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Complex multiplication cycles and
Kudla-Rapoport divisors

By Benjamin Howard

Abstract

We study the intersections of special cycles on a unitary Shimura variety

of signature (n− 1, 1) and show that the intersection multiplicities of these

cycles agree with Fourier coefficients of Eisenstein series. The results are

new cases of conjectures of Kudla and suggest a Gross-Zagier theorem for

unitary Shimura varieties.

1. Introduction

1.1. Overview. In [26], Kudla and Rapoport define a family of divisors

Z(m) on a unitary Shimura variety M of dimension n − 1, all defined over

a quadratic imaginary field K0. The variety and the divisors have integral

modelsM and Z(m) over OK0 . The program begun in [25], [26], [42] seeks to

compute the n-fold intersection multiplicity of a tuple Z(m1), . . . ,Z(mn) and

to relate the intersection multiplicity to Fourier coefficients of Eisenstein series.

In this article we intersect the Kudla-Rapoport divisors with a different cycle

onM, formed by points with complex multiplication. By fixing a CM field K

of degree n over K0 and a CM type Φ satisfying a suitable signature condition,

we obtain a 0-cycle XΦ on M defined over the reflex field of Φ, representing

points with complex multiplication by OK and CM type Φ. Passing to integral

models yields a cycle XΦ on M of absolute dimension 1, and our main results

relate the intersection multiplicity of Z(m) and XΦ with Fourier coefficients of

an Eisenstein series.

The intersection Z(m) ∩ XΦ naturally decomposes as a disjoint union

of 0-dimensional stacks ZΦ(α), where the index α ranges over those totally

positive elements of the maximal totally real subfield F ⊂ K that satisfy

TrF/Q(α) =m. In the body of the paper we allow K to be a product of CM

fields, in which case some ZΦ(α) may have dimension one; i.e., the cycles XΦ

and Z(m) may intersect improperly. This does not happen when K is a field.

The Arakelov degree of ZΦ(α) is (essentially) defined to be the sum of the
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lengths of the local rings of all geometric points, and our main result shows

that, as α varies, these degrees are the Fourier coefficients of the derivative of

a weight one Hilbert modular Eisenstein series EΦ(τ, s) at the center s = 0 of

its functional equation.

Returning to the original problem, the intersection multiplicity of XΦ

with Z(m) is obtained by adding together the degrees of those ZΦ(α) with

TrF/Q(α) = m. This intersection multiplicity is equal to the mth Fourier co-

efficient of the central derivative of the pullback of EΦ(τ, s) via the diagonal

embedding of the upper half plane into a product of upper half planes.

1.2. Statement of the results. Fix a quadratic imaginary field K0 ⊂ C,

denote by ι the inclusion K0 → C, and let ι be the conjugate embedding.

For nonnegative integers r, s, letM(r,s) be the algebraic stack over Spec(OK0)

whose functor of points assigns to every OK0-scheme S the groupoid of triples

(A, κ, λ) in which

• A→ S is an abelian scheme of relative dimension r + s,

• κ : OK0 → End(A) is an action of OK0 on A,

• λ : A→ A∨ is a principal polarization.

(Throughout this paper scheme means locally Noetherian scheme and algebraic

stack means Deligne-Mumford stack.) We require that the polarization λ be

OK0-linear, in the sense that

λ ◦ κ(x) = κ(x)∨ ◦ λ

for all x ∈ OK0 . We further require that the action of OK0 satisfy the (r, s)-

signature condition: for any x ∈ OK0 , locally on S the determinant of T − x
acting on Lie(A) is equal to the image of

(T − ι(x))r(T − ι(x))s ∈ OK0 [T ]

inOS [T ]. Our stackM(r,s) is the stack denotedM(r, s)naive in [26]; it is smooth

of relative dimension rs over OK0 [disc(K0)−1]. The generic fiber of M(r,s) is

a union of Shimura varieties associated to the unitary similitude groups of

finitely many Hermitian spaces over K0, but for us the interpretation as a

moduli space is paramount.

Note that M(1,0) is simply the moduli stack of elliptic curves A0 → S

over OK0-schemes with complex multiplication by OK0 , normalized so that

the action of OK0 on Lie(A0) is through the structure morphism OK0 → OS .

For the remainder of the introduction, we fix a positive integer n and focus

on the case of signature (n − 1, 1). We will construct two types of cycles on

the stack

M =M(1,0) ×OK0
M(n−1,1).
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For an OK0-scheme S, an S-valued point ofM is a sextuple (A0, κ0, λ0, A, κ, λ)

with

(A0, κ0, λ0) ∈M(1,0)(S), (A, κ, λ) ∈M(n−1,1)(S),

but we will usually abbreviate this sextuple to (A0, A).

The first family of cycles onM are the Kudla-Rapoport divisors of [26]. If

S is connected and (A0, A) ∈M(S), the projective OK0-module of finite rank

L(A0, A) = HomOK0
(A0, A)

comes equipped with a positive definite OK0-valued Hermitian form

(1.2.1) 〈f1, f2〉 = λ−1
0 ◦ f

∨
2 ◦ λ ◦ f1.

(The right-hand side lies in OK0 = EndOK0
(A0).) For an integer m 6= 0, let

Z(m) be the moduli stack overOK0 whose S-valued points are triples (A0, A, f)

with (A0, A) ∈ M(S) and f ∈ L(A0, A) satisfying 〈f, f〉 = m. There is an

obvious forgetful morphism

Z(m)→M.

In terms of Shimura varieties, these divisors correspond roughly to inclusions

of algebraic groups of the form H → GU(V ), where V is a Hermitian space

over K0 of signature (n − 1, 1), and H is the stabilizer of a vector of positive

length. But, once again, to us it is the moduli interpretation that matters

most.

The second type of cycle is constructed from abelian varieties with complex

multiplication. Let F be a totally real étale Q-algebra (in other words, a

product of totally real number fields) with [F : Q] = n, and fix a CM type Φ of

K = F ⊗Q K0

of signature (n − 1, 1). This means that there are n − 1 elements of Φ whose

restriction to K0 is ι, and a unique element whose restriction to K0 is ι. Let

KΦ ⊂ C

be a number field containing both K0 and the reflex field of Φ, and set OΦ =

OKΦ
. Let CMΦ be the algebraic stack over OΦ classifying principally polarized

abelian schemes with complex multiplication by OK and CM type Φ. See

Section 3.1 for the precise definition. For an OΦ-scheme S, an S-valued point of

XΦ =M(1,0)/OΦ
×OΦ

CMΦ

is a pair (A0, A) ∈ M(S) together with an extension of the OK0-action on

A to complex multiplication by OK , and as such there is an evident forgetful

morphism

XΦ →M/OΦ
.

The stack XΦ is étale and proper over OΦ and, in particular, is regular of di-

mension 1. In terms of Shimura varieties, the map XΦ →M/OΦ
corresponds
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roughly to T → GU(V ), where V is a Hermitian space over K0 of signature

(n− 1, 1), and T is the torus with Q-points

T (Q) = {x ∈ K× : NmK/F (x) ∈ Q×}.

Now we come to the central problem of this paper: to compute the in-

tersection multiplicity onM/OΦ
of the Kudla-Rapoport divisor Z(m)/OΦ

with

the complex multiplication cycle XΦ. Consider the cartesian diagram (this is

the definition of the upper left corner)

XΦ ∩ Z(m)

��

// Z(m)/OΦ

��
XΦ

//M/OΦ
.

Let S be a connected OΦ-scheme. Given a point

(A0, A) ∈ XΦ(S),

we may consider the OK0-module L(A0, A) attached to the image (A0, A) ∈
M(S). The fact that the pair (A0, A) comes from XΦ(S) endows L(A0, A)

with obvious extra structure: the action of OK on A makes L(A0, A) into an

OK-module. Slightly less obviously, there is a unique K-valued totally positive

definite OK-Hermitian form 〈f1, f2〉CM on L(A0, A), which refines 〈f1, f2〉, in

the sense that

〈f1, f2〉 = TrK/K0
〈f1, f2〉CM.

By contemplation of the the moduli problems, there is a decomposition

(1.2.2) XΦ ∩ Z(m) =
⊔
α∈F

TrF/Q(α)=m

ZΦ(α),

where ZΦ(α) is the moduli space of triples (A0, A, f) over OΦ-schemes S, in

which

(A0, A) ∈ XΦ(S)

and f ∈ L(A0, A) satisfies 〈f, f〉CM = α. If α ∈ F×, the stack ZΦ(α) has

dimension 0, and is nonempty only if α is totally positive (α� 0). If α 6∈ F×,

then ZΦ(α) may have irreducible components of dimension 1, in which case

the intersection (1.2.2) is improper.

For a prime p of KΦ, let kΦ,p denote the residue field of p. When ZΦ(α)

has dimension 0, its Arakelov degree

d̂egZΦ(α) =
∑

p⊂OΦ

log(N(p))

[KΦ : Q]

∑
z∈ZΦ(α)(kalg

Φ,p)

length(Osh
ZΦ(α),z)

#Aut(z)
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is finite and is independent of the choice of KΦ. (Here Osh
ZΦ(α),z is the strictly

Henselian local ring of ZΦ(α) at z, i.e., the local ring for the étale topology.)

Our first main result is a formula for the Arakelov degree. To state it we need

some notation. Let ϕsp ∈ Φ be the special element, determined by ϕsp|K0 = ι.

Recalling that K is a product of CM fields, there is a unique factor Ksp ⊂ K

such that ϕsp : K → C factors through the projection K → Ksp. Denote by

F sp the maximal totally real subfield of Ksp, so that F sp is a direct summand

of F . If p is a prime of F sp, then we denote again by p the prime of F

determined by pullback through the projection F → F sp. If b is a fractional

OF -ideal, define

(1.2.3) ρ(b) = #{B ⊂ OK : BB = bOK}.

In particular, ρ(b) = 0 if b 6⊂ OF . For any prime p, set

(1.2.4) εp =

1 if K0/Q is unramified at p

0 if K0/Q is ramified at p.

The following theorem appears in the text as Theorem 3.6.3.

Theorem A. Assume the discriminants of K0/Q and F/Q are odd and

relatively prime. If α ∈ F�0, then ZΦ(α) has dimension zero, and

d̂egZΦ(α) =
h(K0)

w(K0)

∑
p

log(N(p))

[Ksp : Q]
· ordp(αpdF ) · ρ(αp−εpdF ),

where the sum is over all primes p of F sp nonsplit in Ksp, p is the rational

prime below p, dF is the different of F/Q, h(K0) is the class number of K0,

w(K0) is number of roots of unity in K0, and N(p) is the cardinality of the

residue field of p.

Fix a prime p ⊂ OΦ, and let WΦ,p be the completion of the ring of integers

in the maximal unramified extension of OΦ,p. The most difficult part of the

proof of Theorem A is the calculation of the length of the local ring at a

geometric point z ∈ ZΦ(α)(kalg
Φ,p), corresponding to a triple (A0, A, f). This

calculation proceeds in two steps. First we show that the formal deformation

space of the pair (A0, A) is isomorphic to the formal spectrum of WΦ,p. In

more concrete terms, this means that (A0, A) lifts uniquely to any complete

local Noetherian WΦ,p-algebra with residue field kalg
Φ,p and, in particular, has a

unique lift to WΦ,p called the canonical lift. Let (A
(k)
0 , A(k)) be the reduction

of the canonical lift to the quotient WΦ,p/m
k, where m is the maximal ideal of

WΦ,p. The length of the local ring of ZΦ(α) at z is then equal to the largest

k such that f lifts to a map A
(k)
0 → A(k). In other words, the OK-module

L(A0, A) has a filtration

· · · ⊂ L(3) ⊂ L(2) ⊂ L(1) = L(A0, A)
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in which

L(k) = HomOK0
(A

(k)
0 , A(k)),

and the problem is to compute the largest k such that f ∈ L(k). We show that

this k is

k =
1

2
· ep · ordpF (αpF dF ),

where pF is the pullback of p under the map ϕsp : F −→ KΦ, and ep is the

ramification degree of pF in K. All of this is done in Section 2.3, using the

Grothendieck-Messing deformation theory of p-divisible groups, with the final

application to lengths of local rings appearing as Theorem 3.6.2. In the case

n = 1, so that A0 and A are supersingular elliptic curves, all of these calcula-

tions reduce to calculations of Gross, as explained at the end of Section 2.3.

In Section 4 we construct a Hilbert modular Eisenstein series EΦ(τ, s) of

parallel weight one. The Eisenstein series EΦ(τ, s) satisfies a function equation

in s 7→ −s that forces EΦ(τ, 0) = 0, and the central derivative has a Fourier

expansion

E ′Φ(τ, 0) =
∑
α∈F

bΦ(α, y) · qα,

where τ = x+ iy ∈ Hn lies in the product of n upper half planes. The Fourier

coefficients bΦ(α, y) can easily be computed using explicit formulas of Yang

[45], and the result is stated as Corollary 4.2.2. Comparison with Theorem A

shows that, for α ∈ F�0,

(1.2.5) d̂egZΦ(α) = − h(K0)

w(K0)
·

»
N(dK/F )

2r−1[Ksp : Q]
· bΦ(α, y),

where dK/F is the relative discriminant of K/F , and r is the number of places

of F ramified in K, including the archimedean places. In particular, the right-

hand side is independent of y.

Of course the right-hand side of (1.2.5) makes sense for all α ∈ F , while

at the moment the left-hand side is only defined for α � 0. To remedy this

asymmetry we introduce in Section 3.7 the Gillet-Soulé arithmetic Chow group

ĈH
1
(XΦ) of the 1-dimensional stack XΦ. Elements of the arithmetic Chow

group are rational equivalence classes of pairs (Z, Gr), where Z is a 0-cycle on

XΦ with rational coefficients, and Gr is a Green function for Z. As Z has no

points in characteristic 0, Gr is just a function on the finite set of complex

points of XΦ. In Section 3.7 we construct a divisor class

ẐΦ(α, y) ∈ ĈH
1
(XΦ)

for every α ∈ F× and every y ∈ F�0
R . If α � 0, then this class is (ZΦ(α), 0),

where the 0-cycle ZΦ(α) is the image of the map ZΦ(α) → XΦ, with points

counted with appropriate multiplicities. If α 6� 0, then our divisor class has
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the form (0, GrΦ(α, y, ·)) for a particular function GrΦ(α, y, ·) on the complex

points of XΦ. There is a canonical arithmetic degree

(1.2.6) d̂eg : ĈH
1
(XΦ)→ R,

and (1.2.5) has the following generalization, which appears in the text as The-

orem 4.2.3.

Theorem B. Assume the discriminants of K0/Q and F/Q are odd and

relatively prime. If α ∈ F× and y ∈ F�0
R , then

d̂eg ẐΦ(α, y) = − h(K0)

w(K0)
·

»
N(dK/F )

2r−1[Ksp : Q]
· bΦ(α, y).

We now return to our original motivating problem: the calculation of the

intersection multiplicity of XΦ and Z(m) on M. Assume that m 6= 0 and

that F is a field. This guarantees that XΦ ∩ Z(m) is 0 dimensional. The

intersection multiplicity I(XΦ : Z(m)) is defined as the Arakelov degree of the

0-dimensional stack XΦ ∩ Z(m). It is a more or less formal consequence of

(1.2.2), see Theorem 3.8.4, that

(1.2.7) I(XΦ : Z(m)) =
∑

α∈F×,α�0
TrF/Q(α)=m

d̂eg ẐΦ(α, y)

for all y ∈ R>0. In Section 3.8 we define a Green function Gr(m, y, ·) for the

Kudla-Rapoport divisor Z(m). It is a smooth function onM(C), except for a

logarithmic singularity along the divisor Z(m)(C), and depends on a parameter

y ∈ R>0. If m < 0, then Z(m) = ∅, and Gr(m, y, ·) is simply a smooth function

on M(C). This function may be evaluated at the finite set of complex points

of XΦ, and the result, Theorem 3.8.6, is

(1.2.8) Gr(m, y,XΦ) =
∑

α∈F×,α 6�0
TrF/Q(α)=m

d̂eg ẐΦ(α, y).

Let iF : H → Hn be the diagonal embedding of the upper half plane. The

restriction EΦ(iF (τ), s) of EΦ(τ, s) to H vanishes at s = 0, and the derivative

has a Fourier expansion

E ′Φ(iF (τ), 0) =
∑
m∈Z

cΦ(m, y) · qm,

where now τ = x+ iy ∈ H, and

cΦ(m, y) =
∑
α∈F×

TrF/Q(α)=m

bΦ(m, y).

Combining this with Theorem B and the decompositions (1.2.7) and (1.2.8)

gives an arithmetic interpretation of the Fourier coefficients cΦ(m, y).
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Theorem C. Assume the discriminants of K0/Q and F/Q are odd and

relatively prime. If F is a field and m is nonzero, then

I(XΦ : Z(m)) + Gr(m, y,XΦ) = − h(K0)

w(K0)
·

»
N(dK/F )

2r−1[K : Q]
· cΦ(m, y)

for all y ∈ R>0.

When n = 1 or 2, our results have precedents in the literature, albeit

in very different language. The case n = 1 is essentially treated by Kudla-

Rapoport-Yang in [27]. In this case F = Q, Z(m) is a divisor on the 1-dimen-

sional stack

M =M(1,0) ×OK0
M(0,1),

and XΦ =M. Is this degenerate case the intersection I(XΦ : Z(m)) is simply

the Arakelov degree of the 0-cycle Z(m), which is not quite what is com-

puted in [27]. For every triple (A0, κ0, λ0) inM(1,0), there is a conjugate triple

(A0, κ0, λ0), where κ0(x) = κ0(x). The functor taking a triple to its conjugate

defines an isomorphism M(1,0) → M(0,1), which allows us to define the sub-

stack M∆ → M as the image of M(1,0) under the diagonal embedding. The

intersection Z∆(m) = Z(m)∩M∆ is then the moduli space of triples (E, κ, f)

where E is an elliptic curve, κ : OK0 → End(E) is an action of OK0 (suitable

normalized), and f ∈ End(E) is a degree m isogeny satisfying κ(x)◦f = f◦κ(x)

for all x ∈ OK0 . It is the Arakelov degree of Z∆(m) that is computed in [27]

and is shown to agree with the Fourier coefficients of the central derivative of

a weight one Eisenstein series.

When n = 2, so that F is either Q×Q or a real quadratic field, our results

are closely related to the work of Gross-Zagier on prime factorizations of sin-

gular moduli [14], and heights of Heegner points [15]. In this case the moduli

space M is a union of Shimura varieties attached to groups of type GU(1, 1).

Such Shimura varieties are, roughly, unions of Shimura curves parametrizing

abelian surfaces with quaternionic multiplication, including the classical modu-

lar curves. This is worked out in detail in [26, §14]. The author has not worked

out carefully the translation of the results of this paper into the language of

moduli of elliptic curves, but the picture should look roughly like this. Both

cycles XΦ and Z(m) are divisors onM representing points with complex mul-

tiplication, i.e., Heegner points. In the case where F is a real quadratic field,

the compositum K = K0 · F contains another quadratic imaginary field K1,

and XΦ is the divisor formed by elliptic curves with complex multiplication by

OK1 . The divisor Z(1) is formed by elliptic curves with complex multiplication

by OK0 , and Z(m) is the translate of Z(1) by the mth Hecke correspondence.

The calculation of the intersection multiplicity I(XΦ,Z(m)), which amounts

to computing congruences between values of the j-function at CM points, and
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the observation that these intersection multiplicities appear as the Fourier co-

efficients of the diagonal restriction of a Hilbert modular Eisenstein series, is

the content of [14]. See also [17].

If n = 2 and F = Q × Q, then our calculations should be closely related

to the more famous result of Gross-Zagier [15]. In this case the calculation

of I(XΦ,Z(m)) amounts to the calculation of the intersection multiplicity, on

the modular curve, of the divisor of elliptic curves with complex multiplication

by OK0 with the same divisor translated by the mth Hecke correspondence.

This is the key calculation performed in [15], although those authors deal with

instances of improper intersection (and other serious complications), which we

have avoided. Our results assert that these intersections agree with the Fourier

coefficients of the central derivative of the diagonal pullback of an Eisenstein

series on GL2×GL2; that is to say, the derivative of a product of two weight one

Eisenstein series on H, say E1(τ, s)E2(τ, s). On the other hand, the results of

Gross-Zagier assert that these same intersection multiplicities are the Fourier

coefficients of the product of the central derivative of an Eisenstein series with

a weight one theta series. One of our Eisenstein series, say E1(τ, s), vanishes

at s = 0, while the other does not, and so the central derivative of the product

is E′1(τ, 0) ·E2(τ, 0). But the Siegel-Weil formula then asserts that the central

value E2(τ, 0) is actually a weight one theta series, so our results are compatible

with those of [15].

1.3. Speculation. We would like to interpret Theorem C in terms of the

arithmetic intersection theory of Gillet-Soulé [10], [11], [40]. Let ĈH
1
(M) be

the codimension one arithmetic Chow group, so that Z(m) (now viewed as a

divisor on M), with its Green function Gr(m, y, ·), defines a class

(1.3.1) Ẑ(m, y) ∈ ĈH
1
(M)

for every m 6= 0 and y ∈ R+. The composition of pullback by XΦ → M/OΦ

with (1.2.6) defines a linear functional

ĈH
1
(M/OΦ

)→ ĈH
1
(XΦ)→ R.

Composing with base change from OK0 to OΦ, we obtain a linear functional

d̂egXΦ
: ĈH

1
(M)→ R,

called the arithmetic degree along XΦ. What our Theorem C essentially shows

is that (ignoring the uninteresting constants appearing in the theorem)

(1.3.2) d̂egXΦ
Ẑ(m, y) = cΦ(m, y).

There are several gaps in the above interpretation of Theorem C: to have

a good theory of arithmetic Chow groups one needs to work on a stack that

is flat, regular, and proper. The stack M has none of these properties. The
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stack M is only flat and regular after inverting disc(K0), but Pappas [37] and

Krämer [19] have modified the moduli problem definingM in order to obtain a

flat and regular moduli stack that agrees withM over OK0 [disc(K0)−1]. As for

properness, the theory of toroidal compactifications of the complex fiber ofM
is well understood [1], [6], [35], and Lan’s thesis [30] gives a complete theory of

the arithmetic toroidal compactifications ofM over OK0 [disc(K0)−1]. See also

[31] for the signature (2, 1) case. It seems likely that the results of Lan’s thesis

can be extended to give a compactification of the integral model of Pappas

and Krämer, but the details have not been written down. In any case, let us

suppose that we have replaced M by a stack that is flat, regular, and proper.

In order to define the class Ẑ(m, y) for m 6= 0, one needs to understand the

behavior of the Green function Gr(m, y, ·) near the boundary components of the

newly compactifiedM. Some preliminary calculations suggest that if one adds

a particular linear combination of boundary components to the divisor Z(m),

the function Gr(m, y, ·) becomes a Green function for the modified divisor, but

with log-log singularities along the boundary. Thus one expects to obtain a

class in the generalized arithmetic Chow group of Burgos-Gil–Kramer–Kühn

[4], [5]. Assume this is the case, so that (1.3.1) is defined for all m 6= 0.

The next step is to define the class Ẑ(0, y). The definition of the stack

Z(m) makes sense when m = 0, but the map Z(0) −→ M is surjective, and

so this is clearly not the way to proceed. To find the correct definition of

Ẑ(0, y), one should interpret ĈH
1
(M) as the group of isomorphism classes of

metrized line bundles on M. Based on work of Kudla-Rapoport-Yang [28],

[29] and conjectures of Kudla [23], the class Ẑ(0, y) should be defined as the

Hodge bundle on M, endowed with a particular choice of metric (which will

depend on the parameter y ∈ R>0).

One should also seek a natural definition of

ẐΦ(α, y) ∈ ĈH
1
(XΦ)

for all α ∈ F , not just for α 6∈ F×, for which Theorem B continues to hold.

There are two cases, depending on whether or not ϕsp(α) = 0. If ϕsp(α) 6= 0,

then Theorem 3.6.2 shows that the stack ZΦ(α) has dimension zero; if ϕsp(α)

= 0, then the proof of that same theorem shows that every irreducible com-

ponent of ZΦ(α) has dimension 1. The upshot is that if ϕsp(α) 6= 0, the defi-

nition of ẐΦ(α, y) should be close to the definition we have given for α ∈ F×.

If ϕsp(α) = 0, then the correct definition should be in terms of the metrized

Hodge bundle in ĈH
1
(XΦ). These classes should satisfy two properties. First,

the pullback map

ĈH
1
(M/OΦ

)→ ĈH
1
(XΦ)
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should satisfy

Ẑ(m, y) 7→
∑
α∈F

TrF/Q(α)=m

ẐΦ(α, y)

for all m and all y ∈ R>0. Second, the relation

d̂eg ẐΦ(α, y) = bΦ(α, y)

should hold for all α ∈ F and y ∈ F�0
R . Given these two properties, one can

deduce (1.3.2) for all m ∈ Z and all y ∈ R>0.

The final step in the program laid out by Kudla [23] is to form the vector-

valued generating series

θ̂(τ) =
∑
m∈Z

Ẑ(m, y) · qm ∈ ĈH
1
(M)[[q]]

for τ = x+ iy ∈ H. The equality (1.3.2) amounts to

d̂egXΦ
θ̂(τ) = E ′Φ(iF (τ), 0).

Given the results of Kudla-Rapoport-Yang [29] on CM cycles on Shimura

curves, and the results of Bruinier–Burgos-Gil–Kühn [4] on Hirzebruch-Zagier

divisors on Hilbert modular surfaces, it is reasonable to expect that the above

generating series is a vector-valued nonholomorphic modular form of weight n.

If f is a weight n cuspform on H, we may therefore form the Petersson inner

product of f(τ) with θ̂(τ) and so define the arithmetic theta lift

θ̂f = 〈f, θ̂〉Pet ∈ ĈH
1
(M).

Moving the linear functional d̂egXΦ
inside the integral defining the Petersson

inner product, one finds the Gross-Zagier style formula

d̂egXΦ
θ̂f = 〈f, d̂egXΦ

θ̂〉Pet(1.3.3)

= 〈f(τ), E ′Φ(iF (τ), 0)〉Pet

= L′Φ(f, 0),

where

LΦ(f, s) = 〈f(τ), EΦ(iF (τ), s)〉Pet.

In the case where F is a real quadratic field (so n = 2), a function very

much like LΦ(f, s) appears in the work of Gross-Kohnen-Zagier [13], and is

shown to be closely related to the usual L-function of f . When F is a field of

degree > 2, there seems to be no literature at all on the function LΦ(f, s), and

the author is at a loss as to its properties and significance.

However, there are interesting cases where n > 2, and one has some hope

of better understanding LΦ(f, s). For example, consider the totally degenerate

case of F = Q× · · · ×Q and K = K0 × · · · ×K0. Modulo details, one should
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expect the following. Our Hilbert modular Eisenstein series on Hn is just a

product of classical weight one Eisenstein series

EΦ(τ, s) = F1(τ1, s) · · · Fn(τn, s).

Each factor will satisfy a functional equation in s → −s, and the sign of the

functional equation will be 1 for all factors but one. Say the last factor has sign

−1. The first n− 1 factors are coherent, the last one is the incoherent factor.

The Siegel-Weil formula implies that the value at s = 0 of each coherent factor

is a theta function Θ attached to the extension K0/Q, and so

E ′Φ(iF (τ), 0) = Θn−1(τ)F ′n(τ, 0).

But the Petersson inner product

L(f ×Θn−1, s) = 〈f(τ),Θn−1(τ)Fn(τ, s)〉Pet

is, up to rescaling and shifting in the variable s, just the Rankin-Selberg convo-

lution L-function of f with Θn−1, and hence the mysterious function LΦ(f, s)

has the less mysterious central derivative

L′Φ(f, 0) = L′(f ×Θn−1, 0).

When n = 2, so that F = Q×Q, the Rankin-Selberg L-function on the right

is the one appearing in the work of Gross-Zagier [15], as we have noted earlier.

Finally, it may be helpful to put the above results and conjectures into

the context of seesaw dual pairs and the Siegel-Weil formula, which are among

the guiding principles of Kudla’s conjectures [23]. Suppose we start with free

K-module W of rank 1, equipped with a totally positive definite Hermitian

form 〈·, ·〉CM. Let V denote the underlying K0-vector space with the K0-Herm-

itian form 〈v1, v2〉 = TrK/K0
〈w1, w2〉CM. Define a torus T = ResF/QU(W ) so

that T ⊂ U(V ). The dual reductive pairs (SL2, U(V )) and (ResF/QSL2, T ) can

be arranged into the seesaw diagram

ResF/QSL2 U(V )

SL2

rrrrrrrrrr
T.

LLLLLLLLLLL

Starting with a cusp form f on SL2, one can theta lift to an automorphic form

θf on U(V ), then restrict to T and integrate against the constant function 1.

By tipping the seesaw, this is the same as theta lifting the constant function

1 on T to a Hilbert modular theta series on ResF/QSL2, restricting that theta

series to the diagonally embedded SL2, and integrating against f . The Siegel-

Weil formula implies that the Hilbert modular theta series appearing in this
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process is in fact the central value of a Hilbert modular Eisenstein series, say

E(g, s), at s = 0. Thus

(1.3.4)

∫
T (A)

θf (t) dt =

∫
SL2(A)

f(g)E(g, 0) dg.

The conjectural picture described (and largely proved) above, is formally

similar. Automorphic forms on U(V ) are replaced by elements of ĈH
1
(M),

the theta lift f 7→ θf is replaced by the arithmetic theta lift f 7→ θ̂f , and

the linear functional “integrate over the torus T” is replaced by the linear

functional “arithmetic degree along XΦ.” On the other side of the seesaw, the

Hilbert modular theta series (which is the central value of an Eisenstein series)

is replaced by the central derivative of an Eisenstein series, and the integral

over SL2 is replaced by the Petersson inner product. In this way, (1.3.3) can

be seen as an arithmetic version of (1.3.4).

1.4. Acknowledgements. The author thanks both Steve Kudla and Tong-

hai Yang for helpful conversations, and the anonymous referee for helpful com-

ments on an earlier draft of this paper.

2. Barsotti-Tate groups with complex multiplication

This section contains the technical deformation theory calculations that

will eventually be used in the proof of Theorem 3.6.2 to compute the lengths

of the local rings of the 0-dimensional stack ZΦ(α). The reader might prefer

to begin with the global theory of Section 3, and refer back to this section as

needed.

Fix a prime p, and let F be an algebraic closure of the field of p elements.

Let W be the ring of Witt vectors of F, let Frac(W ) be the fraction field of

W , and let Cp be any algebraically closed field containing Frac(W ). If L is

a product of finite extensions of Qp, denote by Lu the maximal unramified

extension of Qp in L and by OuL the ring of integers of Lu. A p-divisible group

over F is supersingular if all slopes of its Dieudonné module are equal to 1/2.

Here and throughout, Dieudonné module means covariant Dieudonné module.

2.1. Deformations of Barsotti-Tate groups with complex multiplication.

Let F be a field extension of Qp of degree n, and let K be a quadratic étale

F -algebra (so K is a either a quadratic field extension of F , or K ∼= F × F ).

Denote by x 7→ x the nontrivial automorphism of K/F , and for any Qp-algebra

map ϕ : K → Cp, define the conjugate map ϕ(x) = ϕ(x). A p-adic CM type of

K is a set Φ of Qp-algebra maps K → Cp such that Hom(K,Cp) is the disjoint

union of Φ and Φ. Fix such a Φ, and let KΦ ⊂ Cp be any finite extension of

Qp large enough that

(2.1.1) σ ∈ Aut(Cp/KΦ) =⇒ Φσ = Φ.
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Denote by

WΦ ⊂ Cp
the ring of integers in the completion of the maximal unramified extension of

KΦ, so that Frac(WΦ) is the compositum of KΦ and Frac(W ).

Let ART be the category of local Artinian WΦ-algebras with residue

field F. If R is an object of ART and A is a p-divisible group over R, an

action κ : OK → End(A) satisfies the Φ-determinant condition if for every

x1, . . . , xr ∈ OK , the determinant of T1x1 + · · · + Trxr acting on Lie(A) is

equal to the image of

(2.1.2)
∏
ϕ∈Φ

(T1ϕ(x1) + · · ·+ Trϕ(xr)) ∈WΦ[T1, . . . , Tr]

in R[T1, . . . , Tr]. In particular, this implies

dim(A) = [F : Qp].

For the remainder of this subsection, fix a triple (A, κ, λ) in which

• A is a p-divisible group over F.

• κ : OK → End(A) satisfies the Φ-determinant condition.

• λ : A → A∨ is an OK-linear polarization of A (which is not assumed

to be principal). The condition of OK-linearity means that

λ ◦ κ(x) = κ(x)∨ ◦ λ

for every x ∈ OK .

Let DefΦ(A, κ, λ) be the functor that assigns to every object R of ART the

set of isomorphism classes of deformations of (A, κ, λ) to R, where the defor-

mations are again required to satisfy the Φ-determinant condition. The goal

of this subsection is to prove that DefΦ(A, κ, λ) is pro-represented by WΦ.

Proposition 2.1.1. Let (A, κ, λ) be the triple fixed above.

(1) The Dieudonné module D(A) is free of rank one over OK ⊗Zp W .

(2) The image of OK in End(A) is equal to its own centralizer.

(3) If K is a field, then A is supersingular.

Proof. The first claim follows from the argument of [38, Lemma 1.3], and

the second claim follows easily from the first. The category of Dieudonné

modules over F up to isogeny is semisimple. If

D(A) ∼ Dm1
1 × · · · ×Dmr

r

with D1, . . . , Dr simple and pairwise nonisogenous, then

End(D(A))⊗Zp Qp
∼= Mm1(H1)× · · · ×Mmr(Hr)

with each Hi a division algebra over Qp. The only way this product can contain

a field equal to its own centralizer is if r = 1. Therefore, D(A) is isoclinic:
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it is isogenous to a power of a simple Dieudonné module, and hence its slope

sequence is constant. By hypothesis, D(A) admits a polarization, so its slope

sequence is symmetric in s 7→ 1 − s. Therefore, 1/2 is the unique slope of

D(A). �

Given a Qp-algebra map ϕ : K → Cp, let Cp(ϕ) denote Cp, with K acting

through ϕ. There is a unique WΦ-algebra map

ηΦ : OK ⊗Zp WΦ →
∏
ϕ∈Φ

Cp(ϕ)

sending x⊗1 to the Φ-tuple (ϕ(x))ϕ∈Φ. The kernel and image of ηΦ are denoted

JΦ and LieΦ, respectively, so that there is an exact sequence of OK ⊗Zp WΦ-

modules

(2.1.3) 0→ JΦ → OK ⊗Zp WΦ → LieΦ → 0.

We will make repeated use of the isomorphism

OuK ⊗Zp W
∼=

∏
ψ:OuK→W

W

sending x ⊗ 1 7→ (ψ(x))ψ. For each factor on the right-hand side there is a

corresponding idempotent eψ ∈ OuK ⊗Zp W characterized by

(x⊗ 1)eψ = (1⊗ ψ(x))eψ

for all x ∈ OuK .

Lemma 2.1.2. The ideal JΦ ⊂ OK⊗ZpWΦ enjoys the following properties.

(a) As WΦ-modules, JΦ and LieΦ are each free of rank n. Furthermore,

for any tuple x1, . . . , xr ∈ OK , the determinant of T1x1 + · · · + Trxr
acting on LieΦ is equal to (2.1.2).

(b) The ideal JΦ is generated by the set of all elements of the form

jΦ(x, ψ) = eψ
∏
ϕ∈Φ

ϕ|Ou
K

=ψ

(x⊗ 1− 1⊗ ϕ(x)) ∈ OK ⊗Zp WΦ

with x ∈ OK and ψ : OuK →W.

(c) Suppose R is an object of ART, M is a free OK ⊗Zp R-module of rank

one, and M1 ⊂ M is an OK-stable R-direct summand such that for

any x1, . . . , xr ∈ OK , the determinant of T1x1 + · · · + Trxr acting on

M/M1 is (2.1.2). Then M1 = JΦM .

Proof. The first claim is elementary linear algebra, and the proof is left to

the reader. For the second claim, jΦ(x, ψ) ∈ JΦ is obvious from the definitions.

To prove the other inclusion, fix a $ ∈ OK such that OK = OuK [$], and let
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µ(z) ∈ OuK [z] be the minimal polynomial of $. Using $ 7→ z to identify

OK ∼= OuK [z]/(µ), we obtain an isomorphism

OK ⊗Zp WΦ
∼= (OuK ⊗Zp WΦ)[z]/(µ) ∼=

∏
ψ:OuK→W

WΦ[z]/(µψ),

where µψ is the image of µ under ψ : OuK [z] → W [z]. Under these isomor-

phisms, the element jΦ($,ψ) on the left is identified with the tuple on the

right whose ψ-coordinate is the polynomial

(2.1.4)
∏
ϕ∈Φ

ϕ|Ou
K

=ψ

(z − ϕ($))

and all other coordinates are 0. Now suppose j ∈ JΦ. Under the above

isomorphism, j corresponds to a tuple of polynomials jψ(z) ∈ WΦ[z]/(µψ),

and the assumption that j ∈ JΦ means precisely that the polynomial jψ(z)

vanishes at z = ϕ($) for each ϕ ∈ Φ whose restriction to OuK is ψ. Such

a jψ(z) is obviously divisible, in WΦ[z], by (2.1.4). It follows that eψj is a

multiple of jΦ($,ψ) and hence that JΦ is contained in the ideal generated by

the elements jΦ($,ψ) as ψ varies.

For the final claim, extend each ϕ ∈ Φ to a W -linear map ϕ : OK ⊗Zp
W → Cp. The determinant condition imposed on M/M1 implies that for every

x ∈ OK ,

eψ(x⊗ 1) ∈ OK ⊗Zp W

acts on M/M1 with characteristic polynomial∏
ϕ∈Φ

(T − ϕ(eψ)ϕ(x)) = T r
∏
ϕ∈Φ

ϕ|Ou
K

=ψ

(T − ϕ(x)) ∈WΦ[T ],

where r = #{ϕ ∈ Φ : ϕ|OuK 6= ψ}, and hence acts on eψ(M/M1) with charac-

teristic polynomial ∏
ϕ∈Φ

ϕ|Ou
K

=ψ

(T − ϕ(x)) ∈WΦ[T ].

Therefore, x⊗ 1 acts on eψ(M/M1) with this same characteristic polynomial,

and the Cayley-Hamilton theorem implies that eψ(M/M1) is annihilated by∏
ϕ∈Φ

ϕ|Ou
K

=ψ

(x⊗ 1− 1⊗ ϕ(x)) ∈ OK ⊗Zp WΦ.

Hence M/M1 is annihilated by jΦ(x, ψ). By the second claim of the lemma,

JΦM ⊂M1, and as JΦM and M1 are R-module direct summands of M of the

same rank, they must be equal. �
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We now make use of the theory of Grothendieck-Messing crystals. Stan-

dard references include [2], [16], [32]; for Zink’s reconstruction of the theory by

different means, see [33], [46]. Associated to A is a short exact sequence

(2.1.5) 0→ Fil1DA(F)→ DA(F)→ Lie(A)→ 0

of F-modules, in which DA(F) is the covariant Grothendieck-Messing crystal

of A evaluated at F, and the submodule Fil1DA(F) is its Hodge filtration.

Proposition 2.1.1 and the isomorphisms

DA(F) ∼= DA(W )⊗W F ∼= D(A)⊗W F,

the second by [2, Th. 4.2.14], imply that

DA(F) ∼= OK ⊗Zp F,

and the final claim of Lemma 2.1.2 implies that

Fil1DA(F) = JΦDA(F).

In particular, (2.1.5) is obtained from (2.1.3) by applying⊗WΦ
F, which explains

our choice of notation LieΦ. Similarly, if R is an object of ART and

(A′, κ′, λ′) ∈ DefΦ(A, κ, λ)(R),

there is an associated short exact sequence of free R-modules

(2.1.6) 0→ Fil1DA′(R)→ DA′(R)→ Lie(A′)→ 0.

Applying ⊗RF to (2.1.6) recovers (2.1.5), and an easy Nakayama’s lemma

argument then shows that

DA′(R) ∼= OK ⊗Zp R.

Another application of Lemma 2.1.2 shows that

Fil1DA′(R) = JΦDA′(R),

and so (2.1.6) is obtained from (2.1.3) by applying ⊗WΦ
R. In this sense, (2.1.3)

is the universal Hodge short exact sequence of deformations of (A, κ, λ). As

the following theorem demonstrates, this information is enough to deduce the

existence and uniqueness of deformations of (A, κ, λ).

Theorem 2.1.3. The functor DefΦ(A, κ, λ) is pro-represented by WΦ.

Equivalently, the triple (A, κ, λ) admits a unique deformation to every object

of ART.

Proof. Let S → R be a surjective morphism in ART whose kernel I
satisfies I2 = 0. In particular, I comes equipped with its trivial divided power

structure. Suppose we have already lifted the triple (A, κ, λ) over F to a triple
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(A′, κ′, λ′) over R. Let DA′ be the Grothendieck-Messing crystal of A′, so that

DA′(R) ∼= OK ⊗Zp R, and

Fil1DA′(R) = JΦDA′(R).

Now evaluate the crystal DA′ on S. As DA′(S) ⊗S F ∼= DA(F), a Nakayama’s

lemma argument shows that DA′(S) is free of rank one over OK ⊗Zp S. By

the main result of Grothendieck-Messing theory, deformations of the pair

(A′, κ′) to S (satisfying the Φ-determinant condition, as always) are in bi-

jection with OK-stable S-direct summands M1 ⊂ DA′(S) for which the action

of OK on DA′(S)/M1 satisfies the Φ-determinant condition. The final claim of

Lemma 2.1.2 shows that M1 = JΦDA′(S) is the unique such summand, and so

(A′, κ′) admits a unique deformation (A′′, κ′′) to S.

By the results of [2, Ch. 5.3], the polarization λ′ of A′ induces an alter-

nating S-bilinear form

λ′ : DA′(S)×DA′(S)→ S

satisfying λ(xv,w) = λ(v, xw) for every x ∈ OK ⊗Zp WΦ. But every x ∈ JΦ

satisfies

xx ∈ ker(ηΦ) ∩ ker(ηΦ) = 0,

and hence JΦDA′(S) is isotropic for the pairing λ′. This implies that the

polarization λ′ lifts (uniquely) to a polarization λ′′ of (A′′, κ′′), and so (A′, κ′, λ′)

admits a unique deformation to S. Induction on the length now shows that

(A, κ, λ) lifts uniquely to every object of ART. �

Remark 2.1.4. The proof of Theorem 2.1.3 actually shows that something

slightly stronger is true: the pair (A, κ) deforms uniquely to every object of

ART, and λ automatically lifts to that deformation.

Remark 2.1.5. Instead of the Φ-determinant condition imposed on the

action OK → End(A) at the beginning of this subsection, we might have

imposed the (seemingly) weaker condition that every x ∈ OK acts on Lie(A)

with characteristic polynomial equal to the image of∏
ϕ∈Φ

(T − ϕ(x)) ∈WΦ[T ]

in R[T ]. The advantage of the stronger Φ-determinant condition is that it

determines not only the characteristic polynomial of every element of OK , but

of every element of OK ⊗Zp R. This was needed in the proof of part (c) of

Lemma 2.1.2. It would be interesting to know whether the two conditions are

equivalent.
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2.2. Deformations of CM abelian varieties. Theorem 2.1.3, when com-

bined with the Serre-Tate theorem, gives information about the formal defor-

mation spaces of CM abelian varieties over F, and in much greater generality

than is needed in this paper. Because the result, Theorem 2.2.1, is of indepen-

dent interest, we state it in full generality.

Let K =
∏
Ki be any product of CM fields, and let F =

∏
Fi be its

maximal totally real subalgebra. Let Φ be any CM type of K, and let KΦ ⊂ C
be a number field containing the reflex field of Φ. Set OΦ = OKΦ

. Suppose

o ⊂ K is an order and S is a locally Noetherian OΦ-scheme. A polarized

(o,Φ)-CM abelian scheme over S is a triple (A, κ, λ) in which

• A→ S is an abelian scheme over S of relative dimension n;

• κ : o→ End(A) is an action of o on A such that, locally on S, for any

tuple x1, . . . , xr ∈ o, the determinant of T1x1 + · · ·+ Trxr on Lie(A) is

equal to the image of∏
ϕ∈Φ

(T1ϕ(x1) + · · ·+ Trϕ(xr)) ∈ OΦ[T1, . . . , Tr]

in OS [T1, . . . , Tr];

• λ : A → A∨ is a polarization of A satisfying λ ◦ κ(x) = κ(x)∨ ◦ λ for

every x ∈ o.

Given a prime p of KΦ, let WΦ,p be the completion of the ring of integers

in the maximal unramified extension of KΦ,p, and let kalg
Φ,p be its residue field.

Let p be the rational prime below p.

Theorem 2.2.1. Let R be a complete local Noetherian WΦ,p-algebra with

residue field kalg
Φ,p. If o is maximal at p, then every polarized (o,Φ)-CM abelian

scheme (A, κ, λ) over kalg
Φ,p admits a unique deformation to a polarized (o,Φ)-

CM abelian scheme over R.

Proof. Let Cp be an algebraically closed field containing WΦ,p, and fix an

isomorphism between the algebraic closures of KΦ in C and Cp. This allows us

to view elements of Φ as maps ϕ : K → Cp. For any prime P of F above p let

Φ(P) ⊂ Φ be the subset consisting of those ϕ whose restriction to F induces

the prime P. There is a decomposition of p-divisible groups

A[p∞] ∼=
∏
P

A[P∞],

where the product is over the primes of F lying above p. A similar decompo-

sition holds for any deformation of the triple (A, κ, λ). Each factor A[P∞] has

an action

κ[P∞] : OK,P → End(A[P∞])
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satisfying the Φ(P)-determinant condition, and an OK,P-linear polarization

λ[P∞]. If R is Artinian, we may apply Theorem 2.1.3 to see that each triple

(A[P∞], κ[P∞], λ[P∞]) admits a unique deformation to R. By the Serre-Tate

theorem [32], the same is true of the triple (A, κ, λ). This proves the claim if R

is Artinian, and the general case follows from Grothendieck’s formal existence

theorem as in [7, §3]. �

Theorem 2.2.1 is false if one omits the hypothesis that o is maximal at

p, even for elliptic curves. This is clear from the theory of quasi-canonical

lifts of elliptic curves, due to Serre-Tate in the ordinary case, and Gross in the

supersingular case [12], [34], [44].

2.3. Lifting homomorphisms : the signature (n − 1, 1) case. In this sub-

section K0 is a quadratic field extension of Qp, F/Qp is a field extension of

degree n, and

K = K0 ⊗Qp F.

We assume that K0 does not embed into F , so that K is a field. Let D0 and D

be the differents of K0/Qp and K/Qp, respectively, and let pF be the maximal

ideal of OF .

Fix an embedding ι : K0 → Cp, so that Φ0 = {ι} is a p-adic CM type

of K0. A p-adic CM type Φ of K is said to be of signature (n − 1, 1) if there

is a unique ϕsp ∈ Φ satisfying ϕsp|K0 = ι. The distinguished element ϕsp is

the special element of Φ, and this element determines Φ uniquely. Fix a Φ of

signature (n− 1, 1), and define

KΦ = ϕsp(K).

For any σ ∈ Aut(Cp/KΦ), the p-adic CM type Φσ is again of signature (n−1, 1),

and still contains ϕsp. Thus Φ = Φσ, and condition (2.1.1) is satisfied. Let

WΦ be as in Section 2.1.

Fix a triple (A, κ, λ) in which

• A is a p-divisible group over F of dimension n,

• κ : OK → End(A) satisfies the Φ-determinant condition,

• λ : A → A∨ is an OK-linear polarization with kernel A[a] for some

ideal a ⊂ OF .

Fix a second triple (A0, κ0, λ0) in which

• A0 is a p-divisible group over F of dimension 1,

• κ0 : OK0 → End(A0) satisfies the Φ0-determinant condition,

• λ0 : A0 → A∨0 is an OK0-linear principal polarization.

By Proposition 2.1.1, both A0 and A are supersingular.

The OK-module

L(A0, A) = HomOK0
(A0, A)
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has a natural OK0-Hermitian form 〈f1, f2〉 defined by

〈f1, f2〉 = λ−1
0 ◦ f

∨
2 ◦ λ ◦ f1.

This Hermitian form is compatible with the action of OK on L(A0, A), in the

sense that
〈x · f1, f2〉 = 〈f1, x · f2〉

for every x ∈ OK , and it follows that there is a unique K-valued OK-Hermitian

form 〈f1, f2〉CM on L(A0, A) satisfying

〈f1, f2〉 = TrK/K0
〈f1, f2〉CM.

It is not easy to give a description of 〈·, ·〉CM, other than “the Hermitian

form whose trace is 〈·, ·〉.” Nevertheless, the structure of the Hermitian spaceÄ
L(A0, A), 〈·, ·〉CM

ä
will be described quite explicitly in Proposition 2.3.3.

Set
S = OK ⊗Zp W.

If Fr ∈ Aut(W ) is the Frobenius automorphism, there is an induced automor-

phism of S defined by

(x⊗ w)Fr = x⊗ wFr.

As in Section 2.1, for each ψ : OuK → W , there is an idempotent eψ ∈ S
satisfying

(x⊗ 1)eψ = (1⊗ ψ(x))eψ

for every x ∈ OuK . These idempotents satisfy (eψ)Fr = eFr◦ψ, and

S =
∏

ψ:OuK→W
eψS,

where each factor on the right is isomorphic to the ring of integers in the

completion of the maximal unramified extension of K. In particular, each

factor is a discrete valuation ring, whose valuation determines a surjection

ordψ : S → Z≥0 ∪ {∞}.

Denote by

m(ψ,Φ) = #{ϕ ∈ Φ : ϕ|OuK = ψ}
the multiplicity of ψ in Φ. Similarly, if we set

S0 = OK0 ⊗Zp W,

there is a decomposition of W -algebras

S0 =
∏

ψ0:OuK0
→W

eψ0S0

in which each factor is isomorphic to the integers in the completion of the

maximal unramified extension of K0. For each ψ0, there is an associated

valuation

ordψ0 : S0 → Z≥0 ∪ {∞},
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and the multiplicity of ψ0 in Φ0 is

m(ψ0,Φ0) = #{ϕ ∈ Φ0 : ϕ|OuK0
= ψ0}.

Let D(A0) and D(A) be the Dieudonné modules of A0 and A, respectively.

The following lemma makes the structure of these Dieudonné modules more

explicit.

Lemma 2.3.1. There is an isomorphism of S-modules D(A) ∼= S . Under

any such isomorphism, the operators F and V on D(A) take the form F = a◦Fr

and V = b ◦ Fr−1 for some a, b ∈ S satisfying abFr = p, and satisfying

ordψ(b) = m(ψ,Φ)

for every ψ : OuK →W .

Similarly, there is an isomorphism of S0-modules D(A0) ∼= S0. Under any

such isomorphism, the operators F and V on D(A0) take the form F = a0 ◦Fr

and V = b0 ◦ Fr−1 for some a0, b0 ∈ S0 satisfying a0b
Fr
0 = p, and satisfying

ordψ0(b0) = m(ψ0,Φ0)

for every ψ0 : OuK0
→W .

Proof. We give the proof only for D(A), as the proof for D(A0) is identical.

The only assertion that is not obvious from Proposition 2.1.1 is the formula

for ordψ(b). The Lie algebra of A is canonically identified with

D(A)/V D(A) ∼= S/bS,

and the eψ component of S/bS is an F-vector space of dimension ordψ(b). It

follows that the characteristic polynomial of any x ∈ OuK acting on Lie(A) is

equal to ∏
ψ:OuK→W

(T − ψ(x))ordψ(b) ∈ F[T ].

On the other hand, the Φ-determinant condition imposed on (A, κ, λ) implies

that this characteristic polynomial is equal to∏
ϕ∈Φ

(T − ϕ(x)) =
∏

ψ:OuK→W
(T − ψ(x))m(ψ,Φ).

It follows that ordψ(b) = m(ψ,Φ) for every ψ. �

Fix isomorphisms D(A0) ∼= S0 and D(A) ∼= S as in the lemma, so that

L(A0, A) is identified with an OK-submodule of HomS0(S0,S) ∼= S. Of course

an element of HomS0(S0,S) lies in the submodule L(A0, A) if and only if it

respects the V (equivalently, F ) operators on D(A0) and D(A). In the notation

of Lemma 2.3.1 this amounts to

(2.3.1) L(A0, A) ∼= {s ∈ S : (b0s)
Fr = bFrs}.
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Let s 7→ s be the automorphism of S induced by the nontrivial automorphism

of K/F

Lemma 2.3.2. Under the isomorphism (2.3.1), the Hermitian form 〈·, ·〉CM

on L(A0, A) is identified with the Hermitian form

〈s1, s2〉CM = ξs1s2

on the right-hand side of (2.3.1), for some ξ ∈ S ⊗Z Q satisfying

(1) ξ = ξ,

(2) ξS = aD0D
−1S , and

(3) (b0b0)Frξ = ξFr(bb)Fr.

(The last condition guarantees that ξs1s2 lies in K = (S⊗ZQ)Fr=1, as it must.)

Proof. This is an exercise in linear algebra. The polarization λ induces a

W -symplectic form

λ : D(A)×D(A)→W

satisfying λ(sx, y) = λ(x, sy) for all s ∈ S, and λ(Fx, y) = λ(x, V y)Fr. The

first property implies that the induced pairing

λ : S × S →W

has the form

λ(s1, s2) = TrK/Qp(ζs1s2)

for some ζ ∈ S ⊗Z Q satisfying ζ = −ζ. The second property implies that

pζ = (ζbb)Fr. The assumption that λ : A → A∨ has kernel A[a] implies that

ζS = aD−1S. Similarly, the principal polarization λ0 induces a perfect pairing

λ0 : S0 × S0 →W

of the form

λ0(s1, s2) = TrK0/Qp(ζ0s1s2)

for some ζ0 ∈ S0 ⊗Z Q satisfying ζ0 = −ζ0, pζ0 = (ζ0b0b0)Fr, and ζ0S0 = S0.

The OK0-Hermitian form 〈f1, f2〉 on (2.3.1) is then given by the explicit

formula

〈s1, s2〉 = TrK/K0
(ζ−1

0 ζs1s2).

It follows that 〈s1, s2〉CM = ξs1s2, where ξ = ζ−1
0 ζ. �

Armed with the above explicit coordinates, we may describe the Hermitian

space L(A0, A) attached to our fixed triples (A0, κ0, λ0) and (A, κ, λ).

Proposition 2.3.3. For some β ∈ F× satisfying

βOK =

apFD0D
−1OK if K0/Q is unramified

aD0D
−1OK if K0/Q is ramified,
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there is an isomorphism of OK-modules L(A0, A) ∼= OK identifying 〈·, ·〉CM

with the Hermitian form 〈x, y〉CM = βxy on OK .

Proof. First we show that L(A0, A) is free of rank one over OK . Let

H = End(A0)⊗Zp Qp,

so that H is a quaternion division algebra over Qp. As A0 and A are supersin-

gular there is an isogeny A→ A0 × · · · ×A0 (n factors). The Noether-Skolem

theorem implies that any two maps K0 → Mn(H) are conjugate, and it fol-

lows that the above isogeny may be chosen to be OK0-linear. A choice of such

isogeny allows us to identify

L(A0, A)⊗Zp Qp
∼= HomOK0

(A0, A0 × · · · ×A0)⊗Zp Qp
∼= K0 × · · ·K0

as K0-vector spaces. Thus L(A0, A) is free of rank n over OK0 , and hence

L(A0, A) is free of rank one over OK .

Fix an OK-module generator s of (2.3.1), so that x · s 7→ x defines an iso-

morphism L(A0, A)→ OK identifying 〈·, ·〉CM with βxy where, in the notation

of Lemma 2.3.2,

β = ξss.

We know that ξS = aD0D
−1S, and so it only remains to determine the ideal

ssS.

Let e(K/K0) be the ramification degree of K/K0. Set d = [Ku : Qp], and

enumerate the maps OuK → W as {ψi : i ∈ Z/dZ} in such a way that ψi+1 =

Fr ◦ ψi. Let ψi0 be the restriction of ψi to OuK0
. The relation (b0s)

Fr = bFrs

implies

ordψi+1(s) = ordψi(s)− ordψi(b) + ordψi(b0)

= ordψi(s)− ordψi(b) + e(K/K0) · ordψi0
(b0)

= ordψi(s)−m(ψi,Φ) + e(K/K0) ·m(ψi0,Φ0),

where the final equality is by Lemma 2.3.1. Note that there is at least one

ψ : OuK →W for which ordψ(s) = 0; otherwise s would be divisible in L(A0, A)

by a uniformizing parameter of OK . This observation and the above relation

between ordψi+1(s) and ordψi(s) will allow us to compute ordψ(s) for all ψ :

OuK →W .

If K0/Qp is ramified, then m(ψi0,Φ0) = 1. Each ψi : OuK →W admits

[K : Ku] = 2 · e(K/K0)

extensions to a map K → Cp. Exactly half of these extensions lie in Φ, and so

m(ψi,Φ) = e(K/K0). It follows that ordψi+1(s) = ordψi(s) for every i ∈ Z/dZ,

hence s ∈ S× and

βS = ξssS = aD0D
−1S

as desired.
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Now suppose that K0/Qp is unramified. As K0 does not embed into F ,

this implies [F u : Qp] = 2f + 1 for some f ∈ Z≥0, and so d = 4f + 2. Assume

the ψi have been enumerated in such a way that ψ0 is the restriction of ϕsp to

OuK . This implies ψ0
0 = ι, and so

m(ψi0,Φ0) =

1 if i is odd

0 if i is even.

If ϕ is any extension of ψ0 to a map K → Cp, then the restriction of ϕ to OK0

is ι. Therefore, ϕ ∈ Φ if and only if ϕ = ϕsp, and so m(ψ0,Φ) = 1. This shows

ordψ1(s) = ordψ0(s)− 1.

The automorphism x 7→ x of K restricts to Fr2f+1 on Ku, and so the restriction

of ϕsp to OuK is ψ2f+1. The map ψ2f+1 : OuK → W then admits [K : Ku] =

e(K/K0) distinct extensions to a map K → Cp, every one of which except

ϕsp is contained in Φ. Therefore, m(ψ2f+1,Φ) = e(K/K0)− 1, from which we

deduce

ordψ2f+2(s) = ordψ2f+1(s) + 1.

Now suppose i ∈ Z/dZ is not equal to 0 or 2f + 1, so that ψi is not the

restriction to OuK of either ϕsp or ϕsp. Similar reasoning to the above shows

that if i is even, then m(ψi,Φ) and m(ψi0,Φ0) are both 0, while if i is odd, then

m(ψi,Φ) = e(K/K0) and m(ψi0,Φ0) = 1. In either case, ordψi+1(s) = ordψi(s).

Recalling that ordψ(s) = 0 for at least one ψ : OuK →W , we deduce first

ordψi(s) =

0 if 1 ≤ i ≤ 2f + 1

1 if 2f + 2 ≤ i ≤ d

and then ordψi(ss) = ordψi(s) + ordψi+2f+1(s) = 1. Thus ssS = pFS and

βS = apFD0D
−1S. �

Remark 2.3.4. Proposition 2.3.3 specifies β up to multiplication by O×F ,

but to determine the isomorphism class of (OK , βxy) one needs to know β up

to multiplication by NmK/F (O×K). If K/F is unramified, there is no difference,

and so Proposition 2.3.3 completely determines the isomorphism class of the

pair
Ä
L(A0, A), 〈·, ·〉CM

ä
. If K/F is ramified, there is some remaining ambigu-

ity, as Proposition 2.3.3 only narrows down the isomorphism class of the pairÄ
L(A0, A), 〈·, ·〉CM

ä
to two possibilities.

Let m be the maximal ideal of WΦ, and for every k ∈ Z>0, set

R(k) = WΦ/m
k.

By Theorem 2.1.3 there is a unique deformation (A(k), κ(k), λ(k)) of (A, κ, λ)

to R(k) and a unique deformation (A
(k)
0 , κ

(k)
0 , λ

(k)
0 ) of (A0, κ0, λ0) to R(k). The
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image of the reduction map

HomOK0
(A

(k)
0 , A(k))→ L(A0, A)

is an OK-submodule L(k), and

· · · ⊂ L(3) ⊂ L(2) ⊂ L(1) = L(A0, A)

is a decreasing filtration of L(A0, A).

The following theorem, which shows that the filtration on L(A0, A) is

completely determined by the Hermitian form 〈·, ·〉CM, generalizes a result of

Gross [12], as explained in the remarks at the end of this subsection. Gross’s

original proof, which can be found in an expanded form in the ARGOS volume

[44], is based on Lubin-Tate groups and the theory of formal group laws. Our

proof will be based on crystalline deformation theory and is closer in spirit to

Zink’s proof of Gross’s result, found in [46, Prop. 77].

Theorem 2.3.5. Assume that at least one of the following hypotheses is

satisfied :

(1) K/Qp is unramified,

(2) p 6= 2 and one of K0/Qp or F/Qp is unramified.

For any nonzero f ∈ L(A0, A), f is in L(k) but not L(k+1) where α = 〈f, f〉CM

and

k =
1

2
· ordOK (αpFDD−1

0 a−1).

The proof, which occupies the remainder of this subsection, is by induction

on the divisibility of f by a uniformizing parameter of OK . Proposition 2.3.6

serves as the base case, and Proposition 2.3.7 forms the inductive step.

Fix an injective ring homomorphism OF →Mn(Zp). If B0 is a p-divisible

group defined over some base scheme S, denote by B0 ⊗ OF the p-divisible

group Bn
0 , and let OF act through the embedding OF →Mn(Zp) just chosen.

This construction has a more intrinsic characterization: the functor of points

of B0 ⊗OF is

(B0 ⊗OF )(T ) = B0(T )⊗Zp OF
for any S-scheme T . If B0 has an action of OK0 , then B0 ⊗ OF inherits an

action of the subring OK0⊗ZpOF ⊂ OK . If B is a p-divisible group over S with

an action of OK , then every OK0-linear homomorphism f : B0 → B induces

an OK0 ⊗Zp OF -linear homomorphism f : B0 ⊗OF → B.

Proposition 2.3.6. Suppose f is an OK-module generator of L(A0, A).

(1) If K0/Qp is unramified, then f is in L(1) but not L(2).

(2) If K0/Qp is ramified and F/Qp is unramified, then f is in L(d) but not

L(d+1), where d = ordOK0
(D0).
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Proof. Let D0 and D be the Grothendieck-Messing crystals of A0 = A
(1)
0

and A = A(1), respectively. First assume K0/Qp is unramified. The kernel I of

R(2) → R(1) can be equipped with a divided power structure compatible with

the canonical divided powers on pR(2) (take the trivial divided powers on I if

WΦ/W is ramified, and the canonical divided powers on I = pR(2) otherwise),

and once such divided powers are chosen we may identify, using [46, Cor. 56],

D0(R(2)) ∼= D(A0)⊗W R(2) ∼= S0 ⊗W R(2)

and

D(R(2)) ∼= D(A)⊗W R(2) ∼= S ⊗W R(2).

As in the proof of Theorem 2.1.3 the lifts of the Hodge filtrations of D0(R(1))

and D(R(1)) corresponding to the deformations A
(2)
0 and A(2) are JΦ0D0(R(2))

and JΦD(R(2)), and f lifts to a map A
(2)
0 → A(2) if and only if

JΦ0D0(R(2))
f−→ D(R(2))/JΦD(R(2))

is trivial. If f corresponds to s ∈ S under the isomorphism (2.3.1), we must

therefore prove that the map

JΦ0(S0 ⊗W WΦ)
s·−→ (S ⊗W WΦ)/JΦ(S ⊗W WΦ)

is nonzero modulo m2. But this is clear from the proof of Proposition 2.3.3:

if ψ denotes the restriction of ϕsp to OuK → W , then we have already seen

that ordψ(s) = 1, and so the image of s under the surjection ϕsp : S → WΦ is

a uniformizing parameter. The assumption that K0/Qp is unramified implies

that S0 ⊗W WΦ
∼= WΦ ×WΦ and that the composition

WΦ
∼= JΦ0(S0 ⊗W WΦ)

s·−→ (S ⊗W WΦ)/JΦ(S ⊗W WΦ)
ϕsp

−−→WΦ

is multiplication by ϕsp(s).

Now assume K0/Qp is ramified and F/Qp is unramified, so that

OK = OK0 ⊗Zp OF .

Let s ∈ S correspond to f under the isomorphism (2.3.1), and recall from the

proof of Proposition 2.3.3 that s ∈ S×. This implies that the induced map

f : D(A0)⊗Zp OF → D(A)

is an isomorphism of Dieudonné modules and, in particular, f induces an

isomorphism of Lie algebras

Lie(A0)⊗Zp OF ∼= Lie(A).

If f lifts to a map f (k) : A
(k)
0 → A(k), then Nakayama’s lemma implies that the

induced map

Lie(A
(k)
0 )⊗Zp OF ∼= Lie(A(k))
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is again an isomorphism, and comparing the OK-action on each side we find

the equality in R(k)[T ]

(2.3.2)
∏
ϕ∈Φ∗

(T − ϕ(x)) =
∏
ϕ∈Φ

(T − ϕ(x))

for every x ∈ OK , where

Φ∗ = {ϕ ∈ Hom(K,Cp) : ϕ|K0 = ι}

is the p-adic CM type of K obtained by replacing ϕsp by ϕsp. Comparing the

coefficients of Tn−1 shows that ϕsp, ϕsp : OK →WΦ are congruent modulo mk,

which implies k ≤ ordOK0
(D0).

Conversely, if k ≤ ordOK0
(D0) then the polynomials (2.3.2) in R(k)[T ] are

equal, and so the natural OK-action on the p-divisible group A
(k)
0 ⊗Zp OF over

R(k) satisfies the Φ-determinant condition. The map f : A0 ⊗Zp OF → A is

an isomorphism of p-divisible groups (because it induces an isomorphism of

Dieudonné modules), and this allows us to view A
(k)
0 ⊗Zp OF as a deforma-

tion of A with its OK-action. By the uniqueness of such deformations (see

Remark 2.1.4) there is an OK-linear isomorphism

A
(k)
0 ⊗Zp OF → A(k)

lifting f : A0 ⊗Zp OF → A, and precomposing with the inclusion

A
(k)
0 → A

(k)
0 ⊗Zp OF

gives the desired lift of f : A0 → A. This shows that f lifts to A
(k)
0 → A(k) if

and only if k ≤ ordOK0
(D0). �

Proposition 2.3.7. Let πK be a uniformizer of OK . If f ∈ L(k), then

πKf ∈ L(k+1). Furthermore, if any one of the conditions

(1) k > 1,

(2) p 6= 2,

(3) K/Qp is unramified

is satisfied, then the map πK : L(k)/L(k+1) → L(k+1)/L(k+2) is injective.

Proof. The essential observation is that if

j0 ∈ JΦ0 = ker
Ä
OK0 ⊗Zp WΦ → Cp(ι)

ä
,

then

(x⊗ 1− 1⊗ ϕsp(x)) · j0 ∈ JΦ = ker
Ä
OK ⊗Zp WΦ →

∏
ϕ∈Φ

Cp(ϕ)
ä
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for every x ∈ OK . So, given anOK0⊗ZpWΦ-module M0, anOK⊗ZpWΦ-module

M , and an OK0-linear map f : M0 →M , the induced map

f : JΦ0M0 →M/JΦM

satisfies

(x⊗ 1− 1⊗ ϕsp(x)) ◦ f = 0

for all x ∈ OK .

Now suppose f : A0 → A lifts to a map

f (k) : A
(k)
0 → A(k).

Let D0 and D be the Grothendieck-Messing crystals of A
(k)
0 and A(k), respec-

tively. By equipping the kernel of R(k+1) → R(k) with its trivial divided power

structure, f (k) induces a commutative diagram

JΦ0D0(R(k+1)) //

��

D0(R(k+1))
f (k)

//

��

D(R(k+1)) //

��

D(R(k+1))/JΦD(R(k+1))

��
JΦ0D0(R(k)) // D0(R(k))

f (k)

// D(R(k)) // D(R(k))/JΦD(R(k)).

As the middle arrow of the bottom row must preserve the Hodge filtrations of

the crystals, the composition along the bottom row is trivial (see the proof of

Theorem 2.1.3). Therefore, the composition along the top row

JΦ0D0(R(k+1))→ D(R(k+1))/JΦD(R(k+1))

becomes trivial after applying ⊗R(k+1)R(k), and so it has image annihilated

by m. By the comments of the previous paragraph,

πKf
(k) = ϕsp(πK)f (k)

when viewed as maps

JΦ0D0(R(k+1))→ D(R(k+1))/JΦD(R(k+1)),

and as ϕsp(πK) ∈ m we deduce that these maps are trivial. Therefore,

πKf
(k) : D0(R(k+1))→ D(R(k+1))

takes the submodule JΦ0D0(R(k+1)) into JΦD(R(k+1)). By the proof of The-

orem 2.1.3, these submodules are the lifts of the Hodge filtrations defining

A
(k+1)
0 and A(k+1), and so πKf

(k) lifts to a map A
(k+1)
0 → A(k+1).

Now suppose f is in L(k) but not L(k+1), and let I be the kernel of

R(k+2) → R(k). If k > 1, then I2 = 0, and we may equip I with its triv-

ial divided powers. If p 6= 2, then I3 = 0 allows us to equip I with its trivial

divided powers. If K/Qp is unramified, then WΦ = W , and we may equip
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I = pkWΦ with its canonical divided powers. In any case there is some di-

vided power structure on I, and so we may add a third row

JΦ0D0(R(k+2)) //

��

D0(R(k+2))
f (k)

//

��

D(R(k+2)) //

��

D(R(k+2))/JΦD(R(k+2))

��
JΦ0D0(R(k+1)) //

��

D0(R(k+1))
f (k)

//

��

D(R(k+1)) //

��

D(R(k+1))/JΦD(R(k+1))

��
JΦ0D0(R(k)) // D0(R(k))

f (k)

// D(R(k)) // D(R(k))/JΦD(R(k))

to the diagram above. If πKf
(k) lifts to a map A

(k+2)
0 → A(k+2), then

πKf
(k) : JΦ0D0(R(k+2))→ D(R(k+2))/JΦD(R(k+2))

is trivial. By the comments of the first paragraph this implies that

ϕsp(πK)f (k) : JΦ0D0(R(k+2))→ D(R(k+2))/JΦD(R(k+2))

is also trivial, and so

f (k) : JΦ0D0(R(k+2))→ D(R(k+2))/JΦD(R(k+2))

takes values in mk+1 · D(R(k+2))/JΦD(R(k+2)). But this implies that

f (k) : JΦ0D0(R(k+1))→ D(R(k+1))/JΦD(R(k+1))

is trivial, contradicting our hypothesis that f (k) does not lift to a map A
(k+1)
0 →

A(k+1). Therefore, πKf
(k) lifts to A

(k+1)
0 → A(k+1) but not to A

(k+2)
0 →

A(k+2). �

Proof of Theorem 2.3.5. Let β ∈ F× be as in Proposition 2.3.3. Fix a

uniformizer πK ∈ OK and write f = πmKf0 with f0 an OK-module generator

of L(A0, A), so that

〈f0, f0〉CMOF = βOF .

If K0/Qp is unramified, then

αOK = p2m
F βOK = D0D

−1ap2m+1
F .

Using induction on m, Propositions 2.3.6 and 2.3.7 imply that f is in L(m+1)

but not L(m+2), and the claim follows. If K0/Qp is ramified, then

αOK = pmF βOK = D0D
−1apmF .

Using induction on m, Proposition 2.3.6 (with d = 1, as p is odd) and Propo-

sition 2.3.7 imply that f is in L(m+1) but not L(m+2), and again the claim

follows. �
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Consider the special case of F = Qp, so that K = K0 and WΦ is the

completion of the ring of integers in the maximal unramified extension of K.

We end this subsection by explaining how, in this special case, Theorem 2.3.5

reduces to a well-known formula of Gross [12], which plays a crucial role in

the proof of the famous Gross-Zagier formula [15]. Assume for simplicity that

p 6= 2.

Keep (A0, κ0, λ0) as above, but now take (A, κ, λ) = (A0, κ0, λ0), where

κ0(x) = κ0(x). Suppressing κ0 from the notation, the OK-module L(A0, A)

now sits inside of End(A0) as the set of j ∈ End(A0) satisfying j ◦ x = x ◦ j
for all x ∈ OK , and

End(A0) = OK ⊕ L(A0, A).

Furthermore,

End(A
(k)
0 ) = OK ⊕ L(k),

and so in this special case Theorem 2.3.5 amounts to an explicit description

of how the ring End(A
(k)
0 ) shrinks as k grows. Fix an OK-module generator

f ∈ L(A0, A). If πK is a uniformizing parameter of OK , then our results prove

End(A
(k)
0 ) = OK ⊕OKπk−1

K f,

which is exactly Gross’s formula.

2.4. Lifting homomorphisms : the signature (n, 0) case. As in the previous

subsection, K0 is a quadratic field extension of Qp, F/Qp is a field extension

of degree n, and

K = K0 ⊗Qp F.

We now allow the possibility K ∼= F × F . Fix an embedding ι : K0 → Cp,
so that Φ0 = {ι} is a p-adic CM type of K0. A p-adic CM type Φ of K is of

signature (n, 0) if ϕ|K0 = ι for every ϕ ∈ Φ. Fix such a Φ (in fact, it’s unique).

If we let KΦ ⊂ Cp be any subfield containing ι(K0), then condition (2.1.1) is

satisfied. Let WΦ and ART be as in Section 2.1.

Fix a triple (A, κ, λ) in which

• A is a p-divisible group over F of dimension n,

• κ : OK → End(A) satisfies the Φ-determinant condition,

• λ : A→ A∨ is an OK-linear polarization.

Fix a second triple (A0, κ0, λ0) in which

• A0 is a p-divisible group over F of dimension 1,

• κ0 : OK0 → End(A0) satisfies the Φ0-determinant condition,

• λ0 : A0 → A∨0 is an OK0-linear polarization.

By Theorem 2.1.3 each of (A0, κ0, λ0) and (A, κ, λ) admits a unique deforma-

tion to any object of ART. The following is the signature (n, 0) version of

Theorem 2.3.5. Now the situation is drastically simplified.
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Proposition 2.4.1. Let R be an object of ART, and let (A′0, κ
′
0, λ
′
0) and

(A′, κ′, λ′) be the unique deformations of (A0, κ0, λ0) and (A, κ, λ) to R. The

reduction map

HomOK0
(A′0, A

′)→ HomOK0
(A0, A)

is a bijection.

Proof. Let R(2) → R(1) be any surjection in ART whose kernel I satisfies

I2 = 0, and equip I with its trivial divided power structure. Let (A
(i)
0 , κ

(i)
0 , λ

(i)
0 )

and (A(i), κ(i), λ(i)) be the unique deformations of (A0, κ0, λ0) and (A, κ, λ) to

R(i), and suppose we are given an OK0-linear map f : A
(1)
0 → A(1). Let D0 and

D be the Grothendieck-Messing crystals of A
(1)
0 and A(1). The map f induces

an OK0⊗ZpWΦ-linear map on crystals f : D0(R(2))→ D(R(2)). The hypothesis

that Φ has signature (n, 0) implies that

JΦ0(OK ⊗Zp WΦ) ⊂ JΦ,

and therefore f satisfies

f(JΦ0D0(R(2))) = JΦ0f(D0(R(2))) ⊂ JΦD(R(2)).

By the proof of Theorem 2.1.3, the deformations A
(2)
0 and A(2) of A

(1)
0 and A(1)

correspond to the lifts

JΦ0D0(R(2)) ⊂ D0(R(2)) JΦD(R(2)) ⊂ D(R(2))

of the Hodge filtrations of D0(R(1)) and D(R(1)). As f preserves these filtra-

tions, it follows that f lifts (uniquely) to a map A
(2)
0 → A(2). The claim follows

by induction on the length of R. �

3. Arithmetic intersection theory

Throughout Section 3 we fix the following data, as in the introduction:

• K0 ⊂ C is a quadratic imaginary field, and ι : K0 → C is the inclusion;

• F is a totally real étale Q-algebra of degree n;

• K = K0 ⊗Q F ;

• Φ is a CM type of K of signature (n−1, 1) (this means there is a unique

ϕsp ∈ Φ whose restriction to K0 is ι : K0 → C);

• KΦ ⊂ C is a finite extension of K0 containing the reflex field of Φ;

• OΦ is the ring of integers of KΦ;

• a ⊂ OF is an ideal (eventually we will take a = OF ).

The CM type Φ is uniquely determined by its special element ϕsp, and thus

σ ∈ Aut(C/K0) fixes Φ if and only if it fixes ϕsp. It follows that ϕsp(K) ⊂ KΦ

and that we may take KΦ = ϕsp(K) if we choose. In any case, every prime p

of KΦ restricts, via the map

(3.0.1) ϕsp : K → KΦ,
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to a prime pK of K. The prime of F below pK is denoted pF . The special

element ϕsp ∈ Φ determines an archimedean place of K, whose restriction to

F is denoted ∞sp.

Let π0(F ) denote the set of connected components of Spec(F ). The alge-

bra F is a product of totally real number fields indexed by π0(F ), and each

connected component has the form Spec(F ′) for a subfield F ′ ⊂ F . There is a

quadratic character of (F ′A)× associated to the CM field K ′ = K0 ⊗Q F
′, and

by collecting together the quadratic characters of the different components of

Spec(F ) we obtain a generalized character

(3.0.2) χK/F : F×A → {±1}π0(F )

associated to the extension K/F .

For each p ⊂ OΦ, fix an algebraic closure Kalg
Φ,p of KΦ,p, let Cp be its

completion, and let

WΦ,p ⊂ Cp

be the ring of integers of the completion of the maximal unramified extension

of KΦ,p. Denote by kalg
Φ,p the common residue field of Kalg

Φ,p, Cp, and WΦ,p Let

D0 and D be the differents of K0/Q and K/Q, respectively, and let dF be the

different of F/Q.

3.1. The stack CMa
Φ. Recall the moduli stackM(r,s) of the introduction.

We now define the cycle of points of M(n−1,1) with complex multiplication by

OK and CM type Φ. Taking a = OF in the following definition gives the stack

CMΦ of the introduction.

Definition 3.1.1. Let CMa
Φ be the algebraic stack over OΦ whose functor

of points assigns to a connected OΦ-scheme S the groupoid of triples (A, κ, λ)

in which

• A→ S is an abelian scheme of relative dimension n,

• κ : OK → End(A) satisfies the Φ-determinant condition,

• λ : A→ A∨ is an OK-linear polarization with kernel A[a].

The condition of OK-linearity means that

λ ◦ κ(x) = κ(x)∨ ◦ λ

for every x ∈ OK . The Φ-determinant condition, introduced by Kottwitz [18],

is the following: locally on S, for any x1, . . . , xr ∈ OK , the determinant of

T1x1 + · · ·+ Trxr acting on Lie(A) is equal to the image of∏
ϕ∈Φ

(T1ϕ(x1) + · · ·+ Trϕ(xr)) ∈ OΦ[T1, . . . , Tr]
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in OS [T1, . . . , Tr]. Note that this condition implies that every x ∈ OK acts on

Lie(A) with characteristic polynomial∏
ϕ∈Φ

(T − ϕ(x)) ∈ OΦ[T ]

and, in particular, the action of OK0 on A satisfies the signature (n − 1, 1)-

condition of the introduction. If we take a = OF , then restricting the action

from OK to OK0 defines a morphism

CMOFΦ →M(n−1,1)/OΦ
.

For an OΦ-scheme S, an S-valued point of

M(1,0) × CMa
Φ =M(1,0)/OΦ

×OΦ
CMa

Φ

is a sextuple (A0, κ0, λ0, A, κ, λ) with (A0, κ0, λ0) ∈ M(1,0)(S) and (A, κ, λ) ∈
CMa

Φ(S). We usually abbreviate this sextuple to (A0, A).

Proposition 3.1.2. Let p be a prime of KΦ, and let YΦ denote one of

M(1,0)/OΦ
, CMa

Φ, or M(1,0) × CMa
Φ.

(1) If R is any complete local Noetherian WΦ,p-algebra with residue field

kalg
Φ,p, the reduction map

YΦ(R)→ YΦ(kalg
Φ,p)

(on isomorphism classes) is a bijection.

(2) The completed strictly Henselian local ring of YΦ at any geometric point

z ∈ YΦ(kalg
Φ,p) is isomorphic to WΦ,p.

(3) The structure morphism YΦ → Spec(OΦ) is étale and proper. In par-

ticular, YΦ is a regular stack of dimension one.

Proof. The first claim follows easily from Theorem 2.2.1. The second fol-

lows from the first, as the completed strictly Henselian local ring of a geometric

point z represents the functor of deformations of z to complete local Noether-

ian WΦ,p-algebras. The étaleness part of the third claim can be checked on the

level of completed strictly Henselian local rings, and so follows from the second

claim. Properness follows from the valuative criterion of properness for stacks,

together with the fact that CM abelian varieties over discrete valuation rings

have potentially good reduction. �

Remark 3.1.3. If YΦ is as above, it follows from Proposition 3.1.2 that

there is a canonical bijection

YΦ(Cp)→ YΦ(kalg
Φ,p)

on isomorphism classes. Indeed, each object of YΦ(Cp) is a polarized abelian

variety with complex multiplication (or a pair of such things). By the theory

of complex multiplication such an abelian variety admits a model with good
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reduction defined over some finite extension of KΦ,p. Reducing this model

modulo p and then base changing to kalg
Φ,p defines the desired reduction map.

For the inverse: each object of YΦ(kalg
Φ,p) lifts uniquely to YΦ(WΦ,p), and we

base change this lift to Cp.

Definition 3.1.4. Let p be a prime of OΦ. The unique lift of a triple

(A, κ, λ) ∈ CMa
Φ(kalg

Φ,p)

to WΦ,p is its canonical lift

(Acan, κcan, λcan) ∈ CMa
Φ(WΦ,p).

Similarly, the unique lift of a triple

(A0, κ0, λ0) ∈M(1,0)(k
alg
Φ,p)

to WΦ,p is its canonical lift

(Acan
0 , κcan

0 , λcan
0 ) ∈M(1,0)(WΦ,p).

An abelian variety A over an algebraically closed field of nonzero charac-

teristic is supersingular if A is isogenous to a product of supersingular elliptic

curves. Equivalently, by [36, Th. 4.2], A is supersingular if its p-divisible group

is supersingular, in the sense of Section 2.

Proposition 3.1.5. Fix a prime p of KΦ, let pF be the prime of F defined

after (3.0.1), let p be the rational prime below p, and assume that p is nonsplit

in K0. For any (A, κ, λ) ∈ CMa
Φ(kalg

Φ,p), the following hold :

(1) If q ⊂ OF is a prime above p different from pF , then A[q∞] is super-

singular;

(2) A[p∞F ] is supersingular if and only if pF is nonsplit in K ;

(3) A is supersingular if and only if pF is nonsplit in K .

Proof. It suffices to prove the first two claims, as the third is a trivial

consequence. Following Remark 3.1.3, let (A∗, κ∗, λ∗) ∈ CMa
Φ(Cp) be the

unique lift of (A, κ, λ). Fix an isomorphism of KΦ-algebras Cp
∼= C, and view

each ϕ : K → C as taking values in Cp. Fix a prime q ⊂ OF above p.

For a prime Q of K above q, let HQ be the set of all Q-algebra maps

K → Cp inducing Q. For a map ϕ : K → Cp, we define the conjugate by

ϕ(x) = ϕ(x), so that HQ = HQ. The proof of the Shimura-Taniyama formula,

for example [8, Cor. 4.3], shows that

dim A[Q∞] = dim A∗[Q∞] = #(Φ ∩HQ)

and

height A[Q∞] = height A∗[Q∞] = #HQ.
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The argument used in the proof of Proposition 2.1.1 shows that the Dieudonné

module of A[Q∞] is isoclinic. If the slope sequence consists of s/t repeated k

times, then dim A[Q∞] = sk and height A[Q∞] = tk. It follows that

A[Q∞] is supersingular ⇐⇒ 1

2
=

#(Φ ∩HQ)

#HQ
.

First consider the easy case in which q is nonsplit in K. Then Q = Q,

and so HQ is the disjoint union of Φ ∩HQ with

Φ ∩HQ = Φ ∩HQ = Φ ∩HQ,

and it follows from the preceding paragraph that A[q∞] is supersingular.

Now assume q is split in K. This implies that K0,p embeds into Fq, and

so [Fq : Qp] = [KQ : Qp] = #HQ is even, say #HQ = 2d. Each of the sets

HQ(ι) = {ϕ ∈ HQ : ϕ|K0 = ι},
HQ(ι) = {ϕ ∈ HQ : ϕ|K0 = ι},
HQ(ι) = {ϕ ∈ HQ : ϕ|K0 = ι},
HQ(ι) = {ϕ ∈ HQ : ϕ|K0 = ι}

has d elements. If q 6= pF , then Φ ∩HQ(ι) and Φ ∩HQ(ι) are empty, and so

HQ(ι) = [Φ ∩HQ(ι)] ∪ [Φ ∩HQ(ι)] = [Φ ∩HQ(ι)] ∪ [Φ ∩HQ(ι)] = Φ ∩HQ(ι).

This implies

Φ ∩HQ = [Φ ∩HQ(ι)] ∪ [Φ ∩HQ(ι)] = HQ(ι),

and so
#(Φ ∩HQ)

#HQ
=

d

2d
.

This proves that A[Q∞] is supersingular. The same argument shows that

A[Q
∞

] is supersingular, and hence so is A[q∞] = A[Q∞]× A[Q
∞

]. If q = pF ,

then one of Φ ∩HQ(ι) and Φ ∩HQ(ι) is empty, and the other is {ϕsp}. After

possibly interchanging Q and Q we may assume that Φ ∩HQ(ι) = {ϕsp} and

Φ ∩HQ(ι) = ∅. The argument above shows first that HQ(ι) = Φ ∩HQ(ι) and

then that

Φ ∩HQ = [Φ ∩HQ(ι)] ∪ [Φ ∩HQ(ι)] = HQ(ι) ∪ {ϕsp}.

Therefore
#(Φ ∩HQ)

#HQ
=
d+ 1

2d
6= 1

2
.

Therefore, A[Q∞] is not supersingular, and so neither is A[q∞]. �

The following proposition tells us that CMa
Φ is typically nonempty.
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Proposition 3.1.6. There is a unique fractional OF -ideal s for which

sOK = D0D
−1.

If the discriminants of K0/Q and F/Q are relatively prime, then the category

CMa
Φ(C) is nonempty, and furthermore s−1 = dF .

Proof. Let δ0 ∈ K̂×0 satisfy δ0 = −δ0 and δ0OK0 = D0, and let δ ∈ K̂×
satisfy δ = −δ and δOK = Diff(K/F ). There is c ∈ “F× such that δ0 = cδ,

and setting c = cOF the existence of the ideal s follows from D0D
−1 = c ·

Diff(F/Q)−1, and the uniqueness is clear. Now assume that K0/Q and F/Q
have relatively prime discriminants. This implies that D0OK = Diff(K/F ),

and the equality s−1 = dF follows easily.

Taking the product over all ϕ ∈ Φ yields an isomorphism of R-vector

spaces KR ∼= Cn and allows us to view KR as a complex vector space. Let

ζ ∈ K× be any element satisfying ζ = −ζ. Using weak approximation we

may multiply ζ by an element of F× in order to assume that ϕ(ζ) · i > 0 for

every ϕ ∈ Φ. Then λ(x, y) = TrK/Q(ζxy) defines an R-symplectic form on

KR, and λ(i ·x, x) is positive definite. Class field theory implies that the norm

map from the ideal class group of K to the narrow ideal class group of F is

surjective. (K0/Q and F/Q have relatively prime discriminants, and so K/F

is ramified at some finite prime; therefore the Hilbert class field of K and the

narrow Hilbert class field of F are linearly disjoint over F .) It follows that

there is a fractional OK-ideal A and a u ∈ F�0 satisfying uAA = ζ−1D−1a.

Replacing ζ by ζu−1 we may therefore assume ζAA = aD−1, and so

a−1A = {x ∈ KR : λ(x,A) ⊂ Z}.

The Riemann form λ defines a polarization of the complex torus KR/A, and

the kernel of this polarization is the subgroup a−1A/A of a-torsion points. This

proves that CMa
Φ(C) 6= ∅. �

3.2. The space L(A0, A): first results. Suppose we are given a connected

OΦ-scheme S and a pair

(A0, A) ∈ (M(1,0) × CMa
Φ)(S).

The OK0-module

L(A0, A) = HomOK0
(A0, A)

carries a natural positive definite OK0-Hermitian form [26, Lemma 2.8] defined

by

〈f1, f2〉 = λ−1
0 ◦ f

∨
2 ◦ λ ◦ f1,

and the action of OK on A determines an action of OK on L(A0, A) satisfying

〈x · f1, f2〉 = 〈f1, x · f2〉
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for every x ∈ OK . It follows that there is a unique K-valued totally positive

definite OK-Hermitian form 〈f1, f2〉CM on L(A0, A) for which

〈f1, f2〉 = TrK/K0
〈f1, f2〉CM.

Set

V (A0, A) = L(A0, A)⊗Z Q.

Recall Serre’s twisting construction, as in [7, §7]. Suppose we are given a

scheme S, an abelian scheme B → S, an action O → End(B) of an order in

a number field, and a projective O-module Z. To this data we may attach a

new abelian scheme Z⊗O B over S. This abelian scheme is determined by its

functor of points

(Z⊗O B)(T ) = Z⊗O B(T )

for any S-scheme T .

The following proposition shows that V (A0, A) is rather small, unless A0

and A are supersingular.

Proposition 3.2.1. Suppose k is an algebraically closed field, and

(A0, A) ∈ (M(1,0) × CMa
Φ)(k).

If there is an f ∈ V (A0, A) such that 〈f, f〉CM ∈ F×, then k has nonzero

characteristic, and A0 and A are supersingular.

Proof. The map f induces an OK0-linear map fF : OF ⊗Z A0 → A. Fix a

prime ` - char(k), and for any abelian variety B over k, let

Ta0
` (B) = Ta`(B)⊗Z` Q`

be the rational `-adic Tate module. The polarization λ0 induces a perfect

Q`-linear pairing

λ0 : Ta0
` (A0)× Ta0

` (A0)→ Q`(1),

and tensoring with F` results in a perfect F`-linear pairing

Λ0 : Ta0
` (OF ⊗Z A0)× Ta0

` (OF ⊗Z A0)→ F`(1).

The polarization λ induces a perfect pairing

λ : Ta0
` (A)× Ta0

` (A)→ Q`(1),

which has the form λ = TrF/QΛ for a unique F`-linear

Λ : Ta0
` (A)× Ta0

` (A)→ F`(1).

The adjoint of

(3.2.1) fF : Ta0
` (OF ⊗Z A0)→ Ta0

` (A)
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is the unique f †F : Ta0
` (A)→ Ta0

` (OF ⊗ZA0) for which Λ0(x, f †F y) = Λ(fFx, y),

and some linear algebra shows that 〈f, f〉CM = f †F ◦ fF as elements of

F` ⊂ EndQ`(Ta0
` (OF ⊗Z A0)).

The hypothesis 〈f, f〉CM ∈ F× now implies that (3.2.1) is injective, and it

follows that fF : OF ⊗Z A0 → A is an isogeny. Thus we have OK0-linear

isogenies

A ∼ OF ⊗Z A0 ∼ A0 × · · · ×A0︸ ︷︷ ︸
n times

.

As in the proof of [26, Lemma 2.22], the signature conditions imposed on A0

and A now imply that char(k) > 0 and that A0 and A are supersingular. �

Proposition 3.2.2. Suppose k is an algebraically closed field of nonzero

characteristic, and suppose

(A0, A) ∈ (M(1,0) × CMa
Φ)(k),

with A0 and A supersingular. Then L(A0, A) is a projective OK-module of

rank one. Furthermore, if q is a rational prime (which may or may not equal

the characteristic of k), and q is a prime of F above q, then the natural map

L(A0, A)⊗OF OF,q → HomOK0
(A0[q∞], A[q∞])

is an isomorphism. Here A0[q∞] and A[q∞] are the q-divisible groups of

q-power and q-power torsion in A0 and A.

Proof. An argument using the Noether-Skolem theorem (as in the begin-

ning of the proof of Proposition 2.3.3) shows there is an OK0-linear isogeny

A→ A0 × · · · ×A0︸ ︷︷ ︸
n times

.

Fixing such an isogeny determines an injection with finite cokernel

HomOK0
(A0, A)→ HomOK0

(A0, A0 × · · · ×A0) ∼= OK0 × · · · × OK0 ,

and we deduce that HomOK0
(A0, A) is a projective OK0-module of rank n.

For the same reason HomOK0
(A0[q∞], A[q∞]) is a projective OK0,q-module of

rank n. The natural map

HomOK0
(A0, A)⊗Z Zq → HomOK0

(A0[q∞], A[q∞])

is injective with Zq-torsion free cokernel, and hence is an isomorphism, as both

sides have the same Zq-rank. It follows easily that

L(A0, A)⊗OF OF,q → HomOK0
(A0[q∞], A[q∞])

is an isomorphism.

We now prove that L(A0, A) is a projective OK-module of rank one. Of

course if K is a field, this is obvious, as we know from the previous paragraph
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that L(A0, A) is a torsion-free Z-module of the same rank as OK . The point is

to rule out the possibility that the action of OK on L(A0, A) factors through

projection to a proper direct summand of OK . Fix a prime q 6= char(k).

The argument used in the proof of [38, Lemma 1.3] shows that the q-adic

Tate modules Taq(A0) and Taq(A) are free of rank one over OK0,q and OK,q,
respectively, and combining this with the paragraph above shows that

L(A0, A)⊗Z Zq ∼= HomOK0
(Taq(A0),Taq(A)) ∼= OK,q.

As L(A0, A) is Z-torsion free, this is enough to show that L(A0, A) is projective

of rank one. �

3.3. Twisting Hermitian spaces. In the next subsection we will determine

the structure of the Hermitian space L(A0, A) of Proposition 3.2.2 more explic-

itly. In this subsection we first recall some elementary properties of Hermitian

spaces. Suppose L is a projective OK-module of rank one, V = L⊗OK K, and

H is a nondegenerate K-Hermitian form on V . By fixing a K-linear isomor-

phism V ∼= K we see that

(L,H) ∼= (A, αxy)

for some α ∈ F× and some fractional OK-ideal A. Of course αxy is shorthand

for the Hermitian form (x, y) 7→ αxy. For any place v of F , let

χv : F×v −→ {±1}

be the quadratic character associated to the extension Kv/Fv. The local in-

variant of (L,H) at v is χv(α). If v is archimedean, then knowing the local

invariant at v is equivalent to knowing the signature of (V,H) at v. The col-

lection of local invariants determines the space (V,H) up to isomorphism. If

we choose an “OK-linear isomorphism L̂ ∼= “OK , then

(L̂,H) ∼= (“OK , βxy)

for some β ∈ “F× satisfying χv(α) = χv(β) for all finite v, and satisfying

βOF = αAA.

Define the ideal of (L,H) to be the fractional OF -ideal βOF . Given another

projective OK-module of rank one L′ and a Hermitian form H ′, we say that

the pairs (L,H) and (L′, H ′) belong to the same genus if they have the same

signature at every archimedean place and if (L̂,H) ∼= (L̂′, H ′). It is not hard

to see that the genus of (L,H) is completely determined by

• the ideal βOF ,

• the local invariant at every finite prime of F ramified in K,

• the signature at every archimedean place.
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There is a natural group action on the set of all isomorphism classes of

pairs (L,H). Let IK be the set of all pairs z = (Z, ζ) where Z is a fractional

OK-ideal and ζ ∈ F�0 satisfies ζZZ = OK . The set IK is a group under

componentwise multiplication, and has a natural subgroup

PK = {(z−1OK , zz) : z ∈ K×}.

Denote by CK = IK/PK the quotient group. Given a z ∈ CK and a pair (L,H)

as above, define a new pair

z • (L,H) = (ZL, ζH).

The ideal and signature of (L,H) are obviously unchanged by this action, and

the finite group CK acts simply transitively on the set of isomorphism classes

of pairs with the same ideal and signature as (L,H).

The action of CK does not preserve the genus of (L,H), but it has a

natural subgroup that does. Define an algebraic group over F

H = ker(Nm : K× → F×),

a compact open subgroup

U = ker(Nm : “O×K → “O×F ) ⊂ H(“F ),

and a finite group

C0
K = H(F )\H(“F )/U.

The rule h 7→ (hOK , 1) defines an injection C0
K → CK whose image is the

genus subgroup of CK . Let

(3.3.1) η : “O×F /NmK/F (“O×K)→ {±1}π0(F )

be the restriction to “O×F of the character (3.0.2). There is an exact sequence

(3.3.2) 1→ C0
K → CK

gen−−→ “O×F /NmK/F (“O×K)
η−→ {±1}π0(F ),

where the middle arrow (the genus invariant) is defined as follows: given

z ∈ IK , choose a finite idele z ∈ K̂× such that zOK = Z and set

gen(z) = ζzz.

A simple calculation shows that

z • (L̂,H) ∼= (L̂, gen(z) ·H),

and it follows easily that C0
K acts simply transitively on the genus of (L,H).

For us, the usefulness of the action of CK on Hermitian spaces is that it is

compatible with the twisting construction of Serre. Suppose S is a connected

OΦ-scheme and

(A, κ, λ) ∈ CMa
Φ(S).
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Given z = (Z, ζ) ∈ IK , the abelian scheme

Az = Z⊗OK A

carries a natural OK-action κz : OK → End(Az) defined by κz(x) = id⊗ κ(x),

which again satisfies the Φ-determinant condition. There is a quasi-isogeny

s ∈ HomOK (Az, A)⊗Z Q

defined by s(z ⊗ a) = κ(z) · a, and the composition

λz = s∨ ◦ λ ◦ κ(ζ) ◦ s

is an OK-linear polarization of Az with kernel Az[a]. For a proof that λ ◦ κ(ζ),

and hence λz, is a polarization, see [38, Prop. 1.17]; it is here where we must

assume ζ � 0. We obtain a new object

(Az, κz, λz) ∈ CMa
Φ(S),

and in this way the group CK acts on the set of isomorphism classes of objects

in CMa
Φ(S).

Now fix a pair

(A0, A) ∈ (M(1,0) × CMa
Φ)(S).

Let 〈f1, f2〉zCM denote the OK-Hermitian form on L(A0, A
z). By [7, Lemma

7.14], the function f 7→ s ◦ f defines an isomorphism of OK-modules

(3.3.3) L(A0, A
z) ∼= Z · L(A0, A)

identifying 〈·, ·〉zCM = ζ · 〈·, ·〉CM. In other words,

z • (L(A0, A), 〈·, ·〉CM) ∼= (L(A0, A
z), 〈·, ·〉zCM)

(at least assuming that L(A0, A) is projective of rank one, the only case in

which we have defined the action z•).
Here is the form in which these results will be used.

Proposition 3.3.1. Suppose S is a connected OΦ-scheme and

(A0, A) ∈ (M(1,0) × CMa
Φ)(S).

For any z ∈ CK , there is an isomorphism of “OK-modules

L̂(A0, A
z) ∼= L̂(A0, A)

identifying the Hermitian form 〈·, ·〉zCM on the left with the form gen(z)〈·, ·〉CM

on the right.

Proof. Fix a representative (Z, ζ) ∈ IK of z, and a z ∈ K̂× satisfying

zOK = Z. Using multiplication by z to identify

L̂(A0, A) ∼= Z · L̂(A0, A),
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and using (3.3.3), we obtain an isomorphism

L̂(A0, A) ∼= L̂(A0, A
z)

denoted f 7→ f z, where f z = s−1 ◦ κ(z−1) ◦ f . This isomorphism satisfies

〈f z1, f
z
2〉

z
CM = ζzz · 〈f1, f2〉CM,

as desired. �

3.4. Calculation of L(A0, A). We now proceed to compute L(A0, A) in

particular cases, the most important being the case where A0 and A are su-

persingular.

First consider the situation in characteristic 0. For a pair

(A0, A) ∈ (M(1,0) × CMa
Φ)(C),

the space L(A0, A) is rather small. For example if F is a field, it follows from

Proposition 3.2.1 that L(A0, A) = 0. As a substitute for this space, we replace

A0 and A by their first homology groups

H1(A0) = H1(A0(C),Z), H1(A) = H1(A(C),Z),

and define

(3.4.1) LB(A0, A) = HomOK0
(H1(A0), H1(A)).

The polarizations of A0 and A induce symplectic forms on H1(A0) and H1(A),

which we view as Z-module maps from H1(A0) and H1(A) to their Z-duals.

The OK-module LB(A0, A) is then endowed with an OK0-Hermitian form 〈·, ·〉,
and an OK-Hermitian form 〈·, ·〉CM defined exactly as for L(A0, A). One may

think of LB(A0, A) as the space of OK0-linear maps of real Lie groups A0(C)→
A(C), and so there is an obvious injection of Hermitian OK-modules

L(A0, A)→ LB(A0, A).

Abbreviate

VB(A0, A) = LB(A0, A)⊗Z Q.
The structure of LB(A0, A) is quite easy to describe. Recall that the

fractional OF -ideal s was defined in Proposition 3.1.6.

Proposition 3.4.1. Suppose

(A0, A) ∈ (M(1,0) × CMa
Φ)(C).

There is a β ∈ “F× satisfying βOF = as, and an isomorphismÄ
L̂B(A0, A), 〈·, ·〉CM

ä ∼= Ä“OK , βxyä.
Furthermore, the OK-Hermitian form 〈·, ·〉CM is negative definite at the place

∞sp defined after (3.0.1), and positive definite at all other archimedean places

of F .
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Proof. This follows from the classical theory of CM abelian varieties over C.

For some fractional OK-ideal A, there is an isomorphism of OK-modules A ∼=
H1(A), and the polarization λ determines a symplectic pairing on A of the

form

λ(x, y) = TrK/Q(ζxy),

where ζ ∈ K× satisfies ζ = −ζ and ζAA = aD−1. The real vector space AR is

canonically identified with Lie(A), and hence comes with a complex structure

for which the quadratic form λ(ix, x) is positive definite. This last condition

is equivalent to ϕ(ζ) · i > 0 for every ϕ ∈ Φ.

Similarly, for some fractional OK0-ideal A0, there is an isomorphism of

OK0-modules A0
∼= H1(A0), and the symplectic form on A0 induced by the

polarization λ0 has the form

λ0(x, y) = TrK0/Q(ζ0xy)

for some ζ0 ∈ K×0 satisfying ζ0 = −ζ0, ζ0A0A0 = D−1
0 , and ι(ζ0) · i > 0.

There are now isomorphisms of OK-modules

A−1
0 A ∼= HomOK0

(A0,A) ∼= LB(A0, A),

and under these identifications the OK-Hermitian form on LB(A0, A) is iden-

tified with the OK-Hermitian form ζ−1
0 ζxy on A−1

0 A. If ϕ ∈ Φ with ϕ 6= ϕsp,

then ϕ(ζ−1
0 ζ) > 0, while ϕsp(ζ−1

0 ζ) < 0. This shows that 〈f, f〉CM is negative

definite at∞sp and positive definite at all other archimedean places of F . The

rest follows by fixing an “OK-linear isomorphism A−1
0 A“OK ∼= “OK . �

Remark 3.4.2. Of course Proposition 3.4.1 does not determine the Hermit-

ian space LB(A0, A) up to isomorphism, nor does it even determine the genus

of LB(A0, A). In the terminology of Section 3.3, Proposition 3.4.1 tells us the

ideal of LB(A0, A), and the signature at every archimedean place, and so only

determines the CK-orbit of LB(A0, A). Let LB denote the set of isomorphism

classes of pairs (L,H) where

• L is a projective OK-module of rank one,

• H is a K-valued OK-Hermitian form on L,

• (L,H) has ideal as, in the terminology of Section 3.3,

• (L,H) is negative definite at ∞sp and positive definite at all other

archimedean places of F .

This is a transitive CK-set, and Proposition 3.4.1 tells us that every LB(A0, A)

lies in LB. The discussion preceding Proposition 3.3.1 applies equally well to

LB(A0, A) and shows that

z • (LB(A0, A), 〈·, ·〉CM) ∼= (LB(A0, A
z), 〈·, ·〉zCM)

for any z ∈ CK . Thus as the pair (A0, A) varies, we obtain every element of

LB. In this sense, Proposition 3.4.1 is as sharp as possible.
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The remainder of this subsection is devoted to the proof of the follow-

ing theorem, which similarly determines the CK-orbit of the Hermitian space

(L(A0, A), 〈·, ·〉CM) at a supersingular point.

Theorem 3.4.3. Suppose p is a prime of KΦ for which pF is nonsplit in

K , and suppose

(A0, A) ∈ (M(1,0) × CMa
Φ)(kalg

Φ,p).

There is an isomorphismÄ
L̂(A0, A), 〈·, ·〉CM

ä ∼= Ä“OK , βxyä
for some β ∈ “F× satisfying

βOF = asp
εp
F .

Here p is the rational prime below p and εp is defined by (1.2.4). Furthermore,

if we view β ∈ F×A with trivial archimedean components, then χK/F (β) = 1.

Proof. The pair (A0, A) is necessarily supersingular: A is supersingular

by Proposition 3.1.5 and A0 is supersingular as p is nonsplit in K0. We will

determine the structure of
Ä
L(A0, A), 〈·, ·〉CM

ä
by exploiting the fact that the

pair (A0, A) has a canonical lift, in the sense of Definition 3.1.4. This will

allow us to reduce most of the calculation of L(A0, A) to a calculation in

characteristic 0, where Proposition 3.4.1 applies.

By Remark 3.1.3 there is a unique lift of (A0, A) to a pair

(A′0, A
′) ∈ (M(1,0) × CMa

Φ)(Cp).

After fixing an isomorphism of KΦ-algebras Cp
∼= C, we may view (A′0, A

′) also

as a pair

(3.4.2) (A′0, A
′) ∈ (M(1,0) × CMa

Φ)(C).

The comparison between L(A0, A) and LB(A′0, A
′) now proceeds by replacing

A0, A, A′0, and A′ by their Barsotti-Tate groups. Suppose q ⊂ OF is a prime

lying above a rational prime q (which may or may not equal p). The OK,q-
module

Lq(A0, A) = HomOK0
(A0[q∞], A[q∞])

comes equipped with a Kq-valued OK,q-Hermitian form 〈f1, f2〉CM defined ex-

actly as above. Similarly, define an OK,q-Hermitian space

Lq(A
′
0, A

′) = HomOK0
(A′0[q∞], A′[q∞]).

There are isomorphism of Hermitian OK,q-modules

LB(A′0, A
′)⊗OK OK,q ∼= Lq(A

′
0, A

′),(3.4.3)

L(A0, A)⊗OK OK,q ∼= Lq(A0, A).
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The first is obvious, as the q-divisible groups of A′0 and A′ are constant, and

isomorphic to H1(A′0)⊗Z Qq/Zq and H1(A′)⊗Z Qq/Zq, respectively. The sec-

ond isomorphism is part of the statement of Proposition 3.2.2. These isomor-

phisms, together with the following lemma, allow us to convert information

about LB(A′0, A
′) to information about L(A0, A).

Lemma 3.4.4. Suppose q ⊂ OF is a prime with q 6= pF . There is an

OK-linear isomorphism

(3.4.4) Lq(A
′
0, A

′) ∼= Lq(A0, A)

respecting the Hermitian forms.

Proof. Let q be the rational prime below q. If q 6= p, then the q-adic Tate

modules of A′ and A are canonically isomorphic, and similarly for the q-adic

Tate modules of A′0 and A0. Therefore

HomOK0
(A′0[q∞], A′[q∞]) ∼= HomOK0

(A0[q∞], A[q∞])

and (3.4.4) follows by taking q-parts.

Now suppose q = p, so q lies above p. Let Φ(q) be the set of all ϕ ∈ Φ

that, when viewed as a map K → Cp, induce the prime q. The hypothesis

that q 6= pF implies that ϕsp 6∈ Φ(q), and so every ϕ ∈ Φ(q) satisfies ϕ|K0 = ι.

In the terminology of Section 2.4, Φ(q) is a p-adic CM type of Kq of signature

(m, 0), where m = [Fq : Qp]. Furthermore, the p-divisible group A[q∞], with

its action of OK,q, satisfies the Φ(q)-determinant condition of Section 2.1. By

Proposition 2.4.1, the reduction map

HomOK0
(Acan

0 [p∞], Acan[q∞])→ HomOK0
(A0[p∞], A[q∞])

is an isomorphism. Strictly speaking, Proposition 2.4.1 deals with deformations

to Artinian quotients of WΦ,p, but one may pass to the limit by applying [7,

Th. 3.4] to truncated p-divisible groups.

The pair (A′0, A
′) is the image of (Acan

0 , Acan) under base change through

WΦ,p → Cp, and base change defines an injection

HomOK0
(Acan

0 [p∞], Acan[q∞])→ HomOK0
(A′0[p∞], A′[q∞])

whose image is, by Tate’s theorem [41, p. 181], the submodule of invariants for

the action of Aut(Cp/WΦ,p). In particular, the cokernel is Zp-torsion free. We

have now constructed an injection

Lq(A0, A)→ Lq(A
′
0, A

′)

with Zp-torsion free cokernel. But Propositions 3.4.1 and 3.2.2, together with

the isomorphisms (3.4.3), imply that the domain and codomain are free of

rank one over OK,q, and so this map is an isomorphism. It is clear from the

construction that it respects the Hermitian forms. �
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It only remains to collect the pieces together. Let q be a prime of F . If

q 6= pF , then (3.4.3), and Lemma 3.4.4 tell us that

LB(A′0, A
′)⊗OF OF,q ∼= L(A0, A)⊗OF OF,q,

and so by Proposition 3.4.1 there is an isomorphism

L(A0, A)⊗OF OF,q ∼= OK,q

identifying 〈·, ·〉CM with βqxy for some βq ∈ F×q satisfying βqOF,q = asOF,q.
If q = pF then, as in the proof of Lemma 3.4.4, let Φ(q) be the set of

all ϕ ∈ Φ which, when viewed as a map K → Cp, induce the prime q. The

assumption that q = pF implies that ϕsp ∈ Φ(q), and the p-adic CM type

Φ(q) of Kq has signature, in the terminology of Section 2.3, (m − 1, 1) where

m = [Fq : Qp]. The p-divisible group A[q∞], with its action of OK,q, satisfies

the Φ(q)-determinant condition, and so the results of Section 2.3 apply. In

particular, Proposition 2.3.3 and (3.4.3) give isomorphisms

L(A0, A)⊗OF OF,q ∼= Lq(A0, A) ∼= OK,q,

which identify 〈f1, f2〉CM with βqxy for some βq ∈ F×q satisfying βqOF,q =

asp
εp
F OF,q.

Setting β =
∏

q βq, we have now shown that there is an isomorphism

L̂(A0, A) ∼= “OK
identifying 〈·, ·〉CM with βxy. It only remains to show that χK/F (β) = 1.

We know that V (A0, A) is a free K-module of rank one, equipped with a

positive definite Hermitian form. It follows that for some β∗ ∈ F�0, there

is an isomorphism V (A0, A) ∼= K identifying 〈·, ·〉CM with β∗xy. Certainly

χK/F (β∗) = 1, and β and β∗ differ everywhere locally by a norm from K×A .

Therefore, also χK/F (β) = 1, completing the proof of Theorem 3.4.3. �

The following proposition is not needed in the proofs of our main results,

but it is illuminating, and follows easily from what has been said.

Proposition 3.4.5. Let (A0, A) be as in Theorem 3.4.3, and let (A′0, A
′)

be as in (3.4.2). The K-Hermitian spaces VB(A′0, A
′) and V (A0, A) are iso-

morphic locally at a place v of F if and only if v 6∈ {∞sp, pF }.

Proof. The set of places of F at which the Hermitian spaces in question

are not isomorphic is finite of even cardinality. As the second is totally positive

definite, Proposition 3.4.1 implies that they are isomorphic at all archimedean

places except ∞sp. Therefore, the set of finite places of F at which they are

not isomorphic has odd cardinality. By Lemma 3.4.4 they are isomorphic at all

finite places q 6= pF , and it follows that pF is the unique finite place at which

they are not isomorphic. �
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One may interpret Proposition 3.4.5 as follows. Recall the collection of

OK-Hermitian spaces LB of Remark 3.4.2, and define a collection of rank one

K-Hermitian spaces

VB = {(L⊗OK K,H) : (L,H) ∈ LB}.

This is precisely the collection of Hermitian spaces VB(A′0, A
′) that appear

as the pair (A0, A) varies in Theorem 3.4.3. A rank one Hermitian space is

determined by the collection of local invariants at all places of F , and for each

space in VB one can construct a new Hermitian space by changing the invariant

both at ∞sp and at pF . If we denote by VB(p) the set of Hermitian spaces

obtained from VB in this way, then as the pair (A0, A) varies in Theorem 3.4.3,

the Hermitian spaces V (A0, A) vary over VB(p).

3.5. The stack Za
Φ(α). If S is an OΦ-scheme, then to each S-valued point

(A0, A) ∈ (M(1,0) × CMa
Φ)(S)

we have associated an OK-module L(A0, A) equipped with an OK-Hermitian

form 〈·, ·〉CM.

Definition 3.5.1. For any α ∈ F , let Za
Φ(α) be the algebraic stack over OΦ

classifying triples (A0, A, f) over OΦ-schemes S in which

• (A0, A) ∈ (M(1,0) × CMa
Φ)(S),

• f ∈ L(A0, A) satisfies 〈f, f〉CM = α.

If α = OF , we omit it from the notation.

The evident forgetful morphism

Za
Φ(α)→M(1,0) × CMa

Φ

is finite and unramified, by the proof of [26, Prop. 2.10].

Proposition 3.5.2. Suppose α ∈ F×.

(1) The stack Za
Φ(α) has dimension zero, is supported in nonzero char-

acteristic, and every geometric point is supersingular. Furthermore,

Za
Φ(α) is empty unless α is totally positive.

(2) If p is a prime of KΦ for which Za
Φ(α)(kalg

Φ,p) 6= ∅, then pF is nonsplit

in K .

Proof. Suppose (A0, A, f) ∈ Za
Φ(α)(k) with α ∈ F× and k an algebraically

closed field. As 〈f, f〉CM = α, Proposition 3.2.1 shows that k has nonzero

characteristic and that A0 and A are supersingular. The supersingularity of

A0 implies that p is nonsplit in K0, and Proposition 3.1.5 then implies pF is

nonsplit in K. Next we show that Za
Φ(α) has dimension 0. Suppose p is a prime
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of OΦ and z ∈ Za
Φ(α)(kalg

Φ,p) is a geometric point. The forgetful morphism

Za
Φ(α)→M(1,0) × CMa

Φ

is unramified, and so induces a surjection on completed strictly Henselian local

rings. Proposition 3.1.2 now implies that “OZa
Φ(α),z is a quotient of WΦ,p. As

Za
Φ(α) has no geometric points in characteristic 0, this quotient has dimen-

sion 0.

The only thing left to prove is that Za
Φ(α) = ∅ unless α� 0. This is clear

from the fact that 〈·, ·〉CM is totally positive definite. �

The following theorem essentially counts the number of geometric points

of Za
Φ(α).

Theorem 3.5.3. Suppose α ∈ F�0, and assume CMa
Φ(C) 6= ∅. If p is a

prime of KΦ for which pF is nonsplit in K , then∑
(A0,A,f)∈Za

Φ(α)(kalg
Φ,p)

1

#Aut(A0, A, f)
=
h(K0)

w(K0)
· ρ
Ç
αOF
asp

εp
F

å
,

where p is the rational prime below p. Recall that s was defined in Proposi-

tion 3.1.6, εp was defined by (1.2.4), ρ was defined by (1.2.3), h(K0) is the

class number of K0, and w(K0) is the number of roots of unity in K0.

Proof. As an abelian variety over C with complex multiplication admits a

model over a number field having everywhere good reduction, the hypothesis

CMa
Φ(C) 6= ∅ implies that CMa

Φ(kalg
Φ,p) 6= ∅. As M(1,0)(C) has h(K0) elements,

we similarly have M(1,0)(k
alg
Φ,p) 6= ∅. Fix a pair

(A0, A) ∈ (M(1,0) × CMa
Φ)(kalg

Φ,p).

Using (3.3.3), we compute∑
z∈C0

K

#{f ∈ L(A0, A
z) : 〈f, f〉zCM = α} =

∑
z∈C0

K

∑
x∈V (A0,A)
〈x,x〉CM=α

1ZL(A0,A)(x)

=
∑

h∈H(F )\H(F̂ )/U

∑
x∈V (A0,A)
〈x,x〉CM=α

1
L̂(A0,A)

(h−1x)

= #(H(F ) ∩ U)
∑

h∈H(F̂ )/U

∑
x∈H(F )\V (A0,A)
〈x,x〉CM=α

1
L̂(A0,A)

(h−1x).

Here and elsewhere, 1 means characteristic function. If µ(K) denotes the group

of roots of unity in OK , then Aut(z) ∼= µ(K) for any z ∈ CMa
Φ(kalg

Φ,p), and so

Aut(A0, A
z) ∼= µ(K0)× µ(K).
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Furthermore, µ(K) ∼= H(F ) ∩ U , and we have now proved∑
z∈C0

K

∑
f∈L(A0,Az)
〈f,f〉zCM=α

w(K0)

#Aut(A0, Az)
=

∑
h∈H(F̂ )/U

∑
x∈H(F )\V (A0,A)
〈x,x〉CM=α

1
L̂(A0,A)

(h−1x).

If there are no x ∈ V (A0, A) satisfying 〈x, x〉CM = α, then of course the right-

hand side is 0. If there are such x, then they are permuted simply transitively

by H(F ), and so

(3.5.1)
∑
z∈C0

K

∑
f∈L(A0,Az)
〈f,f〉zCM=α

1

#Aut(A0, Az)
=

1

w(K0)

∑
h∈H(F̂ )/U

1
L̂(A0,A)

(h−1x),

where on the right we have fixed one x ∈ V (A0, A) satisfying 〈x, x〉CM = α.

We interrupt the proof for a definition.

Definition 3.5.4. For any α ∈ “F×, define the orbital integral

Oα(A0, A) =
∑

h∈H(F̂ )/U

1
L̂(A0,A)

(h−1 · x),

where x ∈ “V (A0, A) satisfies 〈x, x〉CM = α. If such x exist, thenH(“F ) permutes

them simply transitively, so the orbital integral is independent of the choice.

If no such x exists, then set Oα(A0, A) = 0.

Using this new notation, (3.5.1) may be rewritten as∑
z∈C0

K

∑
f∈L(A0,Az)
〈f,f〉zCM=α

1

#Aut(A0, Az)
=

1

w(K0)
·Oα(A0, A).

It follows from Proposition 3.3.1 that

Oα(A0, A
z) = Ogen(z)−1α(A0, A)

for any z ∈ CK , and so summing over z ∈ CK/C0
K and using the exactness of

(3.3.2) shows that

(3.5.2)
∑
z∈CK

∑
f∈L(A0,Az)
〈f,f〉zCM=α

1

#Aut(A0, Az)
=

1

w(K0)

∑
ξ∈ker(η)

Oξα(A0, A),

where the sum is over ξ in the kernel of (3.3.1).

Assuming that “V (A0, A) represents α, Theorem 3.4.3 reduces the calcu-

lation of Oα(A0, A) to a pleasant exercise, as in [17, §2.5]. We interrupt our

proof yet again to state the result as a lemma.
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Lemma 3.5.5. Let β be as in the statement of Theorem 3.4.3. For any

α ∈ “F×,

Oα(A0, A) =

ρ(αβ−1OF ) if “V (A0, A) represents α

0 otherwise.

Proof. Assume that “V (A0, A) represents α, and fix an x ∈ K̂ such that

α = βxx. The orbital integral factors as product of local integrals Oα,v(A0, A),

one for each finite place v of F , defined by

Oα,v(A0, A) =
∑

h∈H(Fv)/Uv

1OK,v(h
−1xv).

If v is nonsplit in K, then H(Fv)/Uv = 1 and

Oα,v(A0, A) =

1 if αvβ
−1
v ∈ OF,v

0 otherwise.

If v is split in K, then Kv
∼= Fv × Fv. After fixing a uniformizer $ ∈ Fv we

find that H(Fv)/Uv is the cyclic group generated by ($,$−1) ∈ F×v ×F×v , and

Oα,v(A0, A) =

1 + ordv(αvβ
−1
v ) if αvβ

−1
v ∈ OF,v

0 otherwise.

In either case, Oα,v(A0, A) is the number of ideals Cv ⊂ OK,v satisfying

βvCvCv = αOF,v,

and therefore, recalling the definition (1.2.3) of ρ(b), we have proved

Oα(A0, A) = ρ(αβ−1OF )

completing the proof of the lemma. �

Now go back to our fixed α ∈ F�0, and assume that ρ(αβ−1OF ) 6= 0.

This implies that αOF = βCC for some OK-ideal C, and it follows that there

is a unique

ξ ∈ “O×F /NmK/F
“O×K

such that ξα is represented by the quadratic form βxx on K̂. Recalling that

χK/F (β) = 1 and that α � 0, this ξ lies in the kernel of (3.3.1). In other

words, there is a unique ξ ∈ ker(η) such that “V (A0, A) represents ξα. Using

βOF = asp
εp
F , we now deduce

(3.5.3)
∑

ξ∈ker(η)

Oξα(A0, A) = ρ

Ç
αOF
asp

εp
F

å
.
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If, on the other hand, ρ(αβ−1OF ) = 0, then “V (A0, A) does not represent ξα

for any ξ ∈ “O×F , and both sides of (3.5.3) are zero. Comparing with (3.5.2)

shows that

(3.5.4)
∑
z∈CK

∑
f∈L(A0,Az)
〈f,f〉zCM=α

1

#Aut(A0, Az)
=

1

w(K0)
· ρ
Ç
αOF
asp

εp
F

å
.

The action of CK on the set of isomorphism classes of CMa
Φ(kalg

Φ,p) is simply

transitive. For example, one can first prove this in characteristic 0 using the

complex uniformization of CM abelian varieties, and then use Remark 3.1.3 to

deduce the result over kalg
Φ,p. The same argument shows that there are h(K0)

isomorphism classes of objects in M(1,0)(k
alg
Φ,p). Therefore, (3.5.4) implies∑

A0∈M(1,0)(k
alg
Φ,p)

A∈CMa
Φ(kalg

Φ,p)

∑
f∈L(A0,A)
〈f,f〉CM=α

1

#Aut(A0, A)
=
h(K0)

w(K0)
· ρ
Ç
αOF
asp

εp
F

å
,

and Theorem 3.5.3 follows. �

3.6. The degree of Za
Φ(α). Throughout this subsection we assume that

the discriminants of K0/Q and F/Q are odd and relatively prime. The pri-

mary reason for this assumption is so that we may apply Theorem 2.3.5, the

secondary reason is so that Proposition 3.1.6 applies.

Definition 3.6.1. For any α ∈ F for which Za
Φ(α) has dimension 0, define

the Arakelov degree

d̂egZa
Φ(α) =

∑
p⊂OΦ

log(N(p))

[KΦ : Q]

∑
z∈ZΦ(α)(kalg

Φ,p)

length(Osh
ZΦ(α),z)

#Aut(z)
.

Our goal is to compute the Arakelov degree of Za
Φ(α) for α � 0. The

degree has been normalized in such a way that it is unchanged if the field KΦ

is enlarged. By the comments at the beginning of Section 3, we may therefore

make the minimal choice KΦ = ϕsp(K). This will ease comparison with the

notation of Section 2.3. As in the introduction, let Ksp be the factor of K on

which ϕsp : K → C is nonzero. Let F sp be the maximal totally real subfield of

Ksp. We henceforth use ϕsp to identify

Ksp = KΦ.

For any prime p of KΦ, we have pK = p under this identification, and pF is

the prime of F sp below p. Let ep be the ramification degree of Ksp
pK/F

sp
pF .

Theorem 3.6.2. Fix α ∈ F with ϕsp(α) 6= 0. Let p be a prime of KΦ

such that pF is nonsplit in K . The strictly Henselian local ring of Za
Φ(α) at
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any geometric point z ∈ Za
Φ(α)(kalg

Φ,p) is Artinian of length

length(Osh
Za

Φ(α),z) =
1

2
· ep · ordpF (αpF a

−1dF ).

In particular, the length does not depend on z. Note that ϕsp(α) 6= 0 guarantees

that α has nonzero projection to the factor F sp ⊂ F , and so ordpF (α) < ∞.

Thus the right-hand side is finite.

Proof. Let p be the rational prime below p, and recall that WΦ,p is the

completed integer ring of the maximal unramified extension of KΦ,p. Let ART

be the category of Artinian local WΦ,p-algebras with residue field kalg
Φ,p. If

(A0, A, f) ∈ Za
Φ(α)(kalg

Φ,p)

is the triple corresponding to z, then the completed strictly Henselian local ring“Osh
Za

Φ(α),z pro-represents the functor of deformations of (A0, A, f) to objects

of ART. By the Serre-Tate theorem this is the same as the corresponding

deformation functor of p-divisible groups (A0[p∞], A[p∞], f [p∞]).

We argue as in the proofs of Lemma 3.4.4 and Theorem 3.4.3. There is

a decomposition A[p∞] ∼=
∏

qA[q∞] over the primes q ⊂ OF above p, and

similarly for any deformation of (A, κ, λ). Fix an isomorphism of KΦ-algebras

Cp
∼= C, and let Φ(q) be the set of all ϕ∈Φ whose restriction to F→Cp induces

the prime q. The triple (A[q∞], κ[q∞], λ[q∞]) satisfies the Φ(q)-determinant

condition of Section 2.1. Set m = [Fq : Qp].

If q 6= pF , then ϕsp 6∈ Φ(q), and Φ(q) has signature (m, 0) in the sense of

Section 2.4. Theorem 2.1.3 implies that (A0[p∞], A[q∞]) lifts uniquely to every

object of ART, and Proposition 2.4.1 implies that the homomorphism

f [q∞] : A0[p∞]→ A[q∞]

lifts uniquely as well. It follows that the deformation functors of the triples

(A0, A, f) and (A0[p∞], A[p∞F ], f [p∞F ]) are canonically isomorphic. As ϕsp ∈
Φ(pF ), the p-adic CM type Φ(pF ) has signature (m− 1, 1) in the sense of Sec-

tion 2.3. By Theorem 2.1.3, the deformation functor of the pair (A0[p∞], A[p∞F ])

is pro-represented by WΦ,p, and Theorem 2.3.5 implies that the deformation

functor of (A0[p∞], A[p∞F ], f [p∞F ]) is pro-represented by WΦ,p/m
k, where m is

the maximal ideal of WΦ,p and

k =
1

2
· ordpK (αpFDD−1

0 a−1).

Therefore, the length of “Osh
Za

Φ(α),z is

k =
1

2
· ep · ordpF (αpF s

−1a−1). �
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Theorem 3.6.2 computes the lengths of the local rings of Za
Φ(α), while

Theorem 3.5.3 counts the number geometric points. The calculation of the

Arakelov degree is now an easy corollary of these results. Theorem A of the

introduction is the case a = OF of the following theorem.

Theorem 3.6.3. If α ∈ F�0, then Za
Φ(α) has dimension 0, and

d̂egZa
Φ(α) =

h(K0)

w(K0)

∑
p

log(N(p))

[Ksp : Q]
· ordp(αpdF a

−1) · ρ(αp−εpdF a
−1),

where the sum is over all primes p of F sp nonsplit in Ksp, and p is the prime

of Q below p.

Proof. The first claim is Proposition 3.5.2. If p is a prime of KΦ for which

pF is nonsplit in K, then combining Theorem 3.5.3 and Theorem 3.6.2 shows

that

∑
z∈Za

Φ(α)(kalg
Φ,p)

length(Osh
ZΦ(α),z)

#Aut(z)
=
eph(K0)

2w(K0)
· ordpF (αpF dF a

−1) · ρ(αp
−εp
F dF a

−1).

If p is a prime of KΦ for which pF is split in K, then the left-hand side is

zero by Proposition 3.5.2. Summing over all primes p of KΦ
∼= Ksp yields the

result. �

3.7. Arithmetic divisors on XΦ. In this subsection we fix an α ∈ F× and

restrict to the case a = OF . Abbreviate

ZΦ(α) = ZOFΦ (α) CMΦ = CMOFΦ ,

and define a regular 1-dimensional stack

XΦ =M(1,0)/OΦ
×OΦ

CMΦ

over OΦ. We know from Section 3.5 that ZΦ(α) is 0-dimensional and that the

natural map

ZΦ(α)→ XΦ

is finite and unramified. This allows us to view ZΦ(α) as a divisor on XΦ,

which we denote by ZΦ(α). To give the precise definition, it suffices to describe

the pullback of ZΦ(α) to an atlas γ : X −→ XΦ. Let Z be the cartesian product

Z
φ //

��

X

γ

��
ZΦ(α) // XΦ,
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so that φ : Z → X is a finite unramified morphism of schemes. The divisor

ZΦ(α) on XΦ is defined as the unique divisor whose pullback to X is

γ∗ZΦ(α) =
∑
z∈Z

[k(z) : k(φ(z))] · length(OZ,z) · φ(z).

The reader may consult [9], [43] for the general theory of divisors and cycles

on stacks. Of course ZΦ(α) = 0 unless α� 0.

An arithmetic divisor on XΦ is a pair (Z, Gr), where Z is a Weil divisor

on XΦ with rational coefficients, and Gr is a Green function for Z. As Z has

no points in characteristic 0, this simply means that Gr is any function on the

finite set of points ⊔
σ:KΦ→C
σ|K0

=ι

X σΦ(C),

where X σΦ is the stack over C obtained from XΦ by base change. To each

rational function f on XΦ there is an associated principal arithmetic divisor

(div(f),− log |f |2). The quotient group of arithmetic divisors modulo principal

arithmetic divisors is the codimension 1 arithmetic Chow group ĈH
1
(XΦ) of

Gillet-Soulé [5], [10], [11], [29].

We will construct a Green function GrΦ(α, y, ·) for the divisor ZΦ(α), de-

pending on an auxiliary parameter y ∈ F�0
R . For t ∈ R>0, define

(3.7.1) β1(t) =

∫ ∞
1

e−tuu−1 du.

First suppose that σ : KΦ → C is the inclusion, so that a point z ∈ X σΦ(C)

corresponds to a pair

(A0, A) ∈M(1,0)(C)× CMΦ(C).

To each such pair we attach, exactly as in (3.4.1), an OK-module

LB(A0, A) = HomOK0
(H1(A0), H1(A))

equipped with a Hermitian form 〈·, ·〉CM. By Proposition 3.4.1, LB(A0, A) is

a projective OK-module of rank one, is negative definite at the archimedean

place ∞sp of F determined by ϕsp : K → C, and is positive definite at the

other archimedean places. We define

(3.7.2) GrΦ(α, y, z) =
∑

f∈LB(A0,A)
〈f,f〉CM=α

β1(4π|yα|∞sp).

To complete the definition of GrΦ(α, y, ·) we must generalize this construc-

tion to an arbitrary Q-algebra map σ : KΦ → C whose restriction to K0 is ι.

If we extend σ in some way to an automorphism of C, we obtain a new CM
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type Φσ, which does not depend on how σ was extended. It is not hard to see

that X σΦ(C) ∼= XΦσ(C), and so points z ∈ X σΦ(C) correspond to a pairs

(A0, A) ∈M(1,0)(C)× CMK,Φσ(C).

Define

(3.7.3) GrΦ(α, y, z) =
∑

f∈LB(A0,A)
〈f,f〉CM=α

β1(4π|yα|∞sp,σ)

as above, where now∞sp,σ is the archimedean place of F induced by the special

element σ ◦ ϕsp : K → C of Φσ. As 〈·, ·〉CM is negative definite at ∞sp,σ, and

positive definite at the remaining archimedean places, the function Gr(α, y, ·)
is identically 0 if α� 0.

Definition 3.7.1. For every α ∈ F× and y ∈ F�0
R , define an arithmetic

divisor

ẐΦ(α, y) =
Ä
ZΦ(α), GrΦ(α, y, ·)

ä
∈ ĈH

1
(XΦ).

Note that if α� 0, then

ẐΦ(α, y) =
Ä
ZΦ(α), 0

ä
,

while if α 6� 0, then

ẐΦ(α, y) =
Ä
0, GrΦ(α, y, ·)

ä
.

If α 6� 0, then our definition of ẐΦ(α, y) is, at the moment, rather unmo-

tivated, although the use of the function β1(t) in the definition follows Kudla

[21], [29]. The particular choice of Green function will be justified in Section 4,

when we show that, for all α ∈ F×, the arithmetic divisor ẐΦ(α, y) is closely

related to the Fourier coefficient of a Hilbert modular Eisenstein series.

There is a canonical linear functional

d̂eg : ĈH
1
(XΦ)→ R

defined as the composition

ĈH
1
(XΦ)→ ĈH

1
(Spec(OΦ))→ R,

where the first arrow is push-forward by the structure map XΦ → Spec(OΦ)

and the second is [KΦ : Q]−1 times the degree of [11, §3.4.3]. If Z is a prime

Weil divisor on XΦ, then

d̂eg (Z, 0) =
1

[KΦ : Q]

∑
p⊂OΦ

log(N(p))
∑

z∈Z(kalg
Φ,p)

1

#Aut(z)
.
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If Gr is a Green function on XΦ, then

(3.7.4) d̂eg (0, Gr) =
1

[KΦ : Q]

∑
σ:KΦ→C
σ|K0

=ι

∑
z∈XσΦ(C)

Gr(z)

#Aut(z)
.

Theorem 3.7.2. Suppose the discriminants of K0 and K are odd and

relative prime. Fix α ∈ F× and y ∈ F�0
R .

(1) If α� 0, then

d̂eg ẐΦ(α, y) =
h(K0)

w(K0)

∑
p

log(N(p))

[Ksp : Q]
· ordp(αpdF ) · ρ(αp−εpdF ),

where the sum is over all primes p of F sp nonsplit in Ksp, and p is the

prime of Q below p.

(2) Suppose α 6� 0. If α is negative at exactly one archimedean place v of

F , and if the corresponding map F → R factors through the summand

F sp of F , then

d̂eg ẐΦ(α, y) =
h(K0)

w(K0)

1

[Ksp : Q]
· β1(4π|yα|v) · ρ(αdF ).

If no such v exists, then the left-hand side is 0.

Proof. If α� 0, then

(3.7.5) d̂eg ẐΦ(α, y) = d̂egZΦ(α),

where the right-hand side is the Arakelov degree of Definition 3.6.1. Hence the

first claim is just a restatement of Theorem 3.6.3, in the special case a = OF .

Now suppose α 6� 0, and fix a σ : KΦ −→ C. If α is negative at ∞sp,σ

and positive at all other archimedean places of F , then repeating the proof of

Theorem 3.5.3 shows that∑
A0∈M(1,0)(C)

A∈CMK,Φσ (C)

∑
f∈LB(A0,A)
〈f,f〉CM=α

1

#Aut(A0, A)
=
h(K0)

w(K0)
· ρ(αs−1).

The only difference is in the calculation of the orbital integral (Lemma 3.5.5),

where one replaces the β of Theorem 3.4.3 with the β of Proposition 3.4.1.

The inner sum on the left is empty if α is positive at∞sp,σ or negative at some

other archimedean place.

As σ : KΦ → C varies over all embeddings whose restriction to K0 is ι,

∞sp,σ varies over all archimedean places of F sp, each counted with multiplicity

[KΦ : Q]/[Ksp : Q]. If α is negative at exactly one archimedean place v of F ,
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and if this place v lies on F sp, then we compute

d̂eg ẐΦ(α, y) =
1

[KΦ : Q]

∑
σ:KΦ→C
σ|K0

=ι

∑
z∈XσΦ(C)

GrΦ(α, y, z)

#Aut(z)

=
1

[KΦ : Q]

∑
σ:KΦ→C
σ|K0

=ι

∑
A0∈M(1,0)(C)

A∈CMK,Φσ (C)

∑
f∈LB(A0,A)
〈f,f〉CM=α

β1(4π|yα|∞sp,σ)

#Aut(A0, A)

=
1

[Ksp : Q]

h(K0)

w(K0)
· β1(4π|yα|v) · ρ(αs−1).

If no such v exists, then the inner sum on the third line is empty. To complete

the proof, recall from Proposition 3.1.6 that, under our hypotheses on the

discriminants of K0 and K, s = d−1
F . �

3.8. Arithmetic divisors on M. In this subsection we study arithmetic

intersection theory on the OK0-stack

M =M(1,0) ×OK0
M(n−1,1)

of the introduction. Recall that M is smooth of relative dimension n − 1

over OK0 [disc(K0)−1]. If S is a connected OK0-scheme, then to every point

(A0, A) ∈M(S) we have attached an OK0-module

L(A0, A) = HomOK0
(A0, A)

and an OK0-Hermitian form 〈·, ·〉 defined by (1.2.1).

Definition 3.8.1. For any nonzero m ∈ Z, let Z(m) be algebraic stack

over OK0 whose functor of points assigns to any connected OK0-scheme S

the groupoid of triples (A0, A, f), where (A0, A) ∈ M(S), and f ∈ L(A0, A)

satisfies 〈f, f〉 = m.

We call the stacks Z(m) the Kudla-Rapoport divisors. By [26, Prop. 2.10],

the natural map Z(m) → M is finite and unramified. As in Section 3.7, we

abbreviate XΦ for the 1-dimensional stack

XΦ =M(1,0)/OΦ
×OΦ

CMΦ.

The map CMΦ −→M(n−1,1)/OΦ
defined by restricting the action of OK to OK0

induces a map

XΦ →M/OΦ
.

A point in the intersection of XΦ and Z(m), defined over some OΦ-scheme S, is

a triple (A0, A, f) in which (A0, A, f) ∈ Z(m), and A is endowed with complex

multiplication by OK . We know from Section 3.2 that the induced OK-action

on L(A0, A) then endows L(A0, A) with additional structure: a totally positive
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definite OK-Hermitian form 〈·, ·〉CM whose trace is the original Hermitian form

〈·, ·〉. Thus 〈f, f〉CM must satisfy

m = TrF/Q〈f, f〉CM.

In this way we see that the stack theoretic intersection

XΦ ∩ Z(m) = XΦ ×M/OΦ
Z(m)/OΦ

admits a decomposition

(3.8.1) XΦ ∩ Z(m) =
⊔
α∈F

TrF/Q(α)=m

ZΦ(α),

where ZΦ(α) = ZOFΦ (α) is the stack of Section 3.5.

Definition 3.8.2. Define the intersection multiplicity

I(XΦ : Z(m)) =
∑

p⊂OΦ

log(N(p))

[KΦ : Q]

∑
z∈(XΦ∩Z(m))(kalg

Φ,p)

length
Ä
Osh
XΦ∩Z(m),z

ä
#Aut(z)

.

This is finite if XΦ ∩ Z(m) has dimension 0.

Remark 3.8.3. From the point of view of arithmetic intersection theory,

Definition 3.8.2 is a bit naive. The more natural definition is the Serre inter-

section multiplicity of [40, Ch. I.2] or [39, Ch. V.3], which takes into account

higher Tor terms of the structure sheaves OXΦ
and OZ(m). We have not done

this, as the stackM in which the intersection is taking place is neither flat nor

regular, and so is itself a rather naive place to be doing arithmetic intersection

theory. See the comments of Section 1.3. For the reader’s benefit, we only

point out that [39, p. 111] shows that under modest hypotheses these higher

Tor terms vanish, and Serre’s intersection multiplicity agrees with the naive

intersection multiplicity.

Theorem 3.8.4. Let m be any nonzero integer. If F is a field, then

(3.8.1) has dimension 0, and

I(XΦ : Z(m)) =
∑

α∈F×,α�0
TrF/Q(α)=m

d̂eg ẐΦ(α, y)

for any y ∈ R>0.

Proof. The assumption that F is a field implies that every α ∈ F with

TrF/Q(α) = m must satisfy α ∈ F×. By Proposition 3.5.2 the right-hand side

of (3.8.1) has dimension zero, and the only nonempty contribution comes from
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totally positive α. Therefore, (3.8.1) implies

I(XΦ : Z(m)) =
∑
α∈F×

TrF/Q(α)=m

d̂egZΦ(α),

where d̂eg is the Arakelov degree of Definition 3.6.1, and the claim follows from

(3.7.5). �

In order to construct a Green function for the divisors Z(m), we first

describe the complex uniformizations of the algebraic stacks M and Z(m),

following [26]. Recall that K0 comes with a fixed embedding ι : K0 → C. Let

δ ∈ K0 be the unique square root of disc(K0) for which δ = i · |δ|. If W is any

K0-vector space, then WR = W ⊗Q R is a C-vector space.

Definition 3.8.5. A principal Hermitian lattice of signature (r, s) is a pro-

jective OK0-module A of rank r + s together with a Hermitian form H of

signature (r, s) under which A is self-dual.

Let A and A0 be a principal Hermitian lattices of signature (n− 1, 1) and

(1, 0), respectively, with Hermitian forms H and H0. Define a Q-symplectic

form λ on AQ by

(3.8.2) δ · λ(v, w) = H(v, w)−H(w, v),

and a Q-symplectic form λ0 on A0Q by the same formula, with H replaced by

H0. The OK0-module

LB(A0,A) = HomOK0
(A0,A)

carries a natural Hermitian form 〈f1, f2〉 = f∗2 ◦f1, where for any f ∈ LB(A0,A)

we define f∗ : A→ A0 by the relation H(fv, w) = H0(v, f∗w). The Hermitian

forms H0, H, and 〈·, ·〉 are related by

H(f1v1, f2v2) = H0(v1, v2) · 〈f1, f2〉.

Abbreviate

V = LB(A0,A)⊗Z Q,

and let D be the set of negative C-lines in the Hermitian space VR. Given

a nonzero isotropic vector e ∈ VR, there is an isotropic e′ ∈ VR such that

〈e, e′〉 = δ. The restriction of 〈·, ·〉 to the orthogonal complement of the

C-span of {e, e′} is positive definite, and so we may extend {e, e′} to a C-basis

e, e1 . . . , en−2, e
′ ∈ VR in such a way that the Hermitian form is given by

〈x, y〉 = tx ·
Å

δ
A

−δ

ã
· y
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for a diagonal matrix A ∈Mn−2(R) with positive diagonal entries. There is a

bijection

(3.8.3) D ∼= {(w, u) ∈ C× Cn−2 : Tr(δw) + tuAu < 0}

defined by associating (w, u) to the negative C-line spanned bywu
1

 ∈ Cn ∼= VR.

We say that the basis e, e1, . . . , en−2, e
′ and the coordinates (w, u) are adapted

to the isotropic vector e, which should be thought of as the limit as w → i ·∞.

The coordinates (w, u) make D into a complex manifold. If n = 1, then VR
has signature (0, 1) and so has no nonzero isotropic vector. In this degenerate

case, D consists of a single point.

Any choice of nonzero vector in A0Q determines an isomorphism (evalua-

tion at the chosen vector) of K-vector spaces V → AQ, which identifies H with

a positive rational multiple of 〈·, ·〉 and identifies D with the space of negative

lines in AR. This identification does not depend on the choice of vector used

in its definition. Any h ∈ D, viewed as a negative line in the complex vector

space AR, determines an endomorphism Jh of AR by

Jhv =

−iv if v ∈ h

iv if v ∈ h⊥,

where h⊥ is the orthogonal complement of h with respect to H. Of course

Jh ◦ Jh = −1,

and it is easy to see that the quadratic form λ(Jhv, v) on AR is positive definite.

A little linear algebra shows that every R-linear endomorphism of AR satisfying

these two properties is of the form Jh for a unique h ∈ D.

We now describe the complex uniformization of M(C), following [26].

The complex elliptic curve A0(C) = A0R/A0, with its principal polarization

determined by λ0, and its natural OK0-action, determines a point ofM(1,0)(C).

To each h ∈ D there is an associated (Ah, κh, λh) ∈M(n−1,1)(C) in which

• Ah(C) = AR/A with the complex structure determined by Jh,

• κh : OK0 → End(Ah) is induced by the OK0-module structure on A,

• λh : Ah → A∨h is the polarization induced by the symplectic form λ.

The rule h 7→ (A0, Ah) defines a morphism of complex orbifolds

D →M(C).

Let ΓA be the automorphism group of (A, H), and let ΓA0 be the automorphism

group of (A0, H0) (so that ΓA0 is just the group of roots of unity in K0). The

group Γ = ΓA0 ×ΓA acts on LB(A0,A) through automorphisms preserving the
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Hermitian form 〈·, ·〉, and so acts on the space D. The pair (A0, Ah) depends

only on the Γ-orbit of h, and we obtain a morphism of complex orbifolds

[Γ\D]→M(C)

identifying [Γ\D] with a connected component ofM(C). The other connected

components are obtained by repeating this construction for each of the finitely

many isomorphism classes of pairs (A0,A).

Given a nonisotropic f ∈ LB(A0,A), define

D(f) = {h ∈ D : f ⊥ h}.

Following [21] or [3] there is a standard way to construct a smooth function on

DrD(f) with a logarithmic singularity along D(f). Let fh be the orthogonal

projection of f to h, and set

R(f, h) = −〈fh, fh〉,

a nonnegative real analytic function on D whose zero set is D(f). If we write

f = ae+ b1e1 + · · ·+ bn−2en−2 + ce′

in terms of a basis adapted to an isotropic e ∈ AR, then this function is given

by the explicit formula

(3.8.4) R(f, h) =
|δ(cw − a) + tbAu|2

|δ(w − w) + tuAu|

in the coordinates (3.8.3), where tb = [b1 · · · bn−2]. This calculation shows that

D(f) is a complex analytic divisor on D, defined by the equation

δ(cw − a) + tbAu = 0.

If 〈f, f〉 < 0, then D(f) = ∅, and R(f, h) is a positive function on D. In the

degenerate case n = 1, the set D(f) is empty, and R(f, h) = −〈f, f〉. For any

h ∈ D, each f ∈ LB(A0,A) induces a homomorphism of real Lie groups

f : A0(C)→ Ah(C),

and linear algebra shows that this map is complex analytic if and only if

h ∈ D(f). In this way we obtain a morphism of orbifolds[
Γ\

⊔
f∈LB(A0,A)
〈f,f〉=m

D(f)
]
→ Z(m)(C)

defined by sending h ∈ D(f) to the triple (A0, Ah, f). The image is an open

and closed suborbifold of Z(m)(C), and taking the disjoint union over all iso-

morphism classes of pairs (A0,A) gives a complex uniformization of Z(m)(C).

The function β1(x) of (3.7.1) has a logarithmic singularity at x = 0, in the

sense that β1(x) + log(x) can be extended smoothly to R. Furthermore, β1(x)
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decays exponentially as x → ∞. Given a positive parameter y ∈ R, define a

smooth function

Gr(f, y, h) = β1

Ä
4πyR(f, h)

ä
on D r D(f). If g(h) = 0 is any equation for the divisor D(f) on some open

subset U of D, then (3.8.4) shows that Gr(f, y, h)+log |g(h)|2 extends smoothly

to all of U . For nonzero m ∈ Z, the sum

Gr(m, y, h) =
∑

f∈LB(A0,A)
〈f,f〉=m

Gr(f, y, h)

defines a Green function, in the sense of [11], [40], for the orbifold divisor[
Γ\

⊔
f∈LB(A0,A)
〈f,f〉=m

D(f)
]
→ [Γ\D].

Using the complex uniformizations of Z(m)(C) and M(C) described above,

the function Gr(m, y, ·), constructed now for every isomorphism class of pairs

(A0,A), defines a Green function for the divisor Z(m) on M. If m < 0, then

Gr(m, y, ·) is a smooth function on M(C).

Using the forgetful map XΦ →M/OΦ
, it makes sense to evaluate Gr(m, y, ·)

on the finite set of points of the complex fiber of XΦ. More precisely, we define

Gr(m, y,XΦ) =
1

[KΦ : Q]

∑
σ:KΦ→C
σ|K0

=ι

∑
z∈XσΦ(C)

Gr(m, y, z)

#Aut(z)
.

Here X σΦ is the C-scheme obtained from XΦ by base change through σ. There is

a slight abuse of notation on the right-hand side, as we are confusing z ∈ X σΦ(C)

with its image in (M/OΦ
)σ(C) ∼= M(C). The right-hand side is only defined

if the images of X σΦ and Z(m) have no common points in the complex fiber of

M. This is equivalent to (3.8.1) being 0-dimensional.

Theorem 3.8.6. Let m be any nonzero integer. If F is a field, then

(3.8.1) has dimension 0, and

Gr(m, y,XΦ) =
∑

α∈F×,α 6�0
TrF/Q(α)=m

d̂eg ẐΦ(α, y)

for any y ∈ R>0.

Proof. We already saw in Theorem 3.8.4 that (3.8.1) has dimension 0.

Suppose we have a point z ∈ XΦ(C) representing a pair (A0, A). Set A0 =

H1(A0(C),Z) and A = H1(A(C),Z), viewed as principal Hermitian lattices

using the Hermitian forms H0 and H determined, using (3.8.2), by the po-

larizations λ0 and λ. The canonical isomorphism AR ∼= Lie(A) determines a
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complex structure on AR, and under this complex structure multiplication by

i has the form Jh for a unique h ∈ D. If εsp ∈ FR is the idempotent corre-

sponding to the place ∞sp determined by the restriction of ϕsp : K → C to F ,

then the negative line h is none other than h = εsp · AR.

It follows easily that for any f ∈ LB(A0, A), we have

R(f, h) = −〈fh, fh〉 = −〈εspf, εspf〉 = |〈f, f〉CM|∞sp .

Therefore, Gr(f, y, h) = β1

Ä
4πy|〈f, f〉CM|∞sp

ä
and

∑
z∈XΦ(C)

Gr(m, y, z)

#Aut(z)
=

∑
(A0,A)∈XΦ(C)

∑
f∈LB(A0,A)
〈f,f〉=m

β1

Ä
4πy|〈f, f〉CM|∞sp

ä
#Aut(A0, A)

=
∑
α∈F

TrF/Q(α)=m

∑
(A0,A)∈XΦ(C)

∑
f∈LB(A0,A)
〈f,f〉CM=α

β1

Ä
4πy|α|∞sp

ä
#Aut(A0, A)

=
∑
α∈F

TrF/Q(α)=m

∑
z∈XΦ(C)

GrΦ(α, y, z)

#Aut(z)
,

where the final equality is by the definition (3.7.2) of GrΦ(α, y, z) at a point

z ∈ XΦ(C). As F is a field and m 6= 0, we may restrict to α ∈ F× in

the final sum. As the Hermitian form 〈·, ·〉CM is negative definite at ∞sp by

Proposition 3.4.1, we may further restrict to α 6� 0.

Now suppose z ∈ X σΦ(C). As in the discussion preceding (3.7.3), we may

identify X σΦ(C) ∼= XΦσ(C). Repeating the argument above with Φ replaced by

Φσ and∞sp replaced by∞sp,σ, and using (3.7.3) instead of (3.7.2), shows that

Gr(m, y,XΦ) =
1

[KΦ : Q]

∑
α∈F×,α 6�0
TrF/Q(α)=m

∑
σ:KΦ→C
σ|K0

=ι

∑
z∈XσΦ(C)

GrΦ(α, y, z)

#Aut(z)
.

Comparing with (3.7.4) completes the proof. �

4. Eisenstein series

Keep K0, F , K, Φ, and KΦ as in Section 3. In this section we construct

a Hilbert modular Eisenstein series EΦ(τ, s) on HF . This Eisenstein series is

incoherent in the sense of Kudla [21], and so vanishes at s = 0. We use formulas

of Yang [45] to compute the Fourier coefficients of the derivative at s = 0, and

show that these coefficients agree with the arithmetic degrees appearing in

Theorem 3.7.2.
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4.1. A Hilbert modular Eisenstein series. In this subsection we attach to

every c ∈ F×A a Hilbert modular Eisenstein series E(τ, s; c, ψF ) of the type

considered in [45].

First we quickly recall some of the local theory of [21], [24], [27], [45]. Fix

a place v of F and a c ∈ F×v , and let χv be the character of F×v associated

to the quadratic extension Kv/Fv. Let ψ be an additive character Fv → C×.

Associated to the Fv-quadratic space (Kv, cxx) and the character ψ is a Weil

representation ωc,ψ of SL2(Fv) on the space of Schwartz functions S(Kv) on

Kv; see [20, Ch. II.4]. For s ∈ C, let I(χv, s) be the space of the induced

representation of the character χv(x) · |x|sv. There is an SL2(Fv)-intertwining

operator

λc,ψ : S(Kv)→ I(χv, 0)

defined by

λc,ψ(ϕ)(g) = (ωc,ψ(g)ϕ)(0).

For any ϕ ∈ S(Kv), there is an associated section Φ(g, s) ∈ I(χv, s) character-

ized by the properties

• Φ(·, 0) = λc,ψ(ϕ),

• Φ(g, s) is standard in the sense that Φ(k, s) is independent of s for all

k in the usual maximal compact subgroup of SL2(Fv).

It will always be clear from context whether Φ refers to a section of I(χv, s),

or to the fixed CM type of K.

If v is a finite place of F , let 1OK,v ∈ S(Kv) be the characteristic function

of OK,v, and let

Φc,ψ(g, s) ∈ I(χv, s)

be the standard section satisfying Φc,ψ(·, 0) = λc,ψ(1OK ,v). If v is archimedean,

let ϕ(x) = exp(−2π|cxx|v) be the Gaussian, and let Φc,ψ be the corresponding

standard section satisfying Φc,ψ(·, 0) = λc,ψ(ϕ). If

sign(c) = c/|c|v

denotes the sign of c, then Φc,ψ is the normalized standard section of weight

sign(c), characterized by the property

Φc,ψ

ÇÇ
cos θ sin θ

− sin θ cos θ

å
, s

å
= esign(c)·iθ

for every θ ∈ R; see for example [24, (4.29)].

For each α ∈ F×v and Φ ∈ I(χv, s), define the local Whittaker function

Wα(g, s; Φ, ψ) =

∫
Fv

Φ
((

0 −1
1 0

)
( 1 x

0 1 ) g, s
)
ψv(−αx) dx,
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where g ∈ SL2(Fv), and the Haar measure on Fv is self-dual with respect to ψ.

When Φ = Φc,ψ as above, we abbreviate

(4.1.1) Wα(g, s; c, ψ) = Wα(g, s; Φc,ψ, ψ).

If we fix a δ ∈ F×v and set (δψ)(x) = ψ(δx), then Φc,δψ = Φδc,ψ and

(4.1.2) Wα(g, s; c, δψ) = |δ|1/2v ·Wδα(g, s; δc, ψ)

for all α ∈ Fv. Indeed, the first equality is clear from explicit formulas for the

Weil representation, as in [20, Ch. II.4], and the second is clear from the first.

Now we switch to the global setting. Let ψQ : Q\QA → C× be the usual

additive character, whose archimedean component satisfies ψQ(x) = e2πix for

all x ∈ R, and whose nonarchimedean components are unramified. Set

ψF (x) = ψQ(TrF/Q(x)).

Let

χ : F×A → {±1}

be the composition of (3.0.2) with the product map {±1}π0(F ) → {±1}, so

that χ =
∏
v χv, and let I(χ, s) = ⊗vI(χv, s) be the representation of SL2(FA)

induced by the character χ. Given any c ∈ F×A , we define a section of I(χ, s)

by Φc,ψF = ⊗vΦcv ,ψF,v and an Eisenstein series

E(g, s; c, ψF ) =
∑

γ∈B(F )\SL2(F )

Φc,ψF (γg, s)

on SL2(FA), where B ⊂ SL2 is the subgroup of upper triangular matrices.

Let

HF = {x+ iy ∈ FC : x, y ∈ FR, y � 0}
be the F -upper half plane. A choice of isomorphism FR ∼= Rn, which we do

not make, identifies HF with a product of n complex upper half planes. For

τ = x+ iy ∈ HF , set

gτ =

Ç
1 x

1

åÇ
y1/2

y−1/2

å
∈ SL2(FR),

viewed as an element of SL2(FA) with trivial nonarchimedean components, and

set (recall that dF is the different of F/Q)

E(τ, s; c, ψF ) = N(dF )
s+1

2 · L(s+ 1, χ)

NormF/Q(y)1/2
· E(gτ , s; c, ψF ),

where L(s, χ) =
∏
v L(s, χv) is the Dirichlet L-function of χ, including the

Γ-factor

L(s, χv) = π−(s+1)/2 · Γ
Å
s+ 1

2

ã
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for archimedean v. Thus E(τ, s; c, ψF ) is a Hilbert modular form, and it admits

a Fourier expansion

E(τ, s; c, ψF ) =
∑
α∈F
Eα(τ, s; c, ψF )

in which

Eα(τ, s; c, ψF ) = NormF/Q(y)−1/2
∫
F\FA

E

ÇÇ
1 b

1

å
gτ , s; c, ψF (−bα)

å
db.

Assume that c ∈ F×A satisfies cOF = d−1
F , cv = 1 for every archimedean

v, and χ(c) = −1. The second condition implies that E(τ, s; c, ψF ) has parallel

weight one. The third condition implies that the FA-quadratic space (KA, cxx)

is not the adelization of any F -quadratic space, and so the Eisenstein series

E(τ, s; c, ψF ) is incoherent in the sense of [21]. In particular,

E(τ, 0; c, ψF ) = 0

by [21, Th. 2.2]. Strictly speaking, the notion of an incoherent Eisenstein series

only makes sense if F is a field. In general, we write

F =
∏
j

Fj

as a product of totally real fields. There are corresponding factorizations K =∏
jKj , where each Kj is a quadratic totally imaginary extension of Fj , and

HF =
∏
j

HFj ,

where HFj is the Fj-upper half plane. The element c factors as c =
∏
j cj ,

where each cj ∈ F×jA ⊂ F×A has trivial components away from the factor F×jA.

Similarly ψF =
∏
j ψFj , and there is a factorization of Eisenstein series

(4.1.3) E(τ, s; c, ψF ) =
∏
j

Ej(τj , s; cj , ψFj ).

Each Eisenstein series in the factorization is then either coherent or incoherent,

depending on whether χ(cj) = 1 or −1. All incoherent factors vanish at s = 0,

and as
∏
j χ(cj) = χ(c) = −1, there is at least one incoherent factor.

Recall that the fixed CM type Φ has a distinguished element ϕsp : K → C,

which determines a direct factor Ksp of K with maximal totally real subfield

F sp. Recall also that the restriction of ϕsp to F determines an archimedean

place denoted ∞sp. We will be restricting our attention to Eisenstein series

E(τ, s; c, ψF ) with c chosen so that all factors on the right-hand side of (4.1.3)

are coherent, except for the incoherent factor corresponding to F sp.
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Definition 4.1.1. Define a Hilbert modular Eisenstein series of weight one

EΦ(τ, s) =
∑
c∈Ξ

E(τ, s; c, ψF ),

where the sum is over the finite set Ξ of NmK/F (“O×K)-orbits of c ∈ A×F satisfying

• cOF = d−1
F ,

• cv = 1 for every archimedean v,

• for every factor Fj of F

χ(cj) =

1 if Fj 6= F sp

−1 if Fj = F sp.

To understand the motivation behind the particular set Ξ, reconsider the

collection of Hermitian spaces LB of Remark 3.4.2. Thus LB consists of all

isomorphism classes of Hermitian spaces (LB(A0, A), 〈·, ·〉CM) as

(A0, A) ∈ (M(1,0) × CMa
Φ)(C)

varies. Take a = OF , and assume that s = d−1
F (which is the case if K0 and

K have relatively prime discriminants, by Proposition 3.1.6). The elements of

LB are alternately characterized as the isomorphism classes of pairs (L,H) in

which L is a projective OK-module of rank 1, H is a K-valued OK-Hermitian

form on L, the ideal of (L,H) is d−1
F , and (L,H) is negative definite at ∞sp

and positive definite at all other archimedean places. For any such (L,H),

there is a β ∈ F×A and an isomorphism of KA-Hermitian spaces

(L⊗OK KA, H) ∼= (KA, βxy)

identifying L ⊗OK “OK ∼= “OK . This β must satisfy βOF = d−1
F , be negative

at ∞sp and positive at all other archimedean places, and satisfy χ(βj) = 1 for

each factor Fj of F . The finite part of β is well defined up to multiplication

by a norm from “O×K , and each archimedean component is well defined up

to sign. This makes clear the connection between Ξ and LB: the elements

of Ξ arise by taking the β’s corresponding to elements of LB and replacing

the negative component at ∞sp by a positive component. The corresponding

KA-Hermitian spaces (KA, cxy) from which the Eisenstein series E(τ, s; c, ψF )

are constructed are therefore incoherent at the factor F sp and coherent at all

other factors. That is to say, the KjA-Hermitian space (KjA, cjxy) arises as

the adelization of a Kj-Hermitian space if any only if Fj 6= F sp.

4.2. Fourier coefficients. Of course EΦ(τ, 0) = 0, and so we study the

derivative at s = 0, which has a Fourier expansion

d

ds
EΦ(τ, s)

∣∣∣
s=0

=
∑
α∈F

bΦ(α, y) · qα
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in which

qα = exp(2πiTrF/Q(ατ)).

We will give an explicit formula for the coefficients, at least when α ∈ F×, and

compare them with the formulas of Theorem 3.7.2.

For α ∈ F× and c ∈ Ξ, define a finite set of places of F

Diff(α, c) = {v : χv(αc) = −1}.

Note that every v ∈ Diff(α, c) is nonsplit in K and that there is a disjoint

union

Diff(α, c) =
⊔
j

{places v of Fj : χv(αc) = −1}.

Our hypotheses on c imply that every set in the disjoint union has even cardi-

nality, except for

Diffsp(α, c) = {places v of F sp : χv(αc) = −1},

which has odd cardinality. In particular, Diff(α, c) has odd cardinality, and if

it contains a unique place of F , that place must lie on the factor F sp.

If v is a finite place of F and b is a fractional OF,v-ideal, let

ρv(b) = #{B ⊂ OK,v : BB = bOK,v}.

If b is a fractional OF -ideal, set ρ(b) =
∏
v ρv(bv), as in the introduction. The

following proposition follows from calculations of Yang [45].

Proposition 4.2.1. Suppose α ∈ F×, let dK/F be the relative discrimi-

nant of K/F , and let r denote the number of places of F ramified in K (in-

cluding the archimedean places). Suppose c ∈ Ξ.

(1) If #Diff(α, c) > 1, then ords=0 Eα(τ, s; c, ψF ) > 1.

(2) If Diff(α, c) = {p} with p finite prime of F , then

d

ds
Eα(τ, s; c, ψF )

∣∣∣
s=0

=
−2r−1

N(dK/F )1/2
· ρ(αdF p

−εp) · ordp(αdF p) · log(N(p)) · qα,

where εp = 0 if p ramifies in K , and εp = 1 if p is unramified in K .

(3) If Diff(α, c) = {v} with v an archimedean place of F , then

d

ds
Eα(τ, s; c, ψF )

∣∣∣
s=0

=
−2r−1

N(dK/F )1/2
· ρ(αdF ) · β1(4π|yα|v) · qα.

Recall that β1(t) was defined by (3.7.1).

Proof. Returning briefly to the local setting of (4.1.1), define the normal-

ized local Whittaker function

W ∗αv(gv, s; cv, ψv) = L(s+ 1, χv) ·Wαv(gv, s; cv, ψv).
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Here ψv is any local additive character. The Fourier coefficient factors as a

product

Eα(τ, s; c, ψF ) = N(dF )(s+1)/2NormF/Q(y)−1/2
∏
v

W ∗αv(gτ,v, s; cv, ψF,v).

The character ψunr(x) = ψF (cx) is an unramified character of F×A , and (4.1.2)

shows that

(4.2.1) Eα(τ, s; c, ψF ) = N(dF )s/2NormF/Q(y)−1/2
∏
v

W ∗δvαv(gτ,v, s; 1, ψunr
v ).

Let v be a nonarchimedean place of F , fix a uniformizing parameter

$ ∈ Fv, let fv = ordv(dK/F ), and let qv = #OF,v/($). We now invoke

[45, Prop. 2.1] and [45, Prop. 2.3]. If χv(αc) = 1, then

W ∗δvαv(gτ,v, 0; 1, ψunr
v )

=χv(−1)ε(1/2, χv, ψ
unr
v )ρv(αdF ) ·

2q
−fv/2
v if v is ramified in K

1 if v is unramified in K.

If instead χv(αc) = −1, then W ∗δvαv(gτ,v, s; 1, ψunr
v ) vanishes at s = 0, and

d

ds
W ∗δvαv(gτ,v, s; 1, ψunr

v )
∣∣∣
s=0

= χv(−1)ε(1/2, χv, ψ
unr
v ) log(qv) ·

ordv(αdF ) + 1

2

×

2q
−fv/2
v · ρv(αdF ) if v is ramified in K

ρv(αdF p
−1
v ) if v is unramified in K,

where pv is the prime ideal associated to v.

Now suppose v is an archimedean place of F . In this case we cite [45,

Prop. 2.4]. If χv(αc) = 1, then

W ∗δvαv(gτ,v, 0; 1, ψunr
v ) = 2χv(−1)ε(1/2, χv, ψ

unr
v ) · y1/2

v e2πiαvτv .

If χv(αc) = −1, then W ∗δvαv(gτ,v, 0; 1, ψunr
v ) = 0 and

d

ds
W ∗δvαv(gτ,v, s; 1, ψunr

v )
∣∣∣
s=0

= χv(−1)ε(1/2, χv, ψ
unr
v ) ·y1/2

v e2πiαvτvβ1(4π|yα|v).

Everything now follows easily. The above formulas show that when v ∈
Diff(α, c), the v factor on the right-hand side of (4.2.1) vanishes at s = 0, and

so the order of vanishing of Eα(τ, s; c, ψF ) is at least #Diff(α, c). If Diff(α, c) =

{w}, then differentiating (4.2.1) at s = 0 shows that

d

ds
Eα(τ, s; c, ψF )

∣∣∣
s=0

= NormF/Q(y)−1/2 · d
ds
W ∗δwαw(gτ,w, s; 1, ψunr

w )
∣∣∣
s=0

×
∏
v 6=w

W ∗δvαv(gτ,v, 0; 1, ψunr
v ),
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and the claim follows from the formulas above and the root number calculation∏
v

ε(1/2, χv, ψ
unr
v ) = χ(c) ·

∏
v

ε(1/2, χv, ψF,v) = −1.

(The first equality follows from [22, (3.29)], the second follows from the func-

tional equation of L(s, χ), which shows that ε(1/2, χ) = 1.) �

By the first claim of the proposition, for any α ∈ F×, we have

bΦ(α, y) · qα =
∑
c∈Ξ

E ′α(τ, 0; c, ψF )

=
∑
v

∑
c∈Ξ

Diff(α,c)={v}

E ′α(τ, 0; c, ψF ),

where the outer sum is over all places v of F . This sum is unchanged if we

restrict further to places v of F sp that are nonsplit in Ksp, as these are the

only places for which the relation Diff(α, c) = {v} can ever hold.

Corollary 4.2.2. Suppose α ∈ F× and y ∈ F�0
R .

(1) If α is totally positive, then

bΦ(α, y) =
−2r−1

N(dK/F )1/2
·
∑
p

ordp(αdF p) · ρ(αdF p
−εp) · log(N(p)),

where the sum is over all primes p of F sp nonsplit in Ksp. In particular,

bΦ(α, y) is independent of y.

(2) If α is negative at exactly one archimedean place, v, of F , and if this

v lies on the factor F sp, then

bΦ(α, y) =
−2r−1

N(dK/F )1/2
· ρ(αdF ) · β1(4π|yα|v).

(3) In all other cases, bΦ(α, y) = 0.

Proof. Suppose first that α is totally positive, so that Diff(α, c) contains

only finite places of F . Proposition 4.2.1 implies

bΦ(α, y) =
−2r−1

N(dK/F )1/2

∑
p

∑
c∈Ξ

Diff(α,c)={p}

ρ(αdF p
−εp) · ordp(αdF p) · log(N(p)),

where the first sum is over all primes of F sp that are nonsplit inKsp. Obviously,

we may further restrict to those p for which ρ(αdF p
−εp) 6= 0, and for each p,

there is a unique choice of c ∈ Ξ for which Diff(α, c) = {p}. This proves the

first claim, and the proofs of the remaining claims are similar. �

Comparing Theorem 3.7.2 and Corollary 4.2.2 proves the following result.
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Theorem 4.2.3. Assume the discriminants of K0/Q and F/Q are odd

and relatively prime. If α ∈ F× and y ∈ F�0
R , then

d̂eg ẐΦ(α, y) = − h(K0)

w(K0)
·

»
N(dK/F )

2r−1[Ksp : Q]
· bΦ(α, y).

Let iF : H → HF be the diagonal embedding of the usual complex upper

half plane into HF . The restriction EΦ(iF (τ), s) of EΦ(τ, s) to H vanishes at

s = 0, and the derivative has a Fourier expansion

d

ds
EΦ(iF (τ), s)

∣∣∣
s=0

=
∑
m∈Z

cΦ(m, y) · qm

in which

cΦ(m, y) =
∑
α∈F

TrF/Q(α)=m

bΦ(α, y).

Here τ = x+ iy ∈ H and q = exp(2πiτ), as usual.

Corollary 4.2.4. Assume the discriminants of K0/Q and F/Q are odd

and relatively prime. If F is a field and m is nonzero, then

I(XΦ : Z(m)) + Gr(m, y,XΦ) = − h(K0)

w(K0)
·

»
N(dK/F )

2r−1[K : Q]
· cΦ(m, y)

for all y ∈ R>0.

Proof. Theorems 3.8.4 and 3.8.6 imply

I(XΦ : Z(m)) + Gr(m, y,XΦ) =
∑
α∈F

TrF/Q(α)=m

d̂eg ẐΦ(α, y),

and so the claim is clear from Theorem 4.2.3. �
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