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Finiteness of central configurations
of five bodies in the plane

By Alain Albouy and Vadim Kaloshin

Abstract

We prove there are finitely many isometry classes of planar central con-

figurations (also called relative equilibria) in the Newtonian 5-body prob-

lem, except perhaps if the 5-tuple of positive masses belongs to a given

codimension 2 subvariety of the mass space.

1. Introduction and statements

Let (xk, yk) ∈ R2, k = 1, . . . , n, be the positions of n points in the plane R2.

We call these points the bodies. Body k has a mass mk > 0. We will study

the systemÇ
x1
y1

å
= m2r

−3
12

Ç
x21
y21

å
+m3r

−3
13

Ç
x31
y31

å
+ · · ·+mnr

−3
1n

Ç
xn1
yn1

å
(1) Ç

x2
y2

å
= m1r

−3
12

Ç
x12
y12

å
+m3r

−3
23

Ç
x32
y32

å
+ · · ·+mnr

−3
2n

Ç
xn2
yn2

å
· · ·Ç

xn
yn

å
= m1r

−3
1n

Ç
x1n
y1n

å
+ · · ·+mn−1r

−3
(n−1)n

Ç
x(n−1)n
y(n−1)n

å
,

where xkl = xl − xk, ykl = yl − yk and rkl =
Ä
x2kl + y2kl

ä1/2
> 0. Some short

notation will be useful. We call fk ∈ R2, k = 1, . . . , n, the right-hand sides of

the equations. System (1) is

(2) qk = fk, k = 1, . . . , n, with qk =

Ç
xk
yk

å
∈ R2.

Let us recall the meaning of this system. Newton’s equations of the n-body

problem are the 3-dimensional version of q̈k = −fk, k = 1, . . . , n. Newton’s

equations possess few “simple” solutions if n ≥ 3. They are called homo-

graphic or self-similar solutions. In these solutions the configuration remains

in the same similarity class, and each of the n bodies behaves as a body in

a 2-body problem. Laplace [16], [17] remarked that if there is a λ > 0 such
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that λqk = fk for all k, k = 1, . . . , n, and if the configuration is planar, one

may choose velocities such that the motion is self-similar. Wintner [33] called

central configuration a configuration, planar or not, satisfying Laplace’s con-

dition. If the motion is self-similar, the configuration is central. If the central

configuration is 3-dimensional, the motion is homothetic and leads to or comes

from a total collapse. Extending a result by Sundman, Chazy [5] claimed that

if the motion leads to or comes from a total collapse, there is an asymptotic

configuration which is central. So he called “figure-limite” what Wintner would

call a central configuration. Chazy derived his claim, which is also discussed

in [33, §365], from a postulate. The question we consider in the present work

has its source in these discussions, as we will see in the history part.

By re-scaling a central configuration we obtain another one with a differ-

ent λ. There is always a re-scaling factor making λ = 1, i.e., giving a central

configuration solution of (1).

System (1) is, for any angle θ, invariant by the transformation (xk, yk) 7→
(xk cos θ + yk sin θ,−xk sin θ + yk cos θ). We remove this rotation freedom by

adding the condition y12 = 0.

Definition 1. A positive normalized central configuration of the planar

n-body problem is a solution of (1) satisfying y12 = 0.

The word “positive” is for “real positive.” It refers to the reality hypoth-

esis and to the hypothesis rkl > 0. The word is omitted in a real context.

But we will study complex central configurations and establish in Sections 6

and 9 strong statements about their finiteness. We state here the conclusions

concerning the real domain.

Theorem 1 (Hampton, Moeckel). Let n = 4. For any choice of positive

masses m1, . . . ,m4, there are finitely many positive normalized central config-

urations.

In contrast to the original proof by Hampton and Moeckel [13], our proof

of Theorem 1 does not require any difficult computation. In both proofs one

follows a continuum of central configurations in the complex domain until it

reaches a singularity. Our analysis of the singularities is different.

The previous methods could not even specify a 5-tuple of positive masses

such that the normalized planar central configurations (also called relative

equilibria) of the 5-body problem are finitely many. Developing our analysis

we prove the following theorem.

Theorem 2. For any choice of masses (m1, . . . ,m5) ∈ (R+
0 )5 \ A, where

R+
0 is the set of positive real numbers and A is a closed algebraic subset of codi-

mension 2, there are finitely many positive normalized central configurations

of the planar 5-body problem.
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To give the polynomials defining each component of A and to conclude the

proof, we compute and factorize resultants of polynomial systems with integer

coefficients. We use a standard computer algebra system.

Once the finiteness is proved, an explicit upper bound on the number of

central configurations is obtained by direct application of a Bézout theorem.

We embed system (1) into the polynomial system (4). The number of isolated

solutions is bounded by product of the degrees of the equations. There are

actually nonisolated solutions at infinity, but the version of Bézout theorem

given in Example 8.4.6 in [10] applies. However, the bound is so bad that we

avoid writing it explicitly.

History of the problem. The equations for the 3-body central configura-

tions were motivated, stated and solved by Euler [9], [7], [8], assuming that the

three bodies are collinear, by Lagrange [15] without this assumption. Laplace

[16], [17] motivated and stated the equations for the central configurations of

n ≥ 4 bodies, but did not solve them.

In a quite famous paper published in December 1918,1 Chazy postulated

that for any choice of positive masses, all the central configurations are nonde-

generate critical points of the function U + λI/2 restricted to the normalized

configurations. (See (6) and (7) for the definition of these functions.)

Then, he noticed that this postulate would imply that the number of

normalized central configurations is always finite and does not vary with the

masses:

“Ce postulat admis, il résulte en particulier qu’à tous les chocs

possibles de n corps correspondent un nombre fini de figures-

limites de formes distinctes, et chacune de ces formes distinctes

ne dépend que des rapports des masses.”

The postulate and the second conclusion are wrong. In 1975, Palmore

[25] gave a simple example of a degenerate central configuration, an equilateral

triangle of bodies with unit mass and a fourth body with mass (64
√

3+81)/249

at the center of the triangle. Simó [28] showed how the number of 4-body

central configurations with a given body in the interior of the triangle formed

by the other bodies varies when the four masses vary. Xia [34] proved that in

the n-body problem, the relative equilibria may be counted exactly for several

1[5] was published a few weeks after the end of first world war. Here is an indirect testimony

of the glorious participation of Chazy to this war, by Jean Guillermet: “Le 27 mai 1918, alors

que Jean Chazy commandait la section repérage par le son, dont le poste central se trouvait

à Moulin-sous-Touvent, il avait donné avec précision la position de la grosse Bertha, près

de Beaumont-en-Beine, alors qu’il ignorait que des obus étaient tombés sur Paris. On avait

considéré à l’époque cet extraordinaire calcul comme une véritable acrobatie du repérage par

le son.”
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nonexplicit open sets of the mass space, giving different numbers in different

open sets.

But Chazy may still be correct about the finiteness. Wintner [33] believed

it and conjectured in 1941:

§360: “the number q = q(n;m1, . . . ,mn) of all central con-

figurations belonging to n given mi is likely to be less than

a bound qn which is independent of the mi; while qn itself

remains bounded as n → ∞. The largest contribution to

q(n;m1, . . . ,mn) seems to be due to the collinear central con-

figurations. Actually, an enumeration of all q(n;m1, . . . ,mn)

central configurations for arbitrary n;m1, . . . ,mn represents a

fascinating unsolved problem which depends on a complete dis-

cussion of certain real algebraic equations.”

§365: “this possibility cannot occur unless the n given mi

determine infinitely many central configurations which are dis-

tinct in the sense defined at the end of §355. In §360, it ap-

peared to be a reasonable conjecture that such is never the case,

i.e., that the integer q(n;m1, · · · ,mn) defined at the beginning

of §360 always exists. But no proof is known for the truth of

this hypothesis.”

Wintner’s words “qn itself remains bounded as n → ∞” are disproved

by Wintner himself, when he recalls at the next page that Moulton’s theorem

gives n!/2 collinear central configurations of n bodies.

Wintner’s following claim is disproved in [24] by a topological estimate,

in the cases where the masses are such that the central configurations are all

nondegenerate. In such cases, there are more than (n−1)!(n−2) SO(2)-classes

of 2-dimensional central configurations. As soon as n ≥ 4, this is more than

the number of collinear central configurations. This estimate is obtained from

the Poincaré polynomial (1 + 2t)(1 + 3t) · · · (1 + (n− 1)t) of the configuration

space CPn−2 \∆, where ∆ is the collision set (see [4], [6, p. 324]). According to

Conley (see [23]), the n!/2 collinear central configurations are saddles of index

n− 2. The estimate follows.

Smale and Shub investigated the central configurations in classical works,

each time insisting on the finiteness question ([29, p. 47], [27]). Repeated in

[30], the conjecture takes in [31] and [32] the form of Smale’s 6th question for

the 21st century: Is the number of relative equilibria finite, in the n-body prob-

lem of celestial mechanics, for any choice of positive real numbers m1, . . . ,mn

as the masses?

Hampton and Moeckel [13] answered positively the question in 2005 for

n = 4 bodies. The reader may consult their excellent review on the ques-

tion. The main works they cite on the subject are Kuz’mina [14], Moeckel
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[20], Xia [34], Albouy [2], Roberts [26], Moeckel [21]. More recently Hamp-

ton [11] proved the finiteness of symmetric planar central configurations of

five bodies, except perhaps if the masses satisfy a given polynomial condition.

Hampton and Jensen [12] improved Moeckel [21] by proving the finiteness of

the 3-dimensional central configurations of five bodies, except perhaps if the

masses satisfy a given polynomial condition. Lee and Santoprete [18] proposed

a new method to find all the isolated central configurations of five equal masses.

2. Structure of the proof

A basic property of the system. Let us count the equations and the un-

knowns in system (2). We have n vector equations and n vector variables.

However, we know that before introducing the normalization y12 = 0, the so-

lutions are not isolated. One of the 2n scalar equation has to be a consequence

of the other 2n− 1. The relation

(3)
n∑

k=1

mkqk ∧ fk = 0,

where ∧ is the exterior product, shows that if the n− 1 first vector equations

are satisfied, then qn ∧ fn = 0, and the two scalar equations corresponding to

both coordinates of the last vector equation qn = fn are not independent.

Relation (3) is due to cancellations of pairs of similar terms. Dynamically∑n
k=1mkqk ∧ fk is the time derivative of the angular momentum. The angular

momentum is constant along the trajectories of the n-body problem. The

cancellations of pairs of similar terms correspond to the so-called action and

reaction law. These cancellations also imply the center of mass condition

0 =
∑
mkfk =

∑
mkqk. This linear relation may replace one of the vector

equations qk = fk.

A weak hypothesis on the masses. Our main results assume that all the

masses are positive. However, many of our intermediate results only need a

weaker assumption on the masses, allowing negative masses or even complex

masses.

If m1+ · · ·+mn vanishes, the condition
∑
mkqk = 0 above is not a “center

of mass condition:” there is no center of mass. From Rule 1c, we will deal with

centers of mass of clusters. They should exist, so we assume
∑

k∈I mk 6= 0 for

any nonempty I ⊂ {1, 2, . . . , n}. In words, we assume from now on that no

subset of bodies has total mass zero.

Complex positions. Inclusion into a polynomial system. The principle of

our proofs is to follow a possible continuum of central configurations in the

complex domain and to study its possible singularities there. From now on

we consider that (xk, yk) ∈ C2, k = 1, . . . , n. The positivity condition of the

distances rkl shall be dropped. The distances are now bi-valued.
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To the variables (xk, yk) we add the variables δkl ∈ C, 1 ≤ k < l ≤ n,

inverses of the distances rkl. We consider δlk as just another notation for δkl.

System (1) together with the condition y12 = 0 becomesÇ
x1
y1

å
= m2δ

3
12

Ç
x21
y21

å
+m3δ

3
13

Ç
x31
y31

å
+ · · · ,(4) Ç

x2
y2

å
= m1δ

3
12

Ç
x12
y12

å
+m3δ

3
23

Ç
x32
y32

å
+ · · · ,

· · ·

δ212(x
2
12 + y212) = 1,

δ213(x
2
13 + y213) = 1,

· · ·
y12 = 0.

This is a polynomial system in C2n × Cn(n−1)/2. The (xk, yk)’s define a “geo-

metrical configuration,” and then the δkl’s are defined up to multiplication by

−1. The geometrical configuration together with one of the n(n−1)
2 choices of

signs forms a “gravitational configuration,” i.e., allows the evaluation of the

complex gravitational forces.

Definition 2. A normalized central configuration is a solution of (4). A real

normalized central configuration is a normalized central configuration such that

(xk, yk) ∈ R2 for any k = 1, . . . , n. A positive normalized central configuration

is a real normalized central configuration such that δkl = ±(x2kl + y2kl)
−1/2 is

positive for any k, l, k 6= l.

Definition 2 of a positive normalized central configuration coincides with

Definition 1 in the introduction.

Elimination theory. Let N be a positive integer. Following [22], we define

a closed algebraic subset of the affine space CN as the set of common zeroes

of a system of polynomials on CN . A constructible set in CN is a subset

“constructed” from the three postulates: (i) a closed algebraic subset is a

constructible set, (ii) the complementary of a constructible set is a constructible

set, (iii) the union of two constructible sets is a constructible set.

The polynomial system (4) defines a closed algebraic subset A ⊂ C2n ×
Cn(n−1)/2. For n ≤ 5, we will prove that for most masses this subset is finite.

To distinguish the two possibilities, finitely many or infinitely many points, we

will only use the following result from elimination theory.

Lemma 1. Let X be a closed algebraic subset of CN and f : CN → C be a

polynomial. Either the image f(X) ⊂ C is a finite set, or it is the complement

of a finite set. In the second case one says that f is dominating.
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Proof. Consider the polynomials defining X as polynomials in (x, y) ∈
CN ×C that do not depend on the variable y. Consider the system formed by

these polynomials and the polynomial f(x)−y. The zeroes of this system form

a closed algebraic subset X̂ ⊂ CN×C. The image f(X) is the projection on C of

the constructible set X̂. The projection of a constructible set is a constructible

set (see [22, p. 37]). A constructible set in C is the set of the zeroes of a nonzero

polynomial, i.e., a finite set, or the complement of such a set. �

Potential and moment of inertia. Consider the closed algebraic subset

B ⊂ C2n×Cn(n−1)/2 defined by the above relations δ2kl(x
2
kl +y2kl) = 1. The first

2n variables (x1, . . . , xn, y1, . . . yn) form local coordinates of the neighborhood

in B of any point. System (1) may be written as

(5)
∂I

∂xk
= −2

∂U

∂xk
,

∂I

∂yk
= −2

∂U

∂yk
,

where

(6) U =
∑
k<l

mkmlδkl

and

(7) I =
n∑

k=1

mk(x2k + y2k) =
1

m1 + · · ·+mn

∑
k<l

mkml(x
2
kl + y2kl)

are respectively the Newtonian potential and the moment of inertia, which are

locally homogeneous functions of (x1, . . . , xn, y1, . . . yn) of respective degrees

−1 and 2. Computing
∑

k xk∂I/∂xk + yk∂I/∂yk with (5) we deduce that any

solution of (5) satisfies I = U .

System (5) expresses a solution of (1) as a critical point of the function

2U + I on B. Thus 2U + I = 3U = 3I is locally constant along any continuum

of solutions of (5). Let us state this result more precisely.

Lemma 2. Consider the closed algebraic subset A ⊂ C2n × Cn(n−1)/2 de-

fined by system (4) and the polynomial function U on it defined by expres-

sion (6). Then U(A) is a finite set.

Proof. As U = I on A we may replace U by f = 2U + I in the statement.

According to Lemma 1 it is enough to prove that f is not dominating. A

simple statement is easily obtained from [22, p. 42]: a dominating polynomial

f on a closed algebraic subset possesses smooth points, i.e., points where the

dimension of the tangent space is minimal and where df 6= 0. We first notice

that the normalization relation y12 = 0 of system (4) is irrelevant in this

discussion. We consider f = 2U + I as a polynomial defined on the closed

algebraic subset defined by (4) minus this normalization relation. If f was

dominating, it would have a smooth point. But (5) shows that df = 0 on the

tangent space. Contradiction. �
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Remark 1. We can think of Lemma 2 as a kind of Sard’s lemma for the

function f = 2U + I defined on B: the set of the critical points of f may be

infinite, but still the set of the critical values would remain finite. A related

statement called Sard’s lemma may also be found in [22, p. 42].

Factorization of the distances. For convenience we will use again the vari-

ables rkl = 1/δkl instead of the δkl’s. We still think of a closed algebraic subset

in the variables xk, yk and δkl.

We have x2k + y2k = (xk + iyk)(xk − iyk). We set zk = xk + iyk and

wk = xk−iyk. In the case of a real configuration the zk’s form this configuration

in the complex plane, while the wk’s form its conjugate. We have x2k+y2k = zkwk

and x2kl + y2kl = r2kl = zklwkl. System (1) becomesÇ
z1
w1

å
= m2r

−1
12 z

−1
12 w

−1
12

Ç
z21
w21

å
+m3r

−1
13 z

−1
13 w

−1
13

Ç
z31
w31

å
+ · · ·(8)

· · ·

which simplifies to

z1 = m2z
−1/2
21 w

−3/2
21 +m3z

−1/2
31 w

−3/2
31 + · · ·(9)

w1 = m2z
−3/2
21 w

−1/2
21 +m3z

−3/2
31 w

−1/2
31 + · · ·

· · · .

Here, e.g., z
−1/2
21 is an abuse of notation. This quantity cannot be deduced

unambiguously from the variables z12, w12 and r12. But as r212 = z12w12, such

a product as z
p/2
21 w

q/2
21 is expressed rationally in these variables if p ∈ Z, q ∈ Z

and p+ q is even.

The rotation freedom is expressed in (z, w) variables as the invariance of

(8) by the map Ra : (zk, wk, rkl) 7→ (azk, a
−1wk, rkl) for any a ∈ C0 and any k,

l, k 6= l. The condition y12 = 0 we proposed to remove this rotation freedom

becomes z12 = w12.

A discrete symmetry of (8) appears: (zk, wk, rkl) 7→ (zk, jwk, j
2rkl) sends

solution on solution. Here j is a cubic root of unity. The solutions of (8) come

in triples.

Distances and separations. We will use the name “distance” for the rkl =√
zklwkl. We will use the name z-separation (respectively w-separation) for

the zkl’s (respectively the wkl’s) in the complex plane.

Roberts’ continuum. The following continuum of central configurations

was published in [26]. It is not considered as disproving Chazy’s conjecture

because the masses are not all positive.
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Here n = 5 and (m1,m2,m3,m4,m5) = (1/2, 1/2, 1/2, 1/2,−1/8). The

first four bodies form a rhombus: z1 = −z3 = w1 = −w3 = a, z2 = −z4 = b,

w2 = −w4 = −b, where a ∈ R and ib ∈ R for the real configurations.

1

2

3
5

1

2

3

4

5

4

Figure 1. Two of Roberts’ central configurations.

The last body is at the center of mass: z5 = w5 = 0. The algebraic

curve defined by the coordinates above and the condition r12 = r23 = r34 =

r14 = 1 satisfies (8). This condition also fixes a relation between a and b:

r212 = z12w12 = (b− a)(−b− a) = a2 − b2 = 1.

When a → 0, bodies 1, 3 and 5 collide. When b → 0 bodies 2, 4 and 5

collide. We get a “singularity” at both limits, which we will refer to as Roberts’

real singularity and describe as a triple contact singularity.

Let now a → ∞ along the real axis. At a = 1, we meet the singularity

above: b = ±
√
a2 − 1 vanishes. This point turns out to be a branch point.

We turn around this branch point and continue along the real axis. There

is a choice of leaf. Drawing a cut on the Riemann surface between a = −1

and a = 1 we visualize the two main choices when going to infinity: b ∼ a or

b ∼ −a, corresponding to the two leaves. We get two other singularities, which

we will refer to as Roberts’ singularities at infinity.

Modified Roberts’ continuum. We will consider a central configuration of

Roberts’ continuum. We changem5 in−m5, rk5 in−rk5, k = 1, . . . , 4. We get a

real normalized central configuration with positive masses (here we normalized

with y13 = 0 instead of our usual y12 = 0). Still this is not a positive normalized

central configuration, as we choose for rk5 the negative square root of zk5wk5.

There is a repulsive Newtonian force instead of attractive for the pairs (k, 5).

However, we get a continuum of solutions of (4) with positive masses. It is

similar to Roberts’ continuum. The singularities are the same and U = I = 1

along both continua.
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Singular sequences of normalized central configurations. Set Zkl = r−1kl w
−1
kl

and Wkl = r−1kl z
−1
kl . Then rkl = rlk, Zkl = −Zlk, Wkl = −Wlk. System (4)

becomes

z1 = m2Z21 +m3Z31 + · · · +mnZn1,(10)

z2 = m1Z12 +m3Z32 + · · · +mnZn2,

· · ·
zn = m1Z1n +m2Z2n +m3Z3n + · · ·+mn−1Z(n−1)n,

w1 = m2W21 +m3W31 + · · · +mnWn1,

w2 = m1W12 +m3W32 + · · · +mnWn2,

· · ·
wn = m1W1n +m2W2n +m3W3n + · · ·+mn−1W(n−1)n,

z12 = w12.

Let N = n(n+ 1)/2. To a gravitational configuration

Q = (z1, z2, . . . , zn, w1, w2, . . . , wn, δ12, . . . , δ(n−1)n)

we associate two vectors in CN

Z = (Z1,Z2, . . . ,ZN ) = (z1, z2, . . . , zn, Z12, Z13, . . . , Z(n−1)n),

W = (W1,W2, . . . ,WN ) = (w1, w2, . . . , wn,W12,W13, . . . ,W(n−1)n).

The coordinates of Z are, up to the mass factor, the terms of equations 1

to n in (10). The coordinates of W are, up to the mass factor, the terms of

equations n+ 1 to 2n in (10).

A solution Q of (10) is a normalized central configuration. Consider

a sequence Q(m), m = 1, 2, . . . , of normalized central configurations. Let

Z(m) = maxp=1,...,N |Z(m)
p | be the modulus of the maximal component of

the vector Z ∈ CN . Extract a sub-sequence such that the maximal com-

ponent is always the same, i.e., Z(m) = |Z(m)
p | for a p that does not depend

on m. Extract again in such a way that the vector Z−1Z converges. Define

W (m) = maxq=1,...,N |W(m)
q |. Extract again in such a way that there is simi-

larly an integer q such that W (m) = |W(m)
q | for all m. Extract a last time in

such a way that the vector W−1W converges.

If the initial sequence is such that Z orW is unbounded, so is the extracted

sequence. Note that maxp=1,...,N |Zp| is bounded away from zero: if the first n

components of the vector Z all go to zero, then the denominators in the other

components go to zero and Z is unbounded. There are two possibilities for the

extracted sub-sequences above:

1) Z and W are bounded,

2) at least one of these two vectors is unbounded.
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Let us show that the first case corresponds to an extracted sequence con-

verging to a normalized central configuration. This is due to the inhomogeneity

of the vectors Z andW. The extracted sequence is such that Z−1Z and W−1W
converge, so if (Z,W) have two limit points, they are of the form (Z,W) and

(Z ′,W ′) = (λZ, µW), with λ > 0 and µ > 0. Due to the equation z12 = w12

we have λ = µ. Then (Z ′kl)
−1 = r′klw

′
kl = λr′klwkl, and on the other hand,

(Z ′kl)
−1 = (λZkl)

−1 = λ−1rklwkl. Finally r′kl = λ−2rkl, which is incompatible

with z′kl = λzkl, w
′
kl = µwkl and the homogeneous equations r2kl = zklwkl,

r′kl
2 = z′klw

′
kl, except if λ = 1. The two limit points coincide and the sequence

converges.

Definition 3. Consider a sequence of normalized central configurations. A

sub-sequence extracted by the above process, in the unbounded case, is called

a singular sequence.

Our method to prove the finiteness of the central configurations consists

essentially of two steps. First, we study all possibilities for a singular sequence.

We show that such an unbounded sequence is impossible for most masses. Sec-

ond, we use Lemma 1 to prove that if there are infinitely many normalized

central configurations, there exist singular sequences, and even singular se-

quences where some distance goes to zero or to infinity.

Consequently there are finitely many normalized central configurations for

most masses.

3. Tools to classify the singular sequences

Notation of asymptotic estimates. We already used a ∼ b which means,

as usual, a/b → 1. We will also use a ≺ b, a � b and a ≈ b. The first means

a/b→ 0, the second a/b is bounded, and the third a � b and a � b.

Strokes and circles. One color rules. We pick a singular sequence. We

write the indices of the bodies in a figure and use two colors for edges and

vertices.

The first color, the z-color, is used to mark the maximal order components

of Z = (z1, . . . , zn, Z12, . . . , Z(n−1)n). They correspond to the components of

the converging vector Z−1Z that do not tend to zero. We draw a circle around

the name of body k if the term zk is of maximal order among all the com-

ponents of Z. We draw a stroke between the names k and l if the term

Zkl = z
−1/2
kl w

−3/2
kl is of maximal order among all the components of Z. If there

is a maximal order term in an equation, there should be another one. This

gives immediately Rule 1a.

Rule 1a. There is something at each end of any z-stroke: another z-stroke

or/and a z-circle drawn around the name of the body. A z-circle cannot be
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isolated; there must be a z-stroke emanating from it. There is at least one

z-stroke in the z-diagram.

Definition 4. Consider a singular sequence. We say that bodies k and l

are close in z-coordinate, or z-close, or that zk and zl are close, if zkl ≺ Z.

We extend this convenient terminology to centers of mass instead of bod-

ies. We can say, e.g., that the center of mass of k and l is close to the origin.

The following statement is obvious.

Rule 1b. If bodies k and l are z-close, they are both z-circled or both not

z-circled.

Definition 5. An isolated component of the z-diagram is a subset of vertices

such that no z-stroke is joining a vertex of this subset to a vertex of the

complement.

Rule 1c. The center of mass of a set of bodies forming an isolated com-

ponent of the z-diagram is z-close to the origin.

Proof. Let the bodies of this isolated component be numbered 1, 2, . . . , p.

Compute m1z1 +m2z2 + · · ·+mpzp from (10). All the terms in this expression

have the form mkmlZkl. Only the terms mkmlZkl, 1 ≤ k 6= l ≤ p may be of

maximal order Z. But mkmlZkl and mlmkZlk cancel out. There only remain

lower order terms. �

Rule 1d. Consider the z-diagram or an isolated component of it. If there

is a z-circled body, there is another one. The z-circled bodies cannot all be

z-close together.

Proof. These are easy consequences of the center of mass equation m1z1+

· · ·+mnzn = 0, or of the equation m1z1 + · · ·+mpzp ≺ Z obtained from Rule

1c for an isolated component. �

Definition 6. Consider a z-stroke from vertex k to vertex l. We say it is

a maximal z-stroke if k and l are not z-close.

Rule 1e. An isolated component of the z-diagram has no z-circled vertex

if and only if it has no maximal z-stroke.

Proof. If the z-stroke kl is maximal, then zkl ≈ Z, and so either zk ≈ Z or

zl ≈ Z. At least one of the ends is circled. If there is no maximal z-stroke, we

decompose the isolated component into connected isolated components. All

the zk’s of a component are close together, and they are also close to their

center of mass, which is close to the origin by Rule 1c. There is no circle. �
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Remark 2. No circle in a connected isolated component means no free

ends by Rule 1a.

Superposition of two colored diagrams. On the same diagram we also draw

w-strokes and w-circles. Graphically we use another color. The previous rules

and definitions apply to w-strokes and w-circles. What we will call simply the

diagram is the superposition of the z-diagram and the w-diagram. We will,

for example, adapt Definition 5 of an isolated component: a subset of bodies

forms an isolated component of the diagram if and only if it forms an isolated

component of the z-diagram and an isolated component of the w-diagram.

Edges and strokes. There is an edge between vertex k and vertex l if there

is either a z-stroke, or a w-stroke, or both. There are three types of edges,

z-edges, w-edges and zw-edges, and only two types of strokes, represented with

two different colors. Vertices may also be circled in three different ways, by

combining circles of the two colors.

1 2 1 21 2

Figure 2. A z-stroke, a z-stroke plus a w-stroke, a w-stroke,

forming respectively a z-edge, a zw-edge, a w-edge.

The Roberts’ continuum example produces the following collection of di-

agrams from left to right: a→ 0 and 1, 3, 5 collide; b→ 0 and 2, 4, 5 collide;

a→∞ and a ∼ b; a→∞ and a ∼ −b (see Figure 3).

1

2

3
4

5 2

4

5

3

1
1 2

34

1 2

34

5 5

Figure 3. Roberts’ continuum at real triple contact and imagi-

nary infinity.

New normalization. Main estimates. One does not change a central con-

figuration by multiplying the z coordinates by a ∈ C0 and the w coordinates

by a−1. Our diagram is invariant by such an operation, as it considers the

z-coordinates and the w-coordinates separately.

We used the normalization z12 = w12 in the previous considerations. In

the following we will normalize instead with Z = W . We start with a cen-

tral configuration normalized with the condition z12 = w12, then multiply the

z-coordinates by a > 0, the w-coordinates by a−1, in such a way that the

maximal component of Z and the maximal component of W have the same

modulus, i.e., Z = W .
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A singular sequence was defined by the condition either Z→∞ or W→∞.

We also remarked that both Z and W were bounded away from zero. With the

new normalization, a singular sequence is simply characterized by Z=W→∞.

In contrast, Z = W tends to a positive constant if a sequence tends to a central

configuration.

We set Z = W = ε−2. For a singular sequence ε → 0. From now on we

only discuss singular sequences. A justification for this normalization and this

notation is the simplicity of the following estimates.

Estimate 1. For any (k, l), 1 ≤ k < l ≤ n, we have ε � rkl � ε−2 and

ε2 � zkl � ε−2. There is a zw-edge between k and l if and only if rkl ≈ ε.

There is a maximal w-edge between k and l if and only if zkl ≈ ε2.

Proof. The right-hand side estimates for both rkl and zkl follow from

zkl, wkl � W . For the left-hand side estimates, we write Zkl = r−1kl w
−1
kl � ε−2

and Wkl = r−1kl z
−1
kl � ε−2. Multiplying both inequalities we get ε � rkl.

The “equality case” ε ≈ rkl requires Zkl ≈ ε−2, which means a z-stroke,

and Wkl ≈ ε−2, which means a w-stroke. Both strokes form a zw-edge.

We have wkl � ε−2. Rewrite wkl = r2klz
−1
kl , so W 2

klwkl = z−3kl � ε−6, which

gives ε2 � zkl. The “equality case” requires wkl ≈ ε−2, which means k and l

not w-close, and Wkl ≈ ε−2, which means a w-stroke. �

Remark 3. By the estimates above, the strokes in a zw-edge are not max-

imal. A maximal z-stroke never forms a zw-edge. It always forms a z-edge.

Definition 6 tells us what is a maximal z-stroke. A maximal z-edge is just the

same thing.

Estimate 2. We assume that there is a z-stroke between k and l. Then

ε � rkl � 1, ε � zkl � ε−2, ε � wkl � ε2.

Under the same hypothesis the “equality cases” are characterized as follows:

Left: rkl ≈ ε⇔ zkl ≈ ε⇔ wkl ≈ ε⇔ zw-edge between k and l,

Right: rkl ≈ 1⇔ zkl ≈ ε−2 ⇔ wkl ≈ ε2 ⇔ maximal z-edge between k and l.

Proof. The z-stroke means Zkl = r−3kl zkl ≈ ε−2. Moreover, we know that

zkl � ε−2 and Wkl = r−1kl z
−1
kl � ε−2. Substituting zkl ≈ r3klε

−2 successively

in these inequalities gives ε � rkl � 1. Substituting r−1kl ≈ ε−2/3z
−1/3
kl in the

second gives ε � zkl. Writing instead Zkl = r−1kl w
−1
kl ≈ ε−2, zkl = r2klw

−1
kl �

ε−2, Wkl = r−3kl wkl � ε−2 and eliminating rkl gives the remaining estimate.

Looking at these proofs, we see that the left-hand side inequalities all become

“equalities” when Wkl ≈ ε−2, which means there is a w-stroke. The right-hand

side inequalities become “equalities” when zkl ≈ ε−2, which means the bodies

are not z-close. �
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1 2 3

?

?

?

?

1 2 3

?

?

?

?

1 2 3

?

?

?

?

Figure 4. Around a z-edge-w-edge sequence.

Circling method. Estimate 2 shows that in all the cases where there is a

z-stroke between k and l, these bodies are close in w-coordinate. Then Rule

1b applies to the w-diagram. Vertices k and l are either both w-circled or both

not w-circled.

Given the edges of a diagram we first z-circle the ends of the lines formed

by a succession of consecutive z-strokes, and we w-circle the ends of the lines

formed by a succession of consecutive w-strokes (Rule 1a). Then, in a second

step, we z-circle the vertices which are attached to the previous z-circles by w-

strokes (or even by z-edges that we know to be nonmaximal). We do the same

with w-circles. The three examples below detail this in common situations. In

all the cases, we deduce that the diagram cannot stop there, Rule 1a implying

the existence of other circles or other strokes.

Two colors rules. Consequences of a zw-edge. Rules 1a to 1e concern a

“one color diagram.” They are stated for the z-diagram, but apply as well to

the w-diagram. The following rules are numbered 2a to 2h. They concern the

diagram obtained by superposition of the z-diagram and the w-diagram.

Rule 2a. There is at least another z-stroke and at least another w-stroke

emanating from any zw-edge.

Proof. By Estimate 1 the z-stroke of the zw-edge is not maximal. By

Rule 1e and Remark 2 it is not isolated in the z-diagram. So there is another

z-stroke from it. Same for the w-stroke. �

Rule 2b. Two consecutive zw-edges. If there are two consecutive zw-

edges, there is a third zw-edge closing the triangle.
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1 2 34

?

?

?

?

1 2 34

?

?

?

?

1 2 34

?

?

?

?

Figure 5. Around a zw-edge with two connected edges.

1 2 3

4
?

?

?

1 2 3

4
?

?

?

1 2 3

4
?

?

?

Figure 6. Around a zw-edge with two connected edges in an-

other way.

Proof. Let the consecutive zw-edges be (1, 2) and (2, 3). By Estimate 2,

z13 = z12 + z23 is of order ε or less, w13 is of order ε or less. But “less” is

impossible, because, e.g., Z13 = z
−1/2
13 w

−3/2
13 would be of greater order than Z.

We conclude the proof by using the first equality case of Estimate 1. �

In Figure 7 we show the simplest patterns around a zw-edge. In the

preceding figures we have shown how to circle the first two. About the third,
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1 2 3

4
?

?

?

1 2 34

?

?

?

?

1 2

3

?

Figure 7. The sub-diagrams with 2 edges (or less) connected to

a zw-edge.

bodies 1, 2, and 3 are close, so they are all z-circled or all not z-circled, and

they are all w-circled or all not w-circled.

Clusters. Cycles. At the limit when following a singular sequence, the

zk’s form clusters. If, for example, bodies 1, 2 and 3 are such that z12 ≺ z13,

we say that 1 clusters with 2 in z-coordinate, relatively to the subset of bodies

1, 2, 3. We may then consider a fourth body, which may form a sub-cluster,

e.g., together with body 2. Altogether this means z24 ≺ z12 ≺ z13.
We will often write a clustering scheme in each coordinate. In the latter

situation we would write simply z : 24.1 . . . 3, three dots being the largest

separation within this group, one dot the intermediate separation, no dot the

smallest separation. (Three different orders of separation appear to be enough

in our considerations.)

In the rule below we discuss clustering relations inside a sub-system of three

bodies. Nothing forbids that these three bodies form, e.g., in z-coordinate, a

cluster relatively to the whole configuration.

Rule 2c. Skew clustering. Consider two consecutive edges that are not

part of a triangle, e.g., an edge from vertex 1 to vertex 2, an edge from vertex

2 to vertex 3. Then the clustering schemes are z : 1.2 . . . 3, w : 1 . . . 2.3, or

z : 1 . . . 2.3, w : 1.2 . . . 3. We say there is “skewsymmetric clustering” or simply

“skew clustering.”

Proof. Suppose the two consecutive edges are z-edges. If we had the

same order in z-separation, we would have the same order in w-separation, as

Z12 = z
−1/2
12 w

−3/2
12 ≈ z

−1/2
23 w

−3/2
23 = Z23, and the triangle would be closed, by

the same argument as for Rule 2b. Excluded. The “skewsymmetric clustering”

follows from Z12 ≈ Z23.
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The same applies for two consecutive w-edges. Two consecutive zw-edges

are forbidden by Rule 2b. In the remaining cases the two consecutive edges

have different types. But we know from Estimate 2 that the z-separation cor-

responding to a w-edge is strictly smaller than the z-separation corresponding

to a zw-edge, which is in turn strictly smaller than the z-separation corre-

sponding to a z-edge. The w-separations corresponding respectively to these

types of edges follow the inverse order. So there is always skew clustering. �

Recall that a z-edge between k and l is called maximal if zkl ≈ ε−2.

Corollary. Two consecutive z-edges cannot be maximal if they are not

part of a triangle of edges.

Proof. If the edges are not part of a triangle, Rule 2c applies and gives

z12 ≺ z23 or z12 � z23, which contradicts z12 ≈ ε−2 and z23 ≈ ε−2. �

There may appear some contradiction if there are cycles of edges. If there

is a cycle, one can join two vertices following two different paths of edges. The

cumulated separations should be equal in both paths. This gives the following

rule.

Rule 2d. Cycles. Consider a cycle of edges, the list of z-separations cor-

responding to these edges, and the maximal order for the z-separations within

this list. Two or more of the z-separations are of this order. The corresponding

edges have the same type. If there are only two, the corresponding separations

are not only of the same order, but equivalent.

Rule 2e. Triangles. Consider a triangle of edges in the diagram. Then

the edges have the same type (all z-edges or all w-edges or all zw-edges), all

the z-separations are of the same order, all the w-separations are of the same

order.

Proof. Let the triangle have three edges of different type. Then we need

two z-edges or two zw-edges by Rule 2d, corresponding to the greatest z-sepa-

ration. We need also two edges corresponding to greatest w-separation. Im-

possible. So the edges have the same type. Suppose the z-separations are

not of the same order. So one is of lower order, the other two are equivalent.

By, e.g., z
−1/2
12 w

−3/2
12 ≈ z

−1/2
23 w

−3/2
23 ≈ z

−1/2
31 w

−3/2
31 , only one w-separation is of

greatest order, contradicting the cycle rule 2d. So the separations are of the

same order. �

Rules 2b and 2e together give the following easily remembered statement.

Corollary. Consider three vertices. There are 6, 3, 2, 1 or 0 strokes

joining them. If there are three forming a triangle, they are of the same color.
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Rule 2f. Fully edged sub-diagrams. Consider in the diagram: a triangle of

edges, plus a fourth vertex attached to the triangle by at least two edges, plus

a fifth vertex attached to the four previous vertices by at least two edges, and

so on up to a p-th vertex, p ≥ 3. Then there is indeed an edge between any

pair of the p vertices, the edges have the same type, all the z-separations are

of the same order, all the w-separations are of the same order.

Proof. Rule 2e is Rule 2f for p = 3. Suppose Rule 2f is true for p−1 bodies.

We add body p, attached with two edges to, let us say, bodies 1 and 2. We apply

Rule 2e to the triangle 12p. Thus 1p and 2p correspond to the same type of

edge, the same z-separations and the same w-separations as 12, i.e., as every kl,

k < l < p. Consider the edges kp with 3 ≤ k ≤ p− 1. As, e.g., zkp = zk1 + z1p,

we have zkp � z12 and similarly wkp � w12. If zkp ≺ z12, then Zkp = z
−1/2
kp w

−3/2
kp

and Wkp = z
−3/2
kp w

−1/2
kp would be respectively larger than Z12 = z

−1/2
12 w

−3/2
12

and W12 = z
−3/2
12 w

−1/2
12 . This would contradict the maximality implied by the

z12-stroke or the w12-stroke. So zkp ≈ z12, wkp ≈ w12, and there is the same

type of edge between k and p as between 1 and 2. �

Rule 2g. If four edges form a quadrilateral, then the opposite edges have

the same type.

Proof. Rule 2d provides us with two edges of the same type correspond-

ing to the maximal z-separation within the four edges, and two edges of the

same type corresponding to the maximal w-separation within the four edges.

Suppose there is a pair of adjacent edges of one type, a pair of adjacent edges

of another different type. By Rule 2f, the diagonals are not edges. Rule 2c

applies to any of these pairs and gives skew clustering, i.e., different order

of z-separation. But this contradicts Rule 2d, which gives the same order of

z-separation. Finally the two types are the same, or they are different but they

alternate along the quadrilateral. �

Lemma 2 states that the potential U =
∑
mkml/rkl takes finitely many

values on the set of normalized central configurations. Here we use this prop-

erty for the first time. We get a new rule, which we will use in Section 7. The

rule is immediately deduced from the fact that U is bounded.

Rule 2h. Bounded potential. Consider a singular sequence. Pick bodies

k0 and l0 such that rk0l0 � rkl for any k, l, 1 ≤ k < l ≤ n. If rk0l0 → 0, then

there is another pair of bodies (k1, l1) such that rk1l1 ≈ rk0l0 .

Corollary. If there is a zw-edge in the diagram, there is another one.

Proof. A zw-edge between bodies k0 and l0 means rk0l0 ≈ ε, which is the

minimal order for a distance according to Estimate 1. Rule 2h applies. �
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4. Systematic exclusion of 4-body diagrams

We call a bicolored vertex of the diagram a vertex which connects at least

a stroke of z-color with at least a stroke of w-color. The number of edges from

a bicolored vertex is at least 1 and at most n− 1. The number of strokes from

a bicolored vertex is at least 2 and at most 2(n − 1). Given a diagram, we

define C as the maximal number of strokes from a bicolored vertex. We use

this number to classify all possible diagrams.

Recall that the z-diagram indicates the maximal terms among a finite set

of terms. It is nonempty. If there is a circle, there is an edge of the same

color emanating from it. So there is at least a z-edge, and similarly, at least a

w-edge.

4.1. Four bodies. No bicolored vertex. If there is no bicolored vertex, then

C is not defined, there are at most two strokes and they are “parallel.” Thus

the only possible diagram is the first one in Figure 8.

4.2. Four bodies. C = 2. There are two cases: a zw-edge exists or not.

If it is present, it should be isolated. This is impossible by Rule 2a.

If it is not present, there are adjacent z-edges and w-edges. From any

such adjacency there is no other edge. By trying to continue Figure 4, we see

that the only diagram is the second in Figure 8.

4.3. Four bodies. C = 3. Consider a bicolored vertex with three strokes.

It is Y -shaped or connects a single stroke to a zw-edge.

Suppose it is Y -shaped, let us say with two z-edges and a w-edge. Then it

is w-circled by Rule 1a. By the circling method, the other ends of the z-edges

are w-circled. Each of these ends should have a w-edge. This produces a

triangle and contradicts Rule 2e.

1 2

3

4

1

4

2

3

1 2

34
1

1

2

2

3

3

4

4

Figure 8. The five remaining 4-body diagrams.
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Suppose it is a zw-edge connected with, let us say, a z-edge. By Rule

2a, there is a w-edge on the other side of the zw-edge that cannot close the

triangle by Rule 2e and cannot make a quadrilateral by Rule 2g. The diagram

cannot just be these three edges as shown in Figure 5. Contradiction.

4.4. Four bodies. C = 4. Consider a bicolored vertex with four strokes.

In a first case, it has a zw-edge and two z-edges. Rule 2a requires another

w-edge from the zw-edge that closes a triangle that contradicts Rule 2e.

In a second case, the bicolored vertex is as vertex 2 in the first diagram in

Figure 6. Any other edge in this diagram would close a triangle, which would

contradict Rule 2e. The circling method then gives a contradiction, as shown

in Figure 6.

In the last case, the bicolored vertex has two adjacent zw-edges. A third

zw-edge closes the triangles by Rule 2b. As C = 4 there is one triangle of

zw-edges and no other edge in the diagram. This is the third diagram in

Figure 8. There is no maximal z-stroke thus no z-circle by Rule 1e. For the

same reason there is no w-circle.

4.5. Four bodies. C = 5. The maximal bicolored vertex should be as

vertex 1 in the fourth diagram in Figure 8, which forces the rest of the diagram

by Rule 2b and the circling method. Rule 1e shows there is no z-circle.

4.6. Four bodies. C = 6. This is a fully edged diagram by Rule 2b. There

is no circle by Rule 1e. This is the fifth diagram in Figure 8.

The conclusion of this section is that any singular sequence should converge

to one of the five diagrams in Figure 8.

Remark 4. In the 3-body problem, the finiteness is easy to get, even in

the complex domain. The computations in the appendix constitute a proof.

It is however a valuable exercise to apply the above method to the 3-body

case. Only one diagram, the fully edged diagram without circle, appears to be

possible.

As the list of diagrams is not empty, further discussion is needed to prove

the finiteness. Several ideas may be used. They mostly use the fact that on a

fully edged diagram, any edge is a zw-edge, so any rkl ≈ ε→ 0 by Estimate 1.

A first idea is to discuss the diagram as we will do in 5.3 and deduce that

a singular sequence may approach the diagram only if the masses satisfy (16).

If the masses do not satisfy this relation, there are no singular sequences and,

consequently, no continuum of normalized central configurations.

A second idea is to deduce from expression (7) that the moment of inertia

I tends to zero while approaching the fully edged diagram. By Lemma 2, the

moment of inertia is constant on a continuum of central configurations. So it

is constantly equal to zero. But if the masses are positive, I is positive on real
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configurations. Under this hypothesis on the masses, there could still exist a

continuum of normalized central configurations, but it would not contain any

real central configuration. This reality argument will be used in the proof of

Theorem 5.

A third idea is to prove that a continuum of normalized central configura-

tions should approach several diagrams. As at least one of the three distances

should be dominating, there exist singular sequences such that this distance

goes to zero, and singular sequences such that it goes to infinity. A singular

sequence of the latter type cannot exist, as it cannot go to the only diagram

that has no distance going to infinity. We will often use this idea in the proofs

of our theorems.

5. Five remaining 4-body diagrams. First finiteness result

In the previous process of eliminating diagrams, our only hypothesis on the

masses is that no subset of bodies has zero mass. We could not eliminate the

diagrams in Figure 8. Some singular sequence could still exist and approach

any of these diagrams. Here we restrict to real positive masses. Still this

is not enough: each diagram will be excluded except if the masses satisfy a

polynomial relation. In Sections 5.1 to 5.5 we obtain the constraints on the

masses corresponding to each of the five diagrams from Figure 8, numbered

horizontally from top left to bottom right.

5.0. On a pair of disconnected fully edged subdiagrams. We define a class

of diagrams consisting of a fully edged isolated component of z-color and a

fully edged isolated component of w-color. In particular, this class contains

the first diagram in Figure 8. Some diagrams from the 5-body case also fall

into the framework described below.

To construct a diagram in this class we start with two normalized central

configurations. We stretch one along the z-axis and the other one along the

w-axis. Each stretching is done in such a way that the stretched coordinate

is of order ε−2 while the other coordinate is of order ε2. The result looks like

a singular sequence. The diagram has a fully edged isolated component of

z-color and a fully edged isolated component of w-color. The first diagram in

Figure 8 is the simplest example.

Reciprocally let us assume that bodies 1 to p form a diagram of z-color,

fully z-edged and z-circled, and bodies p + 1 to n form a similar diagram of

w-color.

According to Rule 2f, zkl ≈ z12 for any k, l, k < l ≤ p. As the vertices

1, . . . , p are z-circled while the other vertices are not, we also have zkl ≈ z12 ≈
ε−2 for all k, l, k ≤ p, p+ 1 ≤ l. By Rule 2f again, w(p+1)(p+2) ≈ wkl for any k,

l, p+1 ≤ k < l ≤ n. All this information is condensed in the clustering scheme:
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z : 1 . . . 2 . . . 3 . . . (p + 1)(p + 2)n . . . 4 . . . p. The corresponding estimates in w

give w : p+ 1 . . . p+ 2 . . . 123p . . . p+ 3 . . . n.

According to these estimates, in each of the first 2p equations of system (9),

the first p terms in the right-hand side dominate: the wkl’s are smaller in these

terms, while the zkl’s are of the same order as in the remaining terms of the

right-hand side.

Consequently, the system is decoupled in the limit: bodies 1 to p form a

central configuration, as do bodies p+ 1 to n.

We got a description of a singular sequence corresponding to the consid-

ered disconnected diagrams. Is this description complete? At a first look it

seems hopeless to look for further equations involving the crossed terms. These

small terms correspond to interactions between a central configuration and the

other. By a perturbation of the positions of the bodies 1 to p, one should be

able to balance the contribution of these crossed terms.

But a closer look shows that these contributions cannot be balanced in

general, and there is a constraint corresponding to the crossed terms. Consider

the equations of central configurations (2) in vector form qk = fk, suppose

1 ≤ k ≤ p and set fk = f ik+fek , where f ik is the contribution of the first p bodies

or “internal” bodies and fek are the “crossed terms,” i.e., the contribution of

the other bodies, or “exterior” bodies. The scalar quantity m1q1∧ f i1 +m2q2∧
f i2 + · · · + mpqp ∧ f ip vanishes in the limit for any configuration of the first p

bodies. Finally,

0 = m1q1 ∧ f1 + · · ·+mpqp ∧ fp = m1q1 ∧ fe1 +m2q2 ∧ fe2 + · · ·+mpqp ∧ fep
is an interesting constraint on the fek ’s, i.e., on the crossed terms.

5.1. The disconnected diagram. In the case of the first diagram in Figure

8 the clustering scheme is z : 1 . . . 34 . . . 2, w : 3 . . . 12 . . . 4. We write

0 = f1 ∧ q1 = m2r
−3
12 q1 ∧ q2 +m3r

−3
13 q1 ∧ q3 +m4r

−3
14 q1 ∧ q4,(11)

0 = f2 ∧ q2 = m1r
−3
12 q2 ∧ q1 +m3r

−3
23 q2 ∧ q3 +m4r

−3
24 q2 ∧ q4

and combine

0 = m1m3r
−3
13 q1 ∧ q3 +m1m4r

−3
14 q1 ∧ q4 +m2m3r

−3
23 q2 ∧ q3 +m2m4r

−3
24 q2 ∧ q4.

Remarkably the four terms are quite similar. Here r2kl = z−1kl w
−1
kl ∼ z−1k w−1l ,

because each factor is the separation between something near the center of

mass and something far away. The rkl’s are of the same order. Again by the

clustering scheme, qk ∧ ql ∼ zkwl. Finally our equation tells that

m1m3(z1w3)
−1/2 ±m2m3(z2w3)

−1/2 ±m1m4(z1w4)
−1/2 ±m2m4(z2w4)

−1/2

is small compared to one of the four terms. By the center of mass z1 ∼ −m2z0,

z2 ∼ m1z0, w3 ∼ −m4w0, w4 ∼ m3w0 for some nonvanishing complex numbers
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z0 and w0. We get

(12)
m1m3√
m2m4

± m2m3√
−m1m4

± m1m4√
−m2m3

± m2m4√
m1m3

= 0,

or by setting mk = µ2k,

µ31µ
3
3 ± iµ32µ33 ± iµ31µ34 ± µ32µ34 = 0.

Half of the choices of signs enter the factorization (µ31 ± iµ32)(µ33 ± iµ34) = 0,

which has no solution with (µ1, µ2, µ3, µ4) ∈ R4. The real solutions correspond

to (µ1µ3)
3 = (µ2µ4)

3 and (µ2µ3)
3 = (µ1µ4)

3. Removing the cubes and dividing

one by the other gives µ21 = µ22. We get two conditions on the positive masses:

(13) m1 = m2 and m3 = m4.

5.2. The quadrilateral diagram. Here we study the second diagram on

Figure 8. Rule 1c shows that m1z1 + m4z4 and m2z2 + m3z3 are close to the

origin, i.e., are not z-maximal. In particular, they are close together. But the

clustering scheme z : 12 . . . 34, w : 14 . . . 23 gives z1 ∼ z2 and z3 ∼ z4. So

finally,

(14) m1m3 = m2m4.

The same analysis in w-coordinate gives the same constraint.

5.3. The isolated triangle. Here we study the third diagram in Figure 8.

The diagram with a zw-edged triangle without circles shows that the dominant

terms of (10) correspond to an equilibrium of the 3-body problem. It is an

“absolute” equilibrium, which is stronger than a relative equilibrium.

The configuration in a real relative equilibrium is a central configuration.

Instead of (2), it satisfies the system λqk = fk, with λ > 0. For an equilibrium,

λ = 0. As homogeneity gives λI = U , the potential U of an equilibrium is

zero.

There is an absolute equilibrium of three bodies in Roberts’ example, with

masses 1, −1/4, 1. To any collinear 3-body configuration we can associate

masses making it an equilibrium (see [3]).

The constraint on the masses for a 3-body equilibrium gives a constraint

on the masses for the third diagram in Figure 8. System (10) reduces to its

main terms:

m2Z12+m3Z13 ≺ ε−2, m2W12+m3W13 ≺ ε−2, m1Z21+m3Z23 ≺ ε−2, · · ·

or

(15)
Z12

m3
∼ Z23

m1
∼ Z31

m2
,

W12

m3
∼ W23

m1
∼ W31

m2
.
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As Zkl = w−1kl r
−1
kl , Wkl = z−1kl r

−1
kl , there is a number ρ ∈ C0 such that wkl ∼

ρzkl. The configuration is collinear in the limit and

m1z
2
23 ∼ ±m2z

2
31 ∼ ±m3z

2
12.

Setting mk = µ2k, this relation becomes

µ1z23 ∼ ε2µ2z31 ∼ ε3µ3z12, with ε42 = ε43 = 1.

The relation z12 + z23 + z31 = 0 gives µ−11 + (ε2µ2)
−1 + (ε3µ3)

−1 = 0, thus only

three choices with
√
mk = µk > 0:

(16)
1
√
m1

=
1
√
m2

+
1
√
m3

,
1
√
m2

=
1
√
m1

+
1
√
m3

,
1
√
m3

=
1
√
m1

+
1
√
m2

.

5.4. The kite diagram. Here we study the fourth diagram in Figure 8. We

first prove an interesting result about the position of the origin relative to the

z-coordinates of the bodies. Recall that the origin is also the z-coordinate of

the center of mass of the configuration.

Proposition 1. If in a singular sequence body n and body 1 are such that

z1n ≺ zkn and w1n ≈ wkn for all k, 1 < k < n, then z1, zn and the origin form

a cluster of size ≈ z1n, i.e., z1, zn � z1n.

Proof. We neglect the terms with 1 < k < n in the last two equations

of (9). We have zn ∼ m1r
−3
1n z1n, wn ∼ m1r

−3
1nw1n. But, by the w-center of

mass, wn � w1n, which is the order of the w-size of the configuration. Thus

r1n � 1 and zn ∼ m1r
−3
1n z1n � z1n. �

An underlined z-clustering scheme is the z-clustering scheme where a clus-

ter is underlined. Each body j of this cluster is such that zj � R, where

R = max zkl, k and l being bodies in the cluster. In words, the origin “be-

longs” to the underlined cluster.

The fourth diagram in Figure 8 corresponds to the clustering schemes

z : 2 . . . 41 . . . 3, w : 123 . . . 4. Proposition 1 with n = 4 gives the position

of the origin in the z-scheme. Here the underlined clustering scheme is z :

2 . . . 41 . . . 3. The main information we extract from this scheme is that z1 is

in the limit at the center of mass of z2 and z3.

Let us consider system (9). The first pair of equations is consequence of

the last three and the center of mass, thus we forget it. The second and third

pairs are reduced to their dominant terms. The diagram and the w-cluster 123

give

m1Z21 ∼ −m3Z23, w1 ∼ m1W21 +m3W23,

m1Z31 ∼ −m2Z32, w1 ∼ m1W31 +m2W32,
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or

(17)
Z12

m3
∼ Z23

m1
∼ Z31

m2
, m1W21 +m3W23 ∼ m1W31 +m2W32.

Comparing to the similar computation in the previous diagram, we have an

equation less, but we know that z1 is at the z-center of mass of the triangle

z1, z2, z3, which gives the relation m2z12 ∼ m3z31. Our equations are now

homogeneous. We simply set z12 = m3, z31 = m2. Using Zkl = r−3kl zkl, the

identities above among the Zkl’s become

(18)
m1

r312
∼ −m2 +m3

r323
∼ m1

r313
.

Consider the identity w12 + w23 + w31 = 0. Multiplying it by (18) gives the

second identity (17). Multiplying it by directly by the first identity (17) gives

(19) − 1

m3r12
− 1

m2r13
∼ 1

m1r23
,

which basically tells us that the three infinite contributions to the potential

U cancel out. The system being homogeneous, (18) may be written as r23 =
3
√
m2 +m3, r12 = −ε2 3

√
m1, r13 = −ε3 3

√
m1, with ε32 = ε33 = 1. The masses

are positive, and we use the cubic root symbol for the positive cubic root. If

one of the εk’s was nonreal, the other one should be its conjugate according

to (19). The left-hand side of (19) would be negative, while the right-hand

side is positive. This is a contradiction. Finally,

ε2 = ε3 = 1, r12 = r13, (m2+m3)r
3
12 = −m1r

3
23, m2m3r12 = −m1(m2+m3)r23,

giving the relation

(20) m2
1(m2 +m3)

4 = m3
2m

3
3.

5.5. Fully edged diagram. Here we study the fifth diagram in Figure 8. We

met a 3-body equilibrium in Section 5.3. Here we have a 4-body equilibrium.

Such an equilibrium satisfies a complicated mass condition that we will not

discuss here. We will show in Theorem 3 and Theorem 5 how to reach our

main conclusions without discussing this condition.

5.6. First finiteness result. We collect the result of this part in a finiteness

statement that we will improve later.

Theorem 3. Suppose n = 4 and mk > 0, k = 1, . . . , 4. System (4), which

defines the normalized central configurations in the complex domain, possesses

finitely many solutions, except perhaps if after some renumbering, the masses

satisfy either condition (14), or condition (16), or condition (20).

Proof. Recall that the δkl’s, 1 ≤ k < l ≤ 4, are the six inverses of the mu-

tual distances in the configuration. Elementary geometry shows that giving five
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of the δ2kl’s determines finitely many geometrical configurations up to rotation.

If there are infinitely many solutions of (4), at least two of the δkl’s should take

infinitely many values. We suppose δ34 does, and we take it as the polynomial

function in Lemma 1. There is a sequence of normalized central configurations

such that δ34 → 0, i.e., |z34w34| → ∞. Whatever the renormalization is, Z

or W is unbounded on this sequence. We extract a singular sequence. It cor-

responds to one of the diagrams in Figure 8. It cannot be the fifth diagram,

where all the edges are zw-edges, which according to Estimate 1 means that all

the distances rkl ≈ ε→ 0. The codimension 2 mass condition (13) of the first

diagram is included in condition (14). So if there are infinitely many solutions,

the masses should satisfy one of the stated conditions. �

6. More finiteness results in the 4-body case

6.1. On the distances in the 3rd and 4th diagrams in Figure 8. Consider

n bodies and a diagram with zw-edges between any pair of the first n − 1

vertices. By Estimate 1 we know that zkl, wkl ≈ ε for k 6= l < n. If zn � ε and

wn � ε, then we have the fully edged diagram. We exclude this case. Either

zn, or wn, or both escape from the cluster, which has size ε. Let us assume

wn � zn. This implies ε ≺ wn and w1n ∼ · · · ∼ w(n−1)n.

First case. We assume that ε ≺ zn or that zn stays with the other zk’s

but does not cluster, i.e., zkn ≈ ε. We have z1n ∼ z2n ∼ · · · ∼ z(n−1)n in the

first subcase and only z1n ≈ z2n ≈ · · · ≈ z(n−1)n in the second subcase. This

gives r1n ∼ ±r2n ∼ · · · ∼ ±r(n−1)n and r1n ≈ r2n ≈ · · · ≈ r(n−1)n respectively.

According to Proposition 2 below, there is a contradiction with the position of

wn except if these distances are bounded.

Recall that “body n is w-close to the center of mass” (Definition 4) is

equivalent to “vertex n is not w-circled” but is weaker than “body n clusters

with the center of mass in w-coordinate,” which means that there exists an

l 6= n such that wn ≺ wl.

Proposition 2. If in a singular sequence all the distances from a given

body to the other bodies are unbounded, then this body clusters with the center

of mass in z-coordinate and in w-coordinate.

Proof. If all the distances from body n go to infinity, the equation wn =∑
k<nmkr

−3
knwkn shows that wn ≺ wln for some l < n. Then wn ≺ wl. Same

for z. �

Remark 5. An example is the singular sequence at infinity contained in

the Roberts’ example in the regime when the fifth body is at the center of mass

and at infinite distance from all the other bodies.
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Second case. We assume that zn clusters with a body, e.g., z1n ≺ ε. The

w-configuration is made of a cluster and an isolated body. By the center of

mass, (M − mn)w1 ∼ −mnwn, where M is the total mass. The equation

wn ∼ m1r
−3
1nw1n gives more precisely r31n ∼ M−1m−11 (M − mn). The other

distances go to infinity: r2kn = zknwkn ≈ (zkn/z1n)(z1nw1n) ≈ ε/z1n.

Conclusion. The r2kn’s are at most of order ε/z1n. This is at most ε−1. The

order ε−1 is possible if and only if z1n ≈ ε2, which corresponds to the second

case above, and, according to Estimate 1, to a maximal w-edge between 1

and n. This is the situation of the fourth diagram in Figure 8. The first and

the second cases cover all the possibilities for the third diagram in Figure 8. We

combine these results in an easy estimate on the product of two nonadjacent

distances; i.e., rijrkl, where i, j, k and l are distinct indices.

Proposition 3. Consider n bodies and a diagram with zw-edges between

any pair of the first n − 1 vertices. Then the product of any two nonadjacent

distances tends to zero.

Theorem 4. Suppose n = 4 and mk > 0, k = 1, . . . , 4. System (4), which

defines the normalized central configurations in the complex domain, possesses

finitely many solutions except perhaps if the masses are equal.

Proof. We repeat the argument in the proof of Theorem 3. If there were

infinitely many solutions of (4), at least two of the δkl’s should take infinitely

many values. We suppose δ12 does, and we take it as the polynomial function

in Lemma 1. There is a sequence of normalized central configurations such

that |δ12| → ∞, i.e., z12w12 → 0. As Z12W12 = δ412, Z or W is unbounded on

this sequence. We extract a singular sequence.

In the first and the second diagrams in Figure 8, no distance is going to

zero: the edges correspond to distances ≈ 1, while the pairs of vertices without

edges correspond to distances going to infinity. This is immediately deduced

from the clustering scheme and the usual estimates.

So we are in the third, the fourth or the fifth diagram, and other distances,

say r23 and r31, should also go to zero. They also take infinitely many values.

Consider r12r34. First suppose it takes finitely many values. Push again

r12 to zero. According to Proposition 3, no renumbered diagram has a finite

nonzero r12r34 with r12 → 0. This is a contradiction.

According to Lemma 1, r212r
2
34 = z12w12z34w34 is a dominating polynomial.

Push it to infinity. In the third, the fourth and the fifth diagram, it goes to

zero, according to Proposition 3. We are in the first or the second diagram.

The constraint on the masses in the first diagram are m1 = m3 and m2 = m4,

or m1 = m4 and m2 = m3. In the second diagram the constraint is m1m2 =

m3m4, which happens to include both cases of the first diagram.
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We repeat successively with r23 and r31 the argument with r12, giving

m1m3 = m2m4 and m1m4 = m2m3. For positive masses, the remaining case

is equal masses. �

Theorem 5. Suppose n = 4 and mk > 0, k = 1, . . . , 4. There exists

finitely many real normalized central configurations.

Proof. If there are infinitely many solutions of (4), infinitely many being

real, then Lemma 2 shows that there are infinitely many solutions of (4) for

which U = I =
∑

kmk(x2k+y2k) takes the same real positive value I0. We repeat

the proof of Theorem 4, replacing system (4) by the same system together with

the polynomial equation I = I0. We exclude all the singular sequences, except

in the equal mass case. In this case, we push a distance, say r12, to zero, which

again excludes the first two diagrams. The fifth diagram is such that I tends

to zero (and thus I = 0 by Lemma 2). It is excluded by the condition I0 > 0.

One checks that conditions (16) and (20) corresponding to the remaining two

diagrams are impossible with equal positive masses. �

Theorem 5 implies Theorem 1 as stated in the introduction. Theorem 5

also excludes the continua where x1, y1, x2, . . . , y4 are real but the mutual dis-

tances rkl = ±
»
x2kl + y2kl are not supposed to be positive.

To get Theorem 1 from Theorem 4 we could also remark that in the equal

mass case, the central configurations are known (see [1], [2]) and are finitely

many. Compared to Theorem 5 this would have two disadvantages. First,

[2] uses a computer algebra system, while our proof of Theorem 5 does not

require any difficult computation. Second, as [1] only concerns the positive

central configurations, we would not get Theorem 5, but just Theorem 1.

Note that Hampton and Moeckel also deduced Theorem 1 from a stronger

statement concerning the complex central configurations.

We close here our list of results on the 4-body problem. From now on we

study the planar 5-body problem.

7. Systematic construction of the 5-body diagrams

In Sections 7 to 9 we shall prove Theorem 2. The proof consists of two

main parts.

First, in Section 7, we derive a list of problematic diagrams. This is similar

to the study of Section 4 in the 4-body case. This list of sixteen diagrams is

in Figure 11. It is analogous to the list of five diagrams in Figure 8.

Second, in Section 8, we present calculations showing that except if some

explicit relations on the five masses are satisfied, thirteen of these diagrams

cannot be approached by a singular sequence. Similar relations probably also

exist for the three other diagrams, but we found them too complicated and

avoided their discussion.
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We conclude in Section 9 by showing that a continuum of central con-

figuration should approach at least one of the thirteen diagrams. For generic

masses it is impossible. It remains possible for positive masses satisfying some

explicit polynomial relations.

The first part (Section 7) also has substructure. As in the case of the

4-body problem, we divide possible diagrams into groups according to the

maximal number of strokes from a bicolored vertex. During the analysis of

all the possibilities we rule some of them out immediately, some with further

arguments, and some, the ones we cannot exclude without further hypotheses

on the masses, are incorporated into the list of sixteen in Figure 11. The second

group consists of six diagrams in Figures 9 and 10.

7.1. Five bodies. No bicolored vertex. We start by analyzing diagrams

with at least two connected components. We state a new proposition and then

eliminate a triple of certain diagrams.

Proposition 4. Suppose a diagram has one and only one maximal z-edge

and that this edge forms an isolated component. Call 1 and 2 the ends of this

edge and suppose m3
1 + m3

2 6= 0. Then a body k, 3 ≤ k ≤ n, cannot be such

that w1k ≺ w1l for all the other bodies l 6= k, 3 ≤ l ≤ n.

Proof. Using Rule 1a, we first deduce that 1 and 2 are z-circled. By Rule

1e, no other body is z-circled: if another body were z-circled, then there would

be another maximal z-stroke. The clustering scheme is z : 1 . . . c . . . 2, where c

is a cluster close to the origin formed by z3, . . . , zn.

Estimate 1 applied to maximal z-edges is w12 ≈ ε2. This is as small as

possible: as there is no other maximal z-edge, w12 ≺ w1k for any k ≥ 3. We

apply Proposition 1 to bodies 1 and 2, switching the roles of coordinates z

and w. In w-coordinate, the origin forms with w1 and w2 a small cluster of

size w12 ≈ ε2.
We take, for example, k = n in the proposition; i.e., assume that body n

is such that w1n ≺ w1l, 3 ≤ l < n. The w-clustering scheme contains the small

cluster w : . . . 12.n . . . .

We write 0 = m1f1 ∧ q1 + m2f2 ∧ q2 =
∑
mkmlr

−3
kl qk ∧ ql, k = 1, 2,

l = 3, . . . , n. Here qk ∧ ql = zkwl − wkzl ∼ zkwl by the above considerations.

We write r3kl = rklzklwkl, zkl ∼ −zk, wkl ∼ wl. Finally r−3kl qk ∧ ql ∼ −r
−1
kl . The

terms with l = n dominate the above sum, and we have

m1r
−1
1n ∼ −m2r

−1
2n .

Squaring this identity gives m2
1z
−1
1n w

−1
1n ∼ m2

2z
−1
2n w

−1
2n . By clustering, w2n ∼

w1n. By homogeneity and center of mass, we substitute m2 for z1n and −m1

for z2n, giving m2
1/m2 = −m2

2/m1, or m3
1 + m3

2 = 0, which is excluded by

hypothesis. �
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Let us now consider the disconnected diagrams. They have an isolated

edge, which cannot be a zw-edge according to Rule 2a. Let us say it is a

z-edge. The complement has three bodies. These three can have one, two or

three w-edges.

For one w-edge, the attached bodies have to be w-circled by Rule 1a. This

is the first diagram in Figure 9.

For two w-edges, take the same diagram and draw the second w-edge from

4 to 5. We show that vertex 4 with two w-edges is w-circled. As vertices 3 and

5 are w-circled, Rule 1e shows that at least one of w34 and w45 is maximal.

If both, then it contradicts the skew-clustering Rule 2c. Thus, only one is

maximal and, therefore, 4 is w-circled.

For three w-edges, there are three possibilities: the number of w-circled

vertices is either zero, or two or three (one is not possible by w-center of mass).

The remaining five diagrams are the three in Figure 9 and the first two in

Figure 11. Proposition 4 shows that the first and third diagrams in Figure 9

are impossible.

Consider the second diagram, with a z12-edge, a w34-edge, a w45-edge, and

nothing else. As we said, one of the w-edges is not maximal. The corresponding

distance goes to zero. The inverse of this distance cannot be the only infinite

contribution to the potential that is bounded (Rule 2h). We check one by one

the nine remaining distances rkl: none is going to zero. This is a contradiction.

The two remaining disconnected diagrams are shown in Figure 11, first

line. They will be discarded under further conditions on the masses in Sec-

tion 8.

7.2. Five bodies. C = 2. As in the 4-body case, there is no zw-edge, and

we start with Figure 4. The color of each exterior circle forces the color of

the edge (supposed unique by the case hypothesis) from this circle. If the two

edges go to the same vertex, we get the diagram corresponding to Roberts’

continuum at infinity, shown as the third in Figure 11.

If the two edges go to different vertices, the circling method demands a

cycle with alternating colors, incompatible with the odd number of edges.

1

4

2

3

5

1

4

2

3

5

1

4

2

35

Figure 9. Three impossible disconnected diagrams.
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7.3. Five bodies. C = 3. Suppose there is a Y -shaped vertex with, let us

say, two z-edges. By Rule 1a we w-circle the contact and the other ends of

the two drawn z-edges. By Rule 2e we should now draw from these ends two

w-edges to the fifth vertex. We see a quadrilateral with two adjacent z-edges

and two adjacent w-strokes, excluded by Rule 2g. Contradiction.

So there is no Y -shaped bicolored vertex. Then there is a zw-edge that we

should continue as in Figure 5. If we had a one color Y -shaped vertex in this

figure, it should be at vertex 3 or at vertex 4, as vertex 5 cannot be connected

to vertices 1 and 2. This would imply a triangular or a quadrilateral cycle

among vertices 1 to 4, of such a type excluded by Rule 2e or Rule 2g. So there

is no branching at all.

The diagram is a simple line, open or closed. The following two proposi-

tions study these interesting diagrams.

Proposition 5. If an isolated component of the diagram is a closed line

connecting successively p ≥ 4 of the bodies, then this component is of one

color or there are no adjacent edges of the same type. Moreover, Rule 2a (the

edges at both sides of a zw-edge should have different types) and Rule 2d (cycle

condition) should be respected.

Proof. Adjacent zw-edges are forbidden by Rule 2b. If there is a sequence

of at least two z-edges, and if this sequence is not all the component, it connects

to a w-stroke. Call k the connecting vertex and j the vertex connected to k by

the z-edge. Vertex k is the end of a w-stroke, so it is w-circled by Rule 1a. By

Rule 1b, j has to be w-circled too. But there is no w-stroke coming from j,

which contradicts Rule 1a. �

Proposition 6. If an isolated component of the diagram is an open line

connecting successively p of the bodies (just one line without branching, with

edges of any type), it has only one color.

Proof. By the argument of the previous proof, if the line has two colors,

there are no adjacent edges of the same type. If the end was a z-edge, we

would have a w-stroke before, and then w-clustering with the final body, thus

w-circled and isolated in the w-diagram, contradicting Rule 1a. So the end is

a zw-edge, connected to a z-edge or a w-edge. But by Rule 2a, a z-edge and

a w-edge should emanate from a zw-edge. Contradiction. �

Here we have a zw-edge. The open line is excluded. We consider the

closed line. The zw-edge is connected to a z-edge on one side, to a w-edge on

the other side. A quadrilateral is impossible according to Rule 2g. If the closed

line is a pentagon, we cannot alternate the types and have another zw-edge

(which would have different types on both sides). There remains the pentagon

with exactly one zw-edge, which is excluded by Rule 2h.
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7.4. Five bodies. C = 4. Consider a w-edge and three z-edges from the

same vertex. These edges connect the five vertices. By Rule 1a, we w-circle

the contact and the other ends of the three drawn z-edges. We should now

draw three w-edges from these three ends. Each would contradict Rule 2e.

Suppose there are two w-edges and two z-edges. Suppose the numeration

is as around vertex 5 in diagram 7, Figure 11. The only possible other edges

according to Rule 2e are the two horizontal edges in this diagram. We will

show that the z12 and w34 edges should exist. The color of these edges is

forced by Rule 2e. We will have two attached triangles, one of each color.

To show the existence of the z12 and w34 edges, suppose that, for example,

the z12-edge is missing. Then by Rule 1a, vertices 1 and 2 have to be z-circled.

By Rule 2c applied to z-edges 15 and 52, there is a skew clustering and 5 has

to be z-circled too, being z-close to a circled vertex. However, z-circle around

5 implies in turn z-circles around 3 and 4. This is a contradiction as no further

z-edges can be drawn neither from 3 nor from 4. The z12-edge is there, and

we have two attached triangles.

This “butterfly diagram” may be circled in three different ways, repre-

sented as diagrams 6 to 8 in Figure 11. The only constraint is that vertex

number 5, connecting both attached triangles, cannot be circled. If it was,

e.g., z-circled, then by Rule 1b, vertices 3 and 4 would also be z-circled, but

there are no z-edges from them.

Suppose there are two zw-edges; then Rule 2b enforces a third zw-edge.

We have a triangle of zw-edges that is isolated due to C = 4. As an isolated

zw-edge is excluded by Rule 2a, the two possibilities are diagrams 4 and 5 in

Figure 11. As the triangle has no maximal edge, the vertices are not circled

(see Estimate 1 and Rule 1e).

Suppose there is one zw-edge, one z-edge, and one w-edge emanating from,

e.g., vertex 2 as on the first diagram in Figure 6.

One possibility is not to have edges emanating from 1. Then we are forced

to z and w circle vertices and get the third diagram in Figure 6. Vertices 3

and 4 require further edges. If these edges go among 134, it violates Rule 2e.

There should be edges from bodies 3 and 4 to body 5. According to Rule 2g,

1

2 3

4
5

1

2 3

4

5

1 2

3
4

5

Figure 10. Three impossible diagrams with C = 5, 5 and 6 respectively.
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1 2

3

4

34
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5

3

1 2

34

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5

1

4

2

3

5
5

1 2

1 2

34

5

1 2

34

5

1 2

34

5

1 2

34

5

1 2

3

4 5

1 2

5

1 2

3

4

5

1 2

3

4
5

Figure 11. The sixteen 5-body diagrams.

none of these edges is a zw-edge. There is only one zw-edge in the diagram,

which contradicts Rule 2h.

The other possibility is to have edges emanating from 1. Edges 13 and

14 are prohibited by Rule 2e. A zw-edge is prohibited by Rule 2b and C = 4.

Thus, we should have a 15 stroke, e.g., a z-edge. Then Rule 1a forces a w-circle

around vertex 1 and consequently, by Estimate 2, also w-circles around 2, 3

and 5. A w-stroke should emanate from vertex 3 and may only go to vertex

5, again by Rule 2e. We have a quadrilateral 1235. By Rule 2g it has a zw-

edge between 3 and 5. By Rule 2a another w-stroke should emanate from this

zw-edge. Only one does not contradict the triangle rule 2e, a w45-stroke. But

this makes a quadrilateral 2345 that contradicts Rule 2g.
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Suppose finally there is a zw-edge and two z-edges. The junction vertex

is w-circled with the same contradiction as in the case C = 3, first paragraph.

7.5. Five bodies. C = 5. The case of a zw-edge and three z-edges is

excluded exactly as the case of a w-edge and three z-edges. See the first

paragraph of 7.4.

Consider a zw-edge, two z-edges and a w-edge. They connect the five

vertices. By Rule 2e, no edge from the end of the w-edge can exist, as it would

close an impossible triangle. Rule 1a gives a w-circle at the end of this w-edge.

Due to the center of mass, another vertex is w-circled. But all the other bodies

are w-close so they are all w-circled. Ends of z-edges need further w-edges,

which are impossible by Rule 2e. So we get the following conclusion.

Proposition 7. In a 5-body diagram with C = 5, any bicolored vertex

with five strokes has two zw-edges and another stroke.

Suppose vertex 1 is such a bicolored vertex. By Rule 2b two consecutive

zw-edges need to be completed into a triangle of zw-edges. The triangle of

zw-edges is formed by 123 and a w-edge connects 14 (see the first two diagrams

in Figure 10). Notice that by Estimate 1, vertices 1, 2 and 3 all either have

w-circles or all have no w-circles.

7.5.1. Suppose there is no edge from vertex 4, which is then w-circled.

7.5.1.1. Suppose there is no other edge at all. By center of mass the

w14-edge is maximal and 1, 2 and 3 are w-circled. This is the first diagram

in Figure 10. By Rule 1a, vertex 5 is not circled. The w-clustering scheme

is w : 123 . . . 5 . . . 4. We claim that the z-clustering scheme should be z :

2 . . . 5.14 . . . 3. To prove this claim, first observe that z14 ≈ ε2 by Estimate 1.

We see that vertex 5 cannot be too close from the small cluster z1, z4. If we

had z54 ≈ ε2, there should be an edge between 4 and 5 by Estimate 1. But

there is no edge there. So we can apply Proposition 1 to bodies 4 and 1. This

gives the small cluster with the origin, vertex 1 and vertex 4 in the z-scheme.

As there is no edge between k and 5, k = 1, . . . , 4, and wk5 ≈ ε−2, we have

r2k5 = zk5wk5 ≈ zk5ε
−2 � 1. According to Proposition 2, body 5 clusters with

the origin in z coordinate. We deduce the clustering scheme as announced.

More precisely, z5 ∼ m1z
−1/2
15 w

−3/2
15 +m4z

−1/2
45 w

−3/2
45 , as the omitted terms

have larger zk5. This is z5 ∼ m1z15r
−3
15 +m4z45r

−3
45 , but the right-hand side is

smaller than the left-hand side, according to the clustering scheme and rk5 � 1.

This is a contradiction.

7.5.1.2. Suppose there are other edges, but not from vertex 4. As C = 5,

such an edge does not reach vertex 1. So it should join vertex 5 to vertices 2 or

3. Two such edges would fully edge 1235 by Rule 2f, giving C > 5. So we are

left with diagrams similar to the first in Figure 10, but with one more edge,
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joining vertex 5 to 2, or to 3, which is similar. If there is the z25-edge, the

circling method puts double circles everywhere, contradicting Rule 1a. If there

is the w25-edge, this is the ninth diagram in Figure 11. The same diagram

without w-circles around vertices 1, 2 and 3 is impossible. Actually, by the

center of mass, this would force the clustering scheme w : 4 . . . 123 . . . 5. We

will exclude this clustering scheme while further discussing this diagram.

7.5.2. There are edges from vertex 4. By Rule 2e, they should go to

vertex 5, so there is just one edge from 4. Suppose there is another edge from

5. As C = 5, it cannot go to 1, so it closes a quadrilateral and there is no

further edge. By Rule 2g, the edge 45 is a zw-edge. Rule 2a applied to this

edge and Rule 2g applied to the quadrilateral contradict each other.

Thus we have a triangular kite with a long string (long of two edges),

without further edge. If the edge between 4 and 5 is a zw-edge, Rule 2a is

violated. If it is a z-edge, 5 is w-circled without w-edges. Let us consider the

only case left, a one color long string, the second diagram in Figure 10.

Let us show that all the vertices are w-circled, as shown in the diagram.

By Rule 1a, vertex 5 is w-circled. By Rule 1e, at least one of w14, w45 is max-

imal. Both being maximal contradicts the skewsymmetry Rule 2c. Only one

is w-maximal. The clustering scheme is either w : 123.4 . . . 5 or w : 123 . . . 4.5.

In both cases there are two main clusters and the center of mass puts w-circles

everywhere.

7.5.2.1. We study the skew-clustering of first type. Here w14 ≺ w45, z45 ≺
z14 and r14 → 0. The clustering scheme is z : 2 . . . 3 . . . 1.45, w : 123.4 . . . 5. By

Proposition 1 applied to bodies 5 and 4, the origin forms with these bodies a

small cluster: z : 2 . . . 3 . . . 1.45. We write z4 = m1r
−3
14 z14 + · · ·+m5r

−3
45 z54. We

claim that the first term in the right-hand side dominates all the other terms,

which is a contradiction. As z4 � z45 ≺ z14 and r14 → 0, it dominates the

left-hand side and the term r−345 z45. Comparing the terms written in the form

z
−1/2
k4 w

−3/2
k4 , we see it also dominates the remaining terms.

7.5.2.2. We study the skew-clustering of second type. Here r45 → 0 and

w45 ≺ w14. Let us try to emphasize the main characteristics of this case in a

general remark.

Further remark on Rule 2c and skew clustering. In the situation of Rule 2c,

let us say w14-edge, some edge from 4 to 5 with w45 ≺ w14, no edge from 1

to 5, we have not only z14 ≺ z45 as stated by Rule 2c, but also Z14 ≺ Z45

and Z15 ≺ Z45. These estimates are obvious if there is a z45-stroke, but still

valid if there is a w45-edge, being then simple consequences of the hypotheses

W14 ≈W45 and w45 ≺ w14.

In this situation, if we subtract equations z4 = m1Z14 + m5Z54 + · · · ,
z5 = m1Z15+m4Z45+· · · , we find z45 = (m4+m5)r

−3
45 z45+m1Z15−m1Z14+· · · .
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Here m4 + m5 6= 0, and by the nonmaximality of the corresponding edge,

r45 → 0. The first term in the right-hand side dominates all the displayed

terms. One should find elsewhere a term that cancels this dominant term.

We claim that in the case hypothesis such term does not exist. The cluster-

ing scheme is z : 2 . . . 3 . . . 14.5, w : 123 . . . 4.5. We have z5 = m1z
−1/2
15 w

−3/2
15 +

· · ·+m4z
−1/2
45 w

−3/2
45 . The omitted terms are smaller than the first: same w but

larger z. We have z4 = m1z
−1/2
14 w

−3/2
14 + · · · + m5z

−1/2
54 w

−3/2
54 . The first term

is larger than the omitted terms: same w, smaller z. Subtracting, no term

balances the dominating term (m4 +m5)Z45. This is a contradiction.

7.6. Five bodies. C = 6. There are six strokes and at most four edges, so

there should be at least two zw-edges from the considered vertex, which will

be conventionally number 5. There is the triangle 125 of zw-edges.

Suppose there are also the w35 and the w45 edges. There are four pos-

sibilities in Figure 11, all being “butterfly diagrams” made of two attached

triangles. If there is nothing between 3 and 4, this is the last diagram in Fig-

ure 10. There are w-circles at 3 and 4 by Rule 1a, at 5 by skew clustering

Rule 2c, then everywhere by Rule 1b. The two skew clustering options are

similar. We choose z : 1 . . . 35.4 . . . 2, w : 3 . . . 152.4. Application of Propo-

sition 1 to bodies 3 and 5 gives that z3, z5 and the origin form a cluster of

size z35. The underlined clustering scheme is z : 1 . . . 35.4 . . . 2.

We estimate z4 = · · · + m3z
−1/2
34 w

−3/2
34 + m5z

−1/2
54 w

−3/2
54 . The last term

dominates the omitted two (same w but smaller z) and the displayed one

(same z but smaller w). However, by skew clustering, r45 → 0. Thus, z54 ≺ z4,
which contradicts clustering of 5 near the origin.

If there are the w35 and the z45 edges, there is a w-circle around 3, and

then around the four other bodies, which form a cluster in w-coordinate. But

a w-circle around 4 is isolated; this is impossible.

If we are not in the above cases, there are Y -shape contacts with three

zw-edges. By Rule 2b, this is the fourteenth diagram in Figure 11, which has

no circle by Rule 1e together with Estimate 1, which tells that zw-edges are

not maximal edges.

7.7. Five bodies. C = 7. There are three zw-edges and another stroke.

By Rule 2b, the only possibility is the fifteenth diagram in Figure 11, a “big

kite.” The circling method applies.

7.8. Five bodies. C = 8. Rule 2b implies the fully zw-edged diagram, the

last in Figure 11. There is no maximal edge, thus no circle, by Rule 1e.

The conclusion of this section is that any singular sequence should con-

verge to one of the sixteen diagrams in Figure 11. Diagrams in Figure 11 are

numbered left to right within each row and rows ordered top to bottom.
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8. The sixteen remaining 5-body diagrams

In the previous process of eliminating 5-body diagrams, we supposed that

the mass of any cluster is nonzero and that m3
k + m3

l 6= 0 for any k, l. We

could not eliminate the diagrams in Figure 11. Some singular sequence could

still exist and approach any of these diagrams. Here we restrict to real positive

masses. Still this is not enough: the first thirteen diagrams will be excluded

except if the masses satisfy a polynomial relation. We number 8.1 to 8.16

the discussions of the constraints on the masses corresponding to each of the

sixteen diagrams from Figure 11, ordered horizontally from top left to bottom

right.

8.1. The clustering scheme is z : 1 . . . 345 . . . 2, w : 3 . . . 12 . . . 5 . . . 4 ac-

cording to Rule 2e, Estimate 2 and Proposition 4. The w-triangle without

circle indicates that the expressions for w3, w4 and w5 in (9) have only two

dominant terms, giving

(21)
W34

m5
∼ W45

m3
∼ W53

m4
.

The relation

(22)
Z34

m5
∼ Z45

m3
∼ Z53

m4

follows from relations such as z3 = m4Z43 + m5Z53 + · · · , where the omitted

terms are among the “crossed terms” Zkl, k = 1, 2, l = 3, 4, 5. But Zkl =

z
−1/2
kl w

−3/2
kl , where both zkl and wkl are separations of maximal order in this

diagram. So the crossed terms may be neglected in front of any other term. We

must still estimate the left-hand side term z3. It belongs to the cluster z3, z4,

z5. The center of mass of this cluster is of the same order asm3z3+m4z4+m5z5,

which is ≺ Z43 as sum of crossed terms. On the other hand, this cluster has

size of order z45 = r345Z45 ≺ Z45, the corresponding edge being nonmaximal.

Combining, z3 ≺ Z45 may be neglected also. We get one of the relation (22),

the others being similar. Together with (21) this gives a constraint as in 5.3.

This constraint is one of the following:

(23)
1
√
m3

=
1
√
m4

+
1
√
m5

,
1
√
m4

=
1
√
m5

+
1
√
m3

,
1
√
m5

=
1
√
m3

+
1
√
m4

.

8.2. This is the second 5-body diagram. There is the w-color triangle 345

and the z-color segment 12. Every vertex has a circle of the same color as the

edges from it. The computations are similar to those in 5.1. We first compute

m1q1 ∧ q1 +m2q2 ∧ q2. In the homogeneous expression of the leading term we

can substitute a finite value for w3, w4 and w5, and set similarly z1 = −m2,
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z2 = m1. Thus

m1m3√
−m2w3

± m2m3√
m1w3

± m1m4√
−m2w4

± m2m4√
m1w4

± m1m5√
−m2w5

± m2m5√
m1w5

= 0.

We set m1 = µ21 and m2 = µ22 and multiply the previous equation by µ1µ2:

µ31m3√
−w3

± µ32m3√
w3
± µ31m4√
−w4

± µ32m4√
w4
± µ31m5√
−w5

± µ32m5√
w5

= 0.

Setting

x = i
µ32
µ31

and dividing by iµ31 gives

± m3√
w3

(1± x)± m4√
w4

(1± x)± m5√
w5

(1± x) = 0.

The discussion of cases is mainly about the ± sign in the factors 1± x. There

are two cases: the three signs are the same, or one is different.

8.2.1. Same three signs. The condition does not involve m1 and m2:

(24)
m3√
w3
± m4√

w4
± m5√

w5
= 0.

Eliminating the
√
wk’s gives the condition A = 0, where

(25) A =
m4

3

w2
3

+
m4

4

w2
4

+
m4

5

w2
5

− 2m2
4m

2
5

w4w5
− 2m2

5m
2
3

w5w3
− 2m2

3m
2
4

w3w4
.

A solution to our problem consists of a 3-body central configuration with

masses m3, m4, m5, constrained by A = 0. Here the two masses m1 = µ21
and m2 = µ22 are not constrained. Finally, there is the center of mass con-

straint m3w3 +m4w4 +m5w5 = 0.

The resulting condition on the masses is obtained by straightforward elim-

ination (resultant) with the equations given in the appendix on 3-body central

configurations. There are eight factors, corresponding respectively to the three

usual Euler cases, both factors of the fourth Euler case and the three remaining

complex Lagrange case.
Elimination gives a homogeneous symmetric polynomial in m3, m4, m5

with integer coefficients. In its factorization we erase the powers of the linear
factor m3 + m4 + m5. There remain nine factors. Each of the 3-body factors
generates one factor, except the quadratic one that gives two factors, (m4 −
m5)

2 + (m5−m3)
2 + (m3−m4)

2 and an irreducible factor of degree 12 having
only + signs. The other seven factors are irreducible and have respective
degrees 36, 36, 36, 22, 28, 28 and 28. So we get nine irreducible polynomial
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conditions on the masses, at least one of them being nonzero when the masses
are positive. Here are these polynomial factors:

L1 = 6522m15
3 m

12
4 m

9
5 + 3528m17

3 m
2
5m

17
4 + 563 other terms, symmetric in m4,m5,

L2 = 2414m15
3 m

12
4 m

9
5 + 3528m17

3 m
2
5m

17
4 + 563 other terms, symmetric in m3,m5,

L3 = 495m24
4 m

12
5 − 452m17

3 m
2
5m

17
4 + 563 other terms, symmetric in m3,m4,

L4 = −110m7
3m

7
4m

8
5 − 30m7

3m
10
4 m

5
5 + 262 other terms, symmetric in m3,m4,m5,

L5 = m2
3 +m2

4 +m2
5 −m4m5 −m5m3 −m3m4,

L′
5 = 2m2

5m
10
4 +m12

3 + 89 other terms, symmetric in m3,m4,m5,

L6 = 866m11
4 m

17
5 − 1456m6

3m
15
4 m

7
5 + 431 other terms, symmetric in m4,m5,

L7 = −208m11
4 m

17
5 − 25528m6

3m
15
4 m

7
5 + 431 other terms, symmetric in m3,m5,

L8 = −184m11
4 m

17
5 + 9440m6

3m
15
4 m

7
5 + 431 other terms, symmetric in m3,m4.

8.2.2. One different sign. We choose, e.g.,

(26)
(
± m3√

w3
± m4√

w4

)
(1 + x)± m5√

w5
(1− x) = 0.

Notice that x = 0 or, as well, x = ∞ gives again the case 8.2.1. Eliminating

the
√
wk’s gives the condition

(27) A(1 + x4) + 4B(x+ x3) + 2Cx2 = 0,

where A is defined by (25) and

B =
(m2

3

w3
− m2

4

w4
+
m2

5

w5

)(m2
3

w3
− m2

4

w4
− m2

5

w5

)
,

C =
3m4

3

w2
3

+
3m4

4

w2
4

+
3m4

5

w2
5

+
2m2

4m
2
5

w4w5
+

2m2
5m

2
3

w5w3
− 6m2

3m
2
4

w3w4
.

We express (27) in the new variable y = (x+ x−1)/2 = i(µ32µ
−3
1 − µ31µ

−3
2 )/2

(28) Ay2 + 2By + (C −A)/2 = 0.

Again, the resulting condition on the masses is obtained by straightforward

elimination with the equation computed in the appendix. We get eight condi-

tions, corresponding to the eight types of 3-body central configurations. They

are polynomials in y, m3, m4, m5 with integer coefficients. We denote them

as polynomials Pk(y) in y with coefficients depending on m3, m4, m5. The

respective degrees in y are 10, 10, 10 for the three usual Euler cases, 6 and 4

for the two factors of the fourth Euler case, 8, 8, 8 for the remaining complex
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Lagrange cases:

P1(y) = (m3 +m4 +m5)
4L1y

10 + · · ·+K1 = 0,

P2(y) = (m3 +m4 +m5)
4L2y

10 + · · ·+K2 = 0,

P3(y) = (m3 +m4 +m5)
4L3y

10 + · · ·+K3 = 0,

P4(y) = (m3 +m4 +m5)
2L4y

6 + · · ·+K4 = 0,

P5(y) = (m3 +m4 +m5)
2L5L

′
5y

4 + · · ·+K5 = 0,

P6(y) = (m3 +m4 +m5)
4L6y

8 + · · ·+K6 = 0,

P7(y) = (m3 +m4 +m5)
4L7y

8 + · · ·+K7 = 0,

P8(y) = (m3 +m4 +m5)
4L8y

8 + · · ·+K8 = 0.

The Li’s are expressed in Section 8.2.1. The Ki’s will be presented in Sec-

tion 8.2.2.1. The coefficients of P3, P4, P5 and P8 are symmetric in (m3,m4).

The imaginary number y should be a root of a Pk. As all the coefficients

of Pk are real, this is a codimension 2 condition on y, m3, m4, m5. We should

have Pk(y) + Pk(−y) = 0 and Pk(y)− Pk(−y) = 0.

8.2.2.1. Special codimension 2 case. The odd part of Pk has the factor y.

A special case is y = 0 and Pk(0) = 0 for some k between 1 and 8. For

real positive masses, y = 0 means m1 = m2. The conditions Pk(0) = 0 are

nontrivial polynomial conditions on m3, m4, m5. The Pk(0)’s, k = 1, . . . , 8,

are respectively

K1 = 33066m8
4m

12
5 m

20
3 + 49220m21

4 m
3
5m

16
3 + 859 other terms,

K2 = 9806m8
4m

12
5 m

20
3 + 946m30

3 m
10
4 + 859 other terms,

K3 = 186m30
3 m

10
4 + 1206m6

4m
7
5m

27
3 + 859 other terms,

K4 = 2m21
3 m

3
4 − 10m21

3 m
3
5 + 319 other terms,

K5 = 16m7
3m

9
4 + 2m15

5 m3 + 141 other terms,

K6 = 94m25
4 m

7
3 − 36m25

3 m
7
5 + 557 other terms,

K7 = −68m25
4 m

7
3 − 774m25

3 m
7
5 + 557 other terms,

K8 = 1354m25
4 m

7
3 + 126m25

3 m
7
5 + 555 other terms.

8.2.2.2. General codimension 2 case. The other possibility is Pk(y) +

Pk(−y) = 0 and
Ä
Pk(y)−Pk(−y)

ä
/y = 0. We have two polynomial conditions

in y2 = (−m3
2m
−3
1 −m3

1m
−3
2 + 2)/4. We check they have no common factor.

The condition on the five masses is codimension 2.

8.3. Same constraint as 5.2:

(29) m1m3 = m2m4.
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8.4 and 8.5. The cyclic relations (21) and (22) are evident on the diagram,

giving again the constraint (23).

8.6–8.8 and 8.10–8.13. Seven butterflies. The clustering scheme is z :

1 . . . 345 . . . 2, w : 3 . . . 125 . . . 4 for the seven butterfly diagrams. But the rela-

tive position of the center of mass is not always the same. In all the cases, we

write

z5 = Az +Bz, with Az = m1Z15 +m2Z25, Bz = m3Z35 +m4Z45,

w5 =Aw +Bw, with Aw = m1W15 +m2W25, Bw = m3W35 +m4W45.

Then

(30) m1z1 +m2z2 = −m5Az + · · · ,

where the omitted terms are of lower order than the two terms in Az. We have

three similar relations with Aw, Bz, Bw. Finally we expand as in 5.1:

(31) 0 = m1f1 ∧ q1 +m2f2 ∧ q2 = m5q5 ∧A+ S,

with

A =

Ç
Az

Aw

å
, S =

∑
mkmlr

−3
kl qk ∧ ql, k = 1, 2, l = 3, 4.

8.6. Here we have Aw � ε2, Bz � ε2 by the usual estimates on maximal

edges. Then m1w1 + m2w2 � ε2 by (30), w5 � ε2 by the clustering scheme.

Finally Bw = w5 − Aw � ε2 and Az = z5 − Bz � ε2. In (31), Azw5 � ε4,

Awz5 � ε4, and thus S � ε4. Each term of S is of order ε2. This conclusion is

the same as in 5.1. We deduce in the same way the relation among the masses

(32) m1 = m2 and m3 = m4.

8.7, 8.8, 8.10–8.13. In the other butterfly diagrams we will look for other

types of relations. In all these diagrams we have an isolated triangle of z-edges

without z-circles, giving

(33)
Z12

m5
∼ Z25

m1
∼ Z51

m2
.

8.7. The lower w-wing is similar to the upper z-wing, so we have also

relations (21). Subtracting from the w1-equation the w2-equation, neglecting

Wkl with k = 1, 2 and l = 3, 4, which are as small as possible for this diagram,

and finally, as the corresponding edge is not maximal, neglecting w12 = r312W12

in front of W12, we get

(34) (m1 +m2)W12 ∼ m5W51 +m5W25.

Note that the three terms are of the same order according to Rule 2e.
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8.7.1. A particular case compatible with this equation is

(35)
W12

m5
∼ W25

m1
∼ W51

m2
.

This together with relation (33) gives the same relation as in 5.3:

(36) m
−1/2
1 ±m−1/22 ±m−1/25 = 0.

8.7.2. In the general case, one of the ∼ relations in (35) is not satisfied.

Then none of the ∼ relations in (35) is satisfied: (34) implies

− m1m2

m1 +m2

(W51

m2
− W25

m1

)
∼ m1

(W25

m1
− W12

m5

)
∼ m2

(W12

m5
− W51

m2

)
.

These three differences are of the same order as W12. We define

h = − m1m2

m1 +m2

(W51

m2
− W25

m1

)
and get Aw = (m1+m2)h. We know that m1w1+m2w2 = −m5Aw+· · · , where

the two terms forming Aw dominate the omitted terms. As we just assumed

that these two terms do not cancel each other, −m5Aw ∼ m1w1 +m2w2, or

(37) −m5h ∼
m1w1 +m2w2

m1 +m2
.

The small cluster w1, w2, w5 has size w12 = r312W12. As the corresponding

edge is not maximal, r12 → 0 and w12 ≺ W12 ≈ h. The center of mass in the

right-hand side of (37) is close to w5, so w5 ∼ −m5h. As w5 = Aw + Bw, we

get Bw ∼ −(m1 +m2 +m5)h.

8.7.3. We continue with the corresponding hypothesis and deductions con-

cerning the other wing of the butterfly. We have

(38) (m3 +m4)Z34 ∼ m5Z53 +m5Z45

and Bz = (m3 +m4)g, g ≈ Z34, z5 ∼ −m5g, Az ∼ −(m3 +m4 +m5)g.

In (31) there is the term

q5∧A = z5Aw−w5Az ∼ −m5g(m1+m2)h−m5h(m3+m4+m5)g = −m5Mgh,

with M = m1 + · · · + m5 6= 0. The second term in (31) should be estimated

and compared to the first term. We will do that after excluding some cases.

As we saw, the small cluster w1, w2, w5 is located around −m5h. We have

two cases : h ≺ w34 ≈ w45 ≈ w53 or h ≈ w34. Similarly for the other wing,

the small cluster z3, z4, z5 is located around −m5g. We have again two cases :

g ≺ z12 ≈ z23 ≈ z31 or g ≈ z12.
In the case h ≺ w34, w5 occupies in the limit the center of mass of the

triple w3, w4, w5 and we have, together with (21) and (38), the same system

as in 5.4. The relation among the masses is

(39) m2
5(m3 +m4)

4 = m3
3m

3
4.
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Similarly, in the case g ≺ z12, the relation among the masses is

(40) m2
5(m1 +m2)

4 = m3
1m

3
2.

We got a relation among the masses in all the cases except if h ≈ w34 ≈ W12

and g ≈ z12 ≈ Z34. In this last case, we come back to our discussion of (31).

The term in S is of the same or lower order than (z12w34)
−1/2. The product

gh is of order w34Z34 ≈ (z34w34)
−1/2. As z34 ≺ z12, the product gh dominates

the other terms in (31). This is a contradiction.

8.8. Here the cluster z3, z4, z5 has size ε2, the lower wing having maximal

w-edges. We know that m3z3+m4z4 � Z35, and Z35 ≈ ε2 by the maximality of

the z35-edge. Then the cluster and in particular z5 are at the center of mass of

z1, z2. Relation (34) is also valid. We get relation (40) by the same arguments

giving this relation in the discussion of diagram 8.7.

8.10 and 8.11. Here m1w1 + m2w2 = m1m5W51 + m2m5W52 + · · · . As

1 and 2 are not circled, the left-hand side is small: w1, w2, and consequently

their center of mass, are close to zero. This gives the last ∼ relation (35), the

first being also valid, as immediately seen in the diagram. Together with (33),

we get (36).

8.11, 8.12, 8.13. The edge 12 is a double edge, so it is not maximal. Rela-

tion (34) still holds as well as the other arguments of 8.8. We get relation (40).

8.9.1. Here we consider the ninth diagram in Figure 11 and make a first

hypothesis. We assume that w4 clusters with the cluster w1, w2, w3. It cannot

be as close as if the pair 14 had a zw-edge. The w-clustering scheme is w :

5 . . . 4.123. By the estimates, z25 ≺ z14 ≺ z12 and the z-clustering scheme is

z : 3 . . . 25 . . . 1.4. Proposition 1 applies to 2 and 5, placing the origin in the

small cluster z2, z5. The underlined clustering scheme is z : 3 . . . 25 . . . 1.4. We

have z4 ∼ m1r
−3
14 z14 and w4 ∼ m1r

−3
14 w14, so m2

1r
−4
14 ∼ z4w4 ≈ ε−1, r14 ≈ ε1/4,

z14 ≈ ε7/4, w14 ≈ ε−5/4, r24 ≈ r34 ≈ ε−1/8, r53 ≈ r51 ≈ r54 ≈ ε−1/2. Except

r14, only the distances r12 ≈ r23 ≈ r31 ≈ ε tend to zero. We have

(41) 0 =
Z23

m1
(w23 + w31 + w12) =

Z23w23

m1
+
Z31w31

m2
+
Z12w12

m3
+A+B,

where

A = w31

(Z23

m1
− Z31

m2

)
=

w31

m1m2
(z3 −m4Z43 −m5Z53),

B = w12

(Z23

m1
− Z12

m3

)
= − w12

m1m3
(z2 −m4Z42 −m5Z52).

We have Z43 ≈ Z42 ≈ ε11/8, Z25 ≈ ε2 (as r25 ≈ 1 for a maximal edge),

Z53 ≈ ε5/2. Finally A + B ∼ (m1m2)
−1w31z3 ≈ ε2. Note that the first three

terms in the right-hand side of (41) are terms of the potential divided by
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m1m2m3. Then −A − B estimates this contribution to the potential, which

is surprisingly small. There remains one and only one infinite contribution to

the potential, m1m4r
−1
14 . This is a contradiction, the potential is bounded.

8.9.2. The other possibility for the ninth diagram in Figure 11 is w14 ≈
w25 ≈ ε−2. We have two maximal w-edges on the diagram. We have r14 ≈
r25 ≈ 1. The z-clustering scheme is z : 14 . . . 3 . . . 25. The w-clustering scheme

may be w : 4.5 . . . 123 or w : 4 . . . 5 . . . 123. We get z4 = m1z14r
−3
14 +m5z54r

−3
45 +

· · · and z5 = m2z25r
−3
25 + m4z45r

−3
45 + · · · . As z45 ≈ ε, both z4 and z5 cannot

be as small as z14r
−3
14 ≈ z25r

−3
25 ≈ ε2. The second term should dominate

the first in one equation and thus also in the other. (It is the same term.)

This forces r345 ∼ m4 + m5 and m4z4 ∼ −m5z5. We have w45 ≈ ε−1. Only

w : 4.5 . . . 123 is possible. The other clustering scheme is impossible. We also

have m4z1 ∼ −m5z2.

The identity m4z4 + m5z5 ≺ z5 also fixes m1z1 + m2z2 + m3z3 ≺ z1.

Substituting m4z1 ∼ −m5z2 we get m4m2z2 + m4m3z3 ∼ m1m5z2. Up to a

factor, z2 = m4m3, z3 = m1m5 −m2m4, z1 = −m3m5 in the limit.

On the other hand,

(42)
Z23

m1
∼ Z31

m2
∼ Z12

m3
.

Multiplying by the relation w23 + w31 + w12 = 0 gives the cancellation of the

three infinite contributions to the potential:

− 1

m1r23
− 1

m2r31
∼ 1

m3r12
.

We combine with this other consequence of (42),

(43)
m1m5 −m2m4 −m3m4

m1r323
∼ −m3m5 −m1m5 +m2m4

m2r313
∼ m4 +m5

r312
.

We eliminate the distances and find a polynomial relation among the masses,

with integer coefficients. After factorizing some powers of the masses, we find

the irreducible polynomial

132m6
1m

7
3m

3
4m

5
2m

3
5 + 269m6

1m
6
3m

3
4m

6
2m

3
5 + 372 other terms,

homogeneous of degree 18 in (m1,m2,m3), homogeneous of degree 6 in (m4,m5),

symmetric under simultaneous transposition of (m1,m2) and (m4,m5).

8.14–8.16. The relation between the masses are difficult to compute in

these diagrams. But the estimates for the distances obtained in Section 6

apply. Proposition 3 applies: the product of two nonadjacent distances tends

to zero.
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9. Conclusions on the 5-body case

We first recall some simple tricks to estimate the distances between bodies

when a singular sequence approaches one of the diagrams in Figure 11. We only

use Estimates 1 and 2 of Section 3, based on the new normalization introduced

just before.

A distance of order ε corresponds to a zw-edge. No edge or a simple

edge, i.e., a z-edge or a w-edge, corresponds to a distance of higher order. A

maximal simple edge corresponds to a distance of order 1, i.e., bounded and

bounded away from zero. In the sixteen diagrams in Figure 11, a simple edge

happens to be maximal if and only if at least one of its ends is circled (compare

Rule 1e). There are nonmaximal simple edges in diagrams 1, 7, 8 and 10, and

they correspond to distances rkl such that ε ≺ rkl ≺ 1.

Estimates on the distances without edge require a case-by-case analysis in

diagram 14 (see Section 6.1) and diagram 5. In other diagrams, the clustering

scheme gives a simple and precise estimate. We will avoid further case-by-case

analysis and use only the simple estimates. For example, Proposition 8 below

looks like Proposition 3. We call a 4-product a quantity pij = r2ijr
2
klr

2
lmr

2
mk,

where i, j, k, l, m are all the indices from 1 to 5.

Proposition 8. In the limit corresponding to diagrams 9 to 16 in Fig-

ure 11, any 4-product is bounded. In diagrams 14 to 16, any 4-product tends

to zero.

Proof. In all these diagrams except number 10 the w-edges are maximal

and correspond to distances ≈ 1. All the distances without edges are ≈ ε−1/2

with the following exceptions. In diagram 9, r45 ≈ 1. In diagram 10, all the

distances are of lower order than in diagram 11, due to the nonmaximality of

the w-edges. In diagram 14, the distances are of lower order than in diagram

15 and are estimated in Section 6.1.

We estimate the 4-products. In diagram 9, p12 ≈ 1 and the others tend

to zero. In diagrams 11, 12, 13, p14 ≈ p13 ≈ p24 ≈ p23 ≈ 1 and the others tend

to zero. In diagram 10, the pij ’s are of lower order. In diagram 15, all the pij ’s

tend to zero. In diagram 14, the pij ’s are of lower order. �

Proposition 9. If along a singular sequence a distance tends to zero,

there are three distinct indices k, l, m such that the three distances rkl, rlm and

rmk tend to zero and such that, furthermore, the 4-product pij = r2ijr
2
klr

2
lmr

2
mk

tends to zero, where i and j are the other two indices in the set {1, . . . , 5}.
Proof. We easily check that only diagrams 2, 3, 6 have no distance going

to zero. By another inspection of the list of diagrams, we see that all the

other diagrams possess a triangle of nonmaximal edges. We take k, l, m as

the vertices of such a triangle. The corresponding distances tend to zero. The

other distance rij in the 4-product corresponds to an edge, and is consequently
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bounded, in all the diagrams except maybe in diagrams 5, 14 and 15. But

in these diagrams the triangle klm has zw-edges and the three distances ≈ ε,

while rij � ε−2 by Estimate 1. �

Remark 6. Assume that a single relation between the masses of the form

Q(mi,mj ,mk) = 0, where Q is a polynomial and i, j, k are distinct indices

from 1 to 5, allows a singular sequence to approach one of the diagrams from

number 1 to number 13 in Figure 11. By inspecting the list of conditions

obtained in Section 8, we see that vertices i, j and k are always joined by

an isolated triangle of strokes, either in the z-diagram or in the w-diagram.

We have rij ≈ rjk ≈ rki by Rule 2e. If these distances ≈ 1, we are in the

second diagram, Case 8.2.1. They tend to zero in the other diagrams, and the

4-product with this triangle of distances also tends to zero, by the argument

we used to prove Proposition 9.

In the statement of Theorem 2, let us replace the words “positive normal-

ized central configurations” by the words “normalized central configurations”

(see Definition 2). Theorem 2 is a corollary of the stronger

Theorem 6. For any choice of masses (m1, . . . ,m5) ∈ (R+
0 )5 \ A, where

R+
0 is the set of positive real numbers and A is a closed algebraic subset of

codimension 2, there are finitely many normalized central configurations of the

planar 5-body problem.

Proof. Given all the distances, only finitely many normalized configura-

tions are possible. Recall that on a continuum of normalized central config-

urations, a polynomial has only finitely many values or is dominating (see

Lemma 1). Thus, on a continuum of normalized configurations, at least one

of the r2ij ’s is dominating. Push it to zero. By Proposition 9, some 4-product

pij = r2ijr
2
klr

2
lmr

2
km also tends to zero, as also do rkl, rlm and rmk. As any

nonzero quantity going to zero on the continuum, pij , r
2
kl, r

2
lm and r2mk are

dominating. We push pij to infinity, thus forming a singular sequence that

approaches a diagram. According to Proposition 8, this is one of the first eight

diagrams in Figure 11.

i) Suppose it is diagram 2. We number the vertices as in the figure. There

is a polynomial condition on the masses, which defines a codimension 2 set in

Case 8.2.2. We put this set, and all the similar sets obtained by renumbering

the five bodies, in the exceptional set A. Case 8.2.2 is now excluded.

In the other case 8.2.1, the condition of the masses is codimension one

and involves only the three masses m3, m4, m5. The maximality of the 4 edges

corresponding to the 4-product p12 shows that p12 ≈ r12 ≈ r34 ≈ r45 ≈ r35 ≈ 1

on a singular sequence approaching our diagram.
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If p12 is dominating, we push it to infinity, thus forming a new singular

sequence that approaches a diagram which cannot be again diagram 2 with the

same numbering. By Proposition 8, this diagram is again among the first eight

diagrams. A condition on the masses corresponds to the new limiting diagram.

By Remark 6, this condition cannot be a single condition on the masses m3,

m4, m5, as p12 should then be bounded. It is an independent condition. We

add the corresponding codimension 2 sets to the exceptional set A.

If p12 is not dominating, we push r12 to infinity while p12 remains constant.

We can do that only if r12 is dominating. If r12 is not dominating, we keep it

constant and push another of the four distances to zero or to infinity. Indeed

one of the four distances r12, r45, r35, r34 is among the three distances rkl, rlm,

rmk involved in pij , which are dominating.

In any of these cases the limiting diagram cannot be number 2 with a

similar numbering. By Proposition 9, as p12 ≈ 1, it cannot be diagrams 14

to 16. (Interestingly, diagram 9 is also avoided, as in the only case where

p12 remains bounded, r12 tends to zero.) By Remark 6, the corresponding

condition cannot be a single condition on the masses m3, m4, m5. It is an

independent condition. We add the corresponding codimension 2 sets to the

exceptional set A. Case 8.2.1 is now forbidden, and a singular sequence can

no longer approach diagram 2 as pij →∞.

ii) Suppose it approaches diagram 6. The conditionm1 = m2, m3 = m4, or

the same condition after renumbering the bodies, should be satisfied. Adding

the corresponding codimension 2 sets to A forbids this possibility.

iii) Suppose the singular sequence approaches diagram 3 as pij →∞. We

number the vertices as in the figure. We have the condition m1m3 = m2m4.

The distance r13 goes infinity, so it is dominating. Push r12r34 to infinity, or

if not dominating, keep it constant and push r13 to zero. By Proposition 3,

we go to one of the first thirteen diagrams. None of the other polynomial

conditions obtained in Section 8 have the factor m1m3−m2m4. But we could

find the same condition again. This happens if the sequence tends to the third

diagram again, with bodies 1 and 3 on a diagonal of the square, body 2 and 4

on the other diagonal, and body 5 at the center. This is impossible in the case

where r13 tends to zero, as no distance tends to zero in diagram 3. This is also

impossible in the case where r12r34 goes to infinity, as this quantity is bounded

on such a diagram. A second independent condition on the masses should be

satisfied. We add the corresponding codimension 2 sets to A to forbid this

case.

iv) Each of the remaining diagrams gives a single relation among three

masses, let us say m3, m4, m5. By Remark 6, p12 tends to zero. We push it to

infinity and get another relation that, again by Remark 6, cannot be a single

polynomial relation among m3, m4, m5. The two independent relations define
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a codimension 2 closed algebraic subset, which we add to A. This concludes the

construction of A. The last possibility for a singular sequence is now forbidden.

There is no continuum of normalized central configurations if the masses do

not belong to A. �

Example. There are finitely many normalized central configurations with

m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 = 5.

Proof. We repeat the first paragraph of the previous proof, showing that

one of the first eight diagrams should be approached. In each diagram, we check

if our masses may satisfy the conditions. We compute the polynomials in 8.2.1

on these masses, permuted in all possible ways. They are nonzero. Case 8.2.2.1

requires two equal masses. Ours are not equal. We compute the even parts

of the polynomials in 8.2.2.2. They are nonzero. Diagram 2 in Figure 11

cannot be approached. As there is no relation between the masses such as

m2
3(m1 +m2)

4 = m3
1m

3
2 or m1m3 = m2m4 or m

−1/2
1 ±m−1/22 ±m−1/23 = 0, the

other seven diagrams cannot be approached. �

Remark 7. If the matter is to check the finiteness for a given set of five

rational masses, one can avoid the computation of the big polynomial condi-

tions in Sections 8.2 and 8.9.2. They were obtained by eliminating variables.

We can start the elimination process after substituting the masses.

Remark 8. A 5-tuple of masses with some equal masses easily falls in the

exceptional set. This is consistent with Roberts’ counter-example and with

the analogous complex counter-example we presented in Section 2. In these

examples, the masses are respectively (4, 4, 4, 4,−1) and (4, 4, 4, 4, 1).

Appendix on the complex 3-body central configurations

Consider the central configurations of the 3-body problem. In view of

the application to diagram 8.2, (i) the bodies are numbered 3, 4, 5; (ii) we

need the positions of the bodies, the origin being their center of mass; (iii) we

only need these positions up to re-scaling; (iv) we need all the complex central

configurations; (v) we need the projection of the configuration on one of the

complex coordinates axis, namely w as defined in Section 2, factorization of

the distances. We start with the equations

z3 = m4Z43 +m5Z53, w3 = m4W43 +m5W53,(44)

z4 = m3Z34 +m5Z53, w4 = m3W34 +m5W53,

z5 = m3Z35 +m4Z45, w5 = m3W35 +m4W45,

with the same notation as in (10), i.e., Zkl = r−3kl zkl, etc. This implies m3z3 +

m4z4 +m5z5 = 0, m3w3 +m4w4 +m5w5 = 0. We set M = m3 +m4 +m5. We
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assume M 6= 0, which is consistent with our general hypothesis on the masses.

By writing Mz3 = m4z43 +m5z53 and so on, the system becomesÇ
0

0

å
= m4

( 1

r334
− 1

M

)Çz43
w43

å
+m5

( 1

r335
− 1

M

)Çz53
w53

å
,(45) Ç

0

0

å
= m3

( 1

r334
− 1

M

)Çz34
w34

å
+m5

( 1

r345
− 1

M

)Çz54
w54

å
,Ç

0

0

å
= m3

( 1

r335
− 1

M

)Çz35
w35

å
+m4

( 1

r345
− 1

M

)Çz45
w45

å
.

If the three vectors ( z3
w3 ), ( z4

w4 ), ( z5
w5 ) are not on a line, the pairs of vectors in

the right-hand sides are independent. Thus r334 = r335 = r345 = M .

We call the case where r334 = r335 = r345 = M the Lagrange case and the

case where the three vectors are on a line the Euler case. In the complex

domain, the intersection of the Lagrange case and the Euler case is not empty.

In the Euler case, we have the triangular inequality ±r45 ± r35 ± r34 = 0.

Fix M = 1, which does not restrict the generality. The distances rkl in the

Lagrange case are either 1, j or j2, where j satisfies 1 + j + j2 = 0. So we are

both in the Lagrange and the Euler case if and only if the three distances are

1, j and j2.

In the Euler case we multiply the first w-equation in (44) by w45, the

second by w53, the third by w34 and sum up. By grouping the terms in Wkl,

we obtain two interesting expressions:

(46) 0 =

∣∣∣∣∣∣∣
m3 m4 m5

w45 w53 w34

W45 W53 W34

∣∣∣∣∣∣∣
or, expanding along the third line and using Mw3 = m4w43 +m5w53, Mw4 =

. . . ,

(47) w3W45 + w4W53 + w5W34 = 0.

These computations show that if (47) and

(48) m3w3 +m4w4 +m5w5 = 0

are satisfied, then (46) is satisfied. This homogeneous condition is, in the

collinear case, necessary for the existence of a re-scaling such that (44) is satis-

fied. We will use equations (47) and (48) as equations for Euler configurations.

Note that (47) does not depend on the masses, which is related to a remark

by Marchal (see [19, p. 44], [3]).

The relevant choices of signs in rkl = ±wkl fix four classes of Euler’s

central configurations. Three classes correspond to the three real Euler central
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configurations. Each comes with two pairs of complex configurations. For

example, in the case r34 = w34, r45 = w45, r53 = −w53, (47) becomes

0 =
w3

w2
45

− w4

w2
53

+
w5

w2
34

.

The numerator is an irreducible polynomial in (w3, w4, w5) of degree 5. The

fourth class, with w34 = r34, w45 = r45, w53 = r53, corresponds to the equation

0 =
w3

w2
45

+
w4

w2
53

+
w5

w2
34

.

The numerator is the quarter of

(w2
45+w

2
53+w

2
34)
Ä
(−w3+w4+w5)w

2
45+(−w4+w5+w3)w

2
53+(−w5+w3+w4)w

2
34

ä
.

The first factor is also a factor of w3
34 − w3

53, so it vanishes if w34 and w53 are

two distinct cubic roots of the same number. Then w45 is the third cubic root.

We are in the Lagrange case mentioned above.

To compute all the Euler cases, we may take the numerator of

0 =
w3

w45r45
+

w4

w53r53
+

w5

w34r34

and eliminate the rkl’s using the polynomial conditions r45 = w45, r
2
53 = w2

53,

r234 = w2
34.

In the same way, to avoid a lengthy discussion of the Lagrange cases, one

can use the relations z334w
3
34 = z345w

3
45 = z353w

3
53, substitute z34 = 1, z53 = −1−

z45, and eliminate z45 between the first and the second equations. Factorizing,

one can observe the common factor with the Euler case.

We may form a polynomial in w3, w4, w5, product of the polynomials in

the Euler case and in the Lagrange case. The factors are

S1 = w5
4 + w2

5w
3
4 − 2w4

4w3 + 4w3
5w3w4 − 2w4

4w5 + w2
3w

3
4 + 4w5w3w

3
4 + w2

3w5w
2
4

− 2w4
5w4 + w3

5w
2
4 − 5w3w

2
5w

2
4 − w3

3w
2
4 + w5

5 + 2w4
3w4 + w2

3w
3
5 + w2

3w
2
5w4

− 2w3w
4
5 + 2w4

3w5 − w3
3w

2
5 − w5

3 − 4w3
3w5w4,

S2 = w5
4 + w2

5w
3
4 − 2w4

4w3 − 4w3
5w3w4 − 2w4

4w5 + w2
3w

3
4 + 4w5w3w

3
4 − w2

3w5w
2
4

+ 2w4
5w4 − w3

5w
2
4 − w3w

2
5w

2
4 − w3

3w
2
4 − w5

5 + 2w4
3w4 − w2

3w
3
5 + 5w2

3w
2
5w4

+ 2w3w
4
5 + 2w4

3w5 − w3
3w

2
5 − w5

3 − 4w3
3w5w4,

S3 = w5
3 − 2w4

3w4 − 2w4
3w5 + w3

3w
2
4 + w3

3w
2
5 + 4w3

3w5w4 − 5w2
3w5w

2
4 + w2

3w
2
5w4

− w2
3w

3
5 + w2

3w
3
4 + 4w5w3w

3
4 + w3w

2
5w

2
4 − 4w3

5w3w4 − 2w4
4w3 + 2w3w

4
5

− w3
5w

2
4 − 2w4

4w5 + w2
5w

3
4 + w5

4 − w5
5 + 2w4

5w4,
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S4 = w3
3 − w2

3w4 − w3w
2
4 + w3

4 + 3w3w5w4 − w2
3w5 − w5w

2
4

− w2
5w4 − w3w

2
5 + w3

5,

S5 = w2
3 − w3w4 + w2

4 − w5w3 − w5w4 + w2
5,

S6 = w4
3 − 2w3

3w4 + w3w
3
4 + w4

4 − 2w3
3w5 + 6w2

3w5w4 − 3w5w3w
2
4 − 5w5w

3
4

− 3w3w
2
5w4 + 9w2

5w
2
4 + w3

5w3 − 5w3
5w4 + w4

5,

S7 = w4
3 + w3

3w4 − 2w3w
3
4 + w4

4 − 3w2
3w5w4 − 5w3

3w5 + 6w5w3w
2
4 − 2w5w

3
4

+ 9w2
3w

2
5 − 3w3w

2
5w4 − 5w3

5w3 + w3
5w4 + w4

5,

S8 = w4
3 − 5w3

3w4 + 9w2
3w

2
4 − 5w3w

3
4 + w4

4 + w3
3w5 − 3w2

3w5w4 − 3w5w3w
2
4

+ w5w
3
4 + 6w3w

2
5w4 − 2w3

5w3 − 2w3
5w4 + w4

5.

The power of the common factor S5 is irrelevant in our discussion. We may

substitute w3 = (m4w34 +m5w35)/M , etc., or express w3 through the relation

m3w3 +m4w4 +m5w5 = 0.
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