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Langlands base change for GL(2)
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Abstract

Let F be a totally real Galois number field. We prove the existence of

base change relative to the extension F/Q for every holomorphic newform

of weight at least 2 and odd level, under simple local assumptions on the

field F .

1. Introduction

In their 1997 paper [HM97], Hida and Maeda proposed a strategy to at-

tack the problem of non-abelian base change for a totally real extension F . The

case of solvable base change was known to be true by the work of Langlands

(cf. [Lan80]), with a proof that also covers the case of even Galois represen-

tations. Given a newform f := f1, they propose to find a sequence of links

(congruences modulo suitable primes) starting from f and ending in some new-

form fj (and calling f2 to fj−1 the modular forms appearing as châınons of

this chain) such that for some reason (in their case, they take a CM form) it is

known that fj can be lifted to a Hilbert modular form on F . Then, assuming

that for the restrictions to the absolute Galois group GF of F of the Galois

representations in this chain, suitable Modularity Lifting Theorems (M.L.T.)

apply at all the links, we can propagate modularity (over F ) from the restric-

tion to GF of fi+1 to that of fi (i = j − 1, j − 2, . . . , 1), thus proving that f

can be lifted to F . In other words, through suitable congruences and M.L.T.,

the liftability of fj to F implies that of fj−1, and so on, until deducing the

liftability of the given f , the first newform in the chain of congruences. In this

way they manage to prove that base change holds for infinitely many modular

forms of prime power level.

In the new decade, new M.L.T. (over totally real number fields) have been

proved and, in particular, recent results of Kisin are strong enough to suggest

that this strategy can now be applied to prove base change in almost full
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generality. Recent M.L.T. still have conditions on the size of the residual image

and on its restriction to the decomposition group at p but, on the other hand,

in the recent proofs of Serre’s conjecture (cf. [Ser87]) given by the author and

by Khare-Wintenberger (see [Die] and [KW09a], [KW09b]) new astuces have

been developed to propagate modularity despite these conditions. In fact,

combining the Hida-Maeda strategy with strong Modularity Lifting Theorems

of Kisin (cf. [Kis09a], [Kis09c] and [Kis09b]), Skinner and Wiles (cf. [SW01])

and Geraghty (cf. [Ger]), the propagatory techniques (of the author and Khare-

Wintenberger) just mentioned, and some new ideas, we can prove base change

for GL(2) under some mild assumptions; namely, the following is true.

Theorem 1.1. Let F be a totally real Galois number field. Let f be a

holomorphic newform of weight at least 2 and odd level N . Assume that the

following two conditions are satisfied :

(1) the primes 2, 3, 7 and 11 are split in F ;

(2) if 5 | N , then 5 is split in F .

Then, f is liftable to F ; i.e., there is a Hilbert modular form f̂ over F such

that the restrictions to GF of the λ-adic Galois representations attached to f

agree with the Galois representations attached to f̂ .

In the last section, we will also include some elementary corollaries of our

base change result.

Remark. For modular forms that can also be obtained from a definite

quaternion algebra, assuming that the Galois group of F/Q is simply 2-con-

nected and some ramification conditions, Hida obtained a proof of base change

from Q to F subject to a conjecture on permutation representations ([Hid09]).

Remark. M.L.T. have also been applied by Clozel to obtain results of base

change in the opposite direction, i.e., to descend modularity of certain rational,

Galois invariant, Galois representations, from a totally real number field to Q
(cf. [Clo]).

Notation. In this paper, F will always denote a totally real Galois number

field. For every number field K, we will denote by GK the absolute Galois

group of K. We will denote by χ the p-adic or mod p cyclotomic character.

The value of p, and whether it is the p-adic or the mod p character, will always

be clear from the context. We will denote by ω a Teichmuller lift of the mod p

cyclotomic character. Given a Galois representation σ, we will denote by P(σ)

its projectivization.

Definitions. Let K be a number field. Let ρ̄p be a 2-dimensional, odd,

representation of GK with values on a finite extension of Fp.
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(1) We say that the image of ρ̄p is large if p ≥ 5 and the image contains

SL(2,Fp). In this case, it is easy to see that the image of P(ρ̄p) is iso-

morphic to one of the following two groups: PSL(2,Fpr) or PGL(2,Fpr)

for some r. Since p ≥ 5, this implies, in particular, that large images

are nonsolvable.

(2) We say that the image of ρ̄p is dihedral when the image of P(ρ̄p) is a

dihedral group.

(3) We say that the image of ρ̄p is bad-dihedral when it is dihedral, p > 2,

and the quadratic number field where the restriction of ρ̄p becomes

reducible is K(
√
±p), where the sign is (−1)(p−1)/2.

(4) We will say that f is a classical modular newform if it is a holomorphic

newform of weight at least 2.
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2. General description of the proof

We start with a given newform f of odd level and F a totally real Galois

number field, as in Theorem 1.1. We can assume that f does not have Complex

Multiplication (CM) and that Gal(F/Q) is nonsolvable (otherwise, base change

is known). Let us make some remarks that apply to all steps of the proof. We

will do a series of links as described in the introduction, and we will manage to

make all these links in such a way that in all the steps the residual representa-

tions will be irreducible and their images will not be bad-dihedral. We will also

ensure that a similar restriction holds for the restrictions to GF of the residual

images. Whenever applying the M.L.T. as in [Kis09c] and [Kis09b], we will

furthermore be in a situation where the residual projective image will contain

some PSL(2, ps) and elements of a prime order bigger than 5 (thus these linear

groups will be simple groups, and not A5), and we will also see that the same

holds for the restriction of the residual representations to GF . In short, in

most steps of our proofs (more precisely, as long as the good-dihedral prime is

in the level; see the following paragraph for more details), we will have at the

châınons a nonsolvable residual image, even after restriction to GF .
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In order to get such a control on residual images, we will first introduce

through level-raising a “good-dihedral prime” q in the level as in [KW09a].

This is a technique created in the proof of Serre’s conjecture given in [KW09a]

precisely to guarantee that residual images are nonsolvable as long as the good-

dihedral prime is not removed from the level. The next step is to apply the

“ramification swapping strategy” created in [Die], in conjunction with suitable

M.L.T. and the main result from [BLGG], to reduce to a situation where

all primes in the level are split in F . After this step, all the characteristics

where the congruences fi ≡ fi+1 hold will be primes that are split in F/Q. In

particular, all auxiliary primes introduced in the proof will be required to be

split in F/Q.

We will then proceed to perform the killing ramification at primes in the

level relying mainly on the M.L.T. in [Kis09a]. To verify that the conditions

to apply this result (to the restrictions to GF of the Galois representations

that are the châınons of this chain, in reverse order) hold, we will use ideas

similar to those employed in [Die] to control tame inertial weights of potentially

crystalline representations under certain conditions (via results of Caruso; cf.

[Car06]), together with a new, very useful, trick, which we will call the “odd

weight trick.”

The main innovation of this paper comes at the step where (sooner or later

the time of the farewell should come. . . ) we remove the good-dihedral prime

from the level. Before doing so, we introduce a Micro-Good-Dihedral (MGD)

prime to the level. This will be a small prime (in fact, we will take p = 7 in

this paper, so let us just call it 7) such that, after showing that by some level-

raising arguments we can introduce “supercuspidal” ramification at 7, we are

reduced to consider modular forms of level divisible by 49 with ramification at

7 being given by a character of order 8 of the unramified quadratic extension

of Q7. Thus, 7 will work as an MGD prime in the following sense. As long as

we work in characteristics p such that p 6= 2, 7 and 7 is a square mod p (and

we will do so at all steps that go after losing our big good-dihedral prime q,

except for one step in characteristic 11, where we will show why everything

is fine by explicit computations), the local information at 7 will be enough to

ensure that the residual representations being considered are irreducible and

not bad-dihedral, even after restricting to GF .

We divide the long chain in three parts. In Fase uno we introduce the

big good-dihedral prime q and, after reducing (via swapping) to a situation

where all primes in the level are split in F , we play our “odd weight trick” and

kill ramification at all primes in the level. At the end we are reduced to the

case of a newform with “weight k, level q2, good dihedral at q” with k < q.

This newform is supercuspidal locally at q. In Fase dos we play our level-

raising trick to introduce the MGD prime 7 in the level. After this, we play
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again the “odd weight trick” (by introducing some nebentypus at 11) and we

are ready to kill ramification at q (farewell, big good-dihedral prime!). When

ending this second fase we are in the case of a newform of level 72 · 11, with

nebentypus at 11 and some odd weight k. This newform is principal series

locally at 11. More precisely, the corresponding Galois representations have

inertia Weil-Deligne parameter locally at 11 equal to (ψ ⊕ 1, N = 0), where ψ

is the quadratic character corresponding to Q(
√
−11), and it is supercuspidal

locally at 7. Finally, in Fase final, we make the final moves so that our chain

connects the original modular form with some newform fj of level 49 and

weight k ≤ 12, trivial nebentypus (thus even k), and supercuspidal at 7. For

all such newforms (there are just two conjugacy classes of such newforms, one

twisted of the other, in each of k = 4, 6, 8, 10, 12, and none in k = 2) we

observe that a suitable member of the conjugacy class is ordinary at 3 and

has residual image in GL(2,F3), the image is known to be irreducible and not

bad-dihedral even after restriction to GF (because of the local information

at 7). Thus, as in Wiles’ first paper on modularity of elliptic curves (applying

results of Langlands and Tunnell), we have mod 3 modularity for the restriction

to GF of these forms. Applying a M.L.T. for residually irreducible ordinary

representations of Skinner and Wiles (cf. [SW01]), we conclude that they can

be lifted to Hilbert modular forms on F .

This completes the chain. In the next three sections we will go through

the three fases in full detail.

3. Fase uno

Before starting, let us make a general remark that applies to all the steps

of the proof, not only to this section. As in [KW09a] and [Die], we will always

tacitly assume that residual representations in characteristic p have Serre’s

weight k ≤ p+ 1, because it is well known that by making a suitable twist (by

a power of χ), one can reduce to this case, and twists preserve modularity.

As a consequence of this, whenever we speak of a link between two modular

forms (or Galois representations), the reader should keep in mind that this

means that there is a congruence up to twist between the two forms.

Recall that all primes where we will build the châınons of our chain, except

for the primes in the level of f , can be taken, and so will they be, to be split

in F/Q (thanks in particular to the assumptions in Theorem 1.1). Thus, this

restriction will apply to all the auxiliary primes in the following construction.

Since there will be several auxiliary primes in our proof, let us name

them all right now; in particular, to know their relative sizes. Let us call pi,

i = 1, . . . , w the prime factors of the level N of f , and k its weight. Recall that

N is odd and that f does not have CM.
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We will need auxiliary primes bi, for i = 1, . . . ., w; r0,m and r1, all split

in F , satisfying

(∗) 2 ·max{N, k} < 2 · bi < r0 < m < r1

for every 1 ≤ i ≤ w. These are the auxiliary primes that we will use later. Let

us take B a constant bigger than r1 (and always make sure, in particular, that

B is bigger than 7).

Since we will apply the M.L.T. in [Kis09a] to the restrictions to GF of our

Galois representations at many steps, let us recall the statement of this theo-

rem. Since we will apply it to Galois representations that are base change of

representations attached to classical modular forms, recall that these represen-

tations are known to be always potentially semistable (equivalently, de Rham)

locally at p and with different Hodge-Tate weights {0, k− 1}. Together with a

condition on the size of the residual image, let us stress that there is a technical

condition required for this theorem to hold.

Theorem 3.1 (Kisin). Let F be a totally real Galois number field and p

be an odd prime. Let ρ be a representation of GF with values on a finite exten-

sion of Qp that is 2-dimensional, continuous, odd, absolutely irreducible and

ramified at finitely many primes, with p a prime that is split in F . Assume also

that the representation is, at all places v | p, de Rham of parallel Hodge-Tate

weights {0, k − 1}, k ≥ 2, and that the residual representation ρ̄ is absolutely

irreducible even when restricted to the absolute Galois group of F (ζp). Let us

also assume that the following technical condition is satisfied.

ρ̄|Dv is not isomorphic, for any v | p, to a twist ofÇ
χ ∗
0 1

å
.

Then, if ρ̄ is modular, ρ is also modular.

Remark. As recorded in a note added in proof to the published version of

[Kis09a], the condition that the representation should become semistable over

an abelian extension of Qp that appears in [Kis09a] can now be removed due

to recent work of Colmez (cf. [Col10]).

Since whenever we apply this M.L.T. the representation will be base

changed from Q and the characteristic p will be split in F , it will suffice to

check the last technical condition of the theorem over Q. Whenever we are

in a châınon of our chain linking fi to fi+1 and we are willing to propagate

modularity over F from fi+1 to fi via Theorem 3.1, we will have to check that

this local condition on the residual representation holds.

As for the condition on the residual image of the restriction to GF (ζp),

notice that whenever we can show that the restriction to GF has large image,
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since large implies nonsolvable, this will be enough to see that this condition

is satisfied.

We begin by changing to a weight 2 situation, since this will be required in

order to introduce a good-dihedral prime q as in [KW09a]. Given the family of

Galois representations attached to f , since f does not have CM, we know that

for almost every prime the residual image is large (due to Ribet’s Theorem in

[Rib85]), and so we choose a characteristic r0 where the residual image is large,

split in F , and as in (∗). We consider the residual representation, and take

a minimal weight 2 lift (as defined in [KW09a]), corresponding to a weight 2

modular form f2. (If the weight of the given f is 2, this step is not taking

place; we just ignore it, and thus f2 = f in this case.) Thus, the newform f2
has weight 2 and its level is N ′ · r0, where N ′ divides N . To ease notation, we

will assume that N ′ = N .

Theorem 3.1 will ensure that, when restricting to GF , modularity propa-

gates in reverse order (i.e., from f2 to f). In order to check that the technical

condition is satisfied, just observe that r0 is not in the level of f and is bigger

than twice its weight. Thus due to Fontaine-Laffaille theory, the residual tame

inertia weights are equal to the Hodge-Tate weights {0, k − 1}. On the other

hand, the residual image is large even after restriction to GF because of the

following lemma.

Lemma 3.2. Let p ≥ 5 be a prime and ρ̄ a 2-dimensional, odd, represen-

tation of GQ with values on a finite extension of Fp and large image. Let F

be a totally real Galois number field. Then the image of the restriction of ρ̄ to

GF is also large; i.e., it contains the nonsolvable group SL(2,Fp).

Proof. Consider P(ρ̄). We know that its image is of the form PSL(2,Fpr)

or PGL(2,Fpr) for some r. Since p > 3, the group PSL(2,Fpr) is simple. If we

consider the restriction of P(ρ̄) to GF , its image will be a normal subgroup of

the image of P(ρ̄); thus it either will be trivial or will contain PSL(2,Fpr).

Since ρ̄ is odd and F is totally real, we know that the restriction to GF of

P(ρ̄) has nontrivial image, because the image of complex conjugation gives a

matrix with eigenvalues 1 and −1, thus nontrivial even modulo scalar matrices.

Therefore, we conclude that the image of P(ρ̄) must contain PSL(2,Fpr),

and this proves the lemma. �

Now we want to add the good dihedral prime to the system of Galois

representations attached to f2. More precisely, we need to find two primes t

and q greater than B such that, as in [KW09a] and [Die], modulo t we can do

level raising to introduce the extra ramification at q so that in the next steps

the Galois representations in characteristics smaller than B will have the good

dihedral prime q in their ramification set. Since we will require that these two
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primes are also split in F , let us give in the following lemma the definition and

proof of existence of these two primes.

Lemma 3.3. Let F be a totally real number field. Let {ρ`} be a compatible

system of Galois representations attached to a classical newform f of weight 2

and level N , such that f does not have CM. Let B be a constant greater than

N and 7. Then

There is a prime t > B such that t ≡ 1 mod 4, t splits in F ,

and the image of ρ̄t is exactly GL(2,Ft).
Furthermore, there is a prime q satisfying the following conditions :

(1) q ≡ −1 mod t.

(2) The image of ρ̄t(Frob q) has eigenvalues 1 and −1.

(3) q ≡ 1 mod 8.

(4) q ≡ 1 mod p for every p ≤ B.

(5) q splits in F .

Proof. A similar result is proved in [KW09a] and [Die], without the con-

dition that t and q be split in F . Let us explain why the result is true with

this extra condition.

The existence of t follows from the result of Ribet in [Rib85] that implies

that for almost every prime, the residual images of the modular compatible

system will be large. Then it suffices to take t sufficiently large and split in the

compositum of Q(i), F , and the field of coefficients Qf of f . Observe that the

determinant of ρ̄t is χ · ε, where ε is some Dirichlet character unramified at t.

The existence of q was proved using the Cebotarev Density Theorem in

[KW09a] and [Die] without the requirement that q splits in F . Thus, again

using Cebotarev, we can deduce that the lemma is true if we see that the extra

condition (5) is compatible with the other conditions on q. This is immediate

for conditions (3) and (4), but not so obvious for conditions (1) and (2).

Since t is split in F , F is linearly disjoint from Q(ζt), and this implies that

condition (5) and (1) are compatible.

In [KW09a], a prime q satisfying (2) is obtained by taking Frob q in the

same conjugacy class of complex conjugation. Since F is totally real, the same

argument works if we work with GF , thus proving that conditions (5) and

(2) are compatible. Therefore, by Cebotarev’s Density Theorem, we conclude

that there exists a prime q satisfying all the conditions in the statement of the

lemma. �

We apply this lemma to the system attached to f2, taking B to be the

constant defined at the beginning of this section. Then, following [KW09a], we

know that there is a congruence mod t between f2 and a newform f3 of weight 2

such that q2 divides the level of f3 and ramification at q of the attached Galois
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representations is given by a character of the quadratic unramified extension

of Qq of prime order t.

Remark. In fact, [KW09a] constructs this nonminimal lift using potential

modularity, and this can be done because the conditions to apply M.L.T. are

satisfied, now in our case since by assumption this mod t representation of GQ
is modular, it clearly follows that the nonminimal lift is also modular, thus

attached to some newform f3 of weight 2. (Alternatively, we could have used

the theory of congruences between modular forms and raising the level.)

For the restrictions to GF , we will need to go in reverse order. Since the

residual image is large even after restriction to GF because of Lemma 3.2, and

both t-adic representations are Barsotti-Tate at t, over F modularity propa-

gates from f3 to f2 due to the M.L.T. in [Kis09c]. (Note that, as observed by

Kisin in the first section of [Kis09b], in cases where t is totally split in F this

applies without having to check that “pot. ordinary” goes to “pot. ordinary.”)

A very important remark. From now on, as long as we work in character-

istic p ≤ B, we know that all representations in our chain will be residually

irreducible and not dihedral (because of the local information at the good di-

hedral prime q). Moreover, they will have projective image containing some

simple group PSL(2,F) (not isomorphic to A5). This follows from the proper-

ties of a good dihedral prime and a study of images in this case (see [KW09a,

Lemma 6.3]).

Let us show that we can also control the restriction to GF of the images.

Lemma 3.4. Let p be any prime smaller than the bound B introduced

above. Let ρ̄p be a 2-dimensional odd representation of GQ with values on a

finite extension of Fp. Let q > B be a good dihedral prime for the represen-

tation ρ̄p, and let F be a totally real number field such that q is split in F .

Then the image of P(ρ̄p) restricted to GF contains a simple group of the form

PSL(2,Fpr).

Proof. Since q is split in F , when restricting to GF the image of the

decomposition group at q (this restriction is dihedral by assumption) forces the

residual image to stay irreducible. Thus, since (as we have observed above) the

good-dihedral prime forces the image over Q of the projectivization to be an

almost simple linear group and F is Galois, we see that even after restricting

to GF the image will contain a simple group PSL(2,Fpr). �

Thus, as long as we work in characteristic p < B, the results in [Kis09b],

[Kis09c] and Theorem 3.1 will allow us to show that modularity over F prop-

agates in reverse order through the chain, if we can show that the technical

condition in Theorem 3.1 is satisfied and if we can deal with the primes in the

level that are not split in F . In other words, we do not have to worry about the
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size of the restriction to GF of the residual image thanks to Lemma 3.4. Our

next step is to reduce to a situation where all primes in the level are split in F .

Ramification swapping. Swapping is the process used in [Die, §4], in order

to transfer ramification from one set of primes to another. We have currently

the set of primes: p1, . . . , pw in the level, together with r0 and the good-dihedral

prime q. To ease notation, we assume that none of the primes pi is split in F .

Therefore, because of the assumptions of Theorem 1.1, we can suppose that

they are all greater than 5. The auxiliary primes b1, . . . ., bw are chosen to be

split in F and satisfying the inequalities (∗) described at the beginning of this

section. In particular, they are larger than all the pi but smaller than the

bound B. Thus, in all what follows we know that residual images will be large

even when restricting to GF , due to Lemma 3.4.

Starting with the newform f3, whose weight is 2, let us recall the process

of ramification swapping from [Die]: we move to characteristic p1, reduce mod

p1, and take a minimal lift. In general, this lift will correspond to a newform f4
of weight k > 2. More importantly, the prime p1 is not in the level of f4. Mod-

ularity is preserved, for the restrictions to GF , from the Galois representation

attached to f4 to the one attached to f3, as follows from the M.L.T. of [Ger],

[Kis09c], and [BLGG]. More precisely, we show this by dividing in two cases.

Case (1): The Galois representation attached to the weight 2 newform f3
is potentially Barsotti-Tate at p1. In this case, the M.L.T. in [Kis09c] can be

applied, but it requires the construction of ordinary modular lifts. This was

accomplished in [BLGG, Th. 6.1.11], where they conclude that if the prime p1
is not split in F (in the split case the result of [Kis09c] applies automatically),

then the M.L.T. of Kisin can be applied over F if the following condition is

satisfied: [F (ζp1) : F ] > 4. Since we have p1 > 5, this is satisfied if the prime

is unramified in F , but may fail for ramified primes. What we do to remedy

this situation is to apply solvable base change (cf. [Lan80] and [AC89]). If we

consider a subfield F ′ of F such that the Galois group Gal(F/F ′) is solvable,

and a representation of GF ′ , then it is known that the modularity of such a

representation is equivalent to the modularity of its restriction to GF , assuming

that this restriction is irreducible.

Let us see that this implies that we can replace F by F ′ at this step of

the chain. We start with the assumption that ρf4,p1 |GF
is modular. Then, by

solvable base change (“going down”), ρf4,p1 |GF ′ is also modular. We have a

congruence modulo p1 between f3 and f4, and suppose that for the restric-

tions to GF ′ of the Galois representations attached to f3 and f4, modularity

propagates well from f4 to f3. Then we conclude that ρf3,p1 |GF ′ is also modu-

lar. Finally, by a second application of solvable base change (“going up”), we

conclude from this that ρf3,p1 |GF
is modular.
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In other words, we can replace F by any subfield F ′ of it such that

Gal(F/F ′) is solvable. If we can show that applying a suitable M.L.T. modu-

larity propagates well for the restrictions to GF ′ , then the same holds for the

restrictions to GF .

So, let us choose the right subfield of F . Let v be a prime of F dividing p1,

and let D be the decomposition group of v in Gal(F/Q). Let F (v) be the fixed

field of D. Then, since D is solvable, we can take this as a candidate subfield

of F to apply the above strategy. The field F (v), by construction, has a place

dividing p1 that is split over Q. Thus F (v) is linearly disjoint from Q(ζp1), and

therefore the condition [F (v)(ζp1) : F (v)] > 4 is clearly satisfied. (Recall that

p1 > 5.) Recall that we know that the residual image restricted to GF is large,

and a fortiori the same is true over GF (v) . Therefore, we can apply Theorem

6.1.11 in [BLGG] and conclude that for the restrictions to GF (v) , modularity

propagates well from f4 to f3, and by the above “solvable base change trick,”

that the same is true also over GF .

Case (2): The Galois representation attached to the weight 2 newform f3
is potentially semistable at p1. This case corresponds to the local component at

p1 of f3 being Steinberg or twist of Steinberg. In particular, by taking a suitable

twist, we can assume that in this case the Galois representation is semistable at

p1. We want to apply the M.L.T. of Geraghty (cf. [Ger, Th. 5.4.2]), so the first

thing that we will check is that both representations are ordinary. The p1-adic

Galois representation attached to f3 is ordinary because it is semistable of

weight 2, and the one attached to f4 (which is crystalline of weight 2 or p1 + 1,

depending on the Serre’s weight of the mod p1 representation) is forced to be

ordinary because of the mod p1 congruence with f3. This is due to the fact

that “residually ordinary implies ordinary” for crystalline representations of

weight 2 or p1 + 1. (This is well known in the weight 2 case and follows from

the results in [BLZ04] in the case of weight p1 + 1.) A fortiori, the restrictions

to GF of both representations are also ordinary at all places dividing p1. In

order to apply this M.L.T., there are two other technical conditions that need

to be checked, which appear as conditions (4) and (5) in Geraghty’s Theorem

(cf. [Ger, Th. 5.4.2]).

Condition (5) requires the image of the residual representation restricted

to GF (ζp1 )
to be “big,” a technical notion which, for the case of 2-dimen-

sional Galois representations, is known to hold whenever this image is large

(see, for example, [BLGG, §4]). We know that our residual representation

has large image when restricted to GF , and therefore it also has large image

when restricted to GF (ζp1 )
(because F (ζp1) is a cyclic extension of F ). Thus

condition (5) of Geraghty’s Theorem is satisfied.
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Condition (4) is the requirement that the extension of F fixed by the kernel

of the adjoint of the residual representation does not contain the p1-th roots of

unity. Since we know that the residual image of the restriction to GF is large, it

is easy to see (this argument appears in the proof of Theorem 6.1.9 in [BLGG])

that this condition is implied by the following one: [F (ζp1) : F ] > 4. Therefore,

we can just apply the “solvable base change trick” as we did in the previous

case to reduce to a situation where this condition is satisfied. (It is obvious

that in this change of field we are preserving largeness of the residual image,

and also that the p1-adic representations remain ordinary because they are

restrictions of ordinary representations of GQ.) We conclude that the M.L.T.

of Geraghty applies in this case and allows us to propagate modularity, for the

restrictions to GF , from f4 to f3.

Remark. In fact, a stronger version of the theorem of Geraghty is given

in [BLGGT, Th .2.3.1]. (It is written for imaginary CM fields, but a standard

and very easy argument using quadratic base change, appearing for example

in [Ger], shows that a similar result also holds over totally real fields.) In

this version, results of Thorne have been incorporated and thanks to them,

condition (4) in Geraghty’s theorem disappears and condition (5) is replaced

by a condition that is known to be satisfied if the prime is greater than 6 and

the restriction of the residual representation to GF (ζp1 )
is irreducible. Again,

since the image of the restriction to GF of our residual representation is large,

this is clearly satisfied in our case.

With the newform f4, of weight 2 ≤ k ≤ p1 +1 (and level prime to p1), we

move to characteristic b1, reduce modulo b1, and take a minimal weight 2 lift

corresponding to a modular form f5. Observe that by construction the prime

b1 is not in the level of f4, hence the b1-adic representation attached to f4 is

crystalline. By the inequalities (∗), the weight of f4 is much smaller than b1.

Thus because of Fontaine-Laffaille theory and the fact that b1 is split in F we

see that the technical condition in Theorem 3.1 is satisfied; thus modularity

for the restrictions to GF can be propagated from f5 to f4. At this step we are

assuming that the weight of f4 is greater than 2. If this is not the case, we just

take f5 = f4 and there is no need of adding ramification at b1. For simplicity,

let us just assume from now on that b1 is in the level of f5 in any case, since

this will not affect the rest of the proof. (That is, whether or not b1 is truly

on the level, we proceed in the same way and the outcome is the same.)

What remains is just an iteration of the above procedure. Notice that f5
is again of weight 2, it has b1 in its level, and the level is prime to p1. Thus,

we repeat the procedure, for every 1 < i ≤ w, moving first to a characteristic

pi with a weight 2 family, reducing and taking a minimal lift (this kills the

ramification at pi), and then to characteristic bi, reducing and taking a mini-

mal weight 2 lift (thus introducing ramification at bi). As we have indicated,
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via M.L.T. of Geraghty, Kisin, and the result in [BLGG], modularity of the

restrictions to GF is preserved through the whole process.

The process concludes when one makes the last minimal weight 2 lift, in

characteristic bw. We end up with a newform g of weight 2 whose level does

not contain any of the primes pi, and in their place we have the primes bi that

are split in F .

In fact, as we explained in the first iteration, maybe not all the bi appear

in the level of g, but for simplicity we will just act as if they do. In particular,

in the “iterated killing ramification” step we will move to each characteristic

bi even if it is not in the level. (This is still useful because by twisting we may

change the weight in each of these characteristics; see the general remark at

the beginning of Section 3.)

We have reduced the proof of our main theorem to a situation where all

primes in the level are split in F . Recall also that from now on, all the residual

characteristics that will appear in the chain are going to be split in F .

Now we want to manipulate a bit the nebentypus of g. The following

step is meant to reduce to a situation where, for every prime bi or r0 in the

level such that the nebentypus ramify at it, we have that the corresponding

abelian extension of Q (contained in Q(ζbi)) has odd degree and is thus real. To

achieve this, we simply move to characteristic 2. (Recall that by assumption

2 is not in the level of f , thus it is also not in the level of any newform in our

chain.) Since g has weight 2, we can reduce mod 2 and take a minimal lift

(as in [KW09a]), which will correspond to another weight 2 modular form g2.

Since the lift is minimal (locally at every prime), we are reduced to a situation

where the bi-part and the r0-part of the nebentypus is “real” (because it has

odd degree) for any prime dividing its conductor. This is because a character

with values on a finite extension of F2 must have odd order. Observe that we

want that, on the restriction to GF , modularity can be propagated from g2 to

g, and this follows from the main result in [Kis09b] since g is Barsotti-Tate at

2 and 2 is split in F (and the residual image is, as follows from 3.4, nonsolvable

even when restricted to GF ).

Let us introduce an auxiliary prime m whose role will be to produce

“odd Serre’s weights” for the residual representations to be dealt with in the

“iterated killing ramification” step, where we kill ramification at all primes bi
and r0 in the level. The prime m is a prime as in (∗): it is smaller than B,

split in F , it is congruent to 3 mod 4, and bigger than twice all of the bi and

bigger than r0. Recall that r0 was the prime where ramification was introduced

at the beginning of Section 3 in order to reduce to a weight 2 situation. We

move to characteristicm, and here we reduce the weight 2 Galois representation

attached to g2 and take a lift given by another newform g3 that has nebentypus

ψ of order 2 corresponding to the quadratic extension K = Q(
√
−m), and a
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suitable weight k > m2 − 1. It is obvious that we can find a k > m2 − 1

such that the congruence mod m: ψ · χk−1 ≡ χ holds, and having this, it is a

result of Khare (cf. [Kha01, Ths. 1 and 2]) that a congruence between g2 and

a newform g3 whose weight and type at m are (k, ψ ⊕ 1, N = 0) does hold.

Since K is imaginary, it is clear that k will be odd (because modular Galois

representations are odd). Modularity propagates well on the restriction to GF
from g3 to g2 because of [Kis09c].

Now we simply kill ramification at the primes bi, and r0, as in the “iterated

killing ramification” (I.K.R.) step in [Die]. By switching to each of them,

reducing mod bi, and taking a modular minimal lift (recall that by suitable

twisting we can assume that it will have weight ki ≤ bi+1), then moving to the

next, and so on. Since the nebentypus at each bi and at r0 is at most given by

a real abelian extension (we have managed to reduce to such a case), it is clear

that we start with g3 of odd weight and the Serre’s weight ki mod bi will also be

odd. This is is enough to see that the technical condition in Theorem 3.1 holds

true. As usual we want to propagate modularity for the restrictions to GF of

these representations, in reverse order, and since we know that residual images

are large even when restricting to GF (by Lemma 3.4), it is enough to verify

this condition. During all the I.K.R. the residual representations will have odd

Serre’s weight, and thus Theorem 3.1 can be applied. When we finish, we end

with a newform gs of level m · q2 and odd weight ks ≤ b′ (b′ being the smallest

of the primes bi in the level, since we can perform I.K.R. with the primes taken

in decreasing order), thus m is bigger than twice this weight because of the

inequalities (∗).
We now move back to characteristic m, and we consider the residual rep-

resentation of gs. This one will have even Serre’s weight, but since ramification

at m was just given by a character of order e = 2 and we are reaching char-

acteristic m with a family of weight ks smaller than m/2, using the results of

Caruso in [Car06] as we did in [Die], one can check that in this situation the

technical condition in Theorem 3.1 is satisfied.

In fact, if we extract what was proved in [Die] using the results in [Car06]

(this is contained in the proof of Lemma 4.4 in [Die]), we have the following

Lemma 3.5. Let ρp be an odd, continuous, 2-dimensional representation

of GQ, with finite ramification set and values in a p-adic field. Suppose that

locally at p the representation is potentially crystalline and that the field of

minimal degree where the representation becomes crystalline is a subfield of

Qp(ζp) of even ramification degree e. Suppose that the Hodge-Tate weights of

ρp are {0, k−1} with k > 2. Furthermore, assume that the following inequality

is satisfied :

(k − 1) · e < p− 1.



LANGLANDS BASE CHANGE FOR GL(2) 1029

Then, if we consider the restriction to the decomposition group at p of the

residual representation ρ̄p, the technical condition in Theorem 3.1 is satisfied.

Then, since we have e · ks = 2 · ks < m and ks > 2 (because ks is odd)

thus, in particular, 2 ·(ks−1) < m−1, we see from this lemma that the M.L.T.

of Kisin can be applied. This means that if we take a minimal modular lift

corresponding to some newform gs+1, modularity over F propagates well from

gs+1 to gs.

We have thus ended this fase with a newform gs+1 of level q2, trivial

nebentypus, some even weight k < B, and good-dihedral at q.

4. Fase dos

The purpose of this fase is to introduce some extra ramification at 7 to

the level as described in Section 2. The type of ramification at 7 will be similar

to the one in q, except that it will correspond to a character of even order 8.

To ease notation, let us rename gs+1 := h1.

We begin, as we did in the previous section, by changing to a weight 2

situation. (We do this if and only if we have k > 2.) This is where our last

auxiliary prime in the sequence (∗) appears: it is a prime r1 split in F , bigger

than m (thus bigger than the weight k of h1) and smaller than B. We move

to characteristic r1, consider the residual representation, and take a modular

weight 2 minimal lift corresponding to the newform h2 . Observe that since k

was even, the nebentypus at r1 that we introduce here corresponds to a real

abelian field. Residual images are large even after restricting to GF because

of Lemma 3.4, and Theorem 3.1 (for the restriction to GF , in reverse order)

can be applied. (This is due to the results of Fontaine-Laffaille, as in the case

of characteristic r0 in Section 3.)

The newform h2 has weight 2, and it has level r1 · q2. At the prime q the

ramification is, as usual, supercuspidal, and at the prime r1 the ramification,

introduced with the weight 2 lift, is given by the character ωk−2; i.e., the

inertial Weil-Deligne parameter at r1 for the Galois representations attached

to h2 is (ωk−2 ⊕ 1, N = 0).

Now we move to characteristic 3, reduce mod 3, and take a weight 6 mod-

ular minimal lift of (some twist of) this residual representation corresponding

to a newform h3. Such a weight 6 lift always exists (cf. [Edi92]; see also [RS01,

Th. 2.6]). Observe that since h2 was of weight 2 and level prime to 3, its

3-adic representation is Barsotti-Tate; thus modularity of the restrictions to

GF propagates from h3 to h2 by [Kis09c].

The newform h3 has weight 6, and its level is again r1 · q2. Moreover, at

both primes in the level the local Weil-Deligne inertial parameter is the same

as the one of h2.
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Now we move to characteristic 7, reduce mod 7, and take a weight 2

modular form h4 lifting it. Theorem 3.1 ensures that our chain works well at

this step,1 for the restrictions to GF , from h4 to h3. Observe that the results

of Fontaine-Laffaille apply because 7 > 6.

The newform h4 has ramification at 7 given by the character ω4 of order

3; i.e., for the Galois representations attached to h4 the Weil-Deligne inertial

parameter at 7 is (ω4 ⊕ 1, N = 0). Now we move to characteristic 3 as in the

Sophie Germain trick in [Die]. (This works because the primes 3 and 7 are a

pair of Sophie Germain primes.) Since ω4 has order 3, the mod 3 representation

attached to h4 will be either unramified or semistable at 7. Moreover, in the

first case using the fact that ρh4,3 restricted to the decomposition group at 7

is isomorphic to ω4 ⊕ 1, and that the order 3 character ω4 trivializes when

reduced modulo 3, we see that Ribet’s sufficient condition for (semistable)

raising-the-level at 7 holds (cf. [Rib90]). In fact, the image of Frob 7 for the

residual mod 3 representation of h4 has the eigenvalue 1 with multiplicity 2

and 7 ≡ 1 (mod 3).

This means that in any case we have a modular weight 2 lift corresponding

to a newform h5 with semistable ramification at 7, and the chain works well

at this step over F due to [Kis09c] since h4 is Barsotti-Tate at 3.

Now we use the fact that 7 + 1 = 8, and we consider the mod 2 represen-

tation attached to h5. Because h5 has semistable ramification at 7, we are in

a case where the results in [KW09a] can be applied to produce a nonminimal

weight 2 modular lift of this mod 2 representation, which is nonminimal only

at 7. (As usual, since in [KW09a] they rely on potential modularity, thus on

M.L.T., the lifts produced using their techniques, with the residual modular-

ity assumption, are automatically modular.) We can ensure that this lift has

ramification at 7 given by a character of order 8 of the unramified quadratic

extension of Q7. (We are taking j = 0 and i = 6 in the notation of [KW09a,

Th. 5.1, item 4]. This character of order 8 is ψ6
2, where ψ2 denotes a fun-

damental character of level 2 of the tame inertia group at 7.) Let us call h6
the weight 2 newform with level 49 · q2 · r1 just produced. Observe that the

attached residual Galois representations, in each characteristic p 6= 2, 7, will

have the MGD (Micro-Good-Dihedral) prime 7 and, in particular, ramification

1In case the residual representation is, locally at 7, reducible and decomposable, it will

be (at least on inertia) isomorphic to the sum χ5 ⊕ 1, and this is a twist of χ ⊕ 1. In this

case instead of applying Theorem 3.1, we can apply the M.L.T. in [SW01]. In fact, since

6 < 7, the 7-adic crystalline representation of Hodge-Tate weights {0, 5} on h3 is known to

be ordinary in this case, and the same is also known for the one corresponding to h4, which

is potentially Barsotti-Tate, in this residually ordinary case.



LANGLANDS BASE CHANGE FOR GL(2) 1031

at 7 corresponding to a degree 8 character of the unramified quadratic exten-

sion of Q7. Note that this character has order 4 in the projectivization of the

representations.

Remark. MGD prime: what is it and how does it help? An MGD prime is

a prime s in the level of a residual representation ρ̄ in characteristic p such that

locally at s it has the same local parameter as in the definition of good dihedral

prime (i.e., induced from a character of an unramified quadratic extension of

Qs), but without any further relation between s on one hand and p and the

primes in the level on the other. (This is the main difference with good dihedral

primes.) In particular, having an MGD prime in the level implies (with the

same proof used for good dihedral primes) that the residual representation is

irreducible. Furthermore, if it happens to be the case that the MGD prime s

is a square mod p, then (again, with the same proof used to control the images

using good dihedral primes) the residual image cannot be bad-dihedral.

Modularity of the restrictions to GF can be propagated from h6 to h5 using

[Kis09b] because h5 is Barsotti-Tate at 2 (and residual images are nonsolvable

due to the good-dihedral prime q, even after restriction to GF , see Lemma 3.4).

To finish this section, we will kill ramification at r1 and then at q. In order to

do so, we need again the trick of “odd Serre’s weights” in order to ensure that

the chain propagates well modularity (as usual, over F and in reverse order)

via Theorem 3.1. Thus, we consider the auxiliary prime 11 (also split in F

by assumption), and we reduce h6 mod 11 and take a modular odd weight

lift h7 of some weight k > 112 − 1 and nebentypus given by the character of

order 2 ramifying only at 11. (We rely again on [Kha01].) The weight k is odd

because the field Q(
√
−11) is imaginary. Since 11 is not in the level of h6 and

h6 is a weight 2 newform, once again the results in [Kis09c] allow to propagate

modularity over F , from h7 to h6.

As we did in the previous section, since the weight is odd and the nebenty-

pus at r1 is real (and there’s no nebentypus at q), we just move to characteristic

r1, reduce mod r1, and take a minimal modular lift corresponding to a newform

h8. Then the residual representation has odd Serre’s weight, and thus modu-

larity can be propagated (over F , in reverse order) because of Theorem 3.1.

Then, we do the same in characteristic q: we take the modular form

h8, move to characteristic q, reduce mod q, then take a minimal modular lift

corresponding to some newform h9. The technical condition in Theorem 3.1 is

satisfied once again because of the odd weight trick. But at this last step we

have to be careful (for the first time!) with the residual image. Since we are

losing the good-dihedral prime q, we may have a small residual image. Here is

where the MGD prime 7 starts playing its role. Since q ≡ 1 (mod 8) and q is a
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square mod 7, then 7 is a square mod q. Then, the usual arguments with good-

dihedral primes (cf. [KW09a]) imply that because of the decomposition group

at 7 having dihedral image, this mod q representation must be irreducible (it

is so locally at 7) and, if it is dihedral, it is not bad-dihedral (because 7 is a

square mod q). Moreover, since 7 is split in F , then we also have that after

restriction to GF the projective representation contains in its image a group

that is dihedral of order 8 (namely, the image of the decomposition group at 7).

In this situation, the following lemma shows that the size of the residual image

is good enough to apply Kisin’s Theorem 3.1.

Lemma 4.1. Let F be a totally real Galois number field. Let p ≥ 5 be

a prime and ρ̄p be a 2-dimensional, odd, representation of GQ with values in

a finite extension of Fp such that ρ̄p is irreducible and its image is not bad-

dihedral. Suppose that P(ρ̄p) restricted to GF contains a dihedral subgroup of

order 8 and that all primes where ρ̄p ramifies are unramified in F . Then the

restriction of ρ̄p to the absolute Galois group of F (ζp) is absolutely irreducible.

Proof. Using Dickson’s classification of maximal subgroups of PGL(2,Fpr),

we see that the assumptions on ρ̄p imply that its image must be of one of the

following types:

• (i) large, i.e., containing SL(2,Fp);
• (ii) projectively isomorphic to S4 or A5;

• (iii) dihedral, but not bad-dihedral.

In case (i), we apply Lemma 3.2 and conclude that the image of the restriction

of ρ̄p to GF is also large, thus containing a nonsolvable group. In particular,

the restriction to F (ζp), a cyclic extension of F , cannot be reducible.

In case (ii), we use the assumption that the restriction of the projective

image to GF contains a dihedral subgroup of order 8, and the facts that A5 is

simple and S4 does not contain a normal subgroup of order 8 to deduce that

the projective image does not change when restricting to GF . Thus, being the

projective image restricted to GF as in (ii), it is clear again that the restriction

to the cyclic extension F (ζp) of F cannot be reducible.

In case (iii), ρ̄p is dihedral, with P(ρ̄p) being a dihedral group of order at

least 8. Let K be the quadratic number field such that the representation ρ̄p is

induced from a character of GK . By assumption, ρ̄p is not bad-dihedral, thus

there is a prime w 6= p ramified in K. Therefore ρ̄p ramifies at w, and because

of the last assumption in the statement of the lemma, w is unramified in F ;

hence w is also unramified in F (ζp).

Suppose that the restriction of ρ̄p to GF (ζp) is reducible. Since ρ̄p is dihe-

dral, this implies that F (ζp) must contain K. But this implies that w, a prime

ramified in K, must ramify in F (ζp), which is a contradiction. This concludes

the proof of the lemma. �
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Therefore, having checked that Theorem 3.1 applies (because of the lemma

above and the odd weight trick), we see that modularity of the restriction to

GF propagates well from h9 to h8.

We end up with a newform h9 of some odd weight k, level 72 ·11, quadratic

nebentypus at 11 and such that 7 is an MGD prime for it. We should try

(but we will not always be able to do so), in our next moves, to work in

characteristics p such that 7 is a square mod p, since MGD primes work better

there; i.e, they allow us to conclude that the residual image is not bad-dihedral

(as we did above in characteristic q).

5. Fase final

We consider the mod 3 representation of h9. Since 3 is not in the level

and because of the nebentypus at 11 it will have odd Serre’s weight. (Thus

it will have, after a suitable twist, k = 3.) Since 7 is a square mod 3, we see

from the MGD prime 7 that this residual representation is irreducible and it

is not bad-dihedral. We take a minimal modular lift: this is a 3-adic Galois

representation corresponding to a newform h10 of weight 3 and level 72 · 11

whose nebentypus has order 2 and conductor 11 and such that 7 is an MGD

for it. Because the residual Serre’s weight is odd, we can apply Theorem 3.1

to propagate modularity over F from h10 to h9. Just observe that because of

the MGD prime 7 and the fact that 7 is split in F , the restriction to GF of

this mod 3 representation cannot be reducible (it is irreducible locally at 7).

Because 7 is a square mod 3, it will stay irreducible if we restrict to F (
√
−3),

as required in Theorem 3.1.

Now we consider the mod 11 representation attached to h10. It will be

irreducible because it is so locally at 7, but unfortunately 7 is not a square

mod 11, thus a priori it could be bad-dihedral. To check that it is not bad-

dihedral, we do some computations. Observe that we are dealing with a mod

11 modular representation of level 49, some even weight that can be taken

(after a suitable twist) to be k ≤ 12, and such that it is supercuspidal at 7.

We check in W. Stein’s tables that, except for k = 2 where there is not any

such newform, there are two conjugacy classes of newforms in each of the other

spaces satisfying (in fact, that may satisfy) these conditions, and they are twists

of each other. Suppose that the mod 11 representation of h10 is bad-dihedral.

Then, it is well-known (and can be easily proved by looking at the action of the

inertia group at 11 and using the definition of Serre’s weight) that this can only

happen if 11 = 2k−3 or 11 = 2k−1 (cf. [KW09a, Lemma 6.2]). Since k is even,

the only possibility is thus k = 6. Reducing eigenvalues mod 11, we easily check

that for the couple of conjugacy classes of newforms of level 49 and weight 6

that seem to be supercuspidal at 7, the residual mod 11 representation is never

bad-dihedral. On the other hand, since 7 is split in F , the restriction to GF of
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the projectivization of this mod 11 representation contains a dihedral group of

order 8. Then, we can apply Lemma 4.1 and conclude that the restriction to

F (ζ11) of this residual representation is absolutely irreducible.

We also want to check that the mod 11 representation of h10 satisfies the

technical condition needed to apply Theorem 3.1. We apply again Lemma 3.5.

Since h2 has weight 3 and the 11-adic representation is crystalline over an

extension of Q11 of degree 2, 2 is even, and (3− 1) · 2 < 11− 1, we see that the

technical condition is satisfied.

Thus, if we take h11 a minimal modular lift of this mod 11 representation,

it corresponds to a modular form of level 49, supercuspidal at 7, of some

even weight k ≤ 12, and we know that for the restriction to GF modularity

propagates well from h11 to h10. To complete the proof, it suffices to show

that any such h11 can be lifted to F .

As we already mentioned, there are only two conjugacy classes of newforms

in each of the spaces Sk(49) with k = 4, 6, 8, 10, 12 that are supercuspidal at

7, and one is a twist of the other. The fields of coefficients of these newforms

have degrees 1, 2, 4, 5, 6, respectively. Since modularity is preserved by Galois

conjugation and by twisting, it is enough to show that, for each k, one of

these newforms can be lifted to F . We do a few computations, and we observe

that all these newforms have residual mod 3 representation defined over F3,

thus with image contained in the solvable group GL(2,F3). Moreover, in each

conjugacy class there is a newform such that the 3-adic Galois representation

is ordinary, because 3 - a3. We will show that this is the one that can be lifted

to F . Because of the MGD prime 7 being split in F and a square modulo 3,

we also know that the mod 3 representation, even when restricted to GF , is

irreducible and not bad-dihedral. Thus, the restriction to GF of the residual

mod 3 representation has irreducible solvable image and is therefore modular.

(As in Wiles’ work [Wil95] on modularity of elliptic curves, we rely on results of

Langlands and Tunnell.) Since the 3-adic representation is ordinary, the action

of tame inertia on this residual representation will be given by the characters

{χ, 1}, but it can have Serre’s weight 2 or 4. In any case, by the M.L.T. in

[SW01] modularity over F of this 3-adic representation follows. We know that

it is ordinary and residually modular, and in our case we can see that we can

take a lift of the mod 3 representation corresponding to a Hilbert modular

form h12 of parallel weight 2 or 4 and level prime to 3. In both cases the 3-adic

representations of h12 will be ordinary; this is known to follow in both cases

from residual ordinarity since 3 is split in F and the 3-adic representations are

crystalline and of “weight” k ≤ 3+1. (In the weight 4 case, this result is proved

in [BLZ04]. Alternatively, see [Ell05], [Tay03] and [Man01] for similar uses of

Langlands-Tunnell and Skinner-Wiles to deduce modularity of ordinary 3-adic
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Galois representations of totally real number fields with solvable (irreducible)

residual image.)

This was the last châınon in our chain. We have seen that over F , modu-

larity propagates well, starting at h12, from any Galois representation of GF in

our chain to the previous one. This shows that the given f can be lifted to F .

6. Elementary consequences

In this section we will discuss some elementary consequences of Theo-

rem 1.1 combined with some recent modularity results over Q. To simplify the

statements, we assume that 5 is split in F .

Corollary 6.1. Let F be a totally real Galois number field such that the

primes 2, 3, 5, 7 and 11 are split in F . Let p be an odd prime. Let

ρp : GF → GL(2, Q̄p)

be a totally odd, continuous representation, with finite ramification set not

containing 2 and de Rham locally at places above p. Suppose that the residual

representation ρ̄p has nonsolvable image and that the representation ρp can be

extended to a 2-dimensional Galois representation of GQ. Suppose furthermore

that one of the following conditions holds :

(1) ρp is, locally at places above p, of Hodge-Tate weights {0, 1};
(2) ρp is, locally at places above p, of parallel Hodge-Tate weights {0, k−1},

k > 2, and for some v | p in F the residual representation ρ̄p locally at

v satisfies the technical condition in Theorem 3.1.

Then, the representation ρp is modular.

Proof. The proof is quite elementary. Let ρ′p be an extension of ρp to

GQ. Then, since Serre’s conjecture over Q is now a theorem (cf. [Die] and

[KW09a]), we know that this representation is residually modular. Moreover,

we can apply over Q the M.L.T. in [Kis09c] and [SW01] in the case of condition

(1) and the one in [Kis09a] in the case of condition (2), and conclude that ρ′p
is modular, thus attached to a modular form f whose level is odd because ρ′p
is unramified at 2, as follows from the assumptions: ρp unramified at 2 and

2 split in F . Then we apply Theorem 1.1 and conclude that the restriction

of ρ′p to GF is modular, but this restriction is precisely ρp, so this proves the

corollary. �

We can also conclude modularity of a 2-dimensional p-adic representation

ρ of GF , under the assumption that ρ is Galois invariant, i.e., isomorphic to

all of its inner Galois conjugates. It is known that under such an assumption a

suitable twist ρ⊗ ψ of the representation can be extended to a 2-dimensional

representation ρ′ of GQ. This follows from Clifford theory (cf. [Cli37]), and

a detailed proof is given, for example, in [Win, §2.4]. See Lemma 5 (first

assertion) for the construction of a projective representation of GQ extending ρ,
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and see Lemma 7 for the conclusion. (Observe that since 2 is split in F , the

proofs of these two Lemmas imply that ρ′ will have odd conductor.) Finally,

Lemma 6 in [Win], under the extra assumption that p is unramified in F ,

implies that if ρ satisfies condition (2) in Corollary 6.1, then ρ⊗ ψ and ρ′ will

also satisfy this condition. From this we can show (under the assumptions in

Corollary 6.1) that ρ⊗ ψ is modular and thus that ρ is modular.

Corollary 6.2. Let p, F , and ρp be as in the previous corollary. We

keep the assumptions in the previous corollary, except that instead of assuming

that ρp can be extended to GQ, we just assume that ρp is Galois invariant.

Suppose also that p is unramified in F . Then, ρp is modular.

We finish with an elementary corollary of Theorem 1.1 for the case of

residual representations.

Corollary 6.3. Let F be a totally real Galois number field such that the

primes 2, 3, 5, 7, and 11 are split in F . Let p be an odd prime. Let

ρ̄p : GF → GL(2,Fpr)

be a totally odd representation with ramification set not containing 2. Suppose

that it is absolutely irreducible and that it can be extended to a 2-dimensional

Galois representation of GQ. Then ρ̄p is modular; i.e., there exists a Hilbert

modular form h over F such that one of the p-adic Galois representations

attached to h has residual representation isomorphic to ρ̄p.

If the residual image of ρ̄p is solvable, modularity follows from the results of

Langlands and Tunnell. If not, the proof is similar to the proof of Corollary 6.1

and is left to the reader.
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