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Abelian varieties
isogenous to a Jacobian

By Ching-Li Chai and Frans Oort

Abstract

We define a notion of Weyl CM points in the moduli space Ag,1 of

g-dimensional principally polarized abelian varieties and show that the

André-Oort conjecture (or the GRH) implies the following statement: for

any closed subvariety X $ Ag,1 over Qa, there exists a Weyl special point

[(B,µ)] ∈ Ag,1(Qa) such that B is not isogenous to the abelian variety

A underlying any point [(A, λ)] ∈ X. The title refers to the case when

g ≥ 4 and X is the Torelli locus; in this case Tsimerman has proved the

statement unconditionally. The notion of Weyl special points is general-

ized to the context of Shimura varieties, and we prove a corresponding

conditional statement with the ambient space Ag,1 replaced by a general

Shimura variety.

1. Introduction

This article was motivated by the following folklore question.1

Question 1.1. Does there exist an abelian variety A over the field Qa of

all algebraic numbers that is not isogenous to the Jacobian of a stable algebraic

curve over Qa?

The above question deals with the closed Torelli locus Tg in the moduli

spaceAg,1 of g-dimensional principally polarized abelian varieties. For 1≤g≤3,

we have Tg = Ag,1 and we see that every abelian variety of that dimension is

even isomorphic to a Jacobian. However for g ≥ 4, the answer to Question 1.1

is expected to be affirmative.

It turns out that one gains a better perspective by asking the same ques-

tion for every closed subset X $ Ag,1, which also makes the question somewhat

easier. We are grateful to Bjorn Poonen for this suggestion.

The first named author was partially supported by NSF grants DMS04-00482 and DMS09-

01163.
1We thought that this question was first raised by Nick Katz, but Katz believes that Frans

Oort first mentioned it.
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We recall the definition of isogeny orbits and Hecke orbits before formu-

lating the expected answer to the more general question. Let k be an alge-

braically closed field. For any point x = [(A, λ)] in Ag,1(k) corresponding to a

g-dimensional abelian variety A with a principal polarization λ over k, denote

by I(x) (respectively by H(x)) the isogeny orbit (respectively the Hecke orbit)

of x in Ag,1(k), consisting of all points y = [(B, ν)] ∈ Ag,1(k) such that B

is isogenous to A (resp. there exists a quasi-isogeny α : A → B such that the

pull-back α∗(ν) of the principal polarization ν on B is equal to the principal

polarization µ on A).

1.2. Below are the expected answers to two versions of the generalization

of Question 1.1, both depending on a chosen integer g ∈ Z≥1. The stronger

version sI(k, g) specializes to the previous question when the closed subset X

in Ag,1 is the closed Torelli locus Tg. The weaker version I(k, g) can be further

extended to the context of Shimura varieties; see 5.2.

I(k, g) For every closed subset X & Ag,1 over k, there exists a point

x = [(A, λ)] ∈ Ag,1(k) such that H(x) ∩X = ∅.
sI(k, g) For every closed subset X & Ag,1 over k, there exists a point

x = [(A, λ)] ∈ Ag,1(k) such that I(x) ∩X = ∅.
The case g = 1 is easy: the statements sI(k, 1) and I(k, 1) hold for any alge-

braically closed field k because dim(Ag,1) = 1.

The case k = C is not hard either: sI(C, g) is true for all g ≥ 1; see

3.11. More challenging are the cases when k = Qa or F, where F denotes the

algebraic closure of a finite prime field Fp. We do not have much to say when

k = F, other than a very special case in Section 4.

1.3. In the case when k is the field Qa of all algebraic numbers, we will

prove that the property sI(Qa, g) follows from the André-Oort conjecture (AO);

see 2.6 for the statement of the conjecture (AO). As this conjecture has been

proved (conditionally, depending on the Generalized Riemann Hypothesis),

sI(Qa, g) and I(Qa, g) hold under GRH for all g ≥ 1;

see 3.1. In particular, granting GRH, there exists an abelian variety of any

given dimension g ≥ 4 over a number field which over Qa is not isogenous to a

Jacobian.

We note that this result is true unconditionally, i.e., without assuming

GRH, as was proved by Tsimerman, using and extending results of this paper

in his Princeton Ph.D. thesis [31].

1.4. Here is the idea of the proof of “(AO) =⇒ I(Qa, g).” The André-

Oort conjecture reduces the proof of sI(Qa, g) and I(Qa, g) to the following

statement about a special subset in Ag,1, i.e., a finite union of Shimura subva-

rieties.
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For any special subset Y $ Ag,1 over Qa, there exists a CM-

point y ∈ Ag,1(Qa) such that the isogeny orbit I(y) of y and

the special subset Y are disjoint;

see Proposition 3.2. We find it convenient to take y to be a “sufficiently general

CM point,”2 in the sense that the abelian variety Ay corresponding to y has

the property that End0(Ay) is a CM field L of degree 2g over Q such that

the Galois group of the normal closure of L/Q is maximal, i.e., isomorphic

to (Z/2Z)g o Sg. Such points y are called Weyl CM points3 and they are

abundant in Ag,1; see 2.10 for the definition and 2.13 for their abundance.

Weyl CM points enters the picture because of the following observation in

Lemma 3.5.

An irreducible positive dimensional Shimura subvariety S $
Ag,1 that contains a Weyl CM point y as above is necessar-

ily a Hilbert modular variety attached to the maximal totally

real subfield of L.

The reason is that the root system R(G) of the semi-simple group G attached

to S is stable under the action of the Weyl group of Sp2g; this property easily

implies that R(G) is the subset of all long roots in the root system for Sp2g.

Thus for any given special subset Y $ Ag,1, we only need to look at those

irreducible components that are zero dimensional or are Hilbert modular vari-

eties attached to totally real subfields of degree g. Pick any Weyl special point

y with associate Weyl CM field L, such that L is not attached to any zero-

dimensional irreducible component of Y and L does not contain any the totally

real subfield associated to any of the Hilbert modular variety components of Y .

Lemma 3.5 guarantees that I(y) is disjoint with Y .

The same argument also proves the following finiteness statement.

Assume (AO). For any g ≥ 4, there are only a finite number of

Weyl CM Jacobians of dimension g;

see 3.7. This seems inaccessible by present technology without assuming (AO)

or GRH.

1.5. The notion of Weyl special points generalizes to the context of

Shimura varieties. They are special points for which the Galois Gal(Qa/Q)

action on the character group of the associated maximal torus contains the

Weyl group of the reductive Q-group for the Shimura variety; see 5.3 and 5.4.

2We used the adjective “sufficiently general” instead of “generic” because “generic point”

has a specific technical meaning. Under any “reasonable” enumeration scheme for CM points

of Ag,1, the subset of Weyl CM points is expected to have density one for any “reasonable”

definition of density.
3or Weyl special points because CM points are 0-dimensional special subsets.
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A maximal Q-subtorus with the above property is said to be a Weyl subtorus.4

As in the Siegel case, Weyl special points are abundant in any positive dimen-

sional Shimura variety; see 5.11.

The main result 5.5 in this article in the context of Shimura varieties

asserts the following.

For any special subset Y $ S in a Shimura variety S, there

exists a Weyl special point y in S such that the Hecke orbit of

y is disjoint from Y .

Lemma 6.7 provides the key property of Weyl special points in the Shimura

variety situation. Below is a shorter version.

Let G be a connected and simply connected almost Q-simple

semisimple algebraic group over Q not of type G2 or F4, and

G = ResF/Q(G̃) for an absolutely almost simple semisimple

algebraic group G̃ over a number field F . Suppose that H is

a connected reductive Q-subgroup of G that contains a Weyl

subtorus T and T $ H $ G. Then

• either G̃ is of type Cn and H has the form H ∼= ResK/F (H̃)

for an extension field K/F with [K : F ] = n and an abso-

lutely simple semisimple algebraic group H̃ over K of type

A1, or

• there exists an integer n ≥ 3 such that G̃ is of type Bn and

H = ResF/Q(H̃) for a semisimple subgroup H̃ ⊂ G̃ over F

of type Dn.

We indicate the idea of the proof of 5.5 when the reductive group G in the

Shimura input datum is almost Q-simple; a more detailed sketch is in 5.6.

There is nothing to prove unless G is of type Bn or Cn. When G is of type Cn
the proof is similar to the proof of 3.2, using totally real fields as obstructions

for the Hecke orbit of a Weyl special point to meet a given special subset Y .

When G is of type Bn we use the discriminant of quadratic forms as the source

of obstruction; see 6.12.

1.6. This article is organized as follows. In Section 2 we explain the

notion of Weyl CM points inAg,1. A convenient version of Hilbert irreducibility

with weak approximation, which guarantees an abundant supply of Weyl CM

points in Shimura varieties is discussed in 2.14. The statement sI(g,Qa), after

being reduced to 3.2 modulo (AO) or GRH, is proved in Section 3. In Section 5

4A gentle warning on the technical side: a product of Weyl special points in a product

Shimura variety is not necessarily a Weyl special point; see 5.7(b). One ramification of this

phenomenon is that the proof of 5.5 cannot be directly reduced to the case when the reductive

group in the Shimura input datum is almost Q-simple.
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the notion of Weyl CM points and the analogue of I(g,Qa) are generalized

to the context of Shimura varieties. See 5.1 for the more general version of

I(g,Qa), 5.3, and 5.4 for the definition of Weyl tori and Weyl CM points in

Shimura varieties, which are made explicit for classical groups in 5.15 – 5.18.

The proof of Theorem 5.5, which is a generalization of 3.2 and arguably the

main result of this article in a technical sense, is carried out in 6.13. As the

proof of 5.5 is long, in 5.6 we provide an outline of the proof, including features

not seen in the Siegel case. In Section 4 are some comments on the case when

k = F. A few questions about Weyl CM points are gathered in 3.13. Experts

on Shimura varieties are urged to skip Sections 2–4 and go directly to Section 5;

others are advised to read only 5.1–5.6 and skip the rest of Sections 5 and 6.

Acknowledgment. It is a pleasure to thank Bjorn Poonen, who has greatly

influenced our perspectives on the motivating Question 1.1. We thank Ben

Moonen for a critical reading of an earlier version and his many suggestions

for improvement. We thank Florian Pop for the reference in [11] on Hilbert

irreducibility with weak approximation. We would also like to thank the referee

for a detailed reading and useful comments.

2. Definitions and preliminaries

2.1. Let k be an algebraically closed field. Let Ag,1 be the moduli space

of g-dimensional principally polarized abelian varieties over k.

By a curve over k of compact type,5 we mean a complete stable curve C

over k such that its (generalized) Jacobian variety is an abelian variety; in other

words every irreducible component of C is smooth and the graph attached to

C is a tree. Attached to every curve C of genus g of compact type over k is

a principally polarized abelian variety (Jac(C), λC) over k, defined to be the

product of the Jacobians of the irreducible components of C, with the product

polarization.

We will use the term “Jacobian” to indicate the abelian variety under-

lying the principally polarized abelian variety (Jac(C), λC), and “canonically

polarized Jacobian” when we need to consider the principal polarization of a

Jacobian.

Consider the k-morphism

j : Mg → Ag,1,

called the Torelli morphism, which associates to a curve its principally polar-

ized Jacobian. Denote by T 0
g the image

j(Mg) =: T 0
g ⊂ Ag,1,

5The adjective “compact” refers to the generalized Jacobian of the curve.
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of the Torelli morphism, called the open Torelli locus; this subset is locally

closed in Ag,1. Its closure in Ag,1 is denoted by Tg ⊂ Ag,1, called the (closed)

Torelli locus. A geometric point in the Torelli locus corresponds to a principally

polarized abelian variety (A, λ) such that there exists a curve C of compact

type whose canonically polarized Jacobian is (A, λ).

If g ≤ 3, we have Tg = Ag,1 because dim(Tg) = dim(Ag,1) for all g ≤ 3,

while Tg $ Ag,1 if g ≥ 4 because dim(Tg) = 3g − 3 < g(g + 1)/2 = dim(Ag,1)

if g ≥ 4.

2.2. For any point x = [(A, λ)] ∈ Ag,1(k), we consider the symplectic

Hecke orbit H(x), defined to be the set of all points y = [(B,µ)] ∈ Ag,1 such

that there exists a quasi-isogeny α : B → A that preserves the polarization.6

Define the “isogeny orbit” I(x) as the set of all points [(B,µ)] = y ∈ Ag,1(k)

such that there exists an isogeny between A and B (without taking into account

the polarizations). It is clear that H(x) ⊂ I(x).

2.3. Here is an example in which HGSp(x) $ I(x). Let L be a totally

imaginary quadratic extension of a totally real number field F satisfying the

following properties.

(a) There exists a CM type Φ for the CM field L that is not induced from

a CM type (L′,Φ′) for any proper CM subfield L′ ⊂ L.

(b) (F ⊗R)>0 ∩ (NmL/F (L×) · Q×) ( (F ⊗R)>0 ∩ F×, where (F ⊗R)>0

denotes the set of all totally positive elements in F⊗R.

Note that there exists a CM field L satisfying properties (a) and (b). Moreover

the proof of 2.15 shows that for every finite quadratic extension field Lw of a

finite extension Fv of Qp satisfying NmLw/Fv
(L×w) · Qp

× $ F×v , there exists

a totally imaginary quadratic extension L of a totally real field F such that

(L/F/Q)⊗Q Qp
∼= Lw/Fv/Qp.

Start with a CM type (L,Φ) satisfying (a) and (b) above. From complex

uniformization of abelian varieties, there exists a principally polarized abelian

variety (A1, λ1) over C with action by (an order of) L such that 2dim(A1) =

[L : Q] and the CM type of (A1, L) is (L,Φ). Condition (a) implies that

End0(A1) = L. It is well known that (A1, λ1) is defined over the algebraic

closure Qa of Q in C. In terms of the complex uniformization, after fixing

an L-linear isomorphism between H1(A1(C),Q) with L, the Riemann form

on H1(A1(C),Q) corresponding to the principal polarization λ1 has the form

(u, v) 7→ TrL/Q(uκv̄) for a suitable element κ ∈ K× such that −κ2 is totally

positive. Condition (b) assures us that there is a totally positive element

6If we use the group GSp2g of all symplectic similitudes in 2g variable instead of Sp2g,

we will get a slightly bigger Hecke orbit HGSp(x); see 1.7 and 1.9 of [4]. We will not use it

because the isogeny orbit I(x) is bigger.
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α ∈ F× such that α /∈ NmL/F (L×) ·Q×. Adjusting the Riemann form (u, v) 7→
TrL/Q(uκαv̄) by a suitable positive integer if necessary, we get a polarization

λ2 on A1. Changing A1 by a suitable isogeny, we get an L-linear principally

polarized abelian variety (A2, λ2) over Qa and an L-linear isogeny β : A1 → A2

over Qa such that Hom(A1, A2)⊗Q = L · β. Consider the two points x1 =

[(A1, λ1)], x2 = [(A1, λ2)] in Ag,1(Qa). Clearly x2 ∈ I(x1). The condition (b)

implies that x2 /∈ HGSp(x1).

2.4. An abelian variety A over a field K is said to have sufficiently many

complex multiplication (smCM for short) if End0(A) contains a commutative

semi-simple subalgebra L with [L : Q] = 2dim(A). A point x0 = [(A0, λ0)] ∈
Ag,1(C) is said to be a CM point (or a special point) if the underlying abelian

variety A0 has smCM. Every CM point in Ag,1(C) is rational over Qa.

Over C, an equivalent condition for an abelian variety A over C to have

smCM is that the Mumford-Tate group of (the Hodge structure attached to

the first Betti homology group of) A is an algebraic torus over Q. Recall that

the Mumford-Tate group of A is the smallest Q-subgroup of GL(H1(A(C),Q))

that contains the image of the R-homomorphism

ρA : ResC/RGm −→ GL (H1(A(C),Q)R)

attached to the Hodge structure of H1(A(C),Q).

2.5. We refer to [7] and [8] for basic properties of Shimura varieties. For

us a Shimura variety is an algebraic variety of the form KMC(G,X) in the

notation of [8, 2.1.1], or one of its irreducible components; it has a natural

structure as an algebraic variety over Qa. Here (G,X) is a Shimura input

datum as in [8, 2.1.1] and K is a compact open subgroup of G(Af ). A special

point (or a CM point)7 of a Shimura variety KMC(G,X) is the image of a

point (x∞, gf ) ∈ X × G(Af ) where x∞ : ResC/RGm −→ GR is a point of X

whose Mumford-Tate group is a torus over Q.

A special subset of a Shimura variety S = KMC(G,X) is a finite union of

subvarieties Sj , where each Sj is an irreducible component of a “Hecke trans-

late” by an element of G(Af ) of the image of a Shimura variety KjMC(Gj , Xj)

under a morphism hj : KjMC(Gj , Xj) −→ KMC(G,X) induced by a morphism

of Shimura input data (Gj , Xj) −→ (G,X). In particular each Sj contains a

special point of S. It is clear that the image of a special subset under “conju-

gation” by an element of Gad(Q) is again a special subset. A special subvariety

(or a Shimura subvariety) is an irreducible special subset.

7We will use the terms “special point” and “CM point” interchangeably, following Deligne

in [8, 2.2.4].
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The modular varietyAg,1 over Qa is a Shimura variety, with Shimura input

datum (GSp2g,H±g ), where H±g is the disjoint union of the Siegel upper-half

space and the Siegel lower-half space.

2.6. (AO) The André-Oort conjecture says: Let S be a Shimura variety,

and let Γ be a set of special points in S. The Zariski closure ΓZar of Γ is a spe-

cial subset in S; in other words ΓZar is a finite union of Shimura subvarieties.

See [1, Problem 1, p. 215], [21, 6A], and [22].

2.7. We will use the term “Hilbert modular variety attached to a totally

real field F” in a rather loose sense, namely an irreducible component of a

closed subvariety of the form AOg,1 ⊂ Ag,1 over Qa. Here O ⊆ OF is an order

in the totally real field F with [F : Q] = g, and AOg,1 is the locus of all points

[(A, λ)] such that there exists an injective ring homomorphism O ↪→ End(A)

that sends the unity element 1 ∈ O to IdA. Each Hilbert modular variety

attached to a totally real field F with [F : Q] = g is a special subvariety of

Ag,1 over Q with Shimura input datum (ResF/Q GL2, (H±)g), where H± is the

union of the upper-half and lower-half plane.

In the rest of this section we define the notion of Weyl CM fields and

Weyl CM points and explain some of their basic properties. Lemma 2.8 is a

preliminary remark on Galois groups of CM fields.

Lemma 2.8. Let F be a number field with [F : Q] =: g, and let L be

a quadratic extension field of F . Let M be the normal closure of L over Q.

The Galois group Gal(M/Q) is isomorphic to a subgroup of (Z/2Z)g oSg , the

wreath product of the symmetric group Sg with Z/2Z, which is also the Weyl

group of Dynkin diagrams Cg and Bg . In particular [M : Q] divides 2g · g!.

Proof. Let S′ := Homring(F,Qa) be the set of all embeddings of the field

F to Qa, and let S := Homring(L,Qa) be the set of all embeddings L to Qa.

The inclusion F ↪→ L induces a surjection resF : S � S′. Let Perm(S′) ∼= Sg
be the group of all permutations of S′. Let Perm(S/S′) be the group of all

permutations σ of S that respects the surjection resF : S → S′, in the sense

that there exists a (uniquely determined) permutation τ ∈ Perm(S′) such

that resF ◦ σ = τ ◦ resF ; the map σ 7→ τ defines a surjective homomorphism

π : Perm(S/S′) � Perm(S′). The kernel of π is the subgroup PermS′(S) ⊂
Perm(S/S′) consisting of all elements of Perm(S/S′) that induce the identity on

S′; it is naturally isomorphic to (Z/2Z)S
′
. Every choice of a section ε : S′ → S

of resF : S → S′ defines a section Perm(S′)→ Perm(S/S′) of π: the stabilizer

subgroup of ε(S′) in Perm(S/S′) is isomorphic to Perm(S′) via π.

Let M1 be the normal closure of L0. The natural faithful action of

Gal(M/Q) on S induces an injective homomorphism

ρM : Gal(M/Q)→ Perm(S/S′).
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Restricting to the subfield M1 gives an injection ρM1 : Gal(M1/Q)→ Perm(S′)

compatible with ρM . �

Remark 2.9. Below are some properties of the group Perm(S/S′). The

proofs are left as exercises.

(a) The set of all unordered partitions of S′ into a disjoint union of two

subsets, each in bijection with S via the surjection resF : S → S′, is in

bijection with the set of all splittings of the surjective group homomor-

phism π : Perm(S/S′) � Perm(S′) ∼= Sg.

(b) The center Z of Perm(S/S′) is isomorphic to Z/2Z and contained in

Ker(π) ∼= (Z/2Z)S
′
; it is the diagonally embedded copy of Z/2Z in

(Z/2Z)S
′
.

(c) The only nontrivial proper subgroups of (Z/2Z)S
′

stable under the

conjugation action of Perm(S′) is the center Z of Perm(S/S′) and the

kernel (Z/2Z)S
′

0 of the homomorphism

(Z/2Z)S
′ → Z/2Z, (at)t∈S′ 7→

∑
t∈S′

at.

(d) If a proper subgroup H of Perm(S/S′) surjects to Perm(S′) under π,

then either H is isomorphic to Perm(S′) under π, or the surjection

π|H : H → PermS/S′ makes H an extension of Perm(S′) by Z ∼= Z/2Z
or by (Z/2Z)S

′
0 . Such an extension of Perm(S′) in the latter case is not

necessarily a split extension, as one can see in the case g = 2.8

Definition 2.10. (a) A CM field L with [L : Q] = 2g is a Weyl CM field

if the degree over Q of the normal closure M/Q of L/Q is equal to 2g · g!, or

equivalently if Gal(M/Q) ∼= (Z/2Z)g o Sg.

(b) A totally real number field F of degree [F : Q] = g is of Weyl type if

the Galois group of the normal closure of F/Q is isomorphic to the symmetric

group Sg.

Remark. (1) For every totally real field F of Weyl type of degree g, there

exists a Weyl CM field L that is a quadratic extension of F .

(2) Let M1 be the normal closure of the maximal totally real subfield F

in a Weyl CM field L of degree 2g. Then F is of Weyl type and Gal(M/M1) ∼=
(Z/2Z)g.

8The group Perm(S/S′) is isomorphic to the dihedral group with eight elements when

g = 2. Label the four elements of S by 1, 2, 3, 4 such that {1, 3} and {2, 4} are the two

fibers of the surjection S → S′. Then Perm(S/S′) contains the subgroup H generated by the

cyclic permutation (1 2 3 4) and H surjects to Perm(S′) via π. The extension in question is

isomorphic to the nonsplit extension 0→ Z/2Z→ Z/4Z→ Z/2Z→ 0.
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Definition 2.11. A point [(A, λ)] ∈ Ag,1(Qa) is a Weyl CM point in Ag,1
if the endomorphism algebra End0(A) of A contains a Weyl CM field L with

degree [L : Q] = 2g. (Then End0(A) = L; see 2.12(3).)

2.12. Remarks on Weyl CM points.

(1) The only proper subfields of a Weyl CM field L are Q and the maximal

totally real subfield of L. This statement amounts to the following fact

about the group (Z/2Z)g o Sg.

Suppose that g ≥ 2 and H is a subgroup of (Z/2Z)g o Sg such

that (Z/2Z)g−1 oSg−1 $ H $ Z/2Z)g oSg, where (Z/2Z)g−1 is

the wreath product of Sg−1 and Z/2Z, embedded in (Z/2Z)goSg
in the standard way. Then H = (Z/2Z)g o Sg−1.

(2) If x is a Weyl CM point in Ag,1(Qa), so is every point in I(x).

(3) If [(A, λ)] is a Weyl CM point in Ag,1(Qa), then L := End0(A) is a Weyl

CM field. In particular A is (absolutely) simple.

Proof. The endomorphism algebra End0(A) contains a field L of degree

[L : Q] = 2g, so A is isogenous to Bn for some (absolutely) simple abelian

variety B over Qa. Suppose that n > 1. Then E := End0(B) is a CM

field, End0(A) ∼= Mn(E), and L contains E, contradicting (1). So we have

L = E = End0(A). �
(4) A consequence of [5, Thm. 2.1] is the following. Suppose that A → U is

an abelian scheme of relative dimension g over a geometrically irreducible

variety U/Fq
over a finite field Fq such that the mod-` geometric mon-

odromy group is equal to Sp2g(F`) for all ` � 0. Then the subset D of

the set |U | of all closed points of U consisting of all closed points x ∈ |U |
such that Q(FrAx) is a Weyl CM field has density one.

(5) If [(A, λ)] ∈ Ag,1(Qa) is a Weyl CM point in Ag,1, then the special

Mumford-Tate group of the abelian variety A is Ker(NmL/F : ResL/QGm

→ ResF/QGm) =: TL,1, where L = End0(A) is the Weyl CM field attached

to A and F is the maximal totally real subfield in L.

Proof. The special Mumford-Tate group of A is by definition contained

in

Sp (H1(A(C);Q), 〈·, ·〉) ∩ ResL/QGm = TL,1,

where 〈·, ·〉 is the perfect alternating pairing on H1(A(C), Q) induced

by the principal polarization λ0 on A. It is well known that the standard

representation of (Z/2Z)goSg on Q2g is irreducible, so the only nontrivial

subtorus of TL,1 is TL,1 itself. �

Lemma 2.13 (Deligne, Ekedahl, Geyer). Given a positive integer g and a

number field E, there exists a Weyl CM field L with [L : Q] = 2g such that M

is linearly disjoint from E.
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Proof. This is an application of Hilbert irreducibility. We will use the

version in [7, Lemma 5.13]; see also [11, Lemma 3.4] and [10, Thm. 1.3]. (Note

that Lemma 5.13 in [7] follows right after the end of Lemma 5.1.2.) Consider

the following extension of polynomial rings:

Q[s1, . . . , sg] −→ Q[x1, . . . , xg] −→ Q[u1, . . . , ug],

where si is the i-th elementary symmetric polynomial for i=1, . . . , g and xi=u2
i

for all i= 1, . . . , g. Let V = Spec(Q[s1, . . . , sg]), let W1 = Spec(Q[x1, . . . , xg]),

and let W = Spec(Q[u1, . . . , ug]). Let U be the open subset of V (R), equal

to the image in V of the open subset U1 ⊂ W1(R) consisting of all R-points

(a1, . . . , ag) ∈ W1(R) of W1 such that ai 6= aj for all i 6= j and ai < 0 for all

i = 1, . . . , g. By [7, Lemma 5.13], for any given number field E, there exists a

Q-rational point v ∈ V (Q) ∩ U such that the inverse image of v in W is the

spectrum of a field L of degree 2g · g! over Q and is linearly disjoint from E.

Note that L is a CM field by construction. �

Remark 2.14. Here is a version of Hilbert irreducibility with weak ap-

proximation, slightly stronger than [7, Lemma 5.13], which will be used later.

For a finite extension field F of Q, the product topology on the ring AF of all

F -adeles is the topology induced by the natural inclusion AF ↪→ ∏
v Fv and

the product topology on the infinite product
∏
v Fv, where v runs through all

places of F and Fv is the completion of F at v. It is weaker than the adelic

topology for AF .

Let E be a finite extension of a finite extension field F of Q. Suppose that

we have a commutative diagram

W
f //

π
��

V

��
Spec(E) // Spec(F ),

where

• V is a nonempty Zariski open subset of an affine space9 Am over F ,

• W is reduced and all geometric fibers of π are irreducible,

• f is quasi-finite and dominant.

Suppose moreover that we are given a finite extension field E1 of E and a

nonempty open subset U ⊆ V (AF ) for the product topology on AF . Then there

exists an element v ∈ V (F ) such that the image of v in V (AF ) lies in U , and

the schematic inverse image f−1(v) is the spectrum of a finite extension of E

that is linearly disjoint with E1 over E.

9We used Am instead of the more standard Am for an affine space SpecF [X1, . . . , Xm]

over F , to avoid possible confusion with the notation AF for the ring of adeles attached to F .
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The above statement follows from [11, Lemma 3.4], which asserts that

every Hilbertian subset of Am(F ) of a Hilbertian F satisfies the weak approx-

imation property for any given finite set of absolute values of F . It can also

be deduced from [10, Thm. 1.3].

Corollary. 2.15. (1) Let g be a positive integer. There exist infin-

itely many Weyl CM fields L with [L : Q] = 2g.

(2) Let g ≥ 2 be a positive integer. There exist infinitely many totally real

number fields F of Weyl type with [F : Q] = g.

(3) There exist infinitely many mutually nonisogenous Weyl CM points in

Ag,1(Q).

(4) Suppose that g ≥ 2. There exists a sequence of Weyl CM points

xi = [(Bi, µi)], i ∈ N, such that the maximal totally real subfields Fi of

the Weyl CM fields Li = End0(Bi) attached to xi are mutually noniso-

morphic.

3. Special subsets in Ag,1 over Qa and Weyl CM points

Recall that Qa is the field of all algebraic numbers in C.

Theorem 3.1. Suppose that the conjecture (AO) is true. Then for any

g ≥ 1, the statement sI(Qa, g) is true. Consequently I(Qa, g) is true as well.

Proof. Consider the set C := CM(Ag,1(Qa)) of all CM points in Ag,1
over number fields, and let CX := C ∩ X(Qa) = CM(X). Let Z be the

Zariski closure of CX . By (AO) we have Z =
⋃N
j Sj , a finite union of special

varieties Sj ⊂ X ⊂ Ag,1 ⊗Qa, j = 1, . . . , N . Hence the theorem follows from

Proposition 3.2, to be proved in 3.6. �

Proposition 3.2. For any special subset Y =
⋃
j Sj with Sj $ Ag,1⊗Qa,

there is a Weyl CM point y ∈ Ag,1(Qa) such that

I(y) ∩
ÇN⋃

j

Sj(Qa)

å
= ∅.

Remark 3.3. Suppose the Generalized Riemann Hypothesis holds. Then

sI(Qa, g) and I(Qa, g) are expected to be true.

Indeed in [17] and [32] a proof is announced that GRH implies the André-

Oort conjecture.

Lemma 3.4. Let L be a Weyl CM field with [L : Q]=2g ≥ 4, and let F be

the maximal totally real subfield of L. Let T :=TL,1 =Ker
Ä
NmL/F : ResL/Q(Gm)

−→ ResF/Q(Gm)
ä

as in 2.12(5), a g-dimensional torus over Q. Suppose that G

is a connected closed algebraic subgroup over Q contained in Sp2g that contains

T as a closed algebraic subgroup over Q and T 6= G. Then either G = Sp2g ,

or the derived group Gder of G is isomorphic to ResF/Q(SL2).
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Proof. Consider the adjoint action of the maximal torus T over Q of Sp2g

on the Lie algebras of G and Sp2g. We get a subset R(G,T ) of the root system

of Sp2g, which is stable under the action of the Weyl group because the image

of the action of the Galois group on the character group of T coincides with

the Weyl group for (G,T ) by the assumption on L. From basic Lie theory we

know that the subset R(G,T ) has the following property.

(∗) If α, β are elements of R(G,T ) such that α+ β is a root for Sp2g ,

then α+ β ∈ R(G,T ).

In fact for two roots α, β in the root system of Sp2g, the condition that α+ β

is again a root for Sp2g means that α + β 6= 0 and [gα, gβ] = gα+β, where gγ
denotes the root space attached to γ for any root γ of Sp2g; see, for instance,

part (c) of the Proposition in 8.4, page 39 of [12]. The assertion (∗) follows.

There are two Weyl orbits in the root system Cg for Sp2g, the subset of

all short roots and the subset of all long roots. In standard coordinates, the

short roots are ±xi ± xj with i 6= j, 1 ≤ i, j ≤ g, while the long roots are

±2xi, i = 1, . . . , g. We know that every long root is a sum of two distinct short

roots; for instance, 2x1 = (x1 + x2) + (x1 − x2). If R(G,T ) contains all short

roots, then it must contain all long roots as well, by the property stated at the

end of the previous paragraph. So R(G,T ) is the set of all long roots ±2xi if

G 6= Sp2g. That means exactly that G is isomorphic to ResF/Q(SL2). �

Lemma 3.5. Let Y be an irreducible positive dimensional special subvari-

ety of Ag,1 over Qa. If Y 6= Ag,1 and Y contains a Weyl CM point y0 of Ag,1,

then Y is a Hilbert modular variety attached to the totally real subfield F of

degree g over Q contained in the Weyl CM field attached to y0.

Proof. Let [(B0, λ0)] be a g-dimensional principally polarized abelian va-

riety over Qa with complex multiplication by a Weyl CM field L with [L : Q] =

2g contained in Y . Let G be the semi-simple algebraic subgroup group of

Sp2g over Q attached to Y . Then G contains a Q-torus that is isomor-

phic to TL,1 := Ker
Ä
NmL/F : ResL/Q(Gm) −→ ResF/Q(Gm)

ä
, namely the spe-

cial Mumford-Tate group of B0; see 2.12(5). By 3.4, G is isomorphic to

ResF/Q(SL2) because Sj ⊂ Y 6= Ag,1. This means that Y is a Hilbert modular

variety attached to F . �

3.6. Proof of Proposition 3.2. We may and do assume that g ≥ 2. The

given special subset Y is a union of irreducible components Sj , which we enu-

merate as follows.

(i) Sj = [(Aj , λj)] is a point in Ag,1(Qa) for j = 1, . . . , a;

(ii) Sj is a Hecke translate of a Hilbert modular variety associated to a

totally real field Fj of Weyl type with [Fj : Q] = g for j = a+1, . . . , a+b;

(iii) Sj is not of type (i) nor of type (ii) above for j = a+b+1, . . . , a+b+c.
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By 2.13, there exists a Weyl CM field L with [L : Q] = g such that the maximal

totally real subfield F in L is not isomorphic to Fj for any j = a+ 1, . . . , a+ b

and L cannot be embedded in End0(Aj) for any j = 1, . . . , a.

Let (B0, λ0) be a g-dimensional principally polarized abelian variety such

that End0(B0) ∼= L. Clearly I(x0) := I([(B0, λ0)]) 63 [(Aj , λj)] for all j =

1, . . . , a. Suppose that there exists a point y0 ∈ I(x0) such that y0 ∈ Sj0 for

some j0 > a. We know from 3.5 that a + 1 ≤ j0 ≤ a + b. Let Gj0 be the

derived group of the reductive algebraic subgroup of Sp2g over Q attached to

Sj0 , which is isomorphic to ResFj0
/Q(SL2). However 3.5 tells us that it is also

isomorphic to ResF/Q(SL2). We know that the number field F is determined

up to nonunique isomorphism by the Q-group ResF/Q(SL2), namely it is the

largest subfield of Qa fixed by the the stabilizer subgroup of any element of

the finite set π0D(ResF/Q(SL2)) of all simple factors of ResF/Q(SL2)×Spec(Q)

Spec(Qa), under the transitive permutation representation of Gal(Qa/Q) on

π0D(ResF/Q(SL2)).10 We conclude that the number field F is isomorphic to

Fj0 , which is a contradiction. We have proved that I(x0) ∩ Y = ∅. �

The proof of 3.2 provides a strong finiteness statement for Weyl CM points

in the case when g ≥ 4 and the closed subset X $ Ag,1 is Tg.

Proposition 3.7. Assume either (AO) or GRH. There are at most

finitely many Weyl CM points in the Torelli locus Tg ⊂ Ag,1 over Qa for

any integer g ≥ 4.

Proof. According to [15, Cor. 1.2], for a totally real number field E of

degree g = [E : Q] ≥ 4 and a Hilbert modular variety ME over Qa attached to

E, the following holds.

(i) If g ≥ 5, then Torelli locus Tg does not contain ME .

(ii) If g = 4 and Tg contains ME , then E is a quadratic extension of a real

quadratic field.

Note that the Galois group Gal(Ẽ/Q) of the normal closure Ẽ of a quartic

field E as in (ii) is a subgroup of (Z/2Z)2 o (Z/2Z) by 2.8 and not isomorphic

to the symmetric group S4. So E is not the maximal totally real subfield of a

Weyl CM field.

If Tg contains infinitely many Weyl CM points, then it contains a Hilbert

modular subvariety attached to a degree g totally real field of Weyl type, by

(AO) and 3.5. That is a contradiction. �

10The notation π0D means “the set of all connected components of the Dynkin diagram.”

When applied to the Q-group ResF/Q(SL2), the Gal(Qa/Q)-set π0D(ResF/Q(SL2)) is equiv-

ariantly identified with Homring(F,Qa).
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Remark 3.8. We now know that for g ≥ 4, the Torelli locus Tg does not

contain any Hilbert modular variety associated to a totally real number field

of degree g; the case g = 4 is settled in [2]. For further information, see [19].

Remark 3.9. In [6, Conj. 6] Coleman conjectured that for any g ≥ 4, there

are only a finite number of proper smooth curves of genus g over C with CM

Jacobians. However, that conjecture is not correct, as has been shown by

Shimura (see [26]) and by de Jong and Noot (see [14]). Examples were given

by families of cyclic covers of P1, producing a special subset of Tg of positive

dimension. We have such examples for all g ≤ 7. See [19] and [24] for a

description of examples known at present, for a discussion, and for references.

Whether Coleman’s conjecture holds for any g ≥ 8 seems unknown.

Remark 3.10. Suppose F is a totally real number field of Weyl type with

[F : Q] = g ≥ 2. One may wonder whether the conclusion of 3.5 holds for a CM

point associated with a totally imaginary quadratic extension L/F . Let M ′

be the normal closure of F , and let M be the normal closure of L. By 2.9(c),

only the following three cases occur. (The two cases (1) and (3) coincide when

g = 2.)

(1) [M : M ′] = 2.

(2) L is a Weyl CM field.

(3) g is even11 and [M : M ′] = 2g−1.

If g > 1 and we are in case (1), the conclusion of 3.5 need not hold in general:

take an imaginary quadratic field E, and let L be the compositum of F and E.

A PEL Shimura variety associated with an action by an order in E contains

a CM point associated with L; it is a special subvariety of positive dimension

that is not a Hilbert modular variety.

However, if y is a CM point associated with a CM field L that is a quadratic

extension of a totally real field F of Weyl type with 4 ≤ [F : Q] ≡ 0 (mod 2)

such that the condition (3) above is satisfied, then the other conditions in 3.5

imply that the conclusion of 3.5 does hold, by the same argument. All one

needs is that in the proof of 3.4 with the Weyl group of Sp2g replaced by the

index two subgroup Gal(M/Q), there are only two orbits for the action of

Gal(M/Q) on the root system of Sp2g.

11In this case the complex conjugation gives an element of Gal(M/Q) that belongs to the

subgroup

Ker
(
Gal(M/Q)→ Gal(M ′/Q) ∼= Perm(S′)

) ∼= (Z/2Z)S
′

0 ⊂ Perm(S/S′)

in the notation of 2.9(c). We know that the complex conjugation corresponds to the element

(at)t∈S′ in (Z/2Z)S
′

with at = 1 + 2Z ∈ Z/2Z for all t ∈ S′, and
∑

t∈S′ at ≡ 0 (mod 2) by

the definition of (Z/2Z)S
′

0 , so g = card(S′) is even.
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3.11. We show that sI(C, g) holds for any g ≥ 1. Let X $ Ag,1 ⊗ C be

a closed subset. Note that the set of points

Λ := {[(A, λ)] = x ∈ Ag,1(C) | End(A) 6= Z}

has measure zero in Ag,1(C). Write X0 := X − (X ∩ Λ). The union Λ′X
of all Hecke translates (for GSp2g) of X0(C) is the same as the union of all

isogeny translates of X0(C). Hence Λ′X has measure zero in Ag,1(C) because

it is a countable union of subsets with measure zero. So there exists a point

x ∈ Ag,1(C) with x 6∈ Λ ∪ Λ′X . We have I(x) ∩ (Λ ∪ Λ′X) = ∅ as Λ and

Λ′X are both stable under translations by isogeny. So I(x) ∩ X = ∅ because

X ⊂ Λ ∪ Λ′X . �

3.12. Expectation. There is no Shimura subvariety of positive dimension

over Qa contained in the closed Torelli locus Tg that meets the open Torelli

locus T 0
g for g � 0.

See Section 7 in [21]. Note that if this expectation holds for some value g1

of g, and if (AO) holds, then there are only a finite number of proper smooth

curves of genus g1 with CM Jacobians.

3.13. Questions.

1. Can one prove some special cases of 3.7 unconditionally? For instance,

is there only a finite number of hyperelliptic curves with a given genus

g ≥ 4 (resp. smooth plane curves of degree d ≥ 5) whose Jacobian is a

Weyl CM point?

2. Given a closed (special) subset X $ Ag,1 over Qa, can we find explicitly

a point x, that is not a CM point, or a CM point that is not a Weyl

CM point, such that I(x) ∩X(Qa) = ∅ ?

3. For which values of g does the open Torelli locus T 0
g contain CM points?

For which values of g does the open Torelli locus T 0
g contains Weyl CM

points? We do not know a single example of a Weyl CM Jacobian of

dimension g ≥ 4.

Remark. (a) Dwork and Ogus wrote on p. 112 of [9] “The question of

constructing nonhyperelliptic curves of high genus with CM Jacobians remains

quite mysterious; . . . ”

(b) The open Torelli locus T 0
g contains CM points for infinitely many

values of g. For instance, the Jacobian for any Fermat curve Cn defined by the

equation xn+yn = zn has smCM and of dimension g = (n−1)(n−2/2. However

the principally polarized Jacobian J(Cn) of Cn is not a Weyl CM point for any

n ≥ 4 because any nonhyperelliptic curve with a nontrivial automorphism, or

any hyperelliptic curve with more than two automorphisms, does not give a

Weyl CM Jacobian.
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Another series of examples are curves C`,a of genus (`−1)/2, where ` is an

odd prime number; it is a cover of P1 over Q ramified over three points given

by the equation y` = xa(x− 1) with a 6≡ 0 (mod `); see [33, pp. 814/815] and

[15, Exam. 1.4]. For more examples and references, see [19] and [24].

4. Over finite fields

In this section we work over the base field F := Fp. There are several ways

to formulate analogues of sI(F, g) which reflect special features in characteris-

tic p. Here we only record a positive result 4.1 in a very special case, and we

formulate a question in 4.5.

Proposition 4.1. Let g ∈ Z≥2, and let X ⊂ Ag,1 ⊗ F be a closed subset.

Suppose X is irreducible of dimension at most equal to 1. Then there exists

[(A, λ)] = x ∈ Ag,1(F) such that

I(x) ∩X = ∅.

4.2. Weil numbers. For any simple abelian variety A over a finite field Fq
with q = pn, the geometric Frobenius FrA,Fq gives rise to an algebraic integer

πA, called the Weil number of A, such that the absolute value |ι(πA)| =
√
q

for every embedding ι : Q(πA)→ C. Two Weil numbers π and τ (for possibly

different values of q but in the same characteristic p) are said to be similar if

a positive power of π is equal to a positive power of τ :

π ≈ τ def⇐⇒ ∃ s, t ∈ Z>0 and ∃β : Q(πs)
∼−→ Q(τ t) such that β(πs) = τ t.

Note that the Honda-Tate theory implies that the set of all similarity classes of

all Weil p∞-numbers are in natural bijection with the set of all isogeny classes

of simple abelian varieties over F; see [29], [23]. Therefore the set of all isogeny

classes of g-dimensional abelian varieties over F is in natural bijection with the

set of all finite unordered sequences (π1, . . . , πm), where each πi is a similarity

class of Weil p∞-numbers, and the sum of the dimensions of the corresponding

isogeny classes of simple abelian varieties Ai over F is equal to g. Denote by

WN(Ag,1 ⊗ F) the set of all such unordered sequences (π1, . . . , πm).

For any closed subset X ⊂ Ag,1 ⊗ F, we write WN(X) for the subset of

WN(Ag,1 ⊗ F) arising from F-points of X. It is clear that

WN(X) $WN(Ag,1⊗F) ⇐⇒ ∃x ∈ Ag,1(F) such that I(x)∩X(F) = ∅.

Lemma 4.3. For any g ∈ Z>0 and any nonsupersingular symmetric New-

ton polygon ξ,

#
Ä
WN(W 0

ξ )
ä

=∞.

Proof. It suffices to verify the case when the Newton polygon ξ has only

two slopes m/(m+ n) and n/(m+ n), where m,n ∈ N, gcd(m,n) = 1, m 6= n,
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and the two slopes both appear m + n times. It is shown in both of the two

proofs of [3, 4.9] that there exists infinitely many abelian varieties Ai over finite

fields Fqi ⊂ F with ξ as Newton polygon such the Weil numbers πAi generate

distinct imaginary quadratic fields Q(πAi). �

4.4. Proof of Proposition 4.1. Consider first the case when X does not

contain any ordinary point. Then for any ordinary x ∈W 0
ρ (F), we have I(x)∩

X = ∅, and we are done.

Suppose now that X contains an ordinary point. By a theorem by Groth-

endieck and Katz (see [16, Thm. 2.3.1]), it follows there is a dense open set

U ⊂ X consisting of all ordinary points in X. Because the dimension of X is

at most one, the complement of U in X is a finite set of points. Because g > 1,

there exists a symmetric Newton polygon ξ for Ag,1 that is neither ordinary

nor supersingular. The subset of points in X(F) with Newton polygon equal to

ξ is contained in XrU ; therefore it is finite. Hence in this case the conclusion

of 4.1 follows from 4.3. �

4.5. Denote by Aord
1,1 the ordinary locus of the j-line over F. The following

is the first nontrivial case of an analogue of sI(F, g) for reduction of Shimura

varieties.

(†) Suppose that X ⊂
Ä
Aord

1,1

ä2
is a closed curve in the product

of two copies of the Aord
1,1 over F. There exists a point

x = (x1, x2) ∈
Ä
Aord

1,1

ä2
(F) such that (y1, y2) 6∈ X if Eyi is

isogenous to Exi for i = 1, 2.

The case when X = {(x1, x2) | x1, x2 ∈ Aord
1,1 , x2 = x1 + 1} is already a

challenge—we do not have a proof for this very special case.

5. Special subsets in Shimura varieties

In this section we generalize Proposition 3.2 to the context of Shimura va-

rieties. The main result is Theorem 5.5, with Proposition 5.1 as an immediate

consequence. Corollary 5.2 is an analogue of I(g,Qa). An outline of the proof

of 5.5 is provided in 5.6. The proof of 5.5 is in 6.13.

Proposition 5.1. Let S be a Shimura variety over Qa, and let S1, . . . , Sm
be a finite family of Shimura subvarieties of S such that dim(Si) < dim(S) for

each i = 1, . . . ,m. Then there exists a special point y ∈ S(Qa) such that

H(y) ∩ (
⋃
i Si(Qa)) = ∅. Here H(y) denotes the Hecke orbit on the Shimura

variety S, defined in terms of the reductive group G which is part of the input

data for the Shimura variety S.

Corollary. 5.2. The following statement IS(Qa) holds modulo either

(AO) or GRH.
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IS(Qa) Let S be a Shimura variety over Qa and let X ⊂ S be a closed subset

over Qa of lower dimension. Then there exists a point x ∈ S(Qa), which

can be chosen to be a Weyl special point in S, such that H(x)∩X = ∅.

Definition 5.3. Let G be a connected reductive linear algebraic group

over Q. A maximal Q-subtorus T ⊂ G is said to be a Weyl subtorus if the

image of the natural action of the Galois group Gal(Qa/Q) on the character

group of the image T ad of T in the adjoint group Gad of G contains the Weyl

group W (R(Gad, T ad)) of the root system of Gad with respect to T ad.

Definition 5.4. Let (G,X) be a Shimura input data as in [8, 2.1.1], where

G is a connected reductive algebraic group over Q and X is a G(R)-conjugacy

class of R-homomorphisms from S := ResC/RGm to GR.12 A Weyl special point

(or a Weyl CM point) in X is an R-homomorphism x0 : S → GR that factors

through a Weyl subtorus T ⊂ G. The image of a point (x0, g) ∈ X ×G(Af ) in

a Shimura variety KMC(G,X) associated to a compact open subgroup K ⊂
G(Af ) is said to be a Weyl special point if x0 is Weyl special point for (G,X).

Theorem 5.5. Let S be a Shimura variety over Qa, and let S1, . . . , Sm
be a finite family of Shimura subvarieties of S such that dim(Sj) < dim(S) for

each j = 1, . . . ,m. Then there exists a Weyl special point y ∈ S(Qa) such that

H(y) ∩
Ä⋃

j Sj(Qa)
ä

= ∅.

5.6. Ingredients of the proof of Theorem 5.5.

(1) An abundant supply of Weyl special points in every Shimura variety.

This is a variant of Deligne’s method in [7, § 5.1] for producing spe-

cial points on Shimura varieties using Hilbert irreducibility. Our modified

version produces Weyl special points, satisfying the weak approximation

property. See 5.11 for the statement. In the set up of 5.11, the role of the

Shimura reflex field E(G,X) attached to a Shimura input datum (G,X) is

replaced by a number field E(G) that contains E(G,X) and is finite Galois

over Q; see 5.9.

(2) Classification of connected closed subgroups H in a semi-simple almost

Q-simple group G that contains a Weyl subtorus T .

The point here is that in an irreducible root system, roots of the same

length form a single orbit under the Weyl group. If the Q-group G occurs

in a Shimura input datum and H is not equal to G, the above fact implies

that there are not many possibilities for H: it has to be equal to T or to

G unless G is of type Cn or Bn with n ≥ 2.

12We will assume conditions (2.1.1.1)–(2.1.1.3) of [8, 2.1.1]. In particular no Q-simple

factor of Gad is compact. We also assume that Gad is nontrivial; this will simplify future

statements.
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In the Cn case, if T $ H $ G, then H is the restriction of scalars from

a number field F to Q of a group of type A1; see 6.4 and 6.5. We have

seen such an example in Section 3, where G = Sp2g over Q and H is the

restriction of scalar of SL2 over a totally real field of degree g.

In the Bn case, we can take G to be the restriction of scalars of the

special orthogonal group SO(V, q) attached to a nondegenerate quadratic

space (V, q) over a number field F and dimF (V ) = 2n+ 1. If T $ H $ G,

then H is the restriction of scalars of a Dn-type group SO(V ′⊥, qV ′⊥),

where V ′ is a one-dimensional anisotropic subspace of V fixed by the Weyl

subtorus T ; see 6.6.

(3) Product situations.

There is no surprise here. Suppose that a semi-simple Q-group G is part

of a Shimura input datum, and suppose G = G1 × · · · × GN where each

factor Gi is almost Q-simple. Suppose moreover that T = T1×· · ·×TN is a

Weyl subtorus of G, where Ti is a Weyl subtorus of Gi for each i = 1, . . . , N ,

and H is a closed subgroup of G that contains T . Then H is a product:

H = H1 × · · · × HN where each Hi can be only Ti or Gi if Gi is not of

type Cn or Bn. If Gi is of type Cn or Bn with n ≥ 2, then there is a third

possibility for Hi as described in (2) above.

(4) Number fields as obstruction.

Given a semi-simple Q-group G = G1 × · · · × GN as in (3), and m

subgroups

Ha = Ha,1 × · · · Ha,N $ G1 × · · · ×GN , a = 1, . . . ,m

of G, each of the type described in (3), we need to produce a compact Weyl

Q-subtorus T of G that is not contained in any G(Q)-conjugate of Ha for

any 1 ≤ a ≤ m.

Ingredient (1) allows us to produce a compact Weyl Q-subtorus T such

that the number field KT fixed by the kernel of the representation of

Gal(Qa/Q) on the character group of T is linearly disjoint with any given

number field Ẽ over a small number field attached to G. Choosing a large

enough finite Galois extension Ẽ over Q, we can ensure that the Weyl

subtorus T is not contained in any G(Q)-conjugate of Ha, unless for every

index i such that Ha,i $ Gi, the group Gi is of type Bn with n ≥ 2.

The idea is simple and has already been used in Section 3. If a factor Ha,i

of Ha is a torus, we get a number field Ea from the Galois representation

on the character group of Ha,i in the same way as above. If a Gi is of type

Cn and Ha,i is the restriction of scalar of a type A1 group from a field F to

Q, again we get a number field Ea = F . If the field Ẽ contains all Galois

conjugates of Ea, then we have successfully obstructed the Weyl subtorus T

from being contained in any G(Q)-conjugate of Ha. See 6.8 for the Cn case.
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(5) Discriminants as obstruction. Notation as in (4). Suppose that for some

a between 1 and m, the group Gi is of type Bni for every index i such

that Ha,i $ Gi, and the subgroup Ha,i is as described in (2). In this sit-

uation we use another invariant, the discriminant of the quadratic space

(V ′⊥, qV ′⊥) in the notation of (2); see 6.10. This discriminant is an ele-

ment of F×/F×2, and we can obstruct the Weyl torus T in (4) from being

contained in any G(Q)-conjugate of Ha by imposing local conditions on

T at any single prime number p; see 6.12. Here the weak approximation

property in (2) comes very handy, as we need to enforce the obstructions

for a finite number of subgroups Ha ⊂ G.

Remark. (a) In the case when the adjoint group Gad of the reductive group

G in the input datum for the Shimura variety S in 5.5 is Q-simple, the proof

of 5.5 becomes a little shorter: it follows from 5.11, 6.5, 6.6, 6.8,and 6.12.

(b) It is tempting to try to prove Theorem 5.5 by reducing it to the case

when the semi-simple group G in the Shimura input datum of the ambient

Shimura variety S is adjoint and Q-simple. But the truth of Theorem 5.5 in

the Q-simple case does not (seem to) formally imply the more general case

when G is a product of Q-simple groups.13

5.7. Remarks on Weyl tori. (a) Clearly, a maximal Q-subtorus of G is a

Weyl subtorus of G if and only if its image in the adjoint group Gad of G is a

Weyl subtorus of Gad.

It is also clear that being a Weyl torus is stable under central Q-isogeny:

suppose that α : G1 → G2 is a central isogeny between connected semi-simple

algebraic groups over Q and that T1, T2 are maximal Q-tori in G1 and G2

13The problem here has to do with 5.7(b) below: if x1 and x2 are Weyl special points

in Shimura varieties S1 and S2, the point (x1, x2) is not necessarily a Weyl special point of

S1×S2. In some sense the proof in 6.13 of 5.5 goes by reducing the latter to Q-simple factors

of Gad at the level of 5.11, the production machinery for Weyl subtori. In other words one

can formulate a statement which incorporates part of 5.11, is stronger than 5.5, and can be

proved by reducing to the case when Gad is almost Q-simple. However that statement is long

and we have opted for the shorter one in 5.5. We formulate this statement below using the

notation in 5.9–5.11; e.g., V is the scheme of regular elements of Lie(G) and f : W → V is

the finite étale Galois cover of V in 5.10.

There exists a nonempty open subset U in V (AQ) for the product topology on Q and a finite

extension field Ẽ/E(G) of the Weyl reflex field E(G), with the following property. Suppose we

have

(a) an element v ∈ V (Q)∩U such that StabG(v) is a Weyl subtorus Tv in G, and f−1(v)

is the spectrum of a field Kv linearly disjoint with Ẽ over E(G),

(b) an R-homomorphism S → Tv such that the composition ỹ : S → T ↪→ G is a Weyl

special point for (G,X).

Then the Hecke orbit H(y) in S is disjoint from ∪j Sj(Qa), where y is the image of ỹ in

S(Qa).
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respectively, such that α induces in isogeny α|T1 : T1 → T2. Then T1 is a Weyl

subtorus of G1 if and only if T2 is a Weyl subtorus of G2.

(b) Suppose that (G,T ) = (G1, T1) ×Spec(Q) (G2, T2), where G1 and G2

are connected semi-simple groups over Q. If T is a Weyl subtorus of G, then

Ti is a Weyl subtorus of Gi for i = 1, 2. However the assumption that Ti is a

Weyl subtorus of Gi for both i = 1 and i = 2 does not imply that T is a Weyl

subtorus of the product group G. What one needs is a condition on linear

disjointness. More precisely, T is a Weyl subtorus if and only if Ti is a Weyl

subtorus for Gi for i = 1, 2, and the three natural maps below are bijective.14

• K1⊗E1 (E1 · E2)
∼−→ K1 · E2,

• (E1 · E2)⊗E2 K2
∼−→ E1 ·K2,

• (K1 · E2)⊗E1 (E1 · E2))⊗E1·E2 (E1 ·K2)
∼−→ K1 ·K2.

In the above, K1,K2 are finite Galois extension of Q, both contained in an

algebraic closure Qa of Q, and Ei is a subfield of Ki for i = 1, 2, defined as

follows. For i = 1, 2, Ki/Q is the finite Galois extension such that the linear

action of Gal(Qa/Q) on the cocharacter group X∗(Ti) of Ti factors through

Gal(Ki/Q) and induces a faithful action ρi of Gal(Ki/Q) on X∗(Ti). The

subfields Ei of Ki are defined by the property that ρi induces an isomorphism

from Gal(Ki/Ei) to the Weyl group W (R(Gi, Ti)) for i = 1, 2.

(c) See 5.15–5.18 for explicit descriptions of Weyl subtori in classical

groups.

(d) The notion of Weyl subtori generalizes immediately to all connected

reductive groups over an arbitrary field F , for instance, any global field: replace

Gal(Qa/Q) by Gal(F sep/F ) in Definition 5.3.

5.8. Remark on Weyl special points. Notation as in 5.4. Let π : G→ Gad

be the canonical map. Let x0 : S→ GR be a Weyl special point, and let T ad ⊂
Gad be a Weyl subtorus in Gad that contains the image of the homomorphism

π ◦ x0 : S → Gad
R . Then the image in Gad of the Mumford-Tate group of x0 is

equal to the Weyl subtorus T ad ⊂ Gad itself.

Proof. After modifying G by a central isogeny, we may assume that (G,T )

is a product: (G,T ) =
∏N
i=1(Gi, Ti), where each Gi is almost Q-simple. As the

image in Gad of the Mumford-Tate group of x0 is the Mumford-Tate group of

π ◦ x0, we may assume that G = Gad and T = T ad. Because the irreducible

factors of the Gal(Qa/Q)-module X∗(T )⊗ZQ are exactly the X∗(Ti)⊗ZQ’s for

i = 1, . . . , N , there exists a subset J ⊂ {1, 2, . . . , N} such that the Mumford-

Tate group of x0 is equal to
∏
i∈J Ti. Since the Gi-component of x0 is nontrivial

for each i = 1, . . . , N , the Mumford-Tate group of x0 must be equal to T . �

14Equivalently, (K1 · E2)⊗E2 K2
∼−→ K1 ·K2

∼←− K1 ⊗E1 (E1 ·K2).
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5.9. We will generalize the argument in [7, Thm. 5.1] to show the exis-

tence of Weyl subtori in any connected reductive group G over Q. Moreover

there are plenty of them so that a weak approximation statement holds.

We set up notation following [7, § 5.1]. Let G be a reductive group over Q
whose adjoint group Gad is nontrivial. Fix a maximal Qa-torus T0 in G. Let

X0 = X∗(T0) := Hom(T0/Qa , Gm/Qa) be the character group of T0, and let

X∨0 = X∗(T0) = Hom(Gm/Qa , T0/Qa) be the cocharacter group of T0. Let

(R0 := R(G,T ), X0, R
∨
0 = R(G,T )∨, X∨0 )

be the (absolute) root system attached to (G,T ). Pick a basis D0 of R0, with

R+
0 the corresponding system of positive roots in R; let D∨0 be the basis of R∨0

dual to D0. Then

D0 := (X0, D0, X
∨
0 , D

∨
0 )

is a based root datum for (G/Qa , T0/Qa) according to the terminology in [27,

p. 271], where G/Qa is short for G×SpecQ Spec(Qa) and similarly for T0/Qa .

Let T1 be the split torus over Q with character group X0. Let Ỹ = Ỹ (G) be

the moduli scheme over Q of maximal tori rigidified by the based root system

D0. This means that for every Q-scheme S, the set Ỹ (S) of all S-points of Ỹ

is the set of all sextuples(
T, X∗(T ), D, X∗(T ), D∨, ψ

)
,

where

• T is a maximal torus of G×SpecQS over S,

• (X∗(T ), D, X∗(T ), D∨) is a based root datum for (G×Spec(Q)S, T ), and

• ψ : T0×Spec(Q) S
∼−→ T is an isomorphism of tori over S which induces

an isomorphism

D0/S = (X0, D0, X
∨
0 , D

∨
0 )/S

∼−→ (X∗(T ), D, X∗(T ), D∨)

of based root data over S. In particular T is a split torus of G×SpecQS

over S.

Here X∗(T ) and X∗(T ) are regarded as sheaves of locally free Z-modules of

finite rank for the étale topology of S, while D and D∨ are their global sections

over S.

Some remarks are in order.

(a) The group G operates naturally on the left of Ỹ by conjugation.

(b) The choice of the maximal torus T0 and the base root datum D0 of

(G/Qa , T0/Qa) is of course harmless: two different choices of D0 give two Ỹ ’s

connected by an isomorphism compatible with the natural G-actions.
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(c) The maximal torus T0 and the base root datum D0 defines a “geometric

base point” ỹ0 ∈ Ỹ (Qa) in Ỹ corresponding to the sextuple (T0/Qa , X0, D0, X
∨
0 ,

D∨0 , IdT0/Qa ).

The quotient Y = Y (G) := G\Ỹ is a 0-dimensional scheme over Q. Let

y0 be the image of ỹ0 in Y (Qa). Let Y0 = Y0(G) be the connected component

of Y such that Y0(Qa) contains the geometric point y0 of Y . So Y0(G) is

isomorphic to the spectrum of a number field E(G), which is determined by G

up to nonunique isomorphisms. This number field E(G) is the analogue of the

Shimura reflex field in our present situation and can be described explicitly in

terms of the indexed root datum; our terminology here follows [27, p. 271].

We have a natural representation τ : Gal(Qa/Q) −→ Aut(D0) of the

Galois group as symmetries of the based root system D0 of (G,T ); see 15.5.2 on

pp. 265–266 of [27]. (When G is semi-simple, this is the natural action of the

Galois group Gal(Qa/Q) on the absolute Dynkin diagram of G.) As remarked

in [27, p. 271], a different choice of T0 leads to an isomorphic Galois action, up

to conjugation by an element of Aut(D0). For any element γ ∈ Gal(Qa/Q),

γ fixes the element y0 ∈ Y0(Qa) if and only if γ · ỹ0 lies in the G(Qa)-orbit

of ỹ0 ∈ Ỹ (Qa), which means according to the definition of the action of

τ : Gal(Qa/Q) −→ Aut(D0) that γ ∈ Ker(τ). In other words, E(G) is the

largest subfield of Qa fixed by Ker(τ). In particular E(G) is a finite Galois

extension field of Q, and it contains the splitting field of the Q-torus Z(G)0,

the neutral component of the center Z(G) of G. We will call E(G) the Weyl

reflex field of G.

Let Ỹ0 = Ỹ (G) be the inverse image of Y0 in Ỹ . It is easy to see that

the natural morphism Ỹ0 → Y0 is smooth and is a homogeneous space for the

G-action, as a sheaf for the flat topology. Similarly Ỹ is smooth over Y , and

G operates transitively on the fibers of Ỹ0 → Y0.

5.10. Let V ′ be the affine space over Q associated to Lie(G), and let

V = V (G) := Lie(G)reg ⊂ V ′ be the dense open subscheme of V consisting of

all regular elements; i.e., for every extension field F/Q, V (F ) is the subset of

V ′(F ) consisting of all regular elements in the Lie algebra Lie(G)⊗QF . Let

W = W (G) be the moduli space over Q such that for every Q-scheme S, W (S)

is the set of all septuples(
T, X∗(T ), D, X∗(T ), D∨, ψ, v

)
,

where
• (T, X∗(T ), D, X∗(T ), D∨, ψ) is an element of Ỹ0(S), and

• v ∈ Γ (S, Lie(T )⊗Q OS) = Lie(T ) ⊗Q Γ(S,OS) is a global section of

the sheaf of Lie algebras LieGS/S of the group scheme G×Spec(Q)S → S

such that every fiber vs of v is a regular element of the Lie algebra

Lie(G)⊗Q κ(s) for every point s ∈ S (i.e., ad(vs) has maximal rank in

the adjoint representation of Lie(G)).



ABELIAN VARIETIES ISOGENOUS TO A JACOBIAN 613

Notice that T = ZG(v) for each point (T, X∗(T ), D, X∗(T ), D∨, ψ, v) of W .

The group G operates naturally on the left of the scheme W = W (G) by

conjugation. We also have a natural right action of the absolute Weyl group

W (R0) of the root system (R0, X0, R
∨
0 , X

∨
0 ) underlying D0, by “changing the

marking,” that commutes with the left G-action on the scheme W . The defi-

nition of this right action of W (R0) on the scheme W is as follows. Suppose

that w is an element of the Weyl group W (R0) that induces an automorphism

w1 of the split torus T1 with cocharacter group X∨0 . Then w sends an S-point

(T, X∗(T ), D, X∗(T ), D∨, ψ, v) of the scheme W (G) to the point

(T, X∗(T ), D · w, X∗(T ), D∨ · w, ψ ◦ w1, v),

where the basis D·w and its dual D∨·w in the root system R(G,T ) are uniquely

determined so that the isomorphism ψ ◦ w1 : T1×Spec(Q)S
∼−→ T induces an

isomorphism

(X0, D0, X
∨
0 , D

∨
0 )/S

∼−→ (X∗(T ), D · w, X∗(T ), D∨ · w)

of based root data.

We have a commutative diagram

W
f //

π
��

V

β
��

Y0 can
// SpecQ,

where

• f is the finite étale morphism given by

f : (T, X∗(T ), D, X∗(T ), D∨, ψ, v) 7→ v,

• π is the morphism which sends a septuple

(T, X∗(T ), D, X∗(T ), D∨, ψ, v)

to the image in Y0 of the sextuple (T, X∗(T ), D, X∗(T ), D∨, ψ) in Ỹ0,

• β is the structural morphism for V ,

• can is the structural morphism for Y0.

Clearly the morphism f is G-equivariant. The above diagram factors as

W
g //

π

��

V ×SpecQ Y0
α //

β
��

V

α

��
Y0 =

// Y0 = SpecE(G)
can
// SpecQ,

where the right half is the fiber product of β with the morphism “can.”

Proposition 5.11. Notation and assumption as in 5.9–5.10.

(1) The scheme W is smooth over Y0, and all geometric fibers of π are irre-

ducible.
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(2) The right action of the Weyl group W(R0)on the scheme W makes W a right

W (R0)-torsor over VE(G). In other words g : W → V ×Spec(Q) Spec(E(G))

is a finite étale Galois cover with the Weyl group of (G/Qa , T0/Qa) as its

Galois group.

(3) Suppose we are given

– a finite extension field Ẽ of E(G),

– a finite subset Σ1 of places of Q including the infinite place and a

nonempty open subset U℘ ⊂ V (Q℘) for each ℘ ∈ Σ1.

There exists an element v ∈ V (Q) such that the following statements hold.

(a) The image of v in V (Q℘) is in U℘ for every ℘ ∈ Σ1.

(b) The inverse image f−1(v) of v in W , which is a torsor for W (R0) by

(1), is the spectrum of a finite extension field Kv/E(G) that is linearly

disjoint from Ẽ over E(G).

(c) The centralizer subgroup Tv := ZG(v) of v in G is a maximal Q-sub-

torus in G such that the action of the Galois group Gal(Qa/E(G)) on

the character group X∗(Tv) of Tv gives an isomorphism Gal(Kv/E(G))
∼−→W (G,Tv). In particular Tv is a Weyl subtorus of G.

Note that the Galois group Gal(Qa/E(G)) operates trivially on the char-

acter group of the Q-subtorus Z(G)0 ⊂ Tv.

Proof. In the present setup, the proof of 5.11 is essentially identical with

the proof of [7, Thm. 5.1], except that Deligne used the moduli space of triples

(T, s, v) where s : Gm → G is a one-parameter subgroup in G, and we used the

moduli space W = W (G) of septuples defined in 5.10.

We see that the statement that the fibers of π are geometrically irreducible,

the second part of (1), is a consequence of the following facts in Lie theory.

(i) Over C, every maximal torus in GC is conjugate to T0,C.

(ii) Over C, every point in V (C) is conjugate to a regular element V (C) ∩
Lie(T0)⊗C of the Lie algebra Lie(T0)⊗C, unique up to the action of

the Weyl group W (R0).

(iii) The Weyl group W (R0) operates freely on the set V (C) ∩ Lie(T0)⊗C
of all regular elements of Lie(T0)⊗C.

These facts also imply that the Weyl group W (R0) operates simply transitively

on each geometric fiber of g : W −→ V ×Spec(Q) Y0, and statement (2) follows.

The first part of (1), that W is smooth over Y0, follows from (2). Another

way to prove statement (1) is to consider the natural projection morphism

pr: W → Ỹ0, which is a smooth surjective affine morphism whose fibers are

schemes attached to the regular loci of the Lie algebra of maximal tori in G.

These properties of pr imply statement (1).

Statement (3) follows from the proof of Lemma 5.13 in [7]. One only has

to replace the Hilbert irreducibility statement quoted there by the version of
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Hilbert irreducibility with weak approximation in 2.14; see also [11, Lemma

3.4] or [10, Thm. 1.3]. �

Remark 5.12. Given a Shimura input datum (G,X), Proposition 5.11

gives an easy way to produce lots of Weyl special points. Choose a suitable

open subset U∞ ⊂ Lie(GR) to make sure that the (set of R-points of the) Weyl

torus ZG(v) is compact modulo the central subtorus Z(G)0, the neutral compo-

nent of the center Z(G) of G. Take a suitable R-homomorphism µ : S→ ZG(v)

such that the composition j ◦ µ of µ with the inclusion j : ZG(v) ↪→ G belongs

to the hermitian symmetric space X. Then the composition x0 := j◦µ : S→ G

is a Weyl special point. Notice that Proposition 5.11 allows us to specify that

the splitting field of the Weyl torus ZG(v) attached to the Weyl special point

x0 is linearly disjoint with any given finite extension field of the “generalized

reflex field” E(G), and it satisfies specified local conditions at all finite places

℘ ∈ Σ1 encoded by the open subsets U℘ ⊂ V (Qp).

Lemma 5.13 below is a generalization of 2.8; it plays a role in the explicit

description of Weyl subtori for classical groups.

Lemma 5.13. Let F be a finite extension field of Q, and let L be a finite

extension field of F , both contained in an algebraic closure Qa of Q. Let F̃ be

the normal closure of F/Q in Qa, and let L̃ be the normal closure of L/Q in

Qa. Let Φ := Homring(F,Qa), and let Ψ := Homring(L,Qa). Let π : Ψ→ Φ be

the natural surjection induced by “restriction to F .”

(a) There is a natural map from Gal(L̃/Q) ↪→ Perm(Ψ) to Gal(F̃ /Q) ↪→
Perm(Φ). In particular Gal(L̃/Q) is a subgroup of Perm(Ψ/Φ), where

Perm(Ψ/Φ) is the subgroup of Perm(Ψ) consisting of all permutations τ ∈
Perm(Ψ) such that there exists an element σ ∈ Perm(Φ) with π ◦τ = σ ◦π.

Moreover we have Gal(L̃/F̃ ) ↪→ PermΦ(Ψ), where PermΦ(Ψ) is the sub-

group of Perm(Ψ) consisting of all permutations τ ∈ Perm(Ψ) preserving

all fibers of π. In other words PermΦ(Ψ) = Ker(Perm(Ψ/Φ)→ Perm(Φ)).

(b) Suppose that L0/F is a subextension of L/F with [L : L0] = 2. Let Ψ0 :=

Homring(L0,Q), and let π1 : Ψ � Ψ0 and π0 : Ψ0 � Φ be the natural sur-

jections. Then we have a natural inclusion Gal(L̃/Q) ↪→ Perm(Ψ/Ψ0/Φ),

where Perm(Ψ/Ψ0/Φ) is the subgroup of Perm(Ψ) consisting of all ele-

ments τ ∈ Perm(Ψ) such that there exist elements τ0 ∈ Perm(Ψ0) and

σ ∈ Perm(Φ) satisfying π1 ◦ τ = τ0 ◦ π1 and π0 ◦ τ0 = σ ◦ π0. Moreover

Gal(L̃/F̃ ) ↪→ PermΦ(Ψ/Ψ0) := Ker (Perm(Ψ/Ψ0/Φ)→ Perm(Φ)) .

Remark 5.14. Suppose that [L : F ] = g in 5.13(a), then PermΦ(Ψ) ∼=
(Sg)

[F :Q]. Similarly if [L : F ] = 2n in 5.13(b), then

PermΦ(Ψ/Ψ0) ∼= ((Z/2Z)n o Sn)[F :Q] .
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Weyl tori in classical groups. In the rest of this section we illustrate

the definition of Weyl tori and provide explicit descriptions of Weyl tori in

semi-simple almost simple classical groups over Q except those of trialitarian

type D4. Here G being almost simple means that G is semi-simple and the

only positive dimensional closed normal subgroup of G over Q is G itself. It is

equivalent to saying that the adjoint group Gad attached to G is simple over Q.

Equivalently, the Lie algebra Lie(G) of G is simple, in the sense that the only

nontrivial Lie ideal of Lie(G) over Q is Lie(G) itself.

In view of 5.7(a), we have the freedom of modifying any connected Q-almost

simple group up to central Q-isogeny. In 5.15 to 5.18 is a list of connected al-

most simple classical groups over Q up to central isogeny. Weyl subtori are

given explicit descriptions in each case. Our reference is [18], especially Chap-

ter VI, Section 26. Every central isogeny class of almost simple groups over

Q, except those of trialitarian D4 type, appears in this list. The only overlaps

are in the low-rank cases, described in [18, Ch. IV §15]. We refer to [30], [27,

Ch. 17] and [18, Ch. VI §26] for proofs and further information.

Remark. Semi-simple almost simple groups of trialitarian type D4 are

related to twisted composition algebras of octonion type. Their indices are of

type 3D4 or 6D4 in the notation of [30, p. 58]. For more information we refer

to [27, §17.9], [18, Ch. VIII §36 and Ch. X §§42–44], and [28, Ch. 4].

5.15. Type An, n ≥ 1.
1An Let F be a finite extension field of Q, and let B be a central simple algebra

over F with dimF (B) = (n + 1)2. The linear algebraic group SLB over

F attached to B is a form of SLn+1 over F whose F -points consists of all

elements in B× with reduced norm 1. Take G to be ResF/Q SLB. Then G

is semi-simple and almost simple over Q of type An.

Every maximal Q-subtorus T in G comes from a unique maximal com-

mutative semi-simple subalgebra L ⊂ B with [L : F ] = n + 1 such that

T (Q) consists of all elements x ∈ L× with NmL/F (x) = 1. More precisely

T = ResF/Q
Ä
Ker
Ä
NmL/F : ResL/FGm −→ Gm/F

ää
, the Weil restriction of

scalar of the F -torus Ker
Ä
NmL/F : ResL/FGm −→ Gm/F

ä
. Equivalently

T = Ker
Ä
NmL/F : ResL/QGm −→ ResF/QGm

ä
.

A maximal torus T over Q attached to a maximal commutative semi-

simple subalgebra L in B as in the previous paragraph is a Weyl subtorus of

G if and only if L is a field and the Galois group Gal(L̃/F̃ ) is isomorphic to

S
[F :Q]
n+1 , the product of [F : Q]-copies of the symmetric group Sn+1. Here L̃

is the normal closure of L/Q and F̃ is the normal closure of F/Q. Note that

Gal(L̃/F̃ ) is naturally identified with a subgroup of PermΦ(Ψ) ∼= S
[F :Q]
n+1 by

5.13, where Φ = Hom(F,Qa) and Ψ = Hom(L,Qa). The Weyl group for
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(G,T ) is naturally isomorphic to PermΦ(Ψ). The Weyl reflex field E(G)

is F̃ .
2An Let F be a finite extension field of Q, E/F is a quadratic extension field of

F , and let B be a central simple algebra over E with dimK(B) = (n+ 1)2.

Write τ for an involution15 of B whose restriction to E is the generator of

Gal(E/F ). The group SU(B, τ) is an outer form of SLn+1 over F . Take

G to be ResF/Q SU(B, τ); it is semi-simple and almost simple over Q of

type An.

Every maximal Q-torus T in G comes from a maximal commutative

semi-simple E-subalgebra L ⊂ B with [L : E] = n+ 1 that is stable under

the involution τ , as follows. Denote by σ the automorphism of L induced

by τ , and let L0 := Lσ be the F -subalgebra of L consisting of all elements

of L fixed by τ . The maximal torus T is related to L by

T = Ker
Ä
(NmL/L0

,NmL/E) : ResL/QGm −→ ResL0/QGm × ResE/QGm

ä
.

In particular T (Q) is the subgroup of L× consisting of all elements x ∈ L×
such that

x · σ(x) = σ(x) · x = 1 and NmL/E(x) = 1.

A maximal Q-subtorus T ⊂ G as above is a Weyl subtorus if and only

if L is a field and the Galois group Gal(L̃/Ẽ) is isomorphic to the product

of [F : Q]-copies of the symmetric group Sn+1, i.e.,

Gal(L̃/Ẽ) ∼= S
[F :Q]
n+1 .

Here L̃ is the normal closure of L/Q and Ẽ is the normal closure of E/Q.

Notice that L = L0 ·E, the compositum of L0 with the quadratic extension

E/F , and L̃ is equal to the compositum of Ẽ with the normal closure M0

of L0/Q. We have

Gal(L̃/Ẽ) = Gal(M0 · Ẽ/Ẽ) ↪→ Gal(M0/F̃ )

↪→ PermΦ0(Hom(L0,Qa)) ∼= S
[F :Q]
n+1

by 5.13, where Φ0 = Hom(F,Qa). The Weyl group for (G,T ) is naturally

identified with PermΦ0(Hom(L0,Qa)). The condition for T ⊂ G to be a

Weyl subtorus is that both inclusions in the above displayed formula are

equalities. Equivalently, the condition means that

Gal(L̃/F̃ ) ∼= Gal(L̃/M0)×Gal(L̃/Ẽ)

∼= Gal(Ẽ/F̃ )×Gal(M0/F̃ ) ∼= Gal(Ẽ/F̃ )× S[F :Q]
n+1 .

The Weyl reflex field E(G) in the present 2An case is Ẽ.

15We have followed the terminology in [18], so τ(xy) = τ(y) · τ(x) for all x, y ∈ B and

τ ◦ τ = IdB . Both “involution” and “anti-involution” are used in the literature for such

anti-automorphism of rings.
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Proof. We will prove the 2An case; the proof of the 1An case is omitted

because it is similar but simpler. First we show that every maximal Q-subtorus

T of G comes from a commutative semi-simple E-subalgebra L free of rank

n + 1 over E. This statement is easy to see after base change from F to Qa;

therefore it follows from descent. It remains to verify the stated necessary and

sufficient condition for the maximal Q-subtorus T to be a Weyl subtorus.

Recall that the character group of ResL/QGm (resp. of ResL0/QGm, resp.

ResE/QGm) is

ZHomring(L,Qa) (resp. ZHomring(L0,Qa), resp. ZHomring(E,Qa))

with the action of Gal(Qa/Q) induced from the natural Galois action on

Ψ:=Homring(L,Qa), (resp. Ψ0 :=Homring(L0,Qa), resp. Φ:=Homring(E,Qa)).

So the character group of the Q-torus T is the quotient of ZΨ by the Z-sub-

module generated by
∑

α∈Ψ, α|L0
=α0

α

∣∣∣∣∣∣∣ α0 ∈ Ψ0

 ∪
 ∑
β∈Ψ, β|E=δ

β

∣∣∣∣∣∣ δ ∈ Φ

 .
It is clear that the action of Gal(Qa/Q) on the character group X∗(T ) of T

factors through the finite quotient Gal(L̃/Q) of Gal(Qa/Q). Moreover the

Gal(Qa/F̃ ) is the subgroup of Gal(L̃/Q) of Gal(L̃/Q) consisting of all ele-

ments of Gal(L̃/Q) that stabilize every Qa-simple factor of G. Let Φ0 :=
Homring(F,Qa). We have Ψ ∼= Ψ0 ×Φ0 Φ, the fiber product of Ψ and Φ over
Φ0. Moreover we have a commutative diagram

Gal(L̃/M0)×Gal(L̃/Ẽ) //

��

Gal(Ẽ/F̃ )×Gal(M0/F̃ )

��
Gal(L̃/F̃ )

44

PermΦ0
(Φ)× PermΦ0

(Ψ0)
' // (Z/2Z)[F :Q] × S[F :Q]

n+1 ,

where all arrows are natural injections. The Weyl group W (R(G,T )) is nat-

urally isomorphic to PermΦ0(Ψ0). The inverse image of {1} × PermΦ0(Ψ0) in

Gal(L̃/F̃ ) is Gal(L̃/Ẽ); it is the subgroup of Gal(L̃/F̃ ) consisting of all ele-

ments of Gal(L̃/F̃ ) (or of Gal(L̃/Q)) whose action on X∗(T ) is induced by

some element of the Weyl group W (R(G,T )) of (G,T ). The condition for T

to be a Weyl subtorus of G is equivalent to the condition that Gal(L̃/Ẽ) has

the same size as W (R(G,T )). The latter condition is clearly equivalent to

Gal(L̃/Ẽ)
∼−→ Gal(M0/F̃ )

∼−→ PermΦ0(Ψ0)
∼−→ S

[F :Q]
n+1 .

When these equivalent conditions hold, we have

Gal(L̃/M0)×Gal(L̃/Ẽ)
∼−→ Gal(L̃/F̃ )

∼−→ Gal(Ẽ/F̃ )×Gal(M0/F̃ ). �
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5.16. Type Bn, n ≥ 1. Let F to be a finite extension field of Q, let V be a

2n+ 1-dimensional vector space over F , and let q : V → F be a nondegenerate

quadratic form on V . Let SO(V, q) be the special orthogonal group over F

attached to the quadratic space (V, q). Take G to be ResF/Q SO(V, q). Then

G is semi-simple and almost simple over Q of type Bn.

Every maximal Q-torus T ⊂ G is related to a maximal commutative semi-

simple F -subalgebra L′ ⊂ EndF (V ) of the form L′ = L× F ′ such that

• dimF (L) = 2n;

• L is stable under the involution τ = τq for the quadratic space (V, q);

• L is free of rank 2 over L0, where L0 = {x ∈ L | τ(x) = x};
• F ′ is a one-dimensional subspace of EndF (V ) fixed by τ ;

• the image of any nonzero element of F ′ is a one-dimensional anisotropic

subspace V ′ of (V, q).

The Q-torus T attached to the commutative semi-simple subalgebra L′ ⊂
EndF (V ) above is

T = Ker
Ä
ResL/QGm → ResL0/QGm

ä
× {1}

⊂ ResL/QGm × ResF/QGm = ResL′/QGm.

In particular T (Q) = {x ∈ L× | x · σ(x) = 1}, where σ is the restriction to L

of the involution τ .

Such a maximal Q-torus T attached to a commutative semi-simple subal-

gebra L′ ⊂ EndF (V ) is a Weyl subtorus of G if and only if L is a field and the

Galois group Gal(L̃/F̃ ) is isomorphic to ((Z/2Z)n o Sn)[F :Q], where L̃ is the

normal closure of L/Q and F̃ is the normal closure of F/Q. This condition

means that the natural inclusion

Gal(L̃/F̃ ) ↪→ PermΦ(Ψ/Ψ0) ∼= ((Z/2Z)n o Sn)[F :Q]

is an equality, where Φ=Hom(F,Qa), Ψ=Hom(L,Qa), and Ψ0 =Hom(L0,Qa).

The Weyl reflex field E(G) is equal to F̃ .

5.17. Type Cn, n ≥ 1. Let F to be a finite extension field of Q, let B be

a central simple F -algebra with dimF (B) = 4n2, and let τ be a symplectic

involution of B inducing idF on F . The symplectic group Sp(B, τ) is a form

of Sp2n over F whose F -points consists of all elements x ∈ B× such that

x · τ(x) = τ(x) · x = 1. Here we have followed the notation in [18, Ch. VI §23]

so that

Sp(B, τ)(R) =
¶
b ∈ (B⊗FR)× | b · τR(b) = 1

©
for all commutative F -algebra R. Take G to be ResF/Q Sp(B, τ). Then G is

semi-simple and almost simple over Q of type Cn.

Every maximal Q-torus T is associated to a commutative semi-simple

F -subalgebra L ⊂ B with dimF (L) = 2n stable under the involution τ such
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that L is a L0-algebra free of rank two, where L0 = {x ∈ L | τ(x) = x}. The

maximal Q-torus T attached to L is

T = Ker
Ä
NmL/L0

: ResL/QGm −→ ResL0/QGm

ä
.

Let L̃ be the normal closure of L/Q and F̃ the normal closure of F/Q. For

a maximal Q-torus subtorus T ⊂ G as above to be a Weyl subtorus of G, it is

necessary and sufficient that Gal(L̃/F̃ ) is isomorphic to ((Z/2Z)n o Sn)[F :Q].

This condition means that the natural inclusion

Gal(L̃/F̃ ) ↪→ PermΦ(Ψ/Ψ0) ∼= ((Z/2Z)n o Sn)[F :Q]

is an equality, where Φ=Hom(F,Qa), Ψ=Hom(L,Qa), and Ψ0 =Hom(L0,Qa).

The Weyl reflex field E(G) is equal to F̃ .

5.18. Type Dn, n ≥ 2, nontrialitarian. Let F be a finite extension field

of Q, let B be a central simple F -algebra with dimF (B) = 4n2, and let τ be

an orthogonal involution on B that induces idF on the center F of B. The

orthogonal group O+(B, τ) attached to (B, τ) is semi-simple and absolutely

almost simple over F of nontrialitarian type Dn; it is the neutral component

of the F -group O+(B, τ) whose F -points consists of all elements x ∈ B× such

that x · τ(x) = τ(x) · x = 1. Take G to be ResF/QO+(B, τ). Then G is

semi-simple and almost simple over Q of type Dn.

Similar to the Cn case, every maximal Q-torus T is associated to a com-

mutative semi-simple F -subalgebra L ⊂ B with dimF (L) = 2n stable under

the orthogonal involution τ such that L is a free rank-2 algebra over L0, where

L0 = {x ∈ L | τ(x) = x}. The maximal Q-torus T attached to L is

T = Ker
Ä
NmL/L0

: ResL/QGm −→ ResL0/QGm

ä
.

If L is a field, denote by L̃ the normal closure of L/Q and let F̃ be

the normal closure of F/Q. We know from 5.13 that Gal(L̃/F̃ ) is a sub-

group of PermΦ(Ψ/Ψ0) ∼= ((Z/2Z)n o Sn)[F :Q], where Φ = Hom(F,Qa), Ψ0 =

Hom(L0,Qa), and Ψ = Hom(L,Qa).

A maximal Q-torus T ⊂G as above is a Weyl subtorus if and only if L is a

field and the Galois group Gal(M/F̃ ) contains the subgroup ((Z/2Z)n0oSn)[F :Q]

where (Z/2Z)n0 is the kernel of the “summing coordinates homomorphism” from

(Z/2Z)n to Z/2Z as in 2.9.

Remark. The index of O+(B, τ) is either of type 1Dn or 2Dn , depending

on whether the discriminant of (B, τ) is the trivial element of F×/F×
2
. See

[18, Ch. II §7] for the definition of the discriminant of an involution of the first

kind on a central simple algebra of even degree. We recall that the index of

a type Dn group over F is of type 1Dn (resp. 2Dn) in the notation of [30] if

and only if the Galois group Gal(Qa/F ) operates trivially (resp. nontrivially)

on the Dynkin diagram of type Dn (which is the absolute Dynkin diagram for
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O+(B, τ)). For a Weyl subtorus T in a type Dn group G as above, the Galois

group Gal(M/F̃ ) ↪→ ((Z/2Z)n o Sn)[F :Q] is equal to ((Z/2Z)n0 o Sn)[F :Q] if the

index of G is of type 1Dn. The Weyl reflex field E(G) is the normal closure

over Q of the field numberF
Ä»

disc(B, τ)
ä
; it is equal to F̃ in the 1Dn case.

6. Subgroups containing a Weyl subtorus and obstructions

6.1. The title of this section refers to a general phenomenon about Weyl

subtori: if G is a connected semi-simple algebraic group over Q and T is a

Weyl subtorus in G, then up to conjugation by Gad(Q) there are very few

closed Q-subgroups H of G that contain T . If G is almost Q-simple and is

part of a Shimura input datum, then H can only be T or G unless G is of type

Cn or Bn; see 6.3. In the cases when G is of type Cn or Bn, there is a collection

of semi-simple subgroups H, of type A1 or Dn respectively, that may contain

Weyl subtori of G; see 6.4 and 6.5 for the Cn case and 6.6 for the Bn case.

The question we need to address is this. Given a finite number of such

subgroups H1, . . . ,Hr, we want to produce a Weyl subtorus T in G such that

no Gad(Q)-conjugate of T is contained in any of the subgroups Hi’s. One way

to solve this question is to find a convenient invariant inv(Hi), attached to the

subgroups Hi’s, and use it as an obstruction in the following way. Construct

a Weyl subtorus T such that any subgroup H of G of the same type as the

subgroups Hi’s that contain a Gad(Q)-conjugate of T will have inv(H) different

from all the inv(Hi)’s. In the Cn case the invariant is a number field; we have

seen this in Section 3 whenG is a split symplectic group (see 6.8). The invariant

in the Bn case turns out to be a discriminant, an element of F×/F×2 for some

number field F ; see 6.9–6.12. The proof of Theorem 5.5, which uses these

obstructions, is in 6.13.

Lemma 6.2. Let R be an irreducible root system in a finite dimensional

Euclidean vector space.

(i) The orbit of the Weyl group W (R) of an element α ∈ R is the set of all

elements in R of the same length as α.

(ii) There is only one Weyl orbit in R if R is of type An (n ≥ 1), Dn (n ≥ 2),

E6, E7 or E8.

(iii) There are two Weyl orbits in R if R is of type Bn (n ≥ 2), Cn (n ≥ 2),

G2 or F4.

Proof. See [13, p. 40] for a proof of (i). Statements (ii) and (iii) follow

from (i) and the classification of irreducible root systems. �

Lemma 6.3. Let G be a connected semi-simple linear algebraic group over

Q that is almost simple over Q. Suppose that H is a nontrivial connected closed

Q-subgroup of G that contains a Weyl maximal torus T over Q but is not equal

to T . If G is of type An, Dn, E6, E7 or E8, then H = G.
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Proof. The T -roots of the subgroup H is a subset Φ(H,T ) of the set of all

roots R(G,T ) of (G,T ) that is stable under the natural action of Gal(Qa/Q),

hence is stable under the Weyl groupW (G,T ) of (G,T ). We know thatR(G,T )

decomposes into a disjoint union of root systems of the same type: R(G,T ) =

tri=1Ri, where all Ri’s have the same Dynkin diagram. Moreover the action of

Gal(Qa/Q) induces a transitive action on the set of all connected components

of R(G,T ) because G is almost simple over Q.

Since the Weyl group W (G,T ) is the product of the Weyl groups W (Ri)

of the irreducible components of R(G,T ), every subset of R(G,T ) stable under

W (G,T ) is the disjoint union of subsets of Ri stable underW (Ri). In particular

Φ(H,T ) = tri=1 Φi, where each Φi is a subset of Ri stable under the action of

W (Ri), hence each Φi is either empty or equal to Ri. Since Φ(H,T ) is stable

under Gal(Qa/Q) and Gal(Qa/Q) operates transitively on the set of connected

components of R(G,T ), we conclude that Φ(H,T ) is either empty or equal to

R(G,T ). The assumption that H 6= T means that Φ(H,T ) 6= ∅. It follows

that Φ(H,T ) = R(G,T ), therefore H = G. �

Remark. Lemma 6.3 leaves the cases when G is almost simple groups over

Q of type Bn (n ≥ 2), Cn (n ≥ 2), G2 or F4. Since factors of type G2, F4 or

E8 do not appear for hermitian symmetric spaces, we will not discuss the G2

or the F4 case here.

Lemma 6.4. Let G be a connected semi-simple simply connected algebraic

group over Q, which is almost Q-simple and of type Cn, n ≥ 2, as in 5.17.

In other words G = ResF/Q Sp(B, τ), where (B, τ) is a central simple algebra

over a number field F and τ is a symplectic involution of the first kind on B.

Suppose that H $ G is a positive dimensional closed subgroup of G over Q
that contains a Weyl Q-subtorus T of G. We know from 5.17 that T is at-

tached to a subfield L ⊂ B containing F and stable under the involution τ ,

with [L : F ] = 2n. Let L0 = {x ∈ L | τ(x) = x}. If H 6= T , then H is isomor-

phic to the Weil restriction of scalars ResL0/Q(H) of a connected semi-simple

simply connected almost L0-simple algebraic group H of type A1 over L0.

Proof. Recall that the roots in a split Sp2n in standard coordinates are

{±xi ± xj | 1 ≤ i < j ≤ n} ∪ {±2xi | 1 ≤ i ≤ n} .

There are two Weyl orbits, the set of all long roots 2xi’s and the set of all short

roots xi ± xj ’s. It is clear that each long root is the sum of two short roots;

for instance, 2x1 = (x1 + x2) + (x1 − x2).

Write the root system R(G,T ) as a disjoint union of connected compo-

nents: R(G,T ) = tri=1Ri, where each irreducible component Ri is an irre-

ducible root system of type Cn. The Galois group Gal(Qa/Q) operates on

R(G,T ), and the induced Gal(Qa/Q)-action on π0(R(G,T )) is transitive.
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The set of all T -roots Φ(H,T ) is a subset of R(G,T ) stable under the

action of Gal(Qa/Q). Standard Lie theory tells us that if the sum of two

elements α, β ∈ Φ(H,T ) belongs to R(G,T ), then α + β is an element of

Φ(H,T ); cf. the proof of 3.4.

Write Φ(H,T ) = tri=1 Φi with Φi ∈ Ri. Then each Φi is stable under the

action of the Weyl group W (Ri). So there are four possibilities for each subset

Φi ⊂ Ri: (1) ∅, (2) Ri, (3) all long roots in Ri, (4) all short roots in Ri. Since

Gal(Qa/Q) operates transitively on π0(R(G,T )), one of the four possibilities

for Φi must hold simultaneously for all i = 1, . . . , r. The property of Φ(H,T )

reviewed in the previous paragraph implies that case (4) does not happen. The

assumption that T $ H $ G implies that Φ(H,T ) is the set of all long roots

in R(G,T ). That means that H is of the form ResL0/QH as described in the

statement of 6.4. �

Corollary. 6.5. Notation as in 6.4. Let Gad be a connected semi-

simple adjoint Q-simple group of type Cn over Q, n ≥ 2. In other words Gad =

ResF/QG for a connected semi-simple absolutely simple group G of type Cn over

a finite extension field F of Q. Let F̃ be the normal closure of F/Q. Let T ad be

a Weyl Q-subtorus of Gad, so that the action of Gal(Qa/F̃ ) on X∗(T ad) gives a

surjection ρT ad,F̃ : Gal(Qa/F̃ ) � W (Gad, T ad). Suppose that T ad is contained

in a closed subgroup Had in Gad and T ad $ Had $ G. Then Had is isomorphic

to the Weil restriction of scalars ResL0/Q(Had) of a connected adjoint semi-

simple L0-simple algebraic group H of type A1 over a number field L0 such that

(i) L0 is isomorphic to a subfield of L̃, the finite Galois extension of F̃ ,

which is the the largest subfield of Qa fixed by the kernel of the Galois

representation

ρT ad,F̃ : Gal(Qa/F̃ ) � W (Gad, T ad).

(ii) L̃ is the normal closure over Q of a quadratic extension field L/L0, and

the Q-torus T ad is isogenous to Ker
Ä
ResL/QGm −→ ResL0/QGm

ä
.

(iii) [L0 : Q] = n · dim(Gad)
(2n+1)n = dim(Gad)

2n+1 .

Note that (2n + 1)n is the dimension of the symplectic group over C in

2n variables.

Proof. Let π : G→ Gad be the simply connected cover of Gad over Q. Let

T be the Weyl Q-subtorus of G such that π induces an isogeny π|T : T → T ad.

Let H be the connected closed Q-subgroup of G such that π induces a central

isogeny fromH toHad. We see from 6.4 thatH is of the formH = ResL0/Q(H),

where H is a connected simply connected almost L0-simple group of type A1.

So Had ∼= ResL0/Q(Had), where Had = H/Z(H) is the adjoint group over

L0 associated to H. Clearly L0 is a subfield of L̃ and [L0 : Q] = n · [F : Q]
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in the notation of 6.4. From G = ResF/Q Sp(B, τ), we see that dim(G) =

[F : Q] · (2n+ 1)n. So [L0 : Q] = n · dim(G)
(2n+1)n = dim(Gad)

2n+1 . �

Lemma 6.6. Let G be a connected semi-simple almost Q-simple group of

type Bn as described in 5.16. In other words G = ResF/Q SO(V, q), where (V, q)

is a nondegenerate quadratic space over F with dimF (V ) = 2n + 1 and F is

a finite extension field of Q. Suppose that H $ G is a positive dimensional

connected closed subgroup of G over Q that contains a Weyl Q-subtorus T of G

but is not equal to T . Let L′ = L×F ′ be the commutative semi-simple algebra

over F attached to T as in 5.16. In particular L is a field, [L : F ] = 2n,

T (Q) is naturally identified with a subgroup of L× ×{1} ⊂ (L×F ′)×, and the

subspace of V fixed by all elements of T (Q) is a one-dimensional anisotropic

subspace V ′ of V over F . Then H is equal to G = ResF/Q SO(V ′⊥, q|V ′⊥),

where V ′⊥ is the orthogonal complement to V ′ in V .

Proof. Recall that the roots in a split SO(2n+ 1) in standard coordinates

are

{±xi ± xj | 1 ≤ i < j ≤ n} ∪ {±xi | 1 ≤ i ≤ n} .

There are two Weyl orbits, the set of all long roots ±xi ± xj and the set of all

short roots ±xi. It is clear that each long root is a sum of two short roots; for

instance, x1 − x2 is the sum of x1 and −x2.

Write the root system R(G,T ) as a disjoint union of connected compo-

nents: R(G,T ) = tri=1Ri. We have a natural action of Gal(Qa/Q) on R(G,T )

that induces a transitive action on the set of all connected components of

R(G,T ).

The set of all T -roots Φ(H,T ) for H is a subset of R(G,T ) stable under the

natural action of Gal(Qa/Q), therefore also stable under the action of the Weyl

group W (G,T ). As in 6.3 and 6.4 we have Φ(H,T ) = tri=1Φi, where Φi is a

subset of Ri stable under the Weyl group W (Ri). We also know from standard

Lie theory that if α, β are two elements of Φ(H,T ) such that α+β ∈ R(G,T ),

then α+ β ∈ Φ(H,T ); cf. the proof of 3.4.

Elementary argument as in 6.3 shows that each Φi is either empty, or

equal to Ri, or equal to the set of all long roots in Ri, or equal to the set of

all short roots in Ri. Because each long root in Ri is a sum of two short roots,

if Φi contains all short roots of Ri, it must also contain all long roots of Ri.

Together with the fact that Gal(Qa/Q) operates transitively on π0(R(G,T )),

we see that there are only three possibilities for Φ(H,T ): ∅, R(G,T ), and the

set of all long roots in R(G,T ). The assumption that T $ H $ G rules out

the first two possibilities. The last possibility means exactly that H is a type

Dn subgroup as described in the statement of 6.6 �
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Lemma 6.7. For each i = 1, . . . , N , let Gi be a connected almost Q-simple

semi-simple algebraic group over Q not of type G2 or F4. Let G =
∏N
i=1Gi.

Let T be a Weyl Q-subtorus of G, so that T =
∏N
i=1 Ti, where Ti is a Weyl

Q-subtorus for each i. Let H be a connected reductive subgroup of G that

contains T .

(1) Suppose that Gi is a special orthogonal group of the form ResF/Q SO(V, q)

as in 6.6 for each i such that Gi is of type Bn with n ≥ 2, and suppose

that Gi is a symplectic group of the form ResF/Q Sp(B, τ) as in 6.4 for

each i such that Gi is of type Cn with n ≥ 2. Then H =
∏N
i=1Hi is a

product subgroup of G, where the factor Hi is a reductive Q-subgroup of

Gi for each i, and the following properties hold.

– If Gi is of type An, Dn, E6, E7 or E8, then Hi is equal to either Ti
or Gi

– If Gi is of type Bn with n ≥ 2, then Hi is equal to Ti or Gi, or is a

type Dn subgroup of the form ResF/Q SO(V ′⊥, q|V ′⊥) as in 6.6.

– If Gi is of type Cn with n ≥ 2, then Hi is equal to Ti or Gi, or is a

type A1 subgroup of the form ResL0/Q(H) as in 6.4.

(2) Suppose that Gi has the form Gi = ResF/Q(PGO+(V, q)) as in 6.6 for

each factor Gi of type Bn with n ≥ 2. Suppose that and Gi is of the form

Gi = ResF/QPGSp(B, τ), where (B, τ) is as in 6.416 for each i such that

Gi is of type Cn with n ≥ 2. Then H =
∏N
i=1Hi is a product subgroup

of G, where Hi is a reductive Q-subgroup of Gi for each i such that the

following properties hold.

– If Gi is of type An, Dn, E6, E7 or E8, then Hi is equal to either Ti
or Gi

– If Gi is of type Bn with n ≥ 2, then Hi is equal to Ti or Gi, or is

a type Dn subgroup of the form ResF/Q PGO+(V ′⊥, q|V ′⊥) with the

notation in 6.6.

– If Gi is of type Cn with n ≥ 2, then Hi is equal to Ti or Gi, or is a

type A1 subgroup of Gi of the form ResL0/Q(Had), where Had is the

adjoint group of the group H in 6.4.

Proof. This is a consequence of 6.3, 6.4, 6.5, and 6.6. �

In 6.8 and 6.12, we show how to construct a Q-Weyl subtorus T in a semi-

simple almost Q-simple group G that is not Gad(Q)-conjugate to a subgroup

in any of a given finite family {Hj} of proper subgroups of G. We begin

with the Cn-case similar to the proof of Theorem 3.1, where the obstruction

comes from the action of Gal(Qa/Q) on the set of geometrically connected

16We refer to [18, Ch. VI §23] for the definition and general properties of the groups

PGO+(V, q) and PGSp(B, τ).
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components πgeom
0 (Hj) of the subgroups Hj . The Bn case is treated in 6.12,

where each of the subgroups Hj is of type Dn and we use the discriminant

class of quadratic forms as an obstruction.

Lemma 6.8. Let Gad be a connected semi-simple adjoint group over Q that

is Q-simple and of type Cn, n ≥ 2. Let {Hj | j = 1, . . . , s} be a finite family

of connected closed Q-subgroups of Gad. Suppose that for each j = 1, . . . , s,

there is a number field L0,j and a connected semi-simple group H1,j over L0,j

satisfying the following properties.

(i) H1,j is adjoint and L0,j-simple of type A1 for all j = 1, . . . , r.

(ii) [L0,j : Q] = dim(Gad)
2n+1 for all j = 1, . . . , r.

(iii) Hj is isomorphic to ResL0,j (H1,j) for all j = 1, . . . , s.

Let F̃ be the normal closure over Q of the number field F . Let Ẽ be the

smallest finite Galois extension of Q that contains the number fields L0,j for

all j = 1, . . . , s. Let U∞ be a nonempty open subset of the set (Lie(Gad)⊗QR)reg

of all regular elements in (Lie(Gad)⊗QR). Suppose that v is a regular element

of Lie(Gad) with the following properties.

(a) The image of v in Lie(Gad)⊗QR lies in the open subset U∞.

(b) The schematic inverse image f−1(v) of v in the scheme W under

the morphism f : W → V in 5.11 is isomorphic to the spectrum of

a field Kv .

(c) The field Kv in (b) and the compositum Ẽ·F̃ of the fields Ẽ and F̃ are

linearly independent over F̃ .

Then the centralizer subgroup of v in Gad is a Weyl Q-subtorus T ad of Gad,

and T ad is not contained in any Gad(Q)-conjugate of Hj for any j = 1, . . . , s.

Note that the existence of a regular element of Lie(Gad) satisfying conditions

(a), (b), and (c) follows from 5.11.

Proof. We keep the notation in 6.4 and 6.5, so the simply connected cover

G of Gad is of the form G = ResF/Q Sp(B, τ), where (B, τ) is a central simple

algebra over a number field F and τ is a symplectic involution of the first kind

on B. Note that F̃ is equal to the Weyl reflex field E(Gad).

Let T ad = Tv be the centralizer subgroup of v in Gad; it is a maximal

Q-torus because v is regular. Assumption (b) implies that the natural Galois

representation ρT ad,F̃ : Gal(Qa/F̃ )
∼−→ W (Gad, T ad) is a surjective group ho-

momorphism whose kernel is Gal(Qa/Kv). So T ad is a Weyl Q-subtorus in

Gad. Assumption (c) implies that none of the fields L0,j can be embedded in

Kv. So the Weyl Q-subtorus T ad is not contained in any Gad(Q)-conjugate of

Hj by 6.5. �
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6.9. Suppose that(V,q) is a nondegenerate quadratic form over Q,dimF (V )

is odd, and dimF (V ) ≥ 3.17 Let G := SO(V, q), G := ResF/Q(G), Gad =

PGO+(V, q) be the adjoint group of G, and let Gad = ResF/Q(Gad) be the

adjoint group of G.

We know that every maximal Q-torus T of G has the form T = ResF/Q(T),

where T is a maximal F -torus of G. Moreover for every maximal F -torus T of G,

the F -subspace V ′ = V T of V consisting of all elements of V fixed by T is a one-

dimensional F -vector subspace of V that is anisotropic for the quadratic form

q. Let V ′⊥ be the orthogonal complement of V ′⊥ with respect to q. An easy

calculation shows that the discriminant of the quadratic space (V ′⊥, q|V ′⊥), as

an invariant of the maximal F -torus S, does not change under conjugation by

elements of GO(V, q)(F ); see 6.10. Since Gad is naturally isomorphic to the

neutral component of PGO(V, q), the above invariant does not change under

conjugation by elements of Gad(F ).

Suppose that the maximal Q-subtorus T ⊂ G comes from a commutative

semi-simple subalgebra L′ = L × F ′ ⊂ EndF (V ) as in 5.16 and L is a field.

Recall that L is stable under the involution τ = τq on EndF (V ) attached to

the quadratic form q, dimF (F ′) = 1, the image of any nonzero element of

F ′ is the one-dimensional anisotropic subspace V ′ ⊂ V , and T (Q) = T(F ) is

isomorphic to {x ∈ L× | x·τ(x) = 1 }. In 6.11 we show that the discriminant of

(V ′⊥, q|V ′⊥) can be easily “read off” from the field extensions L/L0/F , where

L0 is the subfield of L consisting of all elements of L fixed by the involution σ.

This fact will not be needed in the rest of this article.

Lemma 6.10. Notation as in 6.9. Suppose that γ∈GLF (V ) is an F -linear

automorphism of V and c is an element of F× such that

q(γ(v)) = c · q(v) for all v ∈ V.

Let u ∈ V ′ be a nonzero element of V ′. Then c = q(γ(u)) · q(u)−1 ∈ F×2 and

disc(γ(V ′)
⊥
, q|γ(V ′)⊥) = disc(V ′

⊥
, q|V ′⊥) ∈ F×/F×2.

Proof. The assumption on γ implies that disc(V, q) = cdimF (V ) disc(V, q).

We know that dimF (V ) is odd, so c ∈ F×2. It follows that

disc(γ(V ′)
⊥
, q|γ(V ′)⊥) = cdimF (V )−1 · disc(V ′

⊥
, q|V ′⊥)

= disc(V ′
⊥
, q|V ′⊥) ∈ F×/F×2. �

Remark 6.11. Notation as in the last paragraph of 6.9; see also 5.16. Let

L0 be the subfield of the field L fixed by the involution σ of L induced by τ .

17We will use 6.10–6.12 only when dimF (V ) ≥ 7, corresponding to Dynkin diagrams of

type Bn with n ≥ 3.
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Write L = L0(
√
D) with D ∈ L0. Then the discriminant class of the quadratic

space (V ′⊥, q|V ′⊥) over F is the element NmL0/F (D) · F× 2 in F×/F× 2.

Proof. We follow the sign convention for the discriminant in [18, 7A. p. 80],

where the discriminant disc(U, f) of a nonsingular quadratic space (U, f) over

a field k with char(k) 6= 2 as follows. Let b : U × U → k be the symmetric

bilinear form attached to f , given by b(x, y) := f(x + y) − f(x) − f(y). Let

(u1, . . . , um) be an arbitrary k-basis of U . Then

disc(U, f) = (−1)m(m−1)/2 det (b(ui, uj))1≤i,j≤m ∈ k×/k× 2.

According to [18, Prop. 7.3 (3)], when m = 2n is even, the discrimi-

nant disc(U, f) of the quadratic space (U, f) coincides with the discriminant

disc(EndF (U), τf ) ∈ k×/k× 2 of the central simple algebra with involution

(EndF (U), τf ), where disc(EndF (U), τf ) is defined as

disc(EndF (U), τf ) = (−1)n NrdEndF (U)/F (a) ∈ k×/k× 2

for any element a ∈ EndF (U)× satisfying τf (a) = −a.

Applying the above to (U, f) = (V ′⊥, q|V ′⊥) and the skew-symmetric ele-

ment √
D ∈ L× ⊂ EndF (U ′

⊥
)×,

we see that the discriminant class of (V ′⊥, q|V ′⊥) is represented by the element

(−1)nNrdEnd(V ′⊥)/F (
√
D) = (−1)n NmL/F (

√
D)

= (−1)n NmL0/F (−D) = NmL0/F (D)

in F×. �

Let G be a semi-simple Q-simple adjoint algebraic group over Q of type

Bn, n ≥ 2. In other words there exists a nondegenerate quadratic space (V, q)

of dimension 2n+1 over a number field F such that G = ResF/Q(PGO+(V, q)).

Write G := SO(V, q), and let G̃ := ResF/Q(G). Denote by Lie(G)reg the

affine Q-scheme such that Lie(G)reg(E) is the set of all regular elements of

Lie(G)⊗QE for every extension field E/Q. Similarly, denote by Lie(G)reg the

affine F -scheme such that Lie(G)reg(E) is the set of all regular elements of

Lie(G)⊗F E for every extension field E/F . Note that we have a natural iso-

morphism Lie(G)reg(Q) ∼= Lie(G)reg(F ).

Proposition 6.12. Notation as above. Let V ′1 , . . . , V
′
r be one-dimensional

anisotropic subspaces of V over F . For each i = 1, . . . , r, let

Hi = ResF/Q PGO+(V ′⊥i , q|V ′⊥i )

be a standardly embedded adjoint Q-simple subgroup of G of type Dn. Let

℘1, . . . , ℘r be r distinct finite places of F . There exist nonempty open subsets

U℘i ⊂ Lie(G)reg(F℘i) for i = 1, . . . , r satisfying the following condition.
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Suppose that v ∈ Lie(G)reg(Q) = Lie(G)reg(F ) is a regular el-

ement of the Lie algebra of G such that the image of v in

Lie(G)reg(F℘i) lies in the open subset U℘i ⊂ Lie(G)(F℘i) for

every i = 1, . . . , r and the centralizer subgroup ZG(v) of v in G

is a maximal Q-subtorus Tv in G. Then no G(Q)-conjugate of

Tv is contained in the subgroup Hi for any i = 1, . . . , r.

Note that the existence of an element v ∈ Lie(G)reg(Q) such that image of v

in Lie(G)reg(F℘i) lies in U℘i for all i = 1, . . . , r and ZG(v) is a Weyl subtorus

of G follows from 5.11.

Proof. Pick generators vi of the one-dimensional subspace V ′i for i =

1, . . . , r. Let

ai := q(vi) · F× 2 ∈ F×/F× 2.

Then we have

disc(V ′⊥i , q|V ′⊥i ) = ai · disc(V, q) ∈ F×/F× 2.

It is well known that every nondegenerate quadratic form in at least

five variables over a p-adic local field is isotropic; see [20, 63:22], [25, Ch. 6,

Thm. 4.2]. Therefore for every i = 1, . . . , r, every element of F×℘i
is the norm of

some element of V⊗FF℘i under the quadratic form q. Let ui be an anisotropic

element of V ⊗F F℘i such that q(ui) 6≡ q(vi) (mod F×2
℘i

).

For each i = 1, . . . , r, let Ti be a maximal F℘i-subtorus of

SO
Ä
(F℘iui)

⊥, q|(F℘iui)
⊥

ä
.

Then Ti is a maximal F℘i-subtorus of G×Spec(F )Spec(F℘i) that fixes ui, because

the rank of SO
Ä
(F℘iui)

⊥, q|(F℘iui)
⊥

ä
is equal to (dimF (V )− 1)/2, which is the

same as the rank of SO(V, q). Pick a nonzero regular element vi ∈ Lie(Ti)(F℘i)

for each i = 1, . . . , s. Let U℘i be a sufficiently small neighborhood of vi in

Lie(G)reg(F℘i) such that the one-dimensional subspace of V⊗FF℘i fixed by the

centralizer ZG(w) of any element w ∈ U℘i is generated by an element uw with

q(uw) ≡ q(ui) (mod F×2
℘i

).

Such an open subset U℘i exists because the above congruence is an open con-

dition on w ∈ Lie(G)reg(F℘i).

For i = 1, . . . , r, let H̃i be the inverse image of Hi in G̃. Suppose that v

is an element of Lie(G)reg(Q) = Lie(G)reg(F ) as in the statement of 6.12. In

other words the image of v in Lie(G)reg(F℘i) lies the open subset U℘i for every

i = 1, . . . , r and the centralizer subgroup ZG(v) of v is a maximal Q-subtorus

T̃v in G̃. Then the one-dimensional subspace of V fixed by T̃v is generated by

an element u such that

q(u) ≡ q(ui) 6≡ q(vi) (mod F×2
℘i

) ∀ i = 1, . . . , r.
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We know that any Gad(F )-conjugate of H̃i fixes a one-dimensional F -linear

subspace Ṽi of V , and any generator ṽi of Ṽi satisfies q(ṽi) ∼= q(vi) (mod F×2)

by Lemma 6.10. We conclude that the maximal Q-torus T̃v is not contained in

any Gad(F )-conjugate of H̃i for any i = 1, . . . , r, because otherwise we would

have q(u) ≡ q(vi) (mod F×2), a contradiction. Note that the image Tv of T̃v in

G is the centralizer subgroup ZG(v) of v in G, and the above conclusion means

that Tv is not contained in any G(Q)-conjugate of Hi for any i = 1, . . . , r. �

6.13. Proof of Theorem 5.5.

Step 1. Let S = KMC(G,X), where (G,X) is a Shimura input datum

as in [8, 2.1.1] and K is a compact open subgroup of the group of finite adelic

points G(Af ) of G. Let Gad := G/Z(G). Then Gad decomposes into a product

Gad ∼=
∏N
i=1 Gi, where each Gi is a connected semi-simple adjoint Q-simple

group over Q. Choose a compact open subgroup K ′ ⊆ K ⊂ G(Af ) and

compact open subgroups Ki ∈ Gi(Af ), such that K ′ is contained in the inverse

image of
∏N
i=1 Ki under the natural surjective homomorphism α : G�

∏N
i=1Gi

and the arithmetic subgroup Gad∩∏N
i=1 Ki of Gad(Q) is torsion free. For each

i = 1, . . . , N , let Xi be the Gad(R)-conjugacy class of R-homomorphisms S→
Gi,R induced by the composition of the R conjugacy class of R-homomorphisms

S → GR in X with the base change to R of the Q-homomorphism G → Gi.

Then we have a morphism (G,X) −→ ∏N
i=1 (Gi, Xi) between Shimura input

data. It is clear that the statement for the Shimura variety S in 5.5 follow

from the statement for the Shimura variety

(
∏

i
Ki)MC(G1 × · · · ×GN , X1 × · · · ×XN ) =

N∏
i=1

KiMC(Gi, Xi).

So we may and do assume that G =
∏N
i=1Gi and each factor Gi of G is adjoint

and Q-simple.

After re-indexing, we may assume that among the irreducible Shimura

subvarieties S1, . . . , Sm of S, the first n subvarieties S1, . . . , Sn are weak product

Shimura subvarieties of
∏N
i=1 KiMC(Gi, Xi)’s, in the sense that for each a =

1, . . . , n, the subvariety Sa of S is a Hecke translate of a the Shimura subvariety

attached to a Shimura input datum of the form

(Ha,1, Ya,1)× · · · × (Ha,N , Ya,N ) $ (G1, X1)× · · · × (GN , XN ),

where each factor (Ha,i, Ya,i) is a Shimura input subdatum of (Gi, Xi) for all

i = 1, . . . , N . The rest of the subvarieties Sa+1, . . . , SN are assumed not to

be weak product Shimura subvarieties. The assumption that Si $ S for all

i = 1, . . . ,m implies that for each a = 1, . . . , n, there exists ia with 1 ≤ ia ≤ N
such that Ha,ia $ Gia .

Step 2. Skip step 2 and go to step 3 if n = 0. Assume that n ≥ 1 in the

rest of step 2.
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Pick n distinct prime numbers p1, . . . , pn. For each a = 1, . . . , n, exactly

one of the four case below happens, and we assign

• a finite extension field Ea of Q, and

• a nonempty open subset Ua ⊂ Lie(G)reg(Qpa) of the set of all regular

elements of the Lie algebra Lie(G)⊗QQpa that is stable under conjugation

by G(Qpa)

for each a ∈ {1, . . . , n} according to the following scheme, depending on which

of the four cases occurs for the subgroup Ha,1× · · · ×Ha,N $ G1× · · · ×GN .

1. There exists an index ia with 1 ≤ ia ≤ N such that Ha,ia is a torus.

Let ρHa,ia
: Gal(Qa/Q)→ GLZ(X∗(Ha,ia)) be the natural Galois repre-

sentation on the character group of the Q-torus Ha,i. We take Ea to be

the fixed subfield in Qa of Ker
Ä
ρHa,ia

ä
, and set Ua = (Lie(G)⊗QQpa)reg in

case 1.

2. None of the Ha,i’s is a torus, but there exists an index ia with 1 ≤ ia ≤ N
such that Gia is neither of type C` nor of type B` for any integer ` ≥ 2,

and Ha,ia $ Gia .

We take Ea = Q and Ua = (Lie(G)⊗QQpa)reg in case 2.

3. None of the factor subgroups Ha,i is a torus, Gi is of type C` for some

` ≥ 1 or B` for some ` ≥ 3 for every i such that Ha,i $ Gi,
18 and there

exists an index i0 with 1 ≤ i0 ≤ N such that Ha,ia $ Gia and the factor

Gi0 is of type C` for some integer ` ≥ 2. Choose such an index i0 and call

it ia.

Subcase 3A. The group Had
a,ia is of the form Had

a,ia = ResL0/Q(H) as in

6.4 and 6.5, where L0 is a number field and H is an adjoint simple group

of type A1 over L0

We take Ea to be the normal closure of L0 in Qa and again set Ua =

(Lie(G)⊗QQpa)reg in subcase 3A.

Subcase 3B. The group Had
a,ia is not of the form described in 3A.

We take Ea = Q and Ua = (Lie(G)⊗QQpa)reg in subcase 3B.

4. None of the factor subgroups Ha,i is a torus, Gi is of type B` for some

integer ` ≥ 3 for every index i such that Ha,i $ Gi.

In case 4 there exists an index ia with 1 ≤ ia ≤ N such that Ha,ia $ Gia ,

and Gia is of type B`a for some `a ≥ 2. We know that there is a quadratic

space (V, q) over a number field F such that Gia = ResF/QPGO+(V, q).

Write G := SO(V, q).

Subcase 4A. There exists a one-dimensional anisotropic F -linear sub-

space V ′ ⊂ V such that Ha,ia = ResF/QPGO+
Ä
V ′⊥, q|V ′⊥

ä
.

18The Dynkin diagrams C2 and B2 are the same.
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Let ℘1 be a place of the number field F above pa. Apply 6.12 with

r = 1 to the present situation with V ′1 = V ′. Let U℘1 be an open subset of

Lie(G)reg(F℘1) satisfying the condition specified in 6.12. Let {℘1, . . . , ℘d}
be the set of all places of F above p. Let U ′℘1

be the union of all Gad(F℘1)-

conjugates of U℘1 .

We set Ea = Q and take Ua to be the product

Ua = U ′℘1
× Lie(G)reg(F℘2)× · · · × Lie(G)reg(F℘d

)

⊂ Lie(G)reg(F℘1)× Lie(G)reg(F℘2)× · · · × Lie(G)reg(F℘d
)

= Lie(G)reg(Qpa)

in subcase 4A.

Subcase 4B. The subgroup Ha,ia of Gia is not of the form described in

case 4A.

We take Ea = Q and Ua = (Lie(G)⊗QQpa)reg in subcase 4B.

Step 3. Let U∞ be a nonempty open subset of Lie(G)reg(R) such that the

centralizer in G×Spec(Q)Spec(R) of any element v∞ ∈ U∞ is a compact maximal

subtorus in G×Spec(Q)Spec(R). Denote by Ẽ the smallest Galois extension of

Q that contains the number fields E1, . . . , En and also the number field E(G)

attached to G in the notation of 5.9 – 5.11.

By Proposition 5.11, there exists a regular element v ∈ Lie(G)reg(Q) such

that the following statements hold.

• The image of v in Lie(G)reg(R) lies in the open subset U∞⊂Lie(G)reg(R).

• The image of v in Lie(G)reg(Qpa) lies in the open subset Ua⊂Lie(G)reg(Qpa)

for every a = 1, . . . , n.

• The centralizer subgroup ZG(v) of v in G is a Weyl Q-subtorus of G.

• In the notation of Proposition 5.11, the scheme-theoretic inverse image of

v in the scheme W is isomorphic to the spectrum of a number field Kv

that is linearly disjoint with Ẽ over E(G).

Let µ : S→ ZG(v)R be an R-homomorphism such that the composition of

µ with the base change to R of the inclusion map ZG(v) ↪→ G is an element x0

of the hermitian symmetric space X := X1 × · · · ×XN . Recall that X is the

G(R)-conjugacy class of the R-homomorphism x0 : S → GR and may not be

connected. But we can change x0 to a suitable G(Q)-conjugate of x0 to ensure

that the new x0 lies in a given connected component of X1 × · · · ×XN .

The image y in S of the point (x0, 1) ∈ X×G(Af ) is a Weyl special point

of S by construction. By Lemma 6.7, the Hecke orbit H(y) of y does not meet

Sn+1 ∪ · · · ∪ Sm. We have chosen the number field Ẽ to ensure that H(y) is

disjoint from Sa for any a between 1 and n such that cases 1, 2 or 3 occur for

Sa; this is a consequence of 6.7 and 6.8. Similarly we see from 6.7 and 6.12
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that the Hecke orbit H(y) of y is disjoint from any Sa, with 1 ≤ a ≤ n, such

that case 4 occurs for Sa. We have proved that the Hecke orbit H(y) is disjoint

from the special subset S1 ∪ · · · ∪ Sm. �
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192. MR 1085259. Zbl 0732.14014.

[15] J. de Jong and S.-W. Zhang, Generic abelian varieties with real multiplication

are not Jacobians, in Diophantine Geometry (U. Zannier, ed.), CRM Series 4,

Scoula Normale Pisa, 2007, pp. 165–172. MR 2349653. Zbl 1138.14027.

[16] N. M. Katz, Slope filtration of F -crystals, in Journées de Géométrie Algébrique
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