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Căldăraru’s conjecture
and Tsygan’s formality

By Damien Calaque, Carlo A. Rossi, and Michel Van den Bergh

Abstract

In this paper we complete the proof of Căldăraru’s conjecture on the

compatibility between the module structures on differential forms over poly-

vector fields and on Hochschild homology over Hochschild cohomology. In

fact we show that twisting with the square root of the Todd class gives an

isomorphism of precalculi between these pairs of objects.

Our methods use formal geometry to globalize the local formality quasi-

isomorphisms introduced by Kontsevich and Shoikhet. (The existence of

the latter was conjectured by Tsygan.) We also rely on the fact — recently

proved by the first two authors — that Shoikhet’s quasi-isomorphism is

compatible with cap products after twisting with a Maurer-Cartan element.
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1. Introduction and statement of the main results

Throughout k is a ground field of characteristic 0. In this introduction

(X,O) is a ringed site1 such that O is a sheaf of commutative k-algebras. In

addition, we fix a Lie algebroid L over (X,O).

1We work over sites instead of spaces to cover some additional cases that are important

for algebraic geometry (like algebraic spaces and Deligne–Mumford stacks). Readers not

interested in such generality may assume that (X,O) is just a ringed space.
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Roughly speaking a Lie algebroid is a sheaf of O-modules that is also a

sheaf of Lie algebras that acts on O by derivations. See Section 3.1. Standard

examples of Lie algebroids are the tangent bundle on a smooth manifold and

the holomorphic tangent bundle on a complex manifold. Readers not familiar

with Lie algebroids are advised to think of L as a tangent bundle (holomorphic

or not) for the rest of this introduction. Concepts like “connection” take

their familiar meaning in this context. In fact, our main reason for working

in the setting of Lie algebroids is that these allow us to treat the algebraic,

holomorphic and C∞-cases in a uniform way.

1.1. The Atiyah and Todd class of a Lie algebroid. From now on we make

the additional assumption that the Lie algebroid L is locally free of rank d as

an O-module.

The Atiyah class A(L) ∈ Ext1(L,L∗ ⊗ L) = H1(X,L∗ ⊗ EndO(L)) of L
may, for example, be defined as the obstruction against the existence of a global

L-connection on L. See Section 6 for more details.

The i-th scalar Atiyah class ai(L) of L is defined as

ai(L) = tr
( i∧

A(L)
)
∈ Hi

(
X,

i∧
L∗
)
,

where
∧i is the map

i∧
: (L∗ ⊗ End(L))⊗i →

i∧
L∗ ⊗ End(L)

given by composition on End(L)⊗i and the exterior product on (L∗)⊗i and

where tr is the usual trace on End(L), extended linearly to a map
∧i L∗ ⊗

End(L)→ ∧i L∗.
The Todd class td(L) of L is derived from the Atiyah class A(L) by the

following familiar formula:

(1.1) td(L) = det

Ç
A(L)

1− exp (−A(L))

å
∈
⊕
i≥0

Hi
(
X,

i∧
L∗
)
,

where the function

(1.2) q(x) =
x

1− exp(−x)

is extended to
∧L∗⊗OEnd(L) via its formal Taylor expansion. In this way the

Todd class td(L) of L can be expressed in terms of the scalar Atiyah classes

of L.

1.2. Gerstenhaber algebras and precalculi. By definition a Gerstenhaber

algebra is a graded vector space equipped with a Lie bracket [−,−] of degree



868 DAMIEN CALAQUE, CARLO A. ROSSI, and MICHEL VAN DEN BERGH

0 and a commutative, associative cup product ∪ of degree 12 such that the

Leibniz rule is satisfied

[a, b ∪ c] = [a, b] ∪ c+ (−1)|a|(|b|+1)b ∪ [a, c].

If A is a Gerstenhaber algebra, then a precalculus [13] over A is a quadruple

(A,M, ı,L) where M is a graded vector space and ı : A ⊗ M → M and

L : A ⊗M → M are linear maps of degree 1 and 0 respectively such that ı

makes M into an (A[−1],∪)-module and L makes M into an (A, [−,−])-Lie

module and such that the following compatibilities hold for a, b ∈ A

ıaLb − (−1)(|a|+1)|b|Lbıa = ı[a,b],(1.3)

Laıb + (−1)|a|+1ıaLb = La∪b.(1.4)

A precalculus is not the same as a Gerstenhaber module. The second equation

in the previous display is not correct for a Gerstenhaber module.

Below ı will be referred to as “contraction” and L as the “Lie derivative.”

Furthermore, we will often write a∩m for ıa(m) and as such refer to it as the

“cap product.”

1.3. Poly-vector fields, poly-differential operators, differential forms and

Hochschild chains in the Lie algebroid framework. For a Lie algebroid L the

sheaves of L-poly-vector fields and L-differential forms are defined as

TLpoly(X) =
⊕
n≥−1

n+1∧
L, ΩL(X) =

⊕
n≤0

−n∧
L∗,

where the wedge products are taken over OX .

The sheaf TLpoly(X) becomes a sheaf of Gerstenhaber algebras when en-

dowed with the trivial differential, the Lie algebroid version of the Schouten–

Nijenhuis Lie bracket and the exterior product. Our grading convention is such

that the Lie bracket and wedge product are of degree 0 and 1 respectively.

We equip ΩL(X) with the trivial(!) differential,3 and also with the con-

traction operator and Lie derivative with respect to L-poly-vector fields. In

this way the pair (TLpoly(X), ΩL(X)) becomes a sheaf of precalculi. In our

conventions the contraction operator and Lie derivative have degrees 1 and 0

respectively.

The Lie algebroid generalization of the sheaf of L-poly-differential oper-

ators is denoted by DLpoly(X) [27], [3]. It is the tensor algebra over O of the

universal enveloping algebra of L (see §3.3 below).

2Note that our grading conventions are shifted with respect to the usual ones.
3The de Rham differential dL on ΩL(X) is not part of the precalculus structure. In the

operadic setting of [13], dL appears as a unary operation and not as a differential.
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The sheaf DLpoly(X) has properties similar to the standard sheaf of poly-

differential operators on X (see, e.g., [16]). In particular it is a differential

graded Lie algebra (shortly, from now on, a DG-Lie algebra) and also a Ger-

stenhaber algebra up to homotopy. For the definition of the differential, the

Lie bracket (of degree 0) and the cup product (of degree 1), see Section 3.3.

The sheaf of L-Hochschild chains CLpoly(X) may be defined as the O-dual

of DLpoly(X) (although we use a slightly different approach). Furthermore,

there is a differential bH as well as actions ∩, L of DLpoly(X) on CLpoly(X) that

make the pair (DLpoly(X), CLpoly(X)) into a precalculus up to homotopy. We

refer to Section 3.4 for more detail.

Finally, we recall that there is a Hochschild–Kostant–Rosenberg (HKR for

short) quasi-isomorphism from TLpoly(X) to DLpoly(X); dually, there is a HKR

quasi-isomorphism from CLpoly(X) to ΩL(X). As in the classical case where L
is the tangent bundle neither of these HKR quasi-isomorphisms is compatible

with the Gerstenhaber and precalculus structures up to homotopy.

1.4. Main results. Now we consider the derived category D(X) of sheaves

of k-vector spaces over X. When equipped with the derived tensor product

this becomes a symmetric monoidal category. Furthermore, viewed as objects

in D(X), both TLpoly(X) and DLpoly(X) are honest Gerstenhaber algebras and

their combination with ΩL(X) and CLpoly(X) yields precalculi.

Our first main result relates the Todd class of a Lie algebroid (as discussed

in §1.1) to the failure of the HKR isomorphisms to preserve these precalculi

structures.

Theorem 1.1. Let L be a locally free Lie algebroid of rank d over the

ringed site (X,OX). Then we have the following commutative diagram of pre-

calculi in the category D(X):

(1.5) TLpoly(X)
HKR◦ι√

td(L)
//

��

DLpoly(X)

��
ΩL(X) CLpoly(X),

(
√

td(L)∧−)◦HKR

oo

where the vertical arrows indicate actions and the horizontal arrows are iso-

morphisms. Here ∧ denotes the left multiplication in ΩL(X) and ι denotes the

contraction action of ΩL(X) on TL(X).4

4Note that normally we view ΩL(X) as a module over TL(X). In the definition of the hori-

zontal arrows in the diagram (1.5) the opposite actions appear for reasons that are mysterious

to the authors.
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The convention that wavy arrows indicate actions will be used throughout

this article.

The following corollary will be applied to Căldăraru’s conjecture below.

Corollary 1.2. There is a commutative diagram of precalculi :

(1.6)
⊕
m,n≥0 Hm(X,

∧n L)

��

HKR◦ι√
td(L)

// H•(X,DLpoly(X))

��⊕
m,n≥0 Hm(X,

∧n L∗) H•(X,CLpoly(X)),
(
√

td(L)∧−)◦HKR

oo

with H•(X,−) denoting the hypercohomology functor.

Proof. This follows by applying the functor H•(X,−) to the commutative

diagram (1.5). �

If we consider only the Lie brackets and the Lie algebra actions, then the

horizontal isomorphisms in the commutative diagram (1.5) are obtained from

the horizontal arrows in diagram (1.7), which is part of our second main result.

Theorem 1.3. Assume that R ⊂ k. Let L be a locally free Lie algebroid

of rank d over the ringed site (X,O). There exist sheaves of differential graded

Lie algebras (gLi , di, [ , ]i) and sheaves of DG-Lie modules (mLi , bi,Li) over

them as well as L∞-quasi-isomorphisms UL from gL1 to gL2 and SL from mL2 to

mL1 , which fit into the following commutative diagram :

(1.7) TLpoly(X) �
� //

L
��

gL1
UL //

L1

��

gL2

L2

��

Dpoly(X)? _oo

L
��

ΩL(X) �
� // mL1 mL2

SLoo CLpoly(X),? _oo

where the hooked arrows are strict (i.e., DG-Lie) quasi-isomorphisms.

1.4.1. Comments on the results and the proofs. The proofs of Theorems 1.1

and 1.3 depend on the simultaneous globalization of a number of local formality

results due to Kontsevich [16] (see also [17]), Tsygan [25], Shoikhet [20] and

the first two authors [8], [6], [7]. This globalization is performed by a functorial

version of formal geometry [4] (see also [28]).

The proof of Theorem 1.1, roughly speaking, involves the construction of a

morphism up to homotopy between the precalculus structures up to homotopy

on (TLpoly(X), ΩL(X)) and (DLpoly(X), CLpoly(X)). In this paper we do not

construct a full “precalculus∞”-quasi-isomorphism between these structures.

In the case that L is a tangent bundle this was done in [13] using operadic

methods; actually, in loc. cit. the authors work in the “calculus∞” setting,
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encoding also the de Rham differential, which is not part of the precalculus

structure as observed before. On the other hand, in contrast to loc. cit., the

results we prove are explicit and this fact is essential to recover Căldăraru’s

conjecture as formulated in [10] (see Theorem 1.4 below).

We are able to obtain such explicit results by starting with the local quasi-

isomorphisms of Kontsevich and Shoikhet that are given by explicit formulae

(in contrast to, say, Tamarkin’s local G∞-quasi-isomorphism [23]). While these

are a priori only L∞-quasi-isomorphisms they are nonetheless compatible with

products up to homotopy [16], [7] in a strong explicit sense, and this turns out

to be enough for our purposes.

As the local quasi-isomorphisms of Kontsevich and Shoikhet are defined

over R (see §5.4) we have to assume R ⊂ k in the statement of Theorem 1.3.

However enough coefficients are rational (and computable), which in turn al-

lows us to prove Theorem 1.1 over an arbitrary field of characteristic zero.

This idea was already used in [4]. See Section 7.3.1. For Theorem 1.3 we could

likely have started with a Tamarkin-style local quasi-isomorphism [23] defined

over Q, but since the coefficients of such a local quasi-isomorphism are not

explicit, the result would not be immediately applicable to Theorem 1.1.

The existence of the upper horizontal isomorphism in (1.5) was proved

independently in [12], [4], while its explicit form was computed in [4]. The

existence of the lower horizontal isomorphism was shown in [13]. As observed

above, our approach via Kontsevich’s and Shoikhet’s local formality formulae

allows us to compute it explicitly.

1.5. Căldăraru’s conjecture. Assume now that X is a smooth algebraic or

complex variety. Căldăraru’s conjecture (stated originally in the algebraic

case) asserts the existence of various compatibilities between the Hochschild

(co)homology and tangent (co)homology of X (see below). For the full state-

ment we refer to [10]. The results in this paper complete the proof of Căldăraru’s

conjecture.

We now explain this in more detail. The Hochschild (co)homology [22] of

X is defined as

HHn(X) = ExtnOX×X (O∆,O∆) (n ≥ 0),

HHn(X) = Tor
OX×X
−n (O∆,O∆) (n ≤ 0),

where ∆ ⊂ X×X is the diagonal. From these definitions it is clear that HH•(X)

has a canonical algebra structure (by the Yoneda product) and HH•(X) is a

module over it.
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Furthermore, if we put L = TX then it is proved in [9] (and partially in

[30]) that there are isomorphisms of algebras and modules

HH•(X)

��

// H•(X,DLpoly(X))

��
HH•(X) // H•(X,CLpoly(X)),

where on the right-hand side we consider only the part of the precalculus given

by the cup and cap product.

We define the tangent (co)homology of X by

HT•(X) =
⊕

H•(X,
•∧
TX), HΩ•(X) =

⊕
H•(X,Ω−•X ),

where now Ω•X denotes the graded sheaf of differential forms on X.

The commutative diagram (1.6) then yields the following

Theorem 1.4 (“Căldăraru’s conjecture”). For a smooth algebraic or com-

plex variety X over k there is a commutative diagram of k-algebras and modules

(1.8) HT•(X)

��

HKR◦ι√
td(X)

// HH•(X)

��
HΩ•(X) HH•(X),

(
√

td(X)∧−)◦HKR

oo

where td(X) is the Todd class for L = TX .

Theorem 1.4 completes the proof of the parts of Căldăraru’s conjecture

[10] that do not depend on X being proper. The cohomological part (the upper

row in the above diagram) was already proved in [4] and is also an unpublished

result of Kontsevich.

In the proper case there is an additional assertion in Căldăraru’s conjec-

ture that involves the natural bilinear form on HH•(X). We do not consider

this assertion in the present paper as it has already been proved by Markar-

ian [18] and Ramadoss [19]. If we combine Theorem 1.8 with the results of

Markarian and Ramadoss, we obtain a full proof of Căldăraru’s conjecture. Let

us also mention that in the compact Calabi-Yau case Căldăraru’s conjecture

was proved in [15].

Acknowledgment. We express our gratitude to the anonymous referees for

the careful reading of the manuscript. Their comments have helped us improve

the paper.
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2. Notation and conventions

As stated already we always work over a ground field k of characteristic 0;

unadorned tensor products are over k.

Most objects we consider are equipped with a topology that will be ex-

plicitly specified when needed. However if an object is introduced without a

specific topology, or if the topology is not clear from the context, then it is

assumed to be equipped with the discrete topology.

Many objects we will encounter are Z-graded. Koszul’s sign rule is always

assumed in this context. For a double or higher complex we apply the sign

rule with respect to total degree.

3. Some recollections on Lie algebroids and related topics

3.1. Generalities on Lie algebroids. In this section R is a commutative

k-algebra.

Definition 3.1. A Lie algebroid L over R is a Lie algebra over k that is in

addition an R-module and is endowed with an anchor map ρ : L → Derk(R)

satisfying the compatibility

(3.1) [l1, rl2] = ρ(l1)(r)l2 + r[l1, l2], r ∈ R, li ∈ L, i = 1, 2.

The basic example of a Lie algebroid over R is L = Derk(R) with the

identity anchor map and the commutator Lie bracket.

If L is a Lie algebroid, then R ⊕ L is a Lie algebra with Lie bracket

[(r, l), (r′, l′)] = (ρ(l)(r′) − ρ(l′)(r), [l, l′]). We define the universal enveloping

algebra UR(L) of L to be the quotient of the augmentation ideal of the en-

veloping algebra associated to the Lie algebra R⊕L by the relation r⊗ l = rl

(r ∈ R, l ∈ R⊕ L).

For the sake of simplicity, below we will usually omit the anchor map ρ

from the notation, unless it is necessary for the sake of clarity.

The universal enveloping algebra of a Lie algebroid satisfies a universal

property similar to that of an ordinary enveloping algebra. This implies, for

example, that the anchor map ρ uniquely extends to an algebra morphism from

UR(L) to Endk(R), or equivalently: it yields a left UR(L)-module structure

on R.

For reasons that will become clear later we assume that our Lie algebroids

are free of rank d over R.

3.1.1. L-poly-vector fields and L-differential forms over R. To a Lie alge-

broid L over R we associate

TLpoly(R) =
⊕
n≥−1

∧n+1
R L,(3.2)

ΩL(R) =
⊕
n≤0

∧−nR L∗, L∗ = HomR(L,R).(3.3)
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We refer to (3.2) and (3.3) as the spaces of L-poly-vector fields and L-forms

on R.

As an exterior algebra TLpoly(R) has a wedge product that we denote by ∪
(“the cup product”). The extension of the Lie bracket on L to a bi-derivation

on TLpoly(R) defines a Lie bracket that is called the Schouten–Nijenhuis bracket

and is denoted by [−,−]. Note that with our grading conventions the cup

product has degree 1 and the Lie bracket has degree 0. The cup product

and the Lie bracket make TLpoly(R) into a (shifted) Gerstenhaber algebra with

trivial differential.

On the other hand, ΩL(R) is obviously a graded algebra with respect

to the wedge product. In addition there is an analogue dL of the de Rham

differential on ΩL(R), which is given on generators by

dL(r)(l) = l(r),

dL(l∗)(l1, l2) = l1(l∗(l2))− l2(l∗(l1))− l∗([l1, l2])

for r ∈ R, l, li ∈ L, i = 1, 2, l∗ ∈ L∗ and is extended uniquely by Leibniz’s rule.

The natural contraction operation of L-forms on R with respect to L-poly-

vector fields is denoted by ∩ (the “cap product”). The Lie derivative L of

L-forms on R with respect to L-poly-vector fields is specified in the usual way

via Cartan’s homotopy formula as the commutator of dL and the contraction.

The pair

((TLpoly(R), [−,−],∪), (ΩL(R),∩,L))

forms a precalculus (see §1.2).

3.1.2. L-connections. As usual L is a Lie algebroid over R.

Definition 3.2. Let M be an R-module M . An L-connection on M is a

k-linear map ∇ from M to L∗ ⊗RM , which satisfies Leibniz’s rule

(3.4) ∇(rm) = dL(r)⊗m+ r∇m, r ∈ R, m ∈M.

The L-connection ∇ is said to be flat if ∇2 = 0. Equivalently, the assign-

ment l 7→ ∇l, where ∇l denotes the action of ∇ followed by contraction with

respect to l, defines a Lie algebra morphism from L to Endk(M).

If we let l ∈ L act as ∇l, then a flat L-connection on M extends to a left

UR(L)-module structure on M .

Furthermore, a flat L-connection ∇ on M can be extended to a differen-

tial (denoted by the same symbol) on the graded R-module ΩL(R)⊗RM via

Leibniz’s rule

∇(ω ⊗R m) = dLω ⊗R m+ (−1)|ω|ω ∧∇m, ω ∈ ΩL(R), m ∈M.



CĂLDĂRARU’S CONJECTURE AND TSYGAN’S FORMALITY 875

3.1.3. L-differential operators over R. In this section we define the alge-

bra of poly-differential operators of a Lie algebroid and we list some of its

properties. We give some explicit formulae along the lines of [7].

As in the case of ordinary Lie algebras, UR(L) (see §3.1) may be naturally

filtered by giving R filtered degree 0 and L filtered degree 1. In particular,

F0UR(L) = R, F1UR(L) = R⊕ L.

We view UR(L) as an R-central bimodule via the natural embedding of R into

UR(L). Explicitly, if we denote this embedding by i, then5

(3.5) rD
!

= Dr
def
= i(r)D, r ∈ R,D ∈ UR(L).

Moreover UR(L) is an R-coalgebra [27]; i.e., UR(L) possesses an R-linear co-
product ∆ : UR(L)→ UR(L)⊗R UR(L) and an R-linear counit, satisfying the
usual axioms. The comultiplication actually takes values in

(UR(L)⊗R UR(L))′

=

{∑
j

Dj ⊗ Ej ∈ UR(L)⊗R UR(L) | ∀r ∈ R :
∑
j

Dji(r)⊗ Ej =
∑
j

Dj ⊗ Eji(r)

}
,

which is an R-algebra even though UR(L)⊗R UR(L) is not.

The comultiplication ∆ and counit ε are given by similar formulae as in

the Lie algebra case:

∆(r) = r ⊗R 1 = 1⊗R r r ∈ R,(3.6)

∆(l) = l ⊗R 1 + 1⊗R l l ∈ L,
∆(DE) = D(1)E(1) ⊗D(2)E(2) D,E ∈ UR(L),

ε(D) = D(1).

In the third formula we have used Sweedler’s convention. The expression on

the right-hand side is well defined because it is the product inside the algebra

(UR(L)⊗R UR(L))′. In the fourth formula we have used the natural action of

UR(L) on R (see §3.1).

The algebra (better: in the terminology of [27], [3] “the Hopf algebroid”)

UR(L) may be thought of as an algebra of L-differential operators on R. In

the case L = Derk(R) and R smooth over k then UR(L) coincides with the

algebra of differential operators on R.

5Note that there is, at first sight, a more natural right R-module structure on UR(L) given

by the formula Dr = Di(r). This alternative right module structure will not be used in this

paper.
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3.1.4. L-jets. Let (UR(L))≤n be the elements of degree ≤ n with respect

to the canonical filtration on UR(L) introduced in Section 3.1.3. The L-n-jets

are defined as

JnL = HomR(UR(L)≤n, R).

(This is unambiguous, as the left and right R-modules structures on UR(L)

are the same; see (3.5).) We also put

(3.7)

JL = HomR(UR(L), R) = proj lim
n

JnL (as UR(L) = inj lim
n

(UR(L))≤n).

JL has a natural commutative algebra structure obtained from the comultipli-

cation on UR(L). Thus, for φ1, φ2 ∈ JL, D ∈ UR(L), we have

(φ1φ2)(D) = φ1(D(1))φ2(D(2)) ,

and the unit in JL is given by the counit on UR(L).

In addition JL has two commuting left UR(L)-module structures which we

now elucidate. First of all there are two distinct monomorphisms of k-algebras

α1 :R→ JL : r 7→ (D 7→ rε(D)) ,

α2 :R→ JL : r 7→ (D 7→ D(r)) .

It will be convenient to write Ri = αi(R) and to view JL as an R1 − R2-

bimodule.

There are also two distinct commuting actions by derivations of L on JL.

Let l ∈ L, φ ∈ JL, D ∈ UR(L).

1∇l(φ)(D) = l(φ(D))− φ(lD),

2∇l(φ)(D) = φ(Dl).

Again it will be convenient to write Li for L acting by i∇. Then i∇ defines a flat

Li-connection on JL, considered as an Ri-module. The connection 1∇ is the

well-known Grothendieck connection. It follows that JL is a UR(L)1−UR(L)2-

bimodule (with both UR(L)1 and UR(L)2 acting on the left).

The UR(L)2 action on JL takes the very simple form

(D · φ)(E) = φ(ED)

(for D,E ∈ UR(L)2, φ ∈ JL).

Define ε : JL → R by ε(φ) = φ(1), and put JcL = ker ε. Then JL

is complete for the JcL-adic topology and the filtration on JL induced by

(3.7) coincides with the JcL-adic filtration. If we filter JL with the JcL-adic

filtration, then we obtain

(3.8) gr JL = SRL
∗

and the R1 and R2-action on the right-hand side of this equation coincide.

(Here and below the letter S stands for “symmetric algebra.”)
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The induced actions on gr JL = SRL
∗ of l ∈ L, considered as an element

of L1 and L2, are given by the contractions i−l and il, respectively.

In case R is the coordinate ring of a smooth affine algebraic variety and

L = Derk(R) then we may identify JL with the completion R“⊗R of R⊗R at

the kernel of the multiplication map R⊗R→ R. The two actions of R on JL

are respectively R“⊗1 and 1“⊗R.

Similarly, a derivation on R can be extended to R“⊗R in two ways by

letting it act respectively on the first and second factor. Since derivations are

continuous they act on adic completions and hence in particular on JL. This

provides the two actions of L on JL.

In the sequel we will view the action labelled by “1” as the default action;

i.e., we will usually not write the 1 explicitly.

3.2. Relative poly-vector fields, poly-differential operators. We need rela-

tive poly-differential operators and poly-vector fields. So assume that A→ B

is a morphism of commutative k-algebras. Then

Tpoly,A(B) =
⊕
n≥−1

Tnpoly,A(B),

Dpoly,A(B) =
⊕
n≥−1

Dn
poly,A(B),

where Tnpoly,A(B)=
∧n+1
B DerA(B). Similarly, Dn

poly,A(B)⊆HomA(B⊗A(n+1), B)

consists of those A-linear maps from B⊗A(n+1) to B that are A-linear differen-

tial operators on B in each argument.

It is easy to see that Tpoly,A(B) is a Gerstenhaber algebra when equipped

with the Schouten bracket and the exterior product. Similarly, Dpoly,A(B)

is a graded subspace of the relative Hochschild complex C•A(B), and since

differential operators are closed under composition one easily sees that it is in

fact a sub-B∞-algebra; see Appendix A for more details on B∞-algebras.

If A and B are DG-algebras, then we equip Tpoly,A(B), Dpoly,A(B) with the

total differentials [dB,−] and [dB,−] + dH , where dH denotes the Hochschild

differential. Similar results now apply.

3.3. The sheaf of L-poly-differential operators.

Definition 3.3. For a Lie algebroid L over R, we define the graded vector

space DL
poly(R) of L-poly-differential operators on R as the tensor algebra over

R of UR(L) with shifted degree, i.e.,

DL
poly(R) =

⊕
n≥−1

UR(L)⊗R(n+1).

The action of UR(L) on R extends to a map

(3.9) DL,n
poly(R)→ Homk(R

⊗n+1, R)
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defined by

(D1 ⊗ · · · ⊗Dn+1)(r1 ⊗ · · · ⊗ rn+1) 7→ D1(r1) · · ·Dn+1(rn+1),

whose image lies in the space Dpoly(R) of poly-differential operators on R.

DL
poly(R) is a B∞-algebra. In particular it is a DG-Lie algebra and fur-

thermore it is a Gerstenhaber algebra up to homotopy. In Appendix A we give

the formulae for the full B∞-structure. Here we content ourselves by reminding

the reader of the basic operations.

The Gerstenhaber bracket on DL
poly(R) is defined by

(3.10) [D1, D2] = D1{D2} − (−1)|D1||D2|D2{D1}, Di ∈ DL
poly(R), i = 1, 2,

where

D1{D2} =

|D1|∑
i=0

(−1)i|D2|(id⊗i⊗∆|D2| ⊗ id⊗|D1|−i)(D1) · (1⊗i ⊗D2 ⊗ 1⊗|D1|−i) .

It is a Lie bracket of degree 0. The special element µ = 1 ⊗R 1 ∈ DL,1
poly(R) =

UR(L)⊗R UR(L) satisfies [µ, µ] = 0. The Hochschild differential is defined as

the operator dH = [µ,−].

The cup product on DL
poly(R) is defined by

(3.11) D1 ∪D2 = (−1)(|D1|−1)(|D2|−1)D1 ⊗R D2.

(See also Appendix A for an explicit derivation of the previous formula.)

One may now show that these operations make the 4-tuple

(DL
poly(R),dH, [ , ],∪)

into a Gerstenhaber algebra up to homotopy (see Lemma A.1). Indeed if R

is smooth over k and L = Derk(R) is the tangent bundle, then the operations

we have defined are the same as those one obtains from the identification

DL
poly(R) = Dpoly(R) where we view the right-hand side as a sub-B∞-algebra

of the Hochschild complex C•(R) of R (cf. §3.2).

It is in fact, as we explain now, not necessary to verify that we have defined

a homotopy Gerstenhaber structure on DL
poly(R). Indeed the results can be

obtained directly from the known results for the Hochschild complex (see [14],

[26]). Similarly, it is not necessary to write explicit formulae for [−,−] and

∪ (or for the whole B∞-structure for that matter). This point of view will

be useful when we consider Hochschild chains, as in that case the formulae

become more complicated.

The L2-action on JL commutes with the R1-action (see §3.1.4) so we

obtain a ring homomorphism

UR2(L2)→ DR1(JL) : D 7→ (θ 7→ D(θ))
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and hence a map

(3.12) DL2
poly(R2)→ Dpoly,R1(JL)

of Gerstenhaber algebras up to homotopy. The right-hand side has an R1-con-

nection given by [1∇,−], and it follows from [4, Prop. 4.2.4, Lemma 4.3.4]

that the left-hand side of (3.12) is given by the horizontal sections for this

connection.

Now as discussed in Section 3.2, we know that Dpoly,R1(JL) is a B∞-algebra

and it is an easy verification that the braces and the differential, which make

up the B∞-structure, are horizontal for [1∇,−]. Hence the B∞-structure on

Dpoly,R1(JL) descends to DL
poly(R), and one verifies that its basic operations

are indeed given by the formulae we gave earlier.

3.4. The Hochschild complex of L-chains over R. We start with the fol-

lowing definition.

Definition 3.4. For a Lie algebroid L over R, the graded R-module

(3.13) CLpoly,p(R) =

JL⊗̂R−p, p < 0,

R, p = 0,

is called the space of Hochschild L-chains over R.

Our aim in this section will be to show that the pair

(DL
poly(R), CLpoly(R))

is a precalculus up to homotopy. We will do this without relying on explicit

formulae (as they are quite complicated). Instead we will reduce to a relative

version of [7] that discusses Hochschild (co)homology. Explicit formulae are

given in Appendix B.

Let us first remind the reader that if A is a k-algebra, then the pair

(C•(A), C•(A)) consisting of the spaces of Hochschild cochains and chains is

a precalculus up to homotopy. For C•(A) this is just the (shifted) homotopy

Gerstenhaber structure that we have already mentioned in Section 3.3 and that

was introduced in [14], [26].

The full precalculus structure up to homotopy on (C•(A), C•(A)) is a more

intricate object. A complete treatment in a very general setting was given in [7].

It is shown that the precalculus structure can be obtained from two interacting

B∞-module structures on C•(A). These B∞-module structures are obtained

from brace-type operations. For more operadic approaches see [13].

Although we do not really use them, for the benefit of the reader we

state the well-known formulae for the contraction, the Lie derivative and the

differential. If P ∈ Cm−1(A) = Hom(A⊗m, A) and (a0| · · · |at) ∈ C−t(A) =
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A⊗t+1, then we have

ıP (a0| · · · |at) = (a0P (a1, . . . , am)|am+1| · · · |at),

LP (a0| . . . |at) =
t−m+1∑
i=0

(−1)(m−1)i(a0| · · · |ai−1|P (ai, . . . , ai+m−1)|ai+m| · · · |at)

+
t+1∑

l=t−m+2

(−1)lt(P (al, . . . , at, a0, . . . , am−t+l−2)|am−t+l−1| · · · |al−1).

The differential bH is defined as Lµ, where µ is the multiplication, considered

as an element of Hom(A⊗2, A).

To construct the precalculus structure up to homotopy on (DL
poly(R),

CLpoly(R)) we proceed as in Section 3.3. We first define an object that is larger

than CLpoly(R).

Definition 3.5. The space of L-poly-jets over R is the completed space of

relative Hochschild chains “CR1,•(JL). Explicitly,

(3.14) “CR1,•(JL) =
⊕
p≤0

JL⊗̂R1
−p−1.

The Grothendieck connection 1∇ on JL (see §3.1.4) yields a connection

on “CR1,•(JL) by Leibniz’s rule, which we also refer to as the Grothendieck

connection. The following result was proved in [5].

Proposition 3.6. For a Lie algebroid L over a commutative ring R as

above, there is an isomorphism of graded vector spaces

(3.15) “CR1,•(JL)
1∇ → CLpoly(R)

that sends

φ1 ⊗ φ2 ⊗ · · · ⊗ φp ∈ “CR1,−p(JL)
1∇

to

ε(φ1)φ2 ⊗ · · · ⊗ φp ∈ CLpoly,1−p(R).

Proof. The arguments of the proof of [5, Prop. 1.11] can be repeated

almost verbatim. �

The formulae from [7] for the Hochschild complexes now yield that

(Dpoly,R1(JL), “CR1,•(JL)) ⊂ (Ccont,•
R1

(JL), “CR1,•(JL))

is a precalculus up to homotopy. Furthermore, one verifies that the formulae in

[7] are compatible with the Grothendieck connection 1∇. Hence the precalculus

descends to one on

(3.16) (Dpoly,R1(JL)
1∇, “CR1,•(JL)

1∇) = (DL
poly(R), CLpoly(R)),

where we use (3.12) as well as Proposition 3.6.
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It remains to check that this construction coincides with the standard one

for a smooth commutative algebra. Namely, if R/k is smooth and L is the

tangent bundle, then we have

DL
poly(R) = Dpoly(R).

We also have JL = R“⊗R (see §3.1.4) and in this way we obtain an isomorphism

CLpoly,−p(R) = (R“⊗R)⊗̂R1
p

(3.17)

→ R⊗̂p+1 : (r1“⊗s1)“⊗ · · ·“⊗(rp“⊗sp) 7→ (r1 · · · rp)“⊗s1“⊗ · · ·“⊗sp
that yields an isomorphism of graded vector spaces

CLpoly(R) = “C•(R).

Thus, we have an isomorphism of pairs of graded vector spaces

(3.18) (DL
poly(R), CLpoly(R)) = (Dpoly(R), “C•(R)).

The right-hand side is a precalculus up to homotopy (as it is basically a pair

of spaces of Hochschild chains/cochains).

Lemma 3.7. The precalculus up to homotopy on the right-hand side of

(3.18) is the same as the one we have constructed on the left-hand side.

Proof. Note that going from the pair (k,R) to (R, JL) is a base extension

by R (since JL = R“⊗R). Since the formulae in [7] are clearly compatible with

base extension we have that the precalculus structure on

(3.19) (Dpoly,R(JL), “CR,•(JL)) = (R“⊗Dpoly(R), R“⊗“C•(R))

is obtained by base extension from the one on

(Dpoly(R), “C•(R)).

Furthermore, one checks that the Grothendieck connections onDpoly,R(JL) and“CR,•(JL) under the isomorphism (3.19) act by the standard Grothendieck con-

nection on the copy of R appearing on the left of “⊗ and trivially on Dpoly(R),“C•(R). Hence its invariants are precisely Dpoly(R), “C•(R). This finishes the

proof. �

3.5. The Hochschild–Kostant–Rosenberg Theorem. We recall the Lie al-

gebroid version of the famous cohomological Hochschild–Kostant–Rosenberg

(shortly, HKR) quasi-isomorphism; for a proof, we refer to [3].

Theorem 3.8. We consider a Lie algebroid L over R in the sense of

Definition 3.1, which is assumed to be free of rank d over R.
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Then the map

(3.20) HKR(l1 ∧ · · · ∧ lp) = (−1)
p(p−1)

2
1

p!

∑
σ∈Sp

(−1)σlσ(1) ⊗R · · · ⊗R lσ(p)

defines a quasi-isomorphism of complexes from (TLpoly(R), 0) to (DL
poly(R),dH).

There is a dual version of Theorem 3.8, which will also be needed.

Theorem 3.9. The quasi-isomorphism (3.20) induces the quasi-isomor-

phism

HKR(a) = a ◦HKR

of complexes from (CLpoly(R), bH) to (ΩL(R), 0).

4. Fedosov resolutions in the Lie algebroid framework

4.1. Introduction. The aim of this section is to discuss Fedosov resolu-

tions [11] in the Lie algebroid framework. These are needed to formulate and

prove the globalization result, which in turn leads to the main results.

To help the reader understand our algebraic setup (which was inspired by

[28]) we give some motivation for the definitions in the subsequent sections.

For the sake of exposition, we assume in this introduction that X is some kind

of d-dimensional smooth space and L is an appropriate version of the tangent

bundle of X.

One of the applications of formal geometry is the globalization of local

coordinate dependent constructions. For example using the Darboux Lemma it

is trivial to quantize a symplectic manifold locally but such local quantizations

are coordinate dependent and they do not globalize easily. The same is true

for the local formality morphisms (see §5.4 below for more details) that we use

in this paper.

The idea is then to replace X by a much larger infinite dimensional space

Xcoord → X that parametrizes formal local coordinate systems on X. For

example if X is an algebraic variety, then the fiber at x ∈ X in Xcoord is

given by the k-algebra isomorphisms “OX,x → k[[t1, . . . , td]]. An equivalent way

of saying this is that Xcoord universally trivializes the jet bundle (“OX,x)x∈X
over X.

Local constructions can be tautologically globalized to Xcoord, and this

should be followed by some type of descent for Xcoord/X. A general procedure

to do this is to resolve OX by a de Rham-type complex over OXcoord , but this

does not really work as the fibers of Xcoord → X are not contractible.

However in the aforementioned examples the local constructions are all

compatible with linear coordinate changes. So if we define Xaff = Xcoord/Gld,

then the constructions descend to Xaff , and as the fibers of Xaff/X are con-

tractible we can descend further to X.
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In this paper we work over a general locally free Lie algebroid L rather

than TX . In this setting we define the analogue of Xcoord as the space which

universally trivializes the space of jet bundles for L (see §3.1.4).

4.2. Setup. As a general principle we work on the presheaf level in this

paper, performing sheafification only as the very last step of the constructions.

This means that throughout we may replace all spaces by rings and locally free

sheaves may be treated as free modules.

As before we consider a Lie algebroid L over a ring R in the sense of

Definition 3.1; i.e., L is free of rank d over R.

First we discuss Fedosov resolutions of L-poly-vector fields and L-poly-

differential operators as Gerstenhaber algebras up to homotopy, referring to [4]

for details. Finally, we discuss Fedosov resolutions of ΩL(R) (see (3.3)) and

CLpoly(R) (see (3.13)) that are compatible with the precalculus structure up to

homotopy.

4.3. The (affine) coordinate space of a Lie algebroid. For a Lie algebroid

L over R as above, its coordinate space Rcoord,L was introduced and discussed

in detail in [2], [4], to which we refer for a more extensive treatment.

As explained in Section 4.1, the main property of Rcoord,L is the existence

of an isomorphism of Rcoord,L-algebras

(4.1)

t : Rcoord,L“⊗R1JL→ Rcoord,L[[x1, . . . , xd]] = Rcoord,L“⊗F, F = k[[x1, . . . , xd]],

and Rcoord,L is universal with respect to this property; that is, if there is

an R-algebra W , such that there is a W -linear isomorphism W“⊗R1JL →
W [[x1, . . . , xd]], then there exists a unique morphism Rcoord,L →W .

In particular, we note that in contrast to JL, the ring Rcoord,L is not an

adic topological ring; it is equipped with the discrete topology (like R).

Example 4.1. Assume R = k[x1, . . . , xd] and L = Derk(R). As explained

in [2, §6.1.5], [28], we have

Rcoord,L = R[yi,α : i = 1, . . . , d, α ∈ Nd r {0}]det(yi,ej ),

where ej is the j-th standard basis vector in Zd and the subscript det(yi,ej )

refers to the localization at the indicated element. As in this case X = SpecR

has global coordinates x1, . . . , xn, the coordinate ring of the jet bundle JL is

equal to R[[y1, . . . , yd]], where yi is a local version of the global coordinate xi.

The morphism t is the “universal Taylor expansion” morphism

t(yi) =
∑
α

yi,αt
α.

As a consequence of the universal property of Rcoord,L, Rcoord,L admits an

action of GLd(k), such that the following identity holds true on Rcoord,L“⊗F
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for A ∈ GLd(k):

(A−1“⊗A)|JL = IdJL,

where JL is considered as a subalgebra of Rcoord,L“⊗F through (4.1).

By means of Rcoord,L, we consider the graded algebra

Ccoord,L = ΩRcoord,L ⊗ΩR1
ΩL1(R1).

It has the structure of a DG-algebra with differential dCcoord,L = dΩ
Rcoord,L

⊗ΩR1

1 + 1⊗ΩR1
dL1 and inherits from Rcoord,L a rational GLd(k)-action.

The universal isomorphism (4.1) extends to an isomorphism

(4.2) t : Ccoord,L“⊗R1JL→ Ccoord,L[[x1, . . . , xd]],

where we used the respective obvious identifications

Ccoord,L“⊗Rcoord,L

Ä
Rcoord,L“⊗R1JL

ä ∼= ΩRcoord,L“⊗ΩR1

Ä
ΩL1(R1)⊗R1 JL

ä
∼= Ccoord,L“⊗R1JL,

Ccoord,L“⊗Rcoord,L

Ä
Rcoord,L“⊗Fä ∼= Ccoord,L[[x1, . . . , xd]].

We endow the graded algebra on the left-hand, resp. right-hand, side of (4.2)

with the following natural differential:

1∇coord = dΩ
Rcoord,L

“⊗ΩR1
1 + 1“⊗ΩR1

1∇, resp.(4.3)

d = dCcoord,L“⊗1,(4.4)

where 1∇ was introduced in Section 3.4. Both (4.3) and (4.4) are, by con-

struction, flat Ccoord,L-connections on the respective spaces, and the obvious

inclusions from Ccoord,L into Ccoord,L“⊗R1JL and Ccoord,L[[x1, . . . , xd]] are mor-

phisms of DG-algebras.

The main property of the connections (4.3) and (4.4) lies in the existence of

a canonical Maurer–Cartan element in Ccoord,L; namely, according to [2, §1.6]

and [4, §5.2], there exists a unique element ω of Ccoord,L“⊗Der(F ) of degree 1,

satisfying

t ◦ 1∇coord ◦ t−1 − d = ω,

where the expression on the left-hand side is naturally viewed as a Ccoord,L-

linear derivation of F . Furthermore, ω satisfies the Maurer–Cartan equation

in the DG-Lie algebra Ccoord,L“⊗Der(F ), i.e.,

dω +
1

2
[ω, ω] = 0,

(which implies that d + [ω, •] is a flat connection on Ccoord,L[[x1, . . . , xd]]) and

the verticality condition

(4.5) ιvω = 1⊗ v, v ∈ gld(k).
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(Here, ιv on the left-hand side denotes the contraction operation on Ccoord,L

with respect to v, coming from the infinitesimal action of gld(k) on Rcoord,L;

v on the right-hand side denotes the linear vector field associated to v, acting

on F .)

Finally, we consider the affine coordinate space Raff,L of a Lie algebroid L

over R; it is simply the GLd(k)-invariant ring

Raff,L =
Ä
Rcoord,L

äGLd(k)
.

It is an R-algebra in an obvious way, and enjoys a universal property similar

to the one satisfied by Rcoord,L, for which we refer to [4, §5.4].

Example 4.2. Continuing Example 4.1, assume R = k[x1, . . . , xd] and L =

Derk(R). We now have

Raff,L = R[yi,α : i = 1, . . . , d, |α| ≥ 2],

where | • | denotes the norm of a multiindex in Nd. We observe that Raff,L is

an (infinite) polynomial ring, while Rcoord,L is not, due to the localization.

Similarly, we have the DG-algebra Caff,L = ΩRaff,L ⊗ΩR1
ΩL1(R1), with

differential dCaff,L = dΩ
Raff,L

⊗ΩR1
1 + 1 ⊗ΩR1

dL1 . We may further consider

the graded algebra

Caff,L“⊗Raff,L

Ä
Raff,L“⊗R1JL

ä ∼= ΩRaff,L“⊗ΩR1

Ä
ΩL1(R1)⊗R1 JL

ä ∼= Caff,L“⊗R1JL,

endowed with the natural differential

1∇aff = dΩ
Raff,L

“⊗ΩR1
1 + 1“⊗ΩR1

1∇,

making the natural inclusion Caff,L ↪→ Caff,L“⊗R1JL into a morphism of DG-

algebras. Obviously, 1∇coord descends by its very construction to Caff,L“⊗R1JL

and identifies with 1∇aff .

Lemma 4.3. Raff,L is of the form S ⊗ R where S is an (infinitely gener-

ated) polynomial ring.

Proof. See [4, §5.3]. �

Note that this depends on our standing assumption that L is free and

furthermore the decomposition Raff,L = S ⊗R is not canonical.

4.4. Fedosov resolutions of L-poly-vector fields and L-poly-differential op-

erators on R. In this section, we recall briefly the main results of [4, §4.3],

to which we refer for more details. We consider relative poly-differential op-

erators and poly-vector fields (see §3.2) in the following situation: (A, dA) =

(Caff,L, dCaff,L) and (B, dB) = (Caff,L“⊗R1JL,
1∇aff).
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Theorem 4.4. For a Lie algebroid L over R as above, there exist quasi-

isomorphisms of Gerstenhaber algebras up to homotopy :

(TLpoly(R), 0, [ , ],∪) = (TL2
poly(R2), 0, [ , ],∪)(4.6)

↪→
Ä
Tpoly,Caff,L(Caff,L“⊗R1JL), 1∇aff , [ , ],∪

ä
,

(DL
poly(R),dH, [ , ],∪) = (DL2

poly(R2),dH, [ , ],∪)(4.7)

↪→
Ä
Dpoly,Caff,L(Caff,L“⊗R1JL), 1∇aff + dH, [ , ],∪

ä
.

Proof. We refer to [4] for details. For example the map (4.7) is derived

by suitable base extension from (3.12). For the fact that the maps are quasi-

isomorphisms, we refer to [4, Prop. 7.3.1]. �

4.5. The Fedosov resolution of L-forms on R. We consider the precalculus

(ΩL(R), 0,L,∩) of L-forms over the Gerstenhaber algebra (TLpoly(R), 0, [ , ],∪),

described in Section 3.1. We now describe a resolution of (ΩL(R), 0,L,∩) com-

patible with the Fedosov resolution
Ä
Tpoly,Caff,L(Caff,L“⊗R1JL), 1∇aff , [ , ],∪

ä
from Theorem 4.4.

Theorem 4.5. For a Lie algebroid L over R as above, there exists a
quasi-isomorphism of precalculi as in the following commutative diagram :6

(TL
poly(R), 0, [ , ],∪)=(TL2

poly(R2), 0, [ , ],∪) �
� //

��

(
Tpoly,Caff,L(Caff,L“⊗R1

JL),1∇aff, [ , ],∪
)

��

(ΩL(R), 0,L,∩)=(ΩL2(R2), 0,L,∩)
� � //

(
Ω

Caff,L⊗̂R1
JL/Caff,L,

1∇aff ,L,∩
)
,

the vertical arrows denoting the contraction and Lie derivative.

Proof. We refer to [4, §4.3.3]. We observe that the construction of the

quasi-isomorphism uses a dualization of the construction of the quasi-iso-

morphism (4.6) and that contraction operations and differentials are preserved

by the above quasi-isomorphism, whence all algebraic structures are preserved.

�

4.6. The Fedosov resolution of L-chains on R. We consider the DG-algebra

(Caff,L“⊗R1JL,
1∇aff), and to it we associate the Caff,L-relative Hochschild chain

complex, i.e.,“CCaff,L,•(C
aff,L“⊗R1JL) =

⊕
p≤0

Ä
Caff,L“⊗R1JL

ä⊗̂
Caff,L (−p+1)

∼=
⊕
p≤0

(
Caff,L“⊗R1JL

⊗̂R1
(−p+1)

)
= Caff,L“⊗R1

“CR1,•(JL).

6ΩA, for a topological k-algebra A, denotes the continuous de Rham complex. A similar

convention holds for an extension of topological algebras B/A.
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Further, we have the identification

Caff,L“⊗R1
“CR1,•(JL) ∼= ΩRaff,L“⊗ΩR1

Ä
ΩL1(R1)“⊗R1

“CR1,•(JL)
ä
,

and one checks that the differentials coming from the Grothendieck connection

on each side are the same. That is,

1∇aff = dΩ
Raff,L

“⊗ 1 + 1“⊗ 1∇.

Proposition 4.6. For a Lie algebroid L over R as above, the cohomology

of
Ä“CCaff,L,•(C

aff,L“⊗R1JL), 1∇aff
ä

is concentrated in degree 0, where

H0
Ä“CCaff,L,•(C

aff,L“⊗R1JL), 1∇aff
ä ∼= CLpoly(R).

Proof. Taking the inverse of (3.15) we obtain a morphism

CLpoly(R) ∼= “CR1,•(JL)
1∇ ↪→ “CR1,•(JL)

that extends to a morphism

(4.8)

(CLpoly(R), 0)→ (ΩRaff,L“⊗ΩR1

Ä
ΩL1(R1)“⊗R1

“CR1,•(JL)
ä
,dΩ

Raff,L
⊗ 1+1 ⊗ 1∇).

We will show that it is a quasi-isomorphism. To this end we make use of the

identification Raff,L = S ⊗ R given in Lemma 4.3. The right-hand side of the

extended morphism becomes

(ΩS “⊗ Ä
ΩL1(R1)“⊗R1

“CR1,•(JL)
ä
,dS ⊗ 1 + 1⊗ 1∇).

Using a filtration argument together with a suitable version of Poincaré’s

Lemma for S, the previous complex is quasi-isomorphic to

(ΩL1(R1)⊗R1
“CR1,•(JL), 1∇).

It remains to show that for each p ≤ 0,

(ΩL1(R1)⊗R1
“CR1,p(JL), 1∇)

has cohomology in degree 0. Filtering this complex with respect to the J-adic

filtration and taking the associated graded complex one verifies that one ob-

tains

(ΩL(R)⊗R1 S(L∗)⊗−p−1, d),

where the differential d is obtained from the action of L on S(L∗)⊗p+1 by

contraction. Using again a suitable version of Poincaré’s Lemma one finds

that the resulting complex is indeed exact in degrees < 0. �

Theorem 4.7. For a Lie algebroid L over R as above, there is a quasi-

isomorphism of precalculi up to homotopy as in the following commutative
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diagram :

(DL
poly(R), dH, [ , ],∪) �

� //

��

Ä
Dpoly,Caff,L(Caff,L“⊗R1JL), 1∇aff + dH, [ , ],∪

ä
��

(CLpoly(R), bH,L,∩) �
� //

Ä“CCaff,L,•(C
aff,L“⊗R1JL), 1∇aff + bH,L,∩

ä
,

the vertical arrows denoting the contraction and Lie derivative.

5. Globalization of Tsygan’s formality in the

Lie algebroid framework

The present section is devoted to the proof of Theorem 1.3. We first briefly

review some basic facts on L∞-algebras, L∞-modules and related morphisms.

This is discussed in [4, §6] for L∞-morphisms. Here we add a discussion on the

descent procedure for L∞-modules over L∞-algebras and related morphisms.

Then we add a short excursus on Kontsevich’s and Shoikhet’s formality

theorems. We focus on the main properties of both formality morphisms,

without delving into the technical details of their respective constructions.

Finally, we give the main lines, along which the globalization of Tsygan’s

formality can be proved. The proof is a combination of the properties of

Kontsevich’s and Shoikhet’s L∞-morphisms with the Fedosov resolutions from

Section 4.

5.1. Descent for L∞-algebras and L∞-modules. We discuss a series of de-

scent scenarios for L∞-algebras, L∞-modules and related morphisms, which

are modelled after the formalism for descent of differential forms in differential

geometry. The verification of the results in this section are along the same lines

as [2, §§7.6, 7.7]. To clearly separate all the various cases we have numbered

them.

(1) To start it is convenient to work over an arbitrary DG operad O with

underlying graded operad ‹O. (Thus, we forget the differential on O.) Assume

that g is an algebra over O and consider a set of ‹O-derivations (ιv)v∈s of

degree −1 on g. (s is an index set, without any additional structure.) Put

Lv = dgιv + ιvdg. This is a derivation of g of degree 0 that commutes with dg.

Put

(5.1) gs = {w ∈ g | ∀v ∈ s : ιvw = Lvw = 0}.

It is easy to see that gs is an algebra over O as well. Informally we will call

such a set of derivations (ιv)v∈s an s-action.

(2) Assume that M is a g-module, and assume that s also acts on M ,

in a way compatible with the action of s on g; i.e., a general element v of s

determines an operator ιv on M , such that Leibniz’s rule holds true for the
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operations ‹O(n)⊗
(
g⊗n−1 ⊗M

)
→M . Again, we set Lv = dM ιv+ιvdM , which

is a derivation of degree 0 on M compatible with the derivations Lv on g, dM
being the differential on M .

(3) The above constructions apply, in particular, if g is an L∞-algebra.

Assume that it has Taylor coefficients Qn, n ≥ 1. Then Lv is defined by means

of dg = Q1, and the derivation property of ιv reads as

ιv (Qn(x1, . . . , xn))(5.2)

=
n∑
i=1

(−1)
∑i−1

j=1
|xj |+iQn(x1, . . . , ιvxi, . . . , xn), xj ∈ g, j = 1, . . . , n.

Under these conditions the L∞-structure descends to gs.

(4) Similarly, if M is an L∞-module over g defined by Taylor coefficients

Rn, then the compatibility condition is

ιv (Rn(x1, . . . , xn;m))

(5.3)

=
n∑
i=1

(−1)
∑i−1

j=1
|xj |+iRn(x1, . . . , ιvxi, . . . , xn;m)

+ (−1)
∑n

i=1
|xi|+n−1Rn(x1, . . . , xn; ιvm), m ∈M, xj ∈ g, j = 1, . . . , n.

If this holds true, then M s becomes an L∞-module over gs.

(5) We also need descent for L∞-morphisms. This does not immediately

fall under the operadic framework given in (1), (2) but it is easy enough to give

explicit formulae like (5.2), (5.3). Thus, assume ψ : g→ h is an L∞-morphism

between L∞-algebras with s-action. Under the following compatibility condi-

tion

(5.4) ιv(ψn(x1, . . . , xn)) =
n∑
i=1

(−1)
∑i−1

j=1
|xj |+(i−1)ψn(x1, . . . , ιvxi, . . . , xn)

for xj ∈ g, j = 1, . . . , n, n ≥ 1, ψ descends to an L∞-morphism ψs : gs → hs.

(6) Let ψ : g→ h be a morphism between L∞-algebras with s-action such

that the descent condition (5.4) holds, and let N be an L∞-module over h

equipped with a compatible s-action. Let Nψ be the pullback of N along ψ.

Then the s-action on Nψ is compatible with the s-action on g.

(7) Now assume that g is an L∞-algebra and M , N are L∞-modules over g.

Assume that all objects are equipped with an s-action and that the descent

conditions are satisfied.
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Assume that ϕ : M → N is an L∞-module morphism. Then the condition

for ϕ to descend to an L∞-morphism M s → N s is

(5.5)

ιv (ϕn(x1, . . . , xn;m)) =
n∑
i=1

(−1)
∑i−1

j=1
|xj |+(i−1)ϕn(x1, . . . , ιvxi, . . . , xn;m)

+ (−1)
∑n

i=1
|xi|+nϕn(x1, . . . , xn; ιvm)

for m ∈M, xj ∈ g, j = 1, . . . , n, n ≥ 1.

5.2. Twisting of L∞-algebras and L∞-modules. We refer to [11, §2], for

a very detailed exposition of L∞-algebras, L∞-modules and the associated

twisting procedures. See also [29].

Convention. We will work with infinite sums. We assume throughout that

the occurring sums are convergent and that standard series manipulations are

allowed. This will be the case in our applications.

If (g, Q) is an L∞-algebra, then the Maurer-Cartan equation is defined as

(5.6)
∞∑
j=1

1

j!
Qn(ω, · · · , ω︸ ︷︷ ︸

j

) = 0,

and a solution ω ∈ g1 is called a Maurer–Cartan element (MC element for

short). Below we will only use DG-Lie algebras and in this case (5.6) reduces

to the finite sum

dω +
1

2
[ω, ω] = 0.

An MC element defines a new “twisted” DG-Lie structure on g (denoted by

gω) with Taylor coefficients

Qω,n(x1, . . . , xn) =
∑
j

1

j!
Qn+j(ω, . . . , ω︸ ︷︷ ︸

j

, x1, . . . , xn), n ≥ 1.

If g is actually a DG-Lie algebra, then twisting keeps the bracket but changes

the differential to

dω = dg + [ω,−].

If h is another L∞ algebra, ψ is an L∞-morphism from g to h and ω is an MC

element in g, then

(5.7) ψ(ω) =
∑
n≥1

1

n!
ψn(ω, . . . , ω︸ ︷︷ ︸

n

)

is an MC element in h.
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We may also twist ψ with respect to ω, so as to get an L∞-morphism ψω
from gω to gψ(ω), where

ψω,n(x1, . . . , xn) =
∑
j≥0

1

j!
ψn+j(ω, . . . , ω︸ ︷︷ ︸

j

, x1, . . . , xn), n ≥ 1.

If M is an L∞-module over a DG-Lie algebra with Taylor coefficients Rn and

ω ∈ g1 is an MC element, then we may define a twisted L∞ structure on Mω

over gω by the formula

Rω,n(x1, . . . , xn;m) =
∑
j≥0

1

j!
Rn+j(ω, . . . , ω︸ ︷︷ ︸

j

, x1, . . . , xn;m), n ≥ 0.

If g is a DG-Lie algebra and M is a DG-Lie module over g, then twisting keeps

the g-action on M but changes the differential on M to

dω = d+ ω • .

Twisting of modules is compatible with pullback. More precisely if ψ : g → h

is an L∞-morphism, N is an L∞-module over h and ω ∈ g1 is an MC element,

then we have

(5.8) (Nψ(ω))ψω = (Nψ)ω.

If ϕ : M → N is an L∞-morphism of DG-Lie modules over the DG-Lie algebra

g and ω is an MC element in g1, then we obtain a twisted L∞-morphism

ϕω : Mω → Nω, which is defined by

(5.9) ϕω,n(x1, . . . , xn;m) =
∑
j≥0

1

j!
ϕn+j(ω, . . . , ω︸ ︷︷ ︸

j

, x1, . . . , xn;m), n ≥ 1.

5.3. Compatibility of twisting and descent. Assume now that g is a DG-

Lie algebra equipped with an s-action and that ω ∈ g1 is an MC element.

Then s still acts on gω, where we forget here about the differential: in fact,

the concept of an s-action only refers to the underlying Lie algebra structure

on g. However gs and gsω will be different (as the Lie derivative Lv for v ∈ s

will be different).

If (M,R) is an L∞-module over g that is also equipped with a compat-

ible s-action, then the s-actions on gω and Mω are compatible provided the

following condition holds:

(5.10) Rn(ιvω, x2, . . . , xn;m) = 0, xi ∈ g, i = 2, . . . , n, n ≥ 2, m ∈M.

This condition is automatic if M is a DG-Lie module.

If ψ : g → h is an L∞-morphism of DG-Lie algebras equipped with an

s-action and the descent condition (5.4) is satisfied for ψ, then an easy com-

putation (see, e.g., [2, §7.7]) shows that the same descent condition will be
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satisfied for ψω if the following condition holds:

(5.11) ψn(ιvω, x2, . . . , xn) = 0, xi ∈ g, i = 2, . . . , n s ∈ s, n ≥ 2.

Furthermore, if in this setting N is an L∞-module over h with compatible

s-action such that the compatibility condition (5.10) holds, then the corre-

sponding condition will hold for Nψ.

Similarly, if we have an L∞-morphism ϕ : M → N between DG-Lie mod-

ules over a DG-Lie algebra g such that g, M , N are equipped with compatible

s-actions in such a way that the descent condition (5.5) holds for ϕ then the

same descent condition will be satisfied for ϕω if the following condition holds:

ϕn(ιvω, x2, . . . , xn;m) = 0, m ∈M, xi ∈ g, i = 2, . . . , n n ≥ 2, s ∈ s.

5.4. Kontsevich’s and Shoikhet’s formality theorems. In this brief section,

we quote (without proofs) Kontsevich’s and Shoikhet’s formality theorems,

along with the relevant properties, which we will need later in the proof of

globalization results.

We consider the algebra F = k[[x1, . . . , xd]] of formal power series in d

variables over a field k containing R.

To F , we associate the DG-Lie algebras (Tpoly(F ), 0, [ , ]), resp. (Dpoly(F ),

dH, [ , ]), of formal poly-vector fields, resp. formal poly-differential operators,

on F ; further, we consider the DG-Lie modules (ΩF , 0,L), resp. (“C•(F ), bH,L),

over (Tpoly(F ), 0, [ , ]), resp. (Dpoly(F ),dH, [ , ]), where ΩF denotes the con-

tinuous de Rham complex of F with de Rham differential d, and “C•(F ) is the

continuous Hochschild chain complex of F .

The following is Kontsevich’s celebrated “formality” result.

Theorem 5.1 ([16]). There is an L∞-quasi-isomorphism

U : (Tpoly(F ), 0, [ , ])→ (Dpoly(F ), dH, [ , ]),

enjoying the following properties :

(i) The first Taylor coefficient of U coincides with the Hochschild–Kostant–

Rosenberg quasi-isomorphism (of DG-vector spaces)

HKR(∂i1 ∧ · · · ∧ ∂ip) = (−1)
p(p−1)

2
1

p!

∑
σ∈Sp

(−1)σ∂iσ(1)
⊗ · · · ⊗ ∂iσ(p)

from (Tpoly(F ), 0) to (Dpoly(F ), dH).

(ii) If n ≥ 2, and γi, i = 1, . . . , n, are elements of T 0
poly(F ), then

Un(γ1, . . . , γn) = 0.

(iii) If n ≥ 2, γ1 is a linear vector field on F (i.e., an element of gld), γi,

i = 2, . . . , n are general elements of Tpoly(F ), then

Un(γ1, γ2, . . . , γn) = 0.
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By composing the action L of Dpoly(F ) on “C•(F ) with the L∞-quasi-

isomorphism U from Theorem 5.1, “C•(F ) inherits an L∞-module structure

over the DG-Lie algebra (Tpoly(F ), 0, [ , ]).

The first part of the following theorem was a conjecture by Tsygan [25],

which was proved by Shoikhet in [20]. The second part was proved in [11].

Theorem 5.2. There is an L∞-quasi-isomorphism

S : (“C•(F ),bH,L ◦ U)→ (ΩF , 0,L)

of L∞-modules over the DG-Lie algebra (Tpoly(F ), 0, [ , ]), enjoying the fol-

lowing properties :

(i) The 0-th Taylor coefficient of S coincides with the Hochschild–Kostant–

Rosenberg quasi-isomorphism

HKR((a0| · · · |ap)) =
1

p!
a0da1 · · · dap

from the DG-vector space (“C•(F ),bH) to the DG-vector space (ΩF , 0).

(ii) If n ≥ 1, γ1 is a linear vector field on F , γi, i = 2, . . . , n are general

elements of Tpoly(F ) and c is a general element of “C•(F ), then

Sn(γ1, . . . , γn; c) = 0.

5.5. Formality theorem in the ring case. This section is devoted to the

proof of a Tsygan-like formality theorem in the case of a Lie algebroid L over a

k-algebraR, such that L is free overR of rank d. The proof combines Shoikhet’s

Formality Theorem 5.2 with the Fedosov resolutions from Section 4.

Theorem 5.3. Assume R ⊂ k. For a Lie algebroid L over R as above,

there exist DG-Lie algebras (gLi , di, [ , ]i), DG-Lie modules (mL
i , bi,Li) over gi,

i = 1, 2, and L∞-quasi-isomorphisms UL from gL1 to gL2 and SL from mL
2 to

mL
1 that fit into the following commutative diagram :

(5.12) TLpoly(R) �
� //

L
��

gL1
UL //

L1

��

gL2

L2

��

DL
poly(R)? _oo

L
��

ΩL(R) �
� // mL

1 mL
2

SLoo CLpoly(R)? _oo

such that the induced maps

TLpoly(R)→ H•(DL
poly(R),dH), H•(CLpoly(R), bH)→ ΩL(R)

on (co)homology coincide with the respective HKR-quasi-isomorphisms. The

morphisms indicated by hooked arrows are actual quasi-isomorphisms of DG-

Lie algebras and DG-Lie modules respectively.
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Proof. The first step in the proof of Theorem 5.3 may be borrowed from [4,

§7.3]. Namely, we consider the following graded vector spaces:

Ccoord,L“⊗Tpoly(F ) ∼= Tpoly,Ccoord,L(Ccoord,L“⊗F ),

Ccoord,L“⊗Dpoly(F ) ∼= Dpoly,Ccoord,L(Ccoord,L“⊗F ),

Ccoord,L“⊗ΩF
∼= ΩCcoord,L⊗̂F/Ccoord,L ,

Ccoord,L“⊗“C•(F ) ∼= “CCcoord,L,•(C
coord,L“⊗F ),

where “CCcoord,L,•(C
coord,L“⊗F ) denotes the Ccoord,L-relative Hochschild chain

complex of the DG-algebra Ccoord,L“⊗F . (Recall that the DG-algebra Ccoord,L

was introduced in Section 4.3.)

The Maurer–Cartan form on Ccoord,L“⊗F introduced in Section 4.3 defines

a twisted differential dω = d + ω on the listed graded vector spaces and as

explained in Section 5.2 dω is compatible with the respective DG-Lie algebra

and DG-Lie module structures.
Thus, formal geometry provides us with the following DG-Lie algebras

and respective DG-Lie modules:(
Tpoly,Ccoord,L(Ccoord,L“⊗F ),dω, [ , ]

)
,

��

(
Dpoly,Ccoord,L(Ccoord,L“⊗F ),dω + dH, [ , ]

)
��Ä

Ω
Ccoord,L⊗̂F/Ccoord,L ,dω,L

ä Ä“CCcoord,L(Ccoord,L“⊗F ),dω + bH,L
ä
.

We repeat that, viewing all DG-Lie algebra and DG-Lie module structures

above as L∞-structures, the differential dω is the twist of the standard struc-

tures with respect to the MC element ω of

Ccoord,L“⊗Der(F ) = T 0
poly,Ccoord,L(Ccoord,L“⊗F ).

The L∞-quasi-isomorphism U of Theorem 5.1 extends Ccoord,L-linearly to

an L∞-quasi-isomorphism

UL :
Ä
Tpoly,Ccoord,L(Ccoord,L“⊗F ),d, [ , ]

ä
→
Ä
Dpoly,Ccoord,L(Ccoord,L“⊗F ),d + dH, [ , ]

ä
.

The composition of the DG-Lie action L of Dpoly,Ccoord,L(Ccoord,L“⊗F ) on“CCcoord,L,•(C
coord,L“⊗F ) with the L∞-quasi-isomorphism UL endows the latter

graded vector space with a structure of L∞-module over the DG-Lie algebra

Tpoly,Ccoord,L(Ccoord,L“⊗F ), which is obtained by Ccoord,L-base extension of the

corresponding L∞-module structure of “C•(F ) over Tpoly(F ).

Accordingly, the L∞-quasi-isomorphism S of Theorem 5.2 extends to an

L∞-quasi-isomorphism of L∞-modules

SL :
Ä“CCcoord,L,•(C

coord,L“⊗F ),d + bH,L ◦ UL
ä
→
(
ΩCcoord,L⊗̂F/Ccoord,L , d, L

)
,

both viewed as L∞-modules over Tpoly,Ccoord,L(Ccoord,L“⊗F ).
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As outlined in Section 5.2 we may apply the twisting procedures for

L∞-algebras, L∞-modules and L∞-morphisms to the present case, where the

MC element is the Maurer–Cartan form ω. Thus, we get an L∞-morphism UL,ω
UL,ω :

Ä
Tpoly,Ccoord,L(Ccoord,L“⊗F ),dω, [ , ]

ä
→
Ä
Dpoly,Ccoord,L(Ccoord,L“⊗F ), dω + dH, [ , ]

ä
,

where here and below we used Property (ii) of Theorem 5.1, which yields

that the MC element U(ω) equals ω. The L∞-morphism UL,ω yields an L∞-

module structure on “CCcoord,L,•(C
coord,L“⊗F ) over the ω-twisted DG-Lie algebra

Tpoly,Ccoord,L(Ccoord,L“⊗F ).

Translating (5.8) to the present case, we haveÄ“CCcoord,L,•(C
coord,L“⊗F ), dω + bH,L ◦ UL,ω

ä
=
Ä“CCcoord,L,•(C

coord,L“⊗F ), d + bH,L ◦ UL
ä
ω

from which we get an L∞-quasi-isomorphism

SL,ω :
Ä“CCcoord,L,•(C

coord,L“⊗F ), dω + bH,L ◦ UL,ω
ä

→
(
ΩCcoord,L⊗̂F/Ccoord,L , dω,L

)
of L∞-modules.

Using the isomorphism (4.2) we obtain isomorphisms of DG-Lie algebras

and respective DG-Lie modulesÄ
Tpoly,Ccoord,L(Ccoord,L“⊗F ),dω, [ , ]

ä
∼=
Ä
Tpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord, [ , ]

ä
,Ä

Dpoly,Ccoord,L(Ccoord,L“⊗F ), dω + dH, [ , ]
ä

∼=
Ä
Dpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord + dH, [ , ]

ä
,(

ΩCcoord,L⊗̂F/Ccoord,L , dω,L
)

∼=
(
ΩCcoord,L⊗̂R1

JL/Ccoord,L ,
1∇coord,L

)
,Ä“CCcoord,L,•(C

coord,L“⊗F ), dω + bH,L
ä

∼=
Ä“CCcoord,L,•(C

coord,L“⊗R1JL), 1∇coord + bH,L
ä
,

an L∞-morphism

Ucoord
L :

Ä
Tpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord, [ , ]

ä
→
Ä
Dpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord + dH, [ , ]

ä
,

which yields an L∞-module structure on “CCcoord,L,•(C
coord,L“⊗R1JL) over

Tpoly,Ccoord,L(Ccoord,L“⊗R1JL),
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and finally an L∞-morphism

Scoord
L :

Ä“CCcoord,L,•(C
coord,L“⊗R1JL), 1∇coord + bH,L ◦ Ucoord

L

ä
→
(
ΩCcoord,L⊗̂F/Ccoord,L ,

1∇coord,L
)
.

We recall from Section 4.3 that there is a rational action of GLd(k) on Ccoord,L

extending in a natural way to a (topological) rational action on all DG-Lie

algebras and DG-Lie modules above. The previous actions determine infinites-

imally actions of gld(k) on all DG-Lie algebras and DG-Lie modules considered

so far in the sense of Section 5.2.

The L∞-morphism UL,ω descends with respect to the action of the set

s = gld(k) (using the notation of §5.2), because the descent condition (5.11) is

satisfied as a consequence of Property (iii) of Theorem 5.1 and of the verticality

property (4.5) of ω.

Similarly, Property (ii) of Theorem 5.2, together with the verticality prop-

erty of ω, implies that SL,ω descends with respect to the action of gld(k) (see

§5.3). Summarizing all arguments so far, and because of the compatibility of

the GLd(k)-action with the isomorphism (4.2), we get L∞-morphisms

(U coord
L )gld(k) :

Ä
Tpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord, [ , ]

ägld(k)

→
Ä
Dpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord + dH, [ , ]

ägld(k)

and

(Scoord
L )gld(k) :

Ä“CCcoord,L,•(C
coord,L“⊗R1JL), 1∇coord + bH,L ◦ Ucoord

L

ägld(k)

→
(
ΩCcoord,L⊗̂F/Ccoord,L ,

1∇coord,L
)gld(k)

.

Repeating almost verbatim the arguments at the end of [4, §7.3.3], there are

obvious isomorphisms of DG-Lie algebras and DG-Lie modulesÄ
Tpoly,Caff,L(Caff,L“⊗R1JL), 1∇aff , [ , ]

ä
∼=
Ä
Tpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord, [ , ]

ägld(k)
,Ä

Dpoly,Caff,L(Caff,L“⊗R1JL), 1∇aff + dH, [ , ]
ä

∼=
Ä
Dpoly,Ccoord,L(Ccoord,L“⊗R1JL), 1∇coord + dH, [ , ]

ägld(k)
,(

ΩCaff,L⊗̂F/Caff,L ,
1∇aff ,L

)
∼=
(
ΩCcoord,L⊗̂F/Ccoord,L ,

1∇coord,L
)gld(k)

,Ä“CCaff,L,•(C
aff,L“⊗R1JL), 1∇aff + bH,L

ä
∼=
Ä“CCcoord,L,•(C

coord,L“⊗R1JL), 1∇coord + bH,L
ägld(k)

.
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We now set

gL1 = Tpoly,Caff,L(Caff,L“⊗R1JL), gL2 = Dpoly,Caff,L(Caff,L“⊗R1JL),

mL
1 = ΩCaff,L⊗̂R1

JL/Caff,L , mL
2 = “CCaff,L,•(C

aff,L“⊗R1JL),

and UL = Uaff
L , SL = Saff

L . Combining all the results so far, we get the

commutative diagram (5.12), and to prove the claim, it remains to show that

UL and SL are L∞-quasi-isomorphisms.

The proof of the fact that UL is a quasi-isomorphism can be found in [4,

§7.3.4]. The proof of the fact that SL is a quasi-isomorphism is dual. We will

now sketch it.

The L∞-morphism SL is obtained from SL,ω using the isomorphism (4.2)

and by (5.9) the Taylor components of SL,ω are given by

SL,ω,n(γ1, . . . , γn; c) =
∑
m≥0

1

m!
SL,n+m(ω, . . . , ω︸ ︷︷ ︸

m

, γ1, . . . , γn; c),

γi ∈ Tpoly,Ccoord,L(Ccoord,L“⊗F ), c ∈ “CCcoord,L,•(C
coord,L“⊗F ).

Tpoly,Ccoord,L(Ccoord,L“⊗F ), Dpoly,Ccoord,L(Ccoord,L“⊗F ), ΩCcoord,L⊗̂F/Ccoord,L and“CCcoord,L,•(C
coord,L“⊗F ) are bi-graded complexes. The first degree is the nat-

ural degree coming from Ccoord,L, while the second degree is associated to

poly-vector degree, (shifted) Hochschild degree, (negative) form degree and

(negative) Hochschild degree respectively.

The component SL,ω,0 can be written into a sum

SL,ω,0(c) =
∑
n≥0

1

n!
Sn(ω, . . . , ω︸ ︷︷ ︸

n

; c).

The grading property of the L∞-quasi-isomorphism S of Theorem 5.2 implies

that the component SnL,ω,0 of SL,ω,0 indexed by n has bi-degree (n,−n).

Dualizing [4, Lemma 7.3.2], and using Property (i) of Theorem 5.2, we get

the following commutative diagram of graded vector spaces:

(5.13) CLpoly(R) �
� //

HKR
��

Ccoord,L“⊗“C•(F )

S0
L,ω,0

��
ΩL(R) �

� // Ccoord,L“⊗ΩF ,

where the morphism HKR on the left vertical arrow was defined in Theo-

rem 3.9.
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The twisting procedure and the descent procedure by the isomorphism (4.2)

produce the commutative diagram

CLpoly(R) �
� //

HKR

��

“CCaff,L,•(C
aff,L“⊗R1JL)

S0
L,0

��
ΩL(R) �

� // ΩCaff,L⊗̂R1
JL/Caff,L

out of the commutative diagram (5.13); the above bi-gradings naturally trans-

late into bi-gradings on ΩCaff,L⊗̂F/Caff,L and “CCaff,L,•(C
aff,L“⊗F ). The compo-

nent SL,0 is a sum of terms Sn
L,0, n ≥ 0, of bi-degree (n,−n).

We now prove that the morphisms SL,0 and S0
L,0 coincide at the level

of cohomology. For this, we consider on the double complexes ΩCaff,L⊗̂F/Caff,L

and “CCaff,L,•(C
aff,L“⊗F ) the filtration with respect to the second degree. Then,

the corresponding spectral sequences degenerate at their first terms, because of

the results of Sections 4.5 and 4.6, and the resulting complexes consist of single

columns (ΩL(R), 0) and (CLpoly(R), bH). Thus, the respective second terms of

the spectral sequences coincide with ΩL(R) and with H•(CLpoly(R),bH). Since

both spectral sequences degenerate at their first term (i.e., the cohomology

with respect to the first degree is concentrated in degree 0), SL,0 and S0
L,0

obviously coincide at the level of cohomology, and this ends the proof. �

5.6. Functoriality property of Theorem 5.3. We consider two Lie alge-

broids (L,R), (M,S) as above.

Definition 5.4. An algebraic morphism from (L,R) to (M,S) consists of

a pair (`, λ), where (i) λ is a k-algebra morphism from R to S and (ii) ` is

a Lie algebra morphism from L to M , enjoying the following compatibility

properties with respect to the corresponding anchor maps:

λ(l(r)) = `(l)(λ(r)), `(rl) = λ(r)`(l), r ∈ R, l ∈ L.

The universal property of the universal enveloping algebra of a Lie alge-

broid yields, for any algebraic morphism ϕ = (`, λ) from (L,R) to (M,S), a

Hopf algebroid morphism ϕD : UR(L) → US(M). Thus, (`, λ) defines a mor-

phism ϕD of B∞-algebras from DL
poly(R) to DM

poly(S). In particular, it restricts

to a morphism of Gerstenhaber algebras up to homotopy.

Further, the algebraic morphism ϕ defines a morphism ϕT : TLpoly(R) →
TMpoly(S) by extending (via the S-linear wedge product) the assignment

ϕT : S ⊗R L→M : s⊗R l 7→ s`(l).

Since (`, λ) preserves the anchor map and Lie bracket, we have a morphism of

Gerstenhaber algebras from TLpoly(R) to TMpoly(S).



CĂLDĂRARU’S CONJECTURE AND TSYGAN’S FORMALITY 899

Proposition 5.5. We assume (L,R), (M,S) to be Lie algebroids over R

and S respectively and ϕ = (`, λ) to be an algebraic morphism between them as

in Definition 5.4. We further assume that the morphism

ϕT : S ⊗R L→M : s⊗R l 7→ s`(l)

is an isomorphism of S-modules.

The morphism (`, λ) determines a morphism of DG-algebrasÄ
ΩL(R), dL

ä ϕΩ→
Ä
ΩM (S), dM

ä
that satisfies

(5.14) ϕΩ(γ ∩ ω) = ϕT (γ) ∩ ϕΩ(ω), γ ∈ TLpoly(R), ω ∈ ΩL(R),

and a morphism of algebras

ϕJ : JL→ JM

that satisfies

λ(α(E)) = ϕJ(α)(ϕD(E)), α ∈ JL, E ∈ UR(L),(5.15)

ϕJ
Ä

1∇lα
ä

= 1∇`(l)ϕJ(α), α ∈ JL, l ∈ L,(5.16)

ϕJ(2∇lα) = 2∇`(l)ϕJ(α), α ∈ JL, l ∈ L(5.17)

and that commutes with the algebra monomorphisms αi, i = 1, 2 (see §3.1.4).

Proof. Since ϕT is an isomorphism of S-modules, we define ϕΩ on L-differ-

ential forms on R via

ϕΩ(r) = λ(r), ϕΩ(l∗)(s`(l)) = sλ(l∗(l)), r ∈ R, s ∈ S, l ∈ L, l∗ ∈ L∗,

and we extend it to ΩR(L) by R-linearity and by multiplicativity with respect

to the wedge product.

To prove that ϕΩ intertwines dL and dM , it suffices to verify the claim on

R and L∗. In the first case, we have

ϕΩ(dL(r))(s`(l)) = sλ(dL(r)(l)) = sλ(l(r))

= s`(l)(λ(r)) = s`(l)(ϕΩ(r)) = dM (ϕΩ(r))(s`(l))

for a general element r of R, s of S and l of L, while in the second case we

have

ϕΩ(dLl
∗)(s1`(l1), s2`(l2))

= s1s2λ(dLl
∗(l1, l2))

= s1s2λ(l1(l∗(l2)))− s1s2λ(l2(l∗(l1)))− s1s2λ(l∗([l1, l2]))

= s1`(l1)(s2)λ(l∗(l2)) + s1s2`(l1)(λ(l∗(l2)))

− s2`(l2)(s1)λ(l∗(l1))− s1s2`(l2)(λ(l∗(l1)))

− s1`(l1)(s2)λ(l∗(l2)) + s2`(l2)(s1)λ(l∗(l1))− s1s2λ(l∗([l1, l2]))
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= (s1`(l1))(ϕΩ(l∗)(s2`(l2)))− (s2`(l2))(ϕΩ(l∗)(s1`(l1)))

− ϕΩ(l∗)(s1`(l1)(s2)`(l2)− s2`(l2)(s1)`(l1) + s1s2`([l1, l2]))

= dM (ϕΩ(l∗))(s1`(l1), s2`(l2)).

By compatibility with wedge products, it suffices to prove (5.14) for γ in R or

in L, and for a general ω. We check exemplarily the claim for γ = l ∈ L, i.e.,

ϕΩ(l ∩ ω)(s1`(l1), . . . , sp`(lp)) = s1 · · · spλ((l ∩ ω)(l1, . . . , lp))

= s1 · · · spλ(ω(l, l1, . . . , lp))

= ϕΩ(ω)(`(l), s1`(l1), . . . , sp`(lp))

= (ϕT (l) ∩ ϕΩ(ω))(s1`(l1), . . . , sp`(lp)).

We now define the morphism ϕJ on JL. For a general element α of JL, we set

ϕJ(α)(s) = sλ(α(1)), ϕJ(α)(s`(l1) · · · `(lp)) = sλ(α(l1 · · · lp)), s ∈ S, li ∈ L.

It is sufficient to define ϕJ on such elements of US(M) since, being ϕT an

isomorphism of S-modules, a general element of US(M) is a sum of elements

of the form

(s1`(l1)) · · · (sp`(lp)) = s1`(l1)s2`(l2) · · · sp`(lp)
= s1(`(l1)(s2))`(l2) · · · sp`(lp) + s1s2`(l1)`(l2) · · · sp`(lp) = · · · ,

where the product has to be understood in US(M).

Since ϕD is defined by extending λ and ` in a way compatible with the

Lie algebroid structure of UR(L), (5.15) follows immediately.

As for (5.16), it suffices to check the identity on R and on elements of

US(M) of the form s`(l1) · · · `(lp). In the first case, for s ∈ S, l ∈ L, we haveÄ
1∇`(l)ϕJ(α)

ä
(s) = `(l)(ϕJ(α)(s))− ϕJ(α)(`(l)s)

= `(l)(sλ(α(1)))− ϕJ(α)(`(l)s)

= `(l)(s)λ(α(1)) + s`(l)λ(α(1))

− ϕJ(α)(`(l)(s))− ϕJ(α)(s`(l))

= s`(l)λ(α(1))− sλ(α(l))

= sλ((1∇lα)(1))

= ϕJ(1∇lα)(s).
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As for the second case, for α ∈ JL, l, li ∈ L, i = 1, . . . , p, s ∈ S, we haveÄ
1∇`(l)ϕJ(α)

ä
(s`(l1) · · · `(lp))

= `(l) (ϕJ(α)(s`(l1) · · · `(lp)))− ϕJ(α)(`(l)s`(l1) · · · `(lp))
= `(l)(sλ(α(l1 · · · lp)))− ϕJ(α)(`(l)s`(l1) · · · `(lp))
= `(l)(s)λ(α(l1 · · · lp)) + s`(l)(λ(α(l1 · · · lp)))
− ϕJ(α)(`(l)(s)`(l1) · · · `(lp))− ϕJ(α)(s`(l)`(l1) · · · `(lp))

= sλ(l(α(l1 · · · lp)))− sλ(α)(ll1 · · · lp)

= ϕJ(1∇lα)(s`(l1) · · · `(lp)).

The identity (5.17) as well as the compatibility with αi, i = 1, 2 are verified

by similar computations. �

Assume now that ϕ = (`, λ) : (L,R)→ (M,S) is as in the previous lemma

and that ϕT : S ⊗R L → M is an isomorphism. As always we assume that L

(and hence M) is free of rank d. Looking at associated graded objects we see

that the extended map

(5.18) S1 ⊗R1 JL→ JM : s⊗ α 7→ sϕJ(α)

is an isomorphism. Hence any R1-linear differential operator on JL can be

extended to an S1-linear differential operator on JM . We use this to define a

map

ϕD : DR1(JL)→ DS1(JM)

and a corresponding map of B∞-algebras

(5.19) ϕD : Dpoly,R1(JL)→ Dpoly,S1(JM)

such that the following diagram is commutative

(5.20) DL
poly(R)

ϕD //
_�

��

DM
poly(S)
_�

��
Dpoly,R1(JL)

ϕD
// Dpoly,S1(JM),

where the vertical monomorphisms have been defined in (3.12).

An easy computation shows that ϕD in (3.12) commutes with the action of

the Grothendieck connection [1∇,−]. It follows by the discussion in Section 3.3

that if we take the invariants for [1∇,−] of the lower line in (5.20), we obtain

the upper line.

We extend ϕJ to a map of graded vector spaces

ϕC : “CR,•(JL)→ “CS,•(JM) : α1 ⊗ · · · ⊗ αn 7→ ϕJ(α1)⊗ · · · ⊗ ϕJ(αn),
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which is again essentially just base extension over S/R. This map obviously

commutes with the Grothendieck connection 1∇. We obtain a map of pairs of

graded vector spaces

(ϕD, ϕC) : (Dpoly,R(JL), “CR,•(JL))→ (Dpoly,S(JM), “CR,•(JL)),

and as this map is just base extension over S/R, it is compatible with all

structures defined in [7] hence, in particular, with the DG-Lie algebra and

DG-Lie module structures and also with the precalculi up to homotopy.

Taking invariants for 1∇ and using (3.16) we obtain a commutative dia-

gram of precalculus structure up to homotopy:

(DL
poly(R), dH, [ , ],∪)

��

ϕD // (DM
poly(S), dH, [ , ],∪)

��
(CLpoly(R), bH,L,∩)

ϕC
// (CMpoly(S), bH,L,∩).

One also obtains from Proposition 5.5 a commutative diagram of precalculi:

(TLpoly(R), 0, [ , ],∪)

��

ϕT // (TMpoly(S), 0, [ , ],∪)

��
(ΩL(R), 0,L,∩)

ϕΩ

// (ΩM (S), 0,L,∩).

Furthermore, from (5.18) and the universal property of coordinate spaces (see

(4.1)) we obtain an R-algebra morphism from Rcoord,L to Scoord,M . It ex-

tends further to a morphism of DG-algebras from Ccoord,L to Ccoord,M thanks

to (5.16) and the fact that ϕΩ is a morphism of DG-algebras from ΩL(R) to

ΩM (S).

Finally, the algebraic morphism (`, λ) induces precalculi morphisms (up to

homotopy) between all corresponding Fedosov resolutions, since the monomor-

phism α2 and the connection 2∇, which are needed in the construction of the

Fedosov resolutions of Section 4 (we refer to [4] for more details thereabout),

have been proved to be preserved by (`, λ).

As a consequence of these arguments, we deduce the following theorem,

which expresses the functoriality properties of the commutative diagram (5.12)

of Theorem 5.3.

Theorem 5.6. For a general algebraic morphism ϕ = (`, λ) from (L,R)

to (M,S) as in Definition 5.4, which induces an isomorphism S ⊗R L ∼= M

of S-modules, and such that L is free of rank d, the L∞-quasi-isomorphisms

UL, UM , SL and SM of DG-Lie algebras and DG-Lie modules fit into the
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commutative diagram

(5.21) TLpoly(R) �
� //

ϕT

��

gL1
UL //

ϕT

��

gL2

ϕD

��

DL
poly(R)? _oo

ϕD

��
TMpoly(S) �

� //

L
��

gM1
UM //

L1

��

gM2

L2

��

DM
poly(S)? _oo

L
��

ΩM (S) �
� // mM

1 mM
2

SMoo CMpoly(S)? _oo

ΩL(R) �
� //

ϕΩ

OO

mL
1

ϕΩ

OO

mL
2

SLoo

ϕJ

OO

CLpoly(R),? _oo

ϕJ

OO

where we have borrowed notation from Proposition 5.5; all such morphisms are

compatible with respect to the composition of algebraic morphisms between Lie

algebroids.

Note that Theorem 5.6 makes no reference to the (homotopy) precalculus

structures that we discussed above; we will need these below.

5.7. Proof of Theorem 1.3. We now collect the results of Sections 5.5 and

5.6 to give the proof of Theorem 1.3, via a well-suited gluing procedure.

We consider a ringed site (X,O) and a sheaf of Lie algebroids L such

that L is locally free of rank d over O. We replace X by its full subcategory of

objects U such that L(U) is free over O(U). This does not change the category

of sheaves.

All sheaves of DG-Lie algebras and DG-Lie modules in the commutative

diagram (1.7) are obtained by sheafifying the corresponding presheaves of DG-

Lie algebras and DG-Lie modules; i.e.,

U → T
L(U)
poly (O(U)), U → D

L(U)
poly (O(U)),

U → ΩL(U)(O(U)), U → C
L(U)
poly (O(U)).

Since L is locally free of order d over O, for a morphism V → U in X, the

corresponding restriction morphism (O(U),L(U)) → (O(V ),L(V )) yields an

isomorphism

O(V )⊗O(U) L(U) ∼= L(V ).

Thus, any restriction morphism as above may be viewed as an algebraic mor-

phism between Lie algebroids, satisfying the isomorphism property of Theo-

rem 5.6.

If we then consider the DG-Lie algebras and DG-Lie modules

U → g
L(U)
i , U → m

L(U)
i , i = 1, 2,
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Theorem 5.3 produces, for any U in X, L∞-quasi-isomorphisms UL(U) and

SL(U) that fit into a commutative diagram (5.12). By Theorem 5.6 these are

actually morphisms of presheaves.

Sheafifying all presheaves and morphisms between presheaves concludes

the proof.

6. The relationship between Atiyah classes and jet bundles

In the present section we review some technical results from [4, §8], to

which we refer for more details. We need only the main notation and conven-

tions for use in Section 7.

For a field k of characteristic 0, we consider a sheaf L of Lie algebroids

over a ringed site (X,O), which is locally free of rank d over O.

We have a short exact sequence of O1-O2-bimodules

0→ L∗ → J1L → O → 0,

where Oi, i = 1, 2, denotes a copy of O embedded in JL via the monomor-

phism αi and where J1L was introduced in Section 3.1.4.

For a general O-module E , tensoring over O2 yields a short exact sequence

0 // L∗ ⊗O E // J1L ⊗O2 E // E // 0,

which we will call the L-Atiyah sequence. The L-Atiyah class AL(E) of E over L
is the extension class of this sequence in Ext1

O(E ,L∗ ⊗O E). As explained in

Section 1.1, if E is a vector bundle, the i-th scalar Atiyah class aL,i(E) of E is

defined as

(6.1) aL,i(E) = tr
( i∧

AL(E)
)
∈ Hi

(
X,

i∧
L∗
)
.

Below we will only consider the case E = L. In that case we simplify the

notation to

A(L) = AL(L), ai(L) = ai,L(L).

Observe that the ai(L) are cohomology classes. We now outline how we may

realize them as explicit cocycles.

By the very construction of Ccoord,L and Caff,L, there are natural mor-

phisms of DG-algebras

(6.2)

ΩL2(X) �
� θ // Caff,L“⊗O1ΩJL/O1

� � // Ccoord,L“⊗O1ΩJL/O1
∼= Ccoord,L“⊗ΩF .

The differentials on the first three DG-algebras are the natural ones (see §4.3).

The differential on the fourth DG-algebra is d+Lω for a certain MC element ω ∈
Γ
Ä
X,Ccoord,L“⊗Der(F )

ä
and d the natural differential. See again Section 4.3.
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The MC element ω can be expressed as

ω = ηαωα,i∂xi , i = 1, . . . , d,

where ηα is in Ccoord,L and has degree 1, ωα,i belongs to F and ∂xi = ∂/∂xi.

If we define Ξ to be the matrix with entries

(6.3) Ξij = ηαdF (∂xjωα,i) ∈ Γ
Ä
X,Ccoord,L“⊗ΩF

ä
,

where dF is the de Rham differential on ΩF , then on the nose, we have

Tr(Ξn) ∈ Γ
Ä
X,Ccoord,L“⊗ΩF

ä
.

Furthermore, it is true that

(d + Lω)(Tr(Ξn)) = 0.

It is shown in [4, §8] that Tr(Ξn) is actually the image of a (necessarily unique)

element in Γ
Ä
X,Caff,L“⊗O1ΩJL/O1

ä
. Abusing notation somewhat we will still

write this element as Tr(Ξn). It is still a cocycle and in this way represents an

element of

Tr(Ξn) ∈ Γ(X,H2n(Caff,L“⊗O1ΩJL/O1
))

that maps naturally to the hypercohomology

H2n(X,Caff,L“⊗O1ΩJL/O1
).

Further, we observe that the injection ΩL(X)
θ−→ Caff,L“⊗O1ΩJL/O1

of DG-

algebras is a quasi-isomorphism, as discussed in Section 4.5. Thus, θ induces

an isomorphism⊕
m,n

Hm(X,∧nL∗) = H•(X,ΩL(X))
H(θ)−−−→ H•(X,Caff,L“⊗O1ΩJL/O1

).

The following identity is [4, eq. (8.8)]

(6.4) an(L) = H(θ)−1
Ä
Tr(Ξn)

ä
, n ≥ 1,

which indeed expresses an(L) in terms of the explicit cocycle Tr(Ξn).

7. Proof of Theorem 1.1

The aim of this Section is to prove Theorem 1.1, which implies Căldăraru’s

conjecture (Theorem 1.4) as was outlined in the introduction.

For this purpose, we first remind the reader of the main result of [7] about

compatibility between cap products. We then prove a ring-theoretical global-

ized version of this result (compare to the proof of Theorem 5.3). By functo-

riality (see §5.6), we obtain the sheaf-theoretical globalization. Finally, using
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results of [7], we compute explicitly the isomorphism appearing in the compat-

ibility between cap products, which we identify with the action of the homo-

logical HKR-quasi-isomorphism followed by left multiplication by the square

root of the (modified) Todd class.

7.1. A memento of compatibility between cup and cap products. In this

section, we present a memento of the main results of [7], [4] concerning com-

patibility between cup and cap products respectively.

First of all, as before, F is the algebra of formal power series in d variables

over the field k that is assumed to contain R for now. We recall the existence of

(homotopy) Gerstenhaber algebra structures on Tpoly(F ) and Dpoly(F ), which

together with ΩF and “C•(F ) yield (homotopy) precalculi [7].

We recall also the L∞-quasi-isomorphisms U introduced in Theorem 5.1

and S introduced in Theorem 5.2. We denote by Un, n ≥ 1, resp. Sn, n ≥ 0,

the n-th Taylor component of U , resp. S.

We further consider a commutative DG-algebra (m,dm). The precalcu-

lus structures on (Tpoly(F ),ΩF ) and (Dpoly(F ), “C•(F )) can be extended by

m-linearity to precalculi

(Tm
poly(F ),Ωm

F ) = (Tpoly(F )“⊗m,ΩF“⊗m)

and

(Dm
poly(F ), “Cm

• (F )) = (Dpoly,m(F“⊗m), “C•,m(F“⊗m))).

Convention. Below we will work with potentially infinite series with coef-

ficients in m. We make the standard assumption that we are in a setting where

all these series converge and standard series manipulations are allowed. In our

actual application all series will be finite for degree reasons.

An MC element γ of Tm
poly(F ) can be written as a sum

γ = γ−1 + γ0 + γ1 + γ2 + · · · ,

where γi is an element of Tm
poly(F ) of poly-vector degree i, i ≥ −1, which

satisfies the Maurer–Cartan equation

dmγ +
1

2
[γ, γ] = 0.

We denote by U(γ) the image of an MC element γ as above with respect to U
(see (5.7)). This is again an MC element. Further, we set

Uγ,1(γ1) =
∑
n≥0

1

n!
Un+1(γ, . . . , γ︸ ︷︷ ︸

n

, γ1), γ1 ∈ Tm
poly(F ),

Sγ,0(c) =
∑
n≥0

1

n!
Sn(γ, . . . , γ︸ ︷︷ ︸

n

; c), c ∈ “Cm
• (F ).



CĂLDĂRARU’S CONJECTURE AND TSYGAN’S FORMALITY 907

Since U and S are L∞-quasi-isomorphisms, Uγ,1 and Sγ,0 are both quasi-

isomorphisms of DG-vector spaces.

Theorem 7.1. For a general commutative DG-algebra (m,dm) as above

and for a general MC element γ of Tm
poly(F ), Uγ,1 and Sγ,0 descend to quasi-

isomorphisms of (homotopy) precalculi, fitting into the commutative diagramÄ
Tm

poly(F ),dm + [γ, •], [ , ],∪
ä

��

Uγ,1 //
Ä
Dm

poly(F ),dm + dH + [U(γ), •], [ , ],∪
ä

��

(Ωm
F , dm + Lγ ,L,∩)

Ä“Cm
• (F ), dm + bH + LU(γ),L,∩

äSγ,0oo

in the sense that Uγ,1 and Sγ,0 preserve Lie brackets, Lie actions, cup and cap

products up to homotopy.

Kontsevich [16] first stated and proved that Uγ,1 defines a quasi-isomor-

phism of Gerstenhaber algebras up to homotopy from Tm
poly(F ) to Dm

poly(F )

in the sense specified above. We observe that the identity Uγ,1([γ1, γ2]) =

[Uγ,1(γ1),Uγ1(γ2)] at the level of cohomology, for γi in Tm
poly(F ), i = 1, 2, holds

true, because U is an L∞-morphism. In particular, there is a homotopy oper-

ator describing the compatibility with Lie brackets, expressible in terms of the

Taylor components of U twisted by the MC element γ. On the other hand, the

identity Uγ,1(γ1 ∪ γ2) = Uγ,1(γ1) ∪ Uγ,1(γ2) at the level of cohomology comes

from a more complicated identity up to homotopy. In this situation, the ho-

motopy operator is not expressible in terms of the Taylor components of U .

For an explicit description of the homotopy operator, we refer to [17], [4], [7].

The actual formulation of Theorem 7.1 was first proposed by Shoikhet [20]

as a conjecture in the particular case, where γ is a (formal) Poisson structure.

This conjecture was first proved in [21] only in degree 0 and later in [6] for all

degrees. A more general result was stated and proved in [7], to which we refer

for more details. The identity Sγ,0(LUγ,1(γ1)(c)) = Lγ1(Sγ,0(c)) at the level of

cohomology, for γ1 in Tm
poly(F ), c in “Cm

• (F ), is a consequence of the fact that

SL,γ is an L∞-morphism of L∞-modules. (In particular, there is a homotopy

formula involving the Taylor components of U and S, twisted by γ.) The

identity Sγ,0(Uγ,1(γ1) ∩ c) = γ1 ∩ Sγ,0(c) at the level of cohomology holds true

in virtue of a homotopy formula, but the corresponding homotopy operator

does not involve the Taylor components of U and S: such an operator was

explicitly described in [7].

In Section 7.1.1 we briefly review the construction of the homotopy oper-

ator for the compatibility between cap products.

7.1.1. The homotopy formula for the compatibility between cap products.

For later computations, we write down the explicit homotopy operator for
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γ

γ

γ1

a0

a1

a3

a4

a2

0

Figure 1. An S-admissible graph of type (4, 5).

the compatibility between the ∩-actions. Namely, for an MC element γ as in

Theorem 7.1, for γ1 a general element of Tm
poly(F ) and c a general element of“Cm

• (F ), we have the homotopy relation

Sγ,0(Uγ,1(γ1) ∩ c)− γ1 ∩ Sγ,0(c) = (dm + Lγ)HSγ (γ1, c) +HSγ (dmγ1 + [γ, γ1], c)

(7.1)

+ (−1)|γ1|HSγ (γ1, dmc+ bHc+ LU(γ)c),

where

(7.2) HSγ (γ1, c) =
∑
n≥0

1

n!

∑
Γ∈GSn+1,m+1

◦
WD,ΓSΓ(γ1, γ, . . . , γ︸ ︷︷ ︸

n

, c),

c being of Hochschild degree −m.

In (7.2), the second sum is over “S-admissible graphs” of type (n+1,m+1).

These are directed graphs with n + 2 vertices of the first type and m + 1

cyclically ordered vertices of the second type and with an orientation of the

outgoing edges from vertices of the first type, and with a special vertex of the

first type, labelled by 0. The vertices of the second type can be only endpoints

of edges, and S-admissible graphs do not contain edges starting and ending at

the same vertex; finally, the vertex 0 has only incoming edges.

To the vertex 1 of the first type of an S-admissible graph Γ is assigned

the poly-vector field γ1. The number of outgoing edges from 1 equals the poly-

vector degree of γ1 plus 1. To any other vertex of the first type, except 0,

is assigned a copy of the MC element γ. To the i-th vertex of the second

type is assigned the i+ 1-th component of the Hochschild chain c. Pictorially,

here is an S-admissible graph of type (4, 5), with corresponding coloring by

poly-vector fields and Hochschild chains (see Figure 1).

The differential form SΓ(γ1, γ, . . . , γ︸ ︷︷ ︸
n

, c) is defined explicitly in [20], [6], [7].
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More important for our purposes is the integral weight
◦
WD,Γ, for a general

S-admissible graph of type (n+ 1,m+ 1),

(7.3)
◦
WD,Γ =

∫
◦
Y

+

n+1,m+1

ωD,Γ.

First of all,
◦
Y

+

n+1,m+1 denotes the codimension-1-submanifold (with corners)

of the compactified configuration space D+
n+1,m+1 of n+ 1 points in the punc-

tured unit disk D× and m + 1 cyclically oriented points in S1, consisting of

configurations of points, where the point labelled by 1 moves on a smooth

curve from the origin to the first point 1 (with respect to the cyclic order) in

S1. Graphically,

0

1

1

Figure 2. A general configuration of points in
◦
Y

+

n+1,m+1.

In Figure 2, the dashed line represents the curve, along which the point

1 (labelled as “◦”) moves. The differential form ωD,Γ associated to a graph in

GSn+1,m+1 is a product of smooth 1-forms on D+
n+1,m+1. The basic ingredient is

a slight modification of the exterior derivative of Kontsevich’s angle function;

see [16], [7] for more details.

For the globalization procedure of the compatibility between cap prod-

ucts, we need the following technical lemma, which corresponds, in the present

framework, to Theorem 5.2(ii).

Lemma 7.2. If Γ is an S-admissible graph in GSn+1,m+1, n ≥ 1, and at

least one of the poly-vector fields γi, i 6= 1, is linear on F , then
◦
WD,ΓSΓ(γ1, γ2, . . . , γn+1, c) = 0.

Proof. The first point of the first type in
◦
Y

+

n+1,m+1, by the very construc-

tion of
◦
Y

+

n+1,m+1, moves from the origin 0 to the first point in S1 with respect

to the cyclic order. To the former point is associated the poly-vector field γ1.

Any other point associated to a vertex of the first type moves freely in the

punctured unit disk D×.

Without loss of generality, we assume γ2 to be an m-valued linear vector

field. The valence (i.e., the number of outgoing edges) of the corresponding
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vertex of the first type is 1, while the linearity of γ2 implies that there can

be at most one incoming edge to the vertex corresponding to γ2. This follows

from the construction of the differential form SΓ(γ1, γ2, . . . , γn+1, c).

Thus, we may safely restrict to S-admissible graphs Γ, such that the vertex

2 has valence exactly 1 and with at most one incoming edge.

If the vertex labelled by 2 does not have incoming edges, the corresponding

integral weight
◦
WD,Γ vanishes by dimensional reasons. In fact, we integrate a

1-form (corresponding to the only outgoing edge from 2) over a 2-dimensional

submanifold (with corners) of D×.

If the vertex labelled by 2 has exactly one incoming and one outgoing

edge, we may apply [7, Lemma 6.1] to yield the vanishing of the corresponding

weight
◦
WD,Γ. �

7.2. The proof of Theorem 1.1 in the ring case. We will first assume that

the ground field contains R. At the end of the section we will show how to get

rid of this restriction.

We consider a Lie algebroid L over R, as in Definition 3.1, free of rank

d over R. Then we set (m, dm) = (Ccoord,L, d), where d = dΩ
Rcoord,L

“⊗ΩR1
1 +

1“⊗ΩR1
dL1 (see §4.3 for more details), and the Maurer–Cartan form ω is an

m-valued vector field on F obeying

dω +
1

2
[ω, ω] = 0.

By Theorem 5.1(ii) we have U(ω) = ω. Furthermore, one checks that by degree

reasons Uω and Sω yield finite sums when evaluated on specific elements. The

same goes for the associated homotopies. So the results of Section 7.1 apply.

Combining the arguments of the proof of Theorem 5.3 with Theorem 7.1

we get the following commutative diagram of precalculus structures up to ho-

motopy:

(7.4)(
Tpoly,Caff,L(Caff,L“⊗R1

JL), 1∇aff , [ , ],∪
)

��

UL,1

++(
Dpoly,Caff,L(Caff,L“⊗R1

JL), 1∇aff + dH, [ , ],∪
)

��

(
Ω

Caff,L⊗̂R1
JL/Caff,L ,

1∇aff ,L,∩
)

Ä“CCaff,L,•(C
aff,L“⊗R1

JL), 1∇aff + bH,L,∩
ä
.

SL,0

kk
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The fact that UL,1 preserves the respective Lie brackets up to homotopy is a

consequence of the fact that UL is an L∞-morphism; similarly, the fact that

SL,0 preserves the Lie module structure up to homotopy is a consequence of

the fact that SL is an L∞-morphism of L∞-modules.

On the other hand, UL,1 is compatible with respect to the products labelled

by ∪ up to homotopy by the results of [4, §10.1].

As for the compatibility between the actions labelled by ∩ up to homotopy,

we first observe that the homotopy formula (7.1) is well defined in the case

(m,dm) = (Ccoord,L, d) and γ = ω, with the same notation as above. By the

same arguments as in the proof of Theorem 5.3 it remains to prove that the

homotopy operator (7.2) descends to a homotopy operator

HSL : Tpoly,Caff,L(Caff,L“⊗R1JL)⊗ “CCaff,L,•(C
aff,L“⊗R1JL)→ ΩCaff,L⊗̂R1

JL/Caff,L .

This holds true as a consequence of Lemma 7.2 together with the verticality

property of the Maurer–Cartan form ω; see Section 4.3.

If we now couple the commutative diagram (7.4) with the results of Sec-

tions 4.4, 4.5 and 4.6, and using the same notation introduced at the end of the

proof of Theorem 5.3, we get the following commutative diagram of precalculi

up to homotopy

(7.5) TLpoly(R) �
� //

��

gL1
UL,1 //

��

gL2

��

DL
poly(R)? _oo

��
ΩL(R) �

� // mL
1 mL

2

SL,0oo CLpoly(R).? _oo

The quasi-isomorphisms UL,1 and SL,0 are obtained from UL,ω,1 and SL,ω,0
respectively by means of the descent procedure. Since ω is an m-valued vector

field in Tm
poly(F ) = gL1 , for m = Ccoord,L, we can use the results of [4, §10.1],

and [7, §6], to evaluate explicitly UL,ω,1 and SL,ω,0; namely,

(7.6) UL,ω,1 = HKR ◦ ιj(ω), SL,ω,0 = j(ω) ∧HKR,

where

(7.7) j(ω) = det

Ã
Ξ

exp
Ä

Ξ
2

ä
− exp

Ä
−Ξ

2

ä ,
with Ξ as defined in (6.3). To interpret (7.7) one should expand the right-hand

side formally in terms of Tr(Ξn) and then substitute the expression for Ξ given

in (6.3). This yields an element of Ccoord,L“⊗ΩF of degree 2n. Thus j(ω) is a

sum of elements in Ccoord,L“⊗ΩF of even total degree.

By the discussion in Section 6 the element Tr(Ξn) ∈ Ccoord,L“⊗ΩF may be

interpreted as an element in Caff,L“⊗O1ΩJL/O1
via the inclusions (6.2). Hence
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the same holds for j(ω). We keep the same notation for this reinterpreted

version of j(ω).

We thus get the following formulae:

(7.8) UL,1 = HKR ◦ ιj(ω), SL,0 = j(ω) ∧HKR.

7.3. Functoriality properties of the commutative diagram (7.5). The com-

putations in the proof of Proposition 5.5 imply the following theorem, express-

ing the functoriality properties of the commutative diagram (7.5).

Theorem 7.3. For a general algebraic morphism (`, λ) from (L,R) to

(M,S) as in Definition 5.4, which induces an isomorphism S ⊗R L ∼= M

of S-modules, and such that L is free of rank d over R, there exist quasi-

isomorphisms UL,1, UM,1, SL,0 and SM,0, fitting into the commutative diagram

of precalculi up to homotopy

(7.9) TLpoly(R) �
� //

ϕT

��

gL1
UL,1=HKR◦ιj(ωL)

//

ϕT

��

gL2

ϕD

��

DL
poly(R)? _oo

ϕD

��
TMpoly(S) �

� //

L
��

gM1
UM,1=HKR◦ιj(ωM )

//

L1

��

gM2

L2

��

DM
poly(S)? _oo

L
��

ΩM (S) �
� // mM

1 mM
2

SM,0=j(ωM )∧HKR
oo CMpoly(S)? _oo

ΩL(R) �
� //

ϕΩ

OO

mL
1

ϕΩ

OO

mL
2

SL,0=j(ωL)∧HKR
oo

ϕJ

OO

CLpoly(R),? _oo

ϕJ

OO

where we borrow notation from Proposition 5.5, and where ωL and ωM , denote

the Maurer–Cartan form on Ccoord,L and Ccoord,M respectively. The precalcu-

lus structures up to homotopy on (g∗i ,m
∗
i ), ∗ = L,M , i = 1, 2, are defined as in

Section 5.5. Moreover the implied homotopies are in a similar way functorial

for algebraic morphisms (`, λ) from (L,R) to (M,S) satisfying S ⊗R L ∼= M .

Almost all important objects appearing in Theorem 7.3 have already ap-

peared in Theorem 5.6, hence the functoriality properties extend to the present

situation. The commutativity of the upper and lower squares involving j(ω)

follows from the compatibility of the inclusions (6.2) with the base extension

S/R. The functoriality properties of the implied homotopies are verified in the

same way. See [4, Lemma 10.1.1] for results on U∗,1 and related homotopies. In

virtue of Lemma 7.2, the homotopy expressing the compatibility of S∗,0 with

cap products descends correctly on Caff,∗, and the functoriality properties of

such a homotopy follow along the same lines of the functoriality properties in

Theorem 5.6, as the homotopy under consideration is expressed in terms of



CĂLDĂRARU’S CONJECTURE AND TSYGAN’S FORMALITY 913

scalar combinations of poly-differential operators associated with graphs of a

certain type as the L∞-quasi-isomorphisms of Kontsevich and Shoikhet.

7.3.1. Arbitrary base fields. We now briefly indicate how we may replace

k by a general field of characteristic zero. Our arguments depend on the exis-

tence of a number of explicit homotopies. These homotopies are constructed

as scalar linear combinations of poly-differential operators indexed by certain

graphs, where the scalars depend only on the corresponding graphs. For the ar-

guments to work the coefficients need to satisfy certain linear equations. These

equations have a solution over R (given that over this field we have homotopies

that work). Thus, they have a solution over any field of characteristic zero.

We will now be more specific. We refer to [4, §10.4] for what concerns Lie

brackets and cup products; here we concentrate on the compatibility between

cap products. We embed k in a field K containing R. By virtue of [7, §6], Uγ,1
and Sγ,0 are defined over Q and thus k (while they are a priori defined over

R ⊂ K). Then observe that equation (7.1) is linear in the coefficients
◦
WD,Γ of

HSγ . Since we already have a solution of these equations in R ⊂ K, we get one

in k by applying any projection K → k.

7.4. Proof of Theorem 1.1 in the global case. Let (X,O) be a ringed site

and L be a locally free sheaf of Lie algebroids over O of rank d. We denote by

D(X) the derived category of sheaves of k-vector spaces over X. According to

the results of Section 3, transported to the framework of sheaves of k-vector

spaces, (TLpoly(X),ΩL(X)) and (DLpoly(X), CLpoly(X)) are precalculi up to ho-

motopy. Therefore, viewed as objects of D(X) they are genuine precalculi.

Additionally, the sheafification procedure can be applied to the commu-

tative diagram (7.9), in virtue of the results of Section 7.3 (using the fact that

the homotopies are functorial as well). If we further consider the resulting

commutative diagram of sheaves of k-vector spaces in the derived category

D(X), then using (6.4) we get the commutative diagram of precalculi

TLpoly(X)

HKR◦ι
t̃d(L)1/2

��

//

&&

gL1

HKR◦ιj(ω)

��

&&
ΩL(X) // mL1

DLpoly(X)

%%

// gL2

&&
CLpoly(X)

‹td(L)1/2∧HKR

OO

// mL2 ,

j(ω)∧HKR

OO
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where all horizontal and vertical arrows represent isomorphisms in the derived

category D(X). Here t̃d(L) is the modified Todd class of L that is obtained

by replacing the function q(x) in the definition of the Todd class (see (1.2)) by

q̃(x) =
x

ex/2 − e−x/2
.

Hence at this point we have proved Theorem 1.1, provided that we replace the

Todd class by the modified one. To obtain the result for the ordinary Todd

class we follow the method of [4, §10.3]. We have

t̃d(L) = td(L) det(e−A(L)/2)

= td(L)e−Tr(A(L))/2

= td(L)e−a1(L)/2.

In other words, it is sufficient to prove that (ι
e−a1(L)/4 , e

a1(L)/4∧−) defines an

automorphism of the precalculus (TLpoly(X),ΩL(X)).

Via the inclusions (6.2) together with (6.4), we may as well prove that

(ιe−Tr(Ξ)/4 , eTr(Ξ)/4 ∧ −)

defines an automorphism of the precalculus (Ccoord“⊗Tpoly(F ), Ccoord“⊗ΩF ) or

equivalently that (ιTr(Ξ),−Tr(Ξ) ∧ −) act as derivations. The fact that ιTr(Ξ)

is a derivation with respect to the cup product and Lie bracket was checked in

[4, §10.3]. So it remains to show compatibility with the cap product and Lie

derivative.

As Tr(Ξ) =
∑
i,α ηαdF (∂iω

i
α) we first derive some identities for ιdF b and

dF b ∧ − with b in F .

First we claim

(7.10) dF b ∧ (D ∩ σ) = −ιdF b(D) ∩ σ + (−1)|D|+1D ∩ (dF b ∧ σ)

for b ∈ F , D ∈ Tpoly(F ), σ ∈ ΩF . If D = D1 ∪D2 and (7.10) holds for D1, D2,

then it holds for D as well. To see this, note that

dF b ∧ ((D1 ∪D2) ∩ σ)

= dF b ∧ (D1 ∩ (D2 ∩ σ))

= −ιdF b(D1) ∩ (D2 ∩ σ) + (−1)|D1|+1D1 ∩ (dF b ∧ (D2 ∩ σ))

= −ιdF b(D1) ∩ (D2 ∩ σ)− (−1)|D1|+1D1 ∩ ιdF b(D2) ∩ σ

+ (−1)|D1|+|D2|D1 ∩D2 ∩ (dF b ∧ σ)

= −ιdF b(D1 ∪D2) ∩ σ + (−1)|D1∪D2|+1(D1 ∪D2) ∩ (dF b ∧ σ).

So we only have to consider the case where D is a function or a vector field.

The case that D is a function is trivial, so assume that D is a vector field. In
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that case for the right-hand side of (7.10), we find

−ιdF b(D) ∩ σ + (−1)|D|+1D ∩ (dF b ∧ σ) = Db ∩ σ −Db ∧ σ + dF b ∧ (D ∩ σ)

= dF b ∧ (D ∩ σ),

which is equal to the left-hand side of (7.10).

For the Lie derivative we use LD = [dF , D ∩ −]. It is clear that dF and

dF b ∧ − commute. Using (7.10) we then compute

dF b ∧ LDσ = dF b ∧ (dF (D ∩ σ)− (−1)|D|+1D ∩ dFσ)

= −dF (dF b ∧ (D ∩ σ)) + (−1)|D|dF b ∧ (D ∩ dFσ)

= dF (ιdF b(D) ∩ σ) + (−1)|D|dF (D ∩ (dF b ∧ σ))

+ (−1)|D|+1ιdF b(D) ∩ dσ −D ∩ (dF b ∧ dFσ)

= LιdF bD(σ) + (−1)|D|LD(dF b ∧ σ).

If η is an odd element in Ccoord, then ιηdF bD = ηιdF bD and LιηdF b
D(σ) =

LηιdF bD(σ) = −ηLιdF b(σ). Using this we find

Tr(Ξ) ∧ (D ∩ σ) = −ιTr(Ξ)(D) ∩ σ +D ∩ (Tr(Ξ) ∧ σ)

and

Tr(Ξ) ∧ LDσ = −LιTr(Ξ)D(σ) + LD(Tr(Ξ) ∧ σ).

We conclude that (ıTr(Ξ),−Tr(Ξ) ∧ −) does indeed define a derivation of pre-

calculi.

Appendix A. Explicit formulae for the B∞-structure on

poly-differential operators

In this appendix and the next one we develop the precalculus structure

on L-chains over L-cochains up to homotopy. The results in these appendices

are provided for background and are not essential for the results in the body

of the paper.

The graded vector space V = DL
poly(R) is naturally a B∞-algebra. This

means that the cofree coassociative coalgebra (with counit) T(V ) is canonically

equipped with the structure of a DG bialgebra. The notion of B∞-algebra

was introduced in [1]. However, we make use here mainly of the B∞-algebra

structure given by braces [26], [14], to which we refer for more details; see

also [7, §§1, 2].
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The corresponding associative product m on T(V ) is uniquely determined

by its Taylor components mp,q : Tp(V ) ⊗ Tq(V ) → V . We have mp,q = 0 if

p 6= 1 and

m1,q(D ⊗ (D1 ⊗ · · · ⊗Dq)) = D{D1, . . . , Dq}(A.1)

=
∑

1≤i1≤···≤iq≤|D|+
∑q−1

b=1
|Db|+1

(−1)
∑q

k=1
|Dk|(ik−1)

(
1⊗(i1−1) ⊗∆|D1| ⊗ 1⊗(i2−i1−|D1|−1) ⊗∆|D2| ⊗ · · · ⊗ 1⊗(iq−iq−1−|Dq−1|−1)

⊗∆|Dq | ⊗ 1⊗(|D|+
∑q−1

b=1
|Db|−iq)

)
(D)(

1⊗(i1−1) ⊗D1 ⊗ 1⊗(i2−i1−|D1|−1) ⊗D2 ⊗ · · · ⊗ 1⊗(iq−iq−1−|Dq−1|−1)

⊗Dq ⊗ 1⊗(|D|+
∑q−1

b=1
|Db|−iq)

)
for elements D, Di, i = 1, . . . , q, of DL

poly(R), where | − | denotes the (shifted)

degree of elements of DL
poly(R). Accordingly, we have |D{D1, . . . , Dq}| = |D|+∑q

a=1 |Da|, and thus all brace operations are of degree 0. In the sum (A.1), we

have 1 ≤ i1, ik+|Dk|+1 ≤ ik+1, k = 1, . . . , q−1, iq+|Dq| ≤ |D|+
∑q
a=1 |Da|+1.

The sign conventions are taken from [7]. The brace operations (A.1) satisfy

an infinite family of quadratic identities (see, e.g., [7]), which are equivalent to

the associativity of the product m.

We define the cup product by means of the brace operations (see also [26],

[7]) via the assignment

(A.2) D1 ∪D2 = (−1)|D1|+1µ{D1, D2}, Di ∈ DL
poly(R), i = 1, 2.

It is obvious that the cup product has (shifted) degree 1. An easy verification

using Formula (A.1) shows that the previous definition of cup product coincides

with the one given in formula (3.11).

We now have the following compatibilities.

Lemma A.1. The degree 0 operation (3.10) and the degree 1 operation (A.2)

satisfy the following properties :

[D1, D2] = −(−1)|D1||D2|[D2, D1],(A.3)

[D1, [D2, D3]] = [[D1, D2], D3] + (−1)|D1||D2|[D2, [D1, D3]],(A.4)

D1 ∪D2 = (−1)(|D1|−1)(|D2|−1)D2 ∪D1(A.5)

±
Ä
dH(D1{D2})− (dHD1){D2} − (−1)|D1|D1{dHD2}

ä
,

D1 ∪ (D2 ∪D3) = (D1 ∪D2) ∪D3,(A.6)



CĂLDĂRARU’S CONJECTURE AND TSYGAN’S FORMALITY 917

and

(A.7)

[D1, D2 ∪D3] = [D1, D2] ∪D3 + (−1)|D1|(|D2|−1)D2 ∪ [D1, D3]

+ (−1)|D1|
Ä
dH(D1{D2, D3})− (dHD1){D2, D3} − (−1)|D1|D1{dHD2, D3}

− (−1)|D1|+|D2|D1{D2, dHD3}
ä

for general elements Di of DL
poly(R), i = 1, 2, 3 and where dH = [µ, •], µ =

1⊗R 1.

Appendix B. The precalculus structure on L-chains

We need results from [7], [24] about algebraic structures on Hochschild

(co)chains, which have to be adapted to the Lie algebroid framework.

According to [24] and [7], there are two distinct, noncompatible, left

B∞-module structures on the Hochschild chain complex of A, viewed as a

B∞-algebra with respect to the brace operations (A.1). Equivalently, we view

the two left B∞-module structures on the Hochschild chain complex as the data

of two left actions mL,i, i = 1, 2, on the left comodule cofreely cogenerated by

the Hochschild chain complex of A over the coalgebra cofreely cogenerated by

the Hochschild cochain complex of A.

These results can be applied to the present situation with due changes:“CR,•(JL) has two left B∞-module structures over the B∞-algebra DL
poly(R).

We borrow the main notation and sign conventions from [7]. We denote

by mL,i, i = 1, 2 the two left B∞-module structures on “CR,•(JL). They are

uniquely determined by their Taylor components

(B.1)Ä
m1,q,r

L,1 (P ⊗ (Q1 ⊗ · · · ⊗Qq)⊗ a⊗ (R1 ⊗ · · · ⊗Rr))
ä

(D)

=

−|a|−|P |−
∑q

b=1
|Qb|+r+1 mod (−|a|+1)∑

l=−|a|−
∑q

b=1
|Qb|−q+1 mod (−|a|+1)∑

l≤j1≤···≤jq≤−|a|
1≤k1≤···≤kr≤|a|+|P |+l

(−1)l(−|a|−l+1)+
∑q

b=1
|Qb|(jb−l)+

∑r

c=1
|Rc|(kc−l−1)

σ(−|a|−l+1)(a)
Ä
(∆(|P |+

∑q

b=1
|Qb|+

∑r

c=1
|Rc|) ⊗ 1⊗(−|a|−|P |−

∑q

b=1
|Qb|−

∑r

c=1
|Rc|))(D)Ä

1(j1−l) ⊗∆|Q1| ⊗ · · · ⊗ 1⊗(jq−jq−1−|Qq−1|−1) ⊗∆|Qq| ⊗ 1⊗(−|a|−jq−|Qq|+k1)

⊗∆|R1| ⊗ · · · ⊗ 1⊗(kr−kr−1−|Rr−1|−1) ⊗∆|Rr|

⊗ 1⊗(|a|+|P |+
∑q

b=1
|Qb|+

∑r−1

c=1
|Rc|+l−kr−1) ⊗ 1⊗(−|a|−|P |−

∑q

b=1
|Qb|−

∑r

c=1
|Rc|)

)
(P )Ä

1(j1−l) ⊗Q1 ⊗ · · · ⊗ 1⊗(jq−jq−1−|Qq−1|−1) ⊗Qq ⊗ 1⊗(−|a|−jq−|Qq|+k1) ⊗R1 ⊗ · · ·

⊗ 1⊗(kr−kr−1−|Rr−1|−1) ⊗Rr ⊗ 1⊗(|a|+|P |+
∑q

b=1
|Qb|+

∑r−1

c=1
|Rc|+l−kr−1)

⊗ 1⊗(−|a|−|P |−
∑q

b=1
|Qb|−

∑r

c=1
|Rc|)
ää
,
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where σ is the operator on “CR,•(JL) defined via

σ(a)(D0 ⊗ · · ·D−|a|) = a(D1 ⊗ · · ·D−|a| ⊗D0), Di ∈ UR(L), i = 0, . . . ,−|a|,

which obviously satisfies σ(−|a|+1) = id, and the indices in the summation

satisfy l ≤ j1, ji+|Qi|+1 ≤ ji+1, i = 1, . . . , q−1, jq+|Qq| ≤ −|a|, ki+|Ri|+1 ≤
ki+1, i = 1, . . . , r− 1, kr + |Rr| ≤ |a|+ |P |+

∑q
b=1 |Qb|+

∑c
j=1 |Rc|+ l− 1, andÄ

m0,0,r
L,2 (a⊗ (R1 ⊗ · · · ⊗Rr))

ä
(D)(B.2)

=
∑

1≤i1≤···≤ip≤−|a|
(−1)

∑r
c=1
|Rc|(ic−1)

a
(Ä

1⊗i1 ⊗∆|R1| ⊗ 1⊗(i2−i1−|R1|−1) ⊗∆|R2| ⊗ · · ·

⊗ 1⊗(ir−ir−1−|Rr−1|−1) ⊗∆|Rr| ⊗ 1⊗(|D|+
∑r−1

c=1
|Rc|−ir)

ä
(D)Ä

1⊗i1 ⊗R1 ⊗ 1⊗(i2−i1−|R1|−1) ⊗R2 ⊗ · · ·

⊗ 1⊗(ir−ir−1−|Rr−1|−1) ⊗Rr ⊗ 1⊗(|D|+
∑r−1

c=1
|Rc|−ir)

ä)
,

where the summation is over indices i1, . . . , ir such that 1 ≤ i1, ik + |Dk|+ 1 ≤
ik+1, k = 1, . . . , p − 1, ip + |Dp| ≤ −|a|. We observe that the components of

mL, resp. mL, are nontrivial only if p ≤ 1, with no restrictions on q, r, resp.

only if q = r = 0, with no restrictions on p.

It is not difficult but quite tedious to verify that both (B.1) and (B.2) have

degree 0 and satisfy an infinite family of quadratic relations involving braces.

The Taylor components of mL,i, i = 1, 2, permit to define a pairing of

degree 0 between DL
poly(R) and “CR,•(JL) via

(B.3)

LDa = m1,0,0
L,1 (D ⊗ a) + (−1)|D|m0,0,1

L,2 (a⊗D), D ∈ DL
poly(R), a ∈ “CR,•(JL).

Similarly, we consider two distinct pairings between DL
poly(R) and “CR,•(JL):

for µ as above,

D ∩ a = (−1)|D|m1,1,0
L,1 (µ⊗D ⊗ a),(B.4)

a ∩D = (−1)|a|m1,0,1
L,1 (µ⊗ a⊗D), D ∈ DL

poly(R), a ∈ “CR,•(JL).(B.5)

It follows from their very definition that both (B.4) and (B.5) have degree 1.
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Lemma B.1. The pairing (B.3) of degree 0 and the pairings (B.4), (B.5)

of degree 1 satisfy the following properties :

L[D1,D2]a = LD1(LD2a)− (−1)|D1||D2|LD2(LD1a),(B.6)

D ∩ a = (−1)(|D|−1)(|a|−1)a ∩D(B.7)

±
Ä
bH(m1,0,0

L,1 (D ⊗ a)−m1,0,0
L,1 (dHD ⊗ a)− (−1)|D|m1,0,0

L,1 (D ⊗ bHa)
ä
,

D1 ∩ (D2 ∩ a) = (D1 ∪D2) ∩ a,(B.8)

(a ∩D1) ∩D2 = a ∩ (D1 ∪D2),(B.9)

(B.10)

LD1(D2 ∩ a) = [D1, D2] ∩ a+ (−1)|D1|(|D2|−1)D2 ∩ LD1a

+ (−1)|D1|
Ä
bH(m1,1,0

L,1 (D1 ⊗D2 ⊗ a))

−m1,1,0
L,1 (dHD1 ⊗D2 ⊗ a)− (−1)|D1|m1,1,0

L,1 (D1 ⊗ dHD2 ⊗ a)

−(−1)|D1|+|D2|m1,1,0
L,1 (D1 ⊗D2 ⊗ bHa)

ä
,

LD1(a ∩D2) = LD1a ∩D2 + (−1)|D1|(|a|−1)a ∩ [D1, D2]

+ (−1)|D1|
Ä
bH(m1,0,1

L,1 (D1 ⊗ a⊗D2))

−m1,0,1
L,1 (dHD1 ⊗ a⊗D2)− (−1)|D1|m1,0,1

L,1 (D1 ⊗ bHa⊗D2)

−(−1)|D1|+|a|m1,0,1
L,1 (D1 ⊗ a⊗ dHD2)

ä
,

and finally

(B.11)

LD1∪D2a+ (−1)(|D1|−1)(|D2|−1)LD2∪D1a

=
Ä
D1 ∩ LD2a+ (−1)(|D1|−1)(|D2|+|a|−1)LD2a ∩D1

ä
+ (−1)|a|(|D2|−1)

Ä
LD1a ∩D2 + (−1)(|D1|+|a|−1)(|D2|−1)D2 ∩ LD1a

ä
+ (−1)(|D2|−1)

Ä
[D1, D2] ∩ a+ (−1)(|a|−1)(|D1|+|D2|−1)a ∩ [D1, D2]

ä
+ (−1)|D2|bH(m0,0,2

L,2 (a⊗R1 ⊗R2))− (−1)|D1|m0,0,2
L,2 (bHa⊗D1 ⊗D2)

+ (−1)|D2|m0,0,2
L,2 (a⊗ dHD1 ⊗D2) + (−1)|D1|+|D2|m0,0,2

L,2 (a⊗D1 ⊗ dHD2)

+ (−1)|D1|bH(m0,0,2
L,2 (a⊗D2 ⊗D1))− (−1)|D2|m0,0,2

L,2 (bHa⊗D2 ⊗D1)

+ (−1)|D1|m0,0,2
L,2 (a⊗ dHD2 ⊗D1) + (−1)|D1|+|D2|m0,0,2

L,2 (a⊗D2 ⊗ dHD1)

for a general element a of “CR,•(JL) and general elements D, Di, i = 1, 2, of

DL
poly(R), and where bH = Lµ, for µ as before.

As for Lemma A.1, the proof essentially makes use of the brace identities,

of the fact that mL,i, i = 1, 2, is a left action with respect to the brace op-

erations, and of the fact that mL,1 and mL,2 satisfy a weak compatibility, as

explained in more details in [7].
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Both actions mL,1 and mL,2 are compatible with the Grothendieck con-

nection; i.e.,

1∇l
Ä
m1,q,r
L,1 (D ⊗Q1 ⊗ · · · ⊗ a⊗R1 ⊗ · · · )

ä
= m1,q,r

L,1 (D ⊗Q1 ⊗ · · · ⊗ 1∇la⊗R1 ⊗ · · · ), q, r ≥ 0,

1∇l
Ä
m0,0,r
L,2 (D1 ⊗ · · · ⊗ a)

ä
= mp,0,0

L,2 (D1 ⊗ · · · ⊗ 1∇la), p ≥ 0

for D, Di (i = 1, . . . , p), Qj (j = 1, . . . , q), Rk (k = 1, . . . , r) elements of

DL
poly(R), and a of “CR,•(JL). Both identities follow from the fact that 1∇

commutes with the operator σ and from the fact that UR(L) is a Hopf alge-

broid; in particular, the comultiplication is an algebra morphism.

Then in virtue of Lemma B.1, the pairings (B.3), (B.4) and (B.5) are

compatible with the Grothendieck connection implying, in particular, that the

Hochschild differential is also compatible therewith. By the very same argu-

ments, formulae (B.7), (B.8), (B.9), (B.10), (B.11) and (B.11) are compati-

ble with the Grothendieck connection, whence (Ker(1∇)∩ “CR,•(JL),bH,L,∩),

where ∩ denotes here both (B.4) and (B.5), inherits a structure of precalculus

up to homotopy over the Gerstenhaber algebra (DL
poly(R),dH, [ , ],∪) up to

homotopy.

For the sake of completeness, we write down explicit formulae for the

Hochschild differential bH on the complex of Hochschild L-chains on R and

for the pairing (B.5) between DL
poly(R) and CLpoly(R); in [9] we deduce the

same formulae in the framework of homological algebra and derived functors.

Explicitly,

bH(a) = a ◦ dH,

a ∩D = (−1)|a|a(D ⊗R •), a ∈ CLpoly(R), D ∈ DL
poly(R).

We observe that (B.6) implies that bH, the Hochschild differential on L-chains,

is compatible with respect to (B.3), and that (B.10) and (B.11), in the spe-

cial case D1 = µ, imply that bH satisfies Leibniz’s rule with respect to (B.4)

and (B.5) respectively.

Thus, combining these arguments with Proposition 3.6, we have the fol-

lowing important

Theorem B.2. For a Lie algebroid L over the ring R as above, the twist

of (B.3), (B.4), (B.5) and of the Hochschild differential bH with respect to

the isomorphism (3.15) endow CLpoly(R) with a structure of precalculus up to

homotopy over the Gerstenhaber algebra (DL
poly(R), dH, [ , ],∪) up to homotopy.
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