the Gowers norms of a function f : [N ] → C, set

G := Z/ÑZ for some integer Ñ > 2dN , define a function f̃ : G → C by

f̃(x) = f(x) for x = 1, . . . , N and f̃(x) = 0 otherwise, and set

‖f‖Ud[N ] := ‖f̃‖Ud(G)/‖1[N ]‖Ud(G),

where 1[N ] is the indicator function of [N ]. It is easy to see that this definition

is independent of the choice of Ñ . One could take Ñ := 2dN for definiteness

if desired.

The Inverse conjecture for the Gowers U s+1[N ]-norm, abbreviated as

GI(s), posits an answer to the following question.

Question 1.1. Suppose that f : [N ] → C is a function bounded in mag-

nitude by 1, and let δ > 0 be a positive real number. What can be said if

‖f‖Us+1[N ] > δ?
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Note that in the extreme case δ = 1 one can easily show that f is a

phase polynomial; namely, f(n) = e(P (n)) for some polynomial P of degree

at most s. Furthermore, if f correlates with a phase polynomial, that is to

say if |En∈[N ]f(n)e(P (n))| > δ, then it is easy to show that ‖f‖Us+1[N ] > c(δ).
It is natural to ask whether the converse is also true — does a large Gowers

norm imply correlation with a polynomial phase function? Surprisingly, the

answer is no, as was observed by Gowers [13] and, in the related context of

multiple recurrence, somewhat earlier by Furstenberg and Weiss [10], [11]. The

work of Furstenberg-Weiss and Conze-Lesigne [7] draws attention to the role

of homogeneous spaces G/Γ of nilpotent Lie groups, and subsequent work of

Host and Kra [29] provides a link, in an ergodic-theoretic context, between

these spaces and certain seminorms with a formal similarity to the Gowers

norms under discussion here. Later work of Bergelson, Host, and Kra [3]

highlights the role of a class of functions arising from these spaces G/Γ called

nilsequences. The inverse conjecture for the Gowers norms, first formulated

precisely in [19, §8], postulates that this class of functions (which contains

the polynomial phases) represents the full set of obstructions to having large

Gowers norm.

We now recall that precise formulation. Recall that an s-step nilmanifold

is a manifold of the form G/Γ, where G is a connected, simply-connected

nilpotent Lie group of step at most s (i.e., all s+ 1-fold commutators of G are

trivial), and Γ is a discrete, cocompact1 subgroup of G.

Conjecture 1.2 (GI(s)). Let s > 0 be an integer, and let 0 < δ

6 1. Then there exists a finite collection Ms,δ of s-step nilmanifolds G/Γ,

each equipped with some smooth Riemannian metric dG/Γ as well as con-

stants C(s, δ), c(s, δ) > 0 with the following property. Whenever N > 1 and

f : [N ]→ C is a function bounded in magnitude by 1 such that ‖f‖Us+1[N ] > δ,
there exists a nilmanifold G/Γ ∈ Ms,δ , some g ∈ G and x ∈ G/Γ, and a

function F : G/Γ→ C bounded in magnitude by 1 and with Lipschitz constant

at most C(s, δ) with respect to the metric dG/Γ such that

|En∈[N ]f(n)F (gnx)| > c(s, δ).

We remark that there are many equivalent ways to reformulate this con-

jecture. For instance, instead of working with a finite family Ms,δ of nilman-

ifolds, one could work with a single nilmanifold G/Γ = Gs,δ/Γs,δ, by taking

the Cartesian product of all the nilmanifolds in the family. Other reformula-

tions include an equivalent formulation using polynomial nilsequences rather

1A subgroup Γ of a topological group G is cocompact if the quotient space G/Γ is compact.
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than linear ones (see Conjecture 4.5) and an ultralimit formulation (see Con-

jecture 5.3). One can also formulate the conjecture using bracket polynomials,

or local polynomials; see [16] for a discussion of these equivalences in the s = 2

case.

Let us briefly review the known partial results on this conjecture.

(i) GI(0) is trivial.

(ii) GI(1) follows from a short Fourier-analytic computation.

(iii) GI(2) was established about five years ago in [16], building on work of

Gowers [13].

(iv) GI(3) was established, quite recently, in [23].

(v) In the extreme case δ = 1 one can easily show that f(n) = e(P (n)) for

some polynomial P of degree at most s, and every such function is an

s-step nilsequence by a direct construction. See, for example, [16] for the

case s = 2.

(vi) In the almost extremal case δ > 1− εs, for some εs > 0, one may see that

f correlates with a phase e(P (n)) by adapting arguments first used in the

theoretical computer-science literature [1].

(vii) The analogue of GI(s) in ergodic theory (which, roughly speaking, corre-

sponds to the asymptotic limit N → ∞ of the theory here; see [30] for

further discussion) was formulated and established in [29], work done in-

dependently of the work of Gowers (see also the earlier paper [28]). This

work was the first place in the literature to link objects of Gowers-norm

type (associated to functions on a measure-preserving system (X,T, µ))

with flows on nilmanifolds, and the subsequent paper [3] was the first work

to underline the importance of nilsequences. The formulation of GI(s) by

the first two authors in [19] was very strongly influenced by these works.

For the closely related problem of analysing multiple ergodic averages, the

relevance of flows on nilmanifolds was earlier pointed out in [10], [11], [38],

building upon earlier work in [7]. See also [27], [49] for related work on

multiple averages and nilmanifolds in ergodic theory.

(viii) The analogue of GI(s) in finite fields of large characteristic was established

by ergodic-theoretic methods in [5], [48].

(ix) A weaker “local” version of the inverse theorem (in which correlation takes

place on a subprogression of [N ] of size ∼ N cs) was established by Gowers

[14]. This paper provided a good deal of inspiration for our work here.

(x) The converse statement to GI(s), namely that correlation with a function

of the form n 7→ F (gnx) implies that f has large U s+1[N ]-norm, is also

known. This was first established in [16, Prop. 12.6], following arguments

of Host and Kra [29] rather closely. A rather simple proof of this result is

given in [23, App. G].

The main result of this paper is a proof of Conjecture 1.2.
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Theorem 1.3. For any s > 3, the inverse conjecture for the U s+1[N ]-

norm, GI(s), is true.

By combining this result with the previous results in [19], [21] we obtain a

quantitative Hardy-Littlewood prime tuples conjecture for all linear systems of

finite complexity; in particular, we now have the expected asymptotic for the

number of primes p1 < · · · < pk 6 X in arithmetic progression, for every fixed

positive integer k. We refer to [19] for further discussion, as we have nothing

new to add here regarding these applications. Several further applications of

the GI(s) conjectures are given in [8], [18].

2. Strategy of the proof

The proof of Theorem 1.3 is long and complicated, but broadly speaking

it follows the strategy laid out in previous works [13], [14], [16], [23, 42]. We

induct on s, assuming that GI(s−1) has already been established and using this

to prove GI(s). To explain the argument, let us first summarise the main steps

taken in [23] in order to deduce GI(3), the inverse theorem for the U4-norm,

from GI(2), the inverse theorem for the U3 norm (established in [16]). Once

this is done we will explain some of the extra difficulties involved in handling

the general case. For a more extensive (but informal) discussion of the proof

strategy, see [22]. Once we set up some technical machinery, we will also be

able to give a more detailed description of the strategy in Section 7.

Here, then, is an overview of the argument in [23].

(i) (Apply induction). If ‖f‖U4[N ] � 1 then, for many h, ‖∆hf‖U3[N ] � 1

and so ∆hf correlates with a 2-step nilsequence χh.

(ii) (Nilcharacter decomposition). χh may be decomposed as a sum of a

special type of nilsequence called a nilcharacter, essentially by a Fourier

decomposition. For the sake of illustration, these 2-step nilcharacters

may be supposed to have the form

χh(n) = e({αhn}βhn),

although these are not quite nilcharacters due to the discontinuous nature

of the fractional part function x 7→ {x}, and in any event a general 2-step

nilcharacter will be modeled by a linear combination of such “bracket

quadratic monomials,” rather than by a single such monomial (see [16]

for further discussion).

(iii) (Rough linearity). The fact that ∆hf correlates with χh forces χh to

behave weakly linearly in h. To get a feel for why this is so, suppose that

|f | ≡ 1; then we have the cocycle identity

∆h+kf(n) = ∆hf(n+ k)∆kf(n).
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To capture something like the same behaviour in the much weaker set-

ting where ∆hf correlates with χh, we use an extraordinary argument of

Gowers [13] relying on the Cauchy-Schwarz inequality. Roughly speaking,

the information obtained is of the form

(2.1) χh1χh2 ∼ χh3χh4 modulo lower order terms

for many h1, h2, h3, h4 with h1 + h2 = h3 + h4.

(iv) (Furstenberg-Weiss). An argument of Furstenberg and Weiss [11] is

adapted in order to study (2.1). The quantitative distribution theory

of nilsequences developed in [20] is a major input here. It is concluded

that we may assume that the frequency βh does not actually depend on

h. Note that this step appeared for the first time in the proof of GI(3);

it did not feature in the proof of GI(2) in [16].

(v) (Linearisation). A similar argument allows one to then assert that

(2.2) αh1 + αh2 ≈ αh3 + αh4 (mod 1)

for many h1, h2, h3, h4 with h1 + h2 = h3 + h4.

(vi) (Additive Combinatorics). By arguments from additive combinatorics

related to the Balog-Szemerédi-Gowers theorem [2], [13] and Freiman’s

theorem, as well as some geometry of numbers, we may then assume that

αh varies “bracket-linearly” in h, thus

(2.3) αh = γ1{η1h}+ · · ·+ γd{ηdh}.

Up to top order, then, the nilcharacter χh(n) can now be assumed to

take the form e(ψ(h, n, n)), where ψ is “bracket-multilinear”; it is a sum

of terms such as {γ{ηh}n}βn.

(vii) (Symmetry argument). The bracket multilinear form ψ obeys an addi-

tional symmetry property. This is a reflection of the identity ∆h∆kf =

∆k∆hf , but transferring this to the much weaker setting in which we

merely have correlation of ∆hf with χh requires another appeal to

Gowers’ Cauchy-Schwarz argument from (iii). In fact, the key point is to

look at the second order terms in (2.1).

(viii) (Integration). Assuming this symmetry, one is able to express

χh(n) ∼ Θ(n+ h)Θ′(n)

for some bracket cubic functions Θ,Θ′, which morally take the form

Θ(n),Θ′(n) ∼ e(ψ(n, n, n)/3)

(for much the same reason that x3/3 is an antiderivative of x2). Thus we

morally have

∆hf(n) ∼ Θ(n+ h)Θ′(n).
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(ix) (Construction of a nilsequence). Any bracket cubic form like e(ψ(n, n, n))

“comes from” a 3-step nilmanifold; this construction is accomplished in

[23] in a rather ad hoc manner.

(x) From here, one can analyse lower order terms by the induction hypothesis

GI(2). This is a relatively easy matter.

Let us now discuss the argument of this paper in the light of each point

of this outline. A more detailed outline is given in Section 7. Assume that

GI(s− 1) has been established.

(i) (Apply induction). If ‖f‖Us+1[N ]� 1 then, for many h, ‖∆hf‖Us[N ]�1

and so ∆hf correlates with an (s−1)-step nilsequence χh. This is straight-

forward (see Section 7).

(ii) (Nilcharacter decomposition). χh may be decomposed into nilcharacters;

this is fairly straightforward as well. It is somewhat reassuring to think of

χh(n) as having the form e(ψh(n)), where ψh(n) is a bracket polynomial

“of degree s − 1,” but we will not be working explicitly with bracket

polynomials much in this paper, except as motivation and as a source of

examples. One of the main challenges one is faced with during an attempt

to prove GI(4) by a direct generalisation of our arguments from [23] is the

fact that already bracket cubic polynomials are rather complicated to deal

with and can take different forms such as {αn}{βn}γn and {{αn}βn}γn.

Instead of objects such as e(αn{βn}), then, we will work with the

rather more abstract notion of a symbol. This notion, which is fairly cen-

tral to our paper, is defined and discussed in Section 6. One additional

technical point is worth mentioning here. This is the fact that e(αn{βn})
(say) cannot be realised as a nilsequence F (gnΓ) with F continuous, and

therefore the distributional results of [20] do not directly apply. In [23]

these discontinuities could be understood quite explicitly, but here we

take a different approach: we decompose G/Γ into D pieces using a

smooth partition of unity for some D = O(1), and then work instead

with the (smooth) CD-valued nilsequence consisting of these pieces.

We discuss this device more fully in Section 6, but we emphasise that

this is a technical device and the reader is advised not to give this par-

ticular aspect of the proof too much attention.

(iii) (Rough linearity). χh varies roughly linearly in h; this is another fairly

straightforward modification of the arguments of Gowers, already em-

ployed in [23], which is performed in Section 8.

(iv) (Furstenberg-Weiss). This proceeds along similar lines to the correspond-

ing argument in [23] but is, in a sense, rather easier once one has developed

the device of CD-valued nilsequences, which allow one to remain in the

smooth category; this is accomplished in Section 11, after a substantial

amount of preparatory material in Sections 9, 10, and Appendix D.
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(v) (Linearisation). This is also quite similar to the corresponding argument

in [23], and is performed in Section 11. In both of parts (iv) and (v), the

“bracket calculus” from [23] is replaced by the more conceptual “symbol

calculus” developed in Appendix E.

(vi) (Additive Combinatorics). The additive combinatorial input is much the

same as in [23]. For the convenience of the reader we sketch it in Appen-

dix F.

(vii) (Construction of a nilsequence). Our argument differs quite substantially

from that in [23] at this point. The s-step nilobject, which is now a two-

variable object χ(h, n), is constructed before the symmetry argument and

in a more conceptual manner. This may be compared with the rather

ad hoc approach taken in [16], [23], where various bracket polynomials

were merely exhibited as arising from nilsequences. We perform this

construction in Section 12.

(viii) (Symmetry argument). We replace χ(h, n) with an equivalent nilcharac-

ter χ̃(h, n, . . . , n) where χ̃ is a nilcharacter in s variables, that is symmet-

ric in the last s−1 variables. The symmetry argument given in Section 13

shows that χ̃(h, n, . . . , n) is equivalent to χ̃(n, h, . . . , n). Again the key

idea in the analysis is to look at the second order terms in (2.1).

(ix) (Integration). With the symmetry in hand, we can use the calculus of

multilinear nilcharacters to essentially express χ̃(h, n, . . . , n) as the de-

rivative of an expression which is roughly of the form χ̃(n, . . . , n)/s; see

Section 13 for details.

(x) The final step of the argument is relatively straightforward, as before; see

Section 7.

In our previous paper [23] it was already rather painful to keep proper

track of such notions as “many” and “correlates with.” Here matters are even

worse, and so to organise the above tasks it turns out to be quite convenient

to first take an ultralimit of all objects being studied, effectively placing one

in the setting of nonstandard analysis. This allows one to easily import results

from infinitary mathematics, notably the theory of Lie groups and basic linear

algebra, into the finitary setting of functions on [N ]. In Section 5 and Ap-

pendix A we review the basic machinery of ultralimits that we will need here;

we will not be exploiting any particularly advanced aspects of this framework.

The reader does not really need to understand the ultrafilter language in or-

der to comprehend the basic structure of the paper, provided that he/she is

happy to deal with concepts like “dense” and “correlates with” in a somewhat

informal way, resembling the way in which analysts actually talk about ideas

with one another (and, in fact, analogous to the way we wrote this paper). It

is possible to go through the paper and properly quantify all of these notions

using appropriate parameters δ and (many) growth functions F . This would
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have the advantage of making the paper on some level comprehensible to the

reader with an absolute distrust of ultrafilters, and it would also remove the

dependence on the axiom of choice and in principle provide explicit but very

poor bounds. However it would cause the argument to be significantly longer,

and the notation would be much bulkier.

Our exposition will be as follows. We will begin by spending some time

introducing the ultrafilter language and then, motivated by examples, the no-

tions of nilsequence, nilcharacter, and symbol. Once that is done we will, in

Section 7, give the high-level argument for Theorem 1.3; this consist of detail-

ing points (i), (ii), and (x) of the outline above and giving proper statements

of the other main points.

The discussion above concerning points (iii), (iv), (v), and (vi) has been

simplified for the sake of exposition. In actual fact, these points are dealt

with together by a kind of iterative loop, in which more and more bracket-

linear structure is placed on the nilcharacters χh(n) by cycling from (iii) to

(vi) repeatedly.

We remark that a quite different approach using ultrafilters to the struc-

tural theory of the Gowers norms is in the process of being carried out in [43],

[44], [45]; this seems related to the work of Host and Kra, whereas our work

ultimately derives from the work of Gowers.

We also make the minor remark that our proof of GI(s) is restricted to the

case s > 3 case for minor technical reasons. In particular, we take advantage

of the nontrivial nature of the degree s− 2 “lower order terms” in the Gowers

Cauchy-Schwarz argument (Proposition 7.3) in the symmetry argument step;

and we will also observe that the various “smooth” and “periodic” error terms

arising from the equidistribution theory in Appendix D are of degree 1 and thus

negligible compared with the main terms in the analysis, which are of degree

s− 1. The arguments can be modified to give a proof of GI(2), although this

proof would basically be a notationally intensive repackaging of the arguments

in [16].
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3. Basic notation

We write N := {0, 1, 2, . . .} for the natural numbers, and N+ := {1, 2, . . .}
for the positive natural numbers. Given two integers N,M , we write [N,M ]

for the discrete interval [N,M ] := {n : N 6 n 6 M}. We also make the

abbreviations [N ] := [1, N ] and [[N ]] := [−N,N ]. If x is a real number, we

write x mod 1 for the associated residue class in the unit circle T := R/Z, and

write x = y mod 1 if x and y differ by an integer.

We will rely frequently on the following two elementary functions: the

fundamental character e : R→ C (or e : T→ C) defined by

e(x) := e2πix,

and the signed fractional part function2 {} : R → I0, where I0 is the funda-

mental domain

I0 := {x ∈ R : −1/2 < x 6 1/2}
and {x} is the unique real number in I0 such that x = {x} mod 1. We will

often rely on the identity

e(x) = e({x}) = e(x mod 1)

without further comment.

For technical reasons, we will need to manipulate vector-valued complex

quantities in a manner analogous to scalar complex quantities. If v = (vi)
D
i=1

and w = (wi)
D′
i=1 are vectors in CD and CD′ respectively, then we form the

tensor product v ⊗ w ∈ CDD′ by the formula

v ⊗ w := (v1w1, . . . , vDwD′)

and the complex conjugate v ∈ CD by the formula

v := (v1, . . . , vD).

Similarly, ifX is some set and f : X → CD and g : X → CD′ are functions, then

we write f⊗g : X → CDD′ for the function defined by (f⊗g)(x) := f(x)⊗g(x),

and similarly define f : X → CD.

If G = (G,+) is an additive group, k ∈ N, ~g = (g1, . . . , gk) ∈ Gk, and

~a = (a1, . . . , ak) ∈ Zk, we define the dot product

~a · ~g := a1g1 + · · ·+ akgk.

Given a set H in an additive group, define an additive quadruple in H to

be a quadruple (h1, h2, h3, h4) ∈ H with h1 + h2 = h3 + h4. The number of

additive quadruples in H is known as the additive energy of H and is denoted

E(H).

2The signed fractional part will be slightly more convenient to work with than the unsigned

fractional part, as it is equal to the identity near the origin.
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A map φ : H → G from H to another additive group G is said to be

a Freiman homomorphism if it preserves additive quadruples, i.e., if φ(h1) +

φ(h2) = φ(h3) + φ(h4) for all additive quadruples (h1, h2, h3, h4) in H.

Given a multi-index ~d = (d1, . . . , dk) ∈ Nk, we write |~d| := d1 + · · ·+ dk.

We now briefly review and clarify some standard notation from group

theory.

When we do not assume a group G to be abelian; we will always write G

multiplicatively: G = (G, ·). However, when dealing with abelian groups, we

reserve the right to use additive notation instead.

We view an n-tuple (a1, . . . , an) of labels as a finite ordered set with the

ordering a1 < · · · < an. If A = (a1, . . . , an) is a finite ordered set and (ga)a∈A
are a collection of group elements in a multiplicative group G, we define the

ordered products

∏
a∈A

ga := ga1 · · · gan ,
n∏
i=1

gi := g1 · · · gn, and
1∏
i=n

gi := gn · · · g1

for any n > 0, with the convention that the empty product is the identity. We

extend this notation to infinite products under the assumption that all but

finitely many of the factors are equal to the identity.

Given a subset A of a group G, we let 〈A〉 denote the subgroup of G

generated by A. Given a family (Hi)i∈I of subgroups of G, we write
∨
i∈I Hi

for the smallest subgroup of G that contains all of the Hi.

Given two elements g, h of a multiplicative group G, we define the com-

mutator

[g, h] := g−1h−1gh.

We write H 6 G to denote the statement that H is a subgroup of G. If

H,K 6 G, we let [H,K] be the subgroup generated by the commutators [h, k]

with h ∈ H and k ∈ K, thus [H,K] = 〈{[h, k] : h ∈ H, k ∈ K}〉.
If r > 1 is an integer and g1, . . . , gr ∈ G, we define an (r − 1)-fold iter-

ated commutator of g1, . . . , gr inductively by declaring g1 to be the only 0-fold

iterated commutator of g1, and for r > 1 defining an (r− 1)-fold iterated com-

mutator to be any expression of the form [w,w′], where w and w′ are (s−1)-fold

and (s′−1)-fold commutators of gi1 , . . . , gis and gi′1 , . . . , gi′s′
respectively, where

s, s′ > 1 are such that s+ s′ = r, and {i1, . . . , is} ∪ {i′1, . . . , i′s′} = {1, . . . , r} is

a partition of {1, . . . , r} into two classes. Thus, for instance, [[g3, g1], [g2, g4]]

and [g2, [g1, [g3, g4]]] are 3-fold iterated commutators of g1, . . . , g4.

The following lemma will be useful for computing commutator groups.

Lemma 3.1. Let H = 〈A〉,K = 〈B〉 be normal subgroups of a nilpotent

group G that are generated by sets A ⊂ H , B ⊂ K respectively. Then [H,K]

is normal, and is also the subgroup generated by the i + j − 1-fold iterated
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commutators of a1, . . . , ai, b1, . . . , bj with a1, . . . , ai ∈ A, b1, . . . , bj ∈ B and

i, j > 1.

Proof. The normality of [H,K] follows from the identity

g[H,K]g−1 = [gHg−1, gKg−1].

It is then clear that [H,K] contains the group generated by the iterated com-

mutators of elements in A,B that involve at least one element from each. The

converse follows inductively using the identities

(3.1)

[x, y] = [y, x]−1, [xy, z] = [x, z][[x, z], y][y, z] and [x, y−1] = [y, x][[y, x], y−1].

This concludes the proof. �

As a corollary of the above lemma, we have the distributive law∨
i∈I

Hi,
∨
j∈J

Kj

 =
∨

i∈I,j∈J
[Hi,Kj ]

whenever (Hi)i∈I , (Kj)j∈J are families of normal subgroups of a nilpotent

group G.

If H C G is a normal subgroup of G, and g ∈ G, we use g mod H to

denote the coset representative gH of g in G/H. For instance, g = g′ mod H

if gH = g′H.

At various stages in the paper we will need the (discrete) Baker-Campbell-

Hausdorff formula in the following weak form:

(3.2) gn1
1 gn2

2 = gn2
2 gn1

1

∏
a

gPa(n1,n2)
a

for all g1, g2 in a nilpotent group G and all integers n1, n2, where ga ranges

over all iterated commutators of g1, g2 that involve at least one copy of each

(note from nilpotency that there are only finitely many nontrivial ga), with

the a ordered in some arbitrary fashion, and Pa : Z× Z→ Z are polynomials.

Furthermore, if ga involves d1 copies of g1 and d2 copies of g2, then Pa has

degree at most d1 in the n1 variable and d2 in the n2 variable.

Let G be a connected, simply connected, nilpotent Lie group (or nilpotent

Lie group for short). Then we denote the Lie algebra of G as logG. As is well

known (see, e.g., [6]), the exponential map exp : logG → G is a homeomor-

phism, inverted by the logarithm map log : G→ logG, and we can then define

the exponentiation operation gt for any g ∈ G and t ∈ R by the formula

gt := exp(t log g).
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There is a continuous version of the Baker-Campbell-Hausdorff formula:

(3.3) gt11 g
t2
2 = gt22 g

t1
1

∏
a

gPa(t1,t2)
a

for all t1, t2 ∈ R and g1, g2 ∈ G, where Pa are the polynomials occurring in

(3.2). We also observe the variant formulae

(g1g2)t = gt1g
t
2

∏
a

gQa(t)
a

for some polynomials Qa and all t ∈ R, g1, g2 ∈ G, and

exp(t1 log g1 + t2 log g2) = gt11 g
t2
2

∏
a

gRa(t1,t2)
a

for some further polynomials Ra and all t1, t2 ∈ R, g1, g2 ∈ G. We refer to all

of these formulae collectively as the Baker-Campbell-Hausdorff formula.

If A is a subset of a nilpotent Lie group G, we let 〈A〉R be the smallest

connected Lie subgroup of G containing A, or more explicitly

〈A〉R := 〈{at : a ∈ A; t ∈ R}〉.

Equivalently, log〈A〉R is the Lie algebra generated by logA.

A lattice of a nilpotent Lie group G is a discrete cocompact subgroup Γ

of G. Thus, for instance, we see from (3.2) that for any finite set A in G,

〈A〉 will be a cocompact subgroup of 〈A〉R and will thus be a lattice if 〈A〉 is

discrete.

A connected Lie subgroup H of G is said to be rational with respect to Γ

if Γ ∩H is cocompact in H. For instance, if G = R2, Γ is the standard lattice

Z2, and α ∈ R, then the connected Lie subgroup H := {(x, αx) : x ∈ R} is

rational if and only if α is rational.

Further notation. Here is a list of further notation used in the paper for

reference, together with the place in the paper where each piece is defined and

discussed.

poly(HN→GN) polynomial maps from one filtered group HN to GN 6.18

poly(ZN→GN) polynomial maps with the degree filtration 6.18

poly(Zk
Nk→GNk) polynomial maps with the multidegree filtration 6.18

poly(ZDR→GDR) polynomial maps with the degree-rank filtration 6.18

L∞(Ω→CD
) bounded limit functions to ∗Cd (A.1)

L∞(Ω→Cw
) bounded limit functions (also L∞(Ω)) (A.1)

Lip(∗(G/Γ)→CD
) bd’d limit functions with bounded Lipschitz constant 5.1

Nild([N ]) nilsequences of degree ≤ d on [N ] 5.2

Nil⊂J(Ω) nilsequences of degree ⊂ J 6.19

Ξd([N ]) space of degree d nilcharacters on [N ] 6.1

Ξ
(d1,...,dk)
Multi (Ω) multidegree nilcharacters 6.19
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Ξ
(d,r)
DR (Ω) degree-rank nilcharacters 6.19

Symbd([N ]) equiv. classes of degree d nicharacters in Ξd([N ]) 6.6

Symb
(d1,...,dk)
Multi (Ω) equiv. classes of multidegree nicharacters 6.22

Symb
(d,r)
DR (Ω) equiv. classes of degree-rank nicharacters 6.22

G
~D, G

~D,6(s−1,r∗) universal nilpotent Lie group of degree-rank (s− 1, r∗) 9.1

Horizi(G) i’th horizontal space of G 9.6

Taylori(g) i′th horizontal Taylor coefficient of a polynomial map 9.6

( ~D, η,F) total frequency representation of a nilcharacter 9.11

4. The polynomial formulation of GI(s)

The inverse conjecture GI(s), Conjecture 1.2, has been formulated using

linear nilsequences F (gnxΓ). This is largely for compatibility with the ear-

lier paper [19] of the first two authors on linear equations in primes, where

this form of the conjecture was stated in precisely this form as Conjecture

8.3. Subsequently, however, it was discovered that it is more natural to deal

with a somewhat more general class of object called a polynomial nilsequence

F (g(n)Γ). This is particularly so when it comes to discussing the distribu-

tional properties of nilsequences, as was done in [20]. Thus, we shall now

recast the inverse conjecture in terms of polynomial nilsequences, which is the

formulation we will work with throughout the rest of the paper.

Let us first recall the definition of a polynomial nilsequence of degree d.

Definition 4.1 (Polynomial nilsequence). Let G be a (connected, simply-

connected) nilpotent Lie group. By a filtration GN = (Gi)i∈N of degree 6 d

we mean a nested sequence G ⊇ G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gd+1 = {id} with

the property that [Gi, Gj ] ⊆ Gi+j for all i, j > 0, adopting the convention that

Gi = {id} for all i > d. By a polynomial sequence adapted to GN we mean a

map g : Z → G such that ∂hi · · · ∂h1g ∈ Gi for all i > 0 and h1, . . . , hi ∈ Z,

where ∂hg(n) := g(n + h)g(n)−1. Write poly(ZN → GN) for the collection of

all such polynomial sequences.

Let Γ 6 G be a lattice in G (i.e., a discrete and cocompact subgroup),

so that the quotient G/Γ is a nilmanifold, and assume that each of the Gi
are rational subgroups (i.e., Γi := Γ ∩ Gi is a cocompact subgroup of Gi).

We refer to the pair G/Γ = (G/Γ, GN) as a filtered nilmanifold. A polynomial

orbit O : Z → G/Γ is a sequence of the form O(n) := g(n)Γ, where g ∈
poly(ZN → GN); we let poly(ZN → (G/Γ)N) denote the space of all such

polynomial orbits. If F : G/Γ → C is a 1-bounded, Lipschitz function, then

the sequence F ◦ O = (F (g(n)Γ))n∈Z is called a polynomial nilsequence of

degree d.

The subscripts N will become more relevant later in this paper, when we

start filtering nilpotent groups and nilmanifolds by index sets I other than
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the natural numbers N. Note that we do not require G0 or G1 to equal G;

this freedom will be convenient for some minor technical reasons, although

ultimately it will not enlarge the space of polynomial nilsequences.

Let us give the basic examples of nilsequences and polynomials.

Example 4.2 (Linear nilsequences are polynomial nilsequences). Let G be

a d-step nilpotent Lie group, and let Γ be a lattice of G. Then, as is well known

(see, e.g., [6]), the lower central series filtration defined by G0 = G1 := G,

G2 := [G,G1], G3 := [G,G2], . . . , Gd+1 := [G,Gd] = {id} is a filtration on G.

Using the Baker-Campbell-Hausdorff formula (3.3) it is not difficult to show

that the lower central series filtration is rational with respect to Γ, so the

nilmanifold G/Γ becomes a filtered nilmanifold. If g(n) := gn1 g0 for some

g0, g1 ∈ G, then ∂h1g(n) = gh11 and ∂hi · · · ∂h1g(n) = id for i > 2; therefore g

is a polynomial sequence, and so every linear orbit n 7→ gnx with g ∈ G and

x ∈ G/Γ is a polynomial orbit also. As a consequence we see that every d-step

linear nilsequence n 7→ F (gnx) is automatically a polynomial nilsequence of

degree 6 d.

Example 4.3 (Polynomial phases are polynomial nilsequences). Let d > 0

be an integer. Then we can give the unit circle T the structure of a degree

6 d filtered nilmanifold by setting G := R and Γ := Z, with Gi := R for i 6 d
and Gi := {0} for i > d. This is clearly a filtered nilmanifold. If α0, . . . , αd
are real numbers, then the polynomial P (n) := α0 + · · ·+ αdn

d is polynomial

with respect to this filtration, with n 7→ P (n) mod 1 being a polynomial orbit

in T. Thus, for any Lipschitz function F : T→ C, the sequence n 7→ F (P (n))

is a polynomial nilsequence of degree 6 d; in particular, the polynomial phase

n 7→ e(P (n)) is a polynomial nilsequence.

Example 4.4 (Combinations of monomials are polynomials). By Corol-

lary B.4, we see that if G = (G, (Gi)i∈N) is a filtered group of degree 6 d, then

any sequence of the form

n 7→
k∏
j=1

g
Pj(n)
j ,

in which gj ∈ Gdj for some dj ∈ N, and Pj : Z → R is a polynomial of degree

6 dj , will be a polynomial map. Thus, for instance,

n 7→ g
(nd)
d · · · g(n2)

2 gn1 g0

is a polynomial map whenever gj ∈ Gj for j = 0, . . . , d. In fact, all poly-

nomial maps can be expressed in such a fashion via a Taylor expansion; see

Lemma B.9.

We will give several further examples and properties of polynomial maps

and polynomial nilsequences in Section 6.
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As a consequence of Example 4.2, the following variant of the inverse

conjecture GI(s) is ostensibly weaker than that stated in the introduction.

Conjecture 4.5 (GI(s), polynomial formulation). Let s > 0 be an inte-

ger, and let 0 < δ 6 1. Then there exists a finite collection Ms,δ of filtered

nilmanifolds G/Γ = (G/Γ, GN), each equipped with some smooth Riemannian

metric dG/Γ as well as constants C(s, δ), c(s, δ) > 0 with the following property.

Whenever N > 1 and f : [N ] → C is a function bounded in magnitude by 1

such that ‖f‖Us+1[N ] > δ, there exists a filtered nilmanifold G/Γ ∈Ms,δ , some

g ∈ poly(ZN → GN), and a function F : G/Γ → C bounded in magnitude by

1 and with Lipschitz constant at most C(s, δ) with respect to the metric dG/Γ
such that

|En∈[N ]f(n)F (g(n)Γ)| > c(s, δ).

It turns out that this conjecture is actually equivalent to Conjecture 1.2;

we shall prove this equivalence in Appendix C. We remark that, though it

might seem odd to put a nontrivial part of the proof of our main theorem

in an appendix, we would rather encourage the reader to regard the proof of

Conjecture 4.5 as our main theorem. The rationale behind this is that every-

thing that is done with linear nilsequences F (gnxΓ) in [19] could have been

done equally well, and perhaps more naturally, with polynomial nilsequences

F (g(n)Γ). Further remarks along these lines were made in the introduction to

our earlier paper [23], where the polynomial formulation was emphasised from

the outset. Here, however, we have felt a sense of duty to formally complete

the programme outlined in [19].

Henceforth we shall refer simply to a nilsequence, rather than a polynomial

nilsequence.

In Section 6 we will need to generalise the notion of a (polynomial) nilse-

quence by allowing more exotic filtrations GI on the group G, indexed by more

complicated index sets I than the natural numbers N. In particular, we shall

introduce the multidegree filtration, which allows us to define nilsequences of

several variables, as well as the degree-rank filtration, which provides a finer

classification of polynomial sequences than merely the degree. We will discuss

these using examples and then develop a more unified theory that contains all

three.

5. Taking ultralimits

The inverse conjecture, Conjecture 4.5, is a purely finitary statement,

involving functions on a finite set [N ] = {1, . . . , N} of integers. As such, it is

natural to look for proofs of this conjecture that are also purely finitary, and

much of the previous literature on these types of problems is indeed of this

nature.
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However, there is a very notable exception, namely the portion of the

literature that exploits the Furstenberg correspondence principle between com-

binatorial problems and ergodic theory. See [9] for the original application to

Szemerédi’s theorem, or [48] for a more recent application to Gowers norms

over finite fields. Here we use a somewhat different type of limit object, namely

an ultralimit. We are certainly not the first to employ ultralimits (a.k.a. non-

standard analysis) in additive number theory; see for example [32].

The ultralimit formalism allows us to convert a “finitary” or “standard”

statement such as Conjecture 4.5 into an equivalent statement concerning limit

objects, constructed as ultralimits of standard objects. This procedure is closely

related to the use of the transfer principle in nonstandard analysis, but we

have elected to eschew the language of nonstandard analysis in order to reduce

confusion, instead focusing on the machinery of ultralimits.

Here is a brief and somewhat vague list of the advantages of using the

ultralimit approach.

• Pigeonholing arguments are straightforward (due to the fact that a limit

function taking finitely many values is constant).

• Book-keeping of constants: one can talk rigorously about such concepts as

“bounded” functions without a need to quantify the bounds.

• One may make rigorous sense of such statements as “the function f :

[N ] → C and the function g : [N ] → C are equivalent modulo degree s

nilsequences.”

• In the infinitary context one may easily perform rank reduction arguments

in which one seeks to find the “minimal bounded-complexity” representa-

tion of a given system.

There are also some drawbacks to the approach.

• It becomes quite difficult to extract any quantitative bounds from our

results; in particular, we do not give explicit bounds on the constant c(s, δ)

or on the complexity of the nilsequence in Conjecture 1.2 or Conjecture 4.5.

In principle, it is possible to expand the ultralimit proof into a standard

proof, but the bounds are quite poor (of Ackermann type) due to the

repeated use of “rank reduction arguments” and other highly iterative

schemes that arise in the conversion of ultralimit arguments to standard

ones. For further discussion of the relation of ultralimit analysis to finitary

analysis, see [46, §§1.3, 1.5].

• The language of ultrafilters adds one more layer of notational complexity

to an already notationally-intensive paper; however, there are gains to be

made elsewhere, most notably in eliminating many quantitative constants

(e.g., ε, N) and growth functions (e.g., F).
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Limit formulation of GI(s). The basic notation and theory of ultralimits

are reviewed in Appendix A. We now use this formalism to convert the inverse

conjecture, GI(s), into an equivalent statement formulated in the framework

of ultralimits. We first consider a limit version of the concept of a Lipschitz

function on a nilmanifold. For technical reasons we will need to consider vector-

valued functions, taking values in CD or CD rather than C or C.

Definition 5.1 (Lipschitz functions). Let G/Γ be a standard nilmanifold,

and let D ∈ N+ be standard.

• We let Lip(G/Γ → CD) be the space of standard Lipschitz functions F :

G/Γ → CD. (Here we endow the compact manifold G/Γ with a smooth

metric in an arbitrary fashion; the exact choice of metric is not relevant.)

• We let Lip(∗(G/Γ) → CD) be the space of bounded limit functions F :
∗(G/Γ) → CD whose Lipschitz constant is bounded (or equivalently, F

is an ultralimit of uniformly bounded functions Fn : G/Γ → CD with

uniformly bounded Lipschitz constant).

• We let Lip(∗(G/Γ)→ S2D−1) be the functions in Lip(∗(G/Γ)→ CD) that

take values in the (limit) complex sphere

S2D−1 := {z ∈ CD : |z| = 1}.

• We write

Lip(∗(G/Γ)→ Cω) :=
⋃

D∈N+

Lip(∗(G/Γ)→ CD)

and

Lip(∗(G/Γ)→ Sω) :=
⋃

D∈N+

Lip(∗(G/Γ)→ S2D−1).

We will often abbreviate these spaces as Lip(G/Γ) or Lip(∗(G/Γ)) when

the range of the functions involved is not relevant to the discussion.

Remark. As G/Γ is compact, we see from the Arzelà-Ascoli theorem that

Lip(G/Γ→ CD) is locally compact in the L∞(G/Γ→ CD) topology. As a con-

sequence, if we embed Lip(G/Γ→ CD) into Lip(∗(G/Γ)→ CD) in the obvious

manner, then the former is a dense subspace of the latter in the (standard)

uniform topology, in the sense that for every F ∈ Lip(∗(G/Γ)→ CD) and every

standard ε > 0, there exists F ′ ∈ Lip(G/Γ→ CD) such that |F (x)−F ′(x)| 6 ε
for all x ∈ ∗(G/Γ).

Remark. Note that the spaces Lip(∗(G/Γ)→CD) and Lip(∗(G/Γ)→Cω)

are vector spaces over C. The spaces Lip(∗(G/Γ)→Cω) and Lip(∗(G/Γ)→Sω)

are also closed under tensor product (as defined in Section 3). All the spaces

defined in Definition 5.1 are closed under complex conjugation.
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Using the above notion, we can define the limit version of a (polynomial)

nilsequence.

Definition 5.2 (Nilsequence). Let s > 0 be standard. A nilsequence of

degree 6 s is any limit function ψ : ∗Z → ∗C of the form ψ(n) := F (g(n)Γ),

where G/Γ = (G/Γ, GN) is a standard filtered nilmanifold of degree 6 s,

g : ∗Z → ∗G is a limit polynomial sequence (i.e., an ultralimit of polynomial

sequences gn : Z→ G), and F ∈ Lip(∗(G/Γ)→ C).

Given any limit subset Ω of ∗Z, we denote the space of degree d nilse-

quences, restricted to Ω, as Nild(Ω) = Nild(Ω → Cω); this is a subset of

L∞(Ω → Cω). We write Nild(Ω → CD) for the nilsequences that take values

in CD; this is a subspace (over C) of L∞(Ω → CD). We make the technical

remark that Nild(Ω) is a σ-limit set, since one can express this space as the

union, over all standard M and dimensions D, of the nilsequences taking values

in CD arising from a nilmanifold of “complexity” M and a Lipschitz function of

constant at most M , where one defines the complexity of a nilmanifold in some

suitable fashion. In particular, the limit selection lemma in Corollary A.12 can

be applied to this set.

We also define the Gowers uniformity norm ‖f‖Us+1[N ] of an ultralimit

f = limn→p fn of standard functions fn : [Nn]→ C in the usual limit fashion

‖f‖Us+1[N ] := lim
n→p
‖fn‖Us+1[Nn].

If f is vector-valued instead of scalar valued, say f = (f1, . . . , fd), then we

define the uniformity norm by the formula

‖f‖Us+1[N ] :=

(
d∑
i=1

‖fi‖2
s+1

Us+1[N ]

)1/2s+1

.

(The exponent 2s+1 is not important here, but has some very slight aesthetic

advantages over other equivalent formulations of the vector-valued norm.)

The ultralimit formulation of GI(s) can then be given as follows.

Conjecture 5.3 (Ultralimit formulation of GI(s)). Let s > 0 be standard

and N > 1 be a limit natural number. Suppose that f ∈ L∞([N ]→ C) is such

that ‖f‖Us+1[N ] � 1. Then f correlates with a degree 6 s nilsequence on [N ].

See Definition A.7 for the definition of correlation in this context.

We now show why, for any fixed standard s, Conjecture 5.3 is equivalent

to its more traditional counterpart, Conjecture 4.5.

Proof of Conjecture 5.3 assuming Conjecture 4.5. Let f be as in Conjec-

ture 5.3. We may normalise the bounded function f to be bounded by 1 in

magnitude throughout. By hypothesis, there exists a standard δ > 0 such that
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‖f‖Us+1[N ] > δ. Writing N and f as the ultralimits of Nn, fn respectively for

some fn : [Nn]→ C bounded in magnitude by 1, and applying Conjecture 4.5,

we conclude that for n sufficiently close to p, we have the correlation bound

|Enn∈[Nn]fn(nn)Fn(gn(nn)Γn)| > c(s, δ) > 0,

where Gn/Γn, gn, xn, Fn are as in Conjecture 4.5. Writing G/Γ, g, x, F for the

ultralimits of Gn/Γn, gn, xn, Fn respectively, we thus have

|En∈[N ]f(n)F (g(n)∗Γ)| � 1.

By the pigeonhole principle (cf. Appendix A), we see that G/Γ is a standard

degree 6 s nilmanifold, while g : ∗Z→ ∗G and x ∈ G/Γ remain limit objects.

The limit function F lies in Lip(∗(G/Γ) → C) by construction, and the claim

follows. �

Proof of Conjecture 4.5 assuming Conjecture 5.3. Observe (from the the-

ory of Mal’cev bases [40]) that there are only countably many degree 6 s

nilmanifolds G/Γ up to isomorphism, which we may enumerate as Gn/Γn. We

endow each of these nilmanifolds arbitrarily with some smooth Riemannian

metric dGn/Γn
.

Suppose for contradiction that Conjecture 4.5 failed. Carefully negating

all the quantifiers, we may thus find a δ > 0, a sequence Nn of standard

integers, and a function fn : [Nn] → C bounded in magnitude by 1 with

‖fn‖Us+1[N ] > δ, such that

(5.1) |Enn∈[Nn]fn(nn)F (g(nn)Γn′))| 6 1/n

whenever n′ 6 n, g ∈ poly(ZN → (Gn′)N), and F : Gn′/Γn′ → C is bounded

in magnitude by 1 and has a Lipschitz constant of at most n with respect to

dGn/Γn
.

On the other hand, viewing f as a bounded limit function, we can ap-

ply Conjecture 5.3 and conclude that there exists a standard filtered nil-

manifold G/Γ with some smooth Riemannian metric dG/Γ, a limit polyno-

mial g : ∗Z→∗G, and some ultralimit F ∈ Lip(∗(G/Γ) → C) of functions

Fn : G/Γ→ C with uniformly bounded Lipschitz norm, such that

|En∈[N ]f(n)F (g(n)∗Γ)| > ε

for some standard ε > 0.

By construction, G/Γ is isomorphic to Gn0/Γn0 for some n0, so we may

assume without loss of generality that G/Γ = Gn0/Γn0 ; since all smooth Rie-

mannian metrics on a compact manifold are equivalent, we can also assume

that dG/Γ = dGn0/Γn0
. We may also normalise F to be bounded in magnitude

by 1. But this contradicts (5.1) for n sufficiently large, and the claim follows.

Thus, to establish Theorem 1.3, it will suffice to establish Conjecture 5.3

for s > 3. This is the objective of the remainder of the paper.
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Remark. We transformed the finitary linear inverse conjecture, Conjec-

ture 1.2, into a nonstandard polynomial formulation, Conjecture 5.3, via the

finitary polynomial inverse conjecture, Conjecture 4.5. One can also swap

the order of these equivalences, transforming the finitary linear inverse con-

jecture into a nonstandard linear formulation by arguing as above, and then

transforming the latter into a nonstandard polynomial formulation by using

Proposition C.2. Of course, the two arguments are essentially equivalent.

Conjecture 5.3 is trivial when N is bounded, since every function in L∞[N ]

is then a nilsequence of degree at most s. For the remainder of the paper we

shall thus adopt the convention that N denotes a fixed unbounded limit integer.

To conclude this section we reformulate Conjecture 4.5 by introducing the

important notion of bias.

Definition 5.4 (Bias and correlation). Let Ω be a limit finite subset of Z,

and let d ∈ N. We say that f, g ∈ L∞(Ω→ Cω) d-correlate if we have

|En∈Ωf(n)⊗ g(n)⊗ ψ(n)| � 1

for some degree d nilsequence ψ ∈ Nild(Ω→ Cω). We say that f is d-biased if

f d-correlates with the constant function 1, and d-unbiased otherwise.

With this definition, Conjecture 5.3 can be reformulated in the following

manner.

Conjecture 5.5 (Limit formulation of GI(s), II). Let s > 0 be standard.

Suppose that f ∈ L∞([N ] → C) is such that ‖f‖Us+1[N ] � 1. Then f is

s-biased.

From previous literature, we see that Conjecture 5.5 has already been

proven for s 6 2; we need to establish it for all s > 3. We also make the basic

remark that while the conjecture is only phrased for scalar-valued functions

f ∈ L∞([N ] → C), it automatically generalises to vector-valued functions

f ∈ L∞([N ] → Cω), since if a vector-valued function f has large U s+1[N ]

norm, then so does one of its components.

Finally we remark that the converse implication is known.

Proposition 5.6 (Converse GI(s), ultralimit formulation). Let s > 0 be

standard. Suppose that f ∈ L∞([N ]→ C) is 6 s-biased. Then ‖f‖Us+1[N ] � 1.

Proof. This follows from [16, Prop. 12.6], [19, §11], or [23, Prop. 1.4],

transferred to the ultralimit setting in the usual fashion. �

6. Nilcharacters and symbols in one and several variables

Conjecture 5.3 asserts that a function in L∞([N ]→ C) on an unbounded

interval [N ] correlates with a degree 6 s nilsequence. For inductive reasons, it
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is useful to observe that this conclusion implies a strengthened version of itself,

in which f correlates with a special type of degree 6 s nilsequence, namely

a degree s nilcharacter. A nilcharacter is a special type of nilsequence and

should be thought of, very roughly speaking, as a generalisation of characters

e(αn) in the degree 1 setting, or objects such as e(αn{βn}) in the degree 2

setting; these were crucial in our paper on GI(3) [23], although the notation

there was slightly different in some minor ways. See [22] for further informal

discussion of nilcharacters.

In the s = 1 case, a nilcharacter is essentially (ignoring constants) the

same thing as a linear phase function n 7→ e(ξn), and the frequency ξ can

be viewed as living in the Pontryagin dual of ∗Z (or, in some sense, of [N ],

even though the latter set is not quite a locally compact abelian group). It

will turn out that more generally, a degree s nilcharacter will have a “symbol”

(analogous to the frequency ξ) that takes values in a “higher order Pontryagin

dual” Symbs([N ]) of [N ]; this symbol can be interpreted as the “top order

term” of a nilcharacter; for instance, the symbol of the degree 3 nilcharacter

n 7→ e(αn3 + βn2 + γn + δ) is basically3 α. This higher order dual obeys

a number of pleasant algebraic properties, and the primary purpose of this

section is to develop those properties.

There are various additional complications to be taken into account.

• We will require multidimensional generalisations of these concepts (think

of the two-dimensional sequence (n1, n2) 7→ e(αn1{βn2})) together with

appropriate notions of multidegree in order to make sense of “top-order”

and “lower-order terms.”

• We will be dealing with CD-valued (or, rather, S2D−1-valued) nilsequences

rather than merely scalar ones. This is so that we may continue to work

in the smooth category, as discussed in the introduction.

• The language of ultrafilters will be used.

Our main focus here will be on the first of these points. The second is

largely a technicality, while the third is actually helpful in that the notion

of symbol (for example) is rather clean and does not require discussion of

complexity bounds.

Motivation and one-dimensional definitions. We now give the definitions

of a (one-dimensional) nilcharacter and its symbol, and give a few examples.

However, for now, we will hold off from actually proving too much about these

concepts, because we will shortly need to generalise these notions to a more

abstract setting in which one also allows multidimensional nilcharacters, and

3This is an oversimplification; it would be more accurate to say that the symbol is given

by α modulo ∗Z + Q +O(N−3).
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nilcharacters that are atuned not just to a specific degree, but also to a specific

“rank” inside that degree.

Definition 6.1 (Nilcharacter). Let d > 0 be a standard integer. A nilchar-

acter χ of degree d on [N ] is a nilsequence χ(n) = F (O(n)) = F (g(n)∗Γ)

on [N ] of degree 6 d, where the function F ∈ Lip(∗(G/Γ) → Cω) obeys two

additional properties:

• F ∈ Lip(∗(G/Γ) → Sω) (thus |F | = 1 pointwise, and hence |χ| = 1

pointwise also); and

• F (gdx) = e(η(gd))F (x) for all x ∈ G/Γ and gd ∈ Gd, where η : Gd → R
is a continuous standard homomorphism that maps Γd to the integers (or

equivalently, η is an element of the Pontryagin dual of the torus Gd/Γd).

We call η the vertical frequency of F .

The space of all nilcharacters of degree d on [N ] is denoted Ξd([N ]).

Example 6.2. When d = 1, the only examples of nilcharacters are the

linear phases n 7→ e(αn+ β) for α, β ∈ ∗R.

Example 6.3. For any α0, . . . , αd ∈ ∗R, the function n 7→ e(α0+· · ·+αdnd)
is a nilcharacter of degree 6 d. To see this, we set G/Γ to be the unit circle

T with the filtration Gi := R for i 6 d and Gi := {0} for i > d (thus G/Γ is

of degree d), let g(n) := α0 + · · · + αdn
d, and let F (x) := e(x). The vertical

frequency η : R→ R is then just the identity function.

Now we give an instructive near -example of a nilcharacter. Let G be the

free 2-step nilpotent Lie group on two generators e1, e2, thus

(6.1) G := 〈e1, e2〉R = {et11 e
t2
2 [e1, e2]t12 : t1, t2, t12 ∈ R}

with the element [e1, e2] being central, but with no other relations between

e1, e2 and [e1, e2]. This is a degree 6 2 nilpotent group if we set G0, G1 := G

and

G2 := 〈[e1, e2]〉R = {[e1, e2]t12 : t12 ∈ R}.

We let

Γ := 〈e1, e2〉 = {en1
1 en2

2 [e1, e2]n12 : n1, n2, n12 ∈ Z}

be the discrete subgroup of G generated by e1, e2. Then G/Γ is a degree 6 2

filtered nilmanifold, known as the Heisenberg nilmanifold, and elements of G/Γ

can be uniquely expressed using the fundamental domain

G/Γ = {et11 e
t2
2 [e1, e2]t12Γ : t1, t2, t12 ∈ I0 := (−1/2, 1/2]}.

If we then set g : ∗Z→ ∗G to be the limit polynomial sequence g(n) := eβn2 eαn1

for some fixed α, β ∈ ∗R, and let F : G/Γ→ C be the function defined on the
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fundamental domain by the formula

(6.2) F (et11 e
t2
2 [e1, e2]t12Γ) := e(−t12)

for t1, t2, t12 ∈ I0, then one easily computes that

F (g(n)∗Γ) = e({αn}βn),

where {} : R → I0 is the signed fractional part function. The function n 7→
e({αn}βn) is then almost a nilcharacter of degree 2, with vertical frequency

given by the function η : [e1, e2]t12 7→ −t12. All the properties required to give

a nilcharacter in Definition 6.1 are satisfied, save for one: the function F is

not Lipschitz on all of G/Γ, but is instead merely piecewise Lipschitz, being

discontinuous at some portions of the boundary of the fundamental domain.

To put it another way, one can view n 7→ e({αn}βn) as a piecewise nilcharacter

of degree 2.

Indeed, a topological obstruction prevents one from constructing any

scalar function F ∈ Lip(∗(G/Γ) → S1) of unit magnitude on the Heisenberg

nilmanifold with the above vertical frequency. By taking standard parts, we

may assume that F comes from a standard Lipschitz function F : G/Γ → S1

with the same vertical frequency. For any standard t ∈ [−1/2, 1/2], consider

the loop γt := {et1es2Γ : s ∈ I0}. The image F (γt) of this loop lives on the unit

circle and thus has a well-defined winding number (or degree). As this degree

must vary continuously in t while remaining an integer, it is constant in t; in

particular, F (γ−1/2) and F (γ1/2) must have the same winding number. On the

other hand, from the Baker-Campbell-Hausdorff formula (3.2), we see that

F (e
1/2
1 es2Γ) = F (e

−1/2
1 es2e1[e1, e2]sΓ) = e(s)F (e

−1/2
1 es2Γ),

and so the winding number of F (γ1/2) is one larger than the winding number

of F (γ−1/2), a contradiction.

However, if we allow ourselves to work with higher dimensions D, then

this topological obstruction disappears. Indeed, let us take a smooth partition

of unity 1 =
∑D
k=1 ϕ

2
k(t, s) on T2, where D ∈ N+ and each ϕk is supported in

Bk mod Z2, where Bk is a ball of radius 1/100 (say) in R2. Then if we define

F := (F1, F2, . . . , FD), where

(6.3) Fk(e
t
1e
s
2[e1, e2]u∗Γ) := ϕk(t, s)e(u)

whenever (t, s) ∈ ∗Bk and u ∈ ∗R, with Fk = 0 if no such representation of

the above form exists, then one easily verifies that F lies in Lip(∗(G/Γ) →
S2D−1) with the vertical frequency η, and so the vector-valued sequence χ :

n 7→ F (g(n)∗Γ) is a nilcharacter of degree 2. A computation shows that each

component χk of this nilcharacter χ = (χ1, . . . , χD) takes the form

χk(n) = e({αn− θk}βn)ψk(n)
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for some offset θk ∈ ∗R and some degree 1 nilsequence ψk. Thus we see that χ

is in some sense “equivalent modulo lower order terms” with the bracket poly-

nomial phase n 7→ e({αn}βn). We refer to the vector-valued nilsequence χ as

a vector-valued smoothing of the piecewise nilsequence n 7→ e({αn}βn); we will

informally refer to this smoothing operation several times in the sequel when

discussing further examples of nilsequences that are associated with bracket

polynomials.

Similar computations can be made in higher degree. For instance, bracket

cubic phases such as n 7→ e({{αn}βn}γn) or n 7→ e({αn2}βn) with α, β, γ ∈
∗R can be viewed as near-examples of degree 3 nilcharacters (with the prob-

lem again being that F is discontinuous on the boundary of the fundamental

domain), but there exist vector-valued smoothings of these phases that are

genuine degree 3 nilcharacters. We will not detail these computations here,

but they can essentially be found in [23, App. E]. More generally, one can

view bracket polynomial phases of degree d as near-examples of nilcharacters

of degree d that can be converted to genuine examples using vector-valued

smoothings; this fact can be made precise using the machinery from [37], but

we will not need this machinery here.

Remark. The above topological obstruction is quite annoying; it is the

sole reason that we are forced to work with vector-valued functions. There

are two other approaches to avoid this topological obstruction that we know

of. One is to work with piecewise Lipschitz functions rather than Lipschitz

functions. This allows one, in particular, to build (piecewise) nilcharacters out

of bracket polynomials. This is the approach taken in [23]; however, it requires

one to develop a certain amount of “bracket calculus” to manipulate these

polynomials, and some additional arguments are also needed to deal with the

discontinuities at the edges of the piecewise components of the nilmanifold.

Another approach is to work with randomly selected fundamental domains of

the nilmanifold (cf. [17]). This eliminates topological obstructions, with the

randomness being used to “average out” the effects of the boundary of the

domain. While all three methods will eventually work for the purposes of

establishing the inverse conjecture, we believe that the vector-valued approach

introduces the least amount of artificial technicality.

By definition, every nilcharacter of degree d is a nilsequence of degree 6 d.

The converse is far from being true; however, one can approximate nilsequences

of degree6 d as bounded linear combinations of nilcharacters of degree d. More

precisely, we have the following lemma.

Lemma 6.4. Let ψ ∈ Nild([N ] → C) be a scalar nilsequence of degree d,

and let ε > 0 be standard. Then one can approximate ψ uniformly to error ε

by a bounded linear combination (over C) of the components of nilcharacters

in Ξd([N ]).
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Proof. Unpacking the definitions, it suffices to show that for every degree

d filtered nilmanifold G/Γ, every F ∈ Lip(∗(G/Γ) → C), and every standard

ε > 0, one can approximate F uniformly to error ε by a bounded linear com-

bination of functions in the class F(G/Γ) of components of standard Lipschitz

functions F ′ ∈ Lip(G/Γ → Sω) that have a vertical frequency in the sense of

Definition 6.1.

By taking standard parts, we may assume that F is a standard Lipschitz

function. Observe that F(G/Γ) is closed under multiplication and complex

conjugation. By the Stone-Weierstrass theorem, it thus suffices to show that

F(G/Γ) separates any two distinct points x, y ∈ G/Γ. If x, y do not lie in the

same orbit of the Gd, then this is clear from a partition of unity (taking η = 0).

If instead x = gdy for some gd ∈ Gd, then the distinctness of x, y forces gd 6∈ Γd,

and hence by Pontryagin duality there exists a vertical frequency η with η(gd)

6= 0. If one then builds a nilcharacter with this frequency (by adapting the

vector-valued smoothing construction (6.3)), we obtain the claim. �

We remark that this lemma can also be proven, with better quantitative

bounds, by Fourier-analytic methods; see [20, Lemma 3.7]. As a corollary of

the lemma, we have the following.

Corollary 6.5. Suppose that f ∈ L∞([N ]→ Cω). Then f is d-biased if

and only if f correlates with a nilcharacter χ ∈ Ξd([N ]).

It is easy to see that if χ, χ′ are two nilcharacters of degree d, then the

tensor product χ ⊗ χ′ and complex conjugate χ are also nilcharacters. If all

nilcharacters were scalar, this would mean that the space Ξd([N ]) of degree d

nilcharacters form a multiplicative abelian group. Unfortunately, nilcharacters

can be vector-valued, and so this statement is not quite true. However, it

becomes true if one only focuses on the “top order” behaviour of a nilcharacter.

To isolate this behaviour, we adopt the following key definition.

Definition 6.6 (Symbol). Let d > 0. Two nilcharacters χ, χ′ ∈ Ξd([N ])

of degree d are equivalent if χ ⊗ χ′ is equal on [N ] to a nilsequence of degree

6 d−1. This can be shown to be an equivalence relation (see Lemma E.7); the

equivalence class of a nilcharacter χ will be called the symbol of χ and is de-

noted [χ]Symbd([N ]). The space of all such symbols will be denoted Symbd([N ]);

we will show later (see Lemma E.8) that this is an abelian multiplicative group.

When d = 1, two nilcharacters n 7→ e(αn + β) and n 7→ e(α′n + β′) are

equivalent if and only if α−α′ is a limit integer, and Symb1([N ]) is just ∗T in

this case. However, the situation is more complicated in higher degree. To get

some feel for this, consider two polynomial phases

χ : n 7→ e(α0 + · · ·+ αdn
d)
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and

χ′ : n 7→ e(α′0 + · · ·+ α′dn
d)

with α0, . . . , αd, α
′
0, α
′
d ∈ ∗R, and consider the problem of determining when

χ and χ′ are equivalent nilcharacters of degree d. Certainly this is the case if

αd and α′d are equal, or differ by a limit integer. When d > 2, there are two

further important cases in which equivalence occurs. The first is when α′d =

αd+O(N−d), because in this case the top degree component e((αd−α′d)nd) of

χχ′ can be viewed as a Lipschitz function of n/2N mod 1 (say) on [N ] and is

thus a 1-step nilsequence. The second is when α′d = αd+a/q for some standard

rational q, since in this case the top degree component e((αd − α′d)nd) of χχ′

is periodic with period q and can thus be viewed as a Lipschitz function of

n/q mod 1 and is therefore again a 1-step nilsequence. We can combine all

these cases together, and observe that χ and χ′ are equivalent when α′d =

αd + a/q + O(N−d) mod 1 for some standard rational a/q. It is possible to

use the quantitative equidistribution theory of nilmanifolds (see [20]) to show

that these are in fact the only cases in which χ and χ′ are equivalent; this is a

variant of the classical theorem of Weyl that a polynomial sequence is (totally)

equidistributed modulo 1 if and only if at least one nonconstant coefficients is

irrational. In view of this, we see that Symbd([N ]) contains ∗R/(∗Z+Q+N−dR)

as a subgroup, and the symbol of n 7→ e(α0 + · · ·+αdn
d) can be identified with

αd mod 1,Q, O(N−d) := α+ ∗Z + Q +N−dR.

However, the presence of bracket polynomials (suitably modified to avoid

the topological obstruction mentioned earlier) means that when d > 2, then

Symbd([N ]) is somewhat larger than the above mentioned subgroup. We il-

lustrate this with the following (nonrigorous) discussion. Take d = 2, and

consider two degree 2 nilcharacters χ, χ′ of the form

χ(n) ≈ e({αn}βn+ γn2)

and

χ′(n) ≈ e({α′n}β′n+ γ′n2)

for some α, β, γ, α′, β′, γ′ ∈ ∗R, where we interpret the symbol ≈ loosely to

mean that χ, χ′ are suitable vector-valued smoothings of the indicated bracket

phases, of the type discussed earlier in this section. These may also involve

some lower order nilsequences of degree 1.

As before, we consider the question of determining those values of α, β, γ,

α′, β′, γ′ for which χ and χ′ are equivalent. There are a number of fairly obvious

ways in which equivalence can occur. For instance, by modifying the previous

arguments, one can show that equivalence holds when α = α′, β = β′, and

γ − γ′ is equal to a limit integer, a standard rational, or is equal to O(N−2).
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Similarly, equivalence occurs when β = β′, γ = γ′, and α − α′ is equal to a

limit integer, a standard rational, or is equal to O(N−1).

However, there are also some slightly less obvious ways in which equiv-

alence can occur. Observe that the expression e({αn}{βn}) is a Lipschitz

function of the fractional parts of αn and βn and is thus a (piecewise) nilse-

quence of degree 1 (and will become a genuine nilsequence after one performs

an appropriate vector-valued smoothing). On the other hand, we have the

obvious identity

e((αn− {αn})(βn− {βn})) = 1

since the exponent is the product of two (limit) integers. Expanding this out

and rearranging, we obtain the (slightly imprecise) relation

(6.4) e({αn}βn) ≈ e(−{βn}αn+ αβn2),

where we again interpret ≈ loosely to mean “after a suitable vector-valued

smoothing, and ignoring lower order factors.” This gives an additional route

for χ and χ′ to be equivalent. A similar argument also gives the variant

e({αn}βn) ≈ e
Å

1

2
αβn2

ã
whenever α, β are commensurate in the sense that α/β is a standard rational.

We thus see that the notion of equivalence is in fact already somewhat com-

plicated in degree 2, and the situation only becomes worse in higher degree.

One can describe equivalence of bracket polynomials explicitly using bracket

calculus, as developed in [37] (see also the earlier works [4], [24], [25], [26]),

but this requires a fair amount of notation and machinery. Fortunately, in

this paper we will be able to treat the notion of a symbol abstractly, without

requiring an explicit description of the space Symbd([N ]).

More general types of filtration. The notion of a one-dimensional polyno-

mial n 7→ α0 + · · ·+ αdn
d of degree 6 d can of course be generalised to higher

dimensions. For instance, we have the notion of a multidimensional polynomial

(n1, . . . , nk) 7→
∑

i1,...,ik>0:i1+···+ik6d
αi1,...,ikn

i1
1 · · ·n

id
k

of degree 6 d. We also have the slightly different notion of a multidimensional

polynomial

(n1, . . . , nk) 7→
∑

i1,...,ik>0:ij6dj for 16j6k

αi1,...,ikn
i1
1 · · ·n

id
k

of multidegree 6 (d1, . . . , dk) for some integers d1, . . . , dk > 0. We can unify

these two concepts into the notion of a multi-dimensional polynomial

(6.5) (n1, . . . , nk) 7→
∑

(i1,...,ik)∈J
αi1,...,ikn

i1
1 · · ·n

id
k
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of multidegree ⊂ J for some finite downset J ⊂ Nk, i.e., a finite set of tuples

with the property that (i1, . . . , ik) ∈ J whenever (i1, . . . , ik) ∈ Nk and ij 6 i′j
for all j = 1, . . . , k for some (i′1, . . . , i

′
k) ∈ J . Thus, for instance, the two-

dimensional polynomial

(h, n) 7→ αhn+ βhn2 + γn3

for α, β, γ ∈ ∗R is of multidegree ⊂ J for

J := {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)}

and is also of multidegree 6 (1, 3) and of degree 6 3. (One can view the

downset J as a variant of the Newton polytope of the polynomial.)

In our subsequent arguments, we will need to similarly generalise the no-

tion of a one-dimensional nilcharacter n 7→ χ(n) of degree 6 d to a multidimen-

sional nilcharacter (n1, . . . , nk) 7→ χ(n1, . . . , nk) of degree 6 d, of multidegree

6 (d1, . . . , dk), or of multidegree ⊂ J . We will define these concepts precisely

in a short while, but for now we mention that the polynomial phase

(h, n) 7→ e(αhn+ βhn2 + γn3)

will be a two-dimensional nilcharacter of multidegree ⊂ J , multi-degree 6
(1, 3), and degree 6 3 where J is as above. Moreover, variants of this phase,

such as (a suitable vector-valued smoothing of)

(h, n) 7→ e({α1h}α2n+ {{β1n}β2h}β3n+ {γ1n
2}γ2n),

will also have the same multidegree and degree as the preceding example.

The multidegree of a nilcharacter χ(n1, . . . , nk) is a more precise measure-

ment of the complexity of χ than the degree, because it separates the behaviour

of the different variables n1, . . . , nk. We will also need a different refinement

of the notion of degree, this time for a one-dimensional nilcharacter n 7→ χ(n),

which now separates the behaviour of different top degree components of χ,

according to their “rank.” Heuristically, the rank of such a component is the

number of fractional part operations x 7→ {x} that are needed to construct

that component, plus one; thus, for instance,

n 7→ e(αn3)

has degree 3 and rank 1,

n 7→ e({αn2}βn)

has degree 3 and rank 2 (after vector-valued smoothing),

n 7→ e({{αn}βn}γn)

has degree 3 and rank 3 (after vector-valued smoothing), and so forth. We will

then need a notion of a nilcharacter χ of degree-rank 6 (d, r), which roughly
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speaking means that all the components used to build χ either are of degree

< d, or else are of degree exactly d but rank at most r. Thus, for instance,

n 7→ e({αn}βn+ γn3)

has degree-rank 6 (3, 1) (after vector-valued smoothing), while

n 7→ e({αn}βn+ γn3 + {δn2}εn)

has degree-rank 6 (3, 2) (after vector-valued smoothing), and

n 7→ e({αn}βn+ γn3 + {δn2}εn+ {{µn}νn}ρn)

has degree-rank 6 (3, 3) (after vector-valued smoothing).

In order to make precise the notions of multidegree and degree-rank for

nilcharacters, it is convenient to adopt an abstract formalism that unifies de-

gree, multidegree, and degree-rank into a single theory. We need the following

abstract definition.

Definition 6.7 (Ordering). An ordering I = (I,≺,+, 0) is a set I equipped

with a partial ordering ≺, a binary operation + : I×I → I, and a distinguished

element 0 ∈ I with the following properties:

(i) The operation + is commutative and associative, and has 0 as the

identity element.

(ii) The partial ordering ≺ has 0 as the minimal element.

(iii) If i, j ∈ I are such that i ≺ j, then i+ k ≺ j + k for all k ∈ I.

(iv) For every d ∈ I, the initial segment {i ∈ I : i ≺ d} is finite.

A finite downset in I is a finite subset J of I with the property that j ∈ J
whenever j ∈ I and j ≺ i for some i ∈ J .

In this paper, we will only need the following three specific orderings (with

k a standard positive integer):

(i) the degree ordering, in which I = N with the usual ordering, addition,

and zero element;

(ii) the multidegree ordering, in which I = Nk with the usual addition

and zero element, and with the product ordering, thus (i′1, . . . , i
′
k) �

(i1, . . . , ik) if i′j 6 ij for all 1 6 j 6 k;

(iii) The degree-rank ordering, in which I is the sector DR := {(d, r) ∈
N2 : 0 6 r 6 d} with the usual addition and zero element, and the

lexicographical ordering (that is to say, (d′, r′) ≺ (d, r) if d′ < d or if

d′ = d and r′ < r).

It is easy to verify that each of these three explicit orderings obeys the

abstract axioms in Definition 6.7. In the case of the degree or degree-rank

orderings, I is totally ordered (for instance, the first few degree-ranks are

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), . . .), and so the only finite downsets
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are the initial segments. For the multidegree ordering, however, the initial

segments are not the only finite downsets that can occur.

The one-dimensional notions of a filtration, nilsequence, nilcharacter, and

symbol can be easily generalised to arbitrary orderings. We give the bare

definitions here, and we defer the more thorough treatment of these concepts

to Appendices B and E. We will, however, remark that when I is the degree

ordering, then all of the notions defined below simplify to the one-dimensional

counterparts defined earlier.

Definition 6.8 (Filtered group). Let I be an ordering and let G be a group.

By an I-filtration on G we mean a collection GI = (Gi)i∈I of subgroups indexed

by I, with the following properties:

(i) (Nesting). If i, j ∈ I are such that i ≺ j, then Gi ⊇ Gj .
(ii) (Commutators). For every i, j ∈ I, we have [Gi, Gj ] ⊆ Gi+j .

If d ∈ I, we say that G has degree 6 d if Gi is trivial whenever i 6� d. More

generally, if J is a downset in I, we say that G has degree ⊆ J if Gi is trivial

whenever i 6∈ J .

Let us explicitly adapt the above abstract definitions to the three specific

orderings mentioned earlier.

Definition 6.9. If (d1, . . . , dk) ∈ Nk, we define a nilpotent Lie group of

multi-degree 6 (d1, . . . , dk) to be a nilpotent I-filtered Lie group of degree

6 (d1, . . . , dk), where I = Nk is the multidegree ordering. Similarly, if J is a

downset, define the notion of a nilpotent Lie group of multidegree ⊆ J .

If (d, r) ∈ DR, define a nilpotent Lie group of degree-rank 6 (d, r) to be

a nilpotent DR-filtered Lie group G of degree 6 (d, r), with the additional

axioms G(0,0) = G and G(d,0) = G(d,1) for all d > 1.

We define the notion of a filtered nilmanifold of multidegree 6 (d1, . . . , dk),

multidegree ⊆ J , or degree-rank 6 (d, r) similarly.

Note that the degree-rank filtration needs to obey some additional axioms,

which are needed in order for the rank r to play a nontrivial role. As such, the

unification here of degree, multidegree, and degree-rank, is not quite perfect;

however, this wrinkle is only of minor technical importance and should be

largely ignored on a first reading.

Example 6.10. If G is a filtered nilpotent group of multidegree 6 (1, 1),

then the groups G(1,0) and G(0,1) must be abelian normal subgroups of G(0,0),

and their commutator [G(1,0), G(0,1)] must lie inside the group G(1,1), which is

a central subgroup of G(0,0).

If G is a filtered nilpotent group of degree-rank 6 (d, d), then (G(i,0))i>0

is an N-filtration of degree 6 d. But if we reduce the rank r to be strictly less
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than d, then we obtain some additional relations between the G(i,0) that do not

come from the filtration property. For instance, if G has degree-rank 6 (3, 2),

then the group [G(1,0), [G(1,0), G(1,0)]] must now be trivial; if G has degree-rank

6 (3, 1), then the group [G(1,0), G(2,0)] must also be trivial. More generally, if

G has degree-rank 6 (d, r), then any iterated commutator of gi1 , . . . , gim with

gj ∈ G(ij ,0) for j = 1, . . . ,m will be trivial whenever i1 + · · · + im > d, or if

i1 + · · ·+ im = d and m > r.

Example 6.11. If (Gi)i∈N is an N-filtration of G of degree 6 d, then

(G|~i|)~i∈Nk is an Nk-filtration of G of multidegree ⊂ {~i ∈ Nk : |~i| 6 d}, where

we recall the notational convention |(i1, . . . , ik)| = i1 + · · ·+ ik. Conversely, if

J is a finite downset of Nk and (G~i)~i∈Nk is an Nk-filtration of G of multidegree

⊂ J , then Ö ∨
~i:|~i|6i

G~i

è
i∈N

is easily verified (using Lemma 3.1) to be an N-filtration of degree 6 max~i∈J |~i|,
where

∨
a∈AGa is the group generated by

⋃
a∈AGa. In particular, any multi-

degree 6 (d1, . . . , dk) filtration induces a degree 6 d1 + · · ·+ dk filtration.

In a similar spirit, every degree-rank 6 (d, r) filtration (G(d′,r′))(d′,r′)∈DR of

a group G induces a degree 6 d filtration (G(i,0))i∈N. In the converse direction,

if (Gi)i∈N is a degree 6 d filtration of G with G = G0, then we can create

a degree-rank 6 (d, d) filtration (G(d′,r′))(d′,r′)∈DR by setting G(d′,r′) to be the

space generated by all the iterated commutators of gi1 , . . . , gim with gj ∈ G(ij ,0)

for j = 1, . . . ,m for which either i1 + · · · + im > d′, or i1 + · · · + im = d and

m > max(r′, 1); this can easily be verified to indeed be a filtration, thanks to

Lemma 3.1.

Example 6.12. Let d > 1 be a standard integer. We can give the unit circle

T the structure of a degree-rank filtered nilmanifold of degree-rank 6 (d, 1)

by setting G = R and Γ = Z with G(d′,r′) := R for (d′, r′) 6 (d, 1) and

G(d′,r′) := {0} otherwise. This is also the filtration obtained from the degree

6 d filtration (see Example 4.3) using the construction in Example 6.11.

Example 6.13 (Products). If GI and G′I are I-filtrations on groups G,G′,

then we can give the product G×G′ an I-filtration in an obvious way by setting

(G × G′)i := Gi × G′i. The degree of G × G′ is the union of the degrees of G

and G′. Similarly the product G1/Γ1 ×G2/Γ2 of two I-filtered nilmanifolds is

an I-filtered nilmanifold.

Example 6.14 (Pushforward and pullback). Let φ : G→ H be a homomor-

phism of groups. Then any any I-filtration HI = (Hi)i∈I of H induces a pull-

back I-filtration φ∗HI := (φ−1(Hi))i∈I . Similarly, any I-filtration GI = (Gi)i∈I
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on G induces a pushforward I-filtration φ∗GI := (φ(Gi))i∈I on H. In particu-

lar, if Γ is a subgroup of G, then we can pullback a filtration GI = (Gi)i∈I of G

by the inclusion map ι : Γ ↪→ G to create the restriction ΓI := (Γi)i∈I of that

filtration. It is a trivial matter to check that the subgroups of this filtration

are given by Γi := Γ ∩Gi.

Definition 6.15 (Filtered quotient space). An I-filtered quotient space is a

quotient G/Γ, where G is an I-filtered group and Γ is a subgroup of G (with

the induced filtration; see Example 6.14).

An I-filtered homomorphism φ : G/Γ→ G′/Γ′ between I-filtered quotient

spaces is a group homomorphism φ : G→ G′ that maps Γ to Γ′, and also maps

Gi to G′i for all i ∈ I. Note that such a homomorphism descends to a map

from G/Γ to G′/Γ′.

If G is a nilpotent I-filtered Lie group, and Γ is a discrete cocompact sub-

group of G that is rational with respect to GI (thus Γi := Γ∩Gi is cocompact

in Gi for each i ∈ I), we call G/Γ = (G/Γ, GI) an I-filtered nilmanifold. We

say that G/Γ has degree 6 d or ⊆ J of G has degree 6 d or ⊆ J .

Example 6.16 (Subnilmanifolds). Let G/Γ be an I-filtered nilmanifold of

degree ⊂ J . If H is a rational subgroup of G, then H/(H ∩Γ) is also a filtered

nilmanifold degree⊂ J (using Example 6.14), with an inclusion homomorphism

from H/(H ∩ Γ) to G/Γ; we refer to H/(H ∩ Γ) as a subnilmanifold of G/Γ.

We isolate three important examples of a filtered group, in which G is the

additive group Z or Zk.

Definition 6.17 (Basic filtrations). We define the following filtrations:

• the degree filtration ZkN on G = Zk, in which I = N is the degree ordering

and Gi = G for i 6 1 and Gi = {0} otherwise. In many cases k will equal

1 or 2;

• the multidegree filtration ZkNk on G = Zk, in which I = Nk is the mul-

tidegree ordering and G~0 = Zk, G~ei = 〈~ei〉, i = 1, . . . , k, and G~v = {0}
otherwise, with e1, . . . , ek being the standard basis for Zk;
• the degree-rank filtration ZDR on G = Z, in which I = DR is the degree-

rank ordering and G(0,0) = G(1,0) = Z and G(d,r) = {0} otherwise.

Definition 6.18 (Polynomial map). Suppose that H and G are I-filtered

groups with H = (H,+) abelian.4 Then for any map g : H → G, we define

the derivative

(6.6) ∂hg(n) := g(n+ h)g(n)−1.

4This is not actually a necessary assumption; see Appendix B. However, in the main body

of the paper we will only be concerned with polynomial maps on additive domains.
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We say that g : H → G is polynomial if

(6.7) ∂h1 · · · ∂hmg(n) ∈ Gi1+···+im

for all m > 0, all i1, . . . , im ∈ I and all hj ∈ Hij for j = 1, . . . ,m, and for all

n ∈ H0.

We denote by poly(HI → GI) the space of all polynomial maps from HI

to GI . As usual, we use ∗poly(HI → GI) to denote the space of all limit

polynomial maps from ∗HI to ∗GI (i.e., ultralimits of polynomial maps in

poly(HI → GI)).

Many facts about these spaces (in some generality) are established in Ap-

pendix B where, in particular, a remarkable result essentially due to Lazard

and Leibman [33], [34], [35] is established: poly(HI → GI) is a group. The

material in Appendix B is formulated in the general setting of abstract or-

derings I and for arbitrary (and possibly non-abelian) groups HI , but for our

applications we are only interested in the special case when HI is Z or Zk with

the degree, multidegree, or degree-rank filtration as defined above.

Before moving on let us be quite explicit about what the notion of a

polynomial map is in each of the three cases, since the definitions take a certain

amount of unravelling.

• (Degree filtration). IfH = Zk with the degree filtration ZkN, then poly(ZkN →
GN) consists of maps g : Zk → G with the property that

∂h1 · · · ∂hmg(n) ∈ Gm
for all m > 0, h1, . . . , hm ∈ Z and all n ∈ G0. This space is precisely the

same space as the one considered in [20, §6]. The space ∗poly(Zk → GN)

is defined similarly, except that g : ∗Zk → ∗G is now a limit map, and all

spaces such as Z and Gm need to be replaced by their ultrapowers (similarly

for the other two examples in this list).

• (Multidegree filtration). If H = Zk with the multidegree filtration ZkNk ,

then poly(ZkNk → GNk) consists of maps g : Zk → G with the property that

∂~ei1 · · · ∂~eimg(~n) ∈ G~ei1+···+~eim

for all k ≥ 0, all i1, . . . , im, and all ~n ∈ Zk. To relate this space to the

analogous spaces for the degree ordering, observe (using Example 6.11)

that

poly(ZkN → (Gi)i∈N) = poly(ZkNk → (G|~i|)~i∈Nk)

for any N-filtration (Gi)i∈N, and conversely one has

poly(ZkNk → (G~i)~i∈Nk) ⊂ poly

Ö
ZkN → (

∨
|~i|=i

G~i)i∈N

è
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for any Nk-filtration (G~i)~i∈Nk . This is, of course, related to the obvious fact

that a polynomial of multidegree 6 (d1, . . . , dk) is automatically of degree

6 d1 + · · ·+ dk.

• (Degree-rank filtration). If H = Z with the degree-rank filtration ZDR,

poly(ZDR → GDR) consists of maps g : Z→ G with the property that

∂h1 · · · ∂hmg(n) ∈ G(m,0)

whenever m > 0, h1, . . . , hm ∈ Z, and n ∈ G0. We observe (using Exam-

ple 6.11) the obvious equality

(6.8) poly(ZDR → (G(d,r))(d,r)∈DR) = poly(ZN → (G(i,0))i∈N)

for any DR-filtration (G(d,r))(d,r)∈DR. Thus, a degree-rank filtration GDR

on G does not change the notion of a polynomial sequence, but instead

gives some finer information on the group G (and, in particular, it indicates

that certain iterated commutators of the G(d,r) vanish, which is information

that cannot be discerned just from the knowledge that (G(i,0))i∈N is an N-

filtration).

Definition 6.19 (Nilsequences and nilcharacters). Let I be an ordering,

and let J be a finite downset in I. Let H be an abelian I-filtered group. A

(polynomial) nilsequence of degree ⊂ J is any function of the form

χ(n) = F (g(n)∗Γ),

where

• G/Γ = (G/Γ, GI) is an I-filtered nilpotent manifold of degree ⊂ J ,

• g ∈ ∗poly(HI → GI) is a limit polynomial map from ∗HI to ∗GI ,

• F ∈ Lip(∗(G/Γ)→ C
ω
).

The space of all such nilsequences will be denoted Nil⊂J(∗H). We define the

notion of a nilsequence of degree 6 d for some d ∈ I, and the space Nil6d(∗H),

similarly. If Ω is a limit subset of ∗H, the restriction of the nilsequences in

Nil⊂J(∗H) to Ω will be denoted Nil⊂J(Ω), and we define Nil6d(Ω) similarly.

We refer to the map n 7→ g(n)∗Γ as a limit polynomial orbit in G/Γ and

denote the space of such orbits as ∗poly(HI → (G/Γ)I).

Suppose that d ∈ I. Then χ is said to be a degree d nilcharacter if χ is a

degree 6 d nilsequence with the following additional properties:

• F ∈ Lip(∗(G/Γ)→ Sω) (thus |F | = 1).

• F (gdx) = e(η(gd))F (x) for all x ∈ G/Γ and gd ∈ Gd, where η : Gd → R is

a continuous standard homomorphism which maps Γd to the integers. We

call η the vertical frequency of F .

The space of all degree d nilcharacters on ∗H will be denoted Ξd(∗H). If

Ω is a limit subset of ∗H, the restriction of the nilcharacters in Ξd(∗H) to Ω

will be denoted Ξd(Ω).
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With the multidegree ordering, a degree (d1, . . . , dk) nilcharacter will be

referred to as a multidegree (d1, . . . , dk) nilcharacter, and the space of such

characters on Ω we be denoted Ξ
(d1,...,dk)
Multi (Ω); we similarly write Nil⊂J(Ω) or

Nil6(d1,...,dk)(Ω) as Nil⊂JMulti(Ω) or Nil6(d1,...,dk)(Ω) for emphasis.

Similarly, with the degree-rank ordering, and assuming G/Γ is a filtered

nilmanifold of degree-rank 6 (d, r) (so, in particular, we enforce the axioms

G(0,0) = G and G(d,0) = G(d,1)), a degree (d, r) nilcharacter will be referred to

as a degree-rank (d, r) nilcharacter. The space of nilcharacters on Ω of degree-

rank (d, r) will be denoted Ξ
(d,r)
DR (Ω) (note that this is distinct from the space

Ξ
(d1,d2)
Multi (Ω) of two-dimensional nilcharacters of multidegree (d1, d2)), and the

nilsequences on Ω of degree-rank 6 (d, r) will similarly be denoted Nil
6(d,r)
DR (Ω).

Example 6.20. Let J ⊂ Nk be a finite downset. Then any sequence of the

form

(n1, . . . , nk) 7→ F

Ñ ∑
(i1,...,ik)∈J

αi1,...,ikn
i1
1 · · ·n

ik
k mod 1

é
,

where αi1,...,ik ∈ ∗R and F ∈ Lip(∗T→ Cω), is a nilsequence on Zk of multide-

gree ⊆ J , as can easily be seen by giving G := R the Zk-filtration Gi := R for

i ∈ J and Gi := {0} otherwise, and setting Γ := Z and g ∈ ∗poly(Zk → R) to

be the limit polynomial n 7→∑
(i1,...,ik)∈J αi1,...,ikn

i1
1 · · ·n

ik
k .

For similar reasons, any sequence of the form

(n1, . . . , nk) 7→ e

Ñ ∑
(i1,...,ik)∈Nk:i1+···+ik6d

αi1,...,ikn
i1
1 · · ·n

ik
k mod 1

é
is a degree d nilcharacter on Zk of degree d, and any sequence of the form

(n1, . . . , nk) 7→ e

Ö ∑
(i1,...,ik)∈Nk:ij6dj for j=1,...,k

αi1,...,ikn
i1
1 · · ·n

ik
k mod 1

è
is a multidegree (d1, . . . , dk) nilcharacter on Zk.

Example 6.21. Any degree 2 nilsequence of magnitude 1 is automatically

a degree-rank 6 (3, 0) nilcharacter, since every degree 6 2 nilmanifold is au-

tomatically a degree-rank 6 (2, 2) nilmanifold, which can then be converted

trivially to a degree-rank 6 (3, 0) nilmanifold (with a trivial group G(3,0)).

Thus, for instance, for α, β ∈ R,

n 7→ e({αn}βn)

is nearly a degree-rank (3, 0) nilcharacter and becomes a genuine degree-rank

(3, 0) nilcharacter after vector-valued smoothing.
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If α ∈ ∗R, then the sequence

n 7→ e(αn3)

is a degree-rank (3, 1) nilcharacter. Indeed, we can give G = R a degree-

rank 6 (3, 1) filtration GDR by setting G(d,r) := R for (d, r) 6 (3, 1), and

G(d,r) := {0} otherwise.

Next, if α, β ∈ ∗R, then the sequence

(6.9) n 7→ e({αn2}βn)

is nearly a degree-rank (3, 2) nilcharacter (and becomes genuinely so after

vector-valued smoothing). To see this, let G be the Heisenberg nilpotent group

(6.1), for which we give the following degree-rank filtration:

G(0,0) = G(1,0) = G(1,1) := G,

G(2,0) = G(2,1) := 〈e1, [e1, e2]〉R = {et11 [e1, e2]t12 : t1, t12 ∈ R},
G(2,2) = G(3,0) = G(3,1) = G(3,2) := 〈[e1, e2]〉R = {[e1, e2]t12 : t12 ∈ R},

G(d,r) := {id} for all other (d, r) ∈ DR.

One easily verifies that this is a degree-rank 6 (3, 2) filtration. If we then set

g : ∗Z → ∗G to be the limit sequence g(n) := eβn2 eαn
2

1 , one easily verifies that

g is a limit polynomial with respect to this degree-rank filtration. If one then

lets F be the piecewise Lipschitz function (6.2), then we see that

F (g(n)∗Γ) = e({αn2}βn)

and so we see that n 7→ e({αn2}βn) is a indeed piecewise degree-rank (3, 2)

nilcharacter.

A similar argument (using the free 3-step nilpotent manifold on three

generators, which has degree 6 3 and hence degree-rank 6 (3, 3)) shows that

n 7→ e({{αn}βn}γn)

is nearly a degree-rank (3, 3) nilcharacter and becomes a genuine degree-rank

(3, 3) nilcharacter after applying vector-valued smoothing; see [23, App. E] for

the relevant calculations.

These examples should help illustrate the heuristic that a degree-rank

(d, r) nilcharacter is built up using (suitable vector-valued smoothings of)

bracket monomials that either have degree less than d, or have degree exactly

d and involve at most r − 1 applications of the fractional part operation.

We observe (using Example 6.11) the following obvious inclusions:

(i) A multidegree 6 (d1, . . . , dk) nilsequence on Zk is automatically a

degree 6 d1 + · · ·+ dk nilsequence.

(ii) A multidegree (d1, . . . , dk) nilcharacter on Zk is automatically a degree

d1 + · · ·+ dk nilcharacter.
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(iii) A multidegree (d1, . . . , dk−1, 0) nilsequence on Zk is constant in the nk
variable and descends to a multidegree (d1, . . . , dk−1) nilsequence on

Zk−1.

(iv) A degree-rank 6 (d, r) nilsequence on Z is automatically a degree 6 d
nilsequence.

(v) A degree 6 d nilsequence on Z is automatically a degree-rank 6 (d, d)

nilsequence.

(vi) A degree d nilcharacter on Z is automatically a degree-rank 6 (d, d)

nilcharacter.

It is not quite true, though, that a degree-rank (d, r) nilcharacter is a degree

d nilcharacter if r > 1, because the former need not exhibit vertical frequency

behaviour for degree-ranks (d, r′) with r′ < r.

Definition 6.22 (Equivalence and symbols). Let H be an I-filtered group,

let d ∈ I, and let Ω be a limit subset of ∗H. Two nilcharacters χ, χ′ ∈ Ξd(Ω)

are said to be equivalent if χ⊗χ′ is a nilsequence of degree strictly less than d.

Write [χ]Symbd(Ω) for the equivalence class of χ with respect to this relation;

we shall refer to this as the symbol of χ. Write Symbd(Ω) for the space of all

such equivalence classes.

We write Symb
(d1,...,dk)
Multi (Ω) for the symbols of nilcharacters χ∈Ξ

(d1,...,dk)
Multi (Ω)

of multidegree (d1, . . . , dk) and Symb
(d,r)
DR (Ω) for the symbols of nilcharacters

χ ∈ Ξ
(d,r)
DR (Ω) of degree-rank (d, r). The basic properties of such symbols are

set out in Appendix E.

7. A more detailed outline of the argument

Now that we have set up the notation to describe nilcharacters and their

symbols, we are ready to give a high-level proof of Conjecture 5.5 (and hence

Theorem 1.3), contingent on some key sub-theorems that will be proven in

later sections. This corresponds to the realisation of points (i), (ii), and (ix)

from the overview in Section 2.

As the cases s = 1, 2 of this conjecture are already known, we assume that

s > 3. We also assume inductively that the claim has already been proven for

smaller values of s. Henceforth, s is fixed.

Let f ∈ L∞[N ] be such that

(7.1) ‖f‖Us+1[N ] � 1.

Define f to be zero outside of [N ]. Raising (7.1) to the power 2s+1, we see

that
Eh∈[[N ]]‖∆hf‖2

s

Us[N ] � 1

and thus
‖∆hf‖Us[N ] � 1
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for all h in a dense subset H of [[N ]]. Applying the inductive hypothesis, we

thus see that ∆hf is (s− 1)-biased for all h ∈ H.

By definition, we now know that ∆hf correlates with a nilsequence of

degree (s − 1). By Lemma 6.5, we see that for each h ∈ H, ∆hf correlates

with a nilcharacter χh ∈ Ξs−1([N ]). It is not hard to see that the space of such

nilcharacters is a σ-limit set (see Definition A.10), so by Lemma A.12 we can

ensure that χh depends in a limit fashion on h.

The aim at this point is to obtain, in several stages, information about the

dependence of χh on h. A key milestone in this analysis is a linearisation of

χh on h. In the case s = 2, treated in [13], [16], the χh(n) were essentially just

linear phases e(ξhn), and the outcome of the linearisation analysis was that

the frequencies ξh may be assumed to vary in a bracket-linear fashion with h.

In the case s = 3 (treated in [23] but also dealt with in our present work), a

model special case occurs when χh(n) ≈ e({αhn}βhn) (interpreting ≈ loosely).

The outcome of the linearisation analysis in that case was that at most one

of αh, βh really depends on h and, furthermore, that this dependence on h is

bracket-linear in nature.

Now we formally set out the general case of this linearisation process.

Theorem 7.1 (Linearisation). Let f ∈ L∞[N ], let H be a dense subset

of [[N ]], and let (χh)h∈H be a family of nilcharacters in Ξs−1([N ]) depending

in a limit fashion on h, such that ∆hf correlates with χh for all h ∈ H . Then

there exists a multidegree (1, s − 1)-nilcharacter χ ∈ Ξ
(1,s−1)
Multi (∗Z2) such that

∆hf (s− 2)-correlates with χ(h, ·) for many h ∈ H .

This statement represents the outcome of points (iii) to (vii) of the outline

in Section 2 and must therefore address the following points:

• For some suitable notion of “frequency,” the symbol of χh(n) contains

only one frequency that genuinely depends on h.

• That frequency depends on h in a bracket-linear manner.

• Once this is known, it follows that, for many h, ∆hf (s−2)-correlates

with χ(h, n), where χ is a certain 2-variable nilsequence.

These three tasks are, in fact, established together and in an incremental

fashion. The nilcharacter χh(n) is gradually replaced by objects of the form

χ′(h, n)⊗χ′h(n), where χ′(h, n) is a two-dimensional nilcharacter of multidegree

(1, s− 1) and, at each stage, the nilcharacter χ′h(n) (which has so far not been

shown to vary in any nice way with h) is “simpler” than χh(n). The notion

of simpler in this context is measured by the degree-rank filtration, a concept

that was introduced in the previous section. Thus the result of a single pass

over the three points listed above is the following subclaim.
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Theorem 7.2 (Linearisation, inductive step). Let 1 6 r∗ 6 s− 1, let f ∈
L∞[N ], let H be a dense subset of [[N ]], let χ ∈ Ξ

(1,s−1)
Multi (∗Z2), and let (χh)h∈H

be a family of nilcharacters of degree-rank (s − 1, r∗) depending in a limit

fashion on h such that ∆hf (s− 2)-correlates with χ(h, ·)⊗ χh for all h ∈ H .

Then there exists a dense subset H ′ of H , a multidegree (1, s− 1)-nilcharacter

χ′ ∈ Ξ
(1,s−1)
Multi (∗Z2), and a family (χ′h)h∈H of nilcharacters of degree-rank (s−1,

r∗−1) depending in a limit fashion on h, such that ∆hf (s−2)-correlates with

χ′(h, ·)⊗ χ′h for all h ∈ H ′.

Theorem 7.1 follows easily by inductive use of this statement, starting

with r∗ equal to s− 1 and using Theorem 7.2 iteratively to decrease r∗ all the

way to zero.

To prove Theorem 7.2, we follow steps (iii) to (vii) in the outline quite

closely. The first step, which is the realisation of (iii), is a Gowers-style Cauchy-

Schwarz inequality to eliminate the function f as well as the two-dimensional

nilcharacter χ(h, n) and therefore obtain a statement concerning only the (so

far) unstructured-in-h object χh(n). Here is a precise statement of the outcome

of this procedure; the proof of this proposition is the main business of Section 8.

Proposition 7.3 (Gowers Cauchy-Schwarz argument). Let f,H, χ,

(χh)h∈H be as in Theorem 7.2. Then the sequence

(7.2) n 7→ χh1(n)⊗ χh2(n+ h1 − h4)⊗ χh3(n)⊗ χh4(n+ h1 − h4)

is (s− 2)-biased for many additive quadruples (h1, h2, h3, h4) in H .

With this in hand, we reach the most complicated part of the argument.

This is the use of Proposition 7.3 to study the “frequencies” of the nilcharacters

χh and the way they depend on h. Roughly speaking, the aim is to interpret

the tensor product (7.2) as a nilsequence itself (depending on h1, h2, h3, h4)

and use results from [20] to analyse its equidistribution and bias properties.

To make proper sense of this one must first find a suitable “representation”

of the χh(n) in which the frequencies are either independent of h, depend in

a bracket-linear fashion on h, or are appropriately dissociated in h, in the

sense that the frequencies associated to (7.2) are “linearly independent” for

most additive quadruples h1 + h2 = h3 + h4. This task is one of the more

technical part of the papers and is performed in in Section 10; it incorporates

the additive combinatorial step (vi) of the outline from Section 2. The precise

statement of what we prove is Lemma 10.10, the “sunflower decomposition.”

The representation of the χh (and hence of (7.2)) involves constructing a

suitable polynomial orbit on something resembling a free nilpotent Lie group

G̃; this device also featured in [23, §5]. Once this is done, one applies the

results from [20] to examine the orbit of this polynomial sequence on the cor-

responding nilmanifold G̃/Γ̃. The results of [20] assert (roughly speaking) that
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this orbit is close to the uniform measure on a subnilmanifold HΓ̃/Γ̃, where

H 6 G̃ is some closed subgroup. In Section 11, we then crucially apply a

commutator argument of Furstenberg and Weiss that exploits some equidistri-

bution information on projections of H to say something about this group H.

The upshot of this critical phase of the argument is that the h-dependence

of the frequencies of χh cannot be dissociated in nature, and must instead be

completely bracket-linear; the precise statement here is Theorem 11.1.

At this point in the argument, we have basically shown that the top-order

behaviour (in the degree-rank order) of the nilcharacters χh(n) is bracket-

linear in h. To complete the proof of Theorem 7.2 (and hence of Theorem 7.1)

it remains to carry out part (vii) of the outline, that is to say, to interpret this

bracket-linear part of χh(n) as a multidegree (1, s − 1) nilcharacter χ′(h, n).

This is the first part of the argument where some sort of “degree s nil-object”

is actually constructed, and is thus a key milestone in the inductive derivation

of GI(s) from GI(s − 1). As remarked previously, our construction here is a

little more conceptual (and abstractly algebraic) than in previous works, which

have been somewhat ad hoc. The construction is given in Section 12. At the

end of that section we wrap up the proof of Theorem 7.1; by this point, all the

hard work has been done.

With Theorem 7.1 in hand, we have completed the first seven steps of

the outline. The only remaining substantial step is step (viii), the symmetry

argument. Here is a formal statement of it.

Theorem 7.4 (Symmetrisation). Let f ∈ L∞[N ], let H be a dense subset

of [[N ]], and let χ ∈ Ξ
(1,s−1)
Multi (∗Z2) be such that ∆hf < s − 2-correlates with

χ(h, ·) for all h ∈ H . Then there exists a nilcharacter Θ ∈ Ξs(∗Z) (with the

degree filtration) and a nilsequence Ψ ∈ Nil⊂JMulti(
∗Z2), with J ⊂ N2 given by

the downset

(7.3) J := {(i, j) ∈ N2 : i+ j 6 s− 1} ∪ {(i, s− i) : 2 6 i 6 s},

such that χ(h, n) is a bounded linear combination of Θ(n+h)⊗Θ(n)⊗Ψ(h, n).

The proof is given in Section 13. Informally, this theorem asserts that the

multidimensional degree (1, s − 1) nilcharacter χ(h, n) can be expressed as a

derivative Θ(n+ h)⊗Θ(n) of a degree s nilcharacter Θ, modulo “lower order

terms,” which in this context means multidimensional nilsequences Ψ(h, n)

that either have total degree 6 s − 1, or are of degree at most s − 2 in the n

variable.

The remaining task for this section is to show how to complete the proof

of Conjecture 5.3 (and Theorem 1.3) from this point. From the discussion at

the beginning of this section, we have already arrived at a situation in which

the given function f ∈ L∞[N ] has the property that ∆hf correlates with χh
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for all h in a dense subset H of [[N ]], where (χh)h∈H is a family of nilcharacters

in Ξs−1([N ]) depending in a limit fashion on h.

From Theorem 7.1 and Theorem 7.4 we see that for many h ∈ [[N ]], ∆hf

6 s− 2-correlates with the sequence

n 7→ Θ(n+ h)⊗Θ(n)⊗Ψ(h, n).

The next step is to break up J and Ψ into simpler components, and our tool

for this purpose shall be Lemma E.4. Applying this lemma for ε sufficiently

small, followed by the pigeonhole principle, one can thus find scalar-valued

nilsequences ψ,ψ′ on ∗Z2 (with the multidegree filtration) of multidegree

⊂ {(i, 0) ∈ N2 : i 6 s− 1}

and

⊂ {(i, j) ∈ N2 : i 6 s− 2; i+ j 6 s}
respectively, such that for many h ∈ [[N ]], ∆hf 6 (s− 2)-correlates with

n 7→ Θ(n+ h)⊗Θ(n)ψ(h, n)ψ′(h, n).

For fixed h, the nilsequence ψ′(h, n) has degree 6 s−2 and can thus be ignored.

Also, ψ(h, n) = ψ(n) is of multidegree 6 (s−1, 0) and is thus independent of h,

with n 7→ ψ(n) being a degree 6 s− 1 nilsequence. Thus, for many h ∈ [[N ]],

∆hf 6 s− 2-correlates with

n 7→ Θ(n+ h)⊗Θ(n)ψ(n).

Applying the pigeonhole principle again, we can thus find scalar nilsequences

θ, θ′ ∈ Nil6s(∗Z) such that for many h ∈ [[N ]], ∆hf 6 (s− 2)-correlates with

n 7→ θ(n+ h)θ′(n).

(Indeed, one takes θ, θ′ to be coefficients of Θ and Θψ respectively.) Applying

the converse to GI(s) (Proposition 5.6), we conclude that

‖fθ(·+ h)fθ′(·)‖Us−1[N ] � 1

for many h ∈ H. Averaging over h (using Corollary A.6 to obtain the required

uniformity), we conclude that

Eh∈[[N ]]‖fθ(·+ h)fθ′(·)‖2s−1

Us−1[N ] � 1.

Applying the Cauchy-Schwarz-Gowers inequality (see, e.g., [47, eq. (11.6)]) we

conclude that

‖fθ‖Us[N ] � 1,

and hence by the inductive hypothesis (Conjecture 5.5 for s−1), fθ is 6 (s−1)-

biased. Since θ is a degree 6 s nilsequence, we conclude that f is 6 s-biased,

as required. This concludes the proof of Conjecture 5.5, Conjecture 5.3, and

hence Theorem 1.3, contingent on Theorems 7.1 and 7.4.
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8. A variant of Gowers’s Cauchy-Schwarz argument

The aim of this section is prove Proposition 7.3. Thus, we have standard

integers 1 6 r∗ 6 s − 1, a function f ∈ L∞[N ], a dense subset H of [[N ]], a

two-dimensional nilcharacter χ ∈ Ξ
(1,s−1)
Multi (∗Z2) of multidegree (1, s − 1), and

a family (χh)h∈H of nilcharacters of degree-rank (s − 1, r∗) depending in a

limit fashion on h. We are given that ∆hf (s− 2)-correlates with χ(h, ·)⊗ χh
for all h ∈ H. Our objective is to show that, for many additive quadruples

(h1, h2, h3, h4) in H, the expression

(8.1) n 7→ χh1(n)⊗ χh2(n+ h1 − h4)⊗ χh3(n)⊗ χh4(n+ h1 − h4)

(where we extend the χh by zero outside of [N ]) is (s− 2)-biased.

The strategy, following the work of Gowers [13], is to start with the 6 s−2-

correlation between ∆hf and χ(h, ·)χh and then apply the Cauchy-Schwarz

inequality repeatedly to eliminate all terms involving f , χ(h, ·), finally arriving

at a correlation statement that only involves χh (and lower order terms).

Unfortunately, there is a technical issue that prevents one from doing this

directly, namely that the behaviour of χ(h, ·) in h is not quite linear enough

to ensure that these terms are completely eliminated by a Cauchy-Schwarz

procedure. In order to overcome this issue, one must first prepare χ into a

better form, as follows. We need the following technical notion (which will not

be used outside of this section).

Definition 8.1. A linearised (1, s − 1)-function is a limit function χ :

(h, n)→ Cω that has a factorisation

(8.2) χ(h, n) = c(n)hψ(n),

where ψ ∈ L∞(Z→ Cω) and c ∈ L∞(Z→ S1) are such that, for every h, l ∈ Z,

the sequence

n 7→ c(n− l)hc(n)
h

is a degree 6 s− 2 nilsequence.

Remark 8.2. Heuristically, one should think of a linearised (1, s − 1)-

function as (a vector-valued smoothing of) a function of the form

(h, n) 7→ e(P (n) + hQ(n)),

where P,Q are bracket polynomials of degree s− 1; for instance,

(h, n) 7→ e({αn}βn+ {γn}δnh)

is morally a linearised (1, 2) function. This should be compared with more

general multidegree (1, 2) nilcharacters, such as

(h, n) 7→ e({{αh}βn}γn),
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which are not quite linear in h because the dependence on h is buried inside

one or more fractional part operations. Intuitively, the point is that one can

use the laws of bracket algebra (such as (6.4)) to move the h outside of all

the fractional part expressions (modulo lower order terms). While one can

indeed develop enough of the machinery of bracket calculus to realise this

intuition concretely, we will instead proceed by the more abstract machinery

of nilmanifolds in order to avoid having to set up the bracket calculus.

The key preparation for this is the following.

Proposition 8.3. Let χ ∈ Ξ
(1,s−1)
Multi (∗Z2) be a two-dimensional nilcharac-

ter of multidegree (1, s− 1), and let ε > 0 be standard. Then one can approx-

imate χ to within ε in the uniform norm by a bounded linear combination of

linearised (1, s− 1)-functions.

Proof. From Definition 6.1, we can express

χ(h, n) = F (g(h, n)∗Γ),

where G/Γ is an N2-filtered nilmanifold having multidegree 6 (1, s − 1), F ∈
Lip(∗(G/Γ) → Sω) has a vertical frequency η : G(1,s−1) → R, and g ∈
∗poly(Z2

N2 → GN2) (with Z2 being given the multidegree filtration Z2
N2).

We consider the quotient map π : G/Γ→ G/(G(1,0)Γ) from G/Γ onto the

nilmanifoldG/(G(1,0)Γ), which can be viewed as an N-filtered nilmanifold of de-

gree6 s−1 (where we N-filterG/G(1,0) using the subgroupsG(0,i)G(1,0)/G(1,0)).

The fibers of this map are isomorphic to T := G(1,0)/Γ(1,0). Observe that G(1,0)

is abelian, and so T is a torus; thus G/Γ is a torus bundle over G/(G(1,0)Γ)

with structure group T . The idea is to perform Fourier analysis on this large

torus T , as opposed to the smaller torus G(1,s−1)/Γ(1,s−1), to improve the be-

haviour of the nilcharacter χ.

We pick a metric on the base nilmanifold G/(G(1,0)Γ) and a small stan-

dard radius δ > 0, and form a smooth partition of unity 1 =
∑K
k=1 ϕk on

G/(G(1,0)Γ), where each ϕk ∈ Lip(G/(G(1,0)Γ) → C) is supported on an open

ball Bk of radius r. This induces a partition χ =
∑K
k=1 χ̃k, where

χ̃k(h, n) = F (g(h, n)∗Γ)ϕk(π(g(h, n)∗Γ)).

Now fix one of the k. Then we have

χ̃k(h, n) = F̃k(g(h, n)∗Γ),

where F̃k is compactly supported in the cylinder π−1(Bk).

If r is small enough, we have a smooth section ι : Bk → G that partially

inverts the projection from G to G/(G(1,0)Γ), and so we can parametrise any

element x of π−1(Bk) uniquely as ι(x0)tΓ for some x0 ∈ Bk and t ∈ T (noting
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that tΓ is well defined as an element of G/Γ). Similarly, we can parametrise

any element of ∗π−1(Bk) uniquely as ι(x0)tΓ for x0 ∈ ∗Bk and t ∈ ∗T .

We can now view the Lipschitz function Fk ∈ Lip(∗(G/Γ)) as a compactly

supported Lipschitz function in Lip(∗(Bk×T )). Applying a Fourier (or Stone-

Weierstrass) decomposition in the T directions (cf. Lemma E.5), we thus see

that for any standard ε > 0, we can approximate F̃k uniformly to error ε/K

by a sum
∑K′
k′=1 F̃k,k′ , where K ′ is standard and each Fk,k′ ∈ Lip(∗(Bk × T ))

is compactly supported and has a character ξk′ : T → T such that

(8.3) F̃k,k′(ι(x0)tΓ) = e(ξk′(t))F̃k,k′(ι(x0)Γ)

for all x0 ∈ ∗(2Bk) and t ∈ ∗T . It thus suffices to show that for each k, k′, the

sequence

χ̃k,k′ : (h, n) 7→ F̃k,k′(g(h, n)∗Γ)

is a linearised (1, s− 1)-function.

Fix k, k′. Performing a Taylor expansion (Lemma B.9) of the polynomial

sequence g ∈ ∗poly(Z2
N2 → GN2), we may write

g(h, n) = g0(n)g1(n)h,

where g0 ∈ ∗poly(ZN → GN) is a one-dimensional polynomial map (giving

G the N-filtration GN := (G(i,0))i∈N) and g1 ∈ ∗poly(Z → (G(1,0))N) is an-

other one-dimensional polynomial map (giving the abelian group G(1,0) the

N-filtration (G(1,0))N := (G(1,i))i∈N). In particular, we see that χ̃k,k′(h, n) is

only nonvanishing when π(g0(n)∗Γ) ∈ B. Furthermore, in that case we see

from (8.3) that

(8.4) χ̃k,k′(h, n) = e(hξ(g1(n) mod Γ(1,0)))F̃k,k′(g0(n)∗Γ),

which gives the required factorisation (8.2) with c(n) := e(ξ(g1(n) mod Γ(1,0)))

and ψ(n) := F̃k,k′(g0(n)∗Γ).

The only remaining task is to establish that for any given h, l, the sequence

n 7→ c(n− l)hc(n)
h

is a degree 6 s− 2 nilsequence. We expand this sequence

as

n 7→ e(h(ξ(g1(n− l) mod Γ(1,0))− ξ(g1(n) mod Γ(1,0)))).

But from the abelian nature of G(1,0), the map n 7→ ξ(g1(n) mod Γ(1,0)) is a

polynomial map from ∗Z to ∗T of degree at most s−1, and the claim follows. �

We now return to the proof of Proposition 7.3. With this multiplicative

structure, we can now begin the Cauchy-Schwarz argument. By hypothesis,

for each h ∈ H we can find a scalar nilsequence ψh of degree 6 s− 2 such that

|En∈[N ]∆hf(n)χ(h, n)⊗ χh(n)ψh(n)| � 1.

By Corollary A.12, we may ensure that ψh varies in a limit fashion on h.

Applying Corollary A.6, this lower bound is uniform in h.



1276 BEN GREEN, TERENCE TAO, and TAMAR ZIEGLER

Applying Proposition 8.3 (with a sufficiently small ε) and using the pi-

geonhole principle, we may then find a linearised (1, s − 1)-function (h, n) 7→
c(n)hψ(n) such that

|En∈[N ]∆hf(n)c(n)−hψ(n)⊗ χh(n)ψh(n)| � 1.

By Corollary A.6 again, the lower bound is still uniform in h. We may then

average in h (extending ψh, χh by zero for h outside of H) and conclude that

Eh∈[[N ]]|En∈[N ]∆hf(n)c(n)−hψ(n)⊗ χh(n)ψh(n)| � 1,

thus there exists a scalar function b ∈ L∞[[N ]] such that

|Eh∈[[N ]]En∈[N ]b(h)f(n+ h)f(n)c(n)−hψ(n)⊗ χh(n)ψh(n)| � 1.

By absorbing b(h) into the ψh factor, we may now drop the b(h) factor. We

write n+ h = m and obtain

|Em∈[N ]f(m)Eh∈[[N ]]c(m− h)−hf ′(m− h)⊗ χh(m− h)ψh(m− h)| � 1,

where f ′ := fψ (recall that f is extended by zero outside of [N ]), which by

Cauchy-Schwarz implies that

|Em∈[N ]Eh,h′∈[[N ]]c(m− h)−hc(m− h′)h′f ′(m− h)⊗ f ′(m− h′)

⊗χh(m− h)⊗ χh′(m− h′)ψh(m− h)ψh′(m− h′)| � 1.

Making the change of variables h′ = h+ l, n = m− h, we obtain

|Eh,l∈[[2N ]];n∈[N ]c(n)−hc(n− l)h+lf ′(n)⊗ f ′(n− l)

⊗χh(n)⊗ χh+l(n− l)ψh(n)ψh+l(n− l)| � 1.

We then simplify this as

(8.5) |Eh,l∈[[2N ]];n∈[N ]c2(l, n)⊗ χh(n)⊗ χh+l(n− l)ψh,l(n)| � 1,

where

c2(l, n) := c(n− l)lf ′(n)⊗ f ′(n− l),

ψh,l(n) = c(n− l)hc(n)−hψh(n)ψh+l(n− l).

Clearly c2 is bounded. As for ψh,l, we see from Definition 8.1 and Corollary E.2

that ψh,l is a nilsequence of degree 6 s− 2 for each h, l.

Returning to (8.5), we use the pigeonhole principle to conclude that for

many k ∈ [[2N ]], we have

|Eh∈[[2N ]];n∈[N ]c2(k, n)⊗ χh(n)⊗ χh+k(n− k)ψh,k(n)| � 1.

Let k be such that the above estimate holds. Applying Cauchy-Schwarz in the

n variable to eliminate the c2(k, n) term, we have

|Eh,h′∈[[2N ]];n∈[N ]χh(n)⊗ χh+k(n− k)⊗ χh′(n)⊗ χh′+k(n− k)ψh,k(n)| � 1,
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and thus, for many k, h, h′ ∈ [[2N ]], we have

|En∈[N ]χh(n)⊗ χh+k(n− k)⊗ χh′(n)⊗ χh′+k(n− k)ψh,k(n)| � 1,

which implies that

n 7→ χh(n)⊗ χh+k(n− k)⊗ χh′(n)⊗ χh′+k(n− k)

is (s−2)-biased on [N ]. Note that this forces h, h+k, h′, h′+k to be an additive

quadruple in H, as otherwise the expression vanishes. Applying a change of

variables, we obtain Proposition 7.3.

For future reference we observe that a simpler version of the same argu-

ment (in which the χ and ψh factors are not present) gives

Proposition 8.4 (Cauchy-Schwarz). Let f ∈ L∞[N ], let H be a dense

subset of [[N ]], and suppose that one has a family of functions χh ∈ L∞(∗Z)

depending in a limit fashion on h, such that ∆hf correlates with χh on [N ] for

all h ∈ H . Then for many (i.e., for � N3) additive quadruples (h1, h2, h3, h4)

in H , the sequence

(8.6) n 7→ χh1(n)⊗ χh2(n+ h1 − h4)⊗ χh3(n)⊗ χh4(n+ h1 − h4)

is biased.

This proposition, in fact, has quite a simple proof; see [22]. Note how

we can conclude (8.6) to be biased and not merely (s − 2)-biased. As such,

Proposition 8.4 saves some “lower order” information that was not present

in Proposition 7.3; this lower order information will be crucial later in the

argument, when we establish the symmetry property in Theorem 7.4.

9. Frequencies and representations

We will use Proposition 7.3 to analyse the “frequency” of the nilcharacters

(χh)h∈H appearing in Theorem 7.2. To motivate the discussion, let us first

suppose that we are in the (significantly simpler) s = 2 case, rather than the

actual case s > 3 of interest. When s = 2, we can represent χh as a linear

phase χh(n) = e(ξhn + θh) for some ξh, θh ∈ ∗T; one can then interpret ξh as

the frequency of h.

In order to describe how this frequency ξh behaves in h, it will be conve-

nient to represent ξh as a linear combination

(9.1) ξh = a1,hξ1,h + · · ·+ aD,hξD,h

of other frequencies ξ1,h, . . . , ξD,h ∈ ∗T, where the ai,h ∈ Z are (standard) inte-

ger coefficients, and the (ξi,h)h∈H are families of frequencies that have better

properties with regards to their dependence on h; for instance, they might

be “core frequencies” ξi,h = ξ∗,i that are independent of h, or they might

be “bracket-linear petal” frequencies that depend in a bracket-linear fashion
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on h, or they might be “regular petal” frequencies that behave in a suitably

“dissociated” manner in h.

We can schematically depict the relationship (9.1) as

[χh] ≈ ηh(Fh),

where [χh] is some sort of “symbol” of χh (which, in the linear case s = 2, is

just ξh mod 1), Fh ∈ ∗TD is the frequency vector Fh = (ξ1,h, . . . , ξD,h), and

ηh : ∗TD → ∗T is the vertical frequency

(9.2) ηh(x1, . . . , xD) := a1,hx1 + · · ·+ aD,hxD.

We will need to find analogues of the above type of representation in higher

degree s > 3. Heuristically, we will wish to represent the symbol [χ]
Ξ
(s−1,r∗)
DR ([N ])

of a nilcharacter χ on [N ] of degree-rank (s − 1, r∗) (which will ultimately

depend on a parameter h, though we will not need this parameter in the

current discussion) heuristically as

(9.3) [χ]
Ξ
(s−1,r∗)
DR ([N ])

≈ η(F),

where F = (ξi,j)16i6s−1;16j6Di is a horizontal frequency vector of frequencies

ξi,j ∈ ∗T associated to a dimension vector ~D = (D1, . . . , Ds−1) and η is a

vertical frequency that generalises (9.2), but whose precise form we are not yet

ready to describe precisely. We then say that the triple ( ~D, η,F) forms a total

frequency representation of χ.

In the previous paper [23] that treated the s = 3 case, such a representa-

tion was implicitly used via the description of degree-rank (2, 2) nilcharacters

χh as essentially being bracket quadratic phases e(
∑J
j=1{αh,jn}βh,jn) mod-

ulo lower order terms (and ignoring the issue of vector-valued smoothing for

now). In our current language, this would correspond to a dimension vector
~D = (2J, 0) and a horizontal frequency vector of the form

(αh,1, . . . , αh,J , βh,1, . . . , βh,J),

and a certain vertical frequency η depending only on J that we are not yet

ready to describe explicitly here. Bracket-calculus identities such as (6.4) could

then be used to manipulate such a universal frequency representation into a

suitably “regularised” form.

In principle, one could also use bracket calculus to extract the symbol of

χh in terms of frequencies such as αh,j and βh,j for higher values of s. However,

as we are avoiding the use of bracket calculus machinery here, we will proceed

instead using the language of nilmanifolds and, in particular, by lifting the

nilmanifold Gh/Γh up to a universal nilmanifold in order to obtain a suitable

space (independent of h) in which to detect relationships between frequencies

such as αh,j , βh,j . In some sense, this universal nilmanifold will play the role

that the unit circle T plays in Fourier analysis.
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We first define the notion of universal nilmanifold that we need.

Definition 9.1 (Universal nilmanifold). A dimension vector is a tuple

~D = (D1, . . . , Ds−1) ∈ Ns−1

of standard natural numbers. Given a dimension vector, we define the universal

nilpotent group G
~D = G

~D,6(s−1,r∗) of degree-rank (s−1, r∗) to be the Lie group

generated by formal generators ei,j for 1 6 i 6 s− 1 and 1 6 j 6 Di, subject

to the following constraints:

• Any (m − 1)-fold iterated commutator of ei1,j1 , . . . , eim,jm with i1 +

· · ·+ im > s is trivial.

• Any (m − 1)-fold iterated commutator of ei1,j1 , . . . , eim,jm with i1 +

· · ·+ im = s− 1 and m > r + 1 is trivial.

We give this group a degree-rank filtration (G
~D
(d,r))(d,r)∈DR by defining

G
~D
(d,r) to be the Lie group generated by (m− 1)-fold iterated commutators of

ei1,j1 , . . . , eim,jm with 1 6 il 6 s−1 and 1 6 jl 6 Dil for all 1 6 l 6 n for which

either i1 + · · ·+ im > d, or i1 + · · ·+ im = d and m > r. It is not hard to verify

that this is indeed a filtration of degree-rank 6 (s− 1, r∗). We then let Γ
~D be

the discrete group generated by the ei,j with 1 6 i 6 s − 1 and 1 6 j 6 Di,

and we refer to G
~D/Γ

~D as the universal nilmanifold with dimension vector ~D.

A universal vertical frequency at dimension vector ~D is a continuous ho-

momorphism η : G
~D
(s−1,r∗)

→ R that sends Γ
~D
(s−1,r∗)

to the integers (i.e., a

filtered homomorphism from G
~D
(s−1,r∗)

/Γ
~D
(s−1,r∗)

to T).

Remark. One can give an explicit basis for this nilmanifold in terms of

certain iterated commutators of the ei,j , following [37], [39]. This can then be

used to relate nilcharacters to bracket polynomials, as in [37], and it is then

possible to develop enough of a “bracket calculus” to substitute for some of the

nilpotent algebra performed in this paper. However, we will not proceed by

such a route here (as it would make the paper even longer than it currently is)

and, in fact, will not need an explicit basis for universal nilmanifolds at all.

Example 9.2. The unit circle with the degree 6 d filtration (see Exam-

ple 4.3) is isomorphic to the universal nilmanifold G(0,...,0,1),6(d,1); thus, for

instance, the unit circle with the lower central series filtration is isomorphic

to G(1),6(1,1). A universal vertical frequency for any of these nilmanifolds is

essentially just a map of the form η : x 7→ nx for some integer n.

Example 9.3. The Heisenberg group (6.1) (with the lower central series

filtration) is the universal nilpotent group G(2,0) = G(2,0),6(2,2) of degree-rank

(2, 2) (after identifying e1, e2 with e1,1 and e1,2 respectively), and the Heisen-

berg nilmanifold G/Γ is the corresponding universal nilmanifold G(2,0)/Γ(2,0).
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If we reduce the degree-rank from (2, 2) to (2, 1), then the commutator [e1, e2]

now trivialises, andG(2,0),6(2,1) collapses to the abelian Lie group R2≡G2,6(1,1),

with universal nilmanifold T2.

If, instead of the lower central series filtration, one gives the Heisenberg

group (6.1) the filtration used in Example 6.21 to model the sequence (6.9),

then this group is isomorphic to the universal nilpotent group G(1,1),6(3,2), with

the two generators e1, e2 of the Heisenberg group now being interpreted as e1,1

and e2,1 respectively.

Example 9.4. Consider the universal nilpotent group G(D1,D2,D3),6(3,3).

This group is generated by “degree 1” generators e1,1, . . . , e1,D1 , “degree 2”

generators e2,1, . . . , e2,D2 , and “degree 3” generators e3,1, . . . , e3,D3 , with any

iterated commutator of total degree exceeding three vanishing (thus, for in-

stance, the degree 3 generators are central and the degree 2 generators com-

mute with each other). If one drops the degree-rank from (3, 3) to (3, 2), then

all triple commutators of degree 1-generators, such as [[e1,i, e1,j ], e1,k], now van-

ish, reducing the dimension of the nilpotent group. Dropping the degree-rank

further to (3, 1) also eliminates the commutators of degree 1 and degree 2 gen-

erators (thus making the degree 2 generators central). Finally, dropping the

degree-rank to (3, 0) eliminates the degree 3 generators completely, and indeed

G(D1,D2,D3),6(3,0) is isomorphic to G(D1,D2),6(2,2).

Example 9.5. The free s-step nilpotent group on D generators, in our

notation, becomes G(D,0,...,0),6(s,s). We may thus view the universal nilpotent

groups G
~D,6(d,r) as generalisations of the free nilpotent groups, in which some

of the generators are allowed to be weighted to have degrees greater than 1,

and there is an additional rank parameter to cut down some of the top-order

behaviour.

It will be an easy matter to lift a nilcharacter χ from a general degree-

rank 6 (s− 1, r∗) nilmanifold G/Γ to a universal nilmanifold G
~D/Γ

~D for some

sufficiently large dimension vector ~D (see Lemma 9.12 below). Once one does

so, we will need to extract the various “top order frequencies” present in that

nilcharacter. For instance, if s = 4 and χ is (some vector-valued smoothing

of) the degree 3 phase

n 7→ e({αn}βn2 + γn3 + δn2 + {εn}µn+ νn+ θ),

then we will need to extract out the “degree 3” frequency γ, the “degree 2”

frequency β, and the “degree 1” frequency α. (The remaining parameters

δ, ε, µ, ν, θ only contribute to terms of degree strictly less than 3, and will not

need to be extracted.)

As it turns out, the degree i frequencies will most naturally live in the ith

horizontal torus of the relevant universal nilmanifold; we now pause to define

these torii precisely. (These torii also implicitly appeared in [18, App. A].)
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Definition 9.6 (Horizontal Taylor coefficients). LetG=(G, (G(d,r))(d,r)∈DR)

be a degree-rank-filtered nilpotent group. For every i > 0, define the ith hori-

zontal space Horizi(G) to be the abelian group

Horizi(G) := G(i,1)/G(i,2),

with the convention that G(d,r) := G(d+1,0) if r > d (so in particular, G(1,2) =

G(2,0)).

For any polynomial map g ∈ poly(ZN → GN), we define the ith horizontal

Taylor coefficient Taylori(g) ∈ Horizi(G) to be the quantity

Taylori(g) := ∂1 · · · ∂1g(n) mod G(i,2)

for any n ∈ Z. Note that this map is well defined since ∂1 · · · ∂1g takes values

in G(i,1) and has first derivatives in G(i+1,1) and hence in G(i,2).

If Γ is a subgroup of G, we define

Horizi(G/Γ) := Horizi(G)/Horizi(Γ),

and for a polynomial orbit

O ∈ poly(ZN → (G/Γ)N) := poly(ZN → GN)/poly(ZN → ΓN),

we define the ith horizontal Taylor coefficient Taylori(O) ∈ Horizi(G/Γ) to be

the quantity defined by

Taylori(gΓ) := Taylori(g) mod Horizi(Γ)

for any g ∈ poly(ZN → GN); it is easy to see that this quantity is well defined.

These concepts extend to the ultralimit setting in the obvious manner;

thus, for instance, if O ∈ ∗poly(HN → (G/Γ)N), then Taylori(O) is an element

to ∗Horizi(G/Γ).

If G/Γ is a degree-rank filtered nilmanifold, it is easy to see that the

horizontal spaces Horizi(G) are abelian Lie groups and that Horizi(Γ) is a sub-

lattice of Horizi(G), so Horizi(G/Γ) is a torus, which we call the ith horizontal

torus of G/Γ.

Remark. The above definition can be generalised by replacing the domain

Z with an arbitrary additive group H = (H,+). In that case, the Taylor

coefficient Taylori(g) is not a single element of Horizi(G), but is instead a map

Taylori(g) : H i → Horizi(G) defined by the formula

Taylori(g)(h1, . . . , hk) := ∂h1 · · · ∂hkg(n) mod G(i,2)

for h1, . . . , hk ∈ H. Using Corollary B.7 we easily see that this map is sym-

metric and multilinear; thus, for instance, when H = Z, we have

Taylori(g)(h1, . . . , hk) = h1 · · ·hkTaylori(g).

However, we will not need this generalisation here.
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A further application of Corollary B.7 shows that the map g 7→ Taylori(g)

is a homomorphism. As a corollary, we see that any translate g(·+h) = (∂hg)g

of g will have the same Taylor coefficients as g: Taylori(g(·+h)) = Taylori(g).

Example 9.7. Consider the unit circle G/Γ = T with the degree 6 d fil-

tration (see Example 4.3). Then the dth horizontal torus is T and all other

horizontal tori are trivial. If α0, . . . , αd ∈ ∗R, then the map O : n 7→ α0 + · · ·+
αdn

d mod 1 is a polynomial orbit in ∗poly(ZN → TN), and the dth horizontal

Taylor coefficient is the quantity d!αd mod 1 from ∗Zd to ∗T. (All other hori-

zontal Taylor coefficients are of course trivial.) Thus we see that the horizontal

coefficient captures most of the top order coefficient αd, but totally ignores all

lower order terms.

Example 9.8. Let G = G(2,1) = G(2,1),6(2,2) be the universal nilpotent

group of degree-rank (2, 2). Thus G is generated by e1,1, e1,2, e2,1, with relations

[[e1,1, e1,2], e1,i] = [e1,i, e2,1] = 1 for i = 1, 2

and with the degree-rank filtration

G(0,0) = G(1,0) = G(1,1) = G

G(2,0) = G(2,1) = 〈[e1,1, e1,2], e2,1〉R
G(2,2) = 〈[e1,1, e1,2]〉R

and the lattice

Γ = Γ(2,2) = Γ(2,2),6(2,1) := 〈e1,1, e1,2, e2,1〉.

Let α, β, γ ∈ ∗R, and consider the orbit O ∈ ∗poly(ZN → (G/Γ)N) defined by

the formula

O(n) := enα1,1e
nβ
1,2e

n2γ
2,1 ;

this is polynomial by Example 4.4. Then

Taylor1(g) = ∂1g(n) mod ∗G(2,0) = eα1,1e
β
1,2 mod ∗G(2,0)

and

Taylor2(g) = e2γ
2,1 mod ∗G(2,2).

Then Taylor0(g(n)∗Γ) = g(n)∗Γ

Taylor1(g∗Γ) = eα1,1e
β
1,2 mod G(2,0)

∗Γ

and

Taylor2(g∗Γ) = e2γ
2,1 mod ∗G(2,2)Γ(2,0).

Example 9.9. Let G/Γ be the Heisenberg nilmanifold (6.1) with the lower

central series filtration. Thus G/Γ is a degree 6 2 nilmanifold, which can then

be viewed as a degree-rank 6 (2, 2) nilmanifold by Example 6.11. The first

horizontal torus Horiz1(G/Γ) is isomorphic to the 2-torus T2, with generators
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given by e1, e2 mod G2Γ. The second horizontal torus Horiz2(G/Γ) is trivial,

since G(2,1) = [G,G] is equal to G(2,0) = G2. If O ∈ ∗poly(ZN → (G/Γ)N)

is the polynomial orbit O : n 7→ eβn2 eαn1
∗Γ, then the first Taylor coefficient is

the quantity (α, β). Note also that if one modified the polynomial orbit by a

further factor of [e1, e2]γn
2+δn+ε, this would not impact the Taylor coefficients

at all. Thus we see that the Taylor coefficients only capture the frequencies

associated to raw generators such as e1 and e2, and not to commutators such

as [e1, e2].

Example 9.10. Now consider the Heisenberg group (6.1) with the filtra-

tion used in Example 6.21 to model the sequence (6.9). This is now a de-

gree 6 3 nilmanifold, whose first horizontal torus Horiz1(G/Γ) is isomor-

phic to the one-torus T with generator e2 mod G(2,0)Γ, whose second hor-

izontal torus Horiz2(G/Γ) is isomorphic to the one-torus T with generator

e1 mod G(2,2)Γ(2,1), and whose third horizontal torus Horiz3(G/Γ) is trivial. If

O ∈ ∗poly(ZN → (G/Γ)N) is the polynomial orbit O : n 7→ eβn2 eαn
2

1
∗Γ, then the

first Taylor coefficient is the linear limit map n 7→ βn mod 1, and the second

Taylor coefficient is the quantity 2!α mod 1.

We now have enough notation to be able to formally assign frequencies to

a nilcharacter, by means of a package of data that we shall call a representation.

Definition 9.11 (Representation). Let χ ∈ L∞[N ] be a nilcharacter of

degree-rank 6 (s− 1, r∗). A representation of χ is a collection of the following

data:

(i) a filtered nilmanifold G/Γ of degree-rank 6 (s− 1, r∗);

(ii) a filtered nilmanifold G0/Γ0 of degree-rank 6 (s− 1, r∗ − 1);

(iii) a function F ∈ Lip(∗(G/Γ×G0/Γ0)→ Sω);

(iv) polynomial orbits O ∈ ∗poly(ZN → (G/Γ)N) and O0 ∈ ∗poly(ZN →
(G0/Γ0)N);

(v) a dimension vector ~D = (D1, . . . , Ds−1) ∈ Ns−1;

(vi) a universal vertical frequency η : G
~D
(s−1,r∗)

→ R at dimension ~D on

the universal nilmanifold G
~D/Γ

~D of degree-rank (s− 1, r∗);

(vii) a filtered homomorphism φ : G
~D/Γ

~D → G/Γ (see Definition 6.15);

(viii) a horizontal frequency vector F = (ξi,j)16i6s−1;16j6Di of frequencies

ξi,j ∈ ∗T
that obeys the following properties:

(i) For all n ∈ [N ], one has

(9.4) χ(n) = F (O(n),O0(n)).
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(ii) For every t ∈ G ~D
(s−1,r∗)

, all x ∈ G/Γ, and x0 ∈ G0/Γ0, one has

(9.5) F (φ(t)x, x0) = e(η(t))F (x, x0).

(iii) For every 1 6 i 6 s− 1, one has

(9.6) Taylori(O) = πHorizi(G/Γ)

Ñ
φ(

Di∏
j=1

e
ξi,j
i,j )

é
,

where πHorizi(G/Γ) : Gi → Horizi(G/Γ) is the projection map; observe

that the right-hand side is well defined even though ξi,j is only defined

modulo 1.

We call the triplet ( ~D,F , η) a total frequency representation of the nilcharac-

ter χ.

This is a rather complicated definition, and we now illustrate it with a

number of examples. We begin with the s = 2, r∗ = 1 case, taking χ to be the

degree-rank (1, 1) nilcharacter

χ(n) := e(ξn+ θ)

for some ξ, θ ∈ ∗R. Let D1 > 1 be an integer, let F = (ξ1,1, . . . , ξ1,D1) ∈
∗TD1 be a collection of frequencies, and let η : RD1 → R be the universal

vertical frequency η(x1, . . . , xD1) := a1x1 + · · · + aD1xD1 for some integers

a1, . . . , aD1 ∈ Z. Then ((D1),F , η) will be a total frequency representation of

χ if ξ = a1ξ1,1+· · ·+aD1ξ1,D1 . Indeed, in that case, one can takeG/Γ = T (with

the degree-rank 6 (1, 1) filtration; see Example 6.12), G0/Γ0 to be trivial, F

equal to the exponential function (x, ()) 7→ e(x), φ : TD1 → T to be the filtered

homomorphism

φ(x1, . . . , xD1) := a1x1 + · · ·+ aD1xD1 ,

and O ∈ ∗poly(ZN → TN) to be the orbit n 7→ ξn + θ mod 1. This should be

compared with (9.3) and the discussion at the start of the section.

For a slightly more complicated example, we take s = 3, r∗ = 1, and let χ

be the degree-rank (2, 1) nilcharacter

χ(n) := e(αn2 + βn+ γ).

We let D2 > 1 be an integer, set D1 := 0, let F = ((), (ξ2,1, . . . , ξ2,D2)) ∈
∗T0× ∗TD2 be a collection of frequencies, and let η : RD2 → R be the universal

vertical frequency η(x1, . . . , xD2) := a1x1 + · · · + aD2xD2 for some integers

a1, . . . , aD2 ∈ Z. Then ((0, D2),F , η) will be a total frequency representation

of χ if ξ = a1ξ2,1 + · · · + aD2ξ2,D2 (cf. (9.3)). Indeed, we can take G/Γ = T
with the degree-rank 6 (2, 1) filtration (see Example 6.12), G0/Γ0 = T with

the degree-rank 6 (1, 1) filtration, the orbit

O(n) := (αn2 mod 1, βn+ γ mod 1)
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and F : G/Γ×G0/Γ0 → S1 to be the function

F (x, y) := e(x)e(y),

and φ : TD2 → T to be the filtered homomorphism

φ(x1, . . . , xD1) := a1x1 + · · ·+ aD1xD1 .

Note how the lower order terms βn + γ in the phase of χ are shunted off to

the lower degree-rank nilmanifold G0/Γ0 and thus do not interact at all with

the data F , η. In this particular case, this shunting off was unnecessary, and

one could have easily folded these lower order terms into the dynamics of the

primary nilmanifold G/Γ; but in the next example we give, the lower order

behaviour does genuinely need to be separated from the top order behaviour

by placing it in a separate nilmanifold.

We now turn to a genuinely non-abelian example of a universal represen-

tation. For this, we take s = 3, r∗ = 2, and let χ be a degree-rank (2, 2)

nilcharacter that is a suitable vector-valued smoothing of the bracket polyno-

mial phase

n 7→ e({αn}βn+ γn2).

We can express this nilcharacter as

χ(n) = F (O(n),O0(n)),

where O ∈ ∗poly(ZN → (G/Γ)N) is the orbit

O(n) := eβn2 eαn1 Γ

into the Heisenberg nilmanifold (6.1) (which we give the degree-rank 6 (2, 2)

filtration), O0 ∈ ∗poly(ZN → (G/Γ)N) is the orbit

O0(n) := γn2 mod 1

into the unit circle G0/Γ0 = T (which we give the degree-rank 6 (2, 1) filtra-

tion; see Example 6.12), and F is a suitable vector-valued smoothing of the

map

(et11 e
t2
2 [e1, e2]t12Γ, y) 7→ e(t12)e(y)

for t1, t2, t12 ∈ I0. By Example 9.9, we have Taylor1(O) = (α mod 1, β mod 1)

and Taylor2(O) is trivial.

Now let D1>1 be an integer, set D2 := 0, and let F=((ξ1,1, . . . , ξ1,D1), ())

∈ ∗TD1×∗T0 be a collection of frequencies. The subgroup G
(D1,0)
(2,2) of the univer-

sal nilmanifold G(D1,0) = G(D1,0),6(2,2) is then the abelian Lie group generated

by the commutators [e1,i, e1,j ] for 16 i<j6D1. We let a1, . . . , aD1 , b1, . . . , bD1
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∈ Z be integers, and let φ : G(D1,0)/Γ(D1,0) → G/Γ be the filtered homomor-

phism that maps e1,i to eai1 e
bi
2 for i = 1, . . . , D1, thus

φ

Ç D1∏
i=1

eti1,i
∏

16i<j6D1

[e1,i, e1,j ]
ti,jΓ(D1,0)

å
=

D1∏
i=1

(ea11 e
bi
2 )ti

∏
16i<j6D1

[eai1 e
bi
2 , e

aj
1 e

bj
2 ]ti,jΓ

= e
∑D1

i=1 aiti
1 e

∑D1
i=1 biti

2 [e1, e2]−
∑D1

i=1 aibi(
ti
2)−
∑

biajtitj+
∑

(aibj−ajbi)ti,jΓ,

where the last two summations are over 1 6 i < j 6 d. Let us now see what

conditions are required for ((D1, 0), η,F) to be a total frequency representation

of χ. Condition (9.6) becomes the constraints

α =
D1∑
i=1

aiξ1,i, β =
D1∑
i=1

biξ1,i,

while condition (9.5) becomes

(9.7) η([e1,i, e1,j ]) = aibj − ajbi
for all 1 6 i < j 6 D1, or equivalently

η

Ç ∏
16i<j6D1

[e1,i, e1,j ]
ti,j

å
=

∑
16i<j6D1

(aibj − ajbi)ti,j .

Conversely, with these constraints we obtain a total frequency representation

of χ by ((D1, 0), η,F). This should be compared with the heuristic (9.3). (Note

from (6.4) that the top order component {αn}βn of χ is morally anti-symmetric

in α, β modulo lower order terms, which is consistent with the anti-symmetry

observed in (9.7).) Note also that the term γn2, which has lesser degree-rank

than the top order term {αn}βn, plays no role, due to it being shunted off

to the lower degree-rank nilmanifold G0/Γ0. If instead we placed this term as

part of the principal nilmanifold, then this would create a nontrivial second

Taylor coefficient Taylor2(O), which would then require a nonzero value of

D2 in order to recover a total frequency representation. Thus we see that in

order to neglect terms of lesser degree-rank (but equal degree) it is necessary

to create the secondary nilmanifold G0/Γ0 as a sort of “junk nilmanifold” to

hold all such terms.

We make the easy remark that every nilcharacter χ of degree-rank 6
(s− 1, r∗) has at least one representation.

Lemma 9.12 (Existence of representation). Let χ be a nilcharacter of

degree-rank (s − 1, r∗) on [N ]. Then there exists at least one total frequency

representation ( ~D,F , η) of χ.
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Proof. By definition, χ = F ◦ O for some degree-rank 6 (s − 1, r∗) nil-

manifold G/Γ, some O ∈ ∗poly(ZN → (G/Γ)N), and some F ∈ Lip(∗(G/Γ))

with a vertical frequency. For each 1 6 i 6 s − 1, let fi,1, . . . , fi,Di be a basis

of generators for Γi, and let ~D := (D1, . . . , Ds−1) be the associated dimension

vector. Then we have a filtered homomorphism φ : G
~D → G that maps ei,j to

fi,j for all 1 6 i 6 s− 1 and 1 6 j 6 Di. It is easy to see that φ is surjective

from G
~D
i to Gi for each i, and so the map πHorizi(G/Γ) ◦ φ is surjective from

G
~D
i to Horizi(G/Γ). It is now an easy matter to locate frequencies ξi,j obeying

(9.6), and the vertical frequency property of F can be pulled back via φ to give

(9.5). Setting G0/Γ0 to be trivial, we obtain the claim. �

To conclude this section, we now give some basic facts about total fre-

quency representations. These facts will not actually be used in this paper,

but may serve to consolidate one’s intuition about the nature of these repre-

sentations. We first observe some linearity in the vertical frequency η.

Lemma 9.13 (Linearity). Suppose χ, χ′ are two nilcharacters of degree-

rank (s− 1, r∗) on [N ] that have total frequency representations ( ~D,F , η) and

( ~D,F , η′) respectively. Then χ has a total frequency representation ( ~D,F ,−η),

and χ⊗ χ′ has a total frequency representation ( ~D,F , η + η′).

Proof. This is a routine matter of chasing down the definitions, and noting

that nilmanifolds, polynomial orbits, etc. behave well with respect to direct

sums. �

Lemma 9.14 (Triviality). Suppose that χ is a nilcharacter of degree-rank

(s − 1, r∗) on [N ] that has a total frequency representation ( ~D,F , 0). Then χ

is a nilsequence of degree-rank 6 (s− 1, r∗ − 1) (i.e., [χ]
Symb

(s−1,r∗)
DR ([N ])

= 0).

Proof. By construction, we have

χ(n) = F (O(n),O0(n))

for some limit polynomial orbits O ∈ ∗poly(ZN → (G/Γ)N), O0 ∈ ∗poly(ZN →
(G0/Γ0)N) into filtered nilmanifolds G/Γ, G0/Γ0 of degree-rank 6 (s − 1, r∗)

and 6 (s − 1, r∗ − 1) respectively, where F ∈ Lip(∗(G/Γ × G0/Γ0) → Sω).

Furthermore, there exists a filtered homomorphism φ : G
~D/Γ

~D → G/Γ such

that (9.6) holds and such that

(9.8) F (φ(t)x, x0) = F (x, x0)

for all t ∈ G ~D
(s−1,r∗)

.

Let T be the closure of the set {φ(t) mod Γ(s−1,r∗) : t ∈ G ~D
(s−1,r∗)

}; this

is a subtorus of the torus G(s−1,r∗)/Γ(s−1,r∗), and thus acts on G/Γ. As F is

continuous and obeys the invariance (9.8), we see that F is T -invariant; we



1288 BEN GREEN, TERENCE TAO, and TAMAR ZIEGLER

may thus quotient out by T and assume that T is trivial. In particular, φ now

annihilates G
~D
(s−1,r∗)

.

We give G a new degree-rank filtration (G′(d,r))(d,r)∈DR (smaller than the

existing filtration (G(d,r))(d,r)∈DR) by defining G′(d,r) to be the connected sub-

group of G generated by G(d,r+1) (recalling the convention G(d,r) := G(d+1,0)

when r > d) together with the image φ(G
~D
(d,r)) of G

~D
(d,r). It is easy to see that

this is still a filtration and that G/Γ remains a filtered nilmanifold with this

filtration, but now the degree-rank is 6 (s−1, r∗−1) rather than 6 (s−1, r∗).

Furthermore, from (9.6) we see that O is still a polynomial orbit with respect to

this new filtration. As such, χ is a nilsequence of degree-rank 6 (s− 1, r∗− 1),

as required. �

Combining the above two lemmas we obtain the following corollary.

Corollary 9.15 (Representation determines symbol). Suppose that χ, χ′

are two nilcharacters of degree-rank (s−1, r∗) on [N ] that have a common total

frequency representation ( ~D,F , η). Then χ, χ′ are equivalent. In other words,

the symbol [χ]Ξ(s−1,r∗)([N ]) depends only on ( ~D,F , η).

Note that the above results are consistent with the heuristic (9.3).

10. Linear independence and the sunflower lemma

A basic fact of linear algebra is that every finitely generated vector space

is finite-dimensional. In particular, if v1, . . . , vl are a finite collection of vectors

in a vector space V over a field k, then there exists a finite linearly independent

set of vectors v′1, . . . , v
′
l′ in V such that each of the vectors v1, . . . , vl is a linear

combination (over k) of the v′1, . . . , v
′
l′ . Indeed, one can take v′1, . . . , v

′
l′ to

be a set of vectors generating v1, . . . , vl for which l′ is minimal, since any

linear relation amongst the v′1, . . . , v
′
l′ can be used to decrease5 the “rank” l′,

contradicting minimality (cf. the proof of classical Steinitz exchange lemma in

linear algebra).

We will need analogues of this type of fact for frequencies ξ1, . . . , ξl in the

limit unit circle ∗T. However, this space is not a vector space over a field, but

is merely a module over a commutative ring Z. As such, the direct analogue

5Indeed, one can recast this argument as a rank reduction argument instead of a minimal

rank argument, for the same reason that the principle of infinite descent is logically equiva-

lent to the well-ordering principle. In this infinitary (ultralimit) setting, there is very little

distinction between the two approaches, although the minimality approach allows for slightly

more compact notation and proofs. But in the finitary setting, it becomes significantly more

difficult to implement the minimality approach, and the rank reduction approach becomes

preferable. See [23] for finitary “rank reduction” style arguments analogous to those given

here.
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of the above statement fails; indeed, any standard rational in ∗T, such as
1
2 mod 1, clearly cannot be represented as a linear combination (over Z) of a

finite collection of frequencies in ∗T that are linearly independent over Z.

However, the standard rationals are the only obstruction to the above

statement being true. More precisely, we have

Lemma 10.1 (Baby regularity lemma). Let l ∈ N, and let ξ1, . . . , ξl∈∗T.

Then there exists l′, l′′ ∈ N and ξ′1, . . . , ξ
′
l′ , ξ
′′
1 , . . . , ξ

′′
l′′ ∈ ∗T such that ξ′1, . . . , ξ

′
l′

are linearly independent over Z (i.e., there exist no standard integers a1, . . . , al′ ,

not all zero, such that a1ξ
′
1 + · · · + al′ξ

′
l′ = 0), each of the ξ′′i are rational

(i.e., they live in Q mod 1), and each of the ξ1, . . . , ξl are linear combinations

(over Z) of the ξ′1, . . . , ξ
′
l′ , ξ
′′
1 , . . . , ξ

′′
l′′ .

Proof. Fix l, ξ1, . . . , ξl. Define a partial solution to be a collection of ob-

jects l′, l′′, ξ′1, . . . , ξ
′
l′ , ξ

′′
1 , . . . , ξ

′′
l′′ satisfying all of the required properties, except

possibly for the linear independence of the ξ′1, . . . , ξ
′
l′ . Clearly at least one

partial solution exists, since one can take l′ := l, l′′ := 0, and ξ′i := ξi for all

1 6 i 6 l. Now let l′, l,′′ ξ′1, . . . , ξ
′
l′ , ξ
′′
1 , . . . , ξ

′′
l′′ be a partial solution for which

l′ is minimal. We claim that ξ′1, . . . , ξ
′
l′ is linearly independent over Z, which

will give the lemma. To see this, suppose for contradiction that there existed

a1, . . . , al′ ∈ Z, not all zero, such that a1ξ
′
1 + · · · + al′ξ

′
l′ = 0. Without loss of

generality we may assume that a1 is nonzero. For each 2 6 j 6 l′, let ξ̃′j ∈ ∗T
be such that a1ξ̃

′
j = ξ′j . We then have

ξ′1 = −
l′∑
j=2

aj
a1
ξ′j + q mod 1

for some standard rational q ∈ Q. If we then replace ξ′1, . . . , ξ
′
l′ by ξ̃′2, . . . , ξ̃

′
l′

(decrementing l′ to l′ − 1) and append q to ξ′′1 , . . . , ξ
′′
l′′ , then we obtain a new

partial solution with a smaller value of l′, contradicting minimality. The claim

follows. �

This lemma is too simplistic for our applications, and we will need to

modify it in a number of ways. The first is to introduce an error term.

Definition 10.2 (Linear independence). Let ε > 0 be a limit real, and let

l ∈ N. A set of frequencies ξ1, . . . , ξl ∈ ∗T is said to be independent modulo

O(ε) if there do not exist any collection a1, . . . , al ∈ Z of standard integers,

not all zero, for which

a1ξ1 + · · ·+ alξl = O(ε) mod 1.

(Thus, for instance, the empty set (with k = 0) is trivially independent modulo

O(ε).) Equivalently, ξ1, . . . , ξl are linearly independent over Z after quotienting

out by the subgroup εR mod 1.
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This definition is only nontrivial when ε is an infinitesimal (i.e., ε = o(1)).

In practice, ε will be a negative power of the unbounded integer N .

We have the following variant of Lemma 10.1.

Lemma 10.3 (Regularising one collection of frequencies). Let l ∈ N, let

ξ1, . . . , ξl ∈ ∗T, and let ε > 0 be a limit real. Then there exist l′, l,′′ l′′′ ∈ N and

ξ′1, . . . , ξ
′
l′ , ξ
′′
1 , . . . , ξ

′′
l′′ , ξ

′′′
1 , . . . , ξ

′′′
l′′′ ∈ ∗T

such that ξ′1, . . . , ξ
′
l′ are linearly independent modulo O(ε), each of the ξ′′i are

rational, each of the ξ′′′i are O(ε), and each of the ξ1, . . . , ξl are linear combi-

nations (over Z) of the ξ′1, . . . , ξ
′
l′ , ξ
′′
1 , . . . , ξ

′′
l′′ , ξ

′′′
1 , . . . , ξ

′′′
l′′′ .

One can view Lemma 10.1 as the degenerate case ε = 0 of the above

lemma.

Proof. We repeat the proof of Lemma 10.1. Define a partial solution to

be a collection of objects l′, l,′′ l′′, ξ′1, . . . , ξ
′
l′ , ξ
′′
1 , . . . , ξ

′′
l′′ , ξ

′′′
1 , . . . , ξ

′′′
l′′′ obeying all

the required properties except possibly for the linear independence property.

Again it is clear that at least one partial solution exists, so we may find a partial

solution for which l′ is minimal. We claim that this is a complete solution. For

if this is not the case, we have

a1ξ
′
1 + · · ·+ al′ξ

′
l′ = O(ε) mod 1

for some a1, . . . , al′ ∈ Z, not all zero. Again, we may assume that a1 6= 0. We

again select ξ̃′2, . . . , ξ̃
′
l′ ∈ ∗T with a1ξ̃

′
j = ξ′j for all 2 6 j 6 l′, and we observe

that

ξ′1 = −
l′∑
j=2

aj
a1
ξ′j + q + s mod 1

for some standard rational q ∈ Q and some s = O(ε). If we then replace

ξ′1, . . . , ξ
′
l′ by ξ̃′2, . . . , ξ̃

′
l′ , and append q and s to ξ′′1 , . . . , ξ

′′
l′′ and ξ′′′1 , . . . , ξ

′′′
l′′′ re-

spectively, we contradict minimality, and the claim follows. �

This lemma is still far too simplistic for our needs, because we will not be

needing to regularise just one collection ξ1, . . . , ξl of frequencies, but a whole

family ξh,1, . . . , ξh,l of frequencies, where h ranges over a parameter set H. Such

frequencies can exhibit a range of behaviour in h; at one extreme, they might

be completely independent of h, while at the other extreme, the frequencies

may vary substantially as h does. It turns out that in some sense, the general

case is a combination of these extreme cases.

In this direction we have the following stronger version of Lemma 10.3.

Lemma 10.4 (Regularising many collections of frequencies). Let l ∈ N,

let ε > 0 be a limit real, let H be a limit finite set, and for each h ∈ H , let

ξh,1, . . . , ξh,l be frequencies in ∗T that depend in a limit fashion on h. Then
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there exist a dense subset H ′ of H , standard natural numbers, l∗, l
′, l′′∗ , l

′′′ ∈ N,

“core” frequencies ξ∗,1, . . . , ξ∗,l∗ , ξ
′′
∗,1, . . . , ξ

′′
l′′∗
∈ ∗T, and “petal” frequencies

ξ′h,1, . . . , ξ
′
h,l′ , ξ

′′′
h,1, . . . , ξ

′′′
h,l′′′ ∈ ∗T

for each h ∈ H ′ depending in a limit fashion on h, and obeying the following

properties :

(i) (Independence). For almost all triples (h1, h2, h3) ∈ (H ′)3 (i.e., for

all but o(|H ′|3) such triples), the frequencies

ξ∗,1, . . . , ξ∗,l∗ , ξ
′
h1,1, . . . , ξ

′
h1,l′ , ξ

′
h2,1, . . . , ξ

′
h2,l′ , ξ

′
h3,1, . . . , ξ

′
h3,l′

are linearly independent modulo O(ε).

(ii) (Rationality). For each 1 6 j 6 l′′, ξ′′∗,j is a standard rational.

(iii) (Smallness). For each h ∈ H ′ and 1 6 j 6 l′′′, ξ′′′h,j = O(ε).

(iv) (Representation). For each h ∈ H ′, the ξh,1, . . . , ξh,l are linear combi-

nations over Z of the frequencies

ξ∗,1, . . . , ξ∗,l∗ , ξ
′
h,1, . . . , ξ

′
h,l′ , ξ

′′
∗,1, . . . , ξ

′′
∗,l′′ , ξ

′′′
h,1, . . . , ξ

′′′
h,l′′′ .

Note that Lemma 10.4 collapses to Lemma 10.3 if H is a singleton set.

Proof. We again use the usual argument. Define a partial solution to be

a collection of objects H ′, l∗, l
′, l′′∗ , l

′,′′ ξ∗,j , ξ
′
h,j , ξ

′′
∗,j , ξ

′′′
h,j obeying all the required

properties except possibly for the independence property. Again, at least one

partial solution exists, since we may take H ′ := H, l∗ := l′′ := l′′′ := 0, l′ := l,

and ξ′j,h := ξj,h for all h ∈ H and 1 6 j 6 l. We may thus select a partial

solution for which l′ is minimal; and among all such partial solutions with l′

minimal, we choose a solution with l∗ minimal for fixed l′ (i.e., we minimise

with respect to the lexicographical ordering on l′ and l∗). We claim that this

doubly minimal solution obeys the independence property, which would give

the claim.

Suppose the independence property fails. Carefully negating the quanti-

fiers and using Lemma A.9, we conclude that there exist standard integers a∗,j
for 1 6 j 6 l∗ and a′i,j for i = 1, 2, 3 and 1 6 j 6 l′, not all zero, such that one

has the relation

a∗,1ξ∗,1 + · · ·+ a∗,l∗ξ∗,l∗ +
3∑
i=1

l′∑
j=1

a′i,jξ
′
hi,j = O(ε) mod 1

for many triples (h1, h2, h3) ∈ (H ′)3.

Suppose first that all of the a′i,j vanish, so that we have a linear relation

a∗,1ξ∗,1 + · · ·+ a∗,l∗ξ∗,l∗ = O(ε) mod 1

that only involves core frequencies. Then the situation is basically the same

as that of Lemma 10.3; without loss of generality we may take a∗,1 6= 0, and if
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we then choose ξ̃∗,2, . . . , ξ̃∗,l∗ so that a∗,1ξ̃∗,j = ξ∗,j , then we can rewrite

ξ∗,1 = −
l′∑
j=2

a∗,j ξ̃∗,j + q + s mod 1

for some q ∈ Q and s = O(ε), and one can then replace the ξ∗,1, . . . , ξ∗,l∗ with

ξ̃∗,2, . . . , ξ̃∗,l∗ (decrementing l∗ by 1) and append q and s to each of the collec-

tions ξ′′h,1, . . . , ξ
′′
h,l′′ and ξ′′′h,1, . . . , ξ

′′′
h,l′′′ respectively for each h ∈ H, contradicting

minimality.

Now suppose that not all of the a′i,j vanish; without loss of generality we

may assume that a′1,1 is nonzero. By the pigeonhole principle, we can find

h2, h3 ∈ H ′ such that

a∗,1ξ∗,1 + · · ·+ a∗,l∗ξ∗,l∗ +
3∑
i=1

l′∑
j=1

a′i,jξ
′
hi,j = O(ε) mod 1

for all h1 in a dense subset H ′′ of H ′. Now let ξ̃∗,j ∈ ∗T for 1 6 j 6 l∗ and

ξ̃′h,j ∈ ∗T for h ∈ H ′, 1 6 j 6 l′ be such that a′1,1ξ̃∗,j = ξ∗,j and a′1,1ξ̃
′
h,j = ξ′h,j .

Then we have

ξ′h1,1 = −
l′∑
j=2

a′1,j ξ̃
′
h1,j −

l∗∑
j=1

a∗,j ξ̃∗,j −
3∑
i=2

l′∑
j=1

a′i,j ξ̃
′
hi,j + qh1 + sh1 mod O(1)

for some standard rational qh1 and some sh1 = O(ε). Furthermore, one can

easily ensure that qh1 , sh1 depend in a limit fashion on h1. By Lemma A.9 (and

refining H ′) we may assume that qh1 = q∗ is independent of h1. We may thus

replace H ′ by H ′′ and replace ξ′h,1, . . . , ξ
′
h,l′ by ξ̃′h,2, . . . , ξ̃

′
h,l′ (decrementing l′ by

1), while appending q∗ and sh to ξ′′∗,1, . . . , ξ
′′
∗,l′′ and ξ′′′h,1, . . . , ξ

′′′
h,l′′′ respectively,

and replacing ξ∗,1, . . . , ξ∗,l∗ by ξ̃∗,1, . . . , ξ̃∗,l∗ , ξ̃
′
h2,1

, . . . , ξ̃h2,l′ , ξ̃
′
h3,1

, . . . , ξ̃h3,l′ (in-

crementing l∗ as necessary). This contradicts the minimality of the partial

solution, and the claim follows. �

This is still too simplistic for our applications, as the independence hypoth-

esis on triples (h1, h2, h3) will not quite be strong enough to give everything

we need. Ideally, (in view of Proposition 7.3) we would like to have inde-

pendence of the ξ∗,1, . . . , ξ∗,l∗ , ξ
′
h1,1

, . . . , ξ′h4,l′ for almost all additive quadruples

h1 + h2 = h3 + h4 in H ′. Unfortunately, this need not be the case; indeed,

if the original ξh,i are linear in h, say ξh,i = αih for some αi ∈ ∗T and all

1 6 i 6 l′, then we have ξh1,i + ξh2,i = ξh3,i + ξh4,i for all additive quadruples

h1 + h2 = h3 + h4 in H ′ and all 1 6 i 6 l′, and as a consequence it is not

possible to obtain a decomposition as in Lemma 10.4 with the stronger inde-

pendence property mentioned above. A similar obstruction occurs if the ξh,i
are bracket-linear in h; for instance, if ξh,i = {αih}βi mod 1 for some αi ∈ ∗T
and βi ∈ ∗R.
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Using tools from additive combinatorics, we can show that bracket-linear

frequencies are the only obstructions to independence on additive quadruples.

More precisely, we have

Lemma 10.5. Let l ∈ N, let ε > 0 be a limit real, let H be a dense limit

subset of [[N ]], and for each h ∈ H , let ξh,1, . . . , ξh,l be frequencies in ∗T that

depend in a limit fashion on h. Then there exists a dense subset H ′ of H ,

standard natural numbers, l∗, l
′, l′′∗ , l

′,′′ l′′′′ ∈ N, “core” frequencies

ξ∗,1, . . . , ξ∗,l∗ , ξ
′′
∗,1, . . . , ξ

′′
∗,l′′∗ ∈

∗T

and “petal” frequencies

ξ′h,1, . . . , ξ
′
h,l′ , ξ

′′′
h,1, . . . , ξ

′′′
h,l′′′ξ

′′′′
h,1, . . . , ξ

′′′′
h,l′′′′ ∈ ∗T

for each h ∈ H ′ depending in a limit fashion on h, obeying the following

properties :

(i) (Independence). For almost all additive quadruples h1 + h2 = h3 + h4

in H ′ (i.e., for all but o(|H ′|3) such quadruples), the frequencies ξ∗,j for

1 6 j 6 l∗, ξ
′
hi,j

for i = 1, 2, 3, 4 and 1 6 j 6 l′, and ξ′′′′hi,j for i = 1, 2, 3

and 1 6 j 6 l′′′′ are jointly linearly independent modulo O(ε).

(ii) (Rationality). For each 1 6 j 6 l′′∗ , ξ
′′
∗,j is a standard rational.

(iii) (Smallness). For each h ∈ H ′ and 1 6 j 6 l′′′, ξ′′′h,j = O(ε).

(iv) (Bracket-linearity). For each 1 6 j 6 l′′′′, there exist αj ∈ ∗T and βj ∈ ∗R
such that ξ′′′′h,j = {αjh}βj mod 1 for all h ∈ H ′. Furthermore, the map

h 7→ ξ′′′′h,j is a Freiman homomorphism on H ′. (See Section 3 for the

definition of a Freiman homomorphism).

(v) (Representation). For each h ∈ H ′, the ξh,1, . . . , ξh,l are linear combina-

tions over Z of the frequencies

ξ∗,1, . . . , ξ∗,l∗ , ξ
′
h,1, . . . , ξ

′
h,l′ , ξ

′′
∗,1, . . . , ξ

′′
∗,l′′ , ξ

′′′
h,1, . . . , ξ

′′′
h,l′′′ , ξ

′′′′
h,1, . . . , ξ

′′′′
h,l′′′′ .

Proof. As usual, we define a partial solution to be a collection of objects

H ′, l∗, l
′, l′′∗ , l

′,′′ l′′′′, ξ∗,1, . . . , ξ
′′′′
h,l′′′′ , obeying all of the required properties except

possibly for the independence property. Again, there is clearly at least one

partial solution, so we select a partial solution with a minimal value of l′,

and then (for fixed l′) a minimal value of l′′′′, and then (for fixed l′, l′′′′) a

minimal value of l∗. We claim that this partial solution obeys the independence

property, which will give the lemma.

Suppose for contradiction that this were not the case; then by Lemma A.9,

there exist standard integers a∗,j for 1 6 j 6 l∗, a
′
i,j for 1 6 i 6 4 and

1 6 j 6 l′, and a′′i,j for 1 6 i 6 3 and 1 6 j 6 l′′′′, not all zero, such that

l∗∑
j=1

a∗,jξ∗,j +
4∑
i=1

l′∑
j=1

a′i,jξ
′
hi,j +

3∑
i=1

l′′′∑
j=1

a′′′′i,jξ
′′′′
hi,j = O(ε) mod 1

for many additive quadruples h1 + h2 = h3 + h4 in H ′.
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Suppose first that all the a′i,j and a′′′′i,j vanished. Then we have a relation

l∗∑
j=1

a∗,jξ∗,j = O(ε) mod 1

that only involves core frequencies; arguing as in Lemma 10.4 we can thus find

another partial solution with a smaller value of l∗ (and the same value of l′,

l′′′′), contradicting minimality.

Next, suppose that the a′i,j all vanished, but the a′′′′i,j did not all vanish.

Then we have a relation

(10.1)
l∗∑
j=1

a∗,jξ∗,j +
3∑
i=1

l′′′′∑
j=1

a′′′′i,jξ
′′′′
hi,j = O(ε) mod 1

for many triples h1, h2, h3 in H ′.

Without loss of generality let us suppose that a′′′′1,1 is nonzero. By the

pigeonhole principle, we may find h2, h3 ∈ H ′ such that (10.1) holds for all h1

in a dense subset H ′′ of H ′. As in previous arguments, we then find ξ̃∗,j ∈ ∗T
such that a′′′′1,1ξ̃∗,j = ξ∗,j for each 1 6 j 6 l∗, and we also find β̃j ∈ ∗R such that

a′′′′1,1β̃j = βj for all 1 6 j 6 l′′′′. If we then set ξ̃′′′′h,j := {αjh}β̃j for each h ∈ H ′

and 1 6 j 6 l′′′′, then a′′′′1,1ξ̃
′′′′
h,j = ξ′′′′h,j , and so for any h1 ∈ H ′, we have

ξ′′′′h1,1 = −
l∗∑
j=1

a∗,j ξ̃∗,j −
l′′′′∑
j=2

a′′′′1,j ξ̃
′′′′
h1,j −

3∑
i=2

l′′′′∑
j=1

a′′′′i,j ξ̃
′′′′
hi,j + qh1 + sh1 mod 1

for some standard rational qh1 and some sh1 = O(ε), both depending on a limit

fashion on h1. By refining H ′ if necessary (and using the bracket-linear nature

of the ξ̃′′′′h,j) we may assume that the map h 7→ ξ̃′′′′h,j is a Freiman homomorphism

on H ′, and by Lemma A.9 we may make qh1 = q∗ independent of h1. If we

then argue as in the proof of Lemma 10.4, we may find a new partial solution

with a smaller value of l′′′′ and the same value of l′, contradicting minimality.

Finally, suppose that the a′i,j did not all vanish. Using the Freiman ho-

momorphism property to permute the i indices if necessary, we may assume

that a′4,1 does not vanish. We then have

Ξ1(h1) + Ξ2(h2) + Ξ3(h3) + Ξ4(h4) = O(ε)

for many additive quadruples h1 +h2 = h3 +h4 in H ′, where the limit functions

Ξi : H → ∗T are defined by

Ξi(h) :=
l′∑
j=1

a′i,jξ
′
h,j +

l′′′′∑
j=1

a′′′′i,jξ
′′′′
h,j mod 1
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for i = 1, 2, 3 and h ∈ H, and

Ξ4(h) :=
l∗∑
j=1

a∗,jξ∗,j +
l′∑
j=1

a′4,jξ
′
h,j mod 1.

We can use this additive structure to “solve” for Ξ4, using a result from additive

combinatorics, which we present here as Lemma F.1. Applying this lemma,

we can then find a dense limit subset H ′ of H, a standard integer K, and

frequencies α′1, . . . , α
′
K , δ ∈ ∗T and β′1, . . . , β

′
K ∈ ∗R such that

Ξ4(h) =
K∑
k=1

{α′kh}β′k + δ +O(ε) mod 1

and thus

a′4,1ξ
′
h,1 =

K∑
k=1

{α′kh}β′k + δ −
l∗∑
j=1

a∗,jξ∗,j +
l′∑
j=2

a′4,jξ
′
h,j +O(ε) mod 1

for all h ∈ H ′.
As usual, we now find β̃k ∈ ∗R for 1 6 k 6 K, β̃j ∈ ∗R for 1 6 j 6 l′′′′,

δ̃ ∈ T and ξ̃∗,j for 1 6 j 6 l∗ such that a′4,1β̃k = βk, a
′
4,1β̃j = βj , a

′
4,1δ̃ = δ, and

a′4,1ξ̃∗,j = ξ∗,j . We then set ξ̃′h,j := {αjh}β̃j mod 1, and we conclude that

ξ′h,1 =
K∑
k=1

{α′kh}β̃′k + δ̃ −
l∗∑
j=1

a∗,j ξ̃∗,j +
l′∑
j=2

a′4,j ξ̃
′
h,j + qh + sh mod 1

for all h ∈ H ′, where qh ∈ Q and sh = O(ε) depend in a limit fashion on h.

By refining H ′ we may take qh = q∗ independent of h.

We can then use relation to build a new partial solution that decreases l′

by 1, at the expense of enlarging the other dimensions l∗, l,
′′ l′,′′ l′′′′ (and also

refining H to H ′), again contradicting minimality, and the claim follows. �

We now apply the above lemma to the language of horizontal frequency

vectors introduced in the previous section. We need some definitions.

Definition 10.6 (Properties of horizontal frequency vectors). Let

F = (ξi,j)16i6s−1;16j6Di and F ′ = (ξ′i,j)16i6s−1;16j6D′i

be horizontal frequency vectors.

• We say that F is independent if, for each 1 6 i 6 d, the tuple (ξi,j)16j6Di

is independent modulo O(N−i).

• We say that F is rational if all the ξi,j are standard rationals.

• We say that F is small if one has ξi,j = O(N−i) for all 1 6 i 6 s− 1 and

1 6 j 6 Di.
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• We define the disjoint union F ]F ′ = (ξ′′i,j)16i6s−1;16j6Di+D′i
by declaring

ξ′′i,j to equal ξi,j if j 6 Di and ξ′i,j−Di
if Di < j 6 Di+D′i. This is clearly a

horizontal frequency vector with dimensions (D1 +D′1, . . . , Ds−1 +D′s−1).

• We say that F is represented by F ′ if for every 1 6 i 6 s−1 and 1 6 j 6 Di,

ξi,j is a standard integer linear combination of the ξ′i,j′ for 1 6 j′ 6 D′i.

Lemma 10.7 (Sunflower lemma). Let H be a dense subset of [[N ]], and

let (Fh)h∈H be a family of horizontal frequency vectors depending in a limit

fashion on h, whose dimension vector ~D = ~Dh is independent of h. Then we

can find the following objects :

• a dense subset H ′ of H ;

• dimension vectors ~D∗ = ~D∗,ind + ~D∗,rat and ~D′ = ~D′lin + ~D′ind + ~D′sml, which

we write as ~D∗ = (D∗,i)
s−1
i=1 , ~D∗,ind = (D∗,ind,i)

s−1
i=1 , etc.;

• a core horizontal frequency vector F∗ = (ξ∗,i,j)16i6s−1;16j6D∗,i , which is

partitioned as F∗ = F∗,ind ] F∗,rat, with the indicated dimension vectors
~D′ind,

~D′rat;

• a petal horizontal frequency vector F ′h = (ξ′h,i,j)16i6s−1;16j6D′i
, which is

partitioned as F ′h = F ′h,lin ] F ′h,ind ] F ′h,sml, which is a limit function of h,

and with the indicated dimension vectors ~D′lin,
~D′ind,

~D′sml

that obey the following properties :

• For all h ∈ H ′, F ′h,sml are small.

• F∗,rat is rational.

• For every 1 6 i 6 d and 1 6 j 6 D′i,lin, there exists αi,j ∈ ∗T and

βi,j ∈ ∗R such that (10.2) holds for all h ∈ H ′, and furthermore that the

map h 7→ ξ′h,i,j is a Freiman homomorphism on H ′.

• For all h ∈ H , Fh is represented by F∗ ∪ F ′h
• (Independence property). For almost all additive quadruples (h1, h2, h3, h4)

in H ,

F∗,ind ]
4⊎
i=1

F ′hi,ind ]
3⊎
i=1

F ′hi,lin

is independent.

Proof. Write Fh = (ξh,i,j)16i6s−1;16j6Di . For each 1 6 i 6 s − 1 in turn,

apply Lemma 10.5 to the collections (ξh,i,1, . . . , ξh,i,Di
)h∈H and ε = O(N−i),

refining H once for each i. The claim then follows by relabeling. �

To apply this lemma to families of nilcharacters, we will need two addi-

tional lemmas.

Lemma 10.8 (Change of basis). Suppose χ ∈ Ξ
(s−1,r∗)
DR ([N ]) is a degree-

rank (s−1, r∗) nilcharacter with a total frequency representation ( ~D,F , η), and

suppose that F is represented by another horizontal frequency vector F ′ with
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a dimension vector ~D′. Then there exists a vertical frequency η′ : G
~D′
s−1 → R

such that χ has a total frequency representation ( ~D′,F ′, η′).

Proof. By hypothesis, each element ξi,j of F can be expressed as a stan-

dard linear combination ξi,j =
∑D′i
j′=1 ci,j,j′ξ

′
i,j′ of elements ξ′i,j′ of F ′ of the

same degree, where ci,j,j′ ∈ Z.

Now let ψ : G
~D′ → G

~D be the unique filtered homomorphism that maps

e′i,j′ to
∏Di
j=1 e

ci,j,j′
i,j . (This can be viewed as an “adjoint” of the representation

of F by F ′.) By hypothesis, χ has a representation χ(n) = F (O(n),O0(n)) of

χ with

Taylori(O) = πHorizi(G/Γ)

Ñ
φ

Ç Di∏
j=1

e
ξi,j
i,j

åé
for some filtered homomorphism φ : G

~D → G. A brief calculation shows that

the right-hand side can also be expressed as

πHorizi(G/Γ)

Ñ
φ ◦ ψ

Ç D′i∏
j=1

(e′i,j)
ξ′i,j

åé
.

As φ ◦ ψ : G
~D′ → G is a filtered homomorphism, and η ◦ ψ : G

~D′

(s−1,r∗)
→ R is

a vertical frequency, we obtain the claim. �

Lemma 10.9. Let F be a horizontal frequency vector of dimension ~D of

the form

F = Frat ] Fsml ] F ′,

where Frat is rational and Fsml is small, and F ′ has dimension ~D′. Suppose

that χ ∈ Ξ
(s−1,r∗)
DR ([N ]) is a nilcharacter with a total frequency representation

( ~D,F , η). Then there exists a vertical frequency η′ : G
~D′
s−1 → R such that χ has

total frequency ( ~D′,F ′/M, η′) for some standard integer M > 1.

Remark. This lemma crucially relies on the hypothesis s > 3, as it makes

the (degree 1) contributions of rational and small frequencies to be of lower

order. Because of this, the inverse conjecture for s > 2 is in a very slight way a

little bit simpler than the s 6 2 theory, though it is of course more complicated

in many other ways.

Proof. By induction we may assume that F is formed from F ′ by adding

a single frequency ξi0,Di0
, which is either rational or small.

Let us first suppose that we are adding a single frequency that is not just

rational, but is in fact an integer. Then if χ(n) = F (g(n)∗Γ, g0(n)∗Γ0) is a

nilcharacter with a total frequency representation ( ~D,F , η), we have a filtered
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homomorphism φ : G
~D/Γ

~D → G/Γ such that

gi =
Di∏
j=1

φ(ei,j)
ξi,j mod G(i,1)

for all 1 6 i 6 s∗ − 1, where gi are the Taylor coefficients of g. Specialising to

the degree i0 and using the integer nature of ξi0,Di0
, we have

gi0 = g′i0γi0 ,

where γi0 is an element of Γi0 , and

g′i =
Di−1∏
j=1

φ(ei,j)
ξi,j mod G(i,1).

From this and the Baker-Campbell-Hausdorff formula (3.2), we can write

g(n) = g′(n)γ
(n
i0

)
i0

, where g′ is a polynomial sequence with a horizontal fre-

quency representation ( ~D′, φ′,F ′), where ~D′ is ~D with Di0 decremented by one,

and φ′ is the restriction of φ to the subnilmanifold G
~D′/Γ

~D′ . Since g(n)∗Γ =

g′(n)∗Γ, we see that χ has a total frequency representation ( ~D′,F ′, η′), where

η′ is the restriction of η : G
~D
(s−1,r∗)

→ R to G
~D′

(s−1,r∗)
. This gives the claim in

this case (with M = 1).

Now suppose that ξi0,Di0
is merely rational rather than integer. Then

we can argue as before, except that now γi0 is a rational element of Gi0 , so

that γmi0 ∈ Γi0 for some standard positive integer m. As such, there exists a

standard positive integer q such that γ
(n
i0

)
i0

mod ∗Γ is periodic with period q.

As a consequence, there exists a bounded index subgroup Γ′ of Γ such that the

point

g′(n)γ
(n
i0

)
i0

mod ∗Γ

in G/Γ can be expressed as a Lipschitz function of

g′(n) mod ∗Γ′

and of the quantity n/q mod 1. Repeating the previous arguments, we thus

obtain a total frequency representation ( ~D′, F̃ ′, η′) for some η′, and some F̃ ′
whose coefficients are rational combinations of those of F ′; note that the n/q

dependence can be easily absorbed into the lower order term G0/Γ0 since s > 3.

The claim then follows from Lemma 10.8.

Finally, suppose that ξi0,Di0
is small rather than rational. Then we can

write

gi0 = ci0g
′
i0 ,
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where g′i0 is as before and ci0 ∈ Gi0 is at a distance O(N−i0) from the origin.

We can thus write

g(n) = c
(n
i0

)
i0

g′(n),

where g′ is a polynomial sequence with horizontal frequency representation

( ~D′, φ′,F ′).

On [N ], the sequence c
(n
i0

)
i0

can be expressed as a bounded Lipschitz function

of n/2N mod 1. As a consequence, we can write χ in the form

χ(n) = F ′(g′(n)∗Γ, g0(n)∗Γ0, n/2N mod 1)

for some F ′ ∈ Lip(∗(G/Γ × G0/Γ0 × T)). As s > 3, the final term T can be

absorbed into the degree-rank 6 (s − 1, r∗ − 1) nilmanifold G0/Γ0, and the

claim follows (with M = 1). �

Finally, we can state the main result of this section.

Lemma 10.10 (Sunflower lemma). Let H be a dense subset of [[N ]], and

let (χh)h∈H be a family of nilcharacters χh ∈ Ξ
(s−1,r∗)
DR ([N ]) depending in a

limit fashion on H . Then we can find

(i) a dense subset H ′ of H ;

(ii) dimension vectors ~D∗ and ~D′ = ~D′lin + ~D′ind, which we write as ~D∗ =

(D∗,i)
s−1
i=1 , ~D′ = (D′i)

s−1
i=1 , ~D′lin = (D′lin,i)

s−1
i=1 , ~D′ind = (D′ind,i)

s−1
i=1 ;

(iii) a core horizontal frequency vector F∗ = (ξ∗,i,j)16i6d;16j6D∗,i ;

(iv) a petal horizontal frequency vector F ′h = (ξ′h,i,j)16i6d;16j6D′i
, which is

partitioned as F ′h = F ′h,lin ] F ′h,ind, which is a limit function of h, where

F ′h,lin, F ′h,ind have dimensions ~D′lin, ~D′ind respectively ;

(v) a vertical frequency η : G
~D∗+ ~D′

(s−1,r∗)
→ R with dimension vector ~D∗ + ~D′

that obey the following properties :

(i) (F ′h,lin is bracket-linear). For every 1 6 i 6 d and 1 6 j 6 D′i,lin, there

exist αi,j ∈ ∗T and βi,j ∈ ∗R such that

(10.2) ξ′h,i,j = {αi,jh}βi,j mod 1

for all h ∈ H ′ and, furthermore, that the map h 7→ ξ′h,i,j is a Freiman

homomorphism on H ′.

(ii) (Independence). For almost all additive quadruples (h1, h2, h3, h4) in H ,

F∗,ind ]
4⊎
i=1

F ′hi,ind ]
3⊎
i=1

F ′hi,lin

is independent.

(iii) (Representation). For all h ∈ H ′, χh has a total frequency representation

( ~D∗ + ~D′,F∗ ∪ F ′h, η).
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Proof. Each χh thus has a total frequency representation ( ~Dh,Fh, ηh).

The space of representations is a σ-limit set, so by Lemma A.11 we may assume

that ( ~Dh,Fh, ηh) depends in a limit fashion on h.

The number of possible dimension vectors is countable. Applying Lemma

A.9, and passing from H to a dense subset, we may assume that ~D = ~Dh is

independent of h.

We then apply Lemma 10.7 to the (Fh)h∈H , obtaining a dense subset H ′

of H, dimension vectors ~D∗ = ~D∗,ind + ~D∗,rat and ~D′ = ~D′lin + ~D′ind + ~D′sml,

a core horizontal frequency vector F∗ = F∗,ind ] F∗,rat, and petal horizontal

frequency vectors F ′h = F ′h,lin ]F ′h,ind ]F ′h,sml for each h ∈ H ′ with the stated

properties.

Applying Lemma 10.8, we see that for each h ∈ H ′, χh has a total fre-

quency representation

( ~D∗ + ~D′,F∗ ] F ′h, η′h)

for some vertical frequency η′h. Applying Lemma 10.9, we conclude that χh
has a total frequency representation

( ~D∗,ind + ~D′lin + ~D′ind,F∗,ind ] F ′h,lin ] F ′h,ind, η
′′
h)

for some vertical frequency η′h. The number of vertical frequencies η′′h is count-

able, so by Lemma A.9 we may assume that η = η′′h is also independent of h.

The claim then follows. �

11. Obtaining bracket-linear behaviour

We return now to the task of proving Theorem 7.2. To recall the situation

thus far, we are given a two-dimensional nilcharacter χ ∈ Ξ
(1,s−1)
Multi (∗Z2) and

a family of degree-rank (s − 1, r∗) nilcharacters (χh)h∈H depending in a limit

fashion on a parameter h in a dense subset H of [[N ]], with the property that

there is a function f ∈ L∞[N ] such that χ(h, ·) ⊗ χh (s − 2)-correlates with

f for all h ∈ H. Using Proposition 7.3 to eliminate f and χ, and refining

H to a dense subset if necessary, we conclude that the nilcharacter (7.2) is

(s− 2)-biased for many additive quadruples h1 +h2 = h3 +h4 in H. We make

the simple but important remark that this conclusion is “hereditary” in the

sense that it continues to hold if we replace H with an arbitrary dense subset

H ′ of H, since the hypothesis of Proposition 7.3 clearly restricts from H to H ′

in this fashion.

Next, we apply Lemma 10.10 to obtain a dense refinement H ′ on H for

which the χh have a frequency representation involving various types of fre-

quencies: a core set of frequencies F∗, a bracket-linear family (F ′h,lin)h∈H′ of

petal frequencies, and an independent family (F ′h,ind)h∈H′ of petal frequencies.
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The main result of this section uses the bias of (7.2), combined with the

quantitative equidistribution theory on nilmanifolds (as reviewed in Appen-

dix D) to obtain an important milestone towards establishing Theorem 7.2,

namely that the independent petal frequencies F ′h,ind do not actually have

any influence on the top-order behaviour of the nilcharacters χh and that the

bracket-linear frequencies only influence this top-order behaviour in a linear

fashion. For this, we use an argument of Furstenberg and Weiss [11] that was

also used in the predecessor [23] to this paper. See [22] for another, somewhat

simplified, exposition of this argument.

We begin by formally stating the result we will prove in this section.

Theorem 11.1 (No petal-petal or regular terms). Let f,H, χ, (χh)h∈H be

as in Theorem 7.2, and let H ′, ~D∗, ~D
′, ~D′lin,

~D′ind,F∗,F ′h,F ′h,lin,F ′h,ind, η be as in

Lemma 10.10. Let w∈G ~D∗+ ~D′ be an r∗−1-fold commutator of ei1,j1 , . . . , eir∗ ,jr∗ ,

where 1 6 i1, . . . , ir∗ 6 s − 1, i1 + · · · + ir∗ = s − 1, and 1 6 jl 6 D∗,il + D′il
for all l with 1 6 l 6 r∗.

(i) (No petal-petal terms). If jl > D∗,il for at least two values of l, then

η(w) = 0.

(ii) (No regular terms). If jl > D∗,il + D′lin,il for at least one value of l,

then η(w) = 0.

(iii) (No petal-petal terms). If jl > D∗,il for at least two values of l, then

η(w) = 0.

(iv) (No regular terms). If jl > D∗,il + D′lin,il for at least one value of l,

then η(w) = 0.

The remainder of this section is devoted to the proof of Theorem 11.1.

Let the notation and assumptions be as in the above theorem. From

Proposition 7.3 we know that, for many additive quadruples (h1, h2, h3, h4) in

H ′, the sequence (7.2) is (s− 2)-biased. Also, from Lemma 10.10, we see that

for almost all of these quadruples, the horizontal frequency vectors

(11.1) F∗,ind ]
4⊎
i=1

Fhi,ind ]
⊎

i=a,b,c

Fhi,lin

are independent for all distinct a, b, c ∈ {1, 2, 3, 4}. We may therefore find

an additive quadruple (h1, h2, h3, h4) for which (7.2) is (s− 2)-biased, and for

which (11.1) is independent for all choices of distinct a, b, c ∈ {1, 2, 3, 4}.
Fix (h1, h2, h3, h4) with these properties. We convert the above informa-

tion to a nonequidistribution result concerning a polynomial orbit.

For each i = 1, 2, 3, 4, we see from Lemma 10.10 that χhi has a total

frequency representation

( ~D∗ + ~D′,F∗ ] F ′hi , η).
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We write

F∗ ] F ′hi = (ξhi,j,k)16j6s−1;16k6Dj
,

where

Dj = D∗,j +D′j ;

thus the frequencies associated to F∗, F ′hi,ind, F ′hi,lin correspond to the ranges

1 6 k 6 D∗,j , D∗,j < k 6 D∗,j+D′ind,j , and D∗,j+D
′
ind,j < k 6 Dj respectively.

As (7.2) is (s− 2)-biased, we conclude that

(11.2)

|En∈[N ]χh1(n)⊗χh2(n+h1−h4)⊗χh3(n)⊗χh4(n+h1−h4)ψh1,h2,h3,h4(n)| � 1

for some degree 6 (s−2) nilsequence ψh1,h2,h3,h4 , where χh is defined to be zero

outside of [N ]. As any cutoff to an interval can be approximated to arbitrary

standard accuracy by a degree 1 nilsequence, and s > 3, we see that the same

claim holds if χh is instead extended to be a nilsequence on all of ∗Z.

From Definition 6.1 and the total frequency representation of the χhi ,

we can rewrite the sequence inside the expectation of (11.2) as a degree-rank

6 (s− 1, r∗) nilsequence n 7→ F (O(n)). Here G/Γ is the product nilmanifold6

G/Γ :=

(
4∏
i=1

G(i)/Γ(i)

)
×G(0)/Γ(0)

for some filtered nilmanifold G(0)/Γ(0) of degree-rank < (s − 1, r∗ − 1) and

filtered nilmanifolds G(i)/Γ(i) of degree-rank 6 (s− 1, r∗) for i = 1, 2, 3, 4. The

orbit O is defined by

O = (O1,O2,O3,O4,O0) ∈ ∗poly(ZN → (G/Γ)N)

where, for each i, j with 1 6 i 6 4 and 1 6 j 6 s− 1, we have

(11.3) Taylorj(O(i)) = πHorizj(G(i)/Γ(i))

Ñ
φ(i)

Ç ∏
16k6Dj

e
ξhi,j,k
j,k

åé
where ~D := (D1, . . . , Ds−1), φ(i) : G

~D/Γ
~D → G(i)/Γ(i) is a filtered homomor-

phism and πHorizj(G(i)/Γ(i)) : (G(i))j → Horizj(G(i)/Γ(i)) is the projection to the

6Unfortunately, there will be several types of subscripts on nilpotent Lie groups G in this

argument. Firstly one has the factor groups G(i). Then one also has the degree filtration

groups Gd and the degree-rank filtration groups G(d,r) of G (and also the analogous subgroups

(G(i))d, (G(i))(d,r) of the factor groups G(i)), as well as the free nilpotent groups G
~D =

G
~D
(s−1,r∗). Finally, a Ratner subgroup GP of G will also make an appearance later. We hope

that these notations can be kept separate from each other.
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jth horizontal torus. Finally F ∈ Lip(∗(G/Γ)) is defined by

F (φ(1)(t(1))x(1), . . . , φ(4)(t(4))x(4), y)(11.4)

= e((η(t(1)) + η(t(2))− η(t(3))− η(t(4))))F (x(1), . . . , x(4), y)

for all (x(1), . . . , x(4), y) ∈ G/Γ and t(1), . . . , t(4) ∈ G
~D
(s−1,r∗)

. (Note that the

shifts by h1 − h4 in (11.2) do not affect the Taylor coefficients of O(i), thanks

to the remarks following Definition 9.6.)

By hypothesis, we have

|En∈[N ]F (O(n))| � 1.

Applying Theorem D.6, we conclude that

(11.5) |
∫
GP /ΓP

F (εx) dµ(x)| � 1

for some bounded ε ∈ G and some rational subgroup GP of G with the property

that

(11.6) πHorizj(G)(GP ∩G(i)) > Ξ⊥j

for all 1 6 j 6 s− 1, where

Ξ⊥j := {x ∈ Horizj(G) : ξj(x) = 0 for all ξj ∈ Ξj}

and Ξj 6 ¤�Horizj(G/Γ) is the group of all (standard) continuous homomor-

phisms ξj : Horizj(G/Γ)→ T such that

ξj(Taylorj(O)) = O(N−j).

From (11.4) and (11.5) we conclude the following lemma.

Lemma 11.2. The group GP ∩ ((G(1))(s−1,r∗)×{id}× {id}× {id}× {id})
is annihilated by η.

Proof. Let g = (g(1), id, id, id, id) lie in the indicated group. Then g is

central, and so from the invariance of Haar measure we have∫
GP /ΓP

F (εx) dµ(x) =

∫
GP /ΓP

F (gεx) dµ(x).

On the other hand, from (11.4) we have∫
GP /ΓP

F (gεx) dµ(x) = e(η(g))

∫
GP /ΓP

F (εx) dµ(x).

Comparing these relationships with (11.5) we obtain the claim. �

We now analyse the group GP further. For each 1 6 j 6 s− 1, let V123,j

denote the subgroup of Horizj(G(1)) × Horizj(G(2)) × Horizj(G(3)) generated

by the diagonal elements

(φ(1)(ej,k), φ(2)(ej,k), φ(3)(ej,k))
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for 1 6 k 6 D∗,j and by the elements

(φ(1)(ej,k), id, id), (id, φ(2)(ej,k), id), (id, id, φ(3)(ej,k))

for D∗,j < k 6 Dj . We define the subgroup V124,j of Horizj(G(1))×Horizj(G(2))

×Horizj(G(4)) similarly by replacing (3) with (4) throughout.

Lemma 11.3 (Components of GP ). Let 1 6 j 6 s − 1. Then the projec-

tion of GP ∩Gj to Horizj(G(1))×Horizj(G(2))×Horizj(G(3)) contains V123,j .

Similarly, the projection to Horizj(G(1))×Horizj(G(2))×Horizj(G(4)) contains

V124,j .

Proof. We shall just prove the first claim; the second claim is similar (but

uses {a, b, c} = {1, 2, 4} instead of {a, b, c} = {1, 2, 3}).
Suppose the claim failed for some j. Using (11.6) and duality, we conclude

that there exists a ξj ∈ Ξj that annihilates the kernel of the projection to

Horizj(G(1))×Horizj(G(2))×Horizj(G(3)) and that is nontrivial on V123,j . As

ξj annihilates the kernel of the projection to Horizj(G(1)) × Horizj(G(2)) ×
Horizj(G(3)), we have a decomposition of the form

ξj(x(1), x(2), x(3), x(4), x(0)) = ξ(1),j(x(1)) + ξ(2),j(x(2)) + ξ(3),j(x(3))

for x(i) ∈ Horizj(G(i)) for i = 1, 2, 3, 4, 0, where ξ(i),j : Horizj(G(i)) → R for

i = 1, 2, 3 are characters.

By definition of Ξj , we conclude that

ξ(1),j(Taylorj(O(1))) + ξ(2),j(Taylorj(O(2))) + ξ(3),j(Taylorj(O(3))) = O(N−j).

However, from (11.3) we have

(11.7) ξ(i),j(Taylorj(O(i))) =

Dj∑
k=1

c(i),j,kξhi,j,k,

where the c(i),j,k are standard integers, defined by the formula

(11.8) c(i),j,k := ξ(i),j(φ(i)(ej,k)).

From the independence of (11.1) with {a, b, c} = {1, 2, 3}, we conclude that

the c(i),j,k all vanish for i = 1, 2, 3 and D∗,j < k 6 Dj , and that the sum

c(1),j,k + c(2),j,k + c(3),j,k vanishes for 1 6 k 6 D∗,j . But this forces ξj to vanish

on V123,j , contradiction. �

We now take commutators in the spirit of an argument of Furstenberg

and Weiss [11] (see also [31], [41] for similar arguments in completely different

settings) to conclude the following result, which roughly speaking asserts that

all “petal-petal interactions” are trivial.

Corollary 11.4 (Furstenberg-Weiss commutator argument). Let w be

an r∗ − 1-fold iterated commutator of generators ej1,k1 , . . . , ejr∗ ,kr∗ with 1 6
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jl 6 s − 1, 1 6 kl 6 Dl for l = 1, . . . , r∗ and j1 + · · · + jr∗ = s − 1. (Thus w

has “degree-rank (s − 1, r∗)” in some sense). Suppose that at least two of the

generators, say ej1,k1 , ej2,k2 , are “petal” generators in the sense that k1 > D∗,j1
and k2 > D∗,j2 . Then (φ(1)(w), id, id, id, id) ∈ GP .

Proof. For ej1,k1 , we may invoke Lemma 11.3 and find an element gj1,k1
of GP ∩ Gj1 for which the coordinates 1, 2, 3 are equal (modulo projection to

Horizj1(G(1)) × Horizj1(G(2)) × Horizj1(G(3))) to (φ1(ej1,k1), id, id). Similarly,

we may find an element g′j2,k2 of GP ∩ Gj2 for which the coordinates 1, 2, 4

are equal (modulo projection to Horizj2(G(1))×Horizj2(G(2))×Horizj2(G(4)))

to (φ1(ej2,k2), id, id). Finally, for all of the other ej,k, we can find elements

g′′j,k of GP ∩ Gj for which the first coordinate is equal (modulo projection

to Horizj(G(1))) to φ(1)(ej,k). If one then takes iterated commutators of the

gj1,k1 , g
′
j2,k2

, g′′j,k in the order indicated by w, we see (using the filtration prop-

erty, the homomorphism property of φ(1), and the fact that the Gi/Γi have

degree 6 (s− 1, r∗) for i = 1, 2, 3, 4 and degree < (s− 1, r∗− 1) for i = 0) that

we obtain the element (φ(1)(w), id, id, id, id). Since the iterated commutator of

elements in GP stays in GP , the claim follows. �

From Lemma 11.2 and Corollary 11.4 we immediately obtain part (i) of

Theorem 11.1. We now turn to part (ii) of the theorem. For this, we need

two further variants of Lemma 11.3. For any 1 6 j 6 s − 1, let Vind,j be the

subspace of Horizj(G(1))×Horizj(G(2))×Horizj(G(3))×Horizj(G(4)) generated

by the elements

(φ(1)(ej,k), φ(2)(ej,k), φ(3)(ej,k), φ(4)(ej,k))

for 1 6 k 6 D∗,j and the elements

(φ(1)(ej,k), id, id, id), (id, φ(2)(ej,k), id, id),

(id, id, φ(3)(ej,k), id), (id, id, id, φ(4)(ej,k))

for D∗,j < k 6 D∗,j +D′ind,j .

Lemma 11.5 (Components of GP , II). Let 1 6 j 6 s− 1. Then the pro-

jection of GP ∩Gj to Horizj(G(1))×Horizj(G(2))×Horizj(G(3))×Horizj(G(4))

contains Vind,j .

Proof. Suppose the claim failed for some j. Using (11.6) and duality,

we conclude that there exists a ξj ∈ Ξj that annihilates the kernel of the

projection to Horizj(G(1)) × Horizj(G(2)) × Horizj(G(3)) × Horizj(G(4)) and

that is nontrivial on Vind,j . In particular, we have a decomposition of the form

(11.9) ξj(x(1), x(2), x(3), x(4), x(0)) =
4∑
i=1

ξ(i),j(x(i))
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for x(i) ∈ Horizj(G(i)) for i = 1, 2, 3, 4, 0, where ξ(i),j : Horizj(G(i)) → R for

i = 1, 2, 3, 4 are characters.

By definition of Ξj , we conclude that

4∑
i=1

ξ(i),j(Taylorj(O(i))) = O(N−j).

Inserting (11.7), we conclude that

(11.10)

Dj∑
k=1

4∑
i=1

c(i),j,kξhi,j,k = O(N−j).

The left-hand side is an integer linear combination of the degree j frequencies

in

F∗,ind ]
4⊎
i=1

Fhi,ind ]
4⊎
i=1

Fhi,lin.

Using the Freiman homomorphism property from Lemma 10.10 we can elimi-

nate the role of Fh4,lin, leaving only

F∗,ind ]
4⊎
i=1

Fhi,ind ]
3⊎
i=1

Fhi,lin.

But this is just (11.1) for {a, b, c} = {1, 2, 3}. We conclude that the coefficients

of the left-hand side of (11.10) in this basis vanish, which in terms of the

original coefficients c(i),j,k means that

4∑
i=1

c(i),j,k = 0

for 1 6 k 6 D∗,j and

c(i),j,k = 0

for D∗,j < k 6 D∗,j + D′ind,j . But this forces ξj to vanish on Vind,j , a contra-

diction. �

We now apply the commutator argument to show that “independent”

frequencies also ultimately have a trivial effect.

Corollary 11.6 (Furstenberg-Weiss commutator argument, II). Let w

be an (r∗ − 1)-fold iterated commutator of generators ej1,k1 , . . . , ejr∗ ,kr∗ with

1 6 jl 6 s−1, 1 6 kl 6 Dl for l = 1, . . . , r∗ and j1 + · · ·+ jr∗ = s−1. Suppose

that at least one of the generators, say ej1,k1 , is an “independent” generator in

the sense that D∗,j1 < k1 6 D∗,j1 +D′ind,j1
. Then (φ(1)(w), id, id, id, id) ∈ GP .

Proof. We may assume that kl 6 D∗,jl for all 2 6 l 6 r∗, as the claim

would follow from Corollary 11.4 otherwise.
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For ej1,k1 , we may invoke Lemma 11.5 and find an element gj1,k1 of

GP ∩ Gj1 for which the first four coordinates are equal (modulo projection

to Horizj1(G(1)) × Horizj1(G(2)) × Horizj1(G(3)) × Horizj1(G(4))) is equal to

(φ(1)(ej1,k1), id, id, id). For the other ej,k, we can find elements g′j,k of GP ∩Gj
for which the first coordinate is equal (modulo projection to Horizj(G(1))) to

φ(1)(ej,k). Taking commutators of gj1,k1 and g′j,k in the order indicated by w,

we obtain the claim. �

Combining Corollary 11.6 with Lemma 11.2 we obtain the second part of

Theorem 11.1.

12. Building a nilobject

The aim of this section is to at last build an object coming from an s-step

nilmanifold. Recall from the discussion in Section 7 that this object will be a

multidegree (1, s−1)-nilcharacter χ′(h, n) and that this completes the proof of

Theorem 7.2. This in turn was used iteratively to prove Theorem 7.1, the heart

of our whole paper. It will then remain to supply the symmetry argument,

which will take us from a two-dimensional nilsequence to a one-dimensional

one; this will be accomplished in the next section.

Let f,H, χ, (χh)h∈H be as in Theorem 7.2. If we apply Lemma 10.10, we

obtain the following objects:

• a dense subset H ′ of H;

• dimension vectors ~D∗ = ~D∗,ind + ~D∗,rat and ~D′ = ~D′lin + ~D′ind + ~D′sml, which

we write as ~D∗ = (D∗,i)
s−1
i=1 , ~D∗,ind = (D∗,ind,i)

s−1
i=1 , etc.;

• a core horizontal frequency vector F∗ = (ξ∗,i,j)16i6s−1;16j6D∗,i , which is

partitioned as F∗ = F∗,ind ] F∗,rat, with the indicated dimension vectors
~D′ind,

~D′rat;

• a petal horizontal frequency vector F ′h = (ξ′h,i,j)16i6s−1;16j6D′i
, which is

partitioned as F ′h = F ′h,lin ] F ′h,ind ] F ′h,sml, which is a limit function of h,

and with the indicated dimension vectors ~D′lin,
~D′ind,

~D′sml;

• nilmanifolds Gh/Γh and G0,h/Γ0,h of degree-rank 6 (s− 1, r∗) and 6 (s−
1, r∗ − 1) respectively for each h ∈ H ′, depending in a limit fashion on h;

• polynomial sequences gh, g0,h ∈ ∗poly(ZN → (Gh)N) for each h ∈ H ′,

depending in a limit fashion on h;

• Lipschitz functions Fh ∈ Lip(∗(Gh/Γh×G0,h/Γ0,h)→ Sω) for each h ∈ H ′,
depending in a limit fashion on h;

• a filtered φh : G
~D∗+ ~D′ → Gh for each h ∈ H ′, depending in a limit fashion

on h; and

• a character ηh : G
~D∗+ ~D′

(s−1,r∗)
→ R for each h ∈ H ′, depending in a limit fashion

on h

that obey the following properties:
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• For every 1 6 i 6 d and 1 6 j 6 D′i,lin, there exist αi,j ∈ ∗T and βi,j ∈ ∗R
such that (10.2) holds and, furthermore, that the map h 7→ ξ′h,i,j is a

Freiman homomorphism on H ′.

• For almost all additive quadruples (h1, h2, h3, h4) in H,

F∗,ind ]
4⊎
i=1

F ′hi,ind ]
3⊎
i=1

F ′hi,lin

is independent.

• We have the representation

χh(n) = Fh(gh(n)∗Γh, g0,h(n)∗Γ0,h)

for every h ∈ H ′.
• φh : G

~D∗+ ~D′ → Gh is a filtered homomorphism such that

(12.1) Fh(φh(t)x, x0) = e(ηh(t))Fh(x, x0)

for all t ∈ G ~D∗+ ~D′

(s−1,r∗)
, x ∈ Gh/Γh, and x0 ∈ G0,h/Γ0,h.

• One has the Taylor coefficients

(12.2) Taylori(ghΓh) = πHorizi(Gh/Γh)

Ñ
φh

ÇD∗,i+D′i∏
j=1

e
ξh,i,j
i,j

åé
for all 1 6 i 6 s− 1.

There are only countably many nilmanifolds G/Γ up to isomorphism, so

by passing from H ′ to a dense subset using Lemma A.9 we may assume that

Gh/Γh = G/Γ and G0,h/Γ0,h = G0/Γ0

are independent of h. Similarly we may take ηh = η and φh = φ to be

independent of h. From the Arzelà-Ascoli theorem, the space of possible Fh is

totally bounded, and so (shrinking ε slightly if necessary) we may also assume

that Fh = F is independent of h.

For j with 1 6 j 6 D∗,i, since ξh,i,j is independent of h, we can ensure that

ξh,i,j = γi,j is also independent of h. Meanwhile, for D∗,i < j 6 D∗,i + D′i,lin,

from (10.2) we may assume that ξh,i,j takes the form

ξh,i,j = {αi,jh}βi,j mod 1

for some αi,j ∈ ∗T and βi,j ∈ ∗R. By passing to a dense subset of H ′ using the

pigeonhole principle, we may assume for each i, j, that {αi,jh} is contained in

a subinterval ∗Ii,j around ∗0 of length at most 1/10 (say).

We now wish to apply Theorem 11.1 to obtain more convenient equivalent

representatives (in Ξ
(s−1,r∗)
DR ([N ]) ) χ̃h for the nilcharacters χh. Let G̃ be the

free Lie group generated by the generators ẽi,j for 1 6 i 6 s − 1 and 1 6 j 6
D∗i +D′lin,i subject to the following relations:
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• any (r− 1)-fold iterated commutator of ẽi1,j1 , . . . , ẽir,jr with i1 + · · ·+ ir >

s− 1 vanishes,

• any (r− 1)-fold iterated commutator of ẽi1,j1 , . . . , ẽir,jr with i1 + · · ·+ ir =

s− 1 and r > r∗ vanishes,

• any (r− 1)-fold iterated commutator of ẽi1,j1 , . . . , ẽir,jr in which jl > D∗,il
for at least two values of l vanishes.

We give this group a DR-filtration G̃DR by defining G̃(d,r) to be the group

generated by the (r′ − 1)-fold iterated commutators of ẽi1,j1 , . . . , ẽir′ ,jr′ with

i1 + · · ·+ ir′ > d and r′ > r. We then let Γ̃ be the discrete group generated by

the ẽi,j ; G̃/Γ̃ is then a nilmanifold of degree-rank 6 (s− 1, r∗).

Let G∗ be the subgroup of G
~D∗+ ~D′ generated by (r − 1)-fold iterated

commutators ẽi1,j1 , . . . , ẽir,jr with i1 + · · · + ir = s − 1 in which jl > D∗,il for

at least two values of l, or jl > D∗,il +D′lin,il for at least one value of l. Then

G∗ is a subgroup of the central group G
~D∗+ ~D′

(s−1,r∗)
of G

~D∗+ ~D′ and G̃ is isomorphic

to the quotient of G
~D∗+ ~D′ by G∗. We let φ̃ : G

~D∗+ ~D′ → G̃ denote the quotient

map. From Theorem 11.1, the character η : G
~D∗+ ~D′

(s−1,r∗)
→ R annihilates G∗ and

thus descends to a vertical character η̃ : G̃(s−1,r∗) → R.

We select a function F̃ ∈ Lip(G̃/Γ̃→ Sω) with vertical frequency η̃; such

a function can be built using the construction (6.3).

We then define the polynomial sequences g0, g̃h ∈ ∗poly(ZN → G̃N) by the

formulae

g0(n) :=
s−1∏
i=1

D∗,i∏
j=1

ẽ
γi,j(ni)
i,j ,(12.3)

g̃h(n) :=
s−1∏
i=1

D∗,i+D′lin,i∏
j=D∗,i+1

ẽ
{αi,jh}βi,j(ni)
i,j(12.4)

and consider the nilcharacter

(12.5) χ̃h(n) := F̃ (g0(n)g̃h(n)∗Γ̃).

These nilcharacters are equivalent to χh in Symb
(s−1,r∗)
DR ([N ]), as the fol-

lowing lemma shows.

Lemma 12.1. For each h ∈ H ′, χh and χ̃h are equivalent (as nilcharacters

of degree-rank (s− 1, r∗)) on [N ].

Proof. Fix h. It suffices to show that χh ⊗ χ̃h is a nilsequence of degree

< s− 1. We can write this sequence as

(12.6) n 7→ F ′h(g′h(n)∗Γ′),
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where G′ := G×G0×G̃, Γ := Γ×Γ0× Γ̃, g′h ∈ ∗poly(ZN → G′N) is the sequence

g′h(n) := (gh(n), g0,h(n), g0(n)g̃h(n))

and F ′h ∈ Lip(∗(G′/Γ′)) is the function

F ′h(x, x0, y) := Fh(x, x0)⊗ F̃ (y).

We define a DR-filtration G′DR on G′ by defining G′(d,r) for (d, r) ∈ DR with

r > 1 to be the Lie group generated by the following sets:

(i) G(d,r+1) × (G0)(d,r) × G̃(d,r+1),

(ii) {(φ(g), id, φ̃(g)) : g ∈ G ~D∗+ ~D′

(d,r) }
with the convention that (d, d+ 1) = (d+ 1, 0). We also set G′(d,0) := G′(d,1) for

d > 1. One easily verifies that this is a filtration.

We claim that g′ is polynomial with respect to this filtration. Indeed,

the sequence n 7→ (id, g0,h(n), id) is already polynomial in this filtration, so by

Corollary B.4 it suffices to verify that the sequence

(12.7) n 7→ (gh(n), id, g0(n)g̃h(n))

is polynomial. We use Lemma B.9 to Taylor expand gh(n) =
∏s−1
i=0 g

(ni)
h,i where

gh,i ∈ G(i,0). From (12.2), one has

gh,i = φ

ÇD∗,i+D′i∏
j=1

e
ξh,i,j
i,j

å
mod G(i,2).

By construction of the filtration of G′, this implies thatÇ
gh,i, id,

D∗,i+D′i∏
j=1

e
ξh,i,j
i,j mod G∗

å
∈ G′(i,1).

Applying Corollary B.4, we conclude that the sequence

n 7→

Ñ
gh(n), id,

s−1∏
i=0

ÇD∗,i+D′i∏
j=1

e
ξh,i,j
i,j

å(ni)
mod G∗

é
is polynomial with respect to the G′ filtration. Applying the Baker-Campbell-

Hausdorff formula repeatedly, and using (12.3), (12.4), we see that

n 7→
s−1∏
i=0

Ñ
D∗,i+D′i∏
j=1

e
ξh,i,j
i,j

é(ni)

mod G∗

differs from the sequence n 7→ g0(n)g̃h(n) by a sequence that is polynomial in

the shifted filtration (G̃(d,r+1))(d,r)∈DR. We conclude that (12.7) is polynomial

as required.
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Next, we claim that F ′h is invariant with respect to the action of the central

group

G′(s−1,r∗) = {(φ(g), id, φ̃(g)) : g ∈ G ~D
(s−1,r∗)}.

It suffices to check this for generators (φ(w), id, w mod G∗), where w is an

(r∗ − 1)-fold commutator of ei1,j1 , . . . , eir∗ ,jr∗ in G
~D with i1 + · · ·+ ir = s− 1.

There are two cases. If one has jl > D∗,il + D′lin,il for some l, then w lies in

G∗ and is also annihilated by η, and the claim follows from (12.1). If instead

one has jl 6 D∗,il + D′lin,il for all l, then the claim again follows from (12.1)

together with the construction of η̃ and F̃ .

We may now quotient out G′(0,0) by G′(s−1,r∗)
and obtain a representation

of (12.6) as a nilsequence of degree-rank < (s− 1, r∗), as desired. �

From this lemma and Lemma E.8(ii) we can express χh as a bounded linear

combination of χ̃h⊗ψh for some nilsequence ψh of degree-rank 6 (s−1, r∗−1).

Thus, to prove Theorem 7.2 it suffices to show that there is a nilcharacter

χ̃ ∈ Ξ(1,s−1)(∗Z2), such that χ̃h(n) = χ̃(h, n) for many h ∈ H ′ and all n ∈ [N ].

We illustrate the construction with an example. Let

G := G(2,0) = {et11 e
t2
2 [e1, e2]t12 : t1, t2, t12 ∈ R}

be the universal degree 2 nilpotent group (6.1) generated by e1, e2. Let F be

the Lipschitz function in equation (6.3). Suppose

χh(n) := F (gh(n)∗Γ)

with gh(n) := eβn2 eαhn
1 , where αh := {δh}γ, and α, β, γ ∈ ∗R. As computed in

Section 6, we have

Fk(gh(n)∗Γ) = φk(αhn mod 1, βn mod 1)e({αhn}βn)

for some Lipschitz function φk : T2 → C. We would like to interpret the

function (h, n) 7→ χh(n) as a nilcharacter in Ξ
(1,2)
Multi(

∗Z2). The first task is to

identify a subgroup Gpetal of the group G representing that part of G that is

“influenced by” the petal frequency αh; more specifically, we take Gpetal to be

the subgroup of G generated by e1 and [e1, e2]; that is to say,

Gpetal = 〈e1, [e1, e2]〉R = {et11 [e1, e2]t12 : t1, t12 ∈ R}.

Note that Gpetal is abelian and normal in G. In particular, G acts on Gpetal

by conjugation, and we may form the semidirect product

GnGpetal := {(g, g1) : g ∈ G, g1 ∈ Gpetal},

defining multiplication by

(g, g1) · (g′, g′1) = (gg′, gg
′

1 g
′
1),

where ab := b−1ab denotes conjugation.
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Now consider the action ρ of R on GnGpetal defined by

ρ(t)(g, g1) := (ggt1, g1).

We may form a further semidirect product

G′ := Rnρ (GnGpetal),

in which the product operation is defined by

(t, (g, g1)) · (t′, (g′, g′1)) = (t+ t′, ρ(t′)(g, g1) · (g′, g′1)).

G′ is a Lie group; indeed, one easily verifies that it is 3-step nilpotent. We give

G′ an N2-filtration:

G′(0,0) := G′,

G′(1,0) := {(t, (g, id)) : t ∈ R, g ∈ Gpetal},
G′(1,1) := {(0, (g, id)) : g ∈ Gpetal},
G′(1,2) := {(0, (g, id)) : g ∈ [G,G]},
G′(0,1) := {(0, (g, g1)) : g ∈ Gpetal; g1 ∈ Gpetal},
G′(0,2) := {(0, (g, g1)) : g, g1 ∈ [G,G]},

with G′i,j := {id} for all other (i, j) ∈ N2. One easily verifies that this is a

filtration. Inside G′ we take the lattice

Γ′ := Z nρ (Γ n Γpetal),

where Γpetal := Γ ∩Gpetal. Now consider the polynomial g′ : Z2 → G′ defined

by

g′(h, n) := (0, (eβn2 , eγn1 )) · (δh, (id, id))

and observe that

g′(h, n)Γ′ = (0, (eβn2 , eγn1 )) · ({δh}, (id, id))Γ′

= ({δh}, (eβn2 e
{δh}γn
1 , eγn1 ))Γ′.

For a dense subset H ′′, {δh} is in a small interval I. Let ψ be a smooth cutoff

function supported on 2I. Take F ′ : G′/Γ′ → CD to be the function defined

by

F ′((t, (g, g′))Γ′) := ψ(t)F (gΓ)

whenever t ∈ I and 0 otherwise. Then for h ∈ H ′′, we have

F ′(g′(h, n)Γ̃) = F (eβn2 e
{δh}γn
1 Γ) = χh(n),

giving the desired representation of (h, n) 7→ χh(n) as an (almost) degree (1, 2)

nilcharacter.

We now turn to the general case. Our construction shall proceed by an

abstract algebraic construction. Let G̃petal be the subgroup of G̃ generated by
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(r− 1)-fold (r ≥ 1)-iterated commutators of ẽi1,j1 , . . . , ẽir,jr in which jl > D∗,il
for exactly one value of l. Then G̃petal is a rational abelian normal subgroup

of G̃. To see that G̃petal is normal, ones uses the equalities

ẽ−1
i,j [g, h]ẽi,j = [ẽ−1

i,j gẽi,j , ẽ
−1
i,j hẽi,j ] and ẽ−1

i,j gẽi,j = g[g, ẽi,j ],

the commutator identities in equation (3.1), and the fact that any iterated

commutators of ẽi1,j1 , . . . , ẽir,jr in which jl > D∗,il for more than one value of

l is trivial in G̃.

In particular, G̃ acts on G̃petal by conjugation, leading to the semidirect

product G̃n G̃petal of pairs (g, g1) with the product

(g, g1)(g′, g′1) := (gg′, gg
′

1 g
′
1).

Next, let R be the commutative ring of tuples t = (ti,j)16i6s−1;D∗,i<j6D∗,i+D′lin,i
with ti,j ∈ R, which we endow with the pointwise product. For each t ∈ R,

we can define a homomorphism g 7→ gt on G̃, which we define on generators

by mapping ẽi,j to ẽti,j for D∗,i < j 6 D∗,i + D′lin,i, but preserving ẽi,j for

j 6 D∗,i. Such a homomorphism is well defined as it preserves the defining

relations of G̃. We observe the composition law

(gt)t
′

= gtt
′

for g ∈ G̃ and t, t′ ∈ R. Also, on the abelian subgroup G̃petal on G̃, we see that

(12.8) gtgt
′

= gt+t
′
,

as can be seen from the Baker-Campbell-Hausdorff formula (3.2). We can thus

express

(12.9) g̃h(n) = g1(n){αh},

where g1 ∈ ∗poly(ZN → (G̃petal)N) is the polynomial sequence

g1(n) :=
s−1∏
i=1

D∗,i+D′lin,i∏
j=D∗,i+1

ẽ
βi,j(ni)
i,j

and {αh} ∈ R is the element

{αh} := ({αi,jh})16i6s−1;D∗,i<j6D∗,i+D′lin,i
.

The homomorphism g 7→ gt preserves G̃petal and is the identity once G̃petal is

quotiented out. As a consequence, we see that

(12.10) (gg1g
−1)t = ggt1g

−1

for any g ∈ G̃ and g1 ∈ G̃petal.

We can now define an action ρ of R (viewed now as an additive group) on

G̃n G̃petal by defining

ρ(t)(g, g1) := (ggt1, g1);
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the properties (12.8), (12.10) ensure that this is indeed an action. We can then

define the semi-direct product G′ := R nρ (G̃ n G̃petal) to be the set of pairs

(t, (g, g1)) with the product

(t, (g, g1))(t′, (g′, g′1)) = (t+ t′, ρ(t′)(g, g1)(g′, g′1)).

This is a Lie group. We can give it an N2-filtration (G′(d1,d2))(d1,d2)∈N2 as

follows:

(i) If d1 > 1, then G′(d1,d2) := {id}.
(ii) If d1 = 1 and d2 > 0, then G′(1,d2) consists of the elements (0, (g, id))

with g ∈ G̃d2 ∩ G̃petal.

(iii) If d1 = 1 and d2 = 0, then G′(1,0) consists of the elements (t, (g, id))

with t ∈ R and g ∈ G̃petal.

(iv) If d1 = 0 and d2 > 0, then G′(0,d2) consists of the elements (0, (g, g1))

with g ∈ G̃d2 and g1 ∈ G̃petal ∩ G̃d2 .

(v) G′(0,0) = G′.

One easily verifies that this is a filtration of degree 6 (1, s−1) with G′(0,0) = G′.

We let Γ′ be the subgroup of G̃ consisting of pairs (t, (g, g1)) with g ∈ Γ̃,

g1 ∈ Γ̃petal, and with all coefficients of t integers. One easily verifies that Γ′ is

a cocompact subgroup of G′, and that the above N2-filtration of G′ is rational

with respect to Γ′, so that G′/Γ′ has the structure of a filtered nilmanifold.

We consider the orbit O′ ∈ ∗poly(Z2
N2 → (G′/Γ′)N2) defined by

O′(h, n) := (0, (g0(n), g1(n)))(αh, (id, id))∗Γ′,

where

αh := (αi,jh)16i6s−1;D∗,i<j6D∗,i+D′lin,i
.

As g0, g1 were already known to be polynomial maps, and the linear map

h 7→ αh is clearly polynomial also, we see from Corollary B.4 and the choice

of filtration on G′ that O′ is a polynomial orbit.

Now we simplify the orbit. Working on the abelian group R, we see that

(αh, (id, id))∗Γ′ = ({αh}, (id, id))∗Γ′,

and then commuting this with (0, (g0(n), g1(n))), we obtain

(12.11) O′(h, n) = ({αh}, (g0(n)g1(n){αh}, g1(n)))∗Γ′.

Recall that for many h ∈ H, each component {αi,jh} of {αh} lies in an interval

Ii,j of length at most 1/10. Let 2Ii,j be the interval of twice the length and

with the same centre as Ii,j , and let ϕi,j : R→ R be a smooth cutoff function
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supported on Ii,j . We then define a function F ′ : G′/Γ′ → Cω by setting

F ′(((ti,j)16i6s−1;D∗,i<j6D∗,i+D′lin,i
, (g, g1))∗Γ′)

:=

Ç s−1∏
i=1

D∗,i+D′lin,i∏
j=D∗,i+1

ϕi,j(ti,j)
ä
gF̃ (g∗Γ̃)

whenever (g, g1) ∈ G̃ n G̃petal and ti,j ∈ 2Ii,j for all 1 6 i 6 s − 1 and D∗,i <

j 6 D∗,i + D′lin,i, with F ′ set equal to zero whenever no representation of the

above form exists. One can easily verify that F ′ is well defined and Lipschitz.

Since F̃ has vertical frequency η̃, F ′ has vertical frequency η′ : G′(1,s−1) → R,

defined by the formula

η′((0, (g, id)) := η̃(g)

for all g ∈ G̃s−1. From (12.5), (12.9), and (12.11), we see that for many h ∈ H ′,
we have

χ̃h(n) = F ′ ◦ O′(h, n)

for all n ∈ [N ]. By construction, F ′ ◦ O′ ∈ Ξ
(1,s−1)
Multi (∗Z2), and Theorem 7.1

follows.

13. The symmetry argument

In this, the last section of the main part of the paper, we supply the

symmetry argument, Theorem 7.4; we recall that statement now.

Theorem 7.4. Let f ∈ L∞[N ], let H be a dense subset of [[N ]], and let

χ ∈ Ξ(1,s−1)(∗Z2) be such that ∆hf < (s − 2)-correlates with χ(h, ·) for all

h ∈ H . Then there exists a nilcharacter Θ ∈ Ξs(∗Z) (with the degree filtration)

and a nilsequence Ψ ∈ Nil⊂J(∗Z2) (with the multidegree filtration), with J

given by the downset

(13.1) J := {(i, j) ∈ N2 : i+ j 6 s− 1} ∪ {(i, s− i) : 2 6 i 6 s},

such that χ(h, n) is a bounded linear combination of Θ(n+h)⊗Θ(n)⊗Ψ(h, n).

Example 13.1. Suppose that s = 2, χ(h, n) = e(P (h, n)), and P (h, n) :
∗Z2 → ∗R is a symmetric bilinear form in n, h. Then observe that

(13.2) χ(h, n) = Θ(n+ h)Θ(n)Ψ(h, n),

where Θ(n) := e(1
2P (n, n)) and Ψ(h, n) := e(−1

2P (h, h)), which illustrates

a special case of Theorem 7.4. More generally, if s > 2 and χ(h, n) =

e(P (h, n, . . . , n)) with P (h, n1, . . . , ns−1) : ∗Zs → ∗R a symmetric multilinear

form, then we have (13.2) with Θ(n) := e(1
sP (n, . . . , n)), and Ψ(h, n) a poly-

nomial phase involving terms of multidegree (i, s − i) in h, n with 2 6 i 6 s.

Thus we again obtain a special case of Theorem 7.4. Note how the symmetry

of P is crucial in order to make these examples work, which explains why we
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refer to Theorem 7.4 as a symmetrisation result. Morally speaking, this type of

symmetry property ultimately stems from the identity ∆h∆kf = ∆k∆hf . We

remark that an analogous symmetrisation result was crucial to the analogous

proof of GI(2) in [16] (see also [42]), although our arguments here are slightly

different.

From the inclusions at the end of Section 6, χ(h, n) is a nilcharacter on Z2

(with the degree filtration) of degree 6 s. For similar reasons, any nilsequence

Ψ(h, n) of degree 6 s− 1 (using the degree filtration on Z2) will automatically

be of the form required for Theorem 7.4. In view of this and Lemma E.8, we

see that it will suffice to obtain a factorisation of the form

[χ]Ξs([[N ]]×[N ]) =[Θ(n+h)]Ξs([[N ]]×[N ])−[Θ(n)]Ξs([[N ]]×[N ])+[Ψ(h, n)]Ξs([[N ]]×[N ]),

where Θ ∈ Ξs(∗N) is a one-dimensional nilcharacter of degree 6 s (which

automatically makes (h, n) 7→ Θ(n) and (h, n) 7→ Θ(n + h) two-dimensional

nilcharacters of degree 6 s, by Lemma E.8(vi)), and Ψ ∈ Ξs(∗N2) is a two-

dimensional nilcharacter of multidegree

(13.3) ⊂ {(i, j) ∈ N2 : i+ j 6 s; j 6 s− 2}.

The set of classes [Ψ(h, n)]Ξs([[N ]]×[N ]), with Ψ of the above form, is a subgroup

of the space Symbs([[N ]] × [N ]) of all symbols of degree s nilcharacters on

[[N ]] × [N ]. Denoting the equivalence relation induced by these classes as ≡,

our task is thus to show that

[χ]Ξs([[N ]]×[N ]) ≡ [Θ(n+ h)]Ξs([[N ]]×[N ]) − [Θ(n)]Ξs([[N ]]×[N ]).

In view of Theorem E.10 and Lemma E.8(vii), there is a nilcharacter χ̃ on
∗Zs of degree (1, . . . , 1) that is symmetric in the last s− 1 variables, and such

that

(13.4) [χ(h, n)]Ξs(∗Z2) = s[χ̃(h, n, . . . , n)]Ξs(∗Z2).

Inspired by the polynomial identity

shns−1 = (n+ h)s − ns − · · · ,

where the terms in · · · are of degree s in h, n but of degree at most s− 2 in n,

we now choose

Θ(n) := χ̃(n, . . . , n).

From Lemma E.8(vi) we see that Θ is a nilcharacter of degree 6 s. Our task

is now to show that

[χ̃(n+ h, . . . , n+ h)]Ξs([[N ]]×[N ]) − [χ̃(n, . . . , n)]Ξs([[N ]]×[N ])(13.5)

− s[χ̃(h, n . . . , n)]Ξs([[N ]]×[N ]) ≡ 0.

To manipulate this, we use the following lemma.
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Lemma 13.2 (Multilinearity). Let χ̃ be a nilcharacter on Zs (with the

multidegree filtration) of degree (1, . . . , 1). Let m > 1 be standard, and let

L1, . . . , Ls : Zm → Z and L′1 : Zm → Z be homomorphisms. Then we have

linearity in the first variable, in the sense that

[χ̃(L1(~n) + L′1(~n), L2(~n), . . . , Ls(~n))]Ξs(∗Zm)

= [χ̃(L1(~n), L2(~n), . . . , Ls(~n))]Ξs(∗Zm)

+ [χ̃(L′1(~n), L2(~n), . . . , Ls(~n)]Ξs(∗Zm),

where ~n = (n1, . . . , nm) are the m independent variables of ∗Zm, and Zm is

given the degree filtration. We similarly have linearity in the other s− 1 vari-

ables.

Proof. We prove the claim for the first variable, as the other cases follow

from symmetry. From Lemma E.3 and Lemma E.8(vi), it will suffice to show

that the expression

(13.6) χ̃(h1 + h′1, h2, . . . , hs)⊗ χ̃(h1, h2, . . . , hs)⊗ χ̃(h′1, h2, . . . , hs)

is a degree < s nilsequence in h1, h
′
1, h2, . . . , hs (using the degree filtration).

Write χ̃(h1, . . . , hs) = F (g(h1, . . . , hs)
∗Γ), where G/Γ is an Ns-filtered

nilmanifold of degree 6 (1, . . . , 1), F ∈ Lip(∗(G/Γ)) has a vertical frequency,

and g ∈ ∗poly(ZsNs → GNs). Then the expression (13.6) takes the form

F̃ (g̃(h1, h
′
1, h2, . . . , hs)

∗Γ3),

where g̃ : ∗Zs+1 → G3 is the map

g̃(h1, h
′
1, h2, . . . , hs) :=(g(h1+h′1, h2, . . . , hs), g(h1, h2, . . . , hs), g(h′1, h2, . . . , hs))

and F̃ ∈ Lip(∗(G/Γ)3) is the map

F̃ (x1, x2, x3) = F (x1)⊗ F (x2)⊗ F (x3).

By Lemma B.9, we can expand

g(h1, . . . , hs) =
∏

i1,...,is={0,1}
g
(h1i1 )···(hsis )
i1,...,is

for some gi1,...,is ∈ G(i1,...,is), where we order {0, 1}s lexicographically (say).

We now give G3 an N-filtration by defining (G3)i to be the group generated

by (G(i1,...,is))
3 for all i1, . . . , is ∈ N with i1 + · · · + is > i, together with the

groups {(g1g2, g1, g2) : g1, g2 ∈ G(i1,...,is)} for i1 + · · · + is = i. From the

Baker-Campbell-Hausdorff formula (3.2) one verifies that this is a rational

filtration of G3. From the Taylor expansion we also see that g̃ is polynomial

with respect to this filtration (giving Zs+1 the degree filtration). Finally, as F

has a vertical character, we see that F̃ is invariant with respect to the action
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of (G3)s = {(g1g2, g1, g2) : g1, g2 ∈ G(1,...,1)}. Restricting G3 to (G3)0 and

quotienting out by (G3)s we obtain the claim. �

Using this lemma repeatedly, together with the symmetry of χ̃ in the final

s− 1 variables, we see that we can expand

[χ̃(n+ h, . . . , n+ h)]Ξs(∗Z2) =
s−1∑
j=0

Ç
s− 1

j

å(
[χ̃(n, h, . . . , h, n, . . . , n)]Ξs(∗Z2)

+[χ̃(h, h, . . . , h, n, . . . , n)]Ξs(∗Z2)

)
,

where in the terms on the right-hand side, the final j coefficients are equal

to n, the first coefficient is either n or h, and the remaining coefficients are h.

Note that a term with j h factors and (s− j) n factors will have degree (13.3)

and thus be negligible as long as j > 2. Neglecting these terms, we obtain the

simpler expression

[χ̃(n+ h, . . . , n+ h)]Ξs(∗Z2) ≡ [χ̃(n, . . . , n)]Ξs(∗Z2) + [χ̃(h, n, . . . , n)]Ξs(∗Z2)

+ (s− 1)[χ̃(n, h, n, . . . , n)]Ξs(∗Z2).

Comparing this with (13.3), we will be done as soon as we can show the

symmetry property

(13.7) (s−1)[χ̃(h, n, . . . , n)]Ξs([[N ]]×[N ]) = (s−1)[χ̃(n, h, n, . . . , n)]Ξs([[N ]]×[N ]).

This property does not automatically follow from the construction of χ̃.

Instead, we must use the correlation properties of χ, as follows.

By hypothesis and Lemma E.5, we have that for all h in a dense subset H

of [[N ]], we can find a degree 6 s− 2 nilcharacter ϕh such that f1(·+ h)f2(·)
correlates with χ(h, ·, . . . , ·)⊗ϕh. By Corollary A.12, we may assume that the

map h 7→ ϕh is a limit map. We set ϕh = 0 for h 6∈ H.

To use this information, we return7 to Proposition 8.4. Invoking that

proposition, we see that for many additive quadruples (h1, h2, h3, h4) in [[N ]],

the sequence

n 7→ χ(h1, n)⊗ χ(h2, n+ h1 − h4)⊗ χ(h3, n)⊗ χ(h4, n+ h1 − h4)

⊗ ϕh1(n)⊗ ϕh2(n+ h1 − h4)⊗ ϕh3(n)⊗ ϕh4(n+ h1 − h4)

is biased.

We make the change of variables (h1, h2, h3, h4) = (h+a, h+b, h+a+b, h)

and then pigeonhole in h, to conclude the existence of an h0 for which

n 7→ τ(a, b, n)⊗ ϕh0+a(n)⊗ ϕh0+b(n+ a)⊗ ϕh0+a+b(n)⊗ ϕh0(n+ a)

7Here is a key place where we use the hypothesis s > 3 (the other is Lemma 10.9). For

s = 2 the lower order terms in Proposition 8.4 are useless; however a variant of the argument

below still works (see [16]).
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is biased for many pairs a, b ∈ [[2N ]], where τ = τh0 is the expression

(13.8)

τ(a, b, n) := χ(h0 + a, n)⊗ χ(h0 + b, n+ a)⊗ χ(h0 + a+ b, n)⊗ χ(h0, n+ a).

Henceforth h0 is fixed, and we will suppress the dependence of various functions

on this parameter. From Lemma E.3, τ is a degree 6 3 nilcharacter on ∗Z3

(with the degree filtration). We record its top order symbol.

Lemma 13.3. We have

[τ(a, b, n)]Ξs(∗Z3) ≡ s(s− 1)[χ̃(b, a, n, . . . , n)]Ξs(∗Z3),

where by ≡ we are quotienting by all symbols of degree 6 s− 3 in n.

Proof. From (13.4), (13.8), Lemma E.3, and Lemma E.8 one has

[τ(a, b, n)]Ξs(∗Z3) = s([χ̃(a, n, . . . , n)]Ξs(∗Z3) + [χ̃(b, n+ a, . . . , n+ a)]Ξs(∗Z3)

− [χ̃(a+ b, n, . . . , n)]Ξs(∗Z3)).

Applying Lemma 13.2 in the first variable, we simplify this as

s([χ̃(b, n+ a, . . . , n+ a)]Ξs(∗Z3) − [χ̃(a, n, . . . , n)]Ξs(∗Z3)).

Applying Lemma 13.2 in all the other variables and gathering terms using the

symmetry of χ̃ in those variables, we arrive at

s−2∑
j=0

s

Ç
s− 1

j

å
[χ̃(b, a, . . . , a, n, . . . , n)]Ξs(∗Z3),

where there are j occurrences of n and s−1−j occurrences of a. All the terms

with j < s− 2 are of degree 6 s− 2 in n, and the claim follows. �

From Lemma E.8, we know that ϕh0+b(n+ a) is a bounded linear combi-

nation of ϕh0+b(n)⊗ψa,b(n) for some degree 6 s−3 nilsequence ψa,b; similarly

for ϕh0(n+ a). We conclude that

n 7→ τ(a, b, n)⊗ ϕh0+a(n)⊗ ϕh0+b(n)⊗ ϕh0+a+b(n)⊗ ϕh0(n)

is 6 (s− 3)-biased for many a, b ∈ [[2N ]].

We will now eliminate the ϕh terms in order to focus attention on τ .

Applying Corollary A.12, we may thus find a scalar degree 6 s−3 nilsequence

ψa,b depending in a limit fashion on a, b ∈ [[2N ]] such that

|Ea,b∈[[2N ]];n∈[N ]τ(a, b, n)⊗ ϕh0+a(n)⊗ ϕh0+b(n)⊗ ϕh0+a+b(n)

⊗ ϕh0,k′(n+ a)ψa,b(n)| � 1.
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We pull out the b-independent factors ϕh0+a(n)⊗ϕh0(n) and Cauchy-Schwarz

in a, n to conclude that

|Ea,b,b′∈[[2N ]];n∈[N ]τ(a, b, n)⊗ τ(a, b′, n)⊗ ϕh0+b(n)⊗ ϕh0+b′(n)

⊗ ϕh0+a+b(n)⊗ ϕh0+a+b′(n)ψa,b,b′(n)| � 1,

where (a, b, b′) 7→ ψa,b,b′ is a limit map assigning a scalar degree 6 s − 3

nilsequence to each a, b, b′. Next, we make the substitution c := a+ b+ b′ and

conclude that

|Ec,b,b′∈[[3N ]];n∈[N ]τ(c− b− b′, b, n)⊗ τ(c− b− b′, b′, n)

⊗ ϕh0+b(n)⊗ ϕh0+b′(n)⊗ ϕh0+c−b′(n)ϕh0+c−b(n)ψ′c,b,b′(n)| � 1,

where (c, b, b′) 7→ ψ′c,b,b′ is a limit map assigning a scalar degree 6 s− 3 nilse-

quence to each c, b, b′. By the pigeonhole principle, we can thus find a c0 such

that

(13.9) |Eb,b′∈[[3N ]];n∈[N ]α(b, b′, n)⊗ ϕ′b(n)⊗ ϕ′b′(n)ψ′c0,b,b′(n)| � 1,

where α = αc0 is the form

(13.10) α(b, b′, n) := τ(c0 − b− b′, b, n)⊗ τ(c0 − b− b′, b′, n)

and ϕ′b = ϕ′b,c0 is the quantity

ϕ′b(n) := ϕh0+b,k(n)⊗ ϕh0+c0−b(n).

We fix this c0. Again by Lemma E.3, α is a degree 6 s nilcharacter on ∗Z3,

and we pause to record its symbol in the following lemma.

Lemma 13.4. We have

[α(b, b′, n)]Ξs(∗Z3) ≡ −s(s− 1)[χ̃(b+ b′, b− b′, n, . . . , n)]Ξs(∗Z3),

where by ≡ we are quotienting by all symbols of degree 6 s− 3 in n.

Proof. From (13.10) and Lemma E.8, we can write the left-hand side as

[τ(−b− b′, b, n)]Ξs(∗Z3) − [τ(−b− b′, b′, n)]Ξs(∗Z3).

Applying (13.3), we can write this as

s(s− 1)([χ̃(−b− b′, b, n, . . . , n)]Ξs(∗Z3) − [χ̃(−b− b′, b′, n, . . . , n)]Ξs(∗Z3)).

The claim then follows from some applications of Lemma 13.2. �

We return now to (13.9), and Cauchy-Schwarz in b′, n to eliminate the

ϕ′b′(n) factor, yielding

|Eb1,b2,b′∈[[3N ]];n∈[N ]α(b1, b
′, n)⊗ α(b2, b′, n)⊗ ϕ′b1(n)⊗ ϕ′b2(n)ψ′′b1,b2,b′(n)| � 1,
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where (b1, b2, b
′) 7→ ψ′′b1,b2,b′ is a limit map assigning a scalar degree 6 s − 3

nilsequence to each b1, b2, b
′. Finally, we apply the Cauchy-Schwarz inequality

in b1, b2, n to eliminate the ϕ′b1(n)ϕ′b2(n) factor, yielding

|Eb1,b2,b′1,b′2∈[[3N ]];n∈[N ]α(b1, b
′
1, n)⊗ α(b2, b′1, n)⊗ α(b1, b′2, n)

⊗ α(b2, b
′
2, n)ψ′′b1,b2,b′1,b′2

(n)| � 1.

Note how the ϕ terms have now been completely eliminated. To eliminate the

ψ′′ terms, we first use the pigeonhole principle to find b0, b
′
0 such that

(13.11) |Eb,b′∈[[3N ]];n∈[N ]α
′(b, b′, n)ψ′′b,b0,b′,b′0

(n)| � 1,

where α′ = α′b0,b′0
is the expression

(13.12) α′(b, b′, n) := α(b, b′, n)⊗ α(b0, b′, n)⊗ α(b, b′0, n)⊗ α(b0, b
′
0, n).

We fix this b0, b
′
0. Again, α′ is a degree 6 s nilcharacter on ∗Z3. From Lem-

mas 13.4 and 13.2 (and using Lemma E.8 to eliminate shifts by b0), we conclude

that

(13.13)

[α′(b, b′, n)]Ξs(∗Z3)≡s(s−1)([χ̃(b, b′, n, . . . , n)]Ξs(∗Z3)−[χ̃(b′, b, n, . . . , n)]Ξs(∗Z3)).

Note the similarity here with (13.7).

From (13.11), we conclude that the sequence n 7→ α′(b, b′, n) is 6 s − 3-

biased for many b, b′ ∈ [[3N ]]. Applying Proposition 5.6, we conclude that

‖α′(b, b′, n)‖Us−2[N ] � 1

for many b, b′ ∈ [[3N ]]. We conclude (using Corollary A.6 to obtain the needed

uniformity) that

Eb,b′∈[[3N ]]‖α′(b, b′, n)‖2s−2

Us−2[N ] � 1.

By definition of the Gowers norm, this implies that
(13.14)

|Eb,b′,h1,...,hs−2∈[[3N ]];n∈[N ]σ(b, b′, h1, . . . , hs−2, n)1Ω(h1, . . . , hs−2, n)| � 1,

where Ω is the polytope

Ω :=

(h1, . . . , hs−2, n) : n+
s−2∑
j=1

ωjhs−2 ∈ [N ] for all ω ∈ {0, 1}s−2


and σ is the expression

(13.15) σ(b, b′, h1, . . . , hs−2, n) :=
⊗

ω∈{0,1}s−2

C|ω|α′
Ñ
b, b′, n+

s−2∑
j=1

ωjhs−2

é
,

with C being the conjugation map.

From Lemma E.3, σ is a nilcharacter of degree s on ∗Zs+1. In the following

lemma we compute its symbol.
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Lemma 13.5. We have

[σ(b, b′, h1, . . . , hs−2, n)]Ξs(∗Zs+1) = s!
(
[χ̃(b, b′, h1, . . . , hs−2)]Ξs(∗Zs+1)

− [χ̃(b′, b, h1, . . . , hs−2)]Ξs(∗Zs+1)

)
.

(13.16)

Proof. From (13.15) and Lemma E.8, we can write the left-hand side as

(13.17)
∑

ω∈{0,1}s−2

(−1)|ω|

α′
Ñ
b, b′, n+

s−2∑
j=1

ωjhs−2

é
Ξs(∗Zs+1)

;

one should think of this as an s − 2-fold “derivative” of [α′(b, b′, n)]Ξs(∗Z3) in

the n variable.

From (13.13), we can write

[α′(b, b′, n)]Ξs(∗Z3) = s(s− 1)([χ̃(b, b′, n, . . . , n)]Ξs(∗Z3)

− [χ̃(b′, b, n, . . . , n)]Ξs(∗Z3)) + [β(b, b′, n)]Ξs(∗Z3),

where β is of degree at most s− 3 in n. In fact, by inspection of the derivation

of β, and heavy use of Lemma 13.2, one can express [β(b, b′, n)]Ξs(∗Z3) as a

linear combination of classes of the form

[χ̃(n1, . . . , ns)]Ξs(∗Z3),

where each of n1, . . . , ns is equal to either b, b′, or n, with at most s− 3 copies

of n occurring. If one then substitutes this expansion into (13.17) and applies

Lemma 13.2 repeatedly, one obtains the claim. �

On the other hand, from (13.14) and Lemma E.11, we see that on [[3N ]]s+1,

σ is equal to a nilsequence of degree 6 s− 1, and thus by Lemma E.8,

[σ(b, b′, h1, . . . , hs−2, n)]Ξs([[3N ]]s+1) = 0

and thus by Lemma (13.16),

s!([χ̃(b, b′, h1, . . . , hs−2)]Ξs([[3N ]]s+1) − [χ̃(b′, b, h1, . . . , hs−2)]Ξs([[3N ]]s+1)) = 0.

Applying Lemma E.3 we conclude that

s!([χ̃(h, n, . . . , n)]Ξs([[N ]]×[N ]) − [χ̃(n, h, n, . . . , n)]Ξs([[N ]]×[N ])) = 0.

The claim (13.7) now follows from Lemma E.13. The proof of Theorem 7.4 is

now complete.
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Appendix A. Basic theory of ultralimits

In this appendix we review the machinery of ultralimits.

We will assume the existence of a standard universe U that contains all the

objects and spaces of interest for Theorem 1.3, such as real numbers, subsets

of real numbers, functions from [N ] to C for finite N ∈ N, nilmanifolds (or

more precisely, a representative from each equivalence class of nilmanifolds),

and so forth. The precise construction of this universe is not important, so

long as it forms a set. We refer to objects and spaces inside the standard

universe as standard objects and standard spaces, with the latter being sets

whose elements are in the former category. Thus, for instance, elements of N
are standard natural numbers, the Heisenberg nilmanifold

(
1 R R
0 1 R
0 0 1

)
/
(

1 Z Z
0 1 Z
0 0 1

)
is

a standard nilmanifold (consisting entirely of standard points), and so forth.

The one technical ingredient we need is the following.

Lemma A.1 (Ultrafilter lemma). There exists a collection p of subsets of

the natural numbers N with the following properties :

(i) (Monotonicity). If A ∈ p and B ⊃ A, then B ∈ p.

(ii) (Closure under intersection). If A,B ∈ p, then A ∩B ∈ p.

(iii) (Maximality). If A ⊂ N, then either A ∈ p or N\A ∈ p, but not both.

(iv) (Nonprincipality). If A ∈ p, and A′ is formed from A by adding or

deleting finitely many elements to or from A, then A′ ∈ p.

Proof. The collection of subsets of N that are cofinite (i.e., whose comple-

ment is finite) already obeys the monotonicity, closure under intersection, and

nonprincipality properties. Using Zorn’s lemma,8 one can enlarge this collec-

tion to a maximal collection, which then obeys all the required properties. �

Throughout the paper, we fix a nonprincipal ultrafilter p. A property

P (n) depending on a natural number n is said to hold for n sufficiently close

to p if the set of n for which P (n) holds lies in p.

Once we have fixed this ultrafilter we can define limit objects and spaces

as follows.

8By using this lemma, our results thus rely on the axiom of choice, which we will of

course assume throughout this paper. On the other hand, it is tedious but straightforward

to rephrase the inverse conjecture (Conjecture 1.2) in the language of Peano arithmetic (e.g.,

using Mal’cev bases [40] to represent a nilmanifold, and approximating a Lipschitz function

by a piecewise linear one). Applying a famous theorem of Gödel [12], we then conclude that

Conjecture 1.2 is provable in ZFC if and only if it is provable in ZF. In fact, it is possible

(with some effort) to directly translate these ultrafilter arguments to a (lengthier) argument

in which ultrafilters or the axiom of choice is not used. We will not do so here, though, as

the translation is quite tedious.
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Definition A.2 (Limit objects). Given a sequence (xn)n∈N of standard

objects in U, we define their ultralimit limn→p xn to be the equivalence class

of all sequences (yn)n∈N of standard objects in U such that xn = yn for n

sufficiently close to p. Note that the ultralimit limn→p xn can also be defined

even if xn is only defined for n sufficiently close to p.

An ultralimit of standard natural numbers is known as a limit natural

number, an ultralimit of standard real numbers is known as a limit real num-

ber, etc.

For any standard object x, we identify x with its own ultralimit limn→p x.

Thus, every standard natural number is a limit natural number, etc.

Any operation or relation on standard objects can be extended to limit

objects in the obvious manner. For instance, the sum of two limit real numbers

limn→p xn, limn→p yn is the limit real number

lim
n→p

xn + lim
n→p

yn = lim
n→p

xn + yn,

and the statement limn→p xn < limn→p yn means that xn < yn for all n suffi-

ciently close to p.

A famous theorem of  Loś asserts that any statement in first-order logic

that is true for standard objects is automatically true for limit objects as well.

For instance, the standard real numbers form an ordered field, and so the limit

real numbers do also, because the axioms of an ordered field can be phrased

in first-order logic. We will use this theorem in the sequel without further

comment.

Definition A.3 (Limit spaces and functions). Let (Xn)n∈N be a sequence

of standard spaces Xn in U indexed by the natural numbers. The ultrapower∏
n→pXn of the Xn is defined to be the space of all ultralimits limn→p xn,

where xn ∈ Xn for all n. Note that Xn only needs to be well defined for n

sufficiently close to p in order for the ultraproduct to be well defined. If X

is a set, the set
∏

n→pX is known as the ultrapower of X and is denoted ∗X.

Thus, for instance, ∗N is the space of all limit natural numbers, ∗R is the space

of all limit reals, etc.

We define a limit set to be an ultraproduct of sets, a limit group to be an

ultraproduct of groups, a limit finite set to be an ultraproduct of finite sets,

and so forth. A limit subset of a limit set X =
∏

n→pXn is a limit set of the

form Y =
∏

n→p Yn, where Yn is a standard subset of Xn for all n sufficiently

close to p.

Given a sequence of standard functions fn : Xn → Yn between standard

sets Xn, Yn, we can form the ultralimit f = limn→p fn to be the function

f :
∏

n→pXn →
∏

n→p Yn defined by the formula

f( lim
n→p

xn) := lim
n→p

fn(xn).
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We refer to f as a limit function or limit map, and say that f(x) depends in

a limit fashion on x.

Remark. In the nonstandard analysis literature, limit natural numbers are

known as nonstandard natural numbers, limit sets are known as internal sets,

and limit functions are known as internal functions. We have chosen the limit

terminology instead, as we believe that it is less confusing and emphasises the

role of ultralimits in the subject.

It is important to note that not every subset of a limit set is again a

limit set; for instance, N is not a limit subset of ∗N. (This fact is known as

the overspill principle.) Indeed, one can think of the limit subsets of a limit

set as being analogous to the measurable subsets of a measure space. In a

similar vein, not every function between two limit sets is a limit function; in

this regard, limit functions are analogous to measurable functions.

Example (Pigeonhole principle). If X is finite, then ∗X = X. This is

ultimately because if the natural numbers is partitioned into finitely many

classes, then exactly one of those classes lies in p. In particular, we see that

every standard finite set is a limit finite set. However, the converse is not true.

For instance, if N is the limit natural number N :=limn→p n, then the limit set

[N ] := {n ∈ ∗N : 1 6 n 6 N} =
∏
n→p

[n]

is a limit finite set, but not a finite set.

Example. One has the identifications ∗T = (∗R)/(∗Z) and ∗(Rk) = (∗R)k

for any standard k, so one can talk about the limit unit circle ∗T or the

limit vector space ∗Rk without ambiguity. We will refer to elements of ∗T
as frequencies.

Example. Every standard function f : X → Y can be identified with its

ultralimit f : ∗X → ∗Y ; thus, for instance, the fundamental character e is a

limit function from ∗R (or ∗T) to ∗C and the fractional part function {} is a

limit function from ∗R to ∗I0.

Remark. A limit finite set A = limn→pAn has an limit cardinality |A|,
defined by the formula

|A| := lim
n→p
|An|.

Of course, |A| is a limit natural number, and not a natural number in general.

Thus, for instance, if N is a limit natural number, then the limit finite set [N ]

has a limit cardinality of N (despite being uncountable in the standard sense).

Asymptotic notation. By taking ultralimits, one can formalise asymptotic

notation, such as the O() notation, in a manner that requires no additional

quantifiers.
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Definition A.4 (Asymptotic notation). A limit complex number X is said

to be bounded if one has |X| 6 C for some standard real number C, in which

case we also write X = O(1) or |X| � 1. More generally, given a limit complex

number X and limit nonnegative number Y , we write |X| � Y , Y � |X|, or

X = O(Y ) if one has |X| 6 CY for some standard real number C. We write

X = o(Y ) if one has |X| 6 εY for every standard ε > 0. Observe that for any

X,Y with Y positive, one has either |X| � Y or X = o(Y ). We say that X

is infinitesimal if X = o(1) and unbounded if 1/X = o(1). Thus, for instance,

any limit complex number X will either be bounded or unbounded.

In a similar spirit, if x ∈ ∗V is a limit element of a standard topological

space V , we say that x is bounded if x is a limit element of standard compact

subset K of V (i.e., x ∈ ∗K) and unbounded otherwise. The set of all bounded

elements of ∗V will be denoted V .

Example. The limit real limn→p 1/n defines an infinitesimal, but nonzero,

limit real number x; its reciprocal limn→p n is an unbounded limit real.

Example. Any bounded element of a discrete standard space is standard,

by our example on the pigeonhole principle. In particular, bounded integers

are automatically standard: Z = Z. On the other hand, bounded elements in

a continuous space need not be standard, as the example limn→p 1/n shows.

From the Bolzano-Weierstrass theorem, every bounded limit real num-

ber can be expressed uniquely as the sum of a standard real number and an

infinitesimal, which may help explain the notation R. Note that R contains

the limit fundamental domain ∗I0. Similarly, C contains the limit unit circle
∗S1 = S1 = {z ∈ C : |z| = 1}, where S1 := {z ∈ C : |z| = 1}.

Example. For any standard D ∈ N+, we endow CD with the Euclidean

norm

|(z1, . . . , zD)| := (|z1|2 + · · ·+ |zD|2)1/2.

Then we have CD = CD: an element (z1, . . . , zD) ∈ ∗CD is bounded if and

only if each component is bounded.

One modest advantage of the ultralimit framework is that one can rig-

orously work with such equivalence relations as “x and y differ by O(1),” for

instance, by quotienting ∗R by the subring R; in the finitary setting, this rela-

tion is only “morally” an equivalence relation (because of the need to quantify

the constants in the O() notation).

Suppose one has a limit function f : Ω → ∗C on a limit set Ω. If one

asserts that f(x) = O(1) for each x ∈ Ω, one may be concerned that this

statement provides no uniformity in x. However, it turns out such uniformity

is automatic for limit functions.
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Lemma A.5 (Automatic uniformity). Let D ∈ N+, and let f : Ω→ ∗CD be

a limit function on a limit set Ω. Then the following statements are equivalent :

• (Pointwise boundedness). For each x ∈ Ω, one has f(x) ∈ CD (i.e.,

f(x) = O(1) for all x ∈ Ω).

• (Uniform boundedness). There exists a standard real C such that |f(x)| 6
C for all x ∈ Ω.

Intuitively, this lemma is asserting that the only types of functions that

always map unbounded sequences to bounded sequences (but with a bound

possibly depending on the initial sequence) are those functions that are uni-

formly bounded. The lemma can clearly fail if one considers functions f that

are not limit functions; thus it will be important to establish the limit nature

of various functions in the arguments below. This lemma is also closely related

to the overspill principle in nonstandard analysis, or the model-theoretic fact

that ultraproducts are countably saturated.

Proof. Clearly uniform boundedness implies pointwise boundedness, so we

show the converse. Suppose for contradiction that f was pointwise bounded

but not uniformly bounded. Then for every standard integer M there exists

an element xM in Ω such that |f(xM )| > M .

Write Ω as the ultralimit of standard sets Ωn, write f as an ultralimit of a

sequence fn : Ωn → CD, and write xM = xM,n ∈ Ωn. Thus for each standard

M , the statement |fn(xM,n)| > M is true for n sufficiently close to p.

Now we diagonalise. Set y = limn→p yn, where yn := xn,n. Then y ∈ Ω

and one sees that for every standard M , the statement |fn(yn)| > M holds for

n sufficiently close to p; thus f(y) is unbounded. But this contradicts pointwise

boundedness. �

We observe a useful corollary to Lemma A.5.

Corollary A.6 (Automatic uniform lower bounds). Let D ∈ N+, and

let f : Ω → ∗CD be a limit function on a limit set Ω such that |f(x)| � 1

for all x ∈ Ω. Then there exists a standard c > 0 such that |f(x)| > c for all

x ∈ Ω.

Proof. Apply Lemma A.5 to 1/|f |. �

Inspired by Lemma A.5, we shall simply call a limit function f : Ω→ ∗CD
bounded if it is either pointwise bounded or uniformly bounded. The space of

all bounded limit functions from Ω to ∗CD will be denoted L∞(Ω→ CD), and

we also write

(A.1) L∞(Ω) = L∞(Ω→ Cω) :=
⋃

D∈N+

L∞(Ω→ CD).
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When D = 1, L∞(Ω → C) is a ∗-algebra over the bounded complex

numbers C (i.e., it is closed under addition, pointwise multiplication, com-

plex conjugation, and multiplication by bounded complex numbers). It is not,

however, a limit set.

For higher dimensions D > 1, we still have the operations of addition,

complex conjugation (conjugating each coefficient of CD separately), and mul-

tiplication by bounded complex numbers. However, we do not have a natural

product on CD. Instead, we will use the tensor product ⊗ : CD×CD′ → CDD′ ,
defined in Section 3. This induces a tensor product

⊗ : L∞(Ω→ CD)× L∞(Ω→ CD
′
)→ L∞(Ω→ CDD

′
)

for any Ω, which is then a bilinear operation on L∞(Ω→ Cω). Strictly speak-

ing, this tensor product is neither commutative nor associative. However, it

is “essentially” commutative and associative in the following sense. Let us

say that a function f ∈ L∞(Ω → CD) is a bounded linear combination of

another function f ′ ∈ L∞(Ω → CD
′
) if there exists a linear transformation

T : ∗CD′ → ∗CD with bounded coefficients such that f = T ◦ f ′. Then it is

clear that for any f1, f2, f3 ∈ L∞(Ω→ Cω), we have that f2⊗ f1 is a bounded

linear combination of f1⊗f2, and that f1⊗(f2⊗f3) is a bounded linear combi-

nation of (f1⊗f2)⊗f3. This will be a satisfactory substitute for commutativity

and associativity for our purposes.

We define the spheres

S2D−1 := {z ∈ CD : |z| = 1}

and

Sω :=
⋃

D∈N+

S2D−1 = {z ∈ Cω : |z| = 1}

and observe that Sω is closed under complex conjugation and tensor product,

and so L∞(Ω→ Sω) is also. Also, observe that for any f ∈ L∞(Ω→ Sω), 1 is

a bounded linear combination of f ⊗ f .

When Ω is a nonempty limit finite set (e.g., Ω = [N ] or Ω = [N ]k for some

positive limit integer N and some standard k > 1), we have some additional

structures.

Definition A.7 (Bias and correlation). Let Ω be a nonempty limit finite

set. Given two functions f ∈ L∞(Ω → Cω), g ∈ L∞(Ω → Cω), we say that f

and g correlate if one has

|En∈Ωf(n)⊗ g(n)| � 1

and that f is biased if one has

|En∈Ωf(n)| � 1,
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i.e., if f correlates with 1. We say that f is unbiased if it is not biased. We

define the Lp norms

‖f‖Lp(Ω) := (En∈Ω|f(n)|p)1/p

for 1 6 p <∞, with the usual convention

‖f‖L∞(Ω) := sup
n∈Ω
|f(n)|;

these are bounded limit nonnegative numbers.

We will also find the following notation useful.

Definition A.8 (Density). We say that a limit subset H of a limit finite

set X is dense if |H| � |X| and that a statement P (x) is true for many x ∈ X
if it is true for all x in a dense subset H of X. If instead |H| = o(|X|), we say

that H is a sparse subset of X, and if P (x) only holds true for x in a sparse

set, we say that P (x) only holds for few x ∈ X. If the complement of H in X

is sparse, we say that H is a co-sparse subset of X, and if P (x) holds for all x

in a co-sparse subset, we say that P (x) holds for almost all x ∈ X.

A function f : X → ∗CD is said to be almost bounded if f(x) ∈ CD for

almost all x ∈ X. (For instance, for an unbounded limit natural number N ,

the function n 7→ N
n+1 is almost bounded on [N ].)

Remarks. Note that the statement P does not need to be a limit statement

(i.e., the set {x ∈ X : P (x) true} need not be a limit set) for these definitions

to make sense; for instance, for P to hold for many x, it suffices that {x ∈
X : P (x) true} contain an dense limit subset of X, but need not be a limit set

itself. If one property P (x) holds for almost all x ∈ X, and another property

Q(x) holds for many x ∈ X, then P (x) and Q(x) simultaneously hold for many

x ∈ X. However, if P only holds for many x rather than for almost all x, then

it need not be the case that P (x) and Q(x) simultaneously hold for any x.

From the pigeonhole principle we see that if a limit set is partitioned into

a bounded number of limit pieces, then at least one of the pieces is dense. We

can strengthen this principle as follows.

Lemma A.9 (Pigeonhole principle). Let X be a limit finite set, and let f

be an almost bounded limit function from X to ∗N. Then there exists a dense

subset of X on which f is constant and equal to a standard natural.

Proof. By hypothesis, f is bounded on almost all of X, and hence uni-

formly bounded on almost all of X by Lemma A.5. The claim now follows

from the pigeonhole principle. �

We also record here a technical lemma regarding correlation.
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Definition A.10 (σ-limit). A subset S of a limit set X is said to be a σ-

limit set if there is a limit sequence n 7→ Sn from limit natural numbers n ∈ ∗N
of limit subsets Sn of X, such that S is the union of the Sn over all standard

natural numbers.

Example. If Ω is a limit set andD∈N+, then the space L∞(Ω→CD), which

is an external (i.e., nonlimit) subset of the limit space of all limit functions from

Ω to ∗CD, is a σ-limit space, since one can express this space as the union,

over all standard M , of the functions bounded uniformly in magnitude by M .

Similarly, L∞(Ω→ Cω) is also a σ-limit set.

Lemma A.11 (Limit selection lemma). Let X,Y be limit sets, let R ⊂
X × Y be a a limit relation between X and Y , and let S be a σ-limit subset

of Y . Suppose that for every x ∈ X there exists sx ∈ S such that (x, sx) ∈ R.

Then there exists a limit function x 7→ sx from X to S such that (x, sx) ∈ R
for all x ∈ X .

Remark. The key point here is the limit nature of the assignment x 7→ sx;

for external (i.e., nonlimit) assignments, the claim is immediate from the axiom

of choice. There is a similar need for such “measurable selection lemmas” in

the ergodic theory analogue of the inverse conjectures for the Gowers norms;

see, e.g., [29, App. A] or [5, Lemma C.4].

Proof. We may assume that the sets Sn in Definition A.10 are increasing

in n.

For each x∈X, let nx be the first limit natural number such that (x, s)∈R
for some s ∈ Snx . By construction, x 7→ nx is a limit map from X to ∗N that

is pointwise bounded. Therefore, by Lemma A.5, nx is uniformly bounded by

some standard natural number n∗; thus, for every x ∈ R, the set {s ∈ Sn∗ :

(x, s) ∈ R} is nonempty. Applying a limit choice function, we may thus find a

limit map x 7→ sx with the stated properties. �

We isolate a special case of this lemma.

Corollary A.12. Let Ω be a nonempty limit-finite set. Let S be a σ-

limit subset of L∞(Ω → Cω), let (fh)h∈H be a limit family of limit functions

fh ∈ L∞(Ω→ Cω) indexed by a limit set H , and suppose that for each h ∈ H ,

fh correlates with an element of S. Then one can find a limit family (φh)h∈H
of functions φh ∈ S such that fh correlates with φh for all h ∈ H .

Proof. Write S as the union of limit sets Sn for standard n, and let S′ :=⋃
n∈N Sn∪{n}. Note that this is a σ-limit subset of L∞(Ω→ Cω)×∗N. Defining

a relation R between H and S′ by declaring (h, (φ, n)) ∈ R if |En∈Ωfh(n) ⊗
φ(n)| > 1/n, and applying Lemma A.11, we obtain the claim. �
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Appendix B. Polynomial algebra

In section Section 6 we introduced the notion of a polynomial map between

I-filtered groups H and G when the group H was abelian (Definition 6.18).

In this appendix we study the more general notion of a polynomial map, no

longer restricting to the case H abelian. The concept of a polynomial map

between groups was introduced by Leibman in [34], [35], and here we adapt it

to filtered groups.

Recall the definitions of an ordering I and of an I-filtration of a group G

in Definitions 6.7 and 6.8.

Definition B.1 (Polynomial map). Let G,H be groups with I-filtrations

GI , HI . If g : H → G is a map, then we define the derivative ∂hg : H → G by

the formula

∂hg(n) := g(hn)g(n)−1

for all n ∈ H. We say that map g : H → G is polynomial if one has

∂h1 · · · ∂hmg(n) ∈ Gi1+···+im

whenever m > 0, i1, . . . , im ∈ I, hj ∈ Hij for j = 1, . . . ,m and n ∈ H0. The

space of all polynomial maps is denoted poly(HI → GI).

Remark. As mentioned in Section 3, if G or H are written as additive

groups instead of multiplicative ones, the definition of partial derivative is

adjusted appropriately.

Example 1. If I = N, and H is abelian and is given the filtration Hi = H

for i = 0, 1 and Hi = {0} for i > 0, then a map g : H → G lies in poly(HN, GN)

if and only if

∂h1 · · · ∂hmg(n) ∈ Gm
for all m > 0 and h1, . . . , hm ∈ H. This coincides with the definition given in

[20, Def. 6.1]. Definition B.1 may be considered as a generalisation of this, in

which the domain group H is allowed to have nontrivial filtrations.

Example 2. Any map φ : G → H between two I-filtered groups that is

constant and takes values in H0 is polynomial.

Example 3. If φ : HI → GI is a homomorphism of I-filtered groups that

maps Hi to Gi for each i ∈ I, then φ is a polynomial map since, for each h ∈ H,

∂hφ is the constant map n 7→ φ(h). We will call such homomorphisms I-filtered

homomorphisms from the I-filtered group HI to the I-filtered group GI .

Example 4. If G is an I-filtered group, and g ∈ G, then the left translation

maps x 7→ gx lie in poly(GI → GI). Indeed, the derivative of this map in any

direction h ∈ Gi is simply the constant map ghg−1, which lies in Gi, and any
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further derivative of this map is trivial. This example is a special case of the

Lazard-Leibman theorem (Corollary B.4 below), since the translation map is

the product of a constant map and the identity homomorphism.

Example 5. Given three I-filtered groups H,G,G′, a map g : H → G×G′
is polynomial (G×G′ is given the product filtration) if and only if its projections

to G and G′ are polynomial. In other words, we have a canonical isomorphism

poly(HI → (G×G′)I) ≡ poly(HI → GI)× poly(HI → G′I).

Host-Kra cube groups. There is an important alternative characterisation

of polynomial maps in terms of Host-Kra cube groups, which we now define.

The material in this section is a generalisation of [20], and particularly [20,

Prop. 6.5], to the context of polynomial maps poly(HI → GI). (There matters

were discussed only in the case poly(H → GI).) The Host-Kra groups are the

group-theoretic analogue of the Host-Kra spaces X [k] of a dynamical system

X introduced in [29].

If m is a natural number, we let 2[m] be the power set of [m] := {1, . . . ,m}.

Definition B.2. Let G be an I-filtered group, and let i1, . . . , im ∈ I. We

define the Host-Kra cube group HKi1,...,im(GI) to be the subgroup of G2[m]

generated by the elements of the form

ιω0(gω0) := (gω)ω⊂[m],

where ω0 ⊂ [m], gω0 ∈ G∑
j∈ω0

ij , and gω equals gω0 when ω ⊇ ω0 and is

the identity otherwise. Thus we see that the ιω0 are embeddings of G∑
j∈ω0

ij

into HKi1,...,im(G). We refer to m as the order of the Host-Kra cube groups

and refer to elements of HKi1,...,im(G) as cubes of dimension m and degrees

i1, . . . , im.

Example. Let G be a k-step nilpotent group, and let Gi = [G,Gi−1] be

the lower central series filtration. Then HK1,...,1(G) is the subgroup of G2[m]

generated by the “side” elements (giω)ω⊂[m] where giω = g if i ∈ ω and giω = id

otherwise, for i = 1, . . . ,m, and by the diagonal elements (g, . . . , g).

Theorem B.3. Let G,H be I-filtered groups, and let g : H → G be a map.

Then g is a polynomial map if and only if it preserves cubes, in the sense for

every m > 0 and i1, . . . , im ∈ I , the homomorphism g2[m]
: H2[m] → G2[m]

defined by

g2[m]
((hω)ω⊂[m]) := (g(hω))ω⊂[m]

maps HKi1,...,im(HI) to HKi1,...,im(GI).

Proof. For inductive reasons it is convenient to establish the following

slightly stronger result. For any m0 > 0, we say that a map g : H → G is
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polynomial to order m0 if we have

∂h1 · · · ∂hmg(n) ∈ Gi1+···+im

for all m with 0 6 m 6 m0, all i1, . . . , im ∈ I, all hj ∈ Hij for j = 1, . . . ,m,

and all n ∈ H0. It will suffice to show that a map g : H → G is polynomial to

order m0 if and only if it preserves the cubes of dimension up to m0.

We establish this by induction on m0. The case m0 = 0 is easy: g is

polynomial to order 0 if it maps H0 to G0, but these are also essentially the

Host-Kra groups of order 0, and the claim follows. Now suppose inductively

that m0 > 1 and that the claim has already been shown for all smaller values

of m0.

Suppose first that g : H → G preserves all cubes of dimension up to m0.

Then by the preceding discussion, g maps H0 to G0. To show that g is poly-

nomial to order m0, it thus suffices to show that for every i ∈ I and h ∈ Hi,

∂hg is polynomial to order m0 − 1 in the shifted I-filtration G+i
I defined by

(B.1) G+i
I := (Gj+i)j∈I .

By the induction hypothesis, it suffices to show that ∂hg preserves cubes

of dimension m0 − 1. Accordingly, let ~h = (hω)ω⊂[m0−1] be an element of

HKi1,...,im0−1(H). We may view (~h, h ·~h) as an element of HKi1,...,im0−1,i(H) of

one higher order, where h · ~h := (hhω)ω⊂[m0−1]. By hypothesis on g, we have

(g2[m0−1]
(~h), g2[m0−1]

(h · ~h)) ∈ HKi1,...,im0−1,i(G).

An inspection of Definition B.2 reveals that (~g1, ~g2) lies in HKi1,...,im0−1,i(G) if

and only if ~g1 lies in HKi1,...,im0−1(G) and ~g2(~g1)−1 lies in HKi1,...,im0−1(G,G+i
I )

(which is easily seen to be a normal subgroup of HKi1,...,im0−1(G)). We conclude

that

g2[m0−1]
(h · ~h) · g2[m0−1]

(~h)−1 ∈ HKi1,...,im0−1(G,G+i
I ).

But

g2[m0−1]
(h · ~h) · g2[m0−1]

(~h)−1 = (∂hg)2[m0−1]
(~h),

and the claim follows.

Next, suppose conversely that g : H → G is a polynomial map of order

up to m0; by the inductive hypothesis, it suffices to show that g preserves

all the cubes of dimension exactly m0. Accordingly, let ~h be an element of

HKi1,...,im0 (H) of this dimension. Arguing as before, we may write

~h = (~h1,~h2
~h1),

where ~h1 ∈ HKi1,...,im0−1(H) and ~h2 ∈ HKi1,...,im0−1(H,H
+im0
I ). Our objective

is then to show that

g2[m0]
(~h) = (g2[m0−1]

(~h1), g2[m0−1]
(~h2

~h1))



1334 BEN GREEN, TERENCE TAO, and TAMAR ZIEGLER

lies in HKi1,...,im0 (G). By the decomposition of HKi1,...,im0 (G), it thus suffices

to show that

(B.2) g2[m0−1]
(~h2

~h1)g2[m0−1]
(~h1)−1 ∈ HKi1,...,im0−1(G,G

+im0
I ).

Recall that HKi1,...,im0−1(H,H
+im0
I ) is generated by elements of the form

ιω0(hω0), where ω0 ⊂ [m0 − 1] and hω0 ∈ H∑j∈ω0
ij+im0

. By telescoping series,

we thus see that to establish the above claim it suffices to do so under the

additional assumption that ~h2 is a generator

~h2 = ιω0(hω0)

for some ω0 ⊂ [m− 1] and hω0 ∈ H∑j∈ω0
ij+im0

.

By relabeling we may assume that ω0 = {m′ + 1, . . . ,m0 − 1} for some

0 6 m′ 6 m0 − 1. The left-hand side of (B.2) then simplifies to

(B.3) (∂hω0
g)2[m

′]
(~h′1),

where ~h′1 is the restriction of ~h1 to 2[m′], and we embed G2[m
′]

into G2[m0−1]
by

identifying (gω)ω⊂[m′] with the tuple (g̃ω)ω⊂[m0−1], where g̃ω is equal to gω∩[m′]

when ω contains Ω, and is equal to the identity otherwise.

But by induction hypothesis, (B.3) lies in HKi1,...,im0−1(G,G
+
∑

j∈ω0
ij+im0

I ).

By Definition B.2, this embeds into HKi1,...,im0−1(G,G
+im0
I ), giving (B.2) as

desired, and the claim follows. �

Theorem B.3 has two immediate corollaries.

Corollary B.4 (Lazard-Leibman theorem). Let G,H be I-filtered groups.

Then poly(HI → GI) is also a group (using pointwise multiplication as a group

operation).

Corollary B.5 (Composition). Let G,H,K be I-filtered groups. If g ∈
poly(HI → GI) and h ∈ poly(KI → HI), then g ◦ h ∈ poly(HI → KI).

In other words, for any fixed I, the class of I-filtered groups together with

their polynomial maps form a category. It is remarkably difficult to establish

Corollary B.5 in full generality without the machinery of Host-Kra cube groups.

Example. If G,H are I-filtered groups with H = (H,+) abelian, and g

is a polynomial map from H to G, then the translates g(· + h) and dilates

g(q·) for h ∈ H and q ∈ Z are also polynomial maps from H to G, thanks to

Corollary B.5 and Examples 3 and 4 following Definition B.1. More generally,

if φ : H ′ → H is a filtered homomorphism and g ∈ poly(HI → GI), then

g ◦ φ ∈ poly(H ′I → GI).
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Example. Using Corollary B.4 we can establish that any algebraic word

w on k generators defines a polynomial map from Hk to H for any I-filtered

group H. For instance, the map (g, h) → g2h−3gh is a polynomial map from

H ×H to H.

We can strengthen Corollary B.4 slightly, by giving poly(HI → GI) the

structure of an I-filtered group.

Proposition B.6 (Filtered Lazard-Leibman theorem). Let (G,GI) and

(H,HI) be I-filtered groups. Then poly(HI → GI) is also an I-filtered group,

with filtration (poly(HI → G+i
I ))i∈I , where the shifted filtration G+i

I was de-

fined in (B.1). In particular, the poly(HI → G+i
I ) are normal subgroups of

poly(HI → GI).

Proof. The only nontrivial claim to show is that if gi ∈ poly(HI → G+i
I )

and gj ∈ poly(HI → G+j
I ) for some i, j ∈ I, then [gi, gj ] ∈ poly(HI → G+i+j

I ).

It suffices to show for each m0 > 0 that if gi, gj are polynomial maps up

to order m0 from (H,HI) to (G,G+i
I ), (G,G+j

I ) respectively, then [gi, gj ] is a

polynomial map up to order m0 from (H,HI) to (G,G+i+j
I ).

Again we induct on m0. The case m0 = 0 is trivial, so suppose that

m0 > 1 and that the claim has already been proven for smaller values of m0.

As gi, gj map H0 to Gi, Gj respectively, [gi, gj ] maps H0 to Gi+j . It thus

suffices to show that for each k ∈ I and h ∈ Hk, that ∂h[gi, gj ] is a polynomial

map up to order m0− 1 from (H,HI) to (G,G+i+j+k
I ). But a brief calculation

shows that

(B.4) ∂h[gi, gj ] = g−1
i (∂hgi)

−1g−1
j (∂hgj)

−1(∂hgi)gi(∂hgj)g
−1
i gjgi.

By induction hypothesis (and Corollary B.4), the maps that are polynomial

up to order m0 − 1 from (H,HI) to (G,G+i+j+k
I ) form a normal subgroup of

the maps that are polynomial up to order m0 − 1 from (H,HI) to (G,GI).

If we quotient out by this normal subgroup, then a further application of the

induction hypothesis shows that ∂hgi commutes with gj and ∂hgj and that gi
commutes with ∂hgj . An inspection of (B.4) then shows that the right-hand

side vanishes once one quotients out by this normal subgroup, and the claim

follows. �

Proposition B.6 has some useful corollaries.

Corollary B.7 (Approximate linearity and commutativity). Let G,H be

I-filtered groups, let i, j, k, l∈ I , let gi∈poly(HI→G+i
I ), gj∈poly(HI→G+j

I ),

hk ∈ Hk, and hl ∈ Hl. Then we have

(B.5) ∂hk(gigj) = (∂hkgi)(∂hkgj) mod poly(HI → G+i+j+k
I )
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and

(B.6) ∂hkhl(gi) = (∂hkgi)(∂hlgi) mod poly(HI → G+i+k+l
I ).

If H is abelian, we also have

(B.7) (∂hlgi)(∂hkgi) = (∂hkgi)(∂hlgi) mod poly(HI → G+i+k+l
I ).

Proof. The conclusions (B.5), (B.6) follow from Proposition B.6 and the

identities

∂hk(gigj) = (∂hkgi)(∂hkgj)[∂hkgj , g
−1
i ]

and

(B.8) ∂hkhl(gi) = (∂hl∂hkgi)(∂hkgi)(∂hlgi).

The identity (B.7) then follows by swapping the roles of hk and hl in (B.6). �

Next, we make the useful observation that in order to check polynomiality

of a map, it suffices to do so on generators.

Proposition B.8 (Checking polynomiality on generators). Let G,H be

I-filtered groups. For each i ∈ I , let Ei be a set of generators for Hi. Then a

map g : H → G is polynomial if and only if one has

(B.9) ∂h1 · · · ∂hmg(n) ∈ Gi1+···+im

for all m > 0, all i1, . . . , im ∈ I , all hj ∈ Eij for j = 1, . . . ,m, and all n ∈ H0.

Proof. The “only if” part is trivial, so it suffices to prove the “if” part.

For inductive reasons, we shall prove the following more general statement: if

l,m0 > 0, and g : H → G is such that ∂h1 · · · ∂hmg is a polynomial map up to

order l from (H,HI) to (G,G+i1+···+im
I ) whenever 0 6 m 6 m0, i1, . . . , im ∈ I

and hj ∈ Eij for j = 1, . . . ,m, then g is a polynomial map from H to G up

to order m0 + l. Indeed, by setting l = 0 and sending m0 →∞ we obtain the

claim.

We establish the claim by induction on m. The case m0 = 0 is trivial, so

suppose that m0 > 1 and that the claim has already been proven for smaller

values of m0.

Fix l. Let 1 6 m 6 m0 and i1, . . . , im ∈ I, suppose that hj ∈ Eij for

j = 2, . . . ,m, and write g̃ := ∂h2 · · · ∂hmg. By hypothesis, we have that ∂h1 g̃

is a polynomial map of order l from (H,HI) to (G,G+i1+···+im
I ) whenever h1

lies in Ei1 . Using (B.8) and Corollary B.4, we conclude the same statement

holds when h1 lies in Hi1 . By induction hypothesis, g̃ is also known to be a

polynomial map of order l from (H,HI) to (G,G+i2+···+im
I ). We conclude that

g̃ is in fact a polynomial map of order l + 1 from (H,HI) to (G,G+i2+···+im
I ).

Applying the induction hypothesis again, we conclude that g is a polynomial

map of order l +m from H to G, as required. �
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Example. Let G1, G2, G be I-filtered groups, and let B : G1 × G2 → G

be a map that is “bilinear” in the sense that the maps g1 7→ B(g1, g2) for

fixed g2 ∈ G2 and g2 7→ B(g1, g2) for fixed g1 ∈ G1 are homomorphisms,

and such that B maps G1,>i × G2,>j to Gi+j for any i, j ∈ I. Then B is

a polynomial map, as can be seen by using Proposition B.8 with G1,>i ×
{id} ∪ {id} × G2,>i as the generating set for (G1 × G2)i = G1,>i × G2,>i.

Combining this with Corollary B.5 we conclude, in particular, that if H is an

I-filtered group and g1 ∈ poly(HI → (G1)I), g2 ∈ poly(HI → (G2)I), then

B(g1, g2) ∈ poly(HI → GI); informally, this is asserting that the product of

polynomials is again a polynomial.

Example. Let G be an Nk-filtered group, and let g ∈ poly(ZkNk → GNk)

be a polynomial sequence, in which Zk is given the multidegree filtration. We

can collapse the Nk-filtration on G to an N-filtration by defining Gi to be the

group generated by G(i1,...,ik) for all (i1, . . . , ik) ∈ Nk with i1 + · · · + ik = i.

From Proposition B.8 we thus conclude that g remains a polynomial map from

Zk to G if we now give Zk the degree filtration and give G the N-filtration

indicated above.

The next lemma describes a useful type of Taylor expansion for polynomial

sequences.

Lemma B.9 (Taylor expansion). Let d > 1 be a natural number, let G

be an Nd-filtered group of degree ⊂ J for some finite downset J , and let g ∈
poly(ZdNd → GNd), where Zd is given the multidegree filtration. We complete

the partial ordering on J to a total ordering in some arbitrary fashion. Then

there exist unique Taylor coefficients gj ∈ Gj for each j ∈ J such that

g(n) =
∏
j∈J

g
(nj)
j .

Here we adopt the notational conventionÇ
(n1, . . . , nd)

(j1, . . . , jd)

å
:=

Ç
n1

j1

å
· · ·
Ç
nd
jd

å
.

Proof. We first show uniqueness. Suppose that we have two Taylor ex-

pansions that agree everywhere; that is to say,∏
j∈J

g
(nj)
j =

∏
j∈J

(g′j)
(nj)

for all n ∈ Zd. Setting n = 0 we see that g0 = g′0. Cancelling this, we see that∏
j∈J :j>0

g
(nj)
j =

∏
j∈J :j>0

(g′j)
(nj).
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More generally, suppose inductively that we have shown that gj = g′j for all

j 6 j0 and ∏
j∈J :j>j0

g
(nj)
j =

∏
j∈J :j>j0

(g′j)
(nj)

for all n ∈ Zd some j0 ∈ J . If j0 is the maximal element of J , then we are done.

Otherwise, let j1 be the next element after j0 in the total ordering of J . Setting

n = j1 we conclude that gj1 = gj′1 , and then we can continue the induction and

establish uniqueness.

Now we show existence by inducting on the cardinality of J . The claim is

trivial for J empty, so suppose that J is nonempty, and let j∗ be the maximal

element of J . The groupGj∗ is a central subgroup ofG; if we quotientG byGj∗ ,

we obtain an Nd-filtered group G/Gj∗ of degree ⊂ J\{j∗}. Let π : G → Gj∗
be the quotient map. Applying the induction hypothesis, we have a Taylor

expansion

π(g(n)) =
∏

j∈J :j 6=j∗
h

(nj)
j

for some hj ∈ π(Gj). Writing hj = π(gj) for some gj ∈ Gj , and using the

central nature of Gj∗ , we conclude that

g(n) =

Ñ ∏
j∈J :j 6=j∗

g
(nj)
j

é
g′(n)

for some g′(n) taking values in Gj∗ . By Corollary B.4, g′ is a polynomial

sequence, and therefore

∂j1e1 · · · ∂
jk
ek
g′(n) = id

whenever (j1, . . . , jk) 66 j∗, with e1, . . . , ek being the basis of Zk. We can

“integrate” this difference equation repeatedly using the abelian nature of Gj∗
(and the Pascal’s triangle relation ∂ei

( n
j+ei

)
=
(n
j

)
) and conclude that

g′(n) =
∏
j6j∗

(g′j)
(nj)

for some g′j ∈ Gj∗ . Using the central nature of Gj∗ , we conclude that

g(n) =
∏
j∈J

(gjg
′
j)

(nj)

(with the convention that gj∗ = id), and the claim follows. �

Corollary B.10 (Pullback). Let d > 1 be a natural number, let G be an

Nd-filtered group of degree ⊂ J for some finite J , and let g ∈ poly(ZdNd → GNd).

Let φ : G′ → G be an Nd-filtered homomorphism of Nd-filtered groups such that

φ : G′j → Gj is surjective for every j. Then there exists g′ ∈ poly(ZdNd → G′Nd)

such that g = g′ ◦ φ.
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Proof. Apply Lemma B.9 and then pull back each of the resulting Taylor

coefficients gj . �

Appendix C. Lifting linear nilsequences to polynomial ones

The purpose of this appendix is to demonstrate the equivalence of the lin-

ear inverse conjecture, Conjecture 1.2, with the polynomial inverse conjecture,

Conjecture 4.5. We remind the reader that this is not strictly speaking nec-

essary to establish the results in [19], but the latter paper was written before

the more general notion of a polynomial nilsequence came to the fore.

The key observation here is that every polynomial nilsequence of degree

6 s can be “lifted” to an s-step linear nilsequence in a certain sense.

We begin by recording a useful lemma.

Lemma C.1 (Discrete polynomials are cocompact). Let G/Γ be an N-

filtered nilmanifold. Then poly(ZN → ΓN) is a lattice (i.e., a discrete cocompact

subgroup) of poly(ZN → GN) (where we give Z the degree filtration).

Proof. We may assume that G/Γ has degree-rank 6 d. It will suffice to

show that any polynomial sequence g ∈ poly(ZN → GN) can be factorised

as g = γg′ where γ ∈ poly(ZN → ΓN) and g′ ranges in a compact subset

of poly(ZN → GN). It is enough to show by induction on i that for every

0 6 i 6 d+1, there exists a factorisation g = γihig
′
i where γ′ ∈ poly(ZN → ΓN),

g′i lies in a compact subset of poly(Z → G), and hi ∈ poly(ZN → GN) is such

that h(0) = · · · = h(i− 1) = id, since for i = d+ 1 this forces h to be trivial.

This inductive claim is trivial for i = 0 (setting γ0 = g′0 to be trivial). Now

suppose inductively that one has a factorisation g = γihig
′
i for some 0 6 i 6 d.

Since h(0) = · · · = h(i− 1) = id, we see from Taylor expansion that h(i) ∈ Gi.
Since Γi := Γ ∩Gi is cocompact in Gi, we may factorise h(i) = γ̃i+1(i)g̃′i+1(i)

for some γ̃i+1(i) ∈ Γi and g̃′i+1(i) in a cocompact subset of Gi. By Taylor

expansion we may extend γ̃i+1, g̃′i+1 to elements of poly(ZN → ΓN) and of a

compact subset of poly(ZN → GN) respectively that are trivial on 0, . . . , i− 1.

Writing γi+1 := γiγ̃i+1, hi+1 := γ̃−1
i+1hi(g̃

′
i+1)−1, and g′i+1 := g̃′i+1g

′
i we obtain

the claim. �

Now we establish the key lifting proposition.

Proposition C.2 (Polynomial nilsequences can be lifted to linear ones).

Let G/Γ be a filtered nilmanifold of degree 6 s. Then there exists a standard

s-step nilmanifold G̃/Γ̃, a standard compact subset K of G̃/Γ̃, and a standard

Lipschitz map π : K → G/Γ such that for every (standard) polynomial se-

quence g : Z → G, there exists g̃ ∈ G̃ and x̃ ∈ G̃/Γ̃ such that g̃nx̃ ∈ K and

g(n)∗Γ = π(g̃nx̃) for all n ∈ Z.
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Indeed, with this proposition, any degree 6 s nilsequence n 7→ F (g(n)∗Γ)

can then be lifted to an s-step linear nilsequence n 7→ (F ◦ π)(g̃nx̃) with

g̃ ∈ ∗G̃ and x̃ ∈ ∗(G̃/Γ̃), where F ◦ π is extended from a Lipschitz function

on K to a Lipschitz function on G̃/Γ̃ in some arbitrary fashion. From this

one easily concludes that Conjecture 1.2 follows from Conjecture 4.5. (The

converse implication is trivial, because every linear nilsequence is a polynomial

nilsequence.)

To motivate Proposition C.2 let us present an illustrative example. We

take s = 2 and G/Γ to be the unit circle R/Z with the quadratic filtration.

(Thus Gi equals R for i 6 2 and {0} for i > 2.) By Remark 9.6, a polynomial

sequence g : Z → G then takes the form g(n) = α0 + α1
(n

1

)
+ α2

(n
2

)
for

some frequencies α0, α1, α2 (i.e., a nonstandard classical quadratic polynomial).

To lift this quadratic sequence to a linear one, we introduce the Heisenberg

nilmanifold G̃/Γ̃ (Example 6.1), and place inside it the skew torus

K := {gt11 [g1, g2]t[1,2]Γ : t1, t[1,2] ∈ R}.

This is easily seen to be compact. (Indeed, it is topologically equivalent to T2.)

We define the map π : K → T by the formula

π(gt11 [g1, g2]t[1,2]) := t[1,2] mod 1;

it is easy to see that π is well defined and smooth. If we set

g̃ := gα1 g2[g1, g2]β; x̃ := [g1, g2]γΓ̃

for some frequencies α, β, γ ∈ R, then a brief calculation shows that for any

integer n, g̃nx̃ lies in K and

π(g̃nx̃) =
n(n+ 1)

2
α+ nβ + γ mod 1,

and so one can arrange for π(g̃nx̃) = g(n) by choosing α, β, γ appropriately in

terms of α0, α1, α2.

The above construction was ad hoc in nature, requiring one to conjure up

the Heisenberg group out of thin air. However, it is possible to canonically con-

struct a lifted nilmanifold G̃/Γ̃ in the general case. Fix G/Γ. By Remark 9.6,

poly(ZN → GN) is a Lie group topologically isomorphic to
∏
i>0Gi, but with a

different group structure. Since G has degree < s+1, we see that G is 6 s-step

nilpotent, which implies that poly(ZN → GN) is 6 s-step nilpotent also.

Let ΓN be the restriction of the filtration GN to Γ (Example 6.14); thus Γ

is now a filtered group. By Lemma C.1, poly(ZN → ΓN) has the structure of

an s-step nilmanifold. This is not yet the nilmanifold G̃/Γ̃ needed for Propo-

sition C.2, but we can modify it as follows. We observe that there is a shift

automorphism T acting on both poly(ZN → GN) and poly(ZN → ΓN) by the

formula Tg(n) := g(n+1). It also acts on the Lie algebra log poly(ZN → GN) of

poly(ZN → GN), which by abuse of notation we shall call poly(ZN → logGN).
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This action is unipotent; indeed, T−1 maps poly(ZN → logG+i
N ) to poly(ZN →

logG
+(i+1)
N ) for all i > 0, where G+i is G with the shifted filtration G+i

d :=

Gd+i. The conjugation action of poly(ZN → GN) on poly(ZN → logGN) has

the same unipotence property by the filtered nature of G. Because of this, we

see that the conjugation action of semi-direct product9 poly(ZN → GN)oT Z on

poly(ZN → logGN) is s-step unipotent, which implies that poly(ZN → GN)oTZ
is s-step nilpotent.

Unfortunately, the group poly(ZN → GN) oT Z is not connected, so it

is not directly suitable for the purposes of establishing Proposition C.2. But

this can be easily remedied by using the unipotent nature of the action of

T on poly(ZN → logGN) to express10 T = T 1 for some smooth unipotent

group action t 7→ T t of the real line R on poly(ZN → logGN), which can then

be exponentiated to provide a unipotent group action (which we will also call

t 7→ T t) on poly(ZN → GN). The action of the group G̃ := poly(ZN → GN)oTR
on poly(ZN → logGN) is then s-step unipotent, which implies that G̃ is s-step

nilpotent.

The group G̃ is an s-step nilpotent Lie group which is both connected and

simply connected. It contains the discrete subgroup Γ̃ := poly(ZN → ΓN)oT Z.

Since poly(ZN → ΓN) is cocompact in poly(ZN → GN) (and Z is cocompact

in R), G̃ is cocompact in G̃; thus G̃/Γ̃ has the structure of a nilmanifold.

There is a canonical map θ from G̃/Γ̃ to T induced by the projections of

G̃, Γ̃ to R and Z respectively. We denote the kernel θ−1({0}) of this map by

K; thus K is a compact subset of G̃, Γ̃. Observe that every element of K can

be represented as (g, 0)Γ̃ for some g ∈ poly(ZN → GN), which is unique up

to multiplication on the right by poly(ZN → ΓN). We then define the map

π : K → G/Γ by the formula π(g) := g(0)Γ; it is clear that π is a Lipschitz

continuous map.

We are now ready to establish Proposition C.2. Let g∈poly(ZN→GN).

Then we set x̃ := (g, 0)Γ̃ ∈ K and g̃ := (id, 1) ∈ G̃. One easily verifies that for

any integer n, g̃nx̃ = (Tng, 0)Γ̃ ∈ K, and so π(g̃nx̃) = g(n). Proposition C.2

follows.

Appendix D. Equidistribution theory

The purpose of this appendix is to develop the quantative Ratner-type

equidistribution theory for nilmanifolds, which will help us determine when

9Note that Z is viewed as an additive group, while poly(ZN → GN) is viewed as a multi-

plicative group; we hope that this will not cause confusion.
10This can also be done by the machinery of Mal’cev bases for both discrete and continuous

nilpotent groups; see [36].
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averages such as

(D.1) En∈[N ]F (O(n))

are large, for various nilsequences n 7→ F (O(n)). We will also need a multidi-

mensional version11 of this theory, in which [N ] is replaced with [N ]k, or more

generally by the Cartesian product of k arithmetic progressions.

This theory is based on the results [20] on equidistribution in nilmanifolds,

translated to the language of ultralimits. The results in this appendix will be

needed in two places. Firstly, Theorem D.6 below, which gives a criterion for

when averages such as (D.1) are large, will be used in Section 11 to analyse

the correlation property arising from Proposition 7.3. Secondly, Theorem D.5,

which (locally) factorises an arbitrary multidimensional polynomial orbit into

equidistributed and smooth pieces, will be used to give an important criterion

for when a nilcharacter is biased (see Lemma E.11).

We begin with some basic definitions.

Definition D.1 (Equidistribution). Let G/Γ be a standard nilmanifold,

which then admits a canonical Haar probability measure µ. Let Ω be a

nonempty limit finite set, and let O : Ω→ ∗(G/Γ) be a limit function. We say

that O is equidistributed in G/Γ if, for every F ∈ Lip(G/Γ), one has

(D.2) En∈ΩF (O(n)) =

∫
G/Γ

F dµ+ o(1),

or equivalently if n 7→ F (O(n)) is unbiased on Ω whenever
∫
G/Γ F dµ = 0.

Now we specialise to the case Ω = [N ]k. We say that O is totally equidis-

tributed on [N ]k if it is equidistributed on every product P1×· · ·×Pk of dense

arithmetic progressions P1, . . . , Pk in [N ]; thus,

(D.3) En∈P1×···×Pk
F (O(n)) =

∫
G/Γ

F dµ+ o(1)

for every standard Lipschitz function F : G/Γ→ C.

Remark. We defined equidistribution using standard Lipschitz functions

F ∈ Lip(G/Γ), but the statement (D.2) for F ∈ Lip(G/Γ) automatically im-

plies the same claim for F ∈ Lip(∗(G/Γ)).

This notion of equidistribution on [N ] is closely related to, but not iden-

tical with, the more classical notion of equidistribution involving an infinite

sequence g : Z → G, in which one takes a limit as N → ∞; we refer to this

latter concept as asymptotic equidistribution in order to distinguish it from

the “single-scale” equidistribution considered here, in which one is working

11On the other hand, we will only need to work with the degree filtration, although it is

certain that the theory here would extend to I-filtered nilsequences for other orderings.
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with a fixed (but unbounded) N . While there is a close analogy between the

theory of asymptotic equidistribution and single-scale equidistribution, there

does not seem to be a soft way to automatically transfer results from the for-

mer to the latter. Single-scale equidistribution is in fact much closer to the

notion of δ-equidistribution studied, for instance, in [20]; we refer readers to

that paper for further discussion of the distinction between the different types

of equidistribution.

Example. We consider the case when G/Γ = Td is a torus. Weyl’s equidis-

tribution criterion, in our notation, then asserts that a limit mapO : [N ]k → Td
is equidistributed if and only if one has

En∈[N ]ke(ξ · O(n)) = o(1)

for all standard ξ ∈ Zd\{0}. One can also show (using some Fourier analysis)

that O will be totally equidistributed if and only if

En∈[N ]ke(ξ · O(n))e(η · n) = o(1)

for all standard ξ ∈ Zd\{0} and η ∈ Zk. As a consequence of this and some fur-

ther Fourier analysis, we see that a one-dimensional linear orbit O : [N ]→ Td
defined by O(n) := αn+β for some α, β ∈ Td will be equidistributed or totally

equidistributed in Td if and only if α is not of the form q+O(N−1) mod 1 for

some standard rational q ∈ Q.

Given a standard filtered nilmanifold G/Γ, a horizontal character is a

continuous standard homomorphism ξ : G → T that vanishes on Γ. We say

that the character is nontrivial if it is not identically zero.

We have the following basic equidistribution criterion, generalising the

torus example above.

Theorem D.2 (Leibman theorem). Let k ∈ N+, let N be an unbounded

natural number, let G/Γ be an N-filtered nilmanifold, and let O ∈ ∗poly(ZkN →
(G/Γ)N) be a k-dimensional polynomial orbit, where Zk is given the degree

filtration. Then on [N ]k, the following statements are equivalent :

(i) O is totally equidistributed in the nilmanifold G/Γ.

(ii) O is equidistributed in the nilmanifold G/Γ.

(iii) O is equidistributed in in the torus G/([G,G]Γ).

(iv) There does not exist any nontrivial horizontal character ξ such that

ξ ◦ g is Lipschitz with constant O(1/N).

Proof. See [20, Ths. 1.19, 2.9, 8.6] (where in fact a more quantitative

strengthening of this equivalence is established). The analogue of this result

for asymptotic equidistribution was established previously in [37] (and the

result is classical in the case of linear sequences). The main difficulty is to

show that (iv) implies (ii), which is the main content of [20, Th. 2.9], which
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relies primarily on a certain van der Corput type equidistribution lemma for

nilmanifolds. �

Theorem D.2 implies the following weak factorisation theorem.

Theorem D.3 (Weak factorisation theorem). Let k ∈ N+, let N be an

unbounded natural number, let G/Γ be an N-filtered nilmanifold, and let g ∈
∗poly(ZkN → GN). Suppose that g is not totally equidistributed on [N ] in G/Γ.

Then one can factorise g = εg′γ, where ε, g′, γ ∈ ∗poly(ZkN → GN) have the

following properties :

• ε is a bounded sequence on [N ]k with the ith Taylor coefficient of size

O(N−|i|) for each i ∈ Nk.

• g′ takes values in a standard proper rational subgroup G′ of G (i.e., G′ is a

connected proper Lie subgroup of G, and Γ′ := G′ ∩ Γ is cocompact in G).

• γ is periodic modulo Γ with a standard period q ∈ N+, thus γ(n + qv) =

γ(n) mod Γ for all n, v ∈ ∗Zk. Furthermore, γ takes values in a standard

subgroup Γ̃ of G that contains Γ as a subgroup.

Proof. See [20, Prop. 9.2]. The basic idea is to use the nontrivial horizontal

character ξ generated by Theorem D.2 to cut out the subgroup G′. In order to

keep G′ connected, one needs to first factorise ξ = mξ′, where m is a standard

positive integer and ξ′ is an irreducible horizontal nilcharacter; this integer m

is responsible for the periodic term γ. �

One can iterate this to obtain a “Ratner-type” theorem.

Theorem D.4 (Factorisation theorem). Let k ∈ N+, let N be an un-

bounded natural number, let G/Γ be a (filtered) nilmanifold, and let g ∈
∗poly(ZkN → GN). Then there exist a standard rational subgroup G′ of G (i.e.,

G′ is connected and G′ ∩ Γ is cocompact in G) and a factorisation

g(n) = ε(n)g′(n)γ(n),

where ε, g′, γ ∈ ∗poly(ZkN → GN) have the following additional properties :

• ε is a bounded sequence with the ith Taylor coefficient of size O(N−|i|) for

each i ∈ Nk, and has Lipschitz constant O(1/N);

• g′ takes values in a standard proper rational subgroup G′ of G, and is

totally equidistributed in G′/Γ′ whenever Γ′ is any standard subgroup of

G′ ∩ Γ of finite (standard) index ;

• γ is periodic modulo Γ with a standard period, and takes values in a stan-

dard discrete subgroup Γ̃ of G that contains Γ.

This theorem is a close relative of [20, Th. 1.19] and can be proven by the

same methods; for the convenience of the reader we sketch a proof here.
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Proof. Let us say that g can be represented using a standard rational sub-

group G′ of G if one has a factorisation g = εg′γ that obeys all the conclusions

of the theorem except for the total equidistribution of g′. Clearly, g can be

represented using G itself, by setting ε and γ to be the identity and g′ := g. By

the principle of infinite descent12 (using the fact that G has a finite standard

dimension), we may thus find a standard rational subgroup G′ that represents

g and is minimal in the sense that no proper standard rational subgroup of G′

represents g. Let g = εg′γ be the associated factorisation. It then suffices to

show that g′ is totally equidistributed in G′/Γ′ for every standard finite index

subgroup Γ′ of Γ ∩G′.
Suppose for contradiction that this is not the case. Applying Theorem D.3,

one can factorise g′ = ε′′g′′γ′′, where ε′′ is a bounded sequence with Lipschitz

constant O(1/N), γ′′ is periodic with a standard period and takes values in

a standard discrete subgroup Γ̃′ that contains Γ′, and g′′ takes values in a

proper rational subgroup G′′ of G′. One can enlarge Γ̃′ to contain Γ, and this

is easily verified to still be discrete. One can then show that the factorisation

g = (εε′′)g′′(γ′′γ) is a representation of g using G′′ (see [20, §10] for details),

contradicting the minimality of G′′. �

It will be convenient to convert the factorisation in Theorem D.4 into a

more convenient form, eliminating the periodic factor γ and the slowly varying

factor ε by passing to subprogressions.

Theorem D.5 (Factorisation theorem, II). Let k ∈ N+, let N be an un-

bounded natural number, and let O ∈ ∗poly(ZkN → (G/Γ)N). Then one can

partition [N ]k into a bounded number of products P = P1 × · · · × Pk of dense

arithmetic subprogressions of [N ], such that for each P one has a polynomial

ε ∈ ∗poly(ZkN → GN) that is bounded with Lipschitz constant O(1/N) on P and

with the ith Taylor coefficient of size O(N−|i|) for each i, a standard rational

subgroup GP of G, and a polynomial sequence gP ∈ ∗poly(ZkN → (GP )N) totally

equidistributed on GP /ΓP where (GP )N := (GP ∩ Gi)i∈N and ΓP := GP ∩ Γ,

such that

O(n) = εP (n)gP (n)∗Γ

for all n ∈ P . Furthermore, for each i ∈ Nk, the horizontal Taylor coefficients

Taylori(g) and Taylori(gP ) differ by O(N−|i|). Finally, for two different prod-

ucts P, P ′ of progressions in this partition of [N ]k, the sequences gP and gP ′

12The ability to use this principle is an advantage of the ultralimit setting. In the finitary

setting, in which one needs to quantify such concepts as total equidistribution, periodicity,

etc., instead one has to perform an iterative “dimension reduction argument” which requires

one to manage many more parameters; see [20] for an example of this. See also the beginning

of Section 10 for a related discussion.
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are conjugate, with gP ′ = γ−1
P,P ′gPγP,P ′ for some γP,P ′ ∈ G that is rational in

the sense that γmP,P ′ ∈ Γ for some bounded positive integer m.

Proof. Write O(n) = g(n)∗Γ for some g ∈ ∗poly(ZkN → GN). We apply

Theorem D.4 to obtain a rational standard subgroup G′ and a factorisation

g = εg′γ with the stated properties. The sequence γ is periodic with a standard

period, so we may partition [N ]k into a bounded number of products P =

P1 × · · · × Pk of dense arithmetic subprogressions of [N ] on which γ = γP is

constant. As Γ is cocompact, we may thus find a γ′P ∈ γPΓ that is bounded,

thus γ′P = O(1). Note that γ′P lives in a discrete group Γ̃ and is thus standard.

Since Γ is cocompact, it has finite index in Γ̃, which implies that γ′P is rational,

or equivalently that γ′P has rational coefficients with respect to a Mal’cev basis

[40] of G/Γ.

For n ∈ P , we can write

O(n) = ε(n)g′(n)γPΓ = ε(n)γ′P gP (n)∗Γ,

where gP (n) := (γ′P )−1g′(n)γ′P is the conjugate of g′(n) by γ′P . Note that this

gives the claim about the conjugate nature of gP and gP ′ .

As γ′P is rational, the conjugate γ′PΓ(γ′P )−1 intersects Γ in a subgroup

Γ′ of finite index, which then has the property that Γ′γ′P ⊂ γ′PΓ. From this,

we see that the conjugation operation g 7→ (γ′P )−1gγ′P on G descends to a

continuous projection of G/Γ′ to G/Γ, which maps g(n)∗Γ′ to gP (n)∗Γ. Since

g(n) is totally equidistributed on G′/(G′ ∩ Γ′) by construction, we conclude

that gP is totally equidistributed on GP /(GP ∩ Γ), where GP := (γ′P )−1G′γ′P
is the conjugate of G′. Note that GP is also a standard rational subgroup of G.

If we now set εP := εγ′P , we obtain all the claims except for the one about

horizontal Taylor coefficients. But from the remarks following Definition 9.6

and the factorisations g = εg′γ, gP = (γ′P )−1g′γP , we have

Taylori(g) = Taylori(ε)Taylori(g
′)Taylori(γ)

and

Taylori(gP ) = Taylori(g
′).

Since γ takes values in Γ, Taylori(γ) vanishes. Finally, by construction we have

Taylori(ε) = O(N−|i|). The claim follows. �

We can now give a criterion for when an average of the form En∈[N ]F (O(n))

is large.

Theorem D.6 (Ratner-type theorem). Let G/Γ be N-filtered nilmanifold

of some degree d, let O ∈ ∗poly(ZN → (G/Γ)N) be a polynomial orbit, and let

F ∈ Lip(∗(G/Γ)→ Cω)
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be such that

|En∈[N ]F (O(n))| � 1.

Then one has

|
∫
GP /ΓP

F (εx) dµ(x)| � 1

for some bounded ε ∈ G and some rational subgroup GP of G, with the property

that

πHorizi(G)(GP ∩Gi) > Ξ⊥i ,

where the horizontal space Horizi(G) and the projection map πHorizi(G) : Gi →
Horizi(G) was defined in Definition 9.6,

Ξ⊥i := {x ∈ Horizi(G) : ξi(x) = 0 for all ξi ∈ Ξi},

and Ξi 6 ¤�Horizi(G/Γ) is the group of all (standard) continuous homomor-

phisms ξi : Horizi(G/Γ)→ T such that

ξi(Taylori(O)) = O(N−i).

One could also generalise this theorem to multidimensional orbits, but we

will not need to do so in this paper. We will motivate this theorem with some

examples after the proof.

Proof. By taking components we may assume that F is scalar-valued.

Write O(n) = g(n)∗Γ for some g ∈ ∗poly(ZN → GN). We partition [N ] into

dense arithmetic progressions P induced from the partition of [N ] coming

from Theorem D.5 (using the Chinese remainder theorem and passing to dense

subprogressions as necessary). By the pigeonhole principle, for at least one of

these progressions P one has

|En∈PF (g(n)∗Γ)| � 1.

Now let δ > 0 be a small standard number to be chosen later. By further

partitioning of P and the pigeonhole principle one can assume that P has

diameter at most δN . (Note that the implied constant in the � notation

remains independent of δ when doing so.) Then for any n0 ∈ P , εP (n) and

εP (n0) differ by O(δ), and so (by the Lipschitz nature of F ) F (g(n)∗Γ) differs

from F (εP (n0)gP (n)∗Γ) by O(δ). Thus, for δ sufficiently small, and setting

ε := εP (n0), one has

|En∈PF (εgP (n)∗Γ)| � 1.

Using the total equidistribution of gP , we have

En∈PF (εgP (n)∗Γ) =

∫
GP /ΓP

F (εx) dµ(x) + o(1),

and so ∫
GP /ΓP

F (εx) dµ(x)� 1.



1348 BEN GREEN, TERENCE TAO, and TAMAR ZIEGLER

To finish the proof of Theorem D.6, we need to show that

(D.4) πHorizi(G)(GP ∩Gi) > Ξ⊥i

for all positive standard integers i, with Ξi as in Theorem D.6.

Fix i. To show the above claim, observe that gP takes values in GP , and

so Taylori(gP ) ∈ πHorizi(G/Γ)(GP ∩Gi). On the other hand, Taylori(gP ) differs

from Taylori(g) by O(N−i), and so

(D.5) dist(Taylori(g), πHorizi(G/Γ)(GP ∩Gi)) = O(N−i).

Suppose the inclusion (D.4) failed. Then by duality (and the rational nature of

GP ), there exists a standard continuous homomorphism ξi : Horizi(G/Γ)→ T
outside of Ξi that annihilates πi(GP ∩Gi). From (D.5), this implies that

ξi(Taylori(g)) = O(N−i),

and thus ξi ∈ Ξi by definition of Ξi, a contradiction. The claim follows. �

To get a feel for this proposition, let us first examine a simple special

case, when G/Γ is just a two-dimensional torus T2 and O is a linear orbit

O(n) := (αn, βn) for some α, β ∈ ∗T. We take F to be a standard Lipschitz

function from T2 to C. Our hypothesis is then the assertion that

|En∈[N ]F (αn, βn)| � 1.

The conclusion is then that∣∣∣∣ ∫
T
F (ε+ x) dµT (x)

∣∣∣∣� 1

for some subtorus T := GP /(GP ∩Z2) of T2, where ε ∈ T2 and GP is a rational

subgroup of R2. Furthermore, GP contains the subgroup

Ξ⊥1 := {x ∈ R2 : ξ(x) = 0 for all ξ ∈ Ξ1}

and Ξ1 is the subgroup of Z2 defined by

Ξ1 := {ξ ∈6 Z2 : ξ · (α, β) = O(N−1)}.

We investigate some subcases of this result. First consider the case when

α, β are both within O(N−1) of standard rationals. Then Ξ1 is a finite index

subgroup of Z2, and so Ξ⊥1 is trivial. The conclusion is then simply the trivial

conclusion that |F (ε)| � 1 for some ε ∈ T2, which was of course obvious from

the pigeonhole principle.

Now suppose that β is within O(N−1) of a standard rational p/q with

p, q coprime, but that α does not lie within O(N−1) of a standard rational.

Then Ξ1 = {(0, qa) : a ∈ Z}, and so Ξ⊥1 = R × {0}. The conclusion is now

that |
∫
T F (x, ε) dx| � 1 for some ε ∈ T. This can also be seen directly by

observing that on any subprogression of [N ] of spacing q and length δN for

some small δ > 0, the orbit O(n) is within O(δ) of being equidistributed on
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a coset T × {ε} of T × {0} for some ε ∈ T, with the implied constant in the

O(δ) notation independent of δ. The claim then follows from the pigeonhole

principle (choosing δ sufficiently small, but still standard) and the Lipschitz

nature of F .

Finally, suppose that α, β are incommensurate in the sense that there does

not exist any nonzero ξ ∈ Z2 for which ξ · (a, b) = O(N−1). Then Ξ1 is trivial

and so Ξ⊥1 = R2. The claim is then that |
∫
T2 F (x, y) dxdy| � 1, which is also

apparent from the equidistribution of O in T2 in this case.

One can also repeat the above example with the linear orbit n 7→ (αn, βn)

replaced by a polynomial orbit such as n 7→ (αnD, βnD) for some standard

D > 1. The discussion is identical, except that the O(N−1) errors must now

be replaced by O(N−D).

Now we consider the more general non-abelian setting, in which G/Γ is

not necessarily a torus (i.e., we allow d to exceed 1). We first remark upon

the “incommensurate,” “generic,” or “equidistributed” case when all the Ξi
are trivial; i.e., there are no nontrivial relations of the form

ξi(Taylor~i(O)) = O(N−i).

In this case, Ξ⊥i = Horizi(G), and so the maps πi : GP ∩ Gi → Horiz(Gi) are

all surjective. This implies that all the horizontal spaces of the quotient group

G/GP are trivial, which one easily sees to imply that G/GP itself must be

trivial, i.e., that GP = G. We conclude that |
∫
G/Γ F dµ| � 1. Indeed, in this

case it turns out that O is totally equidistributed and

En∈P0F (O(n)) =

∫
G/Γ

F dµ+ o(1).

This fact can also be deduced from the arithmetic counting lemma [18, Th.1.11].

Finally, to illustrate how we actually use Theorem D.6 in practice, we

consider a model problem in which we are given frequencies α, β, α′, β′ ∈ ∗T
obeying the correlation property

(D.6) |En∈[N ]e({αn}βn)e({α′n}β′n)| � 1,

and we wish to conclude some constraints between these four frequencies; in-

formally, the problem here is to determine for which frequencies α, β, α′, β′ can

one have a nontrivial relationship between {αn}βn and {α′n}β′n (cf. (6.4)).

Strictly speaking, for the analysis that we are about to give to apply, we must

first replace the bracket polynomial expressions above by suitable vector-valued

smoothings (or else develop analogues of the above equidistribution theory for

piecewise Lipschitz nilsequences, as was done in the d = 2 case in [23]), but to

simplify the exposition we shall completely ignore this technical issue here.

Ignoring the technical issue alluded to above, we can express the left-

hand side of (D.6) in the form |En∈[N ]F (O(n))|, where G/Γ is the product
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Heisenberg nilmanifold of degree 6 2, generated by four generators e1, e2, e
′
1, e
′
2

with [e1, e2], [e′1, e
′
2] central (and with e1, e2 commuting with e′1, e

′
2),

O(n) := eβn2 eαn1 (e′2)β
′n(e′1)α

′nΓ,

and F is a (piecewise) Lipschitz function on G/Γ obeying the vertical frequency

property

(D.7) F ([e1, e2]t12 [e′1, e
′
2]t
′
12x) = e(−t12 − t′12)F (x)

for all x ∈ G/Γ and t12, t
′
12 ∈ R. Note that Horiz1(G) is isomorphic to R4 (being

generated by the projections of e1, e2, e
′
1, e
′
2 via πHoriz1(G)), while Horiz2(G) is

trivial. Applying Theorem D.6, we conclude that∣∣∣∣ ∫
GP /ΓP

F (εx) dµ(x)

∣∣∣∣� 1

for some bounded ε ∈ G and some rational subgroup GP of G, with the

property that

(D.8) πHoriz1(G)(GP ) > Ξ⊥1 ,

where

Ξ1 := {ξ ∈ Z4 : ξ · (α, β, α′, β′) = O(N−1)}.
If the vertical group GP ∩ G2 contains any element [e1, e2]t12 [e′1, e

′
2]t
′
12 with

−t12 − t′12 6= 0, then from (D.7) we see that
∫
G/P F (εx) dµ(x) = 0, a contra-

diction. We conclude that

(D.9) GP ∩G2 ⊂ 〈[e1, e2][e′1, e
′
2]−1〉R.

This gives us some information concerning the group Ξ1, and hence on the fre-

quencies α, β, α′, β′. Indeed, suppose that we are given two elements (a, b, a′, b′)

and (c, d, c′, d′) in Ξ⊥. By (D.8), we conclude that GP contains two elements

g, h such that

g = ea1e
b
2(e′1)a

′
(e′2)b

′
mod G2

and

h = ec1e
d
2(e′1)c

′
(e′2)d

′
mod G2.

Since g and h lie in GP , the commutator

[g, h] = [e1, e2]ad−bc[e′1, e
′
2]a
′d′−b′c′

must also lie in GP . Comparing this with (D.9) we obtain an algebraic con-

straint on Ξ that prevents it from being too small, namely that

(D.10) (ad− bc) + (a′d′ − b′c′) = 0

whenever (a, b, a′, b′), (c, d, c′, d′) ∈ Z4 are both orthogonal to Ξ; thus the sym-

plectic form (D.10) must vanish when restricted to Ξ⊥.

For instance, suppose that (α′, β′) = (β, α), but that α, β are otherwise in

general position (cf. (6.4)). Then Ξ is generated by (1, 0, 0, 1) and (0, 1, 1, 0), so
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Ξ⊥ is generated by (1, 0, 0,−1) and (0, 1,−1, 0), and one easily verifies the prop-

erty. It is in principle possible to work out what other quadruples α, β, α′, β′

are permitted by Theorem D.6, but we will not compute this here.

Appendix E. Some basic properties of nilcharacters and symbols

In this appendix we establish some basic properties of nilcharacters and

symbols; this material is broadly comparable to [23, §3].

Throughout this appendix, I is understood to be an ordering (see Defini-

tion 6.7).

We first begin with some basic closure properties of nilsequences.

Lemma E.1 (Nilsequences are preserved by Lipschitz operations). Let H

be an I-filtered group, let J be a finite downset in I , and let Ω be a limit

subset of ∗H . If ψi ∈ Nil⊂J(Ω → CDi) and Di ∈ N+ for i = 1, . . . ,m, and

F : CD1 × · · · × CDm → CD is a locally Lipschitz standard function, then

F (ψ1, . . . , ψm) ∈ Nil⊂J(Ω→ CD).

Proof. This follows immediately from Definition 6.19 and Example 6.13.

�

As an immediate corollary we have the following.

Corollary E.2 (Algebra property). Let H be an I-filtered group, let J be

a finite downset of I , and let Ω be a limit subset of H . Then Nil⊂J(Ω→ C) is

a sub-∗-algebra of L∞(Ω→ C); that is to say, it is closed under pointwise mul-

tiplication, scalar multiplication by bounded constants, addition, and complex

conjugation. Similarly, Nil⊂J(Ω → Cω) is closed under complex conjugation,

tensor product, and bounded linear combinations.

Remark. From the example after Corollary B.5 we also see that if ψ ∈
L∞(∗H → Cω) is a nilsequence of degree ⊂ J , then so is any translate ψ(·+h)

or dilate ψ(q·) of ψ for h ∈ ∗H and q ∈ Z.

Lemma E.3 (Basic facts about nilcharacters). Let H = (H,+) be an

I-filtered abelian group for some I , let d ∈ I , and let χ, χ′ be nilcharacters

in Ξd(∗H). Then χ⊗χ′, χ(·+h), χ(q·), and χ are also nilcharacters of degree

6 d for every h ∈ ∗H , and q ∈ Z.

More generally, if T : H ′ → H is a (standard) filtered homomorphism

from another I-filtered abelian group H ′ = (H ′,+) to H , then χ ◦ T is a

nilcharacter in Ξd(∗H ′).

Finally, one has Ξd
′
(∗H) ⊂ Ξd(∗H ′) whenever d′ < d.

Proof. This follows from Corollary B.5 (cf. the example after that corol-

lary, and Corollary E.2). �
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From (6.5) it is trivial that a multidimensional polynomial of multidegree

⊂ J ∪ J ′ can be decomposed as the sum of a multidimensional polynomial

of multidegree ⊂ J and a multidimensional polynomial of multidegree ⊂ J ′.

There is an analogous decomposition for nilcharacters.

Lemma E.4 (Splitting lemma). Let k ∈ N+, and let J, J ′ be finite downsets

of Nk. Let ψ ∈ Nil⊂J∪J
′
(∗Zk → C) be a nilsequence, and let ε > 0 be standard.

Then ∥∥∥∥ψ(n)−
K∑
k=1

ψk(n)ψ′k(n)

∥∥∥∥
L∞(∗Zk)

6 ε,

where K is standard and for each 1 6 k 6 K , ψk ∈ Nil⊂J(∗Zk → C) and

ψ′k ∈ Nil⊂J
′
(∗Zk → C).

Proof. We can write ψ = F ◦ O, where F ∈ Lip(∗(G/Γ) → C), O ∈
∗poly(Zk → G/Γ), and G/Γ is a Zk-filtered nilmanifold with degree ⊂ J ∪ J ′.

For each j ∈ J ∪ J ′, let ej,1, . . . , ej,dj be a basis of generators for Γj . We

may then lift G to the universal nilpotent Lie group that is formally generated

by the ej,i, subject to the constraint that any r − 1-fold iterated commutator

of the ej1,i1 , . . . , ejr,ir with j1 + · · ·+ jr 6∈ J ∪ J ′ vanishes, and similarly lift Γ,

F , O (using Corollary B.10 for the latter). Thus we may assume without loss

of generality that G is universal.

The degree ⊂ J ∪ J ′ nilmanifold G/Γ projects down to the degree ⊂ J

nilmanifold G/G>JΓ, where G>J is the group generated by the Gj for all j ∈
J ′\J . Similarly, we have a projection from G/Γ to the degree ⊂ J ′ nilmanifold

G/G>J ′Γ. The algebras Lip(∗(G/G>JΓ) → C), Lip(∗(G/G>J ′Γ) → C) then

pull back to subalgebras of Lip(∗(G/Γ) → C). By universality of G, G>J
and G>J ′ are disjoint. Thus, the union of these two algebras separate points

in G/Γ. By the Stone-Weierstrass theorem, one can thus approximate F to

arbitrary accuracy by products of elements from these algebras, and the claim

follows. �

Next, we show that nilsequences can be decomposed into nilcharacters.

Lemma E.5 (Fourier decomposition). Let H be an I-filtered group, and

let d ∈ I . If ψ ∈ Nil6d(∗H) and ε > 0 is standard, then one can find a standard

natural number m, and nilcharacters χj ∈ Ξd(∗H), scalar nilsequences ψj ∈
Nil<d(∗H), and bounded linear transformations T : CDj → CD for suitable

dimensions Dj , D for each 1 6 j 6 m such that∥∥∥∥ψ − m∑
j=1

Tj(ψj ⊗ χj)
∥∥∥∥
L∞(∗H)

6 ε.
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Proof. It suffices to show this for scalar nilsequences ψ. Let G/Γ be an

I-filtered nilmanifold of degree 6 d, let F ∈ Lip(∗(G/Γ) → C), and let ε > 0.

We need to show that one can approximate F to uniform error at most ε

by
∑m
j=1 Tj(Fj ⊗ fj), where each Fj ∈ Lip(G/Γ → S2Dj−1) has a vertical

frequency, fj ∈ Lip(G/Γ → C) is invariant with respect to the Gd action (so

that fj descends to the quotient nilmanifold G/GdΓ, which has degree < d),

and the Tj : CDj → C are linear transformations.

Observe that the class of functions of the form
∑m
j=1 Tj(Fj ⊗ fj) forms

a complex algebra that is closed under conjugation. Thus by the Stone-

Weierstrass theorem, it suffices to show that functions of the form F⊗f , where

F ∈ Lip(G/Γ→ S2D−1) has a vertical frequency and f ∈ Lip(G/Γ→ C) and is

invariant under Gd, separate points. This is trivial for two points that descend

to distinct points on G/GdΓ, so it suffices to handle the case of two points

on a common Gd fibre. For this, it is enough, by the definition of vertical

frequency, to show that for each g ∈ Gd with g 6∈ Γd, there exists a function

F ∈ Lip(G/Γ→ S2D−1) having a vertical frequency η with η(g) 6∈ Z.

The existence of a character η : Gd → R with η(g) 6∈ Z is guaranteed by

Pontryagin duality. Fixing such an η, we now perform the same construction

used at the start of Section 6 (i.e., smoothly partition the base space G/GdΓ

into balls of small radius) to generate the desired function F . �

Corollary E.6 (Correlation). Let H be an I-filtered group, let d ∈ I ,

and let Ω be a limit finite subset of ∗H . If f ∈ L∞(Ω) is 6 d-biased, then f

correlates with a nilcharacter in Ξd(Ω).

Proof. We assume inductively that the claim has already been proven for

all smaller values of d. We may assume that f is scalar. Applying Lemma E.5

for ε small enough, we see that f correlates with an expression of the form∑m
j=1 Tj(ψj ⊗ χj), and thus by the pigeonhole principle, f correlates with one

of the ψj ⊗ χj , and thus fχj correlates with ψj . We can express the downset

{i ∈ I : i < d} as the finite union of downsets {i ∈ I : i 6 d′} for various

d′ < d. Applying Lemma E.4 repeatedly for sufficiently small ε, we thus see

that fχj correlates with
∏
d′6d ψd′ , where each ψd′ is a nilsequence of degree

6 d′. Applying the inductive hypothesis repeatedly, we thus see that fχj
correlates with

⊗
d′<d χd′ for some nilcharacters χd′ of degree 6 d′, and so f

correlates with χj ⊗
⊗
d′<d χd′ . The claim now follows from Lemma E.3. �

We turn now to a discussion of the basic properties of symbols. We begin

by clearing up a small issue left over from Section 6: that of proving that the

notion of equivalence we introduced in Definition 6.22 is indeed an equivalence

relation. Recall that nilcharacters χ and χ′ were said to be equivalent if χ⊗χ′
is a nilsequence of degree strictly less than d.
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Lemma E.7. Equivalence of nilcharacters, thus defined, is an equivalence

relation.

Proof. The symmetry is obvious. For transitivity, suppose that χ1 ∼ χ2

and that χ2 ∼ χ3. Then each component of

(χ1 ⊗ χ2)⊗ (χ2 ⊗ χ3) = χ1 ⊗ (χ2 ⊗ χ2)⊗ χ3

is a nilsequence of degree strictly less than d. However, the trace of χ2 ⊗ χ2

is 1, and so χ1⊗χ3 is a combination of the components of χ1⊗ (χ2⊗χ2)⊗χ3.

In particular, it is a nilsequence of degree strictly less than d.

To show reflexivity, we must confirm that χ⊗χ is a nilsequence of degree

≺ d for any nilcharacter χ ∈ Ξd(Ω). If we write χ(n) = F (g(n)∗Γ), where

F ∈ Lip(∗(G/Γ)→ Sω) has a vertical frequency η, we have

χ⊗ χ(n) = (F ⊗ F )(g(n)∗Γ).

Noting that F ⊗F is invariant with respect to the Gd action, we may quotient

out by this central group and represent χ⊗χ using a nilmanifold of degree ≺ d.

�

The space Symbd(Ω) has many nice properties.

Lemma E.8 (Symbol calculus). Let H = (H,+) be an abelian I-filtered

group, let d ∈ I , and let Ω be a limit subset of ∗H .

(i) If χ, χ′ ∈ Ξd(Ω) and ψ ∈ Nil<d(Ω), and the components of χ are

bounded linear combinations of those of χ′⊗ψ, then χ, χ′ are equivalent

on Ω and thus [χ]Symbd(Ω) = [χ′]Symbd(Ω).

(ii) Conversely, if χ, χ′ ∈ Ξd(Ω) are equivalent, then χ is a bounded linear

combination of χ′ ⊗ ψ for some ψ ∈ Nil<d(Ω).

(iii) Symbd(Ω) is an abelian group with the group operation induced from

tensor product.

(iv) If χ ∈ Ξd(∗H) and h ∈ ∗Hi for some i > 0, then χ and χ(· + h) are

equivalent on ∗H (and thus on Ω also). Thus, [χ(· + h)]Symbd(Ω) =

[χ]Symbd(Ω).

(v) If H = Zk with either the multidegree or degree filtration, χ ∈ Ξd(∗H)

and q ∈ Z, then χ⊗q
|d|

and χ(q·) are equivalent on ∗H (and thus on Ω

also); thus [χ(q·)]Symbd(Ω) = q|d|[χ]Symbd(Ω).

(vi) (Pullback). If T : ∗Zk → ∗Zk′ is a linear transformation and χ is

a nilcharacter of degree d on ∗Zk′ , then χ ◦ T is a nilcharacter of

degree d on Zk. Moreover, if χ′ is another nilcharacter of degree d

on ∗Zk with [χ]Symbd(∗Zk′ ) = [χ′]Symbd(∗Zk′ ), then [χ ◦ T ]Symbd(∗Zk) =

[χ′ ◦ T ]Symbd(∗Zk).
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(vii) (Divisibility). If H = Zk with either the multidegree or degree filtra-

tion, d 6= 0, χ ∈ Ξd(Ω) and q ∈ N+, then there exists χ̃ such that

[χ]Symbd(Ω) = q[χ̃]Symbd(Ω).

Proof. The claim (i) follows from the same argument used to prove reflex-

ivity in Lemma E.7. For (ii), we proceed much as in the proof of transitivity

in Lemma E.7: write φ := χ⊗ χ′, and consider χ′ ⊗ φ = (χ′ ⊗ χ′)⊗ χ. Since 1

may be written as a linear combination of the components of χ′⊗χ′, the claim

follows.

The claim (iii) follows easily from (i) and (ii). Part (iv) is more substantial.

It should be compared to some of the consequences of the “bracket quadratic

identities” developed in [23, Lemma 5.5].

From Definition 6.22, it suffices to show that the derivative ∆hχ(n) :=

χ(n + h) ⊗ χ(n) lies in Nil<d(∗H). We write χ(n) = F (g(n)∗Γ), where G/Γ

is an I-filtered nilmanifold of degree 6 d, g ∈ ∗poly(HI → GI), and F ∈
Lip(∗(G/Γ)) has a vertical frequency η : Gd → R. Then we have

∆hχ(n) = F ((∂hg(n))g(n)∗Γ)⊗ F (g(n)∗Γ).

As g ∈ ∗poly(H → G) and h ∈ ∗Hi, we have ∂hg ∈ ∗poly(HI → G+i
I ), where

G+i
I = (Gj+i)j∈I is the shifted filtration.

We now give G2 an I-filtration by defining (G2)j to be the group generated

by Gj+i × id and by the diagonal group {(g, g) : g ∈ Gj}. One easily verifies

that this is a filtration, which is rational with respect to Γ2. In particular, if

we set G� := (G2)0 and Γ� := Γ2 ∩ G�, we have that G�/Γ� is an I-filtered

nilmanifold of degree 6 d. Furthermore, from Corollary B.4 we see that the

map

O : n 7→ (∂hg(n)g(n), g(n))∗Γ�

lies in ∗poly(HI → G�I /Γ
�
I ). We can thus write ∆hχ = F̃ ◦ O, where F̃ ∈

Lip(∗(G�/Γ�)) is the function

F̃ (x, y) := F (x)⊗ F (y).

This is still a degree 6 d representation. But observe from the vertical char-

acter nature of F that F̃ is invariant with respect to the action of the group

G�d = {(g, g) : g ∈ Gd}. Thus we may quotient by this map and descend to a

degree < d nilmanifold, and the claim follows.

Now we turn to (v), which is a similar claim to (iv). Writing χ =

F (g(n)∗Γ) as before, we reduce to showing that

(E.1) n 7→ F (g(qn)∗Γ)⊗ F (g(n)∗Γ)⊗q
|d|

can be represented as a nilsequence of degree < d, with the convention that

F⊗−q = F
⊗q

to deal with the case of negative exponents.
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We give G2 an Nk-filtration by declaring G2
i to be the group generated

by Gj × Gj for all j > i, together with the set {(gq|i|, g) : g ∈ Gi}. From

the Baker-Campbell-Hausdorff formula one easily sees that this is a filtration,

which is rational with respect to Γ2; and so G2
0/Γ

2
0 is a degree 6 d nilmanifold.

Also, from Taylor expansion (Lemma B.9) and Corollary B.4 we see that the

map

O : n 7→ (g(qn), g(n))∗Γ2
0

lies in ∗poly(H → G2
0/Γ

2
0). We then write (E.1) as n 7→ F̃ (O(n)), where

F̃ ∈ Lip(∗(G2
0/Γ

2
0)) is the function

F̃ (x, y) := F (x)⊗ F⊗q
|d|
.

From the vertical character nature of F , we see that F̃ is invariant with the

action of G2
2 = {(gq|d| , g) : g ∈ Gd}. Quotienting out by this group as in the

proof of (iv), we obtain the claim.

The claim (vi) follows easily from Corollary B.5, so we now turn to (vii).

We will prove this for the multidegree filtration, as the degree filtration is

similar. As usual, we write χ = F (g(n)∗Γ). Applying Taylor expansion

(Lemma B.9) and the Baker-Campbell-Hausdorff formula, we may factorise

g(n) =
∏
j6d

gn
j

j

for some gj ∈ Gj , where the product is over all multiindices j 6 d (arranged

in some arbitrary fashion). Taking roots of each of the gj , we may write

gj = (g′j)
q|j| for each j. We then have g(n) = g′(qn), where g′ is the polynomial

sequence

g′(n) :=
∏
j6d

(g′j)
nj
.

If we write χ′(n) := F (g′(n)∗Γ), we see that χ′ ∈ Ξd(Ω) and χ(n) = χ′(qn),

so by (v), [χ]Symbd(Ω) = q|d|[χ′]Symbd(Ω). The claim now follows by setting

χ̃ := (χ′)⊗q
|d|−1

. �

If P (n) = α0 + · · · + αdn
d is a polynomial of one variable n of de-

gree d, then P is equal (up to degree < d errors) to the multilinear form

Q(n, . . . , n), where Q(n1, . . . , nd) := αdn1 · · ·nd. A bit more generally, if

P (n1, . . . , nk) is a polynomial of k variables n1, . . . , nk of multidegree d =

(d1, . . . , dk), then P is equal (up to degree < d errors) to a degree (1, . . . , 1)

form Q(n1, . . . , n1, . . . , nk, . . . , nk), where 1 is repeated |d| times and each ni
is repeated di terms. We may generalise this observation to nilcharacters. We

begin with the simpler k = 1 case.
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Proposition E.9 (Multilinearisation, k = 1 case). Let d ∈ N and χ ∈
Ξd(∗Z). Then there exists χ̃ ∈ Ξ(1,...,1)(∗Zd) (where 1 is repeated d times) such

that the nilcharacter

χ′ : n 7→ χ̃(n, . . . , n)

(where n is repeated d times) is equivalent to χ in Ξd(∗Z) (thus [χ]Ξd(∗Z) =

[χ′]Ξd(∗Z)). Furthermore, one can select χ̃(n1, . . . , nd) to be symmetric with

respect to permutations of n1, . . . , nd.

To motivate this proposition, we present an “almost-example” of this

proposition in action: if d = 2 and χ is the degree 2 almost-nilcharacter

χ(n) := e({αn}βn),

(where the “almost” arises because the relevant function F is only piecewise

Lipschitz rather than Lipschitz, as discussed at the start of Section 6), then

one can take

(E.2) χ̃(n1, n2) := e

Å
1

2
{αn1}βn2 +

1

2
{αn2}βn1

ã
,

which is a multidegree (1, 1) almost-nilcharacter, with χ̃(n, n) equivalent (and

in fact exactly equal, in this case) to χ(n). More generally, if we are able to

represent a nilcharacter in terms of bracket polynomials of the correct degree

and rank, then the above proposition becomes obvious by inspection. Such a

representation is in fact possible (by extending the theory in [37]), but we will

proceed here instead by using abstract algebraic constructions.

Proof. This will be a more complicated version of the argument used to

establish claims (iv) and (v) of Lemma E.8. It will be convenient for techni-

cal reasons to construct χ̃ so that χ′ is equivalent to χ⊗d! rather than to χ

itself; to recover the original claim in the proposition, one simply appeals to

Lemma E.8(vii).

We have χ(n) = F (g(n)∗Γ) for some degree d nilmanifold G/Γ, some

polynomial sequence g∈∗poly(ZN→(G/Γ)N), and some F ∈Lip(∗(G/Γ)→Sω),

obeying the vertical frequency property

F (gdx) = e(η(gd))F (x)

for all x ∈ G/Γ and gd ∈ Gd, where η : Gd → R is a continuous homomorphism

that maps Γd to the integers.

We now build the various components G̃, η̃, g̃, F̃ required to construct χ̃.

(A simple example of this construction will be given after the end of this proof.)

The first step is build the multidegree (1, . . . , 1) nilpotent group G̃. We

will construct this group via its nilpotent Lie algebra log G̃. As a (real) vector

space, this Lie algebra will be given as a direct sum

log G̃ := ⊕J⊂{1,...,d} logG|J |.
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For each J ⊂ {1, . . . , d}, let ιJ : logG|J | → log G̃ be the vector space embedding

indicated by this direct sum. Thus, every element of log G̃ can be uniquely

expressed in the form
∑
J⊂{1,...,d} ιJ(xJ) for some xJ ∈ logG|J |.

Next, we endow log G̃ with a Lie bracket structure by declaring

[ιJ(xJ), ιK(yK)] = 0

whenever J,K ⊂ {1, . . . , d} intersect and xJ ∈ logG|J |, yK ∈ logG|K|, and

[ιJ(xJ), ιK(yK)] = ιJ∪K([xJ , yK ])

whenever J,K ⊂ {1, . . . , d} are disjoint and xJ ∈ logG|J |, yK ∈ logG|K|. One

easily verifies that this operation obeys the axioms of a Lie bracket (i.e., it is

bilinear, antisymmetric, and obeys the Jacobi identity), and so log G̃ is a Lie

algebra.

We now give log G̃ a multidegree filtration. For any (a1, . . . , ad) ∈ Nd, let

log G̃(a1,...,ad) be the sub-Lie-algebra of log G̃ generated by the ιJ(xJ) for which

1J(j) > aj for each j = 1, . . . , d, and xJ ∈ G|J |. One easily verifies that this is

a multidegree filtration of multidegree (1, . . . , 1), and so one can exponentiate

to create a multidegree-filtered Lie group G̃ of multidegree (1, . . . , 1) also.

We define a lattice Γ̃ in G̃ to be the group generated by exp(M !ιJ(log γj))

for all J ⊂ {1, . . . , d} and γj ∈ Γ|J |, where M is a fixed natural number (de-

pending only on d) that we will assume to be sufficiently large. From the

Baker-Campbell-Hausdorff formula we see that this is indeed a lattice, and

so G̃/Γ̃ is a nilmanifold. For M large enough, we see from further appli-

cation of the Baker-Campbell-Hausdorff formula that Γ̃(1,...,1) is contained in

ι(1,...,1)(log Γd).

Next, we define a vertical frequency η̃ on G̃(1,...,1) by setting

η̃(ι(1,...,1)(log gd)) := η(gd).

One easily verifies that η̃ is a vertical frequency. (Here we use the inclusion

Γ̃(1,...,1) ⊂ ι(1,...,1)(log Γd) and the central nature of G(1,...,1).)

Now let F̃ ∈ Lip(∗(G̃/Γ̃) → Sω) be a function with vertical frequency η̃;

such a function can be constructed using partitions of unity as in (6.3).

The next step is to define g̃. From Lemma B.9 and many applications of

the Baker-Campbell-Hausdorff formula, we may write

g(n) =
d∏
j=0

gn
j

j

for some coefficients gj ∈ Gj . We then write

g̃(n1, . . . , nd) :=
d∏
j=0

exp

Ñ
j!

∑
J⊂{1,...,d}:|J |=j

(∏
i∈J

ni

)
ιJ(log gj)

é
.
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Observe that each individual monomial

(n1, . . . , nd) 7→ exp

(
j!

(∏
i∈J

ni

)
ιJ(log gj)

)

with 0 6 j 6 d and |J | = j is a polynomial map in ∗poly(ZdNd → G̃Nd), so

by Corollary B.4 and the Baker-Campbell-Hausdorff formula we see that the

same is true for g̃.

Finally, we set

χ̃(n1, . . . , nd) := F̃ (g̃(n1, . . . , nd)
∗Γ̃).

By construction, χ̃ ∈ Ξ(1,...,1)(∗Zd), which by Lemma E.8(vi) (and the embed-

dings in Example 6.11) implies that χ′ ∈ Ξd(∗Z). It is also clear that χ̃ is

symmetric with respect to permutations of the n1, . . . , nd. It remains to show

that χ′ is equivalent to χ⊗d! in Ξd(∗Z) or, in other words, that the sequence

n 7→ χ(n)⊗d! ⊗ χ̃(n, . . . , n)

is a nilsequence of degree < d. We expand this sequence as

(F⊗d! ⊗ F̃ )

Ö
d∏
j=0

(gj , exp

Ñ
j!

∑
J⊂{1,...,d}:|J |=j

ιJ(log gj))

énj

∗(Γ× Γ̃)

è
.

The function F ⊗ F̃ is a Lipschitz function on the nilmanifold (G× G̃)/(Γ× Γ̃).

Let G∗ be the subgroup of G× G̃ defined as

G∗ := {(gd, exp(d!ι(1,...,1)(log gd)) : gd ∈ Gd} 6 Gd × G̃(1,...,1).

This is a rational central subgroup. As F and F̃ have vertical frequencies η

and η̃ respectively, we see that F ⊗ F̃ is invariant in the G∗ direction and

thus descends to a Lipschitz function F ′ on the nilmanifold G′/Γ′, where G′ :=

(G× G̃)/G∗ and Γ′ is the projection of Γ× Γ̃ to G′. We thus have

(E.3) χ(n)⊗ χ̃(n, . . . , n) = F ′

Ñ
d∏
j=1

(g′j)
nj ∗Γ′

é
,

where g′j is the projection of (gj , exp(j!
∑
J⊂{1,...,d}:|J |=j ιJ(log gj))) to G′.

We now giveG′ a degree filtration by definingG′j to be the group generated

by elements of the formÑ
hj , exp

Ñ
j!

∑
J⊂{1,...,d}:|J |=j

ιJ(log hj)

éé
mod G∗

for hj ∈ Gj , together with elements of the form

(hj+1, id), (id, exp(ιJ(log hj+1))) mod G∗
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for hj+1 ∈ Gj+1 and J ⊂ {1, . . . , d} with |J | = j + 1. By a tedious number

of applications of the Baker-Campbell-Hausdorff formula, we see that this is

a filtration of degree < d. (Here we use the fact that every set of cardinality

j + k has (j+k)!
j!k! partitions into a set J of cardinality j and a set K of cardi-

nality k, which cancels the j! prefactors appearing in the definition of G′j .) By

construction, g′j ∈ G′j . Thus the right-hand side of (E.3) is a nilsequence of

degree < d, and the claim follows. �

Example. We illustrate the above proposition with the simple d = 2 ex-

ample mentioned before the proof. We consider a nilcharacter χ that is a

vector-valued smoothing of the sequence n 7→ e({αn}βn) for some fixed fre-

quencies α, β ∈ ∗T, which we will write schematically as

χ(n) ∼ e({αn}βn).

As discussed in Section 6, such a nilcharacter arises from the Heisenberg nil-

manifold (6.1) with the polynomial sequence

g(n) = eβn2 eαn1

and vertical character η([e1, e2]t12) := −t12. We may Taylor expand g as

g(n) = gn1 g
n2

2 ,

where g1 := exp(α log e1 + β log e2) = eα1 e
β
2 [e1, e2]−αβ/2 and g2 := [e1, e2]−αβ/2.

The nilpotent Lie algebra log G̃ is the seven-dimensional vector space

log G̃ = logG⊕ logG⊕ logG12

with a basis of this space given by

ι1(log e1), ι1(log e2), ι1(log[e1, e2]), ι2(log e1),(E.4)

ι2(log e2), ι2(log[e1, e2]), ι12(log[e1, e2]).

The Lie algebra commutation relations on basis elements are given by the

formulae

[ι1(log e1), ι2(log e2)] = ι12(log[e1, e2]),

[ι1(log e2), ι2(log e1)] = −ι12(log[e1, e2])

with all other pairs of basis elements commuting. This gives a nilpotent Lie

group G̃ generated (as a Lie group) by the exponentials of (E.4), which we will
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label as

a1 := exp(ι1(log e1)),

a2 := exp(ι1(log e2)),

a12 := exp(ι1(log e12)),

b1 := exp(ι2(log e1)),

b2 := exp(ι2(log e2)),

b12 := exp(ι2(log e12)),

c12 := exp(ι12(log e12));

thus one has the group commutation relations

[a1, b2] = c12; [a2, b1] = c−1
12

with all other pairs of generators commuting. The generators a12, b12 will play

no essential role in the analysis that follows and may be ignored by the reader.

The group G̃ is a multidegree (1, 1) filtered Lie group with filtration

G̃(0,0) := G̃,

G̃(1,0) := 〈a1, a2, a12, c12〉R,

G̃(0,1) := 〈b1, b2, b12, c12〉R,

G̃(1,1) := 〈c12〉R.

To construct Γ̃, we may take M = 1, so that

Γ̃ := 〈a1, a2, a12, b1, b2, b12, c12〉.

From the Baker-Campbell-Hausdorff formula one sees that

Γ̃(1,1) := Γ̃ ∩ G̃(1,1) = 〈c12〉.

A typical element of G̃/Γ̃ can be parametrised as

ar11 a
r2
2 a

r12
12 b

s1
1 b

s2
2 b

s12
12 c

t12
12 Γ̃

for r1, r2, r12, s1, s2, s12, t12 ∈ I0.

The polynomial sequence g̃ is given as

g̃(n1, n2) := exp(n1ι1(log g1) + n2ι2(log g1)) exp(2n1n2ι12(log g2))

= exp(αn1 log a1 + βn1 log a2 + αn2 log b1 + βn2 log b2)

× exp(−αβn1n2 log c12),

which by the Baker-Campbell-Hausdorff formula expands to

g̃(n1, n2) = aαn1
1 aβn1

2 bαn2
1 bβn2

2 c−αβn1n2
12 .
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This is clearly a polynomial sequence. If we then let η̃ : G̃(1,1) → R be the

vertical character

η̃(exp(t12ι12(log[e1, e2]))) := −t12

and let F̃ : G̃/Γ̃→ S1 be the (piecewise) Lipschitz function

F̃ (ar11 a
r2
2 a

r12
12 b

s1
1 b

s2
2 b

s12
12 c

t12
12 Γ̃) := e(−t12)

for r1, r2, r12, s1, s2, s12, t12 ∈ I0, then the sequence

χ̃(n1, n2) := F̃ (g̃(n1, n2)∗Γ̃)

is almost a nilcharacter of multidegree (1, 1), if we make the usual cheat of

ignoring the fact that F̃ is only piecewise Lipschitz rather than Lipschitz.

Now let us look at the diagonal sequence

χ̃(n, n) = F̃ (aαn1 aβn2 bαn1 bβn2 c−αβn
2

12
∗Γ̃).

A brief computation using the Baker-Campbell-Hausdorff formula shows that

one can rewrite

aαn1 aβn2 bαn1 bβn2 c−αβn
2

12
∗Γ̃

as

a
{αn}
1 a

{βn}
2 b

{αn}
1 b

{βn}
2 c

(αn−{αn}){βn}−(βn−{βn}){αn}−αβn2

12
∗Γ̃.

Noting that (αn−{αn})(βn−{βn}) is an integer (cf. (6.4)), we can write the

c12 exponent modulo 1 as

{αn}{βn} − 2{αn}βn mod 1,

and thus

χ̃(n, n) = e(2{αn}βn)e(−{αn}{βn}).
The second factor e(−{αn}{βn}) is a piecewise Lipschitz function of (αnmod 1,

βn mod 1) and is thus almost a 1-step nilsequence. We thus see that χ̃(n, n)

is almost equivalent (as a degree 2 almost nilcharacter) to χ(n)2. To eliminate

the exponent of 2, one can go back to the start of the argument and replace β

(for instance) by β/2. The reader may verify that once one does so, the almost

nilcharacter χ̃ is essentially equal to (E.2).

Finally, we mention that with the above example, the group G∗ takes the

form

G∗ := {([e1, e2]t12 , c2t12
12 ) : t12 ∈ R}

and the group G′ := (G× G̃)/G∗ has the degree 1 filtration

G′0 := G′

G′1 := {(et11 e
t2
2 [e1, e2]t12 , at11 a

t2
2 a

t′12
12 b

t1
1 b

t2
2 b

t′12
12 c

t′′12
12 : t1, t2, t12, t

′
12, t

′′
12 ∈ R} mod G∗.

One can verify by hand that this is indeed a degree 1 filtration on G′, which

explains why χ(n)2χ̃(n, n) is a degree 1 (almost) nilsequence.
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This concludes the discussion of the example. Now we generalise Propo-

sition E.10 to higher k.

Theorem E.10 (Multilinearisation). Let Ω be a limit subset of Zk, which

we give the multidegree filtration. Let d = (d1, . . . , dk) ∈ Nk and χ ∈ Ξd(Ω).

Then there exists χ̃ ∈ Ξ(1,...,1)(∗Z|d|) (where 1 is repeated |d| times) such that

the nilcharacter

χ′ : (n1, . . . , nk) 7→ χ̃(n1, . . . , n1, n2, . . . , n2, . . . , nk, . . . , nk)

(where each ni is repeated di times) is equivalent to χ in Ξd(Ω) (thus [χ]Ξd(Ω) =

[χ′]Ξd(Ω)). Furthermore, one can select

χ̃(n1,1, . . . , n1,d1 , n2,1, . . . , n2,d2 , . . . , nk,1, . . . , nk,dk)

to be symmetric with respect to the permutation of ni,1, . . . , ni,di for each i =

1, . . . , k.

Proof. Without loss of generality we may take Ω = ∗Zk. The argument

is exactly the same as that used to establish Proposition E.9 except that the

notation is more complicated. Accordingly, we will focus primarily on the

notational setup in this proof.

As before, it will suffice to make χ′ equivalent to χ⊗d! rather than χ,

where d! := d1! · · · dk!. We have χ(n) = F (g(n)∗Γ) for some multidegree d

nilmanifold G/Γ, some polynomial sequence g ∈ ∗poly(ZkNk → (G/Γ)Nk), and

some F ∈ Lip(∗(G/Γ)→ Sω), obeying the vertical frequency property

F (gdx) = e(η(gs))F (x)

for all x ∈ G/Γ and gd ∈ Gd, where η : Gd → R is a vertical frequency.

As before, we begin by building the nilpotent Lie algebra log G̃. As a

(real) vector space, this Lie algebra will be given as a direct sum

log G̃ := ⊕J⊂{1,...,|d|} logG‖J‖,

where ‖J‖ ∈ Nk is the vector

‖J‖ := (|J ∩ {d1 + · · ·+ di−1 + 1, . . . , d1 + · · ·+ di}|)16i6k.

For each J ⊂ {1, . . . , d}, let ιJ : logG‖J‖ → log G̃ be the vector space embed-

ding indicated by this direct sum. Next, we endow log G̃ with a Lie bracket

structure by declaring

[ιJ(xJ), ιK(yK)] = 0

whenever J,K ⊂ {1, . . . , d} intersect and xJ ∈ logG‖J‖, yK ∈ logG‖K‖, and

[ιJ(xJ), ιK(yK)] = ιJ∪K([xJ , yK ])

whenever J,K ⊂ {1, . . . , d} are disjoint and xJ ∈ logG‖J‖, yK ∈ logG‖K‖. As

before, one easily verifies the Lie bracket axioms.
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We now give log G̃ a multidegree filtration. For any (a1, . . . , a|d|) ∈ N|d|,
let log G̃(a1,...,a|d|) be the sub-Lie-algebra of log G̃ generated by the ιJ(xJ) for

which 1J(j) > aj for each j = 1, . . . , |d|, and xJ ∈ G‖J‖. As before, this is a

multidegree filtration of multidegree (1, . . . , 1), and exponentiates to create a

multidegree-filtered Lie group G̃ of multidegree (1, . . . , 1) also.

We define a lattice Γ̃ in G̃ to be the group generated by exp(M !ιJ(log γj))

for all J ⊂ {1, . . . , |d|} and γj ∈ Γ‖J‖. Again, G̃/Γ̃ is a nilmanifold, and for M

large enough, Γ̃(1,...,1) is contained in ι(1,...,1)(log Γd).

As before, we define a vertical frequency η̃ on G̃(1,...,1) by the exact same

formula:

η̃(ι(1,...,1)(log gd)) := η(gd).

We then construct F̃ ∈ Lip(∗(G̃/Γ̃)→ Sω) with vertical frequency η̃.

The next step is to define g̃. As before, we have the Taylor expansion

g(n) =
∏
j6d

gn
j

j

for some coefficients gj ∈ Gj , where j = (j1, . . . , jk) now ranges over multi-

indices less than or equal to d, arranged in some arbitrary order (e.g., lexico-

graphical will suffice). We then write

g̃(n1, . . . , n|d|) :=
∏
j6d

exp

Ñ
j!

∑
J⊂{1,...,|d|}:‖J‖=j

(∏
i∈J

ni

)
ιJ(log gj)

é
,

recalling that j! := j1! · · · jk!. As before, one verifies that g̃ is a polynomial

map.

Finally, we set

χ̃(n1, . . . , n|d|) := F̃ (g̃(n1, . . . , n|d|)
∗Γ̃).

The rest of the argument proceeds exactly as in Proposition E.9, the main dif-

ference being that d is replaced with |d|, and |J | with ‖J‖, whenever necessary;

we omit the details. �

Now we show how nilcharacters interact with the concept of bias.

Lemma E.11 (Bias lemma). Let k, d ∈ N+ with d > 2, let χ be a degree

d nilcharacter on ∗Zk (with the degree filtration), and let N be an unbounded

limit natural number. Let Ω be a convex polytope in [[N ]]k, and let P1, . . . , Pk be

dense subprogressions of [N ]. Suppose that 1Ω(n)1P1×...×Pk
χ(n) is < d-biased

on [[N ]]k. Then on [[N ]]k, χ is equal to a nilsequence of degree < d.
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Remark. Note that the claim fails for d = 1, even when k = 1; if q > 1 is a

bounded integer, then the degree 1 nilcharacter n 7→ e(n/q) is of course biased

on progression of spacing q, but not on the original interval [[N ]]. However,

this is a purely “degree 1” obstruction and vanishes for higher degree.

Proof. Write P := P1 × · · ·Pk. By Corollary E.6, 1Ω(n)1Pχ(n) correlates

with a nilcharacter of degree d − 1; we may absorb this nilcharacter into χ,

and assume that 1Ω(n)1Pχ(n) is in fact biased.

By partitioning Ω ∩ P into the product P ′ = P ′1 × · · · × P ′k of dense

progressions of [[N ]] (using [19, Cor. A.2] to control the error), we see that

there exists such a product P ′ = P ′1 × · · · × P ′k for which

|En∈P ′χ(n)| � 1.

Write χ = F ◦O for some degree 6 d nilmanifold G/Γ, some F ∈ Lip(∗(G/Γ))

with a vertical frequency η, and some O ∈ ∗poly(Zk → G/Γ). Applying

Theorem D.5 and using the pigeonhole principle to refine the progressions

P ′1, . . . , P
′
k if necessary, we may assume without loss of generality that we can

factorise

O(n) = εP ′(n)gP ′(n)∗Γ

for all n ∈ P ′, where gP ′ ∈ ∗poly(Zk → GP ′) is totally equidistributed on

GP ′/ΓP ′ for some standard rational subgroup GP ′ of G, εP ′ ∈ ∗poly(Zk → G)

is bounded, has Lipschitz constant O(1/N) on P , and has ith Taylor coefficients

bounded by O(N−|i|) for each i ∈ Nk.
For any n, nP ′ ∈ P ′, we have from the Lipschitz nature of εP ′ that

F (O(n)) = F (εP ′(nP ′)gP ′(n)∗Γ) +O(|n− n0|/N),

and thus by dividing P ′ into sufficiently small (but still dense) sub-products,

we may assume that

|En∈P ′F (εP ′(nP ′)gP ′(n)∗Γ)| � 1

for some nP ′ ∈ P ′, which by the total equidistribution of gP ′ implies that∣∣∣∣∣
∫
GP ′/ΓP ′

F (εP ′(nP ′)x) dµGP ′/ΓP ′

∣∣∣∣∣� 1.

As F has vertical frequency η, this implies that η must annihilate GP ′,>d, and

so F is invariant with respect to the action of this group. By quotienting out

by this central group we may thus assume that GP ′,>d is trivial; thus , GP ′/ΓP ′

now has degree < d. We can then write

χ(n) = F̃

Å
gP ′(n)∗ΓP ′ ,

n

5N
mod 1

ã
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for all n ∈ [[N ]], where F̃ : ∗(GP ′/ΓP ′ × T) is defined so that

F̃

Å
x,

n

5N

ã
= F (εP ′(n)x)

for n ∈ [N ] and x ∈ ∗(GP ′/ΓP ′), and extended in a Lipschitz function to all

of ∗(GP ′/ΓP ′ × T). This represents χ as a nilsequence of degree < d on P ′.

Using the conjugate nature of the various sequences gP in Theorem D.5, we

conclude that χ can also be represented as a nilsequence of degree < d on all

translates P ′+h of P ′. On the other hand, since P ′ is dense in [[N ]]k, one can

partition 1 =
∑J
j=1 ψj on [[N ]]k, where J is bounded and the ψj are degree

6 1 nilsequences, each of which is supported on a translate P ′+hj of P ′. This

implies that χ =
∑J
j=1 ψjχ. As d > 2, the ψj have degree < d, and the claim

now follows from Corollary E.2. �

We have the following useful consequence of Lemma E.11.

Corollary E.12 (Extrapolation lemma). Let k, d ∈ N+ with d > 2, let

χ be a degree d nilcharacter on ∗Zk (with the degree filtration), and let N be

an unbounded limit natural number. Let P1, . . . , Pk be dense subprogressions

of [[N ]], and let P := P1 × · · · × Pk. Then the following are equivalent :

• χ is < d-biased on [[N ]]k.

• χ is < d-biased on P .

• [χ]Ξd([[N ]]k) = 0.

• [χ]Ξd(P ) = 0.

Proof. We trivially have that that (iii) implies (iv). Since χ correlates

with itself, we see that (iii) implies (i) and (iv) implies (ii). Lemma E.11 gives

that (i) or (ii) both imply (iii), and the claim follows. �

The Pontragyin dual T of the integers Z of course contains plenty of tor-

sion. It turns out, however, that this torsion is a purely degree 1 phenomenon

and disappears in higher degree.

Lemma E.13 (Torsion-free lemma). Let k ∈ N+, let N be an unbounded

integer, and let d > 2 be standard. Then the abelian group Symbd([[N ]]k) (with

the degree filtration) is torsion-free.

Proof. Our goal is to show that if q > 1 is bounded and χ is a degree 6 s
nilcharacter such that χ⊗q is equal to a degree < s nilsequence on [N ]k, then

χ is also equal to a degree < s nilsequence.

We modify the arguments used to prove Lemma E.11. We write χ =

F ◦ O where G/Γ is a degree 6 s nilmanifold, O ∈ ∗poly(Zk → G/Γ), and

F ∈ Lip(∗(G/Γ)) has a vertical frequency η. Then we have

|En∈[N ]kF (O(n))⊗qF0(O0(n))| � 1
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for some degree < s nilmanifold G0/Γ0, some O0 ∈ ∗poly(Zk → G0/Γ0),

and F0 ∈ Lip(∗(G0/Γ0)). Using Theorem D.5, we may thus find a product

P = P1 × · · · × Pk of progressions in [[N ]]k and a factorisation

(O(n),O0(n)) = (εP (n)gP (n)∗Γ, εP,0(n)gP,0(n)∗Γ0),

where εP ∈ ∗poly(Zk → G), εP,0 ∈ ∗poly(Zk → G0) are bounded and Lipschitz

on [[N ]]k with Lipschitz constant O(1/N), and (gP , gP,0) ∈ ∗poly(Zk → G̃P )

is totally equidistributed in G̃P /Γ̃P for some rational subgroup G̃P of G×G0.

Shrinking P if necessary as in the proof of Lemma E.11, we may assume that∣∣∣∣ ∫
G̃P /Γ̃P

F (εP (nP )x)⊗qF0(εP,0(nP )x0) dµG̃P /Γ̃/P
(x, x0)

∣∣∣∣� 1

for any nP ∈ P . From the vertical character nature of F , this implies that

ηq annihilates (G̃P )s. But η is a continuous homomorphism on the connected

abelian Lie group (G̃P )s, and so η itself must also annihilate (G̃P )s. If we then

quotient by this space, we can represent χ by a degree < s nilsequence on P ,

and the claim now follows from Corollary E.12. �

Appendix F. A linearisation result from additive combinatorics

In this appendix, we record a lemma from additive combinatorics (essen-

tially in [13] or [16], and in the spirit of Freiman’s inverse sumset theorem)

that asserts that functions from a large subset of [−N,N ] to T with a large

amount of additive structure are essentially bracket-linear in nature.

Lemma F.1 (Linearisation lemma). Let ε > 0 be a limit real, let N be a

limit natural number, let H be a dense subset of [[N ]], let α ∈ ∗T be a frequency,

and let ξ1, ξ2, ξ3, ξ4 : H → ∗T be limit functions such that

(F.1) ξ1(h1) + ξ2(h2) + ξ3(h3) + ξ4(h4) = α+O(ε)

for many additive quadruples (h1, h2, h3, h4) ∈ H . Then there exist a standard

k > 0, a frequency δ ∈ ∗T, a dense subset H ′ of H , and a Freiman homomor-

phism ξ : H ′ → ∗T of the form

ξ(h) =
K∑
k=1

{αkh}βk mod 1

for all h ∈ H ′, some αk ∈ ∗T and βk ∈ ∗R, and some standard K such that

(F.2) ξ1(h) = ξ(h) + δ +O(ε)

for many h ∈ H .

Proof. We may replace ε by 1/M for some limit integer M . By rounding

each ξi(h) to the nearest multiple of 1/M , we may assume that ξi(h) is a

multiple of 1/M for all h ∈ H and i = 1, 2, 3, 4. There are now only a bounded
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number of possibilities for the right-hand side α + O(ε), so by the pigeonhole

principle (and by redefining α if necessary), we may assume that

ξ1(h1) + ξ2(h2) + ξ3(h3) + ξ4(h4) = α

for many additive quadruples (h1, h2, h3, h4) in H.

For each i = 1, 2, 3, 4, let Γ ⊂ ∗Z × ∗T be the (limit) graph Γi :=

{(h, ξi(h) mod 1) : h ∈ H}. Then by the preceding discussion, we see that

(0, α) has � N3 representations of the form γ1 + γ2 + γ3 + γ4, where γi ∈
Γi for i = 1, 2, 3, 4. On the other hand, from several applications of the

Cauchy-Schwarz inequality, the number of such quadruples is bounded by∏4
i=1E(Γi)

1/4, where E(Γi) is the number of additive quadruples in Γi (i.e.,

the additive energy of Γi). Since we have the trivial upper bound E(Γi)� N3

for all i, we conclude that

E(Γ1)� N3.

At this point we invoke some standard additive combinatorial machinery

from [16] (see also [13], [42]). Applying the Balog-Szemerédi-Gowers lemma fol-

lowed by the Plünnecke-Ruzsa inequalities exactly as in [16, Prop. 5.4], we can

find a dense subset Γ′ of Γ1 such that |9Γ′ − 8Γ′| � N . Applying [16, Lemma

9.2], we can refine to a further dense subset Γ′′ := {(h, ξ(h) mod 1) : h ∈ H ′′}
such that 4Γ′′ − 4Γ′′ is a graph; thus there exists a Freiman homomorphism13

ζ : 2H ′′ − 2H ′′ → T such that

(F.3) ξ1(h1) + ξ1(h2)− ξ1(h3)− ξ1(h4) = ζ(h1 + h2 − h3 − h4)

for all h1, h2, h3, h4 ∈ H ′′. By the Bogulybov lemma (see [16, Lemma 6.3]),

2H ′′ − 2H ′′ contains a dense regular Bohr set B of bounded rank. (See [16]

for definitions; strictly speaking, one has to identify an interval such as [[10N ]]

with Z/20NZ in order to apply these tools, but this is not difficult to do.)

Arguing as14 in [16, Prop. 10.8], we see that we may write

ζ(h) =
k∑
j=1

{αjh}βj mod 1

for h ∈ B for some standard k and frequencies αj , βj . Applying (F.3) and the

pigeonhole principle, we obtain the claim, except possibly for the claim that ξ

is a Freiman homomorphism. But observe that if we restrict the fractional part

of {αjh} to a sub-interval of I0 of length at most 1/10 (say), then we obtain

the Freiman homomorphism property automatically; so the claim follows from

one final application of the pigeonhole principle. �

13The notion of a Freiman homomorphism was defined in Section 3.
14This proposition involved a quadratic function on a Bohr set, rather than a linear one,

but it is clear that the argument specialises to the linear case.
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