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Abstract

We show that on every product probability space, Boolean functions

with small total influences are essentially the ones that are almost measur-

able with respect to certain natural sub-sigma algebras. This theorem in

particular describes the structure of monotone set properties that do not

exhibit sharp thresholds.

Our result generalizes the core of Friedgut’s seminal work on properties

of random graphs to the setting of arbitrary Boolean functions on gen-

eral product probability spaces and improves the result of Bourgain in his

appendix to Friedgut’s paper.

1. Introduction

We call a function Boolean if its range is {0, 1}. The influence of a variable

on a Boolean function measures the sensitivity of the function with respect

to the changes in that variable. This basic notion arises naturally in many

different areas such as statistical physics and probability theory (e.g., phase

transition, percolation), computer science (e.g., complexity theory, hardness of

approximation, machine learning), combinatorics (e.g., set systems, products

of graphs), economics (e.g., social choice). In many instances, when a Boolean

function satisfies some nice properties or fits a description, it is possible to

bound the influences of its variables. Therefore, Boolean functions with small

total influences arise frequently in various contexts, and they are studied for

different purposes.

One of the major motivations for studying Boolean functions with small

total influences is a profound connection to the threshold phenomenon, dis-

covered by Margulis [Mar74] and Russo [Rus81]. The threshold behavior is

the quick transition of a property from being very unlikely to hold to being

very likely to hold as a certain parameter p increases. This behavior occurs in

various settings, and it is an instance of the phenomenon of phase transition in

statistical physics which explains the rapid change of behavior in many physical

processes. One of the main questions that arises in studying phase transitions
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is: “How sharp is the threshold?” That is, how short is the interval in which

the transition occurs? Margulis [Mar74] and Russo [Rus81] observed that the

sharpness of the threshold is controlled by the total influence of the indicator

function of the property. Hence in order to characterize the properties that do

not exhibit sharp thresholds, one needs to understand the structure of Boolean

functions that have small total influences.

Due to these motivations, Boolean functions with small total influences

are studied extensively, and some remarkable results about their structure

are discovered, e.g., by Kalai, Kahn and Linial [KKL88], Talagrand [Tal94],

Bourgain and Kalai [BK97], Friedgut [Fri98], [Fri99], and Bourgain [Bou99].

The KKL inequality [KKL88] and Friedgut’s threshold theorem [Fri99] are

both mentioned in [Bou00] as notable consequences of the interaction between

harmonic analysis and combinatorics. Let us also mention the more recent

work of Mossel, O’Donnell, and Oleszkiewicz [MOO10] that studies Boolean

functions where all variables have small influences and now is one of the main

tools in the study of the hardness of approximation in theoretical computer

science.

The purpose of this article is to essentially characterize Boolean func-

tions with small total influences by showing that every such function is almost

measurable with respect to a certain sub-sigma algebra.

1.1. Notations and definitions. For every statement P , we define 1[P ] := 1

if P is true, and 1[P ] := 0 otherwise. For every natural number n, denote

[n] := {1, . . . , n}, and for every set S, let P(S) denote the set of all subsets

of S. Consider a probability space X = (Ω,F , µ), and let Xn denote the cor-

responding product space endowed with the product probability measure µn.

Throughout this article X is always a probability space and n is a positive

integer, and all asymptotics are meant for n→∞.

As usual, we use O(X) to denote a quantity bounded in magnitude by CX

for some absolute constant C; if we need C to depend on a parameter, we will

indicate this by subscripts. Thus, for instance, OI(1) is a quantity bounded in

magnitude by some expression CI depending on I. We use o(X) to denote a

quantity Y with limn→∞ Y/X = 0.

For every x = (x1, . . . , xn) ∈ Xn, let xS := (xi : i ∈ S) ∈ XS denote the

restriction of x to the coordinates in S. For two disjoint sets S, T ⊆ [n], and

elements x ∈ XS and y ∈ XT , let (x, y) denote the unique element z ∈ XS∪T

with zS = x and zT = y.

Consider a subset S ⊆ [n]. In the sequel, by a slight abuse of notation, we

will view functions on XS as also being functions on Xn. More precisely, we

identify every function g : XS → R with the function on Xn that maps every

x ∈ Xn to g(xS).
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Let f : Xn → {0, 1} be a measurable function. For 1 ≤ j ≤ n, the

influence of the j-th variable on f is defined as

If (j) = Pr[f(x1, . . . , xj−1, xj , xj+1, . . . , xn)(1)

6= f(x1, . . . , xj−1, yj , xj+1, . . . , xn)],

where x1, . . . , xn, y1, . . . , yn are independent and identically disributed random

variables taking values in X according to its probability measure. The total

influence of f , denoted by If , is defined as

(2) If :=
n∑
j=1

If (j).

Remark 1.1. Let X = (Ω,F , µ), and let f : Xn → {0, 1} be measurable.

It follows from the measurability of f that the set

{(x1, . . . , xn, yj) : f(x1, . . . , xj−1, xj , xj+1, . . . , xn)

6= f(x1, . . . , xj−1, yj , xj+1, . . . , xn)} ⊆ Xn+1

is measurable, and thus If (j) is well defined. Moreover in many situations,

to prove an statement about influences, one can assume that Ω is a finite set.

Indeed since f is measurable, it is possible to find a finite sub-σ-algebra G of

F and a function g : Ωn → {0, 1}, measurable with respect to the product

σ-algebra generated by G, such that Pr[f(x) 6= g(x)] is arbitrarily small. Since

|If (j) − Ig(j)| ≤ 2Pr[f(x) 6= g(x)], the differences between the influences are

also small.

A particular case of interest is when X is defined by the Bernoulli dis-

tribution µp on {0, 1} with parameter 0 < p < 1, i.e., µp({1}) = p and

µp({0}) = 1 − p. We refer to the corresponding product probability distri-

bution µnp on {0, 1}n as the p-biased distribution.

A function f : {0, 1}n → {0, 1} is called increasing if f(x) ≤ f(y), for

every x, y ∈ {0, 1}n satisfying xi ≤ yi for every i ∈ [n]. For a set A ⊆ [n],

we say that a function f : Xn → R depends only on the coordinates in A if

f(x) = f(y) for every x, y ∈ Xn with xA = yA.

2. Main results

Margulis [Mar74] and Russo [Rus81] observed that for every increasing

function f : {0, 1}n → {0, 1}, we have

(3) 2p(1− p)dµp(f)

dp
= If ,

where µp(f) :=
∫
f(x)dµnp (x) and If is defined according to the p-biased dis-

tribution. This shows that the rate at which µp(f) increases with respect to

the increase in p is controlled by If . Consequently, in order to characterize the
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properties that do not exhibit sharp thresholds, one needs to understand the

structure of Boolean functions that have small total influences. We refer the

reader to [Fri99] for more details.

The problem of finding general conditions under which a sharp threshold

does not occur is first investigated by Russo [Rus81], [Rus82]. Later, Tala-

grand [Tal94], extending the work of Russo, showed that for p that is not too

small, if the total influence of f is small, then there are variables with large

influences.

In the setting of the p-biased distribution, for sufficiently large p, the works

of Talagrand [Tal94], Friedgut and Kalai [FK96], Bourgain and Kalai [BK97],

and Friedgut [Fri98] provide a good understanding of the situation. Intuitively

these results say that the total influence of f is large, unless the value of f(x)

is determined only by “local information” about x, e.g., by a few number of

coordinates. As the following simple example shows, these results turn out

however not to be useful when p is small, in particular when log 1
p ∼ log n,

often the case in applications.

Example 2.1. Set p = n−1, and let f : {0, 1}n → {0, 1} be defined as

f(x) = 1 if and only if x 6= (0, . . . , 0). Then If (1) = · · · = If (n) ≤ 2p, and

so If ≤ 2. However note that there is no variable with large influence, and

also f does not depend only on a small set of its coordinates. Indeed for every

constant size set A ⊆ [n], we have

E[f(x)|xA = (0, . . . , 0)] = 1− (1− p)n−|A| = 1− 1

e
± o(1),

where x is a random variable taking values in {0, 1}n according to the p-biased

distribution. Since Pr[xA = (0, . . . , 0)] ≥ 1 − |A|p = 1 − o(1), we conclude

that for every function g that depends only on the coordinates in A, we have

‖f − g‖1 ≥ 1
e − o(1).

No essential progress on the case of small p was made until the break-

through work of Friedgut [Fri99]. He gave a satisfactory description for func-

tions with small total influences when they correspond to graph or hypergraph

properties. Friedgut’s theorem is now an important tool in the study of the

threshold behavior of graph properties (see [Fri05]). A graph property on

n-vertex graphs is modeled by a function f : {0, 1}(
n
2) → {0, 1}, where each

of the
(n
2

)
coordinates correspond to the presence of one of the

(n
2

)
possible

edges. Since a graph property is invariant under graph isomorphisms, every

such function f is invariant under several permutations of its coordinates. Var-

ious steps of Friedgut’s proof rely heavily on these symmetry assumptions and

do not extend to the more general settings. However he conjectured [Fri99]

that his theorem holds without requiring any symmetry assumptions.
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In Theorem 2.6 we generalize that the core of Friedgut’s work [Fri99] form

graph properties on their corresponding p-biased probability space to general

properties (with no symmetry assumptions) on general product probability

spaces. Previously, in this general setting, the situation was only partially

understood by a result of Bourgain.

Theorem 2.2 ([Bou99, Prop. 1]). Let f : ({0, 1}n, µnp ) → {0, 1} be an

increasing function with
∫
f = α > 0, and suppose p = oIf (1). There exist

δ(α), C(α) > 0 and a subset S ⊆ [n] with |S| ≤ C(α)If such that

E[f(x)|xS = (1, . . . , 1)] ≥ α+ δ(α),

where x is a random variable taking values in {0, 1}n according to the p-biased

distribution.

Let J = {JS}S⊆[n] be a collection of measurable functions JS : XS →
{0, 1}. Define the map JJ : Xn → P([n]) as JJ : x 7→ ⋃

S⊆[n],JS(x)=1 S, and

note that the map x 7→ (JJ (x), xJJ (x)) is measurable. Let FJ be the sub-σ-

algebra on Xn induced by the map x 7→ (JJ (x), xJJ (x)); i.e., it is the coarsest

σ-algebra on Xn that makes this map measurable.

Definition 2.3. For a constant k > 0, a k-pseudo-junta is a function f :

Xn → {0, 1} that is measurable with respect to FJ for some J satisfying∫
|JJ (x)|dx ≤ k.

The functions that depend on a small number of coordinates are usually

referred to as juntas. The following example explains the choice of the name

“pseudo-junta” in Definition 2.3.

Example 2.4. Consider a set A ⊆ [n] with |A| ≤ k. Every measurable

function f : Xn → {0, 1} that depends only on coordinates in A is a k-pseudo-

junta. Indeed let J be defined by setting JS ≡ 1 if S = A, and JS ≡ 0

otherwise. Then JJ ≡ A, and hence f is measurable with respect to FJ .

Furthermore
∫
|JJ (x)|dx = k.

The following simple proposition shows that k-pseudo-juntas have small

total influences.

Proposition 2.5. Let f : Xn→{0, 1} be a k-pseudo-junta. Then If ≤2k.

Proof. Since f is a k-pseudo-junta, it is measurable with respect to FJ
for some J with

∫
|JJ (x)| ≤ k. Let x1, . . . , xn, y1, . . . , yn be independent and

identically distributed random variables taking values in X according to its

probability measure, and define the random variables x = (x1, . . . , xn) and

x(j) = (x1, . . . , xj−1, yj , xj+1, . . . , xn) for every j ∈ [n]. From the definition of
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JJ and the assumption that f is measurable with respect to FJ , it follows

that j ∈ JJ (x) ∪ JJ (x(j)) if f(x) 6= f(x(j)). Hence

If =
∑
j∈[n]

Pr
î
f(x) 6= f(x(j))

ó
≤
∑
j∈[n]

Pr
î
j ∈ JJ (x) ∪ JJ (x(j))

ó
≤ 2

∑
j∈[n]

Pr[j ∈ JJ (x)] ≤ 2

∫
|JJ (x)|dx ≤ 2k. �

Our main result is an inverse theorem that essentially says that the inverse

of Proposition 2.5 is also true.

Theorem 2.6 (Main Theorem). Consider a measurable function f : Xn

→ {0, 1}. For every ε > 0, there exists a e10
15ε−3dIf e3-pseudo-junta h : Xn →

{0, 1} such that ‖f − h‖1 ≤ ε.

The key point in Theorem 2.6 is that the bound e10
15ε−3dIf e3 has no de-

pendence on n.

Example 2.7. Consider the function f in Example 2.1. Define J={JS}S⊆[n]
as follows. For every S ⊆ [n], let JS : {0, 1}S → {0, 1} be defined as

JS : x 7→

1 xS = (1, . . . , 1),

0 otherwise.

Note that JJ : x 7→ {i : xi = 1}, and so
∫
|JJ (x)|dx = pn = 1. Furthermore

FJ is the original discrete σ-algebra on {0, 1}n, and hence f is measurable

with respect to it. So for this example, in Theorem 2.6 one can take h = f .

Due to the connection to the threshold phenomenon, the case of the

p-biased distribution in Theorem 2.6 is of particular interest. For this prob-

ability space, the proof of Theorem 2.6 can be simplified significantly since

many steps in the proof are to address the difficulties that arise in dealing

with general probability spaces. Furthermore this simpler proof provides some

improvement over the bound e10
15ε−3dIf e3 of Theorem 2.6. Therefore we first

state and prove the main theorem in the case of the p-biased measure, and

then in Section 5 we present the more complicated proof of the general case.

Theorem 2.8 (Main Theorem, the p-biased case). Consider a function

f : ({0, 1}n, µnp )→ {0, 1}. For every ε > 0, there exists a e10
10ε−2dIf e2-pseudo-

junta h : ({0, 1}n, µnp )→ {0, 1} such that ‖f − h‖1 ≤ ε.

Remark 2.9. In Theorem 2.8 the function h is a pseudo-junta, and so it

is measurable with respect to a σ-algebra FJ for a certain collection J of

functions JS : {0, 1}S → {0, 1}. It follows from the proof of Theorem 2.8 that

for p ≤ 1/2, it is possible to assume that JS are increasing. Similarly for

p ≥ 1/2, it is possible to assume that JS are decreasing.
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2.1. Increasing set properties. Let p = o(1) and f : ({0, 1}n, µnp )→ {0, 1}
be an increasing function with

∫
f = α > 0. Bourgain’s result (Theorem 2.2)

roughly speaking says that when If is small, it is possible to assign the value 1

to a small set of coordinates such that restricting to this assignment increases

the expected value of f in a nonnegligible amount. The next corollary to

Theorem 2.8 improves this result, as it shows that it is possible to increase the

expected value to arbitrarily close to 1.

Corollary 2.10. Let f : ({0, 1}n, µnp )→ {0, 1} be an increasing function

with α =
∫
f and ε > 0 be a constant. If p ≤ 1

2 , then there exists a subset

S ⊆ [n] with |S| ≤ e1012dIf e2α−2ε−2
such that

E[f(x)|xS = (1, . . . , 1)] ≥ 1− ε,

where x is a random variable taking values in {0, 1}n according to the p-biased

distribution.

Proof. Theorem 2.8 shows that there exists a collection J = {JS}S⊆[n]
with ∫

|JJ (x)| ≤ e1011dIf e2α−2ε−2
,

and a function h : {0, 1}n → {0, 1}, measurable with respect to FJ , such that

‖f − h‖1 ≤ αε
2 . Set k := e10

12dIf e2α−2ε−2
, and set

β := max
S⊆[n]:|S|≤k
y∈{0,1}S

Pr [f(x) = 1|xS = y and JJ (x) = S] ,

where x is a random variable taking values in {0, 1}n according to the p-biased

distribution. Since f and h are Boolean and h is measurable with respect to

FJ , we have

‖f − h‖1 =

∫
1[f 6=h] ≥

∫
1[|JJ |≤k]1[f=0]1[h=1] +

∫
1[|JJ |≤k]1[f=1]1[h=0]

≥ (1− β)

∫
1[|JJ |≤k]1[h=1] +

∫
1[|JJ |≤k]1[f=1]1[h=0]

≥ (1− β)

∫
1[|JJ |≤k]1[f=1] ≥ (1− β)

Å∫
f −

∫
1[|JJ |>k]

ã
≥ (1− β)

Å
α− k−1

∫
|JJ |
ã
≥ 3

4
(1− β)α,

which together with ‖f − h‖1 ≤ αε
2 implies that β ≥ 1− ε. Hence there exists

a subset S ⊆ [n] with |S| ≤ k and an element y0 ∈ {0, 1}S such that

(4) E [f(x)|xS = y0 and JJ (x) = S] ≥ 1− ε,

where x is a random variable taking values in {0, 1}n according to the p-biased

distribution. Define h1, h2 : {0, 1}[n]\S → {0, 1} as h1 : x 7→ f(y0, x) and
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h2 : x 7→ 1[JJ (y0,x)=S]. We can rewrite (4) as

(5) E [h1(z)|h2(z) = 1] ≥ 1− ε,

where z is a random variable taking values in {0, 1}[n]\S according to the

p-biased distribution. Since f is increasing, h1 is increasing. Furthermore

by Remark 2.9, we can assume that the functions JS are increasing. Thus h2
is decreasing, and then it follows from the classical FKG inequality (see [AS00])

that

E[f(x)|xS = (1, . . . , 1)] ≥ E [f(x)|xS = y0]

= E[h1(z)] ≥ E [h1(z)|h2(z) = 1] ≥ 1− ε. �

The following example shows that Corollary 2.10 fails to be valid when

the function f is not necessarily increasing.

Example 2.11. Set p = n−1, and let f : {0, 1}n → {0, 1} be defined

as f(x) = 1 if and only if
∑n
i=1 xi ≡ 0(mod 2). Similar to Example 2.1,

If (1) = · · · = If (n) ≤ 2p, and so If ≤ 2. Now consider a constant size A ⊆ [n]

and any y ∈ {0, 1}A. Let a ∈ {0, 1} be such that a ≡ ∑i∈A yi(mod 2). Then

we have
1

e
− o(1) ≤ (1− p)n−|A| ≤ E[f(x) = a|xA = y]

≤ 1− (n− |A|)p(1− p)n−|A|−1 ≤ 1− 1

e
+ o(1),

where x is a random variable taking values in {0, 1}n according to the p-biased

distribution. So for every sufficiently large n, not only is f far from being

determined by the coordinates in A, but also for every y ∈ {0, 1}A, both

E[f(x) = 0|xA = y] and E[f(x) = 1|xA = y] are well separated from 0 and 1

as they both belong to the interval [ 1
2e , 1−

1
2e ].

3. Generalized Walsh expansion

In this short section we review some basic facts about the generalized

Walsh expansions that are first defined by Hoeffding in [Hoe48] (see also

[ES81]). Let L2(X
n) denote the set of functions f : Xn → C that satisfy∫

|f(x)|2dx < ∞. Consider a subset S ⊆ [n] and a function f ∈ L2(X
n).

Then
∫
f(x)dxS :=

∫
f(x)

∏
i∈S dxi denotes the integral with respect to the

coordinates in S.

Definition 3.1. The generalized Walsh expansion of a function f ∈ L2(X
n)

is the unique expansion f =
∑
S⊆[n] FS that satisfies the following two proper-

ties:

(i) For every S ⊆ [n], the function FS depends only on the coordinates in

S, i.e., FS(x) = FS(xS);

(ii)
∫
FS(x)dxi ≡ 0 for every S ⊆ [n] and every i ∈ S.
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Note that it follows from Definition 3.1(i) and (ii) that for every T ⊆ [n],

we have
∫
fdx[n]\T =

∑
S⊆T FS . Consequently for every y ∈ Xn,

(6) FS(y) =
∑
T⊆S

(−1)|S\T |
∫
f(yT , x[n]\T )dx[n]\T ,

which shows that the generalized Walsh expansion is unique. It follows from

(6) that for every S ⊆ [n], we have

(7) ‖FS‖∞ ≤ 2|S|‖f‖∞.

Consider two subsets S1, S2 ⊆ [n]. If S1 6= S2, then Definition 3.1(i) and

(ii) guarantee that
∫
FS1FS2 = 0, or in other words the functions {FS : S ⊆ [n]}

are pairwise orthogonal. As a consequence we have Parseval’s identity:

(8) ‖f‖22 =
∑
S⊆[n]

‖FS‖22.

The influences of variables have simple descriptions in terms of the gener-

alized Walsh expansion. For a measurable function f : Xn → {0, 1}, and every

i ∈ [n], define

f (i) = f −
∫
fdxi =

∑
S:i∈S

FS .

It is easy to see that If (i) = 2‖f (i)‖22, which by Parseval’s identity implies

If (i) = 2
∑
S:i∈S

‖FS‖22.

Thus the total influence of f is given by the formula

(9) If = 2
∑
S⊆[n]

|S|‖FS‖22.

4. The p-biased case: Proof of Theorem 2.8

Without loss of generality we assume p ≤ 1
2 . We start from the general-

ized Walsh expansion f =
∑
S⊆[n] FS . In the first two steps we simplify this

expansion by removing some insignificant terms from it. We will arrive at a

set S ⊆ P([n]) such that ‖f −∑S∈S FS‖2 is small and meanwhile the func-

tions FS with S ∈ S satisfy certain properties. Then in the main step of the

proof we define the collection J = {JS}S⊆[n] and show that ‖g − E[g|FJ ]‖2
is small for g :=

∑
S∈S FS . Once this is established, it is straightforward to

finish the proof. In the case of the p-biased distribution, the functions FS
have simple descriptions: There exist real constants {f̂(S)}S⊆[n] such that

FS(x) = f̂(S)
∏
i∈S r(xi) where r(0) = −

»
p

1−p and r(1) =
√

1−p
p . Note that

f̂(S) =
∫
f(x)

∏
i∈S r(xi)dx, which implies |f̂(S)| ≤ p|S|/2. These properties of

FS are crucial in this proof.
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We abbreviate µnp to µ. We will define various constants, which for the

convenience of the reader are listed here:

C := dIfe, ε0 := 10−3ε, k := Cε−10 = 103ε−1C,

δ := 2−10
2k2 , ε1 := 3−10k

2
ε10k0 .

Set C, k, ε0 as above, and let ε1 > 0 be a constant to be determined later.

Let

S := {S ⊆ [n] : |S| ≤ k, ‖FS‖∞ > ε1} .
We wish to show that the total contribution of FS with S 6∈ S to ‖f‖22 is

insignificant. First we deal with S with |S| > k.

4.1. Step I: High frequencies. By (8) and (9), we have

(10)
∑

S:|S|≥k
‖FS‖22 ≤

If
k
≤ ε0.

4.2. Step II: Bourgain’s argument. Next we deal with S 6∈ S with |S| ≤ k.

This step is not self-contained and is based on Bourgain’s argument in [Bou99].

Following his proof (but substituting k in place of 10C), one can replace [Bou99,

inequality (2.17)] with the following:∫ ∑
S:|S|≤k

F 2
S1[|FS |≤ε1] ≤M

k
∫

max
S:|S|≤k

F 2
S1[|FS |≤ε1] + 2C3k/2ε2/3 + C1/2 3k

M1/2ε

≤Mkε21 + 2C3k/2ε2/3 + C1/2 3k

M1/2ε
,

where ε1, ε,M > 0 are arbitrary constants. Then by setting ε := 3−3kε30,

M := 310kε−100 , and ε1 := 3−10k
2
ε10k0 , we obtain

(11)
∑

S:|S|≤k,S 6∈S
‖FS‖22 ≤

∫ ∑
S:|S|≤k

F 2
S1[|FS |≤ε1] ≤

ε0
k
.

4.3. Step III: Main Step. Next we define the collection of functions J =

{JT }T⊆[n]. Set δ := 2−10
2k2 , and for every T ⊆ [n] with |T | ≤ k, define

JT : {0, 1}T → {0, 1} as

JT : y 7→

1
∑
S∈S,S⊇T

∫
1[|FS |≥ε1] ≥ δµ(y),

0 otherwise.

For T ⊆ [n] with |T | > k, define JT ≡ 0. Note that since p ≤ 1
2 , the functions

JT are increasing. The required bound on
∫
|JJ (x)| can be verified easily:∫

|JJ | ≤
∑

T⊆[n],|T |≤k
|T |
∫
JT ≤ k

∑
T :|T |≤k

∫
JT

≤ k

δ

∑
T :|T |≤k

∑
S∈S,S⊇T

∫
1[|FS |≥ε1]

∫
1

µ(xT )
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=
k

δ

∑
T :|T |≤k

∑
S∈S,S⊇T

2|T |
∫

1[|FS |≥ε1]

≤ k22k

δ

∑
S∈S

‖FS‖22
ε21

≤ k22k

δε21
≤ 210

3k2 ≤ e1010ε−2dIf e2 .

By (10) and (11) for g :=
∑
S∈S FS , we have ‖f − g‖22 ≤ 2ε0. Our

goal is now to show that ‖g − E[g|FJ ]‖22 is small. Note that E[g|FJ ] =∑
S∈S E[FS |FJ ]. However since FJ depends on all coordinates, it is diffi-

cult to analyze E[FS |FJ ] directly. To remedy this we define some auxiliary

σ-algebras. For every S ⊆ [n], define the collection JS := {J̃T }T⊆[n] in the

following way. For every T ⊆ [n], we set J̃T := JT if T ⊆ S, and J̃T ≡ 0

otherwise. Define g̃ :=
∑
S∈S F̃S , where F̃S := E[FS |FJS ]. For every S ⊆ [n],

the function F̃S depends only on the coordinates in S and furthermore the

σ-algebra FJS is coarser than the σ-algebra FJ . It follows from the latter that

g̃ is measurable with respect to FJ , and hence

(12) ‖g − E[g|FJ ]‖2 ≤ ‖g − g̃‖2 .

So in order to bound ‖g − E[g|FJ ]‖2, it suffices to bound ‖g − g̃‖2. Trivially

for every S ∈ S, ∫
FSF̃S =

∫
F̃ 2
S .

For S1, S2 ∈ S, since F̃S1 and F̃S2 depend respectively only on the coordinates

in S1 and S2, if S1 6⊆ S2 and S2 6⊆ S1, then by Definition 3.1(ii),∫
FS1FS2 =

∫
FS1F̃S2 =

∫
F̃S1FS2 = 0.

Similarly if S1 ∩ S2 = ∅, then∫
F̃S1F̃S2 =

Å∫
F̃S1

ãÅ∫
F̃S2

ã
=

Å∫
FS1

ãÅ∫
FS2

ã
= 0.

Thus

‖g − g̃‖22 =

∫ (∑
S∈S

FS − F̃S

)2

≤ (k + 1)
k∑
r=0

∫ Ñ ∑
S∈S,|S|=r

FS − F̃S

é2

= (k + 1)

∫ ∑
S∈S

F 2
S − F̃ 2

S +
∑

S1,S2∈S,S1∩S2 6=∅
S1 6=S2,|S1|=|S2|

F̃S1F̃S2

≤ 2k

∫ ∑
S∈S

F 2
S − F̃ 2

S(13)

+2k
∑

S1,S2∈S,S1 6=S2

S1∩S2 6=∅

∣∣∣∣∫ F̃S1F̃S2

∣∣∣∣ .(14)
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Bounding (13): Note that if |FS(x)| ≥ ε1, then JS(x) = 1 and hence

FS(x) = F̃S(x). Consequently by (11), we have

(13) = 2k

∫ ∑
S∈S
|FS − F̃S |2 ≤ 2k

∫ ∑
S∈S
|FS |21[|FS |≤ε1] ≤ 2k

ε0
k
≤ 2ε0.

Bounding (14): First let us prove a simple inequality. Consider a set

S ⊆ [n], and note that for every x ∈ {0, 1}S ,

µ(x)|FS(x)| = (p(1− p))|S|/2|f̂(S)|

is a constant that does not depend on x. This shows that |F̃S(x)| ≤ 2|S||FS(x)|
for every x ∈ {0, 1}S . It follows that for every subset T ⊆ S, and every

y ∈ {0, 1}T , we have∣∣∣∣∫ F̃S(y, xS\T )dxS\T

∣∣∣∣ ≤ 2|S|
∫
|FS(y, xS\T )|dxS\T(15)

= 2|S|+|S\T |
(p(1− p))|S|/2|f̂(S)|

µ(y)
≤ 22|S|

p|S|

µ(y)
.

Moreover if T ( S and JT (y) = 1, then

(16)

∫
F̃S(y, xS\T )dxS\T =

∫
FS(y, xS\T )dxS\T = 0.

Consider distinct S1, S2 ∈ S and y ∈ {0, 1}T where T := S1∩S2. If JT (y) = 1,

then by (16), ∫
F̃S1(y, x[n]\T )F̃S2(y, x[n]\T )dx[n]\T = 0.

Hence by (15), we have∣∣∣∣∫ F̃S1F̃S2

∣∣∣∣ =

∣∣∣∣∫ F̃S1(xT , xS1\T )F̃S2(xT , xS2\T )1[JT (xT )=0]

∣∣∣∣
=

∣∣∣∣∫ Å∫ F̃S1(xT , xS1\T )dxS1\T

ã
×
Å∫

F̃S2(xT , xS2\T )dxS2\T

ã
1[JT (xT )=0]dxT

∣∣∣∣
≤ 22|S1|+2|S2|p|S1|+|S2|

∫
1[JT (xT )=0]

µ(xT )2
dxT .

Since for S ∈ S we have
∫

1[|FS |≥ε1] ≥ p|S|, it follows from the definition of JT
that for every T ⊆ [n],∑

S∈S,S⊇T
p|S|

∫
1[JT (xT )=0]

µ(xT )2
dxT =

∑
S∈S,S⊇T

p|S|
∑

xT∈{0,1}T

1[JT (xT )=0]

µ(xT )

≤
∑

xT∈{0,1}T
δ ≤ 2|T |δ,



A STRUCTURE THEOREM FOR BOOLEAN FUNCTIONS 521

and thus

(14) ≤ 2k
∑
T⊆[n]

∑
S1,S2∈S

S1 6=S2,S1∩S2=T

24kp|S1|+|S2|
∫

1[JT (xT )=0]

µ(xT )2

≤ 25k
∑
T⊆[n]

∑
S∈S,S⊇T

p|S|2|T |δ

≤ 26kδ
∑
T⊆[n]

∑
S∈S,S⊇T

p|S| ≤ 27kδ
∑
S∈S

p|S| ≤ 27kδ
∑
S∈S

‖FS‖22
ε21

≤ 27kδε−21 ≤ ε0.

Now from our bounds on (13) and (14), we conclude that ‖g − g̃‖22 ≤ 3ε0.

4.4. Step IV: Finishing the proof. In the previous steps we have shown

that both ‖f − g‖22 and ‖g − g̃‖22 are small. It follows that

‖f − E[f |FJ ]‖22 ≤ ‖f − E[g|FJ ]‖22
≤ 2‖f − g‖22 + 2‖g − E[g|FJ ]‖22 ≤ 4ε0 + 2‖g − g̃‖22 ≤ 10ε0.

Define h : {0, 1}n → {0, 1} as

h(x) :=

0 E[f |FJ ] ≤ 1
2

1 E[f |FJ ] > 1
2 .

Note that h is a Boolean function and it is measurable with respect to FJ .

Since f is a Boolean function, we have

‖f − h‖1 =

∫
|f − h|2 ≤

∫
4|f − E[f |FJ ]|2 ≤ 40ε0 ≤ ε.

5. The general case: Proof of Theorem 2.6

First note that by Remark 1.1, we can assume that X is a finite probability

space. We start from the generalized Walsh expansion f =
∑
S⊆[n] FS . The

first two steps are similar to the proof of Theorem 2.8 where we simplify this

expansion by removing some insignificant terms from it. We will arrive at a

set S ⊆ P([n]) such that ‖f−∑S∈S FS‖2 is small and meanwhile the functions

FS with S ∈ S satisfy certain properties. In general the functions FS are not

necessarily as well behaved as in the case of the p-biased distribution. So in the

third step we approximate
∑
S∈S FS with g :=

∑
S∈S GS where for every S ∈ S,

the function GS (similar to FS) satisfies the conditions in Definition 3.1(i) and

(ii) and furthermore it has some other desirable properties. In the fourth and

fifth steps we define the collection J = {JS}S⊆[n] and show that ‖g − E[g|FJ ]‖2
is small. Then in the last step, which is similar to the last step of the proof of

Theorem 2.8, we conclude the theorem.
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Set C := dIfe. In the proof we will define various constants, which for the

convenience of the reader are listed here:

ε0 = 10−3ε, k = Cε−10 = 103ε−1C,

δ0 = 2−2k, ε1 = 3−10k
2
ε10k0 ≥ e−108C2ε−2

,

δ = 2−10
3k2ε101 ≥ e−10

10C2ε−2
, ε2 = δ10k ≥ e−1014C3ε−3

.

5.1. Step I: High frequencies. Set ε0 := 10−3ε and k := Cε−10 , and notice

that by (8) and (9), we have

(17)
∑

S:|S|≥k
‖FS‖22 ≤

If
k
≤ ε0.

5.2. Step II: Bourgain’s argument. As we mentioned in the proof of The-

orem 2.8, following Bourgain’s proof in [Bou99] (but substituting k in place of

10C), one can replace [Bou99, inequality (2.17)] with the following:∫ ∑
S:|S|≤k

F 2
S1[|FS |≤ε1]≤M

k
∫

max
S:|S|≤k

F 2
S1[|FS |≤ε1] + 2C3k/2ε2/3 + C1/2 3k

M1/2ε

≤Mkε21 + 2C3k/2ε2/3 + C1/2 3k

M1/2ε
,

where ε1, ε,M > 0 are arbitrary constants. Then by setting ε := 3−3kε30,

M := 310kε−100 , and ε1 := 3−10k
2
ε10k0 , we obtain

(18)

∫ ∑
S:|S|≤k

F 2
S1[|FS |≤ε1] ≤ ε

2
0k
−1.

Define

S :=

ß
S ⊆ [n] : |S| ≤ k,

∫
F 2
S1[|FS |≤ε1] ≤ ε0k

−1
∫
F 2
S

™
,

and notice that by (18), we have

(19)
∑

S:|S|≤k,S 6∈S

∫
F 2
S ≤

∑
S:|S|≤k

k

ε0

∫
F 2
S1[|FS |≤ε1] ≤ ε0.

5.3. Step III: Modifying the generalized Walsh functions. Now we will fo-

cus our attention to S ∈ S as (17) and (19) show that the generalized Walsh

functions FS with S 6∈ S have a negligible contribution to the L2 norm of f .

Define δ := 2−10
3k2ε101 , and for every S ∈ S, let ψS : XS → {0, 1} be

defined as

ψS(y) :=

1 maxT⊆S δ
−2|S\T | ∫ 1[|FS(yT ,xS\T )|>ε1]dxS\T ≥ 1,

0 otherwise.

The next lemma provides some information about the generalized Walsh ex-

pansion of FSψS .
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Lemma 5.1. Consider an S ∈ S . Let FSψS =
∑
T⊆S HT be the general-

ized Walsh expansion of FSψS . Then ‖HT ‖∞ ≤ δ for every T ( S.

Proof. We claim that for every R ( S,

(20)

∥∥∥∥∫ FSψSdxS\R

∥∥∥∥
∞
≤ 23kδ2.

Suppose to the contrary that there exists y ∈ XR such that∣∣∣∣∫ FS(y, xS\R)ψS(y, xS\R)dxS\R

∣∣∣∣ > 23kδ2.

Then for every T ⊆ R, we have

(21) δ−2|S\T |
∫

1[|FS(yT ,xS\T )|>ε1]dxS\T < 1,

as otherwise ψS(z) = 1, for every z ∈ XS with zR = y, and in this case, since

R 6= S, we would have∫
FS(y, xS\R)ψS(y, xS\R)dxS\R =

∫
FS(y, xS\R)dxS\R = 0.

Now by (7), (21), and the definition of ψS , we have∣∣∣∣∫ FS(y, xS\R)ψS(y, xS\R)dxS\R

∣∣∣∣
≤ 2k

∫
ψS(y, xS\R)dxS\R

≤ 2k
∫ ∑

T⊆S,T 6⊆R
δ−2|S\T |

Å∫
1[|FS |>ε1]dxS\T

ã
dxS\R

= 2k
∑

T⊆S,T 6⊆R
δ−2|S\T |

∫
1[|FS |>ε1]dxS\(T∩R)

≤ 22kδ2
∑
T⊆R

δ−2|S\T |
∫

1[|FS |>ε1]dxS\T ≤ 23kδ2,

which establishes our claim (20). Now by (6) and (20), for every T ( S, we

have

‖HT ‖∞ =

∥∥∥∥∥∥∑R⊆T(−1)|T\R|
∫
FSψSdx[n]\R

∥∥∥∥∥∥
∞

≤
∑
R⊆T

∥∥∥∥∫ FSψSdx[n]\R

∥∥∥∥
∞
≤ 24kδ2 ≤ δ. �

For every S ∈ S, define GS := HS , where FSψS =
∑
T⊆S HT is the

generalized Walsh expansion of FSψS . The function GS satisfies the conditions

in Definition 3.1(i) and (ii). Lemma 5.2 below lists some other properties of

GS . Part (a) shows that for S ∈ S, similar to FS , most of the L2 weight of

GS is concentrated on {x : |FS(x)| ≥ ε1}. Part (b) shows that GS is a good
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approximation of FS in the L2 norm. Parts (c) and (d) in particular show that

it is possible to bound the sum of the L1 norms of GS for S ∈ S. The functions

FS do not necessarily satisfy this latter property, and it is for this reason that

we replace them with the functions GS . For every S ∈ S, define aS : XS → R
as

aS : y 7→ 23kδ−2k
∑
T⊆S

∫
1[|FS(yS\T ,xT )|>ε1]dxT .

Lemma 5.2. For every S ∈ S , we have

(a):
∫
G2
S1[|FS |≤ε1] ≤ 2ε0k

−1‖FS‖22.

(b): ‖FS −GS‖22 ≤ 10ε0k
−1‖FS‖22.

(c): For every y ∈ XS , we have |GS(y)| ≤ aS(y).

(d):
∑
S∈S

∫
aSdx[n] ≤ δ−3k.

Proof. Consider S ∈ S, and let FSψS =
∑
T⊆S HT be the generalized

Walsh expansion of FSψS . By Lemma 5.1, we have

(22) ‖FS −GS‖∞ ≤
∑
T(S
‖HT ‖∞ ≤ 2kδ.

Hence by (7), (8), and the assumptions that S ∈ S and δ = 2−10
3k2ε101 , we

have ∫
F 2
S ≥

∫
F 2
Sψ

2
S ≥

∫
G2
S ≥

∫
G2
S1[|FS |>ε1]

≥
∫

(|FS | − 2kδ)21[|FS |>ε1]

≥
∫
F 2
S1[|FS |>ε1] − 2k+1δ

∫
|FS |1[|FS |>ε1]

≥
∫
F 2
S1[|FS |>ε1] − 23kδ

∫
1[|FS |>ε1]

≥ (1− ε0k−1)
∫
F 2
S − 23kδε−21

∫
F 2
S ≥ (1− 2ε0k

−1)

∫
F 2
S .

Then ∫
G2
S1[|FS |≤ε1] =

∫
G2
S −

∫
G2
S1[|FS |>ε1]

≤
∫
F 2
S − (1− 2ε0k

−1)

∫
F 2
S ≤ 2ε0k

−1‖FS‖22,

which verifies Part (a). In order to prove Part (b) note that by Part (a), (22),

and the assumptions that S ∈ S and δ = 2−10
3k2ε101 , we have

‖FS −GS‖22 =

∫
|FS −GS |21[|FS |≥ε1] +

∫
|FS −GS |21[|FS |<ε1]

= 22kδ2
∫

1[|FS |≥ε1] + 2

∫
(F 2

S +G2
S)1[|FS |<ε1]
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≤ 22kδ2ε−21

∫
F 2
S + 2

∫
F 2
S1[|FS |<ε1] + 2

∫
G2
S1[|FS |<ε1]

≤ 22kδ2ε−21 ‖FS‖
2
2 + 2ε0k

−1‖FS‖22
+ 4ε0k

−1‖FS‖22 ≤ 10ε0k
−1‖FS‖22.

To prove Part (c) notice that by (6), (7), and the definition of ψS ,

|GS |=

∣∣∣∣∣∣∑R⊆S(−1)|S\R|
∫
FSψSdxS\R

∣∣∣∣∣∣ ≤ ∑
R⊆S

2k
∫
ψSdxS\R

≤ 2k
∑
R⊆S

∫
δ−2k

∑
T⊆S

Å∫
1[|FS |>ε1]dxS\T

ã
dxS\R

≤ 2kδ−2k
∑
R⊆S

∑
T⊆S

∫
1[|FS |>ε1]dxS\(T∩R) ≤ 23kδ−2k

∑
T⊆S

∫
1[|FS |>ε1]dxT .

It remains to prove Part (d). We have∑
S∈S

∫
aSdx[n] = 23kδ−2k

∑
S∈S

∑
T⊆S

∫
1[|FS |>ε1]dxTdx[n]

≤ 24kδ−2k
∑
S∈S

∫
1[|FS |>ε1]

= 24kδ−2kε−21

∑
S∈S
‖FS‖22 ≤ 24kδ−2kε−21 ≤ δ

−3k. �

5.4. Step IV: The sigma algebra. In Steps 1–3 of the proof we approxi-

mated f in the L2 norm with g :=
∑
S∈S GS , where the functions GS satisfy

certain properties. Next we will define the collection J = {JS}S⊆[n] so that

‖g − E[g|FJ ]‖2 is small and
∫
|JJ | is bounded by a constant that does not de-

pend on n. In order to define J , we need to introduce the auxiliary functions

ξT : XT → {0, 1} for every T ⊆ [n] with |T | ≤ k. Set ε2 := δ10k, and for every

T ⊆ [n] with |T | ≤ k, define ξT : XT → {0, 1} as

ξT : y 7→

1
∑
R⊆T

∑
S∈S:S⊇T

∫
aS(yR, xS\R)dxS\R > ε2,

0 otherwise.

Then set δ0 := 2−2k, and for every T ⊆ [n] with |T | ≤ k, define JT : XT →
{0, 1} as

JT : y 7→

1 maxR⊆T δ
−2|T\R|
0

∫
ξT (yR, xT\R)dxT\R ≥ 1,

0 otherwise.

For T ⊆ [n] with |T | > k, define JT ≡ 0. In the sequel it will be useful to bear

in mind that for S ∈ S,

(23) 1[|FS |>ε1] ≤ ξS ≤ JS ,
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and in general for every T ⊆ [n] with |T | ≤ k, it holds that

(24) ξT ≤ JT .

In order to be able to bound ‖g − E[g|FJ ]‖2 and
∫
|JJ | we need to prove

a few lemmas.

Lemma 5.3. Consider a set T ⊆ [n] with |T | ≤ k. For every R ⊆ T and

every y ∈ XR, either
∫
JT (y, xT\R)dxT\R ≤ δ0, or JT (z) = 1 for every z ∈ XT

with zR = y.

Proof. Suppose that JT (z) = 0 for at least one z ∈ XT with zR = y. Then

by the definition of JT , for every A ⊆ R, we have

(25)

∫
ξT (yA, xT\A)dxT\A < δ

2|T\A|
0 .

Hence for every B ⊆ T with B 6⊆ R, setting A := B ∩R, we have∫
1î∫

ξT (yA,xT\A)dxT\B≥δ
2|T\B|
0

ódxT\R
=

∫ Ç∫
1î∫

ξT (yA,xT\A)dxT\B≥δ
2|T\B|
0

ódxT\Bå dxT\R
≤
∫ Å∫

ξT (yA, xT\A)δ
−2|T\B|
0 dxT\B

ã
dxT\R

= δ
−2|T\B|
0

∫
ξT (yA, xT\A)dxT\A

≤ δ−2|T\B|0 δ
2|T\A|
0 ≤ δ20 .

Then using (25) we conclude that∫
JT (yR, xT\R)dxT\R ≤

∫ ∑
A⊆R

1î∫
ξT dxT\A≥δ

2|T\A|
0

ódxT\R
+

∫ ∑
B:B⊆T,
B 6⊆R

1î∫
ξT dxT\B≥δ

2|T\B|
0

ódxT\R
=

∫ ∑
B:B⊆T,B 6⊆R

1î∫
ξT dxT\B≥δ

2|T\B|
0

ódxT\R
=

∑
B:B⊆T,B 6⊆R

δ20 ≤ 2kδ20 ≤ δ0. �

The following lemma shows that for a random x ∈ XT , the expected value

of
∑
T :|T |∈k JT (x) is bounded from above by the constant ε−22 .

Lemma 5.4. We have ∑
T :|T |≤k

∫
JT ≤ ε−22 .
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Proof. Note that∑
T :|T |≤k

∫
JTdxT ≤

∑
T :|T |≤k

∫
δ−2k0

∑
R⊆T

∫
ξTdxT\RdxT(26)

≤ δ−2k0

∑
T :|T |≤k

∑
R⊆T

∫
ξTdxT

≤ 2kδ−2k0

∑
T :|T |≤k

∫
ξTdxT .

Furthermore by the definition of ξT and Part (d) of Lemma 5.2,

∑
T :|T |≤k

∫
ξTdx[n] ≤ ε−12

∑
T :|T |≤k

∫ Ñ∑
R⊆T

∑
S∈S,S⊇T

∫
aSdx[n]\R

é
dx[n]

(27)

≤ 2kε−12

∑
T :|T |≤k

∑
S∈S,S⊇T

∫
aSdx[n] ≤ 22kε−12

∫ ∑
S∈S

aSdx[n]

≤ 22kε−12 δ−3k.

From (26), (27), and the assumptions ε2 = δ10k, we conclude that∫ ∑
T :|T |≤k

JTdxT ≤ 23kδ−2k0 δ−3kε−12 ≤ ε
−2
2 . �

It follows immediately from Lemma 5.4 that

(28)

∫
|JJ | ≤

∫ ∑
T⊆[n],|T |≤k

|T |JT ≤ k
∑

T :|T |≤k

∫
JT ≤ kε−22 .

5.5. Step V: Bounding the error. Here we show that ‖g − E[g|FJ ]‖2 is

small. By linearity of expectation, E[g|FJ ] =
∑
S∈S E[GS |FJ ]. However since

FJ depends on all coordinates, it is difficult to analyze E[GS |FJ ] directly. To

remedy this we define some auxiliary σ-algebras. For every S ⊆ [n], define

the collection JS := {J̃T }T⊆[n] in the following way. For every T ⊆ [n], we

set J̃T := JT if T ⊆ S, and J̃T ≡ 0 otherwise. Note that J = J[n]. Define

g̃ :=
∑
S∈S G̃S , where G̃S := E[GS |FJS ]. For every S ⊆ [n], the function G̃S

depends only on the coordinates in S, and furthermore the σ-algebra FJS is

coarser than the σ-algebra FJ . It follows from the latter that g̃ is measurable

with respect to FJ , and hence

(29) ‖g − E[g|FJ ]‖2 ≤ ‖g − g̃‖2 .

So in order to bound ‖g − E[g|FJ ]‖2, it suffices to bound the right-hand side

of (29). Trivially for every S ∈ S,∫
GSG̃S =

∫
G̃2
S .
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For S1, S2 ∈ S, since G̃S1 and G̃S2 depend respectively only on the coordinates

in S1 and S2, if S1 6⊆ S2 and S2 6⊆ S1, then∫
GS1GS2 =

∫
GS1G̃S2 =

∫
G̃S1GS2 = 0.

Similarly for S1, S2 ∈ S, if S1 ∩ S2 = ∅, then∫
G̃S1G̃S2 =

Å∫
G̃S1

ãÅ∫
G̃S2

ã
=

Å∫
GS1

ãÅ∫
GS2

ã
= 0.

Thus

‖g − g̃‖22 =

∫ (∑
S∈S

GS − G̃S

)2

≤ (k + 1)
k∑
r=0

∫ Ñ ∑
S∈S,|S|=r

GS − G̃S

é2

= (k + 1)

∫ ∑
S∈S

G2
S − G̃2

S +
∑

S1,S2∈S,S1∩S2 6=∅
S1 6=S2,|S1|=|S2|

G̃S1G̃S2

≤ 2k

∫ ∑
S∈S
|G2

S − G̃2
S |(30)

+2k
∑

S1,S2∈S
S1∩S2 6=∅,S1 6=S2

∣∣∣∣∫ G̃S1G̃S2

∣∣∣∣ .(31)

Bounding (30): Consider an S ∈ S and an x∈XS . By (23), if |FS(x)|>ε1,
then JS(x) = 1, which implies that JJS (x) = S, and consequently GS(x) =

G̃S(x). Hence it follows from Part (a) of Lemma 5.2 and Parseval’s identity

that

(30) = 2k

∫ ∑
S∈S

∣∣∣G2
S − G̃2

S

∣∣∣(32)

= 2k

∫ ∑
S∈S
|GS − G̃S |2 = 2k

∫ ∑
S∈S
|GS − G̃S |21[|FS |≤ε1]

≤ 2k

∫ ∑
S∈S

G2
S1[|FS |≤ε1] ≤ 4ε0

∑
S∈S
‖FS‖22 ≤ 4ε0.

Bounding (31): We start with a lemma about the size of the atoms of the

σ-algebra FJS .

Lemma 5.5. Consider S ∈ S , a subset A ⊆ S, and an element y ∈ XS

with JJS (y) = A. Then
∫

1[JJS (yA,xS\A)=A]dxS\A ≥ 1
2 .

Proof. Since JJS (y) = A, for every R ⊆ S with R 6⊆ A, we have JR(y) = 0.

Then it follows from Lemma 5.3 that for every such R, we have∫
JR(yA∩R, xR\A)dxR\A ≤ δ0.
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Hence ∫
1[JJS (yA,xS\A)=A]dxS\A =

∫ ∏
R⊆S,R 6⊆A

1[JR(yA∩R,xR\A)=0]dxS\A

≥ 1−
∑

R⊆S,R 6⊆A

∫
JR(yA∩R, xR\A)dxS\A

≥ 1− 2kδ0 ≥
1

2
. �

Lemma 5.6. Consider S ∈ S and a subset T ⊆ S. For every y ∈ XT , we

have ∣∣∣∣∫ G̃S(y, xS\T )dxS\T

∣∣∣∣ ≤ 2k+1
∑
R⊆T

∫
aS(yR, xS\R)dxS\R.

Furthermore if T ( S and JT (y) = 1, then
∫
G̃S(y, xS\T )dxS\T = 0.

Proof. Consider A ⊆ S, and z ∈ XS with JJS (z) = A. By Lemma 5.5

and Part (c) of Lemma 5.2, we have

|G̃S(z)|=

∣∣∣∫ GS(zA, xS\A)1[JJS (zA,xS\A)=A]dxS\A
∣∣∣∫

1[JJS(zA,xS\A)=A]dxS\A

≤ 2

∣∣∣∣∫ GS(zA, xS\A)1[JJS (zA,xS\A)=A]dxS\A

∣∣∣∣
≤ 2

∫
aS(zA, xS\A)1[JJS (zA,xS\A)=A]dxS\A ≤ 2

∫
aS(zA, xS\A)dxS\A.

Hence for every y ∈ XT ,∣∣∣∣∫ G̃S(y, xS\T )dxS\T

∣∣∣∣ ≤ ∑
A⊆S

∣∣∣∣∫ G̃S(y, xS\T )1[JJS (y,xS\T )=A]dxS\T

∣∣∣∣
≤ 2

∑
A⊆S

∫
aS(yA∩T , xS\(A∩T ))dxS\(A∩T )

≤ 2k+1
∑
R⊆T

∫
aS(yR, xS\R)dxS\R.

This verifies the first assertion of the lemma. Now suppose that T ( S and

JT (y) = 1. Then for every z ∈ XS with zT = y, we have JJS (z) ⊇ T . Hence∫
G̃S(y, xS\T )dxS\T =

∑
A:T⊆A⊆S

∫
G̃S1[JJS=A]dxS\T

=
∑

A:T⊆A⊆S

∫ ∫
G̃S1[JJS=A]dxS\AdxS\T

=
∑

A:T⊆A⊆S

∫ ∫
GS1[JJS=A]dxS\AdxS\T

=

∫
GS(y, xS\T )dxS\T = 0. �



530 HAMED HATAMI

Now consider two distinct S1, S2 ∈ S with T := S1 ∩ S2 6= ∅. By the

second assertion of Lemma 5.6, for y ∈ XT , if JT (y) = 1, then∫
G̃S1(y, x[n]\T )G̃S2(y, x[n]\T )dx[n]\T = 0.

It follows that

(31) = 2k
∑

S1,S2∈S
S1 6=S2,S1∩S2 6=∅

∣∣∣∣∫ G̃S1G̃S2

∣∣∣∣
= 2k

∑
T⊆[n]

∑
S1,S2∈S

S1 6=S2,S1∩S2=T

∣∣∣∣∫ G̃S1G̃S21[JT=0]

∣∣∣∣
= 2k

∑
T⊆[n]

∑
S1,S2∈S

S1 6=S2,S1∩S2=T

∣∣∣∣∫ Å∫ G̃S1dx[n]\T

ãÅ∫
G̃S2dx[n]\T

ã
1[JT=0]dxT

∣∣∣∣

≤ 2k
∑
T⊆[n]

∫ Ñ ∑
S∈S,S⊇T

∣∣∣∣∫ G̃Sdx[n]\T

∣∣∣∣
é2

1[JT=0]dxT .

Now applying the first assertion of Lemma 5.6, we have

(33) (31) ≤ 2k
∑
T⊆[n]

∫ Ñ
2k+1

∑
S∈S,S⊇T

∑
R⊆T

∫
aSdx[n]\R

é2

1[JT=0]dxT .

Recall from (24) that ξT ≤ JT . Hence if JT (y) = 0 for y ∈ XT , then

∑
R⊆T

∑
S∈S:S⊇T

∫
aS(yR, x[n]\R)dx[n]\R ≤ ε2.

So (33), together with Part (d) of Lemma 5.2, implies that

(31) ≤ 2k
∑
T⊆[n]

23kε2

∫ Ñ ∑
S∈S,S⊇T

∑
R⊆T

∫
aSdx[n]\R

é
dxT(34)

≤ 2k23kε2
∑
T⊆[n]

∑
R⊆T

∑
S∈S
S⊇T

∫
aS ≤ 2k25kε2

∑
S∈S

∫
aSdx[n]

≤ 2k25kε2δ
−3k ≤ ε0.

Combining (29), (32), and (34), we conclude that

(35) ‖g − E[g|FJ ]‖22 ≤ ‖g − g̃‖
2
2 ≤ 5ε0.
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5.6. Step VI: Finishing the proof. By (17) and (19), we have∫ ∣∣∣∣∣∣f −∑S∈S FS
∣∣∣∣∣∣
2

≤ 2ε0.

Recall that g =
∑
S∈S GS . By Part (b) of Lemma 5.2,∫ ∣∣∣∣∣∣∑S∈S FS −

∑
S∈S

GS

∣∣∣∣∣∣
2

=
∑
S∈S

∫
|FS −GS |2

≤
∑
S∈S

10ε0k
−1‖FS‖22 ≤ 10k−1ε0 ≤ ε0.

Hence∫
|f − g|2 ≤ 2

∫ ∣∣∣∣∣∣f −∑S∈S FS
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∑S∈S FS −
∑
S∈S

GS

∣∣∣∣∣∣
2

≤ 4ε0 + 2ε0 ≤ 6ε0.

Then by (35),∫
|f − E[f |FJ |2 ≤

∫
|f − E[g|FJ ]|2

≤ 2

∫
|f − g|2 + |g − E[g|FJ ]|2 ≤ 12ε0 + 10ε0 ≤ 22ε0.

Define h : Xn → {0, 1} as

h(x) :=

0 E[f |FJ ] ≤ 1
2

1 E[f |FJ ] > 1
2 .

Note that h is a Boolean function and it is measurable with respect to FJ .

Since f is a Boolean function, we have

‖f − h‖1 =

∫
|f − h|2 ≤

∫
4|f − E[f |FJ ]|2 ≤ 90ε0 ≤ ε.

We also verified in (28) that
∫
|JJ (x)|dx ≤ kε−22 ≤ e10

15ε−3dIf e3 .

6. Concluding remarks

• For graph properties which are also increasing (as is the case when one

studies the threshold phenomenon), what is shown by Friedgut [Fri99] is

slightly stronger than the assertion of Theorem 2.8. He showed that in

this case one can deduce from the structure provided in Theorem 2.8 that

the property is essentially generated by small minimal elements. He then

conjectured this statement (Conjecture 1.5 in [Fri99]) for general increasing

set properties. Friedgut’s conjecture remains unsolved as we do not know

how to refine the structure provided in Theorem 2.8 for increasing functions

without appealing to any symmetry assumptions.
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• In [BKK+92] a different notion of the influence is defined, and in [Hat09]

the structure of Boolean functions that have small total influences with

the definition of [BKK+92] is determined.
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