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Rational points over finite fields for regular
models of algebraic varieties

of Hodge type ≥ 1

By Pierre Berthelot, Hélène Esnault, and Kay Rülling

Abstract

Let R be a discrete valuation ring of mixed characteristics (0, p), with

finite residue field k and fraction field K, let k′ be a finite extension of k,

and let X be a regular, proper and flat R-scheme, with generic fibre XK and

special fibre Xk. Assume that XK is geometrically connected and of Hodge

type ≥ 1 in positive degrees. Then we show that the number of k′-rational

points of X satisfies the congruence |X(k′)| ≡ 1 mod |k′|. We deduce such

congruences from a vanishing theorem for the Witt cohomology groups

Hq(Xk,WOXk,Q) for q > 0. In our proof of this last result, a key step

is the construction of a trace morphism between the Witt cohomologies

of the special fibres of two flat regular R-schemes X and Y of the same

dimension, defined by a surjective projective morphism f : Y → X.
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1. Introduction and first reductions

Let R be a discrete valuation ring of mixed characteristics (0, p), with

perfect residue field k and fraction field K. The main goal of this article is to

prove the following theorem.

Theorem 1.1. Let X be a proper and flat R-scheme, with generic fibre

XK , such that the following conditions hold :

(a) X is a regular scheme.

(b) XK is geometrically connected.

(c) Hq(XK ,OXK ) = 0 for all q ≥ 1.

If k is finite, then, for any finite extension k′ of k, the number of k′-rational

points of X satisfies the congruence

(1.1.1) |X(k′)| ≡ 1 mod |k′|.

Condition (c) should be viewed as a Hodge theoretic property of XK ,

which can be stated by saying that XK has Hodge type ≥ 1 in positive de-

grees. From this point of view, this theorem fits in the general analogy between

the vanishing of Hodge numbers for varieties over a field of characteristic 0 and

congruences on the number of rational points with values in finite extensions

for varieties over a finite field. This analogy came to light with the coinci-

dence between the numerical values in Deligne’s theorem on smooth complete

intersections in a projective space [SGA7II, Exposé XI, Th. 2.5] and in the

Ax-Katz theorem on congruences on the number of solutions of systems of

algebraic equations [Ktz71, Th. 1.0]. It has been made effective by Katz’s

conjecture [Ktz71, Conj. 2.9] relating the Newton and Hodge polygons asso-

ciated to the cohomology of a proper and smooth variety (and generalizing

earlier results of Dwork for hypersurfaces [Dwo64]). For varieties in charac-

teristic p, this conjecture was proved by Mazur ([Maz72], [Maz73]) and Ogus

[BO78, Th. 8.39]. In the mixed characteristic case, where a stronger form can

be given using the Hodge polygon of the generic fibre, it is a consequence of the

fundamental results in p-adic Hodge theory. Our proof of Theorem 1.1 makes

essential use of the unequality between these two polygons, but the setup of

the theorem is actually more general, since the scheme X is not supposed to

be semi-stable over R.

Let us also recall that a result similar to Theorem 1.1 has been proved

by the second author [Esn06, Th. 1.1] by `-adic methods, with condition (c)

replaced by a coniveau condition: for any q ≥ 1, any cohomology class in

Hq
ét(XK ,Q`) vanishes in Hq

ét(UK ,Q`) for some nonempty open subset U ⊂ XK .

It is easy to see, using [Del71], that this coniveau condition implies that the

Hodge level of XK is ≥ 1 in degree q ≥ 1 (see [Ill06, 4.4 (d)] for a more general

discussion). It would actually follow from Grothendieck’s generalized Hodge
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conjecture [Grt69] that the two conditions are equivalent. In this article, the

use of p-adic methods, and in particular of p-adic Hodge theory, allows us to

derive congruence (1.1.1) directly from Hodge theoretic hypotheses.

1.2. As explained by Ax [Ax64], congruences such as (1.1.1) can be ex-

pressed in terms of the zeta function of the special fibre Xk of X. We recall

that the rationality of the zeta function Z(Xk, t) allows us to define the slope

< 1 part Z<1(Xk, t) of Z(Xk, t) as follows [BBE07, 6.1]. Let |k| = pa, and

write
Z(Xk, t) =

∏
i

(1− αit)/
∏
j

(1− βjt),

with αi, βj ∈ Qp and αi 6= βj for all i, j. Normalizing the p-adic valuation v of

Qp by v(pa) = 1, one sets

Z<1(Xk, t) =
∏

v(αi)<1

(1− αit)/
∏

v(βj)<1

(1− βjt).

Then the congruences (1.1.1) are equivalent to

(1.2.1) Z<1(Xk, t) =
1

1− t
[BBE07, Prop. 6.3].

On the other hand, let W (OXk) be the sheaf of Witt vectors with coef-

ficients in OXk , and WOXk,Q = W (OXk) ⊗ Q. Then the identification of the

slope < 1 part of rigid cohomology with Witt vector cohomology provides the

cohomological interpretation

(1.2.2) Z<1(Xk, t) =
∏
i

det(1− tF a|H i(Xk,WOXk,Q))(−1)i+1
,

where F is induced by the Frobenius endomorphism of W (OXk) [BBE07,

Cor. 1.3]. Therefore, Theorem 1.1 is a consequence of the following theorem,

where k is only assumed to be perfect.

Theorem 1.3. Let X be a regular, proper and flat R-scheme. Assume

that Hq(XK ,OXK ) = 0 for some q ≥ 1. Then

(1.3.1) Hq(Xk,WOXk,Q) = 0.

Proof of Theorem 1.1, assuming Theorem 1.3. Let us prove here this im-

plication, which is easy and does not use the regularity assumption on X.

Let W = W (k), and K0 = Frac(W ). Thanks to (1.2.1) and (1.2.2), The-

orem 1.3 implies that it suffices to prove that the homomorphism K0 →
H0(Xk,WOXk,Q) is an isomorphism.

As X is proper and flat over R, H0(X,OX) is a free finitely gener-

ated R-module. Since the generic fibre XK is geometrically connected and

geometrically reduced, the rank of H0(X,OX) is 1. The homomorphism

R → H0(X,OX) maps 1 to 1, hence Nakayama’s lemma implies that it is
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an isomorphism. Applying Zariski’s connectedness theorem, it follows that Xk

is connected, and even geometrically connected, since the same argument can

be applied after any base change from R to R′, where R′ is the ring of integers

of a finite extension of K.

On the other hand, let k̄ be an algebraic closure of k, and let k′ be

a finite extension of k such that Xk̄ red is defined over k′. As k′ is sepa-

rable over k, the homomorphisms Wn(k) → Wn(k′) are finite étale liftings

of k → k′ and the homomorphisms Wn(k′) ⊗Wn(k) Wn(OXk) → Wn(OXk′ )
are isomorphisms [Ill79, I, Prop. 1.5.8]. It follows that the homomorphism

W (k′) ⊗W (k) H
0(Xk,W (OXk)) → H0(Xk′ ,W (OXk′ )) is an isomorphism and

that it suffices to prove the claim for Xk′ . Using the fact that

H0(Xk′ ,WOXk′ ,Q)
∼−−→ H0(Xk′ red,WOXk′ red,Q)

by [BBE07, Prop. 2.1 (i)], it suffices to check that, if Z is a proper, geo-

metrically connected and geometrically reduced k-scheme, the homomorphism

W (k)→ H0(Z,W (OZ)) is an isomorphism.

Under these assumptions, the homomorphism k → H0(Z,OZ) is an iso-

morphism. As the homomorphism R : Wn(OZ)→Wn−1(OZ) is the projection

of a product onto one of its factors, the homomorphisms H0(Z,Wn(OZ)) →
H0(Z,Wn−1(OZ)) are surjective, and one gets by induction that the homomor-

phism Wn(k) → H0(Z,Wn(OZ)) is an isomorphism for all n. Taking inverse

limits, the claim follows. �

1.4. Theorem 1.3 is deeper, and most of our paper is devoted to devel-

oping the techniques used in its proof. We may observe though that, in the

context of Theorem 1.1, there is a case where (1.3.1) is trivial: namely, if we

replace the condition on the Hodge numbers of XK , which is equivalent to

requiring that the modules Hq(X,OX) be p-torsion modules, by the stronger

condition that Hq(X,OX) vanishes for all q ≥ 1. Indeed, the flatness of X over

R allows us to apply the derived base change formula for coherent cohomology

and to conclude that Hq(Xk,OXk) = 0 for all q ≥ 1. By induction on n, one

gets that Hq(Xk,Wn(OXk)) = 0 for all n, q ≥ 1, and (1.3.1) follows for all

q ≥ 1 (even before tensoring with Q).

In the general case, where the Hq(X,OX) are p-torsion modules, we do not

know any direct argument to derive the vanishing property stated in (1.3.1).

Our strategy is then to use the results of p-adic Hodge theory relating the

Hodge and Newton polygons of certain filtered F -isocrystals on k, which allow

us to study separately the cohomology groups for a given q as in Theorem 1.3.

In particular, when X is semi-stable on R, a straightforward argument using

the fundamental comparison theorems of p-adic Hodge theory allows us to

deduce (1.3.1) from the unequality between the two polygons defined by the

log crystalline cohomology of Xk. We explain this argument in Theorem 2.1.
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In the rest of Section 2, we show that this argument can be modified to

prove the vanishing of Hq(Xk,WOXk,Q) in the general case. For any finite

extension K ′ of K, with ring of integers R′, let XR′ be deduced from X by

base change from R to R′. After reducing to the case where R is complete,

the first step is to apply de Jong’s alteration theorem to construct for any

m an m-truncated simplicial scheme Y• over the ring of integers R′ of a suit-

able extension K ′ of K, endowed with an augmentation morphism Y0 → XR′ ,

such that the Yi’s are pullbacks of proper semi-stable schemes, and Y• → XR′

induces an m-truncated proper hypercovering of XK′ (see Lemma 2.2 for a

precise statement). Then, using Tsuji’s extension of the comparison theorems

to truncated simplicial schemes [Tsu98], we show that, in this situation, the

cohomology group Hq(Y•k,WOY•k,Q) vanishes. However, due to the possible

presence of vertical components in the coskeletons, the special fibre Y•k of the

m-truncated simplicial scheme Y• may not be a proper hypercovering of Xk,

and it is unclear how the groups Hq(Y•k,WOY•k,Q) are related to the groups

Hq(Xk,WOXk,Q). Therefore another ingredient will be necessary to complete

the proof. It will be provided by the following injectivity theorem, the proof

of which will be given in Section 8.

Theorem 1.5. Let X , Y be two flat, regular R-schemes of finite type,

of the same dimension, and let f : Y → X be a projective and surjective

R-morphism, with reduction fk over Spec k. Then, for all q ≥ 0, the functori-

ality homomorphism

(1.5.1) f∗k : Hq(Xk,WOXk,Q) −→ Hq(Yk,WOYk,Q)

is injective.

1.6. We will deduce Theorem 1.5 from the existence of a trace morphism

(1.6.1) τi,π : Rf∗(WOYk,Q) −→WOXk,Q,

defined by means of a factorization f = π ◦ i, where π is the projection of

a projective space P dX on X and i is a closed immersion. The key fact used

in the construction of this trace morphism is that, under the assumptions of

Theorem 1.5, i is a regular immersion of codimension d, or, said otherwise,

that f is a complete intersection morphism of virtual relative dimension 0, in

the sense of [SGA6, Exposé VIII].

Sections 3 to 7 are devoted to the construction of τi,π. In Section 3, we

state a similar result for OX , providing a canonical trace morphism

τf : Rf∗(OY )→ OX ,

whenever X is a noetherian scheme with a relative dualizing complex, and

f : Y → X is a proper complete intersection morphism of virtual relative

dimension 0 (see Theorem 3.1). The existence of τf has been observed by
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El Zein as a particular case of his construction of the relative fundamental

class [EZ78, IV, Prop. 6]. However, in the literature there does not seem

to be a complete proof of the properties listed in Theorem 3.1. Due to the

many corrections and complements to [Har66] made by Conrad in [Con00], we

have included in an appendix the details of a proof of Theorem 3.1 based on

[Con00]. We refer to B.7 for the definition of τf and to B.9 for the proof of

Theorem 3.1. When Y is finite locally free of rank r over X, the composition

of the functoriality morphism OX → Rf∗(OY ) with τf is multiplication by r

on OX . This has striking consequences for the functoriality maps induced by

f on coherent cohomology (see Theorem 3.2). For example, if r is invertible on

X, one obtains an injectivity theorem that may be of independent interest. An

outline of the construction of τf is given in the introduction to the appendix.

To construct the trace morphism τi,π, we consider more generally a projec-

tive complete intersection morphism f : Y → X of virtual relative dimension

0 between two noetherian Fp-schemes with dualizing complexes. Under these

assumptions, we construct a compatible family of morphisms

τi,π,n : Rf∗(Wn(OY ))→Wn(OX)

for n ≥ 1, with τi,π,1 = τf . Our main tool here is the theory of the relative

de Rham-Witt complex developped by Langer and Zink [LZ04]. In Section 5,

we recall some basic facts about their construction, and we extend to the

relative case some structure theorems proved by Illusie [Ill79] when the base

scheme is perfect (see, in particular, Proposition 5.7 and Theorem 5.13). Then

we define τi,π,n by combining two morphisms. On the one hand, we consider a

projective space P := P dX with projection π on X, and in Section 6 we define

a trace morphism

Trpπ,n : Rπ∗(WnΩd
P/X [d])→Wn(OX),

using the d-th power of the Chern class of the canonical bundle OP (1). On

the other hand, we consider a regularly embedded closed subscheme Y of a

smooth X-scheme P , and in Section 7 we define a relative Hodge-Witt local

class for Y in P , which is a section of HdY (WnΩd
P/X) and defines a morphism

γi,π,n : i∗Wn(OY )→WnΩd
P/X [d],

with i : Y ↪→ P and d = codimP (Y ). This allows us to define the morphism

τi,π,n as being the composition Trpπ,n ◦Rπ∗(γi,π,n). The proof of Theorem 1.5

is then completed in Section 8 thanks to a theorem relating the morphisms

τi,π,n defined by the reduction mod p of a factorization of the given morphism

f : Y → X over R and the morphism τf defined by f .

It may be worth pointing out here that these results seem to indicate

that Grothendieck’s relative duality theory for coherent O-modules can be

generalized to some extent to the Hodge-Witt sheaves, as was already apparent
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from [Eke84] when the base scheme is a perfect field. We do not try to develop

such a generalization in this article, and we limit ourselves to the properties

needed for the proof of Theorem 1.1. For example, it is very likely that the

morphisms τi,π,n only depend on f , and not on the chosen factorization f =

π ◦ i, but this is not needed here, and we do not prove it in this article. A

natural context one might think of for developing our results is the theory of

the trace map for projectively embeddable morphisms outlined in [Har66, III,

10.5 and §11]. However, as discussed by Conrad in [Con00, pp. 103–104], the

foundational work needed for the definition of such a theory has not really

been done even for coherent O-modules. We hope to return to these questions

in another article.

Finally, in Section 9 we conclude by giving a family of examples to which

Theorem 1.1 can be applied but that are not covered by earlier results, nor

by cases where Theorem 1.3 can be proved directly, such as the trivial case

where H i(X,OX) = 0 for all i ≥ 1, or the semi-stable case. These examples

are obtained for p ≥ 7 and are quotients of an hypersurface of degree p in a

projective space P p−2
R by a free (Z/pZ)-action. Their generic fibre is a smooth

variety of general type, and their special fibre has isolated singularities, at least

when p is not a Fermat number.

Acknowledgements. The authors thank the referee for his careful reading

of the manuscript and for his very useful comments, questions, and suggestions.

Part of this work was done in March 2008, when the second and third
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General conventions. 1) All schemes under consideration are supposed

to be separated. By a projective morphism f : Y → X, we always mean a

morphism that can be factorized as f = π ◦ i, where i is a closed immersion in

some projective space PnX and π is the natural projection PnX → X.

2) In this paper, we use the terminology of [SGA6] for complete intersec-

tion morphisms: a morphism of schemes f : Y → X is said to be a complete

intersection morphism if, for any y ∈ Y , there exists an open neighbourhood

U of y in Y such that the restriction of f to U can be factorized as f |U = π ◦ i,
where π is a smooth morphism and i a regular immersion [SGA6, VIII, 1.1].

Note that this notion of complete intersection morphism is more general than

the notion of “local complete intersection map” used in [Har66] and [Con00],

where “lci map” is only used for regular immersions.

If d is the codimension of i at y and n the relative dimension of π at i(y),

the integer m = n−d does not depend upon the local factorization f |U = π ◦ i
and is called the virtual relative dimension of f at y [SGA6, VIII, 1.9]. One

says that f has constant virtual relative dimension m if the integer m does not

depend upon y. In this paper, we will always assume that the virtual relative
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dimension of the morphisms under consideration is constant. (However, the

dimension of the fibres of such morphisms can vary.)

3) Apart from the previous remark, we will use the definitions and sign

conventions from Conrad’s book [Con00]. In particular, when i : Y ↪→ P is

a regular immersion of codimension d defined by an ideal I ⊂ OP , we define

ωY/P by

ωY/P = ∧d((I/I2)∨)

rather than (∧d(I/I2))∨ as in [Har66, III, p. 141] (see [Con00, p. 7]). The

canonical identification between both definitions is given by [Bou70, III, §11,

Prop. 7].

4) If R, S are commutative rings, R → S a ring homomorphism, and X

an R-scheme, then we denote by XS the S-scheme SpecS ×SpecR X.

5) If E• is a complex, we denote by (σ≥iE•)i∈Z the naive filtration on E•,
i.e., the filtration defined by σ≥iEn = 0 if n < i, σ≥iEn = En if n ≥ i.

6) If X is a scheme (resp. locally noetherian scheme), we denote by

Db
qc(OX) (resp. Db

coh(OX)) the full subcategory of the derived category D(OX)

that has as objects the bounded complexes with OX -quasi-coherent (resp. OX -

coherent) cohomology sheaves. We denote by Db
fTd(OX) ⊂ D(OX) the full

subcategory of complexes that are isomorphic to a bounded complex of flat

OX -modules. Adding several of the indices to Db(OX), as in Db
qc,fTd(OX),

means taking the intersection of the corresponding subcategories.

When relevant, we will use similar notation for the analogous subcategories

of D(OX) and D+(OX).

2. Application of p-adic Hodge theory

In this section, we explain how the fundamental results of p-adic Hodge

theory can be used to prove Theorem 1.3. We begin with the semi-stable case,

where p-adic Hodge theory suffices to conclude and which will serve as a model

for the general case. We use the notation R, K, k as in the introduction.

Theorem 2.1. Let X be a proper and semi-stable R-scheme, with generic

fibre XK and special fibre Xk, and let q≥0 be an integer. If Hq(XK ,OXK )=0,

then Hq(Xk,WOXk,Q) = 0.

Proof. We may assume that R is a complete discrete valuation ring. In-

deed, if “R is the completion of R, K̂ = Frac(“R) and ‹X = X
R̂

, then ‹X is proper

and semi-stable over “R, Hq(‹X
K̂
,O

X̃
K̂

) = K̂⊗KHq(XK ,OXK ) = 0, and X and‹X have isomorphic special fibres. So the theorem for ‹X implies the theorem

for X.

We endow S = SpecR with the log structure defined by the divisor

Spec k ⊂ S, S0 = Spec k with the induced log structure, and we denote by
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S, S0 the corresponding log schemes. Similarly, we endow X with the log

structure defined by the special fibre Xk, Xk with the induced log structure,

and we denote by X, Xk the corresponding log schemes. Then X is smooth

over S and Xk is smooth of Cartier type [Kat89, (4.8)] over S0.

Let Wn = Wn(k) (resp. W = W (k)), and let Σn (resp. Σ) be the log

scheme obtained by endowing Σn = SpecWn (resp. Σ = SpecW ) with the log

structure associated to the pre-log structure defined by the morphism MS0 →
OS0 = OΣ1 → OΣn (resp. OΣ) provided by composition with the Teichmüller

representative map. We can then consider the log crystalline cohomology

groups Hq
crys(X/Σn), which are finitely generated Wn-modules endowed with a

Frobenius action ϕ and a monodromy operator N . The log scheme Xk also car-

ries a logarithmic de Rham-Witt complex WΩ•Xk
= lim←−nWnΩ•Xk

, constructed

by Hyodo [Hyo91] in the semi-stable case, and generalized by Hyodo and Kato

[HK94, (4.1)] to the case of smooth S0-log schemes of Cartier type. In degree 0,

we have

(2.1.1) WnΩ0
Xk

= Wn(OXk),

by [HK94, Prop. (4.6)].

It follows from [HK94, Th. (4.19)] that, for all q, there are canonical

isomorphisms

(2.1.2) Hq
crys(Xk/Σn)

∼−−→ Hq(Xk,WnΩ•Xk
),

which are compatible when n varies and commute with the Frobenius actions.

As Xk is proper over S0, these cohomology groups are artinian W -modules.

Therefore, one can apply the Mittag-Leffler criterium to get canonical isomor-

phisms

Hq
crys(Xk/Σ)

∼−−→ lim←−
n

Hq
crys(Xk/Σn)(2.1.3)

∼−−→ lim←−
n

Hq(Xk,WnΩ•Xk
)
∼←−− Hq(Xk,WΩ•Xk

)

compatible with the Frobenius actions. Using the naive filtration of WΩ•Xk

and tensoring by K0, one obtains a spectral sequence

(2.1.4) Ei,j1 = Hj(Xk,WΩi
Xk

)⊗K0 =⇒ H i+j
crys(Xk/Σ)⊗K0

endowed by functoriality with a Frobenius action F ∗. The operators d, F , and

V on the logarithmic de Rham-Witt complex satisfy the same relations as on

the usual de Rham-Witt complex [HK94, (4.1)], and the structure theorems of

[Ill79] remain valid in the logarithmic case [HK94, Th. (4.4) and Cor. (4.5)].

It follows that, for all i, j, the K0-vector space Hj(Xk,WΩi
Xk

) ⊗K0 is finite

dimensional, and the action of F ∗ on this space has slopes in [i, i+ 1[ [Lor02,

3.1]. Therefore, the spectral sequence (2.1.4) degenerates at E1 and yields, in

particular, an isomorphism (Hq
crys(Xk/Σ) ⊗ K0)<1 ∼−→ Hq(Xk,WΩ0

Xk
) ⊗ K0,
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the source being the part of Hq
crys(Xk/Σ)⊗K0 where Frobenius acts with slope

< 1. Thanks to (2.1.1), we finally get a canonical isomorphism

(2.1.5) (Hq
crys(Xk/Σ)⊗K0)<1 ∼−−→ Hq(Xk,WOXk,Q).

On the other hand, the choice of a uniformizer of R determines a Hyodo-

Kato isomorphism [HK94, Th. (5.1)]

(2.1.6) ρ : Hq
crys(Xk/Σ)⊗W K

∼−−→ Hq(XK ,Ω
•
XK/K

).

This allows us to endow Hq
crys(Xk/Σ) ⊗W K with the filtration deduced via

ρ from the Hodge filtration of Hq(XK ,Ω
•
XK/K

). Together with its Frobenius

action and monodromy operator, Hq
crys(Xk/Σ)⊗W K is then a filtered (ϕ,N)-

module as defined by Fontaine [Fon94, 4.3.2 and 4.4.8]. As such, it has both

a Newton polygon, built as usual from the slopes of the Frobenius action, and

a Hodge polygon, built as usual from the Hodge numbers of Hq(XK ,Ω
•
XK/K

).

Now, let K be an algebraic closure of K, and let Bst, BdR be the Fontaine p-

adic period rings. Then Tsuji’s comparison theorem [Tsu99, Th. 0.2] provides

a Bst-linear isomorphism

(2.1.7) Bst ⊗K0 H
q
crys(Xk/Σ)

∼−−→ Bst ⊗K Hq
ét(XK ,Qp),

compatible with the natural Galois, Frobenius, and monodromy actions on

both sides and with the natural Hodge filtrations defined on both sides after

scalar extension from Bst to BdR. Thus, Hq
crys(Xk/Σ) ⊗ K0 is an admissible

filtered (ϕ,N)-module [Fon94, 5.3.3], and therefore it is weakly admissible

[Fon94, 5.4.2]. This implies that its Newton polygon lies above its Hodge

polygon [Fon94, 4.4.6]. In particular, either Hq
crys(Xk/Σ) ⊗ K0 = 0, or the

smallest slope of its Newton polygon is bigger than the smallest slope of its

Hodge polygon. By assumption, the latter is at least 1, which forces the part

of slope < 1 of Hq
crys(Xk/Σ) ⊗ K0 to vanish. Thanks to (2.1.5), this implies

the theorem. �

In the general case, we will use truncated simplicial log schemes satisfying

the conditions of the next lemma. We will assume that all the log schemes

under consideration are fine log schemes [Kat89, (2.3)], and all constructions

involving log schemes will be done in the category of fine log schemes. For any

finite extension K ′ of K, with ring of integers R′, we will endow SpecR′ with

the log structure defined by its closed point, and pullbacks of log schemes to

SpecR′ will mean pullbacks in the category of log schemes. Note that, because

of [Kat89, (4.4)(ii) and (4.3.1)], the underlying scheme of such a pullback is

the usual pullback in the category of schemes. We will denote log schemes by

underlined letters and drop the underlining to denote the underlying schemes.

Lemma 2.2. Assume that R is complete and that X is an integral, flat

R-scheme of finite type. Let m ≥ 0 be an integer. Then there exists a finite
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extension K ′ of K , with ring of integers R′, a split m-truncated simplicial

R′-log scheme Y • = (Y•,MY•) [SGA4II, Vbis, 5.1.1], and an augmentation

morphism u : Y0 → XR′ over R′ such that the following conditions hold :

(a) For each r, Yr is projective over XR′ and Y r is a disjoint union of

pullbacks to R′ of semi-stable schemes over the integers of sub-K-extensions of

K ′ endowed with the log structure defined by their special fibre.

(b) Via the augmentation morphism induced by u, Y•,K′ is an m-truncated

proper hypercovering of XK′ .

(c) There exists a projective R-alteration f : Y → X , where Y is semi-

stable over the ring of integers R1 of a sub-K-extension K1 of K ′, and there

exists finitely many R-embeddings σi : R1 ↪→ R′ such that if u1 : Y → XR1

denotes the R1-morphism defined by f and if Yσi (resp. uσi : Yσi → XR′)

denotes the R′-scheme (resp. R′-morphism) deduced by base change via σi from

Y (resp. u1), then Y0 =
∐
i Yσi and u|Yσi = uσi .

Therefore, we obtain the following commutative diagram:

(2.2.1) Y0 =
∐
i Yσi

u

%%

Yσi
? _oo //

uσi
��

Y

u1

��

f

!!
XR′

// XR1
// X.

Proof. This is a well-known consequence of de Jong’s alteration theorem

[DJ96, Th. 6.5]. For the sake of completeness, we briefly recall how to con-

struct such a simplicial log scheme. For r ≥ 0, we denote by [r] the ordered set

{0, . . . , r}, and by ∆ (resp. ∆[m]) the category that has the sets [r] (resp. with

r ≤ m) as objects, the set of morphisms from [r] to [s] being the set of nonde-

creasing maps [r]→ [s].

One proceeds by induction on m. Assume first that m = 0. de Jong’s

theorem provides a finite extension K1 of K, an integral semi-stable scheme Y

over the ring of integers R1 of K1, and an R-morphism f : Y → X that is a

projective alteration. Let u1 : Y → XR1 be the morphism defined by f . Let K ′

be a finite extension of K1 such that K ′/K is Galois, and let R′ be its ring of

integers. For any g ∈ Gal(K ′/K), let σg be the composition K1 → K ′
g−→ K ′,

and let Y g (resp. ug : Yg → XR′) be the R′-log scheme (resp. R′-morphism)

deduced from Y (resp. u1) by base change via σg : R1 → R′. Then one defines

Y 0 and u by setting

Y 0 =
∐

g∈Gal(K′/K)

Y g, u|Yg = ug.

One easily checks by Galois descent that Y0,K′ → XK′ is surjective; conditions

(a)–(c) are then satisfied.
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Assume now that the lemma has been proved for m − 1. Over the ring

of integers R′′ of some finite extension K ′′ of K, this provides a split (m− 1)-

truncated simplicial log scheme Y ′′• , together with an augmentation morphism

u′′ : Y ′′0 → XR′′ , so as to satisfy conditions (a)–(c). Note that these conditions

remain satisfied after a base change to the ring of integers of any finite extension

of K ′′. Let coskm−1(Y ′′•) be the coskeleton of Y ′′• in the category of simplicial

fine R′′-log schemes and Z = coskm−1(Y ′′•)m its component of index m. Denote

by Z1, . . . , Zc those irreducible components of Z that are flat over R′′, and

endow each Zj with the log structure induced by the log structure of Z. As a

consequence of condition (a), this log structure induces the trivial log structure

on the generic fibre Zj,K′′ . Applying de Jong’s theorem to Zj , one can find

a finite extension K ′j of K ′′, with ring of integers R′j , an integral semi-stable

scheme Tj over R′j , and a projective alteration fj : Tj → Zj . One endows Tj
with the log structure defined by its special fibre. Because the log structure

of the generic fibre Zj,K′′ is trivial, the morphism fj extends uniquely to a log

morphism fj : T j → Zj . Let K ′ be a Galois extension of K ′′ containing K ′j
for all j, 1 ≤ j ≤ c, and let R′ be its ring of integers. Arguing as in the case

m = 0 above, one can deduce from the alterations fj an R′-morphism

(2.2.2) T −→
c∐
j=1

Zj,R′ −→ ZR′
∼−−→ coskm−1(Y ′′• ,R′)m,

where T satisfies condition (a) and TK′ → coskm−1(Y ′′•,K′)m is projective and

surjective. (Note that since all log structures are trivial on the generic fibres,

the generic fibre of the coskeleton computed in the category of fine log schemes

is the coskeleton of the generic fibres computed in the category of schemes.)

One can then follow the method of Saint-Donat [SGA4II, Vbis, 5.1.3] and

Deligne [Del74, (6.2.5)] to extend Y ′′• ,R′ as a split m-truncated simplicial log

scheme Y • over R′. The R′-log scheme Y m is defined by

Y m = T
∐ ∐

[m]�[l], l<m

N(Y l),

where N(Y l) is the complement of the union of the images of the degeneracy

morphisms with target Y l. It satisfies condition (a) because T does and Y • is

split. Similarly, the morphism Ym,K′ → coskm−1(Y•,K′)m is proper and surjec-

tive because the morphism TK′ → coskm−1(Y ′′•,K′)m is proper and surjective.

Thus the m-truncated simplicial scheme Y•,K′ is an m-truncated proper hy-

percovering of XK′ . Finally, condition (c) is satisfied thanks to the induction

hypothesis. �

2.3. We recall how to associate cohomological invariants to simplicial

schemes and truncated simplicial schemes (see [SGA4II, Vbis, 2.3], [Del74,

5.2], [Tsu98, (6.2)]).
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If T is a topos, we denote by T ∆ (resp. T ∆[m]) the topos of cosimplicial

objects (resp. m-truncated cosimplicial objects) in T . Let A be a ring in T and

A• the be theconstant cosimplicial ring defined by A. If E• is an A•-module

of T ∆ (resp. T ∆[m]), one associates to E• the complex

ε∗E• = E0 → E1 → · · · → Er
∑

j(−1)j∂j

−−−−−−−→ Er+1 → · · ·
(resp. εm∗ E

• = E0 → E1 → · · · → Em → 0→ · · · ).

One views ε∗E• (resp. εm∗ E•) as a filtered complex of A-modules using the

naive filtration. The functors ε∗ and εm∗ are exact functors from the category

ofA•-modules to the category of filtered complexes ofA-modules (which means

that they transform a short exact sequence of A•-modules into a short exact

sequence of filtered complexes, i.e., such that the sequence of Fili’s is exact

for all i). Hence, they factorize so as to define exact functors Rε∗ and Rεm∗
from D+(T ∆,A•) (resp. D+(T ∆[m],A•)) to D+F (T ,A). For any complex

E•,• ∈ D+(A•), they provide functorial spectral sequences

(2.3.1) Er,q1 = Hq(Er,•)⇒ Hr+q(Rε∗(E•,•))

and similarly for Rεm∗ with Er,q1 = 0 for r > m. (We use here the first index

to denote the simplicial degree.) Note that the truncation functor induces a

functorial morphism

(2.3.2) Rε∗(E•,•) −→ Rεm∗ (skm(E•,•))

and thus a morphism between the corresponding spectral sequences (2.3.1). It

follows that if Hq(Er,•) = 0 for q < 0 and all r, then the morphism (2.3.2) is a

quasi-isomorphism in degrees < m.

Let Y• be a simplicial scheme (resp. m-truncated simplicial scheme) and

Sets the topos of sets. If R is a commutative ring and E• a (Zariski, étale, . . . )

sheaf of R-modules on Y•, one can associate to E• a cosimplicial R•-module

Γ•(Y•, E•) ∈ Sets∆ (resp. Sets∆[m]) by setting for all r ≥ 0,

Γr(Y•, E•) = Γ(Yr, Er).

The functor Γ• can be derived, and its right derived functor RΓ• can be com-

puted using resolutions by complexes I•,• such that for each r, q, the sheaf Ir,q
is acyclic on Yr. The cohomology of Y• with coefficients in a complex E•,• is

then, by definition,

RΓ(Y•, E•,•) = Rε∗RΓ•(Y•, E•,•) (resp. Rεm∗ ),

Hq(Y•, E•,•) = Hq(RΓ(Y•, E•,•)).

If Y• is a smooth simplicial (resp. m-truncated simplicial) R-scheme, this can

be applied to the complex Ω•Y•/R and to its sub-complexes σ≥iΩ
•
Y•/R, defining
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the naive filtration. This provides the definition of the de Rham cohomology

of Y• and of its Hodge filtration.

Proposition 2.4. Let K be a field of charactristic 0, X a proper and

smooth K-scheme, and Y• → X an m-truncated proper hypercovering of X

over K such that Yr is proper and smooth for all r. Then, for all q < m, the

canonical homomorphism

(2.4.1) Hq(X,Ω•X/K) −→ Hq(Y•,Ω
•
Y•/K)

is an isomorphism of filtered K-vector spaces for the Hodge filtrations.

Proof. Since algebraic de Rham cohomology (endowed with the Hodge

filtration) commutes with base field extensions, standard limit arguments allow

us to assume that K is of finite type over Q. Choosing an embedding ι :

K ↪→ C, we are reduced to the case where K = C. Using resolution of

singularities, we can find a proper and smooth hypercovering Z• of X such that

skm(Z•) = Y•. As the morphism (2.3.2) for σ≥iΩ
•
Z•/C is a quasi-isomorphism

in degrees < m for all i, it suffices to prove the proposition with Y• replaced

by Z•. This now follows from [Del74, Prop. (8.2.2)]. �

Corollary 2.5. Under the assumptions (a) and (b) of Lemma 2.2 as-

sume, in addition, that XK is proper and smooth and that Hq(XK ,OXK ) = 0

for some q < m. Then the smallest Hodge slope of Hq(Y•K′ ,Ω
•
Y•K′

) is at least 1.

Proof. Assumptions (a) and (b) imply that the hypotheses of the propo-

sition are satisfied by Y•K′ → XK′ , and the corollary is then clear. �

2.6. Let Σn,Σ be as in the proof of Theorem 2.1. We now denote by

Y • = (Y•,MY•) an m-truncated simplicial log scheme over Σ1. We assume that

each Y r is smooth of Cartier type over Σ1, so that, for all n ≥ 1, its de Rham-

Witt complex WnΩ•Y r is defined [HK94, (4.1)]. When r varies, the functoriality

of the de Rham-Witt complex turns the family of complexes (WnΩ•Y r)0≤r≤m
into a complex WnΩ•Y • on Y•. One defines its cohomology as in 2.3, and one

has similar definitions for the de Rham-Witt complex WΩ•Y • = lim←−nWnΩ•Y • .

For a morphism α : [r]→ [s] in ∆[m], let αcrys : (Y s/Σn)crys → (Y r/Σn)crys

be the morphism between the log crystalline topos induced by the correspond-

ing morphism Y s → Y r. One defines the log crystalline topos (Y •/Σn)crys

as being the topos of families of sheaves (Er)0≤r≤m, where Er is a sheaf

on the log crystalline site Crys(Y r/Σn), endowed with a transitive family

of morphisms α−1
crysE

r → Es for morphisms α in ∆[m]. In particular, the

family of sheaves OY r/Σn defines the structural sheaf of (Y •/Σn)crys, denoted

by OY •/Σn . There is a canonical morphism uY •/Σn : (Y •/Σn)crys → Y•Zar

such that uY •/Σn∗(E
•)r = uY r/Σn∗(E

r) for all r. If E•,• is a complex of
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abelian sheaves in (Y •/Σn)crys, one proceeds as in 2.3 to define its log crys-

talline cohomology RΓcrys(Y •/Σn, E
•,•) and its projection on the Zariski topos

RuY •/Σn∗(E
•,•). One gives similar definitions for the log crystalline topos

(Y •/Σ)crys relative to Σ. By construction, there are canonical isomorphisms

RΓ(Y•, RuY •/Σn∗(E
•,•))

∼−−→RΓcrys(Y •/Σn, E
•,•),(2.6.1)

RΓ(Y•, RuY •/Σ ∗(E
•,•))

∼−−→RΓcrys(Y •/Σ, E
•,•).(2.6.2)

If Y • ↪→ P • is a closed immersion of the m-truncated simplicial log scheme

Y • into a smooth m-truncated simplicial Σn-log scheme P • (resp. Σ-formal log

scheme), the family of PD-envelopes P log
Y r

(P r) (resp. completed PD-envelopes)

[Kat89, (5.4)] defines a sheaf P log
Y • (P •) on Y •, and one can form the de Rham

complex P log
Y • (P •)⊗OP•Ω•P•/Σn (resp. P log

Y • (P •)⊗OP•Ω•P•/Σ), which is supported

in Y •. Because the linearization functor L used in the proof of the comparison

theorem between crystalline and de Rham cohomologies [Kat89, (6.9)] makes

sense simplicially, this theorem extends to the simplicial case and there is a

canonical isomorphism in D+(Y•,Wn) (resp. D+(Y•,W ))

RuY •/Σn∗(OY •/Σn)
∼−−→P log

Y • (P •)⊗OP• Ω•P•/Σn(2.6.3)

(resp. RuY •/Σ ∗(OY •/Σ)
∼−−→P log

Y • (P •)⊗OP• Ω•P•/Σ).(2.6.4)

Proposition 2.7. With the hypotheses of 2.6, assume that Y • is split.

Then there exists in D+(Y•,Wn) (resp. D+(Y•,W )) canonical isomorphisms

compatible with the transition morphisms and the Frobenius actions

RuY •/Σn∗(OY •/Σn)
∼−−→WnΩ•Y •(2.7.1)

(resp. RuY •/Σ ∗(OY •/Σ)
∼−−→WΩ•Y •).(2.7.2)

The proof will use the next lemma, due to Nakkajima [Nak09, Lemma 6.1].

Lemma 2.8. Under the assumptions of 2.7, there exists an m-truncated

simplicial log scheme Z• and a morphism of m-truncated simplicial log schemes

Z• → Y • such that, for 0 ≤ r ≤ m, Zr is a disjoint union of affine open subsets

of Yr covering Yr, and the morphism Zr → Yr induces the natural inclusion on

each of these subsets.

Definition 2.9. Let X be a scheme on which p is locally nilpotent, and

n ≥ 1 an integer. We denote by |X| the topological space underlying X,

and by Wn(X) the ringed space (|X|,Wn(OX)), which is a scheme ([Ill79,

0, 1.5] and [LZ04, 1.10]). The ideal VWn−1(OX) carries a canonical PD-

structure ([Ill79, 0, 1.4] and [LZ04, 1.1]), which turns the nilpotent immersion

u : X ↪→Wn(X) into a PD-thickening of X.
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IfX = (X,MX) is a log scheme, we denote byWn(X) = (Wn(X),MWn(X))

the log scheme obtained by sending MX to Wn(OX) by the Teichmüller repre-

sentative map and taking the associated log structure [HK94, Def. (3.1)]. The

immersion u is then, in a natural way, an exact closed immersion u : X ↪→
Wn(X), functorial with respect to X.

Lemma 2.10. Under the assumptions of 2.7, there exists a bisimplicial

log scheme Z•,•, m-truncated with respect to the first index and augmented

towards Y • with respect to the second index, a bisimplicial formal log scheme

T •,• over Σ, m-truncated with respect to the first index, and a closed immersion

of bisimplicial formal log schemes i•,• : Z•,• ↪→ T •,• such that the following

conditions are satisfied :

(a) For 0 ≤ r ≤ m, Zr,0 is a disjoint union of affine open subsets of

Yr covering Yr, the augmentation morphism Zr,0 → Yr induces the natu-

ral inclusion on each of these subsets, and the canonical morphism Zr,• →
cosk

Y r
0 (sk

Y r
0 (Zr,•)) is an isomorphism.

(b) For 0 ≤ r ≤ m and t ≥ 0, the formal log scheme T r,t is smooth over

Σ (i.e., its reduction mod pn is smooth over Σn for all n), and the canonical

morphism T r,• → cosk
Σ
0 (sk

Σ
0 (T r,•)) is an isomorphism.

(c) Let i•,•;n : Z•,• ↪→ T •,•;n be the reduction mod pn of i•,•, and let u•,•;n :

Z•,• ↪→ Wn(Z•,•) denote the morphism of bisimplicial log schemes defined by

the canonical immersions. For variable n, there exists a compatible family of

Σn-morphisms of bisimplicial schemes h•,•;n : Wn(Z•,•) → T •,•;n such that

h•,•;n ◦ u•,•;n = i•,•;n.

Proof. Let j• : Z• → Y • be a morphism of m-truncated simplicial log

schemes satisfying the conclusions of Lemma 2.8. One chooses a decomposition

Zr =
∐
α Z

α
r , with Zαr ⊂ Yr open affine such that jr|Zαr is the natural inclusion.

Let Zαr;1 = Zαr . Since Zαr is affine and smooth over Σ1 and Σn−1 ↪→ Σn is

a nilpotent exact closed immersion, for each r, α and each n ≥ 2 there exists

a smooth log scheme Zαr;n over Σn endowed with an isomorphism Zαr;n−1
∼−→

Σn−1×ΣnZ
α
r;n [Kat89, Prop. (3.14) (1)]. Taking limits when n→∞, we obtain

a smooth formal log scheme Zαr over Σ and an isomorphism Zαr
∼−→ Σ1 ×Σ

Zαr . Moreover, the smoothness of Zαr;n over Σn for all n implies that we can

find inductively a compatible family of Σn-morphisms gαr;n : Wn(Zαr ) → Zαr;n
such that the composition Zαr ↪→ Wn(Zαr ) → Zαr;n is the chosen immersion

Zαr ↪→ Zαr;n.

Let Zr;n =
∐
α Z

α
r;n, Zr =

∐
αZαr , let vr;n : Zr ↪→ Zr;n, vr : Zr ↪→ Zr

be defined by the immersions Zαr ↪→ Zαr;n and Zαr ↪→ Zαr , and let gr;n :

Wn(Zr)→ Zr;n be defined by the morphisms gαr;n. We now use the method of

Chiarellotto and Tsuzuki ([CT03, 11.2], [Tsu04, 7.3]) to deduce from these data

a closed immersion i• of Z• into an m-truncated simplicial formal log scheme
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T •, smooth over Σ, with reduction T •;n over Σn, and a compatible family of

Σn-morphisms of m-truncated simplicial log schemes h•;n : Wn(Z•) → T •;n
such that h•;n ◦ u•;n = i•;n, where u•;n : Z•;n ↪→ Wn(Z•;n) is the canonical

morphism, and i•;n is the reduction mod pn of i•. First, for 0 ≤ s ≤ m, we set

Γs(Zr) =
∏

γ:[r]→[s]

Zr,γ ,

where the product is taken over Σ and indexed by the set of morphisms

γ : [r] → [s] in ∆[m], and where Zr,γ = Zr for all γ. Then any morphism

η : [s′]→ [s] in ∆[m] defines a morphism Γs(Zr)→ Γs′(Zr) having as compo-

nent of index γ′ the projection of Γs(Zr) to the factor of index η ◦ γ′. In this

way, one obtains an m-truncated simplicial formal log scheme Γ•(Zr) over Σ,

the terms of which are smooth over Σ.

For each γ : [r]→ [s], there is a commutative diagram

Wn(Zs)
Wn(γ)

// Wn(Zr)

gr;n

&&
Zs
?�

us;n

OO

γ // Zr
?�

ur;n

OO

� � vr;n // Zr;n
� � // Zr.

For fixed r and variable s, the family of morphisms Zs → Γs(Zr) having the

composition Zs
γ−→ Zr ↪→ Zr as component of index γ defines a morphism of

m-truncated simplicial formal log schemes Z• → Γ•(Zr). We set

T • =
∏

0≤r≤m
Γ•(Zr),

and we define i• : Z• → T • as having the previous morphism as component of

index r for 0 ≤ r ≤ m. For each r, the morphism Zr → Γr(Zr) has the closed

immersion vr : Zr ↪→ Zr as component of index Id[r]. It follows that Zr → T r
is a closed immersion for all r.

Similarly, the family of morphisms Wn(Zs) → Γs(Zr) having the com-

position Wn(Zs)
Wn(γ)−−−−→ Wn(Zr)

gr;n−−→ Zr;n ↪→ Zr as component of index γ

defines a morphism of m-truncated simplicial log schemes Wn(Z•)→ Γ•(Zr).
We define h• : Wn(Z•)→ T • as having the previous morphism as component

of index r for 0 ≤ r ≤ m and h•;n : Wn(Z•) → T •;n as being the reduction of

h• mod pn. It is clear that h•;n ◦u•;n = i•;n and that the morphisms h•;n form

a compatible family when n varies.

We now set Z•,0 = Z•, T •,0 = T •, and we define

Z•,• = cosk
Y •
0 (Z•,0), T •,• = cosk

Σ
0 (T •,0),

the coskeletons being taken respectively in the category of simplicial m-trun-

cated simplicial log schemes over Y • and of simplicial m-truncated simplicial
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formal log schemes over Σ. The augmentation morphism Z•,0 → Y • is given by

j•, and the morphism i•,• is defined by setting i•,0 = i• : Z•,0 ↪→ T •,0 and ex-

tending i•,0 by functoriality to the coskeletons. As seen above, i•,0 is a closed

immersion, and it follows from the construction of coskeletons that i•,t is a

closed immersion for all t. Since cosk
Σ
0 (T r,0)t = T r×Σ× · · ·×ΣT r (t+1 times),

T r,t is smooth over Σ for all r, t. Finally, we define h•,•;n : Wn(Z•,•)→ T •,•;n
as being the composition

Wn(cosk
Y •
0 (Z•,0))→ cosk

Wn(Y •)
0 (Wn(Z•,0))

→ cosk
Σn
0 (T •,0;n) ' Σn ×Σ cosk

Σ
0 (T •,0),

where the first map is defined by the universal property of the coskeleton (and

is actually an isomorphism), the second one is defined by functoriality by the

morphism h•;n : Wn(Z•,0)→ T •;n = T •,0;n, and the last one is the base change

isomorphism for coskeletons. The relations h•,•;n ◦ u•,•;n = i•,•;n and the com-

patibility for variable n follow from the similar properties for the morphisms

h•;n. Properties (a)–(c) of the lemma are then satisfied. �

2.11. Proof of Proposition 2.7. Let

Z•,•
� � i•,• //

j•,•
��

T •,•

��
Y • // Σ

be a commutative diagram satisfying the properties of Lemma 2.10. Since,

for all r ≤ m, the morphism jr,0 is locally an open immersion, the scheme

underlying Zr,t is the usual fibred product Zr,0 ×Yr · · · ×Yr Zr,0 (t + 1 times).

Keeping the notation of the proof of Lemma 2.10, let Ur = (Zαr )α be an affine

covering of Yr such that Zr,0 =
∐
α Z

α
r and jr,0|Zαr is the natural inclusion.

Then, for any abelian sheaf E on Yr, the complex

εr ∗(jr,• ∗j
−1
r,• E)=

[
jr,0 ∗j

−1
r,0 E → · · · → jr,t ∗j

−1
r,t E

∑
k
(−1)k∂k−−−−−−−→ jr,t+1 ∗j

−1
r,t+1E → · · ·

]
is the Čech resolution of E defined by the covering Ur. If E• is an abelian sheaf

on Y•, the fact that j•,0 is an augmentation morphism in the category ofm-trun-

cated simplicial schemes implies that the complex εr ∗(jr,• ∗j
−1
r,• Er) is functorial

with respect to [r] ∈ ∆[m], and we obtain a resolution ε• ∗(j•,• ∗j
−1
•,•E•) of E• in

the category of abelian sheaves on Y•. In particular, taking into account that

each jq,q′ is locally an open immersion, we obtain for all n a resolution of the

de Rham-Witt complex of Y • given by

(2.11.1) WnΩ•Y •
qis−−→ ε• ∗(j•,•∗WnΩ•Z•,•).
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On the other hand, one can also define for all r a complex on Crys(Y r/Σn)

by setting

εr ∗(jr,• crys ∗(OZr,•/Σn))

=
[
jr,0 crys ∗(OZr,0/Σn)→ · · · → jr,t crys ∗(OZr,t/Σn)

∑
k
(−1)k∂k−−−−−−−→ · · ·

]
.

Since Zr,• → Yr is the Čech simplicial scheme defined by an affine open cov-

ering of Yr, this complex is a resolution of OY r/Σn [Ber74, III, Prop. 3.1.2

and V, Prop. 3.1.2]. Since Z•,• is a bisimplicial scheme, these resolutions are

functorial with respect to [r] and yield a resolution ε• ∗(j•,• crys ∗(OZ•,•/Σn))

of OY •/Σn . Let T •,•;n be the reduction mod pn of T •,•. The linearization

functor L [Kat89, (6.9)] is functorial with respect to embeddings, hence it

provides a complex L(Ω•T•,•;n/Σn) on Crys(Z•,•/Σn). This complex is a res-

olution of OZ•,•/Σn thanks to the log Poincaré lemma, which follows from

[Kat89, Prop. (6.5)]. For each (r, t) and each i, one checks easily that the

term jr,t crys ∗(L(Ωi
T r,t;n/Σn

)) is acyclic with respect to uY r/Σn∗. (Use [Ber74,

V, (2.2.3)] and the equality uY r/Σn∗ ◦ jr,t crys ∗ = jr,t ∗ ◦ uZr,t/Σn∗.) Hence,

the complex ε• ∗(j•,• crys ∗(L(Ω•T•,•;n/Σn))) is an uY •/Σn∗-acyclic resolution of

OY •/Σn . Moreover, the closed immersion of bisimplicial schemes i•,• defines

a family of PD-envelopes P log
Z•,•(T •,•;n), supported in Z•,•. They provide a de

Rham complex P log
Z•,•(T •,•;n) ⊗ Ω•T•,•;n/Σn , which can be viewed as a complex

of abelian sheaves on Z•,•, and it follows from [Ber74, V, (2.2.3)] that

uY •/Σn∗(j•,• crys ∗(L(Ω•T•,•;n/Σn))) = j•,• ∗(P log
Z•,•(T •,•;n)⊗ Ω•T•,•;n/Σn).

As the jr,t’s are affine morphisms (as a consequence of 1) in our general con-

ventions), we finally get in D+(Z•,Wn) an isomorphism

(2.11.2) RuY •/Σn∗(OY •/Σn)
∼−−→ ε• ∗(j•,• ∗(P log

Z•,•(T •,•;n)⊗ Ω•T•,•;n/Σn)).

To prove Proposition 2.7, it suffices to define a quasi-isomorphism between

the right-hand sides of (2.11.1) and (2.11.2). Note that, for each r, t, i, the

sheaves WnΩi
Zr,t

and P log
Zr,t

(T r,t;n)⊗ Ωi
T r,t;n/Σn

are jr,t ∗-acyclic. Indeed, Zr,t is

a disjoint union of affine open subsets of Yr, and on the one hand WnΩi
Zr,t

has

a finite filtration with subquotients that are coherent over suitable Frobenius

pullbacks of Zr,t [HK94, Th. (4.4)], on the other hand P log
Zr,t

(T r,t;n)⊗Ωi
T r,t;n/Σn

is a quasi-coherent OTr,t;n-module with support in Zr,t, hence is a direct limit

of submodules that have a finite filtration with subquotients that are coherent

over Zr,t. Therefore, it suffices to construct a quasi-isomorphism

(2.11.3) P log
Z•,•(T •,•;n)⊗ Ω•T•,•;n/Σn −→WnΩ•Z•,•

in the category of complexes of Wn-modules over Z•,•.
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We can now argue as in the proof of [HK94, Th. (4.19)]. Since the

PD-immersion ur,t;n : Zr,t ↪→ Wn(Zr,t) is an exact closed immersion for all

r, t, the morphism h•,•;n : Wn(Z•,•)→ T •,•;n defines uniquely a PD-morphism

P log
Z•,•(T •,•;n) → Wn(OZ•,•) in the category of sheaves of W -modules on the

bisimplicial scheme T•,•;n. As h•,•;n is a morphism of bisimplicial log schemes,

it defines by functoriality a morphism of complexes Ω•T•,•;n/Σn → Ω•Wn(Z•,•)/Σn
on T•,•;n. This morphism extends as a morphism of complexes with support

in Z•,•

P log
Z•,•(T •,•;n)⊗ Ω•T•,•;n/Σn −→ Ω•Wn(Z•,•)/Σn/N

•
•,•,

where N ••,• ⊂ Ω•Wn(Z•,•)/Σn denotes the graded ideal generated by the sections

d(a[i])−a[i−1]da for all sections a of VWn−1(OZ•,•) and all i ≥ 1. The differen-

tial graded algebra WnΩ•Z•,• is a quotient of Ω•Wn(Z•,•)/Σn [HK94, Prop. (4.7)],

and the generators of N ••,• vanish in WnΩ•Z•,• (because WΩ•Z•,• is p-torsion

free), so we finally get the morphism (2.11.3). To check that it is a quasi-

isomorphism, it suffice to do so on each Zr,t, and this follows from [HK94,

Th. (4.19)]. In this way we obtain the isomorphism (2.7.1).

To construct the isomorphism (2.7.2), it suffices to observe that the com-

patibility of the previous constructions when n varies implies that they make

sense in the category of inverse systems indexed by n ∈ N. Then one can

apply the functor R lim←−n to the isomorphism (2.7.1) viewed as an isomorphism

in the derived category of inverse systems of sheaves of W -modules on Y•, and

this provides the isomorphism (2.7.2), since the local structure of the WnΩi

recalled above implies that they form a lim←−-acyclic inverse system.

The isomorphisms (2.7.1) and (2.7.2) do not depend upon the choices

made in their construction. If

(Z•,•, T •,•, j•,•, i•,•, h•,•;n) and (Z ′•,•, T ′•,•, j′•,•, i′•,•, h′•,•;n)

are two sets of data provided by Lemma 2.10, one can construct a third set of

data (Z ′′•,•, T ′′•,•, j′′•,•, i′′•,•, h′′•,•;n) mapping to the two previous ones by setting

Z ′′•,• = Z•,• ×Y • Z ′•,•, T ′′•,• = T •,• ×Σ T ′•,•
and defining j′′•,•, i

′′
•,• and h′′•,•;n by functoriality. Then the independence prop-

erty of (2.7.1) and (2.7.2) follows from the functoriality of the canonical iso-

morphisms used in their construction with respect to the projections from

(Z ′′•,•, T ′′•,•) to (Z•,•, T •,•) and (Z ′•,•, T ′•,•). Moreover, one can also prove the

functoriality of (2.7.1) and (2.7.2) with respect to Y • by similar arguments us-

ing the graph construction: for a morphism ϕ• : Y ′• → Y • between two m-trun-

cated simplicial log schemes satisfying the assumptions of Lemma 2.7, one

can find sets of data (Z•,•, T •,•, j•,•, i•,•, h•,•;n) and (Z ′•,•, T ′•,•, j′•,•, i′•,•, h′•,•;n)

satisfying the conditions of Lemma 2.10 relatively to Y • and Y ′•, and such

that there exists morphisms of bisimplicial log schemes ψ•,• : Z ′•,• → Z•,•,
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θ•,• : T ′•,• → T •,• satisfying the obvious compatibilities. Then the functorial-

ity of (2.7.1) and (2.7.2) with respect to ϕ• follows from the functoriality of

the canonical isomorphisms used in their construction with respect to ϕ•, ψ•,•
and θ•,•. In particular, in this way one obtains that the isomorphisms (2.7.1)

and (2.7.2) are compatible with the Frobenius actions. �

2.12. Proof of Theorem 1.3, assuming Theorem 1.5. To conclude this

section, we prove that Theorem 1.5 implies Theorem 1.3. We keep the notation

of 1.1, and we first observe that if Theorem 1.3 holds when R is complete, then

it holds in general. Indeed, let “R be the completion of R, and let ‹X = X
R̂

.

Then ‹X is a regular scheme: on the one hand, its generic fibre is smooth over

K̂ = Frac(“R); on the other hand, its special fibre is isomorphic to Xk, and the

completions of the local rings of X and ‹X are isomorphic at any corresponding

points of their special fibres. It follows that ‹X satisfies the assumptions of

Theorem 1.3 relatively to “R, and the theorem for ‹X implies the theorem for X.

Therefore, we assume in the rest of the proof that R is complete. We fix

an integer m > q. Let K ′ be a finite extension of K, with ring of integers

R′ and residue field k′, such that there exists an m-truncated simplicial log

scheme Y • over R′, with an augmentation morphism u : Y0 → XR′ , such that

properties (a)–(c) of Lemma 2.2 are satisfied. Let W ′n = Wn(k′), W ′ = W (k′),

K ′0 = Frac(W ′), and let Σ′n, Σ′ be the log schemes defined by W ′n, W ′ as in 2.1.

Thanks to property (a) of Lemma 2.2, the log schemes (Y r)k′ are smooth of

Cartier type over Σ′1. Therefore, we can consider the log crystalline cohomology

of Y • k′

RΓcrys(Y • k′/Σ
′,OY • k′/Σ′) := Rεm∗ RΓ•crys(Y • k′/Σ

′,OY • k′/Σ′),

as defined in 2.6. Using the naive filtration on the functor Rεm∗ (see 2.3),

its basic properties follow from those of the log crystalline cohomology of the

proper and smooth log schemes (Yr)k′ . In particular, since Yr is proper over

Σ′1 for all r, the complex RΓcrys(Y • k′/Σ
′,OY • k′/Σ′) is a perfect complex of

W ′-modules, and the cohomology space Hq
crys(Y • k′/Σ

′,OY • k′/Σ′) ⊗ K ′0 is a

finite dimensional K ′0-vector space. By functoriality, it is endowed with the

semi-linear Frobenius action defined by the absolute Frobenius endomorphism

of Y • k′ .

From (2.6.2) and (2.7.2), we deduce an isomorphism

Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0
∼−−→ Hq(Y • k′ ,WΩ•Y • k′ )⊗K

′
0,

which is compatible with the Frobenius actions thanks to Proposition 2.7. The

filtration of the complex WΩ•Y • k′ by the subcomplexes σ≥iWΩ•Y • k′ provides a

spectral sequence

Ei,j1 = Hj(Y • k′ ,WΩi
Y • k′

)⊗K ′0 =⇒ H i+j
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0,
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which is endowed with a Frobenius action. Using the naive filtration on Rεm∗ ,

from the case of a single log scheme we deduce that each term Ei,j1 is a finite

dimensional K0-vector space on which the Frobenius action is bijective with

slopes in [i, i + 1[. Therefore the spectral sequence degenerates at E1 and,

taking (2.1.1) into account, we get in particular an isomorphism

(2.12.1) (Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0)<1 ∼−−→ Hq(Y• k′ ,WOY• k′ ,Q).

Since Y • satisfies property (a) of 2.2, the construction of the monodromy

operator N on log crystalline cohomology can be extended to the case of Y • k′

[Tsu98, (6.3)]. Moreover, the Hyodo-Kato isomorphism ρ can also be extended

to the case of Y • k′ [Tsu98, (6.3.2)], providing an isomorphism

(2.12.2) ρ : Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′ ∼−−→ Hq(Y•K′ ,Ω

•
Y•K′

).

Thus, Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′ inherits a filtered (ϕ,N)-module structure.

It follows from [Tsu98, Th. 7.1.1] (generalizing [Tsu99, Th. 0.2]) that, en-

dowed with this structure, Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0 is an admissible fil-

tered (ϕ,N)-module, corresponding to the Galois representation Hq
ét(Y•K ,Qp).

Thus, it is weakly admissible. In particular, either Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)
⊗K ′0 = 0, or its smallest Newton slope is greater or equal to its smallest Hodge

slope. Since Hq(XK ,OXK ) = 0, Corollary 2.5 implies that the smallest Hodge

slope is at least 1. Therefore, the part of Newton slope < 1 vanishes. By

(2.12.1), we obtain

(2.12.3) Hq(Y• k′ ,WOY• k′ ,Q) = 0.

As Y• → XR′ satisfies property 2.2(c), there exists a sub-K-extension

K1 ⊂ K ′, with ring of integers R1 and residue field k1, a semi-stable scheme Y

over R1, a projective R-alteration f : Y → X, and finitely many R-embeddings

σi : R1 ↪→ K ′ such that if u1 : Y → XR1 denotes the R-morphism defined by f

and if Yσi (resp. uσi : Yσi → XR′) denotes the R′-scheme (resp. R′-morphism)

deduced by base change via σi from Y (resp. u1), then Y0 =
∐
i Yσi , and the

augmentation morphism u : Y0 → XR′ is defined by u|Yσi = uσi . This provides

a commutative diagram

(2.12.4) Y• k′
u• k′ // Xk′

''
Y0,k′ =

∐
i Yσi,k′

s0 44

**

Xk

Yk1
� � // Yk

fk

77

in which we identify schemes with their Zariski topos, Yk := Spec k ×SpecR Y ,

and
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(i) the morphism u• k′ is such that, for any sheaf E on Xk′ , u
−1
• k′E is the

family of sheaves (ur)
−1
k′ E, with ur : Yr → XR′ defined by the augmentation

morphism;

(ii) the morphism s0 is such that, for any sheaf F • on Y• k′ , s
−1
0 F • = F 0;

(iii) the morphism Yσi,k′ → Yk1 is the projection corresponding to σi.

By functoriality, we obtain a commutative diagram for the corresponding

Witt cohomology spaces

(2.12.5)

Hq(Xk′ ,WOXk′ ,Q) // Hq(Y• k′ ,WOY• k′ ,Q)

**
Hq(Xk,WOXk,Q)

55

f∗k ))

⊕
iH

q(Yσi,k′ ,WOYσi,k′ ,Q).

Hq(Yk,WOYk,Q)
∼ // Hq(Yk1 ,WOYk1 ,Q)

& �

44

In this diagram, the lower horizontal arrow is an isomorphism because Yk1 ↪→Yk
is a nilpotent immersion [BBE07, Prop. 2.1 (i)]. The lower right arrow is

injective on each summand, because each σi turns k′ into a finite separable

extension of k1. Hence it follows from [Ill79, 0, Prop. 1.5.8] that

W (k′)⊗W (k1) Γ(U,WOYk1 )
∼−−→ Γ(Uσi ,WOYσi,k′ )

for any affine open subset U ⊂ Yk1 with inverse image Uσi ⊂ Yσi,k′ ; as one can

compute Witt cohomology using Čech cohomology, this implies that

W (k′)⊗W (k1) H
q(Yk1 ,WOYk1 )

∼−−→ Hq(Yσi,k′ ,WOYσi,k′ ).

Finally, f : Y → X is a projective alteration between two flat regular schemes

of finite type over R, so Theorem 1.5 implies that f∗k is injective. Therefore, the

functoriality map Hq(Xk,WOXk,Q) → ⊕
iH

q(Yσi,k′ ,WOYσi,k′ ,Q) is injective.

But (2.12.3) implies that the composition of the upper path in the diagram

is 0. It follows that Hq(Xk,WOXk,Q) = 0. �

3. An injectivity theorem for coherent cohomology

We now begin our preliminary work in view of the proof of Theorem 1.5.

One of the key ingredients in this proof is a theorem that bounds the order of

elements in the kernel of the functoriality map induced on coherent cohomology

by a proper surjective complete intersection morphism f : Y → X of virtual

relative dimension 0. Such a result is a consequence of the existence of a

“trace morphism” τf : Rf∗OY → OX that satisfies the properties stated in the

following theorem.

Theorem 3.1. Let X be a noetherian scheme with a dualizing complex,

and let f : Y → X be a proper complete intersection morphism of virtual
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relative dimension 0. There exists a morphism τf : Rf∗OY → OX that satisfies

the following properties :

(i) If g : Z → Y is a second proper complete intersection morphism of

virtual relative dimension 0, then the composed morphism

(3.1.1) R(f ◦ g)∗OZ ∼= Rf∗Rg∗OZ
Rf∗(τg)−−−−−→ Rf∗OY

τf−→ OX

is equal to τfg .

(ii) Let X ′ be another noetherian scheme with a dualizing complex, u :

X ′ → X a morphism such that X ′ and Y are Tor-independent over X , and

f ′ : Y ′ → X ′ the pull-back of f by u. If f is projective, or if either f is flat,

or u is residually stable [Con00, p. 132], then the morphism

(3.1.2) Rf ′∗OY ′ ∼= Lu∗Rf∗OY
Lu∗(τf )
−−−−−→ OX′ ,

defined by the base change isomorphism (A.1.2), is equal to τf ′ .

(iii) If f is finite and flat then, for any section b ∈ f∗OY ,

(3.1.3) τf (b) = tracef∗OY /OX (b).

As explained in the introduction, we refer to B.7 for the definition of τf
and to B.9 for the proof of the theorem.

It may be worth recalling a few examples of complete intersection mor-

phisms of virtual relative dimension 0 (in short: ci0):

1) If X and Y are two regular schemes with the same Krull dimension,

any morphism f : Y → X that is locally of finite type is ci0. This is the

situation where we will use Theorem 3.1 in this article.

2) If X and Y are smooth over a third scheme S, with the same relative

dimension, any S-morphism Y → X is ci0.

3) If X is a scheme, Z ↪→ X a regularly embedded closed subscheme, and

f : Y → X the blowing up of X along Z, then f is ci0 [SGA6, VII, Prop. 1.8].

The existence of τf has a remarkable consequence for the functoriality

maps induced on coherent cohomology.

Theorem 3.2. Let X be a noetherian scheme with a dualizing complex,

and f : Y → X a proper complete intersection morphism of virtual relative

dimension 0. Assume that there exists a scheme-theoretically dense open subset

U ⊂ X such that f−1(U)→ U is finite locally free of constant rank r≥1. Then,

for any complex E• ∈ Db
qc(OX) and any q ≥ 0, the kernel of the functoriality

map

(3.2.1) Hq(X, E•)→ Hq(Y,Lf∗E•)

is annihilated by r. In particular, when r is invertible on X , the functoriality

maps are injective.
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Proof. By 3.1(iii), the composition OX → Rf∗OY
τf−→ OX is multiplica-

tion by r over U . Since U is scheme-theoratically dense inX, it is multiplication

by r over X.

The complete intersection hypothesis implies that f has finite Tor-dimen-

sion; hence, Lf∗E• belongs to Db
qc(OY ). Moreover, we can apply the projection

formula [SGA6, III, 3.7] to obtain a commutative diagram

E• //

× r
&&

Rf∗OY
L
⊗OX E•

∼ //

τf⊗Id

��

Rf∗Lf
∗E•

vv
E•,

in which the upper composed morphism is the adjunction morphism. Applying

the functors Hq(X,−) to the diagram, the theorem follows. �

4. Koszul resolutions and local description of the trace morphism τf

We recall here some well-known explicit constructions based on the Koszul

complex that enter in the definition of the trace morphism τf . Later on, this

will allow us to define generalizations of τf for sheaves of Witt vectors. As in

the whole article, we follow Conrad’s constructions and conventions [Con00].

4.1. Let P be a scheme, and let t = (t1, . . . , td) be a regular sequence of

sections of OP , defining an ideal I ⊂ OP . We denote by Y ⊂ P the closed

subscheme defined by I and by i : Y ↪→ P the corresponding closed immersion.

Classically, the Koszul complex K•(t) defined by the sequence (t1, . . . , td) is the

chain complex concentrated in homological degrees [0, d] such that E := K1(t)

is a free OP -module of rank d with basis e1, . . . , ed, Kk(t) =
∧kE for all k and

such that the differential is given in degree k by

dk(ei1 ∧ · · · ∧ eik) =
k∑
j=1

(−1)j−1tijei1 ∧ · · · ∧”eij ∧ · · · ∧ eik .
It is often more convenient to considerK•(t) as a cochain complex concentrated

in cohomological degrees [−d, 0], by setting (K•(t))k = K−k(t) and leaving the

differential unchanged [Con00, p. 17].

Since t is a regular sequence, K•(t) is a free resolution of OY over OP .

For any OP -module M, this resolution provides an isomorphism

(4.1.1)

ExtdOP (OY ,M) := Hd(Hom•OP (K•(t),M))
ψt,M−−−→
∼

HomOP (
∧dE ,M)

IHomOP (
∧dE ,M)

,

where ψt,M is the tautological isomorphism multiplied by (−1)d(d+1)/2 (see

[Con00, definition of (1.3.28) and (2.5.2)]). For any section m of M, we will
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denote by

(4.1.2)

ñ
m

t1, . . . , td

ô
∈ ExtdOP (OY ,M)

the section corresponding by (4.1.1) to the class of the homomorphism ut,m
that sends e1 ∧ · · · ∧ ed to (−1)dm (the (−1)d sign being needed to obtain

relation (4.5.1) later). Note that this section is linear with respect to m, only

depends on the class of m mod IM, and is functorial with respect to M. Its

dependence on the regular sequence t is given by the following lemma.

Lemma 4.2. Let t′ = (t′1, . . . , t
′
d) be another regular sequence of sections

of OP , generating an ideal I ′ such that I ′ ⊂ I . Let C = (ci,j)1≤i,j≤d be

a matrix with entries in OP such that t′i =
∑d
j=1 ci,jtj for all i. If α :

ExtdOP (OP /I,M) → ExtdOP (OP /I ′,M) is the functoriality homomorphism,

then

(4.2.1) α

Çñ
m

t1, . . . , td

ôå
=

ñ
det(C)m

t′1, . . . , t
′
d

ô
.

Proof. LetK•(t′) be the Koszul resolution ofOP /I ′, and E ′ = K1(t′), with

basis e′1, . . . , e
′
d. One defines a morphism of resolutions φ : K•(t′)→ K•(t) by

setting φ1(e′i) =
∑
j ci,jej , and φk = ∧kφ1 for 0 ≤ k ≤ d. Then φ provides a

commutative diagram

HomOP (∧dE ,M) //

φd=det(C)

��

ExtdOP (OP /I,M)

α

��
HomOP (∧dE ′,M) // ExtdOP (OP /I ′,M).

The lemma follows. �

4.3. Under the assumptions of 4.1, the morphism d1 : E � I defines an

isomorphism E/IE ∼−−→ I/I2. Using the canonical isomorphisms, this provides

HomOP (
∧dE ,M)

IHomOP (
∧dE ,M)

∼−−→ (
∧dE)∨/I(

∧dE)∨ ⊗OY M/IM(4.3.1)

∼−−→
∧d

((E/IE)∨)⊗OY M/IM
∼−−→ωY/P ⊗OY i

∗M.

Note that, due to the commutation between dual and exterior power, the

composition (4.3.1) maps the class of the homomorphism ut,m used in the

definition of (4.1.2) to (−1)d(t̄∨d ∧ · · · ∧ t̄∨1 )⊗ i∗(m), where t̄k denotes the class

of tk mod I2.
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Composing (4.1.1) and (4.3.1), one obtains the fundamental local isomor-

phism [Har66, III, 7.2] as defined by Conrad [Con00, (2.5.2)] in the local case:

(4.3.2) ηY/P : ExtdOP (OY ,M)
∼−−→ ωY/P ⊗OY i

∗M.

Applying Lemma 4.2 to the case of two regular sequences of generators of the

ideal I, one sees that the isomorphism ηY/P does not depend on the sequence t,

so that local constructions can be glued to define ηY/P for any regular immer-

sion i : Y ↪→ P , without assuming that I is defined globally by a regular

sequence. One obtains in this way the fundamental local isomorphism in the

general case [Con00, (2.5.1)].

Let us now recall from [Con00, 2.5] how the isomorphism (4.3.2) allows us

to define functorially for any M• ∈ D(OP ) the isomorphism [Con00, (2.5.3)]

(4.3.3) ηi : RHomOP (OY ,M•)
∼−−→ ωY/P [−d]

L
⊗OP Li

∗(M•).

Applying [Con00, Lemma 2.1.1] and using the isomorphism of functors defined

by ηY/P , one gets the isomorphism

RHomOP (OY ,M•)
∼−−→ (ωY/P

L
⊗OP Li

∗(M•))[−d].

The isomorphism ηi is then obtained by composition with the canonical iso-

morphism

(ωY/P
L
⊗OP Li

∗(M•))[−d]
∼−−→ ωY/P [−d]

L
⊗OP Li

∗(M•)

defined by the general convention [Con00, p. 11]. From the discussion on p. 53

of [Con00], it follows that ηi satisfies the following properties:

(a) IfM• =M[0] for an OP -moduleM, then the homomorphism induced

by ηi between the cohomology sheaves in degree d is the isomorphism ηY/P .

(b) The isomorphism ηi commutes with translations in D(OP ) (using the

general convention [Con00, (1.3.6)] for the right-hand side of (4.3.3)).

4.4. Let π : P → X be a smooth morphism of relative dimension d,

i : Y ↪→ P a regular immersion of codimension d, and f = π ◦ i. Let

ζ ′i,π : ωY/X
∼−−→ ωY/P [−d]

L
⊗OY Li

∗(ωP/X [d])

be the canonical isomorphism (A.2.6), which induces in degree 0 the tau-

tological isomorphism ζ ′i,π provided in (A.2.5) by the construction of ωY/X
in A.2. Let δf be the canonical section of ωY/X (defined by (A.7.2)) and

ϕf : OY → ωY/X the morphism sending 1 to δf . We define the morphism

(4.4.1) γf : OY → ωP/X [d]

as being the composition
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OY
ϕf //

γf //

ωY/X
ζ′i,π

∼
// ωY/P [−d]

L
⊗OY Li∗(ωP/X [d])

η−1
i

∼
// RHomOP (OY , ωP/X [d])

can

��
ωP/X [d].

Proposition 4.5. Under the assumptions of 4.4, the isomorphism η−1
i ◦

ζ ′i,π entering in the definition of γf induces in degree 0 an isomorphism

η−1
i ◦ ζ

′
i,π : ωY/X

∼−−→ ExtdOP (OY , ωP/X),

which is such that

(4.5.1) η−1
i ◦ ζ

′
i,π(δf ) =

ñ
dt1 ∧ · · · ∧ dtd
t1, . . . , td

ô
.

Proof. Let us consider first the isomorphism

η−1
Y/P ◦ ζ

′
i,π : ωY/X

∼−−→ ExtdOP (OY , ωP/X),

where ηY/P is defined by (4.3.2). By definition,
î
dt1∧···∧dtd
t1,...,td

ó
is mapped to

ut,dt1∧···∧dtd by (4.1.1), and we observed in 4.3 that ut,dt1∧···∧dtd is mapped to

(−1)d(t̄∨d ∧ · · · ∧ t̄∨1 )⊗ i∗(dt1 ∧ · · · ∧ dtd) by (4.3.1). Since ζ ′i,π(δf ) = (t̄∨1 ∧ · · · ∧
t̄∨d )⊗ i∗(dtd ∧ · · · ∧ dt1) by construction, we get the relation

(4.5.2) η−1
Y/P ◦ ζ

′
i,π(δf ) = (−1)d

ñ
dt1 ∧ · · · ∧ dtd
t1, . . . , td

ô
.

Let ηi,ωP/X and ηi,ωP/X [d] be the isomorphisms (4.3.3) relative to the com-

plexes ωP/X [0] and ωP/X [d]. By 4.3(a), ηi,ωP/X induces in degree d the isomor-

phism ηY/P . On the other hand, 4.3(b) shows that ηi,ωP/X [d] is identified with

ηi,ωP/X [d] when using the canonical isomorphisms

RHom(OY , ωP/X [d])
∼−−→ RHom(OY , ωP/X)[d]

and

ωY/P [−d]
L
⊗ Li∗(ωP/X [d])

∼−−→ (ωY/P [−d]
L
⊗ Li∗(ωP/X))[d].

The first one involves no sign and, as ωY/P [−d] is concentrated in degree d, the

second one is given by multiplication by (−1)d
2

= (−1)d on ωY/P ⊗ i∗(ωP/X).

Thus relation (4.5.2) implies relation (4.5.1). �

Proposition 4.6. Let X be a separated noetherian scheme with a dual-

izing complex, P = P dX a projective space over X , π : P → X the structural

morphism, i : Y ↪→ P a regular immersion of codimension d, and f = π ◦ i.
Then the trace morphism τf : Rf∗OY → OX of Theorem 3.1 is equal to the

composition

(4.6.1) Rf∗(OY )
Rπ∗(γf )
−−−−−→ Rπ∗(ωP/X [d])

Trpπ−−−→ OX ,
where Trpπ is the trace morphism for the projective space defined in [Con00,

(2.3.1)–(2.3.5)].
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Proof. By construction (see B.7), τf is the composition Trf ◦ Rf∗(λf ) ◦
Rf∗(ϕf ) in the commutative diagram

Rf∗(OY )

Rf∗(ϕf )

��
Rf∗(ωY/X)

Rf∗(ζ
′
i,π) o
��

Rf∗(λf )

∼
// Rf∗(f !(OX))

Trf // OX

Rf∗(ωY/P [−d]⊗L Li∗(ωP/X [d]))

Rf∗(η
−1
i

) o
��

Rf∗(i
!π!(OX))

oRf∗(c
−1
i,π

)

OO

Rπ∗(Tri) // Rπ∗(π!(OX))

Trπ

OO

Rf∗(RHomOP (OY , ωP/X [d])) ∼
Rf∗(di) // Rf∗(i!(ωP/X [d]))

oRf∗(i
!(eπ))

OO

Rπ∗(Tri)// Rπ∗(ωP/X [d]),

Rπ∗(eπ) o

OO

in which the isomorphism λf is defined by the commutativity of the left rec-

tangle before applying Rf∗ (cf. B.1) and di, eπ, ci,π are defined as follows:

(a) di is the canonical isomorphism of functors i[ :=RHomOP (OY ,−)
∼−−→ i!,

defined by [Con00, (3.3.19)];

(b) eπ is the canonical isomorphism of functors π] := ωP/X [d] ⊗L π∗(−)
∼−−→ π!, defined by [Con00, (3.3.21)].

(c) ci,π is the transitivity isomorphism f ! ∼−−→ i!π!, defined by [Con00,

(3.3.14)].

Moreover, the upper right square commutes because of the transitivity of the

trace morphism [Con00, 3.4.3, (TRA1)], and the lower right square commutes

by functoriality of the trace morphism Tri with respect to eπ.

In this diagram, the composition of the right vertical arrows is the pro-

jective trace morphism Trpπ [Con00, 3.4.3, (TRA3)] and the isomorphism

di on the bottom row identifies Tri with the trace morphism Trfi for finite

morphisms [Con00, 3.4.3, (TRA2)]. As the latter is the canonical morphism

i∗RHomOP (OY ,−) → Id defined by OP � OY , it follows that the composi-

tion of the left column and the bottom row of the diagram is equal to Rπ∗(γf ),

which proves the proposition. �

5. Preliminaries on the relative de Rham-Witt complex

We extend here to the relative de Rham-Witt complex constructed by

Langer and Zink [LZ04] structure theorems that are classical when the base

is a perfect scheme of characteristic p ([Ill79], [IR83]). We begin by recalling

some basic facts from their construction.

From now on, we fix a prime number p. We denote by Z(p) the localization

of Z at the prime ideal (p). Although many results of [LZ04] are valid for Z(p)-

schemes, we limit our exposition to the case of schemes on which p is locally

nilpotent, which will suffice for our applications.
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5.1. Let S be a scheme on which p is locally nilpotent, and let f : X →
S be a morphism of schemes. An F -V -pro-complex of X/S, as defined in

[LZ04], is a pro-complex {R : E•n+1 → E•n}n≥1 of sheaves on X, where E•n is a

differential graded Wn(OX)/f−1Wn(OS)-algebra (i.e., E•n is a graded Wn(OX)-

algebra together with an f−1Wn(OS)-linear map d : E•n → E•n(1) such that

d2 = 0, satisfying ηω = (−1)degω deg ηωη and d(ωη) = (dω)η+ (−1)degωωdη for

any homogeneous sections ω, η ∈ E•n), which is equipped with a map of graded

pro-rings

F : E••+1 → E•• ,

called the Frobenius morphism, and with a map of graded abelian groups

V : E•• → E••+1,

called the Verschiebung morphism, such that the following properties hold:

(i) The structure map W•(OX)→ E0
• is compatible with F and V .

(ii) The following relations hold:

FV = p, FdV = d,(5.1.1)

V (ωF (η)) = V (ω)η for all ω ∈ E•n, η ∈ E
•
n+1, n ≥ 1,(5.1.2)

F (d[a]) = [a]p−1d[a] for all a ∈ OX ,(5.1.3)

where [a] denotes the Teichmüller lift of a to Wn(OX) for any n.

A morphism between two F -V -pro-complexes of X/S is a map of pro-

differential graded W•(OX)/f−1W•(OS)-algebras compatible with F and V .

By [LZ04, Prop. 1.6, Rem. 1.10], there exists an initial object in the category of

F -V -pro-complexes of X/S, which is called the relative de Rham-Witt complex

of X/S and is denoted by {R : Wn+1Ω•X/S → WnΩ•X/S}n≥1. Each sheaf

WnΩq
X/S is a quasi-coherent sheaf on the scheme Wn(X) := (|X|,Wn(OX))

defined in 2.9, and the transition morphisms R are epimorphisms. When S

is a perfect scheme of characteristic p, the relative de Rham-Witt complex

coincides with the one defined in [Ill79]. Notice that we have the following

properties:

WnΩ0
X/S = Wn(OX), W1Ω•X/S = Ω•X/S ,

and note that, by [LZ04, (1.16), (1.17) and (1.19)], relations (5.1.1) and (5.1.2)

imply that

V (ωdη) = V (ω)dV (η) for all ω, η ∈WnΩ•X/S , n ≥ 1,(5.1.4)

V d = pdV, dF = pFd.(5.1.5)

In addition, when S is an Fp-scheme, the operators F and V satisfy the relation

V F = p.
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We also recall the behaviour of the de Rham-Witt complex with respect

to étale pull-backs. Let

X ′
h //

��

X

��
S′

g // S

be a commutative diagram in which h is étale and g unramified. Then, for

all q ≥ 0 and r ≥ n ≥ 1, Wn(X ′) is étale over Wn(X) and we have the

Wr(OX′)-linear isomorphisms

Wr(OX′)⊗h−1Wr(OX) h
−1WnΩq

X/S
∼−−→WnΩq

X′/S′ ,(5.1.6)

Wr(OX′)⊗h−1Wr(OX) h
−1(F r−n∗ WnΩq

X/S)(5.1.7)

∼−−→ F r−n∗ WnΩq
X′/S′ , a⊗ ω 7→ F r−n(a)ω,

where, for any Wn-module M , F r−n∗ M denotes M viewed as a Wr-module via

F r−n : Wr →Wn [LZ04, Props. 1.11, A.8 and Cor. A.11].

Finally, the completed relative de Rham-Witt complex is defined byWΩ•X/S
:= lim←−nWnΩ•X/S ; the canonical morphisms WΩ•X/S → WnΩ•X/S are still epi-

morphisms.

5.2. Let S = SpecA be affine. We want to recall the calculation of

WΩq
A[x1,...,xd]/A := Γ(AdS ,WΩq

AdS/S
). We need some notation for this.

A weight is a function k : [1, d] = {1, 2, . . . , d} → Z[1
p ]≥0. We write

ki := k(i) for i ∈ [1, d]. The support of k, supp k, consists of those i ∈ [1, d]

with ki 6= 0. For any weight k, we choose once and for all a total ordering on

the elements of the support of k,

(5.2.1) supp k = {i1, . . . , ir},

such that

(i) ordp ki1 ≤ ordp ki2 ≤ · · · ≤ ordp kir .

(ii) The ordering on supp k and on supp pak agree for any a ∈ Z.

We say k is integral if ki ∈ Z for all i ∈ [1, d]. We say k is primitive if it is

integral and not all ki are divisible by p. We set

(5.2.2)

t(ki) := −ordp ki and t(k) :=

max { t(ki) | i ∈ supp k } if supp k 6= ∅,
0 if k = 0.

If k 6= 0, then t(k) is the smallest integer such that pt(k)k is primitive, and we

have

t(k) = t(ki1) ≥ t(ki2) ≥ · · · ≥ t(kir).
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We denote by u(k) the smallest nonnegative integer such that pu(k)k is integral,

i.e., u(k) = max {0, t(k)}. Notice that k is integral if and only if u(k) = 0 if

and only if t(k) ≤ 0, and k is primitive if and only if t(k) = 0. An interval of

the support of k is by definition a subset I ⊂ supp k of the form

I = {is, is+1, . . . , is+m}.

We denote by kI the weight that equals k on I and is zero on [1, d] \ I. If k

is fixed and I is an interval of the support of k, we write u(I) := u(kI) and

t(I) := t(kI). An admissible partition P of length q of supp k (or just of k) is

a tuple of intervals of supp k, P = (I0, I1, . . . , Iq) such that

(i) supp k = I0 t I1 t · · · t Iq.
(ii) The elements in Ij are smaller than the elements in Ij+1 (with respect

to the ordering (5.2.1)) for all j = 0, . . . , q − 1.

(iii) The intervals I1, . . . , Iq are nonempty (but I0 may be).

Notice that u(k) = u(I0) if I0 6= ∅ and u(k) = u(I1) if I0 = ∅.
For any n ≤ ∞, we write Xi := [xi] ∈Wn(A[x1, . . . , xd]). If k is an integral

weight as above, we write Xk = X
ki1
i1
· · ·Xkir

ir
∈Wn(A[x1, . . . , xd]).

Let k be any weight and η ∈W (A). We define

(5.2.3) e0(η, k) := V u(k)(ηXpu(k)k) ∈W (A[x1, . . . xd])

and

(5.2.4)

e1(η, k) :=

dV u(k)(ηXpu(k)k) if k is not integral

ηF−t(k)dXpt(k)k if k is integral
∈WΩ1

A[x1,...,xd]/A.

Definition 5.3 (Basic Witt differentials [LZ04, 2.2]). Let k be a weight,

P = (I0, I1, . . . , Iq) an admissible partition of k, and ξ = V u(k)(η) ∈ W (A).

The basic Witt differential e(ξ, k,P) ∈WΩq
A[x1,...,xd]/A is defined as follows:

e(ξ, k,P) :=

e0(η, kI0)e1(1, kI1) · · · e1(1, kIq) if I0 6= ∅,
e1(η, kI1)e1(1, kI2) · · · e1(1, kIq) if I0 = ∅.

Rules 5.4 ([LZ04, Props. 2.5, 2.6]). Let k be a weight, P = (I0, I1, . . . , Iq)

a partition of k and ξ = V u(k)(η) ∈ W (A). Note that u(k) ≥ 1 when k is not

integral, so that one can then define V −1ξ := V u(k)−1η. Then

(i) ρe(ξ, k,P) = e(ρξ, k,P) for all ρ ∈W (A).

(ii) Fe(ξ, k,P) =

e(Fξ, pk,P) if I0 6= ∅ or k integral,

e(V −1ξ, pk,P) if I0 = ∅ and k not integral.
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(iii) V e(ξ, k,P) =

e(V ξ, 1
pk,P) if I0 6= ∅ or 1

pk integral,

e(pV ξ, 1
pk,P) if I0 = ∅ and 1

pk not integral.

(iv) de(ξ, k,P) =


0 if I0 = ∅,
e(ξ, k, (∅,P)) if I0 6= ∅ and k not integral,

p−t(k)e(ξ, k, (∅,P)) if I0 6= ∅ and k integral.

Theorem 5.5 ([LZ04, Th. 2.8]). Every ω ∈ WΩq
A[x1,...,xd]/A can uniquely

be written as

ω =
∑
k,P

e(ξk,P , k,P),

where the sum is over all weights k with |supp k| ≥ q and over all admissible

partitions of length q of k, and the sum converges in the sense that, for any

m ≥ 0, we have ξk,P ∈ V mW (A) for all but finitely many ξk,P .

For a weight k, n ≥ 1 and η ∈Wn−u(k)(A), we define

e0
n(η, k) ∈Wn(A[x1, . . . , xd]), e1

n(η, k) ∈WnΩ1
A[x1,...,xd]/A

by the same formulas as in (5.2.3) and (5.2.4). For P an admissible partition

of length q of k and ξ = V u(k)(η) ∈ Wn(A), we then define en(ξ, k,P) ∈
WnΩq

A[x1,...,xd]/A by the same formula as in Definition 5.3 but with ei replaced

by ein, i = 0, 1.

Corollary 5.6 ([LZ04, Prop. 2.17]). Every ω ∈ WnΩq
A[x1,...,xd]/A may

uniquely be written as a finite sum

ω =
∑
k,P

en(ξk,P , k,P), ξk,P ∈ V u(k)Wn−u(k)(A),

where the sum is over all weights k with |supp k| ≥ q and such that pn−1k is

integral and over all admissible partitions P of k of length q.

We now assume that S is an Fp-scheme; the absolute Frobenius endomor-

phism of S will then be denoted FS , or F when no confusion can arise. The

following proposition is known if S is perfect (see [IR83, II, (1.2.2)]); a similar

result has been proved by M. Olsson when, étale locally, S has a flat lifting

over Zp to which FS can be lifted [Ols07, Th. 4.2.15].

Proposition 5.7. Let S be a locally noetherian Fp-scheme and X a

smooth S-scheme. Then the sequence

Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq−1
X/S

(1⊗Fn,−1⊗Fnd)−−−−−−−−−−→ Fn∗ Ωq−1
X/S ⊕ F

n
∗ Ωq

X/S

dV n+V n−−−−−−→Wn+1Ωq
X/S −→ R∗WnΩq

X/S −→ 0

is an exact sequence of Wn+1(OS)-modules.
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Proof. The question is local; we thus assume S = SpecA, X = SpecB

and B is étale over B1 = A[x1, . . . , xd]. As WΩ•X/S → Wn+1Ω•X/S is an epi-

morphism, [LZ04, Prop. 2.19] provides the exactness of the second line, and

we only have to show that

(∗B/A) : Fn∗ A⊗Wn+1Ωq−1
B/A

(1⊗Fn,−1⊗Fnd)−−−−−−−−−−→ Fn∗ Ωq−1
B/A ⊕ F

n
∗ Ωq

B/A

dV n+V n−−−−−−→Wn+1Ωq
B/A

is exact. Notice that it is a complex, as for a ∈ A and ω ∈Wn+1Ωq−1
B/A, we have

dV n(aFnω)− V n(aFndω) = 0.

Notice also that if we let W2n+2(B) act through Fn+1 : W2n+2(B)→Wn+1(B),

the differentials of this complex are W2n+2(B)-linear, since dFn+1 =pn+1Fn+1d

= 0 in Wn+1. We claim that

(5.7.1) (∗B/A) = Fn+1
∗ (∗B1/A)⊗W2n+2(B1) W2n+2(B).

We have the following diagrams (where the tensor products with W2n+2(B)
are taken over W2n+2(B1)):

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B/A)
1⊗Fn // F 2n+1

∗ Ωq−1
B/A

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B1/A
)⊗W2n+2(B)

(1⊗Fn)⊗1 //

OO

Fn+1
∗ (Fn∗ Ωq−1

B1/A
)⊗W2n+2(B),

OO

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B/A)
−1⊗Fnd // F 2n+1

∗ ΩqB/A

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B1/A
)⊗W2n+2(B)

(−1⊗Fnd)⊗1 //

OO

Fn+1
∗ (Fn∗ ΩqB1/A

)⊗W2n+2(B),

OO

both with vertical maps

(a⊗ ω)⊗ b 7→ a⊗ Fn+1(b)ω, η ⊗ b 7→ F 2n+1(b)η,

and

F 2n+1
∗ Ωq−1

B/A ⊕ F
2n+1
∗ ΩqB/A

dV n+V n // Fn+1
∗ Wn+1ΩqB/A

Fn+1
∗ (Fn∗ Ωq−1

B1/A
⊕ Fn∗ ΩqB1/A

)⊗W2n+2(B)
(dV n+V n)⊗1//

OO

Fn+1
∗ Wn+1ΩqB1/A

⊗W2n+2(B),

OO

with vertical maps

(η, ω)⊗ b 7→ (F 2n+1(b)η, F 2n+1(b)ω), ω ⊗ b 7→ Fn+1(b)ω.

Using again the relation dFn+1 = pn+1Fn+1d = 0 in Wn+1, one checks immedi-

ately that all three diagrams commute. Now the claim (5.7.1) follows, since the
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vertical maps are isomorphisms by (5.1.7). As W2n+2(B1)→W2n+2(B) is étale

[LZ04, Prop. A.8], we are thus reduced to the case B = B1 = A[x1, . . . , xd].

Now take α ∈ Ωq
B/A and β ∈ Ωq−1

B/A with V n(α) = −dV n(β). We have to

show that there exists an element γ ∈ Fn∗ A⊗Wn+1Ωq−1
B/A with

(5.7.2) − (1⊗ Fnd)(γ) = α and (1⊗ Fn)(γ) = β.

By Corollary 5.6 (and keeping the notation used there), we can write α and β

uniquely as finite sums

(5.7.3) α =
∑
k,P

e1(ξk,P , k,P), β =
∑
k,Q

e1(ηk,Q, k,Q), with ξk,P , ηk,Q ∈ A,

where the sums are over all integral weights k and all admissible partitions P =

(I0, . . . , Iq) of length q (resp. over all admissible partitions Q = (J0, . . . , Jq−1)

of length q − 1). Using the rules 5.4(iii) and (iv), we obtain

V n(α) =
n−1∑
i=0

∑
k
pi

primitive

and I0=∅

en+1(pn−iV n(ξk,P), kpn ,P)(5.7.4)

+
∑

k
pn

integral

or I0 6=∅

en+1(V n(ξk,P), kpn ,P)

and

−dV n(β) =
∑

k
pn

integral

and J0 6=∅

−pt(
k
pn

)
en+1(V n(ηk,Q), kpn , (∅,Q))(5.7.5)

+
∑

k
pn

not integral

and J0 6=∅

−en+1(V n(ηk,Q), kpn , (∅,Q)),

where t(k/pn) is defined as in (5.2.2). By the uniqueness of this presentation,

and since V n : A→Wn+1(A) is injective, the equality V n(α) = −dV n(β) thus

gives the following set of equations:

ξk,P = −p−t(
k
pn

)
ηk,Q if

k

pn
is integral, P=(∅,Q) and J0 6= ∅,

(5.7.6)

ηk,Q = −pn−iξk,P if
k

pi
is primitive, P=(∅,Q), J0 6=∅ and 0≤ i≤n− 1,

ξk,P = 0 if I0 6= ∅.
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We claim that (5.7.2) holds for the following choice of γ ∈ Fn∗ A ⊗Wn+1(A)

Wn+1Ωq−1
B/A:

γ :=
n−1∑
i=0

à
∑

k
pi

primitive

and J0 6=∅

Ä
−ξk,(∅,Q) ⊗ en+1(V n−i(1), kpn ,Q)

ä
+

∑
k
pi

primitive

and J0=∅

Ä
ηk,Q ⊗ en+1(V n−i(1), kpn ,Q)

äí
+

∑
k
pn

integral, Q

ηkQ ⊗ en+1(1, kpn ,Q).

Indeed the rules 5.4(ii) and (iv) yield the following formulas for k an integral

weight, ξ ∈ V u( k
pn

)
Wn+1−u( k

pn
)(A) and Q = (J0, . . . , Jq−1) a partition of length

q − 1 of supp k :

Fnen+1(ξ, kpn ,Q) =


e1(Fn(ξ), k,Q) if J0 6= ∅ or k

pn integral,

e1(F iV −(n−i)(ξ), k,Q) if J0 = ∅ and k
pi

is primitive

for 0 ≤ i ≤ n− 1

and

Fnden+1(ξ, kpn ,Q)=



0 if J0 =∅,
p
−t( k

pn
)
e1(Fn(ξ), k, (∅,Q)) if J0 6=∅ and k

pn integral,

e1(F iV −(n−i)(ξ), k, (∅,Q)) if J0 6=∅ and k
pi

is primitive

for 0 ≤ i ≤ n− 1.

Using this, rule 5.4(i), and relations (5.7.6), we obtain

(−1⊗ Fnd)(γ) =
n−1∑
i=0

∑
k
pi

primitive

and J0 6=∅

e1(ξk,(∅,Q), k, (∅,Q))

+
∑

k
pn

integral

and J0 6=∅

e1(−p−t(
k
pn

)
ηk,Q, k, (∅,Q))

=α
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and

(1⊗ Fn)(γ) =
n−1∑
i=0

à
∑

k
pi

primitive

and J0 6=∅

e1(−pn−iξk,(∅,Q), k,Q) +
∑

k
pi

primitive

and J0=∅

e1(ηk,Q, k,Q)

í
+

∑
k
pn

integral, Q

e1(ηkQ, k,Q)

= β.

This proves the proposition. �

5.8. We now recall some facts from [Ill79, 0, 2] about the Cartier operator

and its iterates. Let S be an Fp-scheme, X → S a smooth morphism, and set

X(pn) := S×S,FnS X. We have the usual diagram that defines the iterates FnX/S
of the relative Frobenius morphism (we write FX/S = F 1

X/S , W = W 1):

X
Fn
X/S//

""

FnX

��
X(pn)

��

Wn
// X

��
S

FnS // S.

Notice that

FnX/S = F
X(pn−1)/S

◦ · · · ◦ FX/S .

For an S-morphism f : X ′ → X, we denote by f (pn) the base-change morphism

f (pn) = IdS × f : X ′(p
n) → X(pn).

The inverse Cartier operator is an isomorphism of graded OX(p)-algebras

C−1
X/S : Ω•X(p)/S → H

•(Ω•X/S)

that is uniquely determined by

(5.8.1) C−1
X/S |OX(p)

= F ∗X/S and C−1
X/S(W ∗dx) = xp−1dx for all x ∈ OX .

For n ≥ 0, one defines abelian subsheaves of Ωq
X/S :

(5.8.2) BnΩq
X/S ⊂ ZnΩq

X/S ⊂ Ωq
X/S

via

B0Ωq
X/S = 0, Z0Ωq

X/S = Ωq
X/S ,

B1Ωq
X/S = BΩq

X/S = dΩq−1
X/S , Z1Ωq

X/S = ZΩq
X/S = Ker(d : Ωq

X/S → Ωq+1
X/S)
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and, for n ≥ 1,

(5.8.3) C−1
X/S : BnΩq

X(p)/S

'−→ Bn+1Ωq
X/S/B1Ωq

X/S ,

(5.8.4) C−1
X/S : ZnΩq

X(p)/S

'−→ Zn+1Ωq
X/S/B1Ωq

X/S .

We obtain a chain of inclusions

0 ⊂ B1Ωq
X/S ⊂ · · · ⊂ BnΩq

X/S ⊂ Bn+1Ωq
X/S(5.8.5)

⊂ · · · ⊂ Zn+1Ωq
X/S ⊂ ZnΩq

X/S ⊂ · · · ⊂ Z1Ωq
X/S ⊂ Ωq

X/S .

Proposition 5.9 ([Ill79, 0, (2.2.7), Prop. 2.2.8]). Let S be an Fp-scheme

and X a smooth S-scheme. Then, for all q ≥ 0 and n ≥ 1, the sheaves ZnΩq
X/S

and BnΩq
X/S satisfy the following properties :

(i) ZnΩq
X/S and BnΩq

X/S are locally free OX(pn)-modules of finite type

and, for any h : S′ → S, we have

h
(pn)∗
X ZnΩq

X/S
∼−−→ ZnΩq

X′/S′ , h
(pn)∗
X BnΩq

X/S
∼−−→ BnΩq

X′/S′ ,

where hX : X ′ := S′ ×S X → X is the base-change map.

(ii) If f : X ′ → X is an étale S-morphism, then there are natural isomor-

phisms

f (pn)∗ZnΩq
X/S

∼−−→ ZnΩq
X′/S , f (pn)∗BnΩq

X/S
∼−−→ BnΩq

X′/S .

(iii) BnΩq
X/S is the sub-OS-module of Ωq

X/S locally generated by sections

of the form ap
r−1

1 · · · apr−1
q da1 · · · daq, with ai ∈ OX and 0 ≤ r ≤ n− 1.

(iv) ZnΩq
X/S is the sub-OS-module of Ωq

X/S locally generated by BnΩq
X/S

and sections of the form bap
n−1

1 · · · apn−1
q da1 · · · daq , with ai ∈ OX and b ∈

OX(pn) .

Proposition 5.10 (cf. [Ill79, I, Prop. 3.3]). For X/S smooth as above,

there is a unique map of Wn(OS)-modules

C−1
n : FS∗Wn(OS)⊗Wn(OS) WnΩq

X/S −→
WnΩq

X/S

dV n−1Ωq
X/S

that makes the following diagram commutative:

F∗Wn(OS)⊗Wn+1(OS) Wn+1Ωq
X/S

1⊗F //

1⊗R
��

WnΩq
X/S

��

F∗Wn(OS)⊗Wn(OS) WnΩq
X/S

C−1
n //

WnΩq
X/S

dV n−1Ωq
X/S

.
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For n = 1, we have FS∗OS⊗OS Ωq
X/S = Ωq

X(p)/S
, and C−1

n = C−1 : Ωq

X(p)/S
−→

Ωq
X/S

dΩq
X/S

is the inverse Cartier operator.

Proof. Since 1⊗R is surjective, it is enough to see that the kernel of 1⊗R
is mapped to dV n−1Ωq

X/S under 1⊗ F . But an element in the kernel of 1⊗R
is a sum of elements of the form a ⊗ V nω and a ⊗ dV nη, with a ∈ Wn(OS),

ω ∈ Ωq
X/S , and η ∈ Ωq−1

X/S . In WnΩq
X/S , we have

(1⊗F )(a⊗V nω) = aV n−1(pω) = 0, (1⊗F )(a⊗dV nη) = dV n−1(Fn−1(a)η).

This gives the existence and the uniqueness of C−1
n . The second statement

follows from the fact that 1 ⊗ F is compatible with products and from the

formula 1⊗ F (a⊗ d[x]) = axp−1dx for a ∈ OS , x ∈ OX . �

Corollary 5.11 (cf. [Ill79, I, Prop. 3.11]). Let X/S be as above. Then

(i) Im(1⊗ Fn : Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq
X/S → Ωq

X/S) = ZnΩq
X/S .

(ii) Im(1⊗ Fn−1d : Fn∗ OS ⊗Wn+1(OS) F∗WnΩq−1
X/S → Ωq

X/S) = BnΩq
X/S .

Proof. We do induction on n. For n = 1, (i) follows from Proposition 5.10
and the relation d = FdV , and (ii) holds by definition. Now assume the
statements are proven for n. To prove (i) for n+ 1, we consider the following
commutative diagram of abelian sheaves on X:

Fn+1
∗ OS ⊗Wn+2(OS) Wn+2ΩqX/S

1⊗Fn //

1⊗R

��

F∗OS ⊗W2(OS) W2ΩqX/S
1⊗F //

1⊗R

��

ΩqX/S

��

Fn+1
∗ OS ⊗Wn+1(OS) Wn+1ΩqX/S

1⊗Fn // F∗OS ⊗OS ΩqX/S = Ωq
X(p)/S

C−1

// Ωq
X/S

dΩq−1

X/S

.

By induction hypothesis, we have

Im
(
(1⊗R)◦(1⊗Fn)

)
=Im

(
(1⊗Fn)◦(1⊗R)

)
=FS∗OS⊗OSZnΩq

X/S =ZnΩq

X(p)/S
,

where the last equality follows from the compatibility with base-change. Now,

thanks to the relation d = Fn+1dV n+1, (i) follows from the definition of

Zn+1Ωq
X/S . The proof of (ii) is similar. �

Lemma 5.12. Let X/S be as above. The sheaf BnΩq
X/S is given by

Im(1⊗ Fn−1d : Fn∗ OS ⊗Wn+1(OS) F∗WnΩq−1
X/S → Ωq

X/S)

= {(1⊗ Fnd)(α) |α ∈ Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq−1
X/S with (1⊗ Fn)(α) = 0}.

Proof. We call the left-hand side A and the right-hand side B. We know

from the previous corollary that BnΩq
X/S = A, and now we want to show that
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A = B. In the following, all nonspecified tensor products are over Wn+1(OS).

We have the commutative diagram

Fn∗ OS ⊗ F∗WnΩq−1
X/S

1⊗V //

1⊗Fn−1d ''

Fn∗ OS ⊗Wn+1Ωq−1
X/S

1⊗Fndww
Ωq
X/S .

Since we also have (1 ⊗ Fn) ◦ (1 ⊗ V ) = 0, it follows that A ⊂ B. It remains

to show

(5.12.1) Ker
(
1⊗ Fn : Fn∗ OS ⊗Wn+1Ωq−1

X/S → Fn∗ Ωq−1
X/S

)
⊂ Im

Å
Fn∗ OS⊗(F∗WnΩq−1

X/S ⊕ F∗WnΩq−2
X/S)

1⊗(V+dV )−−−−−−−→ Fn∗ OS⊗Wn+1Ωq−1
X/S

ã
.

Indeed, if we take an element α in the kernel on the left-hand side and we
write it as an element in the right-hand side, α = (1 ⊗ V )(β) + (1 ⊗ dV )(γ),
then (1 ⊗ Fnd)(α) = (1 ⊗ Fn−1d)(β), i.e., B ⊂ A. The question is local in
X; we may thus assume X is étale over AdS . For a Wn(OX)-module M, we
write F r∗M∗F s forM viewed as a left Wn+r(OS)-module via F r and as a right
Wn+s(OX)-module via F s. Then we have the following commutative diagram,
in which the most right tensor product in the upper line is over W2n+2(OAdS

):Å
Fn∗ OS ⊗ F∗(WnΩq−2

Ad
S
/S

)∗F
n+2 1⊗dV //

(1⊗can)⊗1

��

Fn∗ OS ⊗ (Wn+1Ωq−1

Ad
S
/S

)∗F
n+1

ã
⊗W2n+2(OX)

(1⊗can)⊗1

��
Fn∗ OS ⊗ F∗(WnΩq−2

X/S)∗F
n+2 1⊗dV // Fn∗ OS ⊗ (Wn+1Ωq−1

X/S)∗F
n+1.

If we write V instead of dV and q− 1 on the left-hand side instead of q− 2, we

obtain again a commutative diagram. Since X/AdS is étale, the vertical maps

are isomorphisms (in both diagrams). Thus, if we denote the image in (5.12.1)

by Im(X/S), we obtain

Im(X/S) ∼= Im(AdS/S)∗F
n+1 ⊗W2n+2(OAd

S
) W2n+2(OX).

Similarly, denoting the kernel in (5.12.1) by Ker(X/S), one finds

Ker(X/S) ∼= Ker(AdS/S)∗F
n+1 ⊗W2n+2(OAd

S
) W2n+2(OX).

And, since W2n+2(OX) is étale over W2n+2(OAdS
) [LZ04, Prop. A.8], it is thus

enough to prove (5.12.1) in the case S = SpecA, with A an Fp-algebra, and

X = SpecB, with B = A[x1, . . . , xd].
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Now, using the notation of Corollary 5.6, any element α∈Fn∗ A⊗Wn+1Ωq−1
B/A

can be written as a finite sum

(5.12.2)

α =
∑
i

∑
pnk integral
P=(I0,...,Iq−1)

ai ⊗ en+1(V u(k)(ηk,P,i), k,P), ηk,P,i ∈Wn+1−u(k)(A).

By rule 5.4(ii), we have

Fnen+1(V u(k)(η), k,P)

=

e1(Fn−u(k)(η), pnk,P) if I0 = ∅ or (I0 6= ∅, k integral),

0 if I0 6= ∅ and k not integral.

It follows that an element α as in (5.12.2) lies in Ker(1 ⊗ Fn) = Ker(B/A) if

and only if it satisfies

(5.12.3)
∑
i

aiF
n−u(k)(ηk,P,i) = 0, for I0 = ∅ or (I0 6= ∅, k integral).

We consider the following three cases:

1) k is integral, i.e., u(k) = 0. Then, by Definition 5.3, en+1(η, k,P) =

ηen+1(1, k,P). By (5.12.3), we get∑
i

ai ⊗ en+1(ηi,k,P , k,P) =

(∑
i

aiF
n(ηi,k,P)

)
⊗ en+1(1, k,P) = 0.

2) k is not integral and I0 = ∅. In this case en+1(η, k,P) ∈ Im(dV ) by

Definition 5.3. Thus∑
i

ai ⊗ en+1(ηi,k,P , k,P) ∈ Im(1⊗ dV ).

3) k is not integral and I0 6= ∅. Now en+1(η, k,P) ∈ Im(V ) by Defini-

tion 5.3. Hence ∑
i

ai ⊗ en+1(ηi,k,P , k,P) ∈ Im(1⊗ V ).

Putting the three cases together, we see that α ∈ Ker(1 ⊗ Fn) implies α ∈
Im(1⊗ V + 1⊗ dV ) = Im(B/A). This gives the statement. �

Theorem 5.13 (cf. [Ill79, I, Cor. 3.9], [Ols07, Th. 4.2.15]). Let S be an

Fp-scheme, and let X be a smooth S-scheme. For n, q≥0, denote by grnWΩq
X/S

the n-th graded piece of the canonical filtration

FilnWΩq
X/S = V nWΩq

X/S + dV nWΩq
X/S = Ker(WΩq

X/S →WnΩq
X/S).

Then we have an exact sequence of OX-modules

(5.13.1) 0 −→ Fn+1
X∗

Ωq
X/S

BnΩq
X/S

V n−−→ grnWΩq
X/S

Un−−→ Fn+1
X∗

Ωq−1
X/S

ZnΩq−1
X/S

−→ 0,
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where the map Un is given by V n(α) + dV n(β) 7→ β and the OX-module struc-

ture on grnWΩq
X/S is given via

OX =
WnOX

VWn−1OX
F−−→ Wn+1OX

pWnOX
.

Furthermore, FnX/S∗
Ωq
X/S

BnΩq
X/S

and FnX/S∗
Ωq−1
X/S

ZnΩq−1
X/S

are locally free OX(pn)-modules.

Proof. The exactness of the sequence follows from Proposition 5.7, Corol-

lary 5.11, and Lemma 5.12. The second statement is proven as in [Ill79, I,

Cor. 3.9]. By étale base change (Proposition 5.9(ii)), we reduce the question of

the local freeness of the two extreme OX(pn)-modules in the exact sequence to

the case X = AdS . Since everything is compatible with arbitrary base change in

the base S (by Proposition 5.9(i)), we may also assume S = SpecFp, and even

S = Spec k with k algebraically closed. But now the sheaves in question are

coherent on (Adk)(pn) ∼= Adk, hence locally free in some nonempty open subset,

whose translates under certain closed points cover the whole of (Adk)(pn). As

they are invariant under translation, this gives the statement. �

Remark. There is also an analog to the vertical exact sequence in [Ill79, I,

Cor. 3.9]. This follows from Proposition 5.7, Corollary 5.11, and the following

statement (which is an analog of Lemma 5.12): for an Fp-scheme S and a

smooth S-scheme X, the sheaf Zn+1Ωq−1
X/S is given by

Im(1⊗ Fn+1 : Fn+1
∗ OS ⊗Wn+2(OS) Wn+2Ωq−1

X/S → Ωq−1
X/S)

= {1⊗ Fn(α) |α ∈ Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq−1
X/S with 1⊗ Fnd(α) = 0}.

This statement is proven by direct inspection of the basic Witt differentials

after reducing to the case A[x1, . . . , xd]/A. As the proof is rather long and

technical, and the result is not needed in this article, we do not include it here.

6. The Hodge-Witt trace morphism for projective spaces

Let X be a noetherian Fp-scheme with a dualizing complex, and let f :

Y → X be a projective complete intersection morphism of virtual relative

dimension 0. Our goal in the next two sections is to prove that, given a

factorization f = π ◦ i, where π : P = P dX → X is the structural morphism of

some projective space over X and i : Y ↪→ P is a closed immersion, one can

define for all n ≥ 1 a morphism

τi,π,n : Rf∗WnOY −→WnOX
so as to satisfy the following properties:

(i) For n = 1, τi,π,n is the morphism τf of Theorem 3.1.

(ii) For variable n, τi,π,n commutes with R, F and V .
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Our construction of τi,π,n will be based on a generalization for arbitrary

n of the description of τf given in Proposition 4.6: we will construct on the

one hand a trace morphism Rπ∗WnΩd
P/X [d] → WnOX that will be a general-

ization of the trace morphism Trpπ for the projective space, and on the other

hand a morphism i∗WnOY → WnΩd
P/X [d] that will be a generalization of the

morphism γf : OY → ωP/X [d] defined in (4.4.1).

We begin with the trace morphism for projective spaces.

6.1. We recall first from [Ill90, Déf. 1.1] that a smooth proper Fp-morphism

f : X → S is called ordinary if it satisfies

Rif∗BΩq
X/S = 0 for all i, q ≥ 0.

This notion is compatible with arbitrary base-change in the base S, and P dFp
is ordinary over SpecFp [Ill90, Props. 1.2, 1.4]. Hence if E is a locally free

OX -module of finite rank on some Fp-scheme X, then P(E) = Proj (SymOXE)

is ordinary over X.

Lemma 6.2. Let f : X → S be ordinary. Then, for all n ≥ 1 and q ≥ 0,

V n : Fn+1
S∗ Rf∗Ω

q
X/S

∼−−→ Rf∗grnWΩq
X/S

is an isomorphism in the derived category of quasi-coherent OS-modules (where

the OS-module structure on the right-hand side comes from the OX-module

structure defined in Theorem 5.13 ).

Proof. This follows immediately from Theorem 5.13 and the following

claim:

(6.2.1)

Rif∗ZnΩq
X/S

∼−−→ Rif∗Ω
q
X/S , Rif∗BnΩq

X/S = 0 for all i, q ≥ 0, n ≥ 1.

We prove this by induction on n. The statement for B1 holds by definition of

ordinarity and for Z1 follows from the exact sequence

0 −→ ZΩq
X/S −→ Ωq

X/S
d−→ BΩq+1

X/S −→ 0.

Now, for the general case, consider the following commutative diagram (in

which f∗ is viewed as a functor on the category of abelian sheaves for the

Zariski topology on |X| = |X(p)|):

Rif∗ZnΩq

X(p)/S

C−1
X/S //

��

Rif∗
Zn+1Ωq

X/S

B1Ωq
X/S

��

Rif∗Zn+1Ωq
X/S

��

oo

Rif∗Ω
q

X(p)/S

C−1
X/S // Rif∗

Z1Ωq
X/S

B1Ωq
X/S

Rif∗Z1Ωq
X/S .

oo
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The horizontal maps are isomorphisms, as is the vertical map on the left by

induction (notice that X(p)/S is also ordinary). Hence all maps in the diagram

are isomorphisms, which yields the claim for Zn+1. To prove the statement for

Bn+1, it is enough to consider the upper line in the diagram, with Z replaced

by B, and one immediately obtains the statement. �

6.3. Let S be a scheme on which p is locally nilpotent, and X an S-scheme.

As in the classical case [Ill79, I, 3.23], for any n ≥ 1, we define the log derivation

dlog n to be the morphism of abelian sheaves

dlog n : O×X −→WnΩ1
X/S , a 7→ dlog n(a) :=

d[a]

[a]
.

We may write simply dlog if n is fixed.

For variable n, the maps dlog n satisfy the following relations:

(6.3.1) R(dlog n(a)) = dlog n−1(a), F (dlog n(a)) = dlog n−1(a).

The maps dlog n allow us to define Chern classes for line bundles and to

prove for relative Hodge-Witt cohomology the analog of the classical theorem

on the cohomology of projective bundles (cf. [SGA7II, XI, Th. 1.1]).

Theorem 6.4. Let X be an Fp-scheme, E a locally free OX-module of

rank d+ 1, P = P(E), and let π : P → X be the canonical projection. Denote

by ηn ∈ H0(X,R1π∗WnΩ1
P/X) the image under dlog n of the class of OP (1) in

R1π∗O×P and by ηqn ∈ H0(X,Rqπ∗WnΩq
P/X) its q-fold cup product. Then, for

all n ≥ 1 and all q such that 0 ≤ q ≤ d, we have

(6.4.1) Rjπ∗WnΩq
P/X = 0 for j 6= q,

and multiplication with ηqn induces an isomorphism in the derived category of

Wn(OX)-modules

(6.4.2) Wn(OX)[−q] ∼−−→ Rπ∗WnΩq
P/X .

Furthermore, these isomorphisms are compatible with restriction, Frobenius,

and Verschiebung on both sides.

Proof. To prove (6.4.1), we can argue by induction using the exact se-

quences

0 −→ grnWn+1Ωq
P/X −→Wn+1Ωq

P/X −→WnΩq
P/X −→ 0.

For n = 1, the claim follows from [SGA7II, XI, Th. 1.1] and, since P(E) is

ordinary over X, Lemma 6.2 implies similarly the claim for all n.

Therefore, we obtain a canonical isomorphism

(6.4.3) Rπ∗WnΩq
P/X

∼−−→ Rqπ∗WnΩq
P/X [−q],
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and we can define the morphism (6.4.2) as corresponding via (6.4.3) and trans-

lation to the morphism

(6.4.4) Wn(OX) −→ Rqπ∗WnΩq
P/X , w 7→ wηqn.

This reduces the proof of the theorem to proving that (6.4.4) is an isomorphism,

compatible with R, F and V .

From (6.3.1), for all w ∈Wn+1(OX), we get the relations

(6.4.5) R(wηqn+1) = R(w)ηqn, F (wηqn+1) = F (w)ηqn

in Rqπ∗WnΩq
P/X . From the second relation, we also get

(6.4.6) V (wηqn−1) = V (wF (ηqn)) = V (w)ηqn

for all w ∈ Wn−1(OX). So the homomorphisms (6.4.4) satisfy the required

compatibilities.

To prove that the homomorphisms (6.4.4) are isomorphisms, we may now

again argue by induction on n, using the compatibility with R and V . Then

Lemma 6.2 reduces the proof to the case n = 1, which is known by [SGA7II,

Exp. XI, Th. 1.1]. �

Definition 6.5. Under the assumptions of Theorem 6.4, we define the

Hodge-Witt trace morphism for the projective space P(E) to be the WnOX -

linear map

(6.5.1) Trpπ,n : Rπ∗WnΩd
P(E)/X [d]

∼−−→WnOX

obtained by inverting the isomorphism (6.4.2), shifting by d and multiplying by

(−1)d(d−1)/2. Theorem 6.4 implies that Trpπ,n is compatible with restriction,

Frobenius, and Verschiebung.

Proposition 6.6. With the hypotheses of Theorem 6.4, assume in addi-

tion that X is locally noetherian. Then the morphism

(6.6.1) Trpπ,1 : Rπ∗Ω
d
P(E)/X [d]

∼−−→ OX

defined by (6.5.1) for n = 1 is equal to the morphism Trpπ defined by [Con00,

(2.3.5)] for OX .

Proof. By (6.4.2), it suffices to prove the proposition locally on X. So we

may assume that P(E) = P dX . Let X0, . . . , Xd be the standard homogeneous

coordinates on P dX , xi = Xi/X0, Ui = D+(Xi), and let U = (Ui)i=0,...,d be

the corresponding covering of P dX . Using Čech cohomology relative to U, η1 is

defined by the 1-cocycle (dlog (Xj/Xi))i<j = (d(Xj/Xi)/(Xj/Xi))i<j and ηd1
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by the d-cocycle given by

dlog (X1/X0) ∧ · · · ∧ dlog (Xd/Xd−1)

= dx1/x1 ∧ (dx2/x2 − dx1/x1) ∧ · · · ∧ (dxd/xd − dxd−1/xd−1)

= dx1 ∧ · · · ∧ dxd/x1 · · ·xd

on U0 ∩ · · · ∩ Ud. Thus Trpπ,1 is the only morphism that induces on degree-0

cohomology the isomorphism mapping the class dx1 ∧ · · · ∧ dxd/x1 · · ·xd to

(−1)d(d−1)/2.

To prove the proposition, it suffices to check that, with Conrad’s defini-

tions, the map induced by Trpπ : Rf∗(f
](OX)) = Rf∗(ωP/X [d]) → OX on

degree-0 cohomology is such that

(6.6.2) Trpπ(dx1 ∧ · · · ∧ dxd/x1 · · ·xd) = (−1)d(d−1)/2.

As (−1)d(−1)d(d−1)/2 = (−1)d(d+1)/2, this follows from the definition of the

isomorphism [Con00, (2.3.1)]

(6.6.3) γ : Rdπ∗(ωP/X)
∼−−→ OX ,

which sends dx1∧ · · · ∧dxd/x1 · · ·xd to (−1)d(d+1)/2 [Con00, (2.3.3)], and from

the discussion on pages 35–36 of [Con00], which explains that an additional

(−1)d sign is required to recover (6.6.3) from the map induced in degree 0 by

Trpπ. (Note that by “induced” we mean that we use here as we always do the

standard identifications [Con00, (1.3.1), (1.3.4)] to compute the cohomology

objects of a translated complex.)

This ends the proof of the proposition, but, as formula (6.6.2) is only

implicit in the discussion [Co00, pp. 35–36], it may be worth adding a few lines

to give a proof explaining where this extra (−1)d sign comes from. Conrad’s

construction of the projective trace Trpπ is the same as Hartshorne’s in [Har66,

III, 4.3], but using [Con00, Lemma 2.1.1] instead of [Har66, I, Prop. 7.4].

Because π∗ has cohomological dimension d on the category of quasi-coherent

OP -modules, and any quasi-coherent OP -module can be written as a quotient

of modules for which the functors Riπ∗ vanish for i 6= d [Har66, III, Lemmas

4.1 and 4.2], Lemma 2.1.1 of [Con00] provides an isomorphism of functors on

D(Qcoh(OP )):

ψ : Rπ∗
∼−−→ L(Rdπ∗)[−d].

For complexes of the form F• = F [0], where F is a quasi-coherent OP -module,

ψF• induces in degree d the identity of Rdπ∗(F) [Con00, Cor. 2.1.2]. Moreover,

the compatiblity of ψ with translations, given by [Con00, (2.1.1)], implies that,

for any m ∈ Z, we have

ψF•[m] = (−1)mdψF• [m].
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In particular, ψωP/X [d] induces in degree 0 multiplication by (−1)d
2

= (−1)d

on Rdπ∗(ωP/X). Now, for G• ∈ D+
qc(OX), the trace morphism for G• is the

composition

Rπ∗(π
]G•)

Trpπ,G·
��

Rπ∗(ωP/X [d]⊗OP π∗G•) ∼

ψ
π]G· // L(Rdπ∗)(ωP/X [d]⊗OP π∗G•)[−d]

∼
��

G• (Rdπ∗)(ωP/X)⊗OX G•∼
γ⊗Idoo (Rdπ∗)(ωP/X ⊗OP π∗G•)∼

oo

(see [Har66, III, 4.3] for details). Taking G• = OX [0] and applying the previous

remark to π]OX = ωP/X [d], we obtain that Trpπ,OX induces (−1)dγ in degree 0,

which gives (6.6.2). �

Remark. Due to differences in sign conventions between Hartshorne [Har66,

III, Th 3.4] and Conrad [Con00, 2.3], our trace morphism Trpπ,n differs by

(−1)d(d−1)/2 from the trace morphism defined by Ekedahl [Eke84, I, Lemma

3.2] when X = Spec k, k being a perfect field.

7. A Hodge-Witt local class for regularly embedded subschemes

In this section, we assume that X is a locally noetherian scheme of char-

acteristic p, and we consider a regular immersion i : Y ↪→ P of codimension d,

where P is a smooth X-scheme. Under these assumptions, we want to associate

to Y a canonical class γY ∈ Γ(P,HdY (WnΩd
P/X)) for each n ≥ 1.

Proposition 7.1. Under the previous assumptions,

(i) If t1, . . . , td is a regular sequence of sections of OP , then, for all n ≥ 1

and all r ≥ 1, [t1]r, . . . , [td]
r is a regular sequence of sections of Wn(OP ).

(ii) For all n ≥ 1 and all q, HjY (WnΩq
P/X) = 0 for j 6= d.

Proof. We proceed by induction on n. In the exact sequence of Wn+1(OP )-

modules
0 −→ Fn∗ OP

V n−−→Wn+1(OP )
R−−→Wn(OP ) −→ 0,

the action of [ti]
r on Fn∗ OP is given by multiplication by trp

n

i on OP . As P is

a locally noetherian scheme, the sequence trp
n

1 , . . . , trp
n

d is regular in OP , and

the first claim follows easily.

For n = 1, the second one is a well-known consequence of the regularity

of the sequence t1, . . . , td. As OP is locally free of finite rank over OP (pn) , we

also have HjY (OP (pn)) = 0 for j 6= d. In the exact sequence

0 −→ grnWn+1Ωq
P/X −→Wn+1Ωq

P/X
R−−→WnΩq

P/X −→ 0,

Theorem 5.13 allows us to endow the kernel grnWn+1Ωq
P/X with an OP -module

structure for which it is an extension of two OP -modules that are locally free

over OP (pn) . Therefore, HjY (grnWn+1Ωq
P/X) = 0 for j 6= d. The second claim

follows by induction. �
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Theorem 7.2. Under the assumptions of this section, let t = (t1, . . . , td)

and t′ = (t′1, . . . , t
′
d) be two regular sequences of sections of OP generating

the ideal I of Y in P . Let n ≥ 1 be an integer, and let J = ([t1], . . . , [td]),

J ′ = ([t′1], . . . , [t′d]) be the ideals of Wn(OP ) generated by the Teichmüller rep-

resentatives of these generators. If

βJ : ExtdWn(OP )(Wn(OP )/J ,WnΩd
P/X) −→ HdY (WnΩd

P/X)

is the canonical homomorphism (and similarly for βJ ′) then, with the notation

of 4.1,

(7.2.1) βJ

Çñ
d[t1] · · · d[td]

[t1], . . . , [td]

ôå
= βJ ′

Çñ
d[t′1] · · · d[t′d]

[t′1], . . . , [t′d]

ôå
.

Proof. It suffices to prove (7.2.1) in a neighbourhood of each point y ∈ Y .

Localizing, one can reduce the proof of Theorem 7.2 to the case of a very simple

change of generators in I, thanks to the following remarks (see also [SGA41
2 ,

Cycle, Lemme 2.2.3]):

(a) If the sequence (t′1, . . . , t
′
d) is deduced from (t1, . . . , td) by permutation,

then J = J ′, and formula (4.2.1) implies the theorem.

(b) If there exists invertible sections a1, . . . , ad ∈ O×P such that t′i = aiti
for all i, then [t′i] = [ai][ti] for all i. So J = J ′, we can apply Lemma 4.2, and

we can choose the matrix C to be the diagonal matrix with entries [ai]. Then

the theorem follows from formula (4.2.1), because an element such as (4.1.2)

only depends upon the class of m mod (t1, . . . , td)M , and here we have the

congruence

d[t′1] · · · d[t′d] ≡
(

d∏
i=1

[ai]

)
d[t1] · · · d[td] mod JWnΩd

P/X .

(c) Given y ∈ Y , there exists a permutation σ ∈ Sd such that, for any

i, 1 ≤ i ≤ d, the sequence t(i) = (t′σ(1), . . . , t
′
σ(i), ti+1, . . . , td) is a regular

sequence of generators of I around y. Indeed, a sequence of elements of Iy
is a regular sequence of generators if and only if it gives a basis of Iy/myIy,
and this reduces the claim to an elementary result in linear algebra over a

field. If we set t(0) = (t1, . . . , td), then t(0) = t, and t(d) is deduced from t′

by permutation. So, using remark (a), it suffices to prove the theorem for the

couple of sequences t(i−1) and t(i), for all i, 1 ≤ i ≤ d.

This reduces the proof to the case where there exists an integer i0 ∈
{1, . . . , d} such that

t′i = ti for i 6= i0, t′i0 =
d∑
j=1

ci0,jtj .

Using remark (a), we may assume that i0 = 1. Moreover, the fact that t and

t′ induce bases of the vector space Iy/myIy implies that the coefficient c1,1 is

invertible around y.
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(d) In this last case, we define inductively elements t
(j)
1 for 0 ≤ j ≤ d by

setting

t
(0)
1 = t1, t

(1)
1 = c1,1t

(0)
1 , t

(j)
1 = t

(j−1)
1 + c1,jtj for 1 < j.

If, for 0 ≤ j ≤ d, we define t(j) = (t
(j)
1 , t2, . . . , td), then t(0) = t, t(d) = t′, and

it suffices to prove the theorem for each of the couples t(j−1), t(j) for 1 ≤ j ≤ d.

The theorem is true for t(0), t(1), thanks to remark (b) and, applying again

remark (a), we can write all the remaining couples as changes of generators of

the form

(7.2.2) t′1 = t1 + ct2 for some c ∈ OP , t′i = ti for i ≥ 2.

Thus it suffices to prove the theorem for the change of generators of I

given by (7.2.2). Let h ∈ VWn−1(OP ) be defined by setting

(7.2.3) [t1] + [c][t2] = [t1 + ct2] + h = [t′1] + h

in Wn(OP ). Since [t′2] = [t2], this can be rewritten as

(7.2.4) [t1] = [t′1]− [c][t′2] + h.

The binomial formula gives

(7.2.5) [t1]p
n−1

= ([t′1]− [c][t′2])p
n−1

+
pn−1∑
i=1

pn−1!

(pn−1 − i)!i!
hi([t′1]− [c][t′2])p

n−1−i.

Because the ideal VWn−1(OP ) ⊂ Wn(OP ) is a PD-ideal, we can write hi =

i!h[i], with h[i] ∈ VWn−1(OP ) when i ≥ 1. Therefore the numerical coefficient

of h[i] in the i-th term of the sum is divisible by pn−1 for all i ≥ 1. Since pn−1

kills VWn−1(OP ), equation (7.2.5) reduces to

(7.2.6) [t1]p
n−1

= ([t′1]− [c][t′2])p
n−1

.

If, for all k ≥ 1, we denote by J (k) the ideal ([t1]k, . . . , [td]
k), this shows

that J (pn−1) ⊂ J ′. So we can apply Lemma 4.2 to the sequences ([t′1], . . . , [t′d])

and ([t1]p
n−1

, . . . , [td]
pn−1

), which are regular by Lemma 7.1. Moreover, we can

write equation (7.2.6) as

[t1]p
n−1

= [t′1]p
n−1−1 · [t′1] + c1,2 · [t′2]

so that we can use as matrix C in Lemma 4.2 an upper triangular matrix with

diagonal entries [t′1]p
n−1−1, . . . , [t′d]

pn−1−1 (since [ti]
pn−1

= [t′i]
pn−1−1 · [t′i] for

i ≥ 2). In particular, det(C) = [t′1]p
n−1−1 · · · [t′d]p

n−1−1. Thus, formula (4.2.1)

provides the equality

(7.2.7) α′
Çñ

d[t′1] · · · d[t′d]

[t′1], . . . , [t′d]

ôå
=

ñ
[t′1]p

n−1−1 · · · [t′d]p
n−1−1 d[t′1] · · · d[t′d]

[t1]p
n−1

, . . . , [td]
pn−1

ô
,
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where α′ is the canonical homomorphism

ExtdWn(OP )(Wn(OP )/J ′,WnΩd
P/X) −→ ExtdWn(OP )(Wn(OP )/J (pn−1),WnΩd

P/X).

On the other hand, we also have J (pn−1) ⊂ J . So we can also apply

Lemma 4.2 to the regular sequences ([t1], . . . , [td]) and ([t1]p
n−1

, . . . , [td]
pn−1

),

using now for C the diagonal matrix with entries [t1]p
n−1−1, . . . , [td]

pn−1−1. If

we denote by

α : ExtdWn(OP )(Wn(OP )/J ,WnΩd
P/X)

−→ ExtdWn(OP )(Wn(OP )/J (pn−1),WnΩd
P/X)

the canonical homomorphism, formula (4.2.1) provides the second equality

(7.2.8) α

Çñ
d[t1] · · · d[td]

[t1], . . . , [td]

ôå
=

ñ
[t1]p

n−1−1 · · · [td]p
n−1−1 d[t1] · · · d[td]

[t1]p
n−1

, . . . , [td]
pn−1

ô
.

As βJ = βJ (pn−1) ◦ α and βJ ′ = βJ (pn−1) ◦ α′, relation (7.2.1) will follow if we

prove the equalityñ
[t′1]p

n−1−1 · · · [t′d]p
n−1−1 d[t′1] · · · d[t′d]

[t1]p
n−1

, . . . , [td]
pn−1

ô
(7.2.9)

=

ñ
[t1]p

n−1−1 · · · [td]p
n−1−1 d[t1] · · · d[td]

[t1]p
n−1

, . . . , [td]
pn−1

ô
in ExtdWn(OP )(Wn(OP )/J (pn−1),WnΩd

P/X). To prove this it suffices to prove in

WnΩd
P/X the congruence

(7.2.10) [t′1]p
n−1−1[t′2]p

n−1−1 · · · [t′d]p
n−1−1 d[t′1] d[t′2] · · · d[t′d]

≡ [t1]p
n−1−1[t2]p

n−1−1 · · · [td]p
n−1−1 d[t1] d[t2] · · · d[td]

mod ([t1]p
n−1

, [t2]p
n−1

, . . . , [td]
pn−1

)WnΩd
P/X . As ti = t′i for i > 2, it suffices by

multiplicativity to prove in WnΩ2
P/X the congruence

[t′1]p
n−1−1[t′2]p

n−1−1 d[t′1] d[t′2] ≡ [t1]p
n−1−1[t2]p

n−1−1 d[t1] d[t2]

mod ([t1]p
n−1

, [t2]p
n−1

)WnΩ2
P/X and, thanks to (5.1.3), the latter will follow by

applying Fn−1 if we prove the congruence

(7.2.11) d[t′1] d[t′2] ≡ d[t1] d[t2] mod ([t1], [t2])W2n−1Ω2
P/X .

So let us prove (7.2.11). We still denote by h ∈ VW2n−2OP the difference

h = [t1] + [c][t2] − [t′1] = [t1] + [ct2] − [t1 + ct2] computed in W2n−1OP . Since

t′2 = t2, it suffices to prove the congruence

(7.2.12) dh d[t2] ≡ 0 mod ([t1], [t2])W2n−1Ω2
P/X .
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For all i, let

Si(X0, . . . , Xi, Y0, . . . , Yi) ∈ Z[X0, . . . , Xi, Y0, . . . , Yi]

be the universal polynomial defining the i-th component of the sum of two

Witt vectors, and let

(7.2.13) si(X0, Y0) = Si(X0, 0, . . . , 0, Y0, 0, . . . 0) ∈ Z[X0, Y0].

Note that, for i ≥ 1, the polynomial si(X0, Y0) is divisible by X0Y0, since

(0, . . . , 0) is the zero element in a Witt vector ring. By definition, we have

[t1] + [ct2] = (t1 + ct2, s1(t1, ct2), . . . , s2n−2(t1, ct2))

and

h = (0, s1(t1, ct2), . . . , s2n−2(t1, ct2)).

Since si(X0, Y0) is divisible by Y0, we can write si(t1, ct2) = zit2 for some

section zi ∈ OP . We obtain

h = (0, z1t2, . . . , z2n−2t2),

which we can write as

h =
2n−2∑
i=1

V i([zi][t2]).

For each i, 1 ≤ i ≤ 2n− 2, we now obtain the relations

dV i([zi][t2]) d[t2] = dV i([zi][t2]F i(d[t2])) = dV i([zi][t2]p
i
d[t2])

= dV i([zi]F
i([t2])d[t2]) = d([t2]V i([zi]d[t2])),

d([t2]V i([zi]d[t2])) ≡ d[t2]V i([zi]d[t2]) mod [t2]W2n−1Ω2
P/X ,

d[t2]V i([zi]d[t2]) = V i(F i(d[t2])[zi]d[t2]) = V i([t2]p
i−1d[t2][zi]d[t2]) = 0,

which imply (7.2.12). �

Definition 7.3. Under the assumptions of this section, we define the local

class γY,n ∈ Γ(P,HdY (WnΩd
P/X)) as being the section obtained by glueing the

sections βJ
([

d[t1]···d[td]
[t1],...,[td]

])
defined locally by regular sequences of generators of

the ideal I of Y in P .

Proposition 7.4. For n ≥ 1, let

R : HdY (Wn+1Ωd
P/X) −→ HdY (WnΩd

P/X),

F : HdY (Wn+1Ωd
P/X) −→ HdY (WnΩd

P/X),

V : HdY (WnΩd
P/X) −→ HdY (Wn+1Ωd

P/X)

be the homomorphisms defined by functoriality. Then

(7.4.1) R(γY,n+1) = γY,n, F (γY,n+1) = γY,n, V (γY,n) = pγY,n+1.
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Proof. We may assume that there exists a regular sequence t1, . . . , td such

that I = (t1, . . . , td). For each n ≥ 1, let Jn be the ideal of Wn(OP ) generated

by the Teichmüller representatives [ti] of the ti’s, and let K•([t]n) be the Koszul

complex defined by the [ti]’s over Wn(OP ). Since R([ti]) = [ti], scalar extension

through R yields an isomorphism

Wn(OP )⊗Wn+1(OP ) K•([t]n+1)
∼−−→ K•([t]n).

Using the fact that the [ti]’s form a regular sequence both in Wn+1(OP ) and

in Wn(OP ), it can be seen in the derived category of Wn(OP )-modules as an

isomorphism

(7.4.2) Wn(OP )
L
⊗Wn+1(OP ) Wn+1(OP )/Jn+1

∼−−→Wn(OP )/Jn.

By adjunction, for any Wn(OP )-module M and any q ≥ 0, (7.4.2) defines an

isomorphism

ExtqWn(OP )(Wn(OP )/Jn,M)(7.4.3)

∼−−→ ExtqWn+1(OP )(Wn+1(OP )/Jn+1,M),

and we obtain the diagram
(7.4.4)

Hd(Hom•Wn+1(OP )(K•([t]n+1),Wn+1ΩdP/X))

R

��

∼
++

ExtdWn+1(OP )(Wn+1(OP )/Jn+1,Wn+1ΩdP/X)
βJn+1 //

R

��

HdY (Wn+1ΩdP/X)

R

��

Hd(Hom•Wn+1(OP )(K•([t]n+1),WnΩdP/X))

∼
++

ExtdWn+1(OP )(Wn+1(OP )/Jn+1,WnΩdP/X)
βJn+1 // HdY (WnΩdP/X)

Hd(Hom•Wn(OP )(K•([t]n),WnΩdP/X))

o

OO

∼
++

ExtdWn(OP )(Wn(OP )/Jn,WnΩdP/X)

o (7.4.3)

OO

βJn // HdY (WnΩdP/X),

in which the lower left-hand square commutes by construction. On the other

hand, (7.4.3) implies that injective Wn(OP )-modules are acyclic for the func-

tor HomWn+1(OP )(Wn+1(OP )/Jn+1,−). Replacing WnΩd
P/X by an injective

resolution over Wn(OP ), it is then easy to check that the lower right square

commutes. As the upper part of the diagram commutes by functoriality, and

R(d[t1] · · · d[td]) = d[t1] · · · d[td], the first relation of (7.4.1) follows.

Viewing now Wn(OP ) as a Wn+1(OP )-algebra via F , one proceeds sim-

ilarly to prove the second one. Since F ([ti]) = [tpi ] = [ti]
p, and the sequence
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[ti]
p, . . . , [td]

p is a regular sequence in Wn(OP ), we obtain isomorphisms

Wn(OP )⊗Wn+1(OP ) K•([t]n+1)
∼−−→ K•([t]pn),

Wn(OP )
L
⊗Wn+1(OP ) Wn+1(OP )/Jn+1

∼−−→Wn(OP )/J (p)
n ,(7.4.5)

and

(7.4.6)

ExtqWn(OP )(Wn(OP )/J (p)
n ,M)

∼−−→ ExtqWn+1(OP )(Wn+1(OP )/Jn+1,M)

for any Wn(OP )-module M and any q ≥ 0. They provide a commutative
diagram similar to (7.4.4):
(7.4.7)

Hd(Hom•Wn+1(OP )(K•([t]n+1),Wn+1ΩdP/X))

F

��

∼
++

ExtdWn+1(OP )(Wn+1(OP )/Jn+1,Wn+1ΩdP/X)
βJn+1 //

F

��

HdY (Wn+1ΩdP/X)

F

��

Hd(Hom•Wn+1(OP )(K•([t]n+1),WnΩdP/X))

∼
++

ExtdWn+1(OP )(Wn+1(OP )/Jn+1,WnΩdP/X)
βJn+1 // HdY (WnΩdP/X)

Hd(Hom•Wn(OP )(K•([t]pn),WnΩdP/X))

o

OO

∼
++

ExtdWn(OP )(Wn(OP )/J (p)
n ,WnΩdP/X)

o (7.4.6)

OO

β
J (p)
n // HdY (WnΩdP/X).

Since F (d[t1] · · · d[td]) = [t1]p−1 · · · [td]p−1d[t1] · · · d[td], it follows that

F

Ç
βJn+1

Çñ
d[t1] · · · d[td]

[t1], . . . , [td]

ôåå
= βJ (p)

n

Çñ
[t1]p−1 · · · [td]p−1 d[t1] · · · d[td]

[t1]p, . . . , [td]
p

ôå
.

On the other hand, if α denotes the canonical homomorphism

α : ExtdWn(OP )(Wn(OP )/Jn,WnΩd
P/X)

−→ ExtdWn(OP )(Wn(OP )/J (p)
n ,WnΩd

P/X),

then by (4.2.1), we have

α

Çñ
d[t1] · · · d[td]

[t1], . . . , [td]

ôå
=

ñ
[t1]p−1 · · · [td]p−1 d[t1] · · · d[td]

[t1]p, . . . , [td]
p

ô
.

As βJ (p)
n
◦ α = βJn , it follows that F (γY,n+1) = γY,n.

The last relation of (7.4.1) follows formally because V (γY,n)=V (F (γY,n+1))

= pγY,n+1. �
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Proposition 7.5. Let n ≥ 1 be an integer, and let γY,n ∈ HdY (WnΩd
P/X)

be the local class defined in 7.3.

(i) The linear homomorphism Wn(OP ) → HdY (WnΩd
P/X) sending 1 to

γY,n vanishes on Wn(I) := Ker(Wn(OP ) � i∗Wn(OY )).

(ii) Let γi,π,n be the composition

(7.5.1)

γi,π,n : i∗Wn(OY ) −→ HdY (WnΩd
P/X)

∼−−→ RΓY (WnΩd
P/X [d]) −→WnΩd

P/X [d],

where the first morphism is defined thanks to the previous assertion. Then

γi,π,n commutes with R, F , and V .

(iii) For n = 1, we have γi,π,1 = γf , where γf is the morphism defined by

(4.4.1).

Proof. To prove assertion (i), we may again assume that I is generated

by a regular sequence t1, . . . , td. Any section w of Wn(I) can then be written

as a sum

w =
n−1∑
i=0

V i([ai,1][t1] + · · ·+ [ai,d][td]),

with ai,j ∈ I and [ai,j ], [tj ] ∈ Wn−i(OP ). By functoriality, we have V (a)ω =

V (aF (ω)) for any a ∈ Wi(OP ), ω ∈ HdY (Wi+1Ωd
P/X), i ≥ 1. Using (7.4.1), we

obtain

V i([ai,j ][tj ])γY,n = V i([ai,j ][tj ]F
i(γY,n)) = V i([ai,j ][tj ]γY,n−i).

The symbol (4.1.2) is linear with respect to m; therefore, we have

[ai,j ][tj ]γY,n−i = βJ

Çñ
[ai,j ][tj ] d[t1] · · · d[td]

[t1], . . . , [td]

ôå
= 0,

since the upper entry in the symbol belongs to ([t1], . . . , [td])Wn−iΩ
d
P/X .

In the definition of γi,π,n, the last two arrows commute with R, F , and V

by functoriality. Relations (7.4.1) imply that the first one also commutes with

R, F , and V , since R(1) = F (1) = 1 and V (1) = p.

Let us assume that n = 1 and check assertion (iii). By construction, γi,π,1
is the composition of the morphism i∗OY → HdY (Ωd

P/X) sending 1 to γY,1 with

the canonical morphism

HdY (Ωd
P/X)

∼−−→ RΓY (Ωd
P/X [d]) −→ Ωd

P/X [d].

Comparing with the definition of γf in 4.4, and using the same notation, it

suffices to show that the composed morphism

OY
ϕf−→ ωY/X

η−1
i ◦ ζ

′
i,π−−−−−−→ ExtdOP (OY ,Ωd

P/X)
βI−→ HdY (Ωd

P/X)

sends 1 to γY,1. Since this is a morphism of sheaves (rather than complexes in

the derived category), it is a local verification, which is provided by Proposi-

tion 4.5. �
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Definition 7.6. Let X be a noetherian Fp-scheme with a dualizing com-

plex, E a locally free OX -module of rank d + 1, P = P(E), π : P → X the

canonical projection, and i : Y ↪→ P a regular closed immersion of codimen-

sion d. For each integer n ≥ 1, we define a trace morphism τi,π,n by

(7.6.1) τi,π,n : Rf∗(Wn(OY ))
Rπ∗(γi,π,n)
−−−−−−−→ Rπ∗(WnΩd

P/X [d])
Trpπ,n−−−−→Wn(OX),

where γi,π,n is the morphism (7.5.1) and Trpπ,n is the Hodge-Witt trace mor-

phism defined in (6.5.1).

Remark. As mentioned in the introduction, we expect that τi,π,n depends

only on f and not on the factorization f = π ◦ i. We also expect that the

analog of Theorem 3.1 holds for the trace morphisms τf,n that would be thus

defined. More generally, one can hope that these constructions are part of a

theory of canonical classes for relative de Rham-Witt cohomology (see [EZ78],

[Eke84], [Grs85] for such results over a field). In order to develop this program,

generalizations and nontrivial properties of our constructions are needed (even

for the independence statement), which would lead us to expand this article

too much. As most of them are not needed for the proof of our main results,

we do not include them here, and we hope to return to these questions else-

where. However, in the next section we will give a partial generalization of

Theorem 3.1(iii) that is the key to the injectivity property of Theorem 1.5.

Proposition 7.7. Under the assumptions of 7.6, the morphisms τi,π,n
satisfy the following properties :

(i) For variable n, τi,π,n commutes with R, F and V .

(ii) For n = 1, τi,π,1 = τf .

Proof. Taking into account Proposition 4.6, both assertions follow from

the similar properties of γi,π,n and Trpπ,n proved in 7.5 and 6.6. �

Definition 7.8. Under the assumptions of 7.6, we can use the previous

constructions to define a morphism τi,π : Rf∗(W (OY )) −→W (OX) that com-

mutes with F and V and is such that Rn ◦ τi,π = τi,π,n ◦ Rn for all n, Rn
denoting both restriction maps W (OX)→Wn(OX) and W (OY )→Wn(OY ).

To construct τi,π, we first recall that, for any scheme X, the inverse system

(Wn(OX))n≥0 is lim←−-acyclic, as the cohomology of each term vanishes on affine

open subsets, and the inverse system of sections on such a subset has surjective

transition maps. So, if f• ∗ denotes the obvious extension of the direct image

functor to the category of inverse systems, it suffices to define a morphism

(7.8.1) τi,π,• : Rf• ∗(W•(OY )) −→W•(OX)

in the derived category of inverse systems on X and to apply the functor R lim←−
and the canonical isomorphism Rf∗ ◦R lim←− ' R lim←− ◦Rf• ∗. On the one hand,

the relations R(γY,n+1) = γY,n imply that, for variable n, these classes define a
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morphism of inverse systems i• ∗(W•(OY ))→ HdY (W•Ωd
P/X). As the canonical

morphisms

HdY (W•Ω
d
P/X)

∼−−→ RΓY (W•Ω
d
P/X [d]) −→W•Ω

d
P/X [d]

make sense in the derived category of inverse systems, in this derived category

we can define a morphism γi,π,• : i• ∗(W•(OY )) → W•Ωd
P/X [d] that has the

morphisms γi,π,n defined in (7.5.1) as components. On the other hand, the

homomorphisms dlog n used to define Chern classes for invertible bundles form

an inverse system of homomorphisms. Hence, for variable n, the powers of the

Chern classes of OP (1) define a morphism W•(OP )[−d] → Rπ• ∗(W•Ω
d
P/X)

that is an isomorphism of the derived category of inverse systems. Composing

its inverse with the projection by Rπ• ∗ of γi,π,• provides τi,π,•. It is clear that

τi,π,• has the morphisms τi,π,n as components and commutes with F and V .

Then the morphism

(7.8.2) τi,π : Rf∗(W (OY ))
∼−−→ R lim←−Rf• ∗(W•(OY ))

R lim←−(τi,π,•)
−−−−−−−→W (OX)

has the required properties.

Finally, as f is a morphism of noetherian schemes, f∗ and Rf∗ commute

with tensorization with Q. So we can define a morphism, again denoted τi,π :

Rf∗(WOY,Q) −→WOX,Q, by

(7.8.3) τi,π : Rf∗(WOY,Q)
∼−−→ Rf∗(WOY )⊗Q

τi,π⊗Q−−−−→WOX,Q.

This morphism also commutes with F and V .

8. Proof of the injectivity theorem for Witt vector cohomology

The main result of this section is Theorem 8.1 below, which gives an

injectivity property for the functoriality morphisms induced on Witt vector

cohomology by some complete intersection morphisms of virtual relative di-

mension 0. As explained in Remark 8.2, Theorem 1.5 is a particular case of

this result.

Theorem 8.1. Let f : Y → X be a projective morphism between two flat

noetherian Z(p)-schemes with dualizing complexes, that is complete intersec-

tion of virtual relative dimension 0. We assume that there exists a scheme-

theoretically dense open subscheme U ⊂ X such that f−1(U) → U is finite

locally free of constant rank r ≥ 1. Let fn : Yn → Xn be the reduction of f

mod pn+1.

(i) For all q ≥ 0, the kernels of the functoriality homomorphisms

f∗ : Hq(X,OX) −→ Hq(Y,OY ),(8.1.1)

f∗n : Hq(Xn,OXn) −→ Hq(Yn,OYn),(8.1.2)
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f∗0 : Hq(X0,Wn(OX0)) −→ Hq(Y0,Wn(OY0)),(8.1.3)

f∗0 : Hq(X0,W (OX0)) −→ Hq(Y0,W (OY0))(8.1.4)

are annihilated by r.

(ii) For all q ≥ 0, the functoriality homomorphism

(8.1.5) f∗0 : Hq(X0,WOX0,Q) −→ Hq(Y0,WOY0,Q)

is injective.

Remark 8.2. Theorem 8.1 implies Theorem 1.5. Indeed, let f : Y → X be

as in 1.5. The morphisms Xk ↪→ X0 and Yk ↪→ Y0 are nilpotent immersions.

Hence the canonical homomorphisms

Hq(X0,WOX0,Q) −→ Hq(Xk,WOXk,Q),

Hq(Y0,WOY0,Q) −→ Hq(Yk,WOYk,Q)

are isomorphisms [BBE07, Prop. 2.1]. Therefore it suffices to check that f

satisfies the hypotheses of Theorem 8.1. We may assume that X is connected,

and we replace Y by one of its connected components mapping surjectively

to X so that X and Y are integral schemes. At any closed point y ∈ Y ,

with image x = f(y), we may choose a closed immersion Y ↪→ P around y,

with P smooth over X. If dimOX,x = n, then OP,y is a regular local ring of

dimension n + d for d = dim(P/X), and OY,y is a regular quotient of OP,y
of dimension n. Therefore, the ideal I of Y in P is regular of codimension

d around y, and it follows that f is complete intersection of virtual relative

dimension 0. Moreover, the function field extension K(X) ↪→ K(Y ) is finite.

Hence, f is finite and locally free of constant rank ≥ 1 above a nonempty open

subset U . As X is integral, U is scheme-theoretically dense and the hypotheses

of Theorem 8.1 are satisfied.

In order to prove Theorem 8.1, we will choose a factorization f = π ◦ i,
where i : Y ↪→ P = P dX is a closed immersion and π : P → X the structural

morphism. Let i0, π0 be the reductions mod p of i, π. The key point will be to

relate the trace morphisms τi0,π0,n constructed in 7.6 to the trace morphism τf
given by Theorem 3.1, and this is made possible by the following constructions.

Lemma 8.3. Let X be a scheme on which p is locally nilpotent, P a smooth

X-scheme, a ⊂ OX a quasi-coherent ideal, X ′ ↪→ X the closed subscheme

defined by a, P ′ = X ′ ×X P . For each n ≥ 1, let N •n ⊂ WnΩ•P/X be the

additive subgroup generated by sections of the form

(8.3.1) V r([a]ω), dV r([a]ω), with a ∈ a, ω ∈Wn−rΩ
•
P/X , 0 ≤ r ≤ n− 1.

Then, for variable n, the canonical homomorphisms WnΩ•P/X → WnΩ•P ′/X′
induce a transitive family of isomorphisms

(8.3.2) WnΩ•P/X/N
•
n
∼−−→WnΩ•P ′/X′ .
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Proof. Thanks to (5.1.2), one first notices that N •n is a differential graded

ideal of WnΩ•P/X . Using (5.1.5), one sees that, for all n ≥ 1, V (N •n) ⊂ N •n+1.

Using (5.1.1) (and a direct computation for r = 0), one sees that F (N •n+1) ⊂
N •n . Therefore, the projective system {WnΩ•P/X/N

•
n} is an F -V -procomplex

over P/X. In degree 0, it is easy to see by induction on n that the ideal N 0
n ⊂

Wn(OP ) is the kernel of Wn(OP )→Wn(OP ′). It follows that {WnΩ•P/X/N
•
n}

is actually an F -V -procomplex over P ′/X ′. It is then clear that it satisfies the

universal property that defines {WnΩ•P ′/X′}, which implies that (8.3.2) is an

isomorphism of F -V -procomplexes. �

Proposition 8.4 (see also [Ols07, Th. 4.2.3]). Let X be a Z(p)-scheme,

and denote Xn = X ⊗Z(p)
Z(p)/p

n+1.

(i) For all n ≥ 1, there exists a unique homomorphism of sheaves of rings‹Fn : Wn(OX0) −→ OXn−1

making the following diagram commute

Wn+1(OXn−1)
Fn //

��

OXn−1

Wn(OX0),
F̃n

88

where the vertical map is the natural reduction map. Furthermore, if we assume

X to be flat over Z(p) and denote by Rn : W (OX0) → Wn(OX0) the natural

reduction map, then

(8.4.1) Ker(F − Id : W (OX0)→W (OX0)) ∩
Ç⋂
n≥1

Ker(‹Fn ◦Rn) = 0

å
.

(ii) Let P be a smooth X-scheme, and denote Pn = P ×X Xn. For all

n ≥ 1, there exists a unique homomorphism of sheaves of graded algebras‹Fn : WnΩ•P0/X0
−→ H•(Ω•Pn−1/Xn−1

),

making the following diagram commute:

Wn+1Ω•Pn−1/Xn−1

Fn //

��

ZΩ•Pn−1/Xn−1

��
WnΩ•P0/X0

F̃n // H•(Ω•Pn−1/Xn−1
).

Furthermore, for all a ∈ O×P0
and all ã ∈ O×Pn−1

lifting a, we have

(8.4.2) ‹Fn(dlog ([a])) = cl(dã/ã).
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When X0 is a perfect scheme and Xn−1 = Wn(X0), ‹Fn is the isomorphism

(8.4.3) θn : WnΩ•P0/X0

∼−−→ H•(Ω•Pn−1/Xn−1
),

defined by Illusie-Raynaud [IR83, III, (1.5)].

Note that, in formula (8.4.2), the class of dã/ã does not depend upon the

choice of the liftng ã: if b̃ = ã+ pw, then

db̃/b̃ = dã/ã+ d

Å
log

Å
1 + p

w

ã

ãã
,

where log(1 + pw/ã) is defined thanks to the canonical divided powers of p.

Proof. (i) We may assume X is affine. The kernel of the vertical map in

the diagram is locally generated (as an abelian group) by elements of the form

V n([a]) and V r([pb]) for some a, b ∈ OPn−1 and 0 ≤ r ≤ n. As these elements

are clearly mapped to 0 under Fn, this gives the unique existence of ‹Fn.

To prove (8.4.1), let w ∈ Ker(F − Id) ∩
Ä⋂

n Ker(‹Fn ◦Rn)
ä
. If w 6= 0, we

can write

w =
∞∑
i≥s

V i([ai]), with ai ∈ OX0 and as 6= 0.

Then Rs+1(w) = V s([as]) ∈ Ws+1(OX0). If ãs ∈ OXs is any lifting of as, and

if [ãs] is the Teichmüller representative of ãs in W2(OXs), so that V s([ãs]) is a

lifting of V s([as]) in Ws+2(OXs), we have‹F s+1(V s([as])) = F s+1(V s([ãs])) = psF ([ãs]) = psãps

in OXs . Thus ‹F s+1(Rs+1(w)) = 0 if and only if psãps = 0 in OXs . Since Xs is

flat over Z/ps+1Z, we obtain ãps ∈ pOXs ; in particular, aps = 0 ∈ OX0 . But by

assumption, we have

F (w) =
∑
i≥s

V i([api ]) =
∑
i≥s

V i([ai]) = w.

Hence as = aps = 0, a contradiction.

(ii) First of all, since dFn = pnFnd, the image of Fn : Wn+1Ω•Pn−1/Xn−1
→

Ω•Pn−1/Xn−1
is clearly contained in ZΩ•Pn−1/Xn−1

. Thus, the diagram makes

sense. Now, Lemma 8.3 and [LZ04, Prop. 2.19] imply that, in degree q, the

kernel of the vertical map on the left-hand side is locally generated (as an

abelian group) by sections of the following form:

(8.4.4) V n(α), dV n(β), V r([p]ω), dV r([p]η),

with α ∈ Ωq
Pn−1/Xn−1

, β ∈ Ωq−1
Pn−1/Xn−1

, 0 ≤ r ≤ n, ω ∈ Wn+1−rΩ
q
Pn−1/Xn−1

,

and η ∈Wn+1−rΩ
q−1
Pn−1/Xn−1

. One immediately sees that, via Fn, the first two

sections are mapped to 0 in Hq(Ω•Pn−1/Xn−1
). Since, for any m ≥ 1 and any
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Teichmüller representative [a]m in Wm(OPn−1), we have F ([a]m) = [a]pm−1 ∈
Wm−1(OPn−1), we obtain for the last two sections

FnV r([p]ω) = prFn−r([p]ω) = pp
n−r+rFn−r(ω) = 0,

FndV r([p]η) = Fn−rd([p]η) = Fn−r([p]dη) = pp
n−r−(n−r)d(Fn−r(η)) = 0

in Hq(Ω•Pn−1/Xn−1
). Thus Fn maps all elements in the kernel of the vertical

map to 0 in Hq(Ω•Pn−1/Xn−1
). Since the vertical map is surjective, this yields

the statement.

If ã ∈ O×Pn−1
lifts a, we get‹Fn(d[a]/[a]) = cl(Fn(d[ã]/[ã])) = cl([ã]p

n−1d[ã]/[ã]p
n
),

which gives (8.4.2).

Finally, let us assume that X0 is perfect and Xn−1 = Wn(X0). By [IR83,

III, (1.5)], H•(Ω•Pn−1/Xn−1
) has the structure of a differential graded algebra

(dga) with the differential d : Hi(Ω•Pn−1/Xn−1
) → Hi+1(Ω•Pn−1/Xn−1

) given by

the boundary of the long exact cohomology sequence coming from the short

exact sequence

0 −→ Ω•Pn−1/Xn−1

pn−−→ Ω•P2n−1/X2n−1
−→ Ω•Pn−1/Xn−1

−→ 0.

The isomorphism θn is compatible with the differential and the product, and it

thus induces an isomorphism of dga’s θn : WnΩ•P0/X0

∼−−→ H•(Ω•Pn−1/Xn−1
). On

the other hand, it follows from the relation dFn = pnFnd that the morphism‹Fn is compatible with the differentials. Therefore, ‹Fn also induces a morphism

of dga’s, ‹Fn : WnΩ•P0/X0

∼−−→ H•(Ω•Pn−1/Xn−1
). In degree 0, θn is defined by

θn(a0, . . . , an−1) = ãp
n

0 + pãp
n−1

1 + · · ·+ pn−1ãpn−1,

where ã0, . . . , ãn−1 are liftings to OPn−1 of a0, . . . , an−1 [IR83, p. 142, l. 8].

This definition shows that, in degree 0, θn is the factorization of the n-th

ghost component wn : Wn+1(OPn−1) → OPn−1 , given by wn(a0, . . . , an) =∑n
i=0 p

iap
n−i

i , with pnan = 0 in OPn−1 . From the definition of the morphism of

functors Fn : Wn+1 →W1, we also get that, in degree 0, ‹Fn is the factorization

of the n-th ghost component. Since ‹Fn = θn in degree 0 and WnΩ•Pn−1/Xn−1
is

generated as dga by its sections in degree 0, ‹Fn and θn have to be equal. �

Lemma 8.5. Let S be SpecZ(p), X an S-scheme, and π : P := P dX → X

the structural morphism of a projective space over X . For n ≥ 0, denote by

Sn, Xn, Pn, πn the reductions modulo pn+1, and let BΩd
Pn/Xn

⊂ Ωd
Pn/Xn

be the

subsheaf of exact differential forms.

(i) For all n ≥ 0, the canonical homomorphism

(8.5.1) bdn : Rdπn ∗(Ω
d
Pn/Xn

) −→ Rdπn ∗(Ω
d
Pn/Xn

/BΩd
Pn/Xn

)

is an isomorphism.
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(ii) Assume that X is flat over S, and let Y0 ↪→ P0 be a regular closed

immersion of codimension m. Then,

(8.5.2) ∀ j 6= m, ∀ n ≥ 0, HjY0(Ωd
Pn/Xn

/BΩd
Pn/Xn

) = 0.

Proof. Let Q = P dS , and let T0, . . . , Td be homogeneous coordinates on Q.

We define an S-endomorphism φ : Q→ Q by sending Ti to T pi , 0 ≤ i ≤ d. By

base change by u : X → S, we obtain an X-endomorphism of P , for which we

will keep the notation φ, as well as for its reduction mod pn+1.

Let us fix n ≥ 0. We can use the morphism φn+1 and view φn+1
∗ Ω•Pn/Xn as

a complex of quasi-coherent OPn-modules, the differential of which is then OPn-

linear. But Pn has an open covering by d+ 1 open subsets that are relatively

affine with respect to Xn, and therefore Rdπn ∗ is a right exact functor on the

category of quasi-coherent OPn-modules. As Rdπn ∗(Ω
d−1
Pn/Xn

) = 0, assertion (i)

follows.

To prove assertion (ii), we use φn+2 to view φn+2
∗ Ω•Pn/Xn as a complex of

quasi-coherent OPn-modules with an OPn-linear differential, and we claim that

the sheaf of OPn-modules

Hd(φn+2
∗ Ω•Pn/Xn) = φ∗(φ

n+1
∗ Ωd

Pn/Xn
/Bφn+1

∗ Ωd
Pn/Xn

)

has a filtration by sub-OPn-modules, the graded of which is locally free over

OP0 . As Y0 is locally defined in P0 by a regular sequence of m sections, the

claim clearly implies assertion (ii).

To prove the existence of this filtration, we may replace X, P by S, Q,

because the projection v : P → Q is flat, and

v∗(φn+2
∗ Ω•Qn/Sn)

∼−−→ φn+2
∗ Ω•Pn/Xn .

Now S0 is a perfect scheme, and Sn = Wn+1(S0). Thanks to the last assertion

of Proposition 8.4(ii), Fn+1 defines an isomorphism of graded algebras‹Fn+1 : Wn+1Ω•Q0/S0

∼−−→ H•(Ω•Qn/Sn).

We may view ‹Fn+1 as an OQn-linear isomorphism by endowing H•(Ω•Qn/Sn)

with the OQn-module structure provided by the homomorphism

OQn → H0(Ω•Qn/Sn)

defined by φn+2, and Wn+1Ω•Q0/S0
with the structure corresponding to the

previous one via (‹Fn+1)−1 : H0(Ω•Qn/Sn)
∼−−→ Wn+1(OQ0). The canonical fil-

tration of Wn+1Ωd
Q0/S0

is then a filtration by sub-OQn-modules, which can be

transported to Hd(Ω•Qn/Sn) via ‹Fn+1. As we know by [Ill79, I, Cor. 3.9] that

the corresponding graded pieces are locally free OQ0-modules for the structure

defined by the homomorphism

(8.5.3) F : OQ0 −→Wn+1(OQ0)/pWn+1(OQ0)
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factorizing F : Wn+1(OQ0) → Wn+1(OQ0), the proof will be complete if we

check the commutativity of the diagram

(8.5.4) OQn
φn+2 ∗

//

����

H0(Ω•Qn/Sn) ∼
(F̃n+1)−1

// Wn+1(OQ0)

����
OQ0

F // Wn+1(OQ0)/pWn+1(OQ0).

It is enough to check that the diagram induced on sections overD+(Ti)⊂Qn
commutes, for 0 ≤ i ≤ d. So we may replace OQn by A = (Z/pn+1Z)[x], with

x = (x1, . . . , xd) and φ∗(xj) = xpj , 1 ≤ j ≤ d. Take f =
∑
I aIx

I ∈ A, with

aI ∈ Z/pn+1Z. Then,

(‹Fn+1)−1 ◦ φn+2 ∗(f) =
∑
I

aI(‹Fn+1)−1(xp
n+2I).

As ‹Fn+1 is the factorization of the (n+2)-th ghost component wn+1 : Wn+2(A)

→ A, we see that (‹Fn+1)−1(xp
n+1

j ) = [xj ], 1 ≤ j ≤ d. Therefore, we obtain

(‹Fn+1)−1 ◦ φn+2 ∗(f) =
∑
I

aI [x]pI .

Since F is given by lifting an element of A0 to Wn+1(A0), applying Frobenius

and reducing modulo p, this gives the commutativity of (8.5.4). �

Proposition 8.6. Under the assumptions of Theorem 8.1, let f = π ◦ i
be a factorization of f as the composition of a regular closed immersion i :

Y ↪→ P = P dX of Y into a projective space on X , followed by the canonical

projection π : P → X . For all n ≥ 1, let fn, in, πn be the reductions of f, i, π

modulo pn+1. Then, the compositions

OX
f∗−→ Rf∗(OY )

τf−→ OX ,(8.6.1)

OXn
f∗n−→ Rfn ∗(OYn)

τfn−−→ OXn ,(8.6.2)

Wn(OX0)
f∗0−→ Rf0 ∗(Wn(OY0))

τi0,π0,n−−−−−→Wn(OX0),(8.6.3)

W (OX0)
f∗0−→ Rf0 ∗(W (OY0))

τi0,π0−−−→W (OX0),(8.6.4)

WOX0,Q
f∗0−→ Rf0 ∗(WOY0,Q)

τi0,π0−−−→WOX0,Q(8.6.5)

are given by multiplication by r.

Proof. Since the restriction of f above U is finite locally free of rank r,

it follows from (3.1.3) that the endomorphism of OU induced by τf ◦ f∗ is

mutiplication by r. But U is scheme-theoretically dense in X, therefore the

same relation holds on X itself. So (8.6.1) is multiplication by r.
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Thanks to the flatness of X and Y over Z(p), the spectral sequence for the

composition of Tor’s implies that, for all n ≥ 1, Xn and Y are Tor-independent

over X. Therefore, by Theorem 3.1(ii), the morphism τfn ◦ f∗n is deduced from

τf ◦ f∗ by base change from X to Xn, and (8.6.2) is also multiplication by r.

We want to deduce from this result that (8.6.3) is also multiplication by r.

We observe first that the homomorphisms ‹Fn defined by Lemma 8.4 provide

morphisms ‹FnX : Wn(OX0) −→ OXn−1 ,

f∗(‹FnY ) : f0 ∗(Wn(OY0)) −→ fn−1 ∗(OYn−1),

Rdπ∗(‹FnP ) : Rdπ0 ∗(WnΩd
P0/X0

) −→ Rdπn−1 ∗(Ω
d
Pn−1/Xn−1

/BΩd
Pn−1/Xn−1

).

Moreover, we can use the isomorphism (8.5.1) and define‹GnP := (bdn)−1 ◦Rdπ∗(‹FnP ) : Rdπ0 ∗(WnΩd
P0/X0

) −→ Rdπn−1 ∗(Ω
d
Pn−1/Xn−1

).

We consider the diagram
(8.6.6)

Wn(OX0)

F̃nX

��

f∗0 // f0 ∗(Wn(OY0))

f∗(F̃
n
Y )

��

π0 ∗(γi0,π0,n)
// Rdπ0 ∗(WnΩdP0/X0

)

G̃nP
��

Trpπ0,n

∼
// Wn(OX0)

F̃nX

��
OXn−1

f∗n−1 // fn−1 ∗(OYn−1)
πn−1 ∗(γfn−1

)
// Rdπn−1 ∗(Ω

d
Pn−1/Xn−1

)
Trpπn−1

∼
// OXn−1 ,

where the compositions of the upper and lower rows are respectively the maps

induced by (8.6.3) and (8.6.2) on degree-0 cohomology. Let us prove that

this diagram is commutative. The left square commutes because the mor-

phism ‹FnX is functorial with respect to X. To prove that the right square

commutes, it suffices to show that if ξdRW and ξdR are the de Rham-Witt

and de Rham Chern classes of OP (1), then ξddRW and ξddR have same image in

Rdπn−1 ∗(Ω
d
Pn−1/Xn−1

/BΩd
Pn−1/Xn−1

). As R•πn−1 ∗(‹FnP ) and b•n are compatible

with cup-products, it suffices to show that the diagram

R1π0 ∗(O×P0
)

dlog // R1π0 ∗(WnΩ1
P0/X0

)

R1π∗(F̃nP )
��

R1πn−1 ∗(O×Pn−1
)

OO

dlog // R1πn−1 ∗(H1(Ω•Pn−1/Xn−1
))

is commutative, which follows from (8.4.2).

To simplify notation, we drop the base scheme from the indices and denote

CdPn−1
= Ωd

Pn−1
/BΩd

Pn−1
. To prove the commutativity of the central square of
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(8.6.6), it suffices to prove the commutativity of the diagram

i0 ∗(Wn(OY0)) //

i∗(F̃nY )

��

HdY0(WnΩd
P0

)

HdY (F̃nP )
��

RΓY0(WnΩd
P0

)[d]
∼oo

RΓY (F̃nP )[d]
��

// WnΩd
P0

[d]

F̃nP [d]
��

HdYn−1
(CdPn−1

) RΓYn−1(CdPn−1
)[d]

∼oo // CdPn−1
[d]

in−1 ∗(OYn−1) // HdYn−1
(Ωd

Pn−1
)

OO

RΓYn−1(Ωd
Yn−1

)[d]
∼oo

OO

// Ωd
Yn−1

[d] ,

OO

to apply the functor Rπn−1 ∗, and to pass to cohomology sheaves in degree 0.

In this diagram, the upper left (resp. lower left) horizontal arrow maps 1 to

γY0,n (resp. γYn−1,1), and the middle horizontal arrow is an isomorphism thanks

to Lemma 8.5(ii). The middle and right squares commute by functoriality, and

it suffices to prove that the left rectangle commutes. This part of the diagram

comes from a diagram of morphisms of sheaves; therefore, the verification is lo-

cal on P . Thus we may assume that Y is defined by a regular sequence t1, . . . , td
in P . Then, since Y and P are flat over Z(p), the images of this sequence in

OPn−1 and OP0 (still denoted t1, . . . , td) are regular sequences defining Yn−1

and Y0. It is enough to show that the symbolsñ
d[t1] · · · d[td]

[t1], . . . , [td]

ô
∈ ExtdWn(OP0 )(Wn(OY0),WnΩd

P0
)

and ñ
dt1 · · · dtd
t1, . . . , td

ô
∈ ExtdOPn−1

(OYn−1 ,Ω
d
Pn−1

)

have same image in HdY (CdPn−1
). By functoriality, the image of

î
dt1···dtd
t1,...,td

ó
in

ExtdOPn−1
(OYn−1 , C

d
Pn−1

) is
î

cl(dt1···dtd)
t1,...,td

ó
. On the other hand, it follows from

the construction of ‹Fn in Proposition 8.4 that ‹FnP ([ti]) = tp
n

i ∈ OPn−1 and‹FnP (d[ti]) = cl(tp
n−1
i dti) ∈ H1(Ω•Pn−1

). Since the tp
n

i ’s form a regular sequence

in OPn−1 , we may argue as in the proof of Proposition 7.4 to show that the sym-

bols
[
d[t1]···d[td]
[t1],...,[td]

]
and

ñ
cl(tp

n−1
1 ···tp

n−1
d

dt1···dtd)

tp
n

1 ,...,tp
n

d

ô
have same image inHdYn−1

(CdPn−1
).

The wanted equality is then a consequence of Lemma 4.2, and the commuta-

tivity of (8.6.6) follows.

Returning to the homomorphism (8.6.3), we observe that it is defined by

multiplication by a section κn of Wn(OX0). Proposition 7.7(i) implies that,

for variable n, the sections κn form a compatible family under restriction and

satisfy F (κn) = κn−1. If κ = lim←−n κn ∈ Γ(X0,W (OX0)), then F (κ−r) = κ−r.
On the other hand, the commutativity of (8.6.6) implies that ‹FnX(κn− r) = 0.

So, if Rn : W (OX0) → Wn(OX0) is the restriction homomorphism, we obtain
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that

κ− r ∈ Ker(F − Id) ∩
Ç⋂
n≥1

Ker(‹FnX ◦Rn),

å
which is zero by (8.4.1). Thus, κ = r; hence, κn = r for all n.

If we now consider in the derived category of inverse systems the compo-

sition

W•(OX0)
f∗0 •−−→ Rf0 • ∗(W•(OY0))

τi,π,•−−−→W•(OX0),

we obtain a morphism that has (8.6.3) as component of degree n. Therefore,

this composition is multiplication by r on the inverse system W•(OX0). It

follows that the composition

W (OX0)
R lim←− f∗0 •−−−−−→ R lim←−Rf0 • ∗(W•(OY0))

R lim←− τi,π,•
−−−−−−−→W (OX0)

is multiplication by r. Using the isomorphism R lim←− ◦ Rf0 • ∗ ' Rf0 ∗ ◦ R lim←−,

we obtain that (8.6.4) is multiplication by r. Tensoring by Q and using the

commutation of Rf0 ∗ with tensorization by Q, we obtain that (8.6.5) is mul-

tiplication by r. �

8.7. Proof of Theorem 8.1. The first assertion is a particular case of

Theorem 3.2. To prove the other ones, we choose a factorization f = π◦i, where

i is a closed immersion of Y into a projective space P = P dX over X and π is

the structural morphism, and we keep the notation of the previous subsections.

Applying the functor Hq(Xn,−) (resp. H i(X0,−)), the morphisms τfn , τi,π,n,

and τi,π define homomorphisms

Hq(Yn,OYn)
τfn−−→ Hq(Xn,OXn),

Hq(Y0,Wn(OY0))
τi,π,n−−−→ Hq(X0,Wn(OX0)),

Hq(Y0,W (OY0))
τi,π−−→ Hq(X0,W (OX0)),

Hq(Y0,WOY0,Q)
τi,π−−→ Hq(X0,WOX0,Q).

Proposition 8.6 implies that the composition of these homomorphisms with the

functoriality homomorphisms defined by fn (resp. f0) is multiplication by r,

and this implies Theorem 8.1. �

This also completes the proof of Theorems 1.5, 1.3, and 1.1.

9. An example

Because Theorem 1.1 was previously known in some cases, and can be

proved in some other cases without using the most difficult results of this

paper, it may be worth giving an example for which we would not know how

to prove congruence (1.1.1) without using them. Here, we give such an example

for each p ≥ 7, except perhaps when p is a Fermat number.
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9.1. We begin with a list of conditions that we want our example to

satisfy. In these conditions, R, K, and k are as in Theorem 1.1, and X is an

R-scheme.

(1) X is a regular scheme, projective and flat over R.

(2) H0(XK ,OXK ) = K, and Hq(XK ,OXK ) = 0 for all q ≥ 1.

(3) There exists q ≥ 1 such that Hq(Xk,OXk) 6= 0.

(4) X is not a semi-stable R-scheme (in particular, not smooth).

(5) dimXK ≥ 3.

(6) XK is a variety of general type.

Conditions (1) and (2) will ensure that X satisfies the hypotheses of The-

orem 1.1. Condition (3) will ensure that we are not in the trivial situation

described in the first paragraph of Section 1.4. Condition (4) will ensure that

Theorem 2.1 does not suffice to conclude. Condition (5) will rule out the case

of surfaces, for which Theorem 1.1 is already known by [Esn06, Th. 1.3]. Con-

dition (6) rules out rationally connected varieties, for which Theorem 1.1 is also

known because they satisfy the coniveau condition of [Esn06, Th. 1.1]. It also

grants that if X can be embedded as a global complete intersection in some

projective space over R, then congruence (1.1.1) cannot be proved by applying

Katz’s theorem [Ktz71, Th. 1.0] to Xk, since a smooth complete intersection

in a K-projective space for which Katz’s µ invariant is ≥ 1 is a Fano variety.

Remarks 9.2. We begin with a few remarks that make it easier to find an

example satisfying the previous conditions.

(i) Examples such that dimkH
1(Xk,OXk) > dimK H

1(XK ,OXK ) = 0

have been known since Serre’s construction of a counter-example to Hodge

symmetry in characteristic p [Ser58, Prop. 16]. The general principle behind

such examples, which goes back to Grothendieck (see [SGA1, XI, 6.11, (*)]

over an algebraically closed field and [Ray70, Prop. 6.2.1] for a general state-

ment), is that the datum of a torsor Y on X under a finite group G defines

a morphism G′ → PicX/R, where G′ is the Cartier dual of G. Then, under

certain conditions, the Lie algebra of G′k can have a nonzero image in the tan-

gent space H1(Xk,OXk) to PicXk/k. The simplest case (which was the one

considered by Serre) is when G is the étale group Z/pZ. Then the Artin-

Schreier exact sequence shows that when the torsor Yk remains nontrivial after

extension to an algebraic closure k of k, its class gives a nonzero element in

H1(Xk,OXk), and therefore H1(Xk,OXk) 6= 0. This happens in particular

when Yk is a complete intersection in some projective space, since we then

have dimkH
0(Yk,OYk) = 1.

To simplify our quest, we will therefore replace condition (3) (and condi-

tion (5)) by the more restrictive condition:
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(3′) X is the quotient of an hypersurface Y in a projective space PnR of

relative dimension n ≥ 4 over R by a free action of the group Z/pZ.

(ii) Assume that X satisfies condition (3′). Then H0(YK ,OYK ) = K,

and Hq(YK ,OYK ) = 0 for q 6= 0, n − 1. Because char(K) = 0, we have

Hq(XK ,OXK ) = Hq(YK ,OYK )G. Hence, H0(XK ,OXK ) = K, and condition

(2) is satisfied if and only if χ(OXK ) = 1. As YK is an étale cover of XK of

degree p, the Riemann-Roch-Hirzebruch formula implies that

(9.2.1) χ(OYK ) = pχ(OXK ).

Then condition (2) is satisfied if and only if χ(OYK ) = p. If d is the degree of

the hypersurface Y , we obtain

(−1)n−1(p− 1) = dimK H
n−1(YK ,OYK )

= dimK H
n(PnK ,OPnK (−d))

= dimK H
0(PnK ,OPnK (d− n− 1)).

The simplest choice for checking this equation is d− n− 1 = 1, so that we get

dimK H
0(PnK ,OPnK (d−n− 1)) = n+ 1. Then we have to satisfy the conditions

(9.2.2) p > 2, n = p− 2, d = p.

Therefore, we will simplify our quest even further by replacing condition

(3′) by the following more precise condition, which implies (2), (3) and (5):

(3′′) X is the quotient of an hypersurface Y of degree p in the projective

space PnR of relative dimension n = p− 2 over R by a free action of the group

Z/pZ, with p ≥ 7.

(iii) Assuming that X satisfies conditions (1) and (3′′), then condition (6)

follows automatically. Indeed, YK is smooth over K since char(K) = 0, and

its canonical sheaf is then OYK (−n − 1 + d) = OYK (1). Since YK is an étale

covering of XK , it is the inverse image of the canonical sheaf on X, which

therefore is ample too.

So it suffices for our purpose to construct an example satisfying conditions

(1), (3′′), and (4).

9.3. We now begin the construction of our example. Assume that p≥5,

and let E be the free Z(p)-module (Z(p))
p. We denote by e0, . . . , ep−1 its canon-

ical basis. Let σ be a generator of G := Z/pZ. We let σ act on E by cyclic

permutation of the basis

(9.3.1) σ : e0 7→ e1 7→ · · · 7→ ep−1(7→ e0).

Let H ⊂ E be the hyperplane consisting of elements for which the sum of

coordinates is 0. It is stable under the action of G, and we endow it with the

basis v1, . . . , vp−1 defined by vi = ei − ei−1. We take as projective space the

space P(H) ' Pp−2
Z(p)

, with the induced G-action, and we denote by X1, . . . , Xp−1
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the homogeneous coordinates on P(H) defined by the dual basis to the basis

v1, . . . , vp−1 of H. Letting G act by composition on functions on H, one checks

easily that the orbit of X1 is described by

(9.3.2)

X1 7→ −Xp−1 7→ Xp−1 −Xp−2 7→ Xp−2 −Xp−3 7→ · · · 7→ X2 −X1 (7→ X1).

Let g0(X1, . . . , Xp−1) be the sum of the elements of the orbit of Xp
1 , i.e.,

(9.3.3) g0(X1, . . . , Xp−1) = Xp
1 + (−Xp−1)p +

p−1∑
i=2

(Xi −Xi−1)p.

Then g0 ∈ pZ[X1, . . . , Zp−1], and we can define a polynomial g(X1, . . . , Xp−1) ∈
Z[X1, . . . , Zp−1] by

(9.3.4) g(X1, . . . , Xp−1) =
1

p
g0(X1, . . . , Xp−1).

Let Z ⊂ P(H) be the hypersurface defined by g. Since g is G-invariant,

the action of G on P(H) induces an action on Z. We denote by g the reduction

of g in Fp[X1, . . . , Xp−1]. We first study the singular points of ZFp . They are

solutions of the system of homogeneous equations ∂g/∂Xi = 0, 1 ≤ i ≤ p− 1,

which can be written as

(9.3.5)


Xp−1

1 = (X2 −X1)p−1

(X2 −X1)p−1 = (X3 −X2)p−1

... =
...

(Xp−1 −Xp−2)p−1 = (−Xp−1)p−1 .

Lemma 9.4. Let Fp be an algebraic closure of Fp.
(i) The solutions of (9.3.5) in Pn(Fp) belong to Pn(Fp), and they corre-

spond bijectively to the families (u1, . . . , up−1) ∈ (F×p )p−1 such that

(9.4.1) 1 + u1 + · · ·+ up−1 = 0.

(ii) For u ∈ F×p , let ũ = [u] ∈ µp−1(Zp) be its Teichmüller representative.

Then a point x ∈ Pn(Fp) that is a solution of (9.3.5) belongs to ZFp if and only

if

(9.4.2) 1 + ũ1 + · · ·+ ũp−1 ∈ p2Zp,

where (u1, . . . , up−1) ∈ (F×p )p−1 corresponds to x by (i).

Proof. Given (u1, . . . , up−1) ∈ (F×p )p−1 satisfying (9.4.1), the correspond-

ing solution x = (ξ1 : · · · : ξp−1) ∈ Pn(Fp) of the system (9.3.5) is obtained by

choosing ξ1 ∈ F×p , setting

(9.4.3) ξi − ξi−1 = ui−1ξ1 for 2 ≤ i ≤ p− 1,



RATIONAL POINTS OF REGULAR MODELS 481

and observing that (9.4.1) implies that −ξp−1 = up−1ξ1. Assertion (i) is then

straightforward.

Let η1 ∈ Zp be a lifting of ξ1, and let ηi be defined inductively for 2 ≤ i ≤
p− 1 by

(9.4.4) ηi − ηi−1 = ũi−1η1.

Define α ∈ Zp by

(9.4.5) 1 + ũ1 + · · ·+ ũp−1 = pα.

Then by adding the equations in (9.4.4), we get

(9.4.6) ηp−1 = (1 + · · ·+ ũp−2)η1 = (pα− ũp−1)η1.

We can now substitute (9.4.4) and (9.4.6) in g0, and we obtain the relation

g0(η1, . . . , ηp−1) = ηp1(1 + ũp1+ · · ·+ũpp−2+(ũp−1 − pα)p)(9.4.7)

= ηp1(1 + ũ1+ · · ·+ũp−2 + ũp−1+
p∑
j=1

Ç
p

j

å
ũp−jp−1(−pα)j)

≡ pαηp1 mod p2Zp.

Hence we get

(9.4.8) g(η1, . . . , ηp−1) ≡ αηp1 mod pZp,

and assertion (ii) follows. �

Lemma 9.5. (i) The action of G on ZFp is free.

(ii) If p is not a Fermat number, then ZFp is singular and is not the special

fibre of a semi-stable scheme.

Let us recall that the Fermat numbers are the integers of the form 22n + 1

with n ≥ 0, that any prime number of the form 2n + 1 with n > 0 is a Fermat

number, and that the only known prime Fermat numbers are 3, 5, 17, 257, and

65537.

Proof. Over Fp, the matrix of the action of σ on (Fp)p has 1 as unique

eigenvalue, with a corresponding eigenspace of dimension 1, generated by the

eigenvector (1, . . . , 1). This eigenvector belongs to H/pH, where it has coordi-

nates (p−1, p−2, . . . , 1) = −(1, . . . , p−1) in the basis v1, . . . , vp−1. Therefore,

the only fixed point of σ in Pn(Fp) is the point x0 = (1 : 2 : · · · : p − 1).

This point is the solution of (9.3.5) corresponding to u1 = · · · = up−1 = 1.

Lemma 9.4(ii) implies that it does not belong to ZFp , which proves assertion (i).

As the system (9.3.5) has only a finite number of solutions, the singular

points of ZFp are isolated. In particular, since dimZFp ≥ 4, ZFp cannot be

the special fibre of a semi-stable scheme if it has a singular point. To find a

singular point on ZFp , Lemma 9.4 shows that it suffices to construct a family
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(ũi)1≤i≤p−1 of (p−1)-th roots of unity in Zp such that 1 +
∑
i ũi ∈ p2Zp. Since

p is not a Fermat number, p − 1 has an odd prime factor q. We can choose

a primitive q-th root of unity ζ and set ũi = ζi for 1 ≤ i ≤ q − 1, ũi = 1 for

q ≤ i ≤ q + (p − q)/2 − 1, ũi = −1 for q + (p − q)/2 ≤ i ≤ p − 1. So ZFp is

singular. �

9.6. We now address the regularity condition in 9.1(1). We replace Z

by another equivariant lifting of ZFp defined as follows. Let R be the ring of

integers of a finite extension K of Qp, of degree > 1, with residue field k. If

K/Qp is unramified, we set π = p; otherwise, we choose a uniformizer π of R.

Let λ ∈ R be an element satisfying the following condition:

(a) If K/Qp is unramified, then the reduction of λ mod p does not belong

to Fp.
(b) If K/Qp is ramified, then λ ∈ R×.

Let h ∈ Z[X1, . . . , Xp−1] be the product of the elements of the orbit of X1, i.e.,

(9.6.1) h(X1, . . . , Xp−1) = X1(−Xp−1)
p−1∏
i=2

(Xi −Xi−1),

and let f ∈ R[X1, . . . , Xp−1] be defined by

(9.6.2) f = g + πλh.

We define Y ⊂ PnR to be the hypersurface with equation f . Since f is

invariant under G, the action of G on PnR induces an action on Y . Its special

fibre Yk is equal to Zk, on which G acts freely by Lemma 9.5. Then the fixed

locus of σ is a closed subscheme of Y , and its projection on SpecR is a closed

subset that does not contain the closed point. Therefore it is empty, and the

action of G on Y is free. We define X to be the quotient scheme X = Y/G.

Proposition 9.7. Assume that p is an odd prime that is not a Fermat

number. Then the scheme X defined above satisfies conditions (1)–(6) of 9.1.

Proof. As observed in 9.2(iii), it suffices to check that X satisfies condi-

tions (1), (3′′), and (4). Condition (3′′) holds by construction.

The hypersurface Y is projective and flat over R, since g is not divisible

by π. So X is also projective and flat. As Yk = Zk, Lemma 9.5(ii) implies

that Y is not semi-stable. Since Y → X is étale and semi-stability is a local

property for the étale topology, X is not semi-stable either. So we only have to

prove that X is regular. This is again a local property for the étale topology.

Hence, it suffices to prove that Y is regular. Because Y is excellent, its singular

locus is closed, and the same holds for its projection to SpecR. So it is enough

to check the regularity of Y at the points of its special fibre. The regularity

is clear at the smooth points of Yk, and we need to prove it at the singular

points.
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Let x = (ξ1 : · · · : ξp−1) ∈ Pn(k) be a singular point of Yk. As Yk = Zk, x

corresponds by Lemma 9.4 to a family (u1, . . . , up−1) ∈ (F×p )p−1 such that

(9.7.1) 1 + ũ1 + · · ·+ ũp−1 = p2β

for some β ∈ Zp. We have seen in the proof of Lemma 9.4 that ξ1 ∈ F×p ,

so we may assume that ξ1 = 1. We set η1 = 1, and we define inductively

ηi for 2 ≤ i ≤ p − 1 by (9.4.4). This allows us to work on the affine space

AnR = D+(X1) ⊂ PnR, and we will denote

a∗(X2, . . . , Xp−1) := a(1, X2, . . . , Xp−1)

for any homogeneous polynomial a(X1, . . . , Xp−1) ∈ R[X1, . . . , Xp−1]. For 2 ≤
i ≤ p− 1, we set

Xi = ηi + Yi,

so that (π, Y2, . . . , Yp−1) is a regular sequence of generators of the maximal

ideal mx of the regular local ring OAnR,x.

We want to prove that OAnR,x/(f∗) is regular, i.e., that f∗ /∈ m2
x. We first

claim that

(9.7.2) g∗ ≡ pβ mod m2
x.

Indeed, applying (9.4.7) with α = pβ, we obtain the congruence

g0 ∗(η2, . . . , ηp−1) ≡ p2β mod p3Zp;

hence

(9.7.3) g∗(η2, . . . , ηp−1) ≡ pβ mod p2Zp ⊂ m2
x.

On the other hand, equations (9.4.4) show that, for 2 ≤ i ≤ p− 2,

(9.7.4)
∂g∗
∂Xi

(η2, . . . , ηp−1) = 0.

Finally, equations (9.4.4) and (9.4.6) show that

∂g∗
∂Xp−1

(η2, . . . , ηp−1) = (ηp−1 − ηp−2)p−1 − ηp−1
p−1(9.7.5)

= 1− (p2β − ũp−1)p−1

≡ 0 mod p2Zp ⊂ m2
x.

Applying (9.7.3), (9.7.4), and (9.7.5) to the Taylor development of g∗ proves

(9.7.2).

From the definition of h, we obtain

(9.7.6) h∗(η2, . . . , ηp−1) = −(p2β − ũp−1)
p−2∏
i=1

ũi ≡
p−1∏
i=1

ũi mod mx.
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As h∗ ≡ h∗(η2, . . . , ηp−1) mod mx, f∗ satisfies the congruence

(9.7.7) f∗ = g∗ + πλh∗ ≡ π
( p
π
β + λ

p−1∏
i=1

ũi
)

mod m2
x.

Let w = p
πβ + λ

∏
i ũi. If K/Qp is ramified, then condition 9.6(b) implies that

w is a unit. If K/Qp is unramified, then π = p, and condition 9.6(a) implies

that the reduction mod p of w is nonzero; hence, w is again a unit. In each

case, f∗ /∈ m2
x, and OY,x is regular. �

Appendix: Complete intersection morphisms of

virtual relative dimension 0

As mentioned in the introduction, we explain here the construction of the

morphism τf : Rf∗OY → OX for a proper complete intersection morphism

f : Y → X of virtual dimension 0, and we give a proof of Theorem 3.1.

The appendix consists of two sections. In Section A, we recall the con-

struction of the invertible sheaf ωY/X associated to a complete intersection

morphism f : Y → X, and we prove some of its properties. We do not use

duality theory here, even if we keep for convenience the terminology “rela-

tive dualizing sheaf.” Instead, we use the complete intersection assumption

to deduce our constructions from the elementary properties of smooth mor-

phisms and regular immersions, thanks to the canonical isomorphisms defined

by Conrad [Con00, 2.2]. It is then easy to define the canonical section δf of

ωY/X when f has virtual relative dimension 0 and to prove its basic properties.

In Section B, we assume that X is noetherian and has a dualizing complex.

We then use duality theory and the identification ωY/X
∼−−→ f !OX to deduce

τf from the canonical section δf . To translate the properties of δf into the

properties of τf listed in Theorem 3.1, we need to use the fundamental identi-

fications of duality theory, as well as the various compatibilities between these

identifications. Our proofs rely in an essential way on Conrad’s exposition

[Con00].

It may be worth pointing out that in this article we need the compatibility

of τf with base change in a context that is not covered by the base change re-

sults of [Con00]. Indeed, we consider morphisms f that are not flat in general

(such as in Theorem 1.5) and base change morphisms that are not flat either

(such as reduction mod pn in the proof of Proposition 8.6). The key property

we use here, which is familiar to the experts, but not so well documented in

the literature, is the Tor-independence of f and the base change morphism.

A. The canonical section of the relative dualizing sheaf

We recall now the construction of the invertible sheaf ωY/X for a complete

intersection morphism, and we explain some of its properties. As often, the
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main work is to prove that the constructions are well defined and, in particular,

to check the sign conventions. As the details are easy but tedious, we leave

most of them as exercises and only sketch the main steps of the verifications.

We first recall a standard base change result for complete intersection

morphisms (see [SGA6, 3.7.1] for the finite Tor-dimension of Rf∗E•).

Proposition A.1. Let f : Y → X be a complete intersection morphism

of virtual relative dimension m, and let

(A.1.1) Y ′
v //

f ′

��

Y

f
��

X ′
u // X

be a cartesian square such that X ′ and Y are Tor-independent over X .

(i) The morphism f ′ is a complete intersection morphism of virtual rel-

ative dimension m.

(ii) Assume that X is quasi-compact, and that f is separated of finite type.

If E• ∈ Db
qc(OY ) is of finite Tor-dimension over OY , then Rf∗E• is of finite

Tor-dimension over OX , and the base change morphism

(A.1.2) Lu∗Rf∗E• −→ Rf ′∗Lv
∗E•

is an isomorphism.

Proof. The first claim is local on Y ′, so we may assume that there exists a

factorization f = π ◦ i such that π : P → X is a smooth morphism of relative

dimension n and i : Y ↪→ P is a closed immersion of codimension d = n−m.

Then i is a regular immersion, defined by an ideal I ⊂ OP and, since the claim

is local, we may assume that I is generated by a regular sequence t1, . . . , td of

sections ofOP . Then the Koszul complex K•(t1, . . . , td) is a resolution ofOY by

OP -modules that are flat relatively to X. Let P ′ = X ′×X P , and let t′1, . . . , t
′
d

be the images of t1, . . . , td in OP ′ . Since X ′ and Y are Tor-independent over X,

the Koszul complex K(t′1, . . . , t
′
d) is a resolution of OY ′ over OP ′ , which shows

that f ′ is a complete intersection morphism of virtual relative dimension m.

Assume now that the hypotheses of (ii) are satisfied. Since X is quasi-

compact, it suffices to check that Rf∗E• is of finite Tor-dimension when X is

affine. We can then choose a finite covering U of Y by affine open subsets Uα,

and we may assume that the Uα are small enough so that the restriction fα of

f to Uα can be factorized as fα = πα ◦ iα, where πα : Pα → X is smooth and

iα : Uα ↪→ Pα is a closed immersion defined by a regular sequence of sections

of OPα . For each sequence α0 < · · · < αr, denote Uα = Uα0 ∩ · · · ∩ Uαr ,
jα : Uα ↪→ Y , and let fα be the restriction of f to Uα. If I• is an injective

resolution of E•, then the alternating Čech complex Č•(U, I•) is a resolution

of E•. Since jα is an affine open immersion, the complex jα ∗j
∗
αI• = Rjα ∗j

∗
αE•
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belongs to Db
qc,fTd(OY ) for each α. Therefore, it suffices to prove that Rf∗E• ∈

Db
qc,fTd(OX) for complexes E• of the form Rj∗F•, where j is the inclusion of an

affine open subscheme U and F• ∈ Db
qc,fTd(OU ). This reduces the proof to the

case where Y is affine. Then there exists a bounded complex of OY -modules

P• with flat quasi-coherent terms, and a quasi-isomorphism P• → E•. Since

OY has finite Tor-dimension over OX , so does any flat OY -module, and the

first assertion of (ii) follows.

The complex Lv∗E• belongs to Db
qc,fTd(OY ′), and the base change mor-

phism (A.1.2) can be defined by adjunction as usual. Arguing as before, it

suffices to prove that it is an isomorphism when X is affine and E• is of the

form Rj∗F•, where j is the inclusion of an affine open subscheme U ⊂ Y ,

and F• ∈ Db
qc,fTd(OU ). Let U ′ = X ′ ×X U , and let w : U ′ → U be the pro-

jection, j′ : U ′ ↪→ Y ′ the pull-back of j. Since j is an affine morphism and

F• ∈ Db
qc,fTd(OU ), the base change morphism Lv∗Rj∗F• → Rj′∗Lw

∗F• is an

isomorphism. This implies that the base change morphism for f and E• is

an isomorphism if and only if the base change morphism for f ◦ j and F• is

an isomorphism. If one chooses a bounded, flat, quasi-coherent resolution P•
of F•, the Tor-independence assumption implies that, for each n, (f ◦ j)∗Pn
is u∗-acyclic. It follows easily that the base change morphism for P• is an

isomorphism, which ends the proof. �

Remark. Assertion (ii) holds more generally if one replaces the complete

intersection hypothesis on f by the assumption that E• has finite Tor-dimension

over OX . It is also standard to extend the assertion to the case where f is only

assumed to be coherent, i.e., quasi-compact and quasi-separated.

A.2. Let f : Y → X be a complete intersection morphism of relative

dimension m. We now recall how one can associate to f an invertible OY -

module ωY/X , called the relative dualizing sheaf of Y/X (or f). Here we will

use the direct construction based on elementary algebra,1 which makes explicit

the existence of the canonical section when m = 0, and is a natural extension

of Conrad’s constructions for the canonical isomorphisms ζ ′f,g [Con00, 2.2].

If f = π ◦ i is a factorization of f where π : P → X is a smooth morphism

of relative dimension n and i : Y ↪→ P a closed immersion of codimension

d = n − m, defined by a regular ideal I ⊂ OP , then one defines ωY/X by

1 For a more intrinsic construction, one can use the general properties of the cotangent

complex LY/X [Ill71]. Here, LY/X is a perfect complex, of perfect amplitude in [−1, 0], and

of rank m [Ill71, 3.2.6]. Taking its (graded) determinant in the sense of Knudsen-Mumford

[KM76], one obtains the complex ωY/X [m]. In this construction, special attention should be

paid to sign compatibilities, as, for historical reasons, the sign conventions used in [Ill71] and

[KM76] conflict with those of [Con00].
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setting

ωY/X =ωY/P ⊗OY i
∗ωP/X(A.2.1)

=∧d((I/I2)∨)⊗OY i
∗Ωn

P/X .

Up to canonical isomorphism, this construction is made independent of the

choice of the factorization as follows. Let f = π′ ◦ i′ be another factorization

of f through a smooth morphism π′ : P ′ → X, and let ωPY/X and ωP
′

Y/X be

the invertible OY -modules defined by (A.2.1) using the two factorizations.

Assume first that there exists an X-morphism u : P ′ → P that is either a

smooth morphism or a regular immersion and is such that u ◦ i′ = i. Then,

one defines an isomorphism εP
′,P (u) : ωPY/X

∼−−→ ωP
′

Y/X by the commutative

diagram

(A.2.2) ωPY/X = ωY/P ⊗ i∗ωP/X ∼

ζ′
i′,u⊗ Id

//

∼

εP
′,P (u) ++

ωY/P ′ ⊗ i′∗ωP ′/P ⊗ i′∗u∗ωP/X

ωY/P ′ ⊗ i′∗ωP ′/X = ωP
′

Y/X .

∼ Id⊗ i′∗(ζ′u,π)

OO

The definitions of ζ ′i′,u and ζ ′u,π depend upon whether u is a smooth morphism

or a regular immersion (the two definitions agree when u is an open and closed

immersion).

(a) If u is smooth, then ζ ′i′,u is defined by [Con00, p. 29, (d)] and ζ ′u,π is

defined by [Con00, p. 29, (a)].

(b) If u is a regular immersion, then ζ ′i′,u is defined by [Con00, p. 29, (b)]

and ζ ′u,π is defined by [Con00, p. 29, (c)].

Let f = π′′ ◦ i′′ be a third factorization of f through a smooth morphism

π′′ : P ′′ → X, let ωP
′′

Y/X be defined by (A.2.1) using this factorization, and

assume that there exists an X-morphism v : P ′′ → P ′ such that v ◦ i′′ = i′ and

such that each of the morphisms v and u ◦ v is either a smooth morphism or a

regular immersion. Then it follows readily from Conrad’s general transitivity

relation for compositions of smooth morphisms and regular immersions [Con00,

(2.2.4)] that

(A.2.3) εP
′′,P ′(v) ◦ εP ′,P (u) = εP

′′,P (u ◦ v).

If f = π◦ i = π′ ◦ i′ are any factorizations as above, let now P ′′ = P ′×X P ,

and let i′′ : Y ↪→ P ′′ be the diagonal immersion and q : P ′′ → P, q′ : P ′′ → P ′

the two projections. One defines the canonical isomorphism εP
′,P : ωPY/X

∼−→
ωP
′

Y/X by setting

(A.2.4) εP
′,P := εP

′′,P ′(q′)−1 ◦ εP ′′,P (q).
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Whenever there exists a smooth morphism or a regular immersion u : P ′ → P

as above, it follows from (A.2.3) that εP
′,P (u) = εP

′,P . One checks similarly

that the isomorphisms εP ′,P satisfy the usual cocycle condition for three fac-

torizations.

Thanks to this cocycle condition, one can then define the invertible sheaf

ωY/X even when there does not exist a global factorization f = π◦i as above, by

choosing local factorizations and glueing the invertible sheaves obtained locally

by the previous construction. By construction, the sheaf ωY/X commutes with

Zariski localization and is equipped with a canonical isomorphism for which

we keep the notation ζ ′:

(A.2.5) ζ ′π,i : ωY/X
∼−−→ ωY/P ⊗OY i

∗ωP/X

for any factorization f = π ◦ i where π is a smooth morphism and i is a regular

immersion.

If m is the virtual relative dimension of Y over X, we will need to work

with the complex ωY/X [m], which is the single OY -module ωY/X sitting in

degree −m. If f = π ◦ i as above, we define in Db(OY ) the isomorphism of

complexes

(A.2.6) ζ ′i,π : ωY/X [m]
∼−−→ ωY/P [−d]

L
⊗OY Li

∗(ωP/X [n])

by (A.2.5) in degree −m, without any sign modification. If f is a smooth
morphism or a regular immersion, this definition is consistent with [Con00,
(2.2.6)]. By [Con00, (1.3.6)], the isomorphism (A.2.6) is equal to the composed
isomorphism

ωY/X [m]
∼−−−−−−→

(A.2.5)[m]
(ωY/P

L
⊗OY Li∗(ωP/X))[m]

∼−−→ (ωY/P
L
⊗OY Li∗(ωP/X [n]))[−d]

∼−−→ ωY/P [−d]
L
⊗OY Li∗(ωP/X [n])

and differs from the composed isomorphism

ωY/X [m]
∼−−−−−−→

(A.2.5)[m]
(ωY/P

L
⊗OY Li∗(ωP/X))[m]

∼−−→ (ωY/P [−d]
L
⊗OY Li∗(ωP/X))[n]

∼−−→ ωY/P [−d]
L
⊗OY Li∗(ωP/X [n])

by multiplication by (−1)dn.

Lemma A.3. Under the assumptions of Proposition A.1, there exists a

canonical isomorphism

(A.3.1) Lv∗(ωY/X) ∼= v∗(ωY/X)
∼−−→ ωY ′/X′ .

Moreover, if the assumptions of Proposition A.1(ii) are satisfied, the canonical

base change morphism

(A.3.2) Lu∗Rf∗(ωY/X)→ Rf ′∗(ωY ′/X′)

is an isomorphism.
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Proof. Since ωY/X is invertible, Lv∗(ωY/X)
∼−−→ v∗(ωY/X). To prove the

isomorphism (A.3.1), assume first that there exists a factorization f = π ◦ i,
where π is smooth and i is a regular immersion. Let f ′ = π′ ◦ i′ be the

factorization deduced from f = π ◦ i by base change. Then, if I and I ′ are

the ideals defining i and i′, the Tor-independence assumption implies that the

canonical homomorphism u∗(I/I2)→ I ′/I ′2 is an isomorphism, which defines

(A.3.1). It is easy to check that, for two factorizations of f , the corresponding

isomorphisms are compatible with the identifications (A.2.4). This provides

the isomorphism (A.3.1) in the general case.

When the assumptions of A.1(ii) are satisfied, the isomorphism (A.3.2)

follows from (A.3.1) and (A.1.2). �

A.4. Let

Y ′
v //

f ′

��

Y

f
��

X ′
u // X

be a cartesian square, and assume that

(a) f and u are complete intersection morphisms of relative dimensions m

and n;

(b) X ′ and Y are Tor-independent over X.

Then Lemma A.3 provides canonical isomorphisms

v∗(ωY/X)
∼−−→ ωY ′/X′ , f ′∗(ωX′/X)

∼−−→ ωY ′/Y .

One defines the canonical isomorphism

(A.4.1) χf,u : ωY ′/Y ⊗OY ′ v
∗(ωY/X)

∼−−→ ωY ′/X′ ⊗OY ′ f
′∗(ωX′/X)

as being the product by (−1)mn of the composite

ωY ′/Y ⊗OY ′ v
∗(ωY/X)

∼−−→ f ′∗(ωX′/X)⊗OY ′ωY ′/X′
∼−−→ ωY ′/X′⊗OY ′ f

′∗(ωX′/X),

where the first isomorphism is the product of the previous base change iso-

morphisms and the second one is the usual commutativity isomorphism of the

tensor product (see [Del84, Appendix, (a)] and [Con00, p. 215-216]).

The following relations follow easily from the local description of the iso-

morphisms ζ ′f,g given in [Con00, p. 30, (a)–(d)]:

(i) In the above cartesian square, assume that each of the three mor-

phisms u, f , and u ◦ f ′ = f ◦ v is either a smooth morphism or a regular im-

mersion. Then, the following isomorphisms ωY ′/X
∼−−→ ωY ′/X′⊗OY ′ f

′∗(ωX′/X)

are equal:

(A.4.2) ζ ′f ′,u = χf,u ◦ ζ ′v,f .
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(ii) Let

Y ′ �
� v //

f ′

��

Y

f
��

X ′′ �
� i //
. �

j
==

X ′ �
� u // X

be a commutative diagram in which the square is cartesian, f is smooth, and

i and u are regular immersions. Then the following isomorphisms

ωX′′/X
∼−−→ ωX′′/Y ′ ⊗OX′′ j

∗(ωY ′/X′)⊗OX′′ i
∗(ωX′/X)

are equal:

(A.4.3) (ζ ′j,f ′ ⊗ Id) ◦ ζ ′i,u = (Id⊗ j∗(χf,u)) ◦ (ζ ′j,v ⊗ Id) ◦ ζ ′vj,f .

(iii) Let

Y ′′
v′ //

f ′′

��

Y ′
v //

f ′

��

Y

f
��

X ′′
u′ // X ′

u // X

be a commutative diagram in which both squares are cartesian, each of the mor-

phisms f , u, u′ and u◦u′ is either a smooth morphism or a regular immersion,

X ′ and Y are Tor-independent over X, and X ′′ and Y ′ are Tor-independent

over X ′ (so that X ′′ and Y are Tor-independent over X and all immersions

are regular). Then the following isomorphisms

ωY ′′/Y ⊗OY ′′ (vv′)∗(ωY/X)
∼−−→ ωY ′′/X′′ ⊗OY ′′ f

′′∗(ωX′′/X′ ⊗OX′′ u
′∗(ωX′/X))

are equal:

(A.4.4) (Id⊗ f ′′∗(ζ ′u′,u)) ◦χf,uu′ = (χf ′,u′ ⊗ Id) ◦ (Id⊗ v′∗(χf,u)) ◦ (ζ ′v′,v ⊗ Id).

We will also need to extend the isomorphism χf,u to the derived category.

We define

(A.4.5)

χf,u : ωY ′/Y [n]
L
⊗OY ′ Lv

∗(ωY/X [m])
∼−−→ ωY ′/X′ [m]

L
⊗OY ′ Lf

′∗(ωX′/X [n])

by (A.4.1) in degree −(m+n), without any further sign modification. Because

of the sign convention in the commutativity isomorphism for the derived tensor

product [Con00, p. 11], χf,u can also be described as the composite

ωY ′/Y [n]
L
⊗OY ′ Lv

∗(ωY/X [m])
∼−−→Lf ′∗(ωX′/X [n])

L
⊗OY ′ ωY ′/X′ [m]

∼−−→ωY ′/X′ [m]
L
⊗OY ′ Lf

′∗(ωX′/X [n]),
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where the first isomorphism is the tensor product of the base change isomor-

phisms and the second one is the commutativity isomorphism. With this def-

inition, the previous relations (A.4.2)–(A.4.4) remain valid in Db(OY ′).

A.5. We now consider the composition of two complete intersection mor-

phisms f : Y → X, g : Z → Y , and define a canonical isomorphism

(A.5.1) ζ ′g,f : ωZ/X
∼−−→ ωZ/Y ⊗OZ g

∗(ωY/X)

extending the isomorphism (A.2.5).

Assume first that there exists a factorization f =π ◦ i, where π : P →X

is a smooth morphism, and a factorization i ◦ g=π′′ ◦ j, where π′′ : P ′′→P is

a smooth morphism. (Such factorizations always exist when X, Y and Z are

affine.) Let π′ : P ′→Y be the pull-back of π′′ so that we get a commutative

diagram

(A.5.2) P ′′

ψ

��

π′′

  
P ′
. �

i′′
>>

π′

  

� P

π

  
Z
;�

j

00

/ �

i′
??

g
// Y
. �

i

>>

f
// X,

where the middle square is cartesian. Using (A.2.5) for (j, ψ), and the isomor-

phisms ζ ′i′,i′′ ⊗ j∗(ζ ′π′′,π), we obtain an isomorphism

ωZ/X ∼= ωZ/P ′′ ⊗ j∗(ωP ′′/X)
∼−−→ (ωZ/P ′ ⊗ i′∗(ωP ′/P ′′))⊗ j∗(ωP ′′/P ⊗ π′′∗(ωP/X))
∼−−→ ωZ/P ′ ⊗ i′∗(ωP ′/P ′′ ⊗ i′′∗(ωP ′′/P ))⊗ g∗i∗(ωP/X).

Using the isomorphism

χπ′′,i : ωP ′/P ′′ ⊗ i′′∗(ωP ′′/P )
∼−−→ ωP ′/Y ⊗ π′∗(ωY/P )

defined in A.4 and (ζ ′i′,π′ ⊗ g∗(ζ ′i,π))−1, we then obtain the composed isomor-

phism

ωZ/X
∼−−→ωZ/P ′ ⊗ i′∗(ωP ′/Y ⊗ π′∗(ωY/P ))⊗ g∗i∗(ωP/X)
∼−−→ (ωZ/P ′ ⊗ i′∗(ωP ′/Y ))⊗ g∗(ωY/P ⊗ i∗(ωP/X))
∼−−→ωZ/Y ⊗ g∗(ωY/X),

which defines (A.5.1).

To prove that this isomorphism is well defined and to glue the local con-

structions to obtain a global one when a diagram (A.5.2) does not exist globally,

we must check that it does not depend on the chosen factorizations. If we have

two diagrams (A.5.2), with factorizations f = πk◦ik, ik◦g = π′′k◦jk for k = 1, 2,
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then we can embed Y diagonally in P1×XP2 and Z in P ′′1 ×XP ′′2 . This allows us

to reduce the verification to the case where there exists a smooth X-morphism

u : P2 → P1 such that u ◦ i2 = i1, and a smooth morphism u′′ : P ′′2 → P ′′1
such that π′′1 ◦ u′′ = u ◦ π′′2 , and j1 = u′′ ◦ j2. Morever, the same argument

shows that we may assume that the morphism P ′′2 → P ′′1 ×P1 P2 is smooth.

The verification can then be reduced to the following two cases:

(i) The morphism P ′′2 → P ′′1 ×P1 P2 is an isomorphism.

(ii) The morphism P2 → P1 is an isomorphism.

In each of these cases, the equality of the two definitions of (A.5.1) breaks

down to a succession of elementary commutative diagrams involving isomor-

phisms of the form ζ ′f,g and χf,u. We omit details here and only point out

that, in addition to [Con00, (2.2.4)], the first case uses relation (A.4.2) and the

second one uses relation (A.4.3). In particular, the sign convention introduced

in the definition of χf,u in A.4 is necessary for this independence result.

If m and m′ are the virtual relative dimensions of f and g, we define as

in A.2 the derived category variant of (A.5.1) as being the morphism

(A.5.3) ζ ′g,f : ωZ/X [m+m′]
∼−−→ ωZ/Y [m′]⊗LOZ Lf

∗(ωY/X [m]),

defined by applying (A.5.1) to the underlying modules (sitting in degree −m
−m′), without any sign modification.

With the definition of ζ ′g,f provided by (A.5.1) (resp. (A.5.3)), we now ex-

tend to complete intersection morphisms Conrad’s transitivity relation [Con00,

(2.2.4)].

Proposition A.6. Let

T
h−−→ Z

g−−→ Y
f−−→ X

be three complete intersection morphisms. Then

(A.6.1) (Id⊗ h∗(ζ ′g,f )) ◦ ζ ′h,fg = (ζ ′h,g ⊗ Id) ◦ ζ ′gh,f .

Proof. As the verification is local on T , we may assume that there exists

a commutative diagram

R′′

ψ′′

  
Q′′
. �

k′′
>>

ϕ′′

  

Q′

ϕ′

��
P ′′
. �

j′′
>>

π′′

!!

P ′
. �

j′
>>

π′

!!

P

π

  
T
. �

i′′
>>

h
// Z
. �

i′
==

g
// Y
. �

i
>>

f
// X
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in which the three squares are cartesian, the morphisms π, ϕ′, ψ′′ are smooth,

and the immersions i, i′, i′′ are regular. Using [Con00, (2.2.4)] and the rela-

tion (A.4.4), the proof of (A.6.1) again breaks into a succession of elementary

commutative diagrams that we do not detail here. �

A.7. We now assume that f : Y → X is a complete intersection mor-

phism of (virtual) relative dimension 0 and, under this hypothesis, we define a

section δf ∈ Γ(Y, ωY/X) that we call the canonical section.

We first assume that there is a factorization f = π◦i such that π : P → X

is a smooth morphism of relative dimension n and i : Y ↪→ P is a regular closed

immersion, necessarily of codimension n since f has relative dimension 0. Let

I ⊂ OP be the ideal defining i. The canonical derivation d : OP → Ω1
P/X

induces an OY -linear homomorphism d̄ : I/I2 → i∗Ω1
P/X . Taking its n-th

exterior power, we obtain a linear homomorphism

(A.7.1) ∧n d̄ : ∧n(I/I2) −→ i∗Ωn
P/X .

Through the canonical isomorphisms

HomOY (∧n(I/I2), i∗Ωn
P/X)∼= (∧n(I/I2))∨ ⊗OY i

∗Ωn
P/X

∼=∧n((I/I2)∨)⊗OY i
∗Ωn

P/X

=ωY/X ,

it can be seen as a section of ωY/X , which is the section δf . If (t1, . . . , tn) is a

regular sequence of generators of I on a neighbourhood U of some point y ∈ Y ,

then

(A.7.2) δf = (t̄∨1 ∧ · · · ∧ t̄∨n )⊗ i∗(dtn ∧ · · · ∧ dt1) ∈ Γ(U, ωY/X),

since the canonical isomorphism (∧n(I/I2))∨ ∼= ∧n((I/I2)∨) maps (t̄n ∧ · · ·
∧ t̄1)∨ to t̄∨1 ∧ · · · ∧ t̄∨n .

To end the construction of δf , it suffices to check that the section obtained

in this way does not depend on the chosen factorization. Using the diagonal

embedding, it suffices as usual to compare the sections δf and δ′f defined by

two factorizations f = π ◦ i = π′ ◦ i′ when there exists a smooth X-morphism

u : P ′ → P such that u ◦ i′ = i. Let I ′ be the ideal of Y in P ′, and let

ω′Y/X = ∧n′((I ′/I ′2)∨)⊗OY i
′∗Ωn′

P ′/X ,

where n′ is the codimension of Y in P ′. Then the canonical identification

ωY/X ∼= ω′Y/X is given by (A.2.2) case (a) and, thanks to (A.7.2), the equality

δf = δ′f follows from [Con00, p. 30, (a) and (d)].

Proposition A.8. Let f : Y → X be a complete intersection morphism

of virtual relative dimension 0.
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(i) Let g : Z → Y be a second complete intersection morphism of virtual

relative dimension 0. The image of δfg under the isomorphism ζ ′g,f defined in

(A.5.1) is given by

(A.8.1) ζ ′g,f (δfg) = δg ⊗ g∗(δf ).

(ii) For any cartesian square (A.1.1), the isomorphism (A.3.1)

v∗(ωY/X)
∼−−→ ωY ′/X′

maps v∗(δf ) to δf ′ .

Proof. As the first claim is local on Z, we may assume that there exists

a diagram (A.5.2) in which the immersion i is defined by a regular sequence

(t1, . . . , tn) and the immersion j = i′′ ◦ i′ is defined by a regular sequence

(t′1, . . . , t
′
n′ , t

′′
1, . . . , t

′′
n), with t′′i = π′′∗(ti). If we set t̄′i = i′′∗(t′i), then i′ is

defined by the regular sequence (t̄′1, . . . , t̄
′
n′). By construction, δfg corresponds

by ζ ′j,ψ to the section

(t′′n
∨ ∧ · · · ∧ t′′1∨ ∧ t′n′∨ ∧ · · · ∧ t′1∨)⊗ j∗(dt′1 ∧ · · · ∧ dt′n′ ∧ dt′′1 ∧ · · · ∧ dt′′n)

of ωZ/P ′′ ⊗ j∗(ωP ′′/X), which is mapped by ζ ′i′,i′′ ⊗ j∗(ζ ′π′′,π) to the section

((−1)nn
′
(t̄′n′
∨ ∧ · · · ∧ t̄′1∨)⊗ i′∗(t′′n∨ ∧ · · · ∧ t′′1∨))

⊗j∗((dt′1 ∧ · · · ∧ dt′n′)⊗ π′′∗(dt1 ∧ · · · ∧ dtn))

of (ωZ/P ′ ⊗ i′∗(ωP ′/P ′′))⊗ j∗(ωP ′′/P ⊗ π′′∗(ωP/X)). Then, via χπ′′,i, we get the

section

(t̄′n′
∨∧· · ·∧t̄′1∨)⊗i′∗(dt̄′1∧· · ·∧dt̄′n′)⊗i′∗π′∗(tn∨∧· · ·∧t1∨)⊗j∗π′′∗(dt1∧· · ·∧dtn))

of ωZ/P ′ ⊗ i′∗(ωP ′/Y ) ⊗ i′∗π′∗(ωY/P ) ⊗ j∗π′′∗(ωP/X), which, by construction,

corresponds by (ζ ′i′,π′⊗g∗(ζ ′i,π))−1 to the section δg⊗g∗(δf ) of ωZ/Y ⊗g∗(ωY/X).

The second claim follows from (A.7.2). �

B. The trace morphism τf on Rf∗(OY )

Let f : Y → X be a proper complete intersection morphism of virtual

relative dimension 0. This section is devoted to the construction of the “trace

morphism” τf : Rf∗OY → OX , derived from the canonical section of ωY/X
defined in A.7. The key step is to define an identification λf between ωY/X ,

as defined in A.2, and f !OX . The construction is then a straightforward ap-

plication of the relative duality theorem, and the properties of τf listed in

Theorem 3.1 follow from corresponding properties of δf and λf .

B.1. For the whole section, we assume that X is a noetherian scheme

with a dualizing complex. If f : Y → X is a morphism of finite type and K•

a residual complex on X, let f∆K• be its inverse image on Y in the sense of

residual complexes, which is a residual complex on Y . Then K• and f∆K•

define respectively duality δ-functors DX on Dcoh(OX) and DY on Dcoh(OY ).
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We recall that, following [Con00, 3.3], the functor f ! : D+
coh(OX)→ D+

coh(OY )

is defined by f ! = DY ◦Lf∗ ◦DX . We also recall that, when f is smooth of rel-

ative dimension m, f ] : D+
coh(OX)→ D+

coh(OY ) denotes the functor defined by

(B.1.1) f ](E•) := ωY/X [m]
L
⊗OY Lf

∗(E•)
while, when f is finite, f [ : D+

coh(OX) → D+
coh(OY ) denotes the functor de-

fined by

(B.1.2) f [(E•) := f
∗
RHomOX (f∗OY , E•),

where f is the (flat) morphism of ringed spaces (Y,OY )→ (X, f∗OY ).

Assume now that f : Y → X is a complete intersection morphism of

virtual relative dimension m. We first explain the relation between the relative

dualizing module ωY/X defined in the previous section and the extraordinary

inverse image functor f !. We will consider complexes of the form E• = L[r] ∈
Db

coh(OX), where r ∈ Z is some integer and L is an invertible OX -module. For

such a complex, we generalize the above notation f ], and we again define

(B.1.3) f ](E•) := ωY/X [m]
L
⊗OY Lf

∗(E•).
We observe that f ](E•) is another complex concentrated in a single degree,

with an invertible cohomology sheaf. We can then construct a canonical iso-

morphism

(B.1.4) λf,E• : f ](E•) ∼−−→ f !(E•)

as follows.

(a) If f is smooth, then definitions (B.1.1) and (B.1.3) coincide, and we set

(B.1.5) λf,E• = ef : f ](E•) ∼−−→ f !(E•),
where ef is the isomorphism defined by [Con00, (3.3.21)].

(b) If f is a regular immersion, then we define λf,E• to be the composition

(B.1.6) λf,E• : f ](E•)
η−1
f−−→
∼

f [(E•)
df−→
∼

f !(E•),

where ηf is defined by [Con00, (2.5.3)] and df by [Con00, (3.3.19)].

(c) In the general case, let us assume first that there exists a factorization

f = π ◦ i, where π : P → X is a smooth morphism of relative dimension n and

i is a regular immersion of codimension d = n −m. Then we define λf,E• by

the commutative diagram

(B.1.7) ωY/X [m]
L
⊗OY Lf∗E•

∼ζ′i,π⊗Id
��

λf,E·
∼

// f !E•
ci,π∼

��
ωY/P [−d]

L
⊗OY Li∗π]E•

λ
i,π]E·
∼

// i!π]E•
i!(λπ,E·)
∼

// i!π!E•,

where ci,π is the transitivity isomorphism [Con00, (3.3.14)].
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This isomorphism is actually independent of the chosen factorization. To

check it, one can argue as in A.2 to reduce the comparison between the iso-

morphisms (B.1.4) defined by two factorizations f = π ◦ i = π′ ◦ i′ to the case

where there is a smooth X-morphism u : P ′ → P such that u ◦ i′ = i. It is

then a long but straightforward verification, using various functorialities, the

compatibility between ζ ′i′,u and the isomorphism i[ ' i′[u] [Con00, (2.7.4)], the

compatibility between ζ ′u,π and the isomorphism π′] ' u]π] [Con00, (2.2.7)],

and the properties (VAR1), (VAR3), and (VAR5) of the functor f ! (see [Har66,

III, Th. 8.7] and [Con00, p. 139]).

Since f !E• is acyclic outside degree −m − r, a morphism ωY/X [m] ⊗L

Lf∗E• → f !E• in D(OY ) is simply a module homomorphism ωY/X ⊗ f∗L →
H−m−r(f !E•). Therefore, in the general case, the previous construction pro-

vides local isomorphisms that can be glued to define a global isomorphism even

if there does not exist a global factorization f = π ◦ i as above.

When E• = OX [0], the isomorphism (B.1.4) will simply be denoted

(B.1.8) λf : ωY/X [m]
∼−−→ f !OX .

If f is flat, hence is a CM map, it provides the identification between the

construction of ωY/X used in this article and the construction of Conrad for

CM maps [Con00, 3.5, p. 157].

We now give a transitivity property of the isomorphisms λf,E• which gen-

eralizes (B.1.7).

Proposition B.2. Let f : Y → X , g : Z → Y be two complete intersec-

tion morphisms, with virtual relative dimensions m, m′, and let E• = L[r] for

some invertible OX-module L and some integer r. Then the diagram

(B.2.1)

ωZ/X [m+m′]
L
⊗OZ L(fg)∗E•

∼ζ′g,f⊗Id
��

λ
fg,E·
∼

// (fg)!E•

cg,f∼

��
ωZ/Y [m′]

L
⊗OZ Lg∗f ]E•

λ
g,f]E·
∼

// g!f ]E•
g!(λ

f,E·)
∼

// g!f !E•

ωZ/Y [m′]
L
⊗OZ Lg∗f ]E•

g](λ
f,E·)
∼

// ωZ/Y [m′]
L
⊗OZ Lg∗f !E•

λ
g,f!E·
∼

// g!f !E•

commutes.

Proof. The commutativity of the lower part of the diagram is due to the

functoriality of the isomorphism λg with respect to morphisms between two

complexes concentrated in the same degree. We first observe that the commu-

tativity of (B.2.1) is clear in the following cases:
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(a) If f is smooth and g is a closed immersion, the diagram is (B.1.7),

which commutes by construction.

(b) If f and g are smooth, the isomorphism (fg)] ∼= g]f ] is defined by ζ ′g,f .

Hence, the commutativity of (B.2.1) is the compatibility of the isomorphisms

ef with composition, i.e., property (VAR3) of the functor f ! [Con00, p. 139].

(c) If f and g are regular immersions, then isomorphisms such as ηfg com-

mute with ζ ′g,f and cg,f [Con00, Th. 2.5.1], and the commutativity of (B.2.1)

follows from the compatibility of the isomorphisms df with composition, i.e.,

property (VAR2) of the functor f ! [Con00, p. 139].

We will also use the following remark. Let h : T → Z be a third complete

intersection morphism, yielding the four couples of composable complete in-

tersection morphisms (h, g), (g, f), (gh, f), and (h, fg). Then, if the diagrams

(B.2.1) for the couples (h, g) and (g, f) are commutative, the commutativity

of (B.2.1) for (gh, f) is equivalent to the commutativity of (B.2.1) for (h, fg).

This is a consequence of (A.6.1) and of the compatibility of the isomorphisms

cg,f with triple composites (i.e., property (VAR1) of the functor f ! [Con00,

p. 139]).

In the general case, the complexes entering in (B.2.1) are concentrated in

the same degree; hence, its commutativity can be checked locally. So we may

assume that there exists a diagram (A.5.2). Thanks to the three particular

cases listed above, one can then deduce the commutativity of (B.2.1) for (f, g)

from the commutativity of (B.2.1) for (π′, i), by applying the previous remark

successively to the triples (i′, i′′, π′′), (i′′i′, π′′, π), (i′, π′, i), and (g, i, π).
To prove the commutativity of (B.2.1) for (π′, i), we use the factorization

i ◦ π′ = π′′ ◦ i′′ to define λiπ′,E . Let d be the codimension of Y in P and n′

the relative dimension of P ′′ over P . Then, if E is a complex on P as in B.1,
(B.2.1) for (π′, i) is made of the exterior composites in the following diagram:
(B.2.2)

ωP ′/P [n′ − d]
L
⊗ L(iπ′)∗E•

ζ′
π′,i⊗Id ∼
ww

ζ′
i′′,π′′⊗Id∼
((

ωP ′/Y [n′]
L
⊗ π′∗(ωY/P [−d]

L
⊗ Li∗E•)

χπ′′,i⊗Id

∼
//

π′](η−1
i

)∼
��

π′](λ
i,E·)

!!

ωP ′/P ′′ [−d]
L
⊗ Li′′∗(ωP ′′/P [n′]

L
⊗ π′′∗E•)

η−1

i′′
∼
��

λ
i′′,π′′]E·

}}

π′]i[E• ∼ //

π′](di)∼
��

i′′[π′′]E•

di′′ ∼
��

π′]i!E•

eπ′=λπ′,i!E·∼
��

i′′!π′′]E•

i′′!(λ
π′′,E·)=i′′!(eπ′′ ) ∼

��
π′!i!E• (iπ′)!E• = (π′′i′′)!E•

cπ′,i

∼oo
ci′′,π′′

∼ // i′′!π′′!E•.
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Here, the middle horizontal arrow is the standard isomorphism [Con00, Lemma

2.7.3], and the lower rectangle commutes thanks to property (VAR4) of the

functor f ! [Con00, Theorem 3.3.1]. The upper triangle commutes thanks to

(A.4.2). To check the commutativity of the middle rectangle, one observes

on the one hand that ηi commutes with the flat base change π′′ and that

ηi′′ commutes with tensorization by the invertible sheaf ωP ′′/P (see [Con00,

last paragraph of p. 54]). On the other hand, ηi′′ commutes also with the

translation by n′, provided that the convention [Con00, (1.3.6)] is used for the

commutation of the tensor product with translations applied to the second

argument (see the discussion on [Con00, p. 53]). Here, this requires multipli-

cation by (−1)dn
′

on ωP ′/P ′′ ⊗ i′′∗ωP ′′/P , since ωP ′/P ′′ sits in degree d. As this

is the sign entering in the definition of χπ′′,i, this ends the proof. �

B.3. Assume now that f is proper. As in B.1, let E• = L[r] ∈ Db
coh(OX),

L being an invertible OX -module and r an integer. Using (B.1.4), we can

define the trace morphism Tr ]f,E• on Rf∗f
]E• = Rf∗(ωY/X [m] ⊗LOY Lf

∗E•) as

the composite

(B.3.1) Tr ]f,E• : Rf∗f
]E•

Rf∗(λf,E·)−−−−−−→
∼

Rf∗f
!E•

Trf−−→ E•,

where Trf denotes the classical trace morphism defined in [Har66, VII, Cor. 3.4]

and [Con00, 3.4]. When E• = OX [0], we will use the shorter notation

(B.3.2) Tr ]f : Rf∗(ωY/X [m])→ OX .

We first give some basic properties of the morphism Tr ]f .

Lemma B.4. With the previous hypotheses, let

(B.4.1)

µf,E• : Rf∗(ωY/X [m])
L
⊗OX E

• ∼−−→ Rf∗(ωY/X [m]
L
⊗OY Lf

∗E•) = Rf∗f
]E•

be the isomorphism given by the projection formula [Har66, II, Prop. 5.6]. Then

the diagram

(B.4.2) Rf∗(ωY/X [m])
L
⊗OX E•

µf,E·
∼

//

∼
Tr ]
f
⊗Id ((

Rf∗f
]E•

∼
Tr ]
f,E·zz

E•

commutes.

Proof. When f is flat, it suffices to invoke [Con00, Th. 4.4.1]. Since we

make no such assumption on f , we give a direct argument that is made a lot

simpler by the very special nature of the complex E•.
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Using the fact that E• = L[r], with L invertible, one easily sees that there

is a canonical isomorphism that commutes with translations acting on E•

(B.4.3) f !OX
L
⊗OY Lf

∗E• ∼−−→ f !E•.

On the other hand, we have by definition a canonical isomorphism

(B.4.4) f ]OX
L
⊗OY Lf

∗E• ∼−−→ f ]E•

that also commutes with translations. A first observation is that the diagram

(B.4.5) f ]OX
L
⊗OY Lf∗E•

λf⊗Id ∼
��

(B.4.4)

∼
// f ]E•

λf,E·∼

��
f !OX

L
⊗OY Lf∗E•

(B.4.3)

∼
// f !E•

commutes. Indeed, all complexes are concentrated in the same degree m − r.
Hence, the verification can be done locally. This allows us to assume that

L = OX , which reduces the verification to the commutation of the vertical

arrows with translations acting on E•. This now follows from the fact that

the isomorphisms ef , ηf and df used in the construction of λf commute with

translations.

Applying Rf∗ to this diagram and using the functoriality of the projection

formula isomorphism, the proof is reduced to proving the commutativity of the

diagram

(B.4.6) Rf∗f
!OX

L
⊗OX E•

Trf⊗Id

∼

**

νf

∼
// Rf∗(f

!OX
L
⊗OY Lf∗E•)

(B.4.3)

∼
// Rf∗f

!E•

Trf
∼

uuE•,

where νf is the projection formula isomorphism. As all morphisms of the

diagram commute with translations, we may assume that r = 0. We recall

that Trf is defined as the morphism of functors defined by the composite

Rf∗f
!(·) ∼−−→ RHomOX (DX(·), f∗f∆K)

Trf,K−−−→ RHomOX (DX(·),K)
∼←−− Id,

where the first isomorphism follows from the definition of f ! and the adjunction

between Lf∗ and Rf∗, the second morphism is defined by the trace morphism

for residual complexes Trf,K , and the last isomorphism is the local biduality

isomorphism (see [Con00, p. 146]). Each of these morphisms has a natural

compatibility with respect to the tensor product of the argument by an invert-

ible sheaf. Putting together these compatibilities yields the commutativity of

(B.4.6). �
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Proposition B.5. Let g : Z → Y be a second proper complete intersec-

tion morphism, with virtual relative dimension m′. Then the diagram

(B.5.1)

Rf∗Rg∗(ωZ/X [m′ +m])

Tr ]
fg

��

∼

Rf∗Rg∗(ζ′g,f )
// Rf∗Rg∗(ωZ/Y [m′]

L
⊗OZLg∗(ωY/X [m]))

∼
��

Rf∗(Rg∗(ωZ/Y [m′])
L
⊗OY ωY/X [m])

Rf∗(Tr ]g⊗Id)

��
OX Rf∗(ωY/X [m])

Tr ]
foo

(where the second isomorphism is given by the projection formula) is commu-

tative.

Proof. It follows from Lemma B.4 that the right vertical arrow is equal to

the morphism

Rf∗Rg∗(ωZ/Y [m′]⊗ g∗(ωY/X [m]))
Tr ]
g,ωY/X [m]

−−−−−−−→ Rf∗(ωY/X [m]).

Then, using adjunction between Rf∗ and f !, and adjunction between Rg∗ and

g!, one sees that the commutativity of (B.5.1) is equivalent to the commuta-

tivity of (B.2.1). �

Proposition B.6. With the hypotheses of Proposition A.1 assume, in

addition, that X and X ′ are noetherian schemes with dualizing complexes, and

that one of the following conditions is satisfied :

(a) f is projective;

(b) f is proper and u is residually stable [Con00, p. 132];

(c) f is proper and flat.

Then the triangle

(B.6.1) Lu∗Rf∗(ωY/X [m])

(A.3.2) ∼

��

Lu∗(Tr ]
f

)

''
OX′

Rf ′∗(ωY ′/X′ [m])
Tr ]
f ′

77

is commutative.

Proof of Case (a). We can choose a factorization f = π◦i, where π : P→X

is the structural morphism of some projective space P = PnX over X, and i
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is a regular immersion of codimension d = n − m. Let f ′ = π′ ◦ i′ be the

factorization of f ′ defined by base change, with π′ : P ′ = PnX′ → X ′, and let

w : P ′ → P be the projection.

The isomorphisms ζ ′i,π and ζ ′i′,π′ are clearly compatible with the base

change isomorphisms (A.3.1) relative to f and u, and the same holds for

the projection formula isomorphisms µi,ωP/X [n] and µi′,ωP ′/X′ [n], and the base

change isomorphisms (A.3.1) relative to i and w. Then, using Proposition B.5,

one sees that it suffices to prove the proposition for f = i and for f = π.

When f = π : PnX → X, let X0, . . . , Xn be the canonical coordinates on

PnX , and let xi = Xi/X0, 1 ≤ i ≤ n. If U is the relatively affine covering of PnX
defined by X0, . . . , Xn, the corresponding alternating Čech resolution provides

a canonical isomorphism

(B.6.2) f∗(Č
•(U, ωP/X)[n])

∼−−→ Rf∗(ωP/X [n]).

Recall that eπ : π] ∼= π! identifies the trace morphism for projective spaces

Trpπ with the general trace morphism Trπ [Con00, Lemma 3.4.3, (TRA3)].

Then the commutativity of (B.6.1) for π follows from the fact that, thanks

to (6.6.2), Trpπ can be characterized as the only morphism that, via (B.6.2),

induces on H0 the map sending the cohomology class dx1 ∧ · · · ∧ dxn/x1 · · ·xn
to (−1)n(n−1)/2.

When f = i : Y ↪→ P , recall that di : i[ ∼= i! identifies the trace morphism

for finite morphisms Trfi with the general trace morphism Tri [Con00, Lemma

3.4.3, (TRA2)], and recall that Trfi : RHomOP (OY ,OP )→ OP is the canonical

morphism induced by OP � OY . Using local cohomology with supports in Y ,

it can be factorized as

(B.6.3) Trfi : RHomOP (OY ,OP )→ RΓY (OP )→ OP .

On the other hand, there exists a canonical morphism

(B.6.4) Lw∗RΓY (OP ) −→ RΓY ′(OP ′),

which is an isomorphism. To check this, it suffices to choose a finite affine

covering V of V = P \ Y and to identify RΓY (OP ) with its flat resolution

provided by the total complex

OP → j∗Č(V,OV ),

where j denotes the inclusion of V in P and OP sits in degree 0. Moreover,

this shows that the diagram

Lw∗RΓY (OP )

∼
��

// Lw∗(OP )

∼
��

RΓY ′(OP ′) // OP ′
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commutes. Therefore, it suffices to prove the commutativity of the diagram

(B.6.5) Lw∗i∗(ωY/P [−d])

∼
��

// Lw∗RΓY (OP )

∼
��

ωY ′/P ′ [−d] // RΓY ′(OP ′).

Since Y ′ ↪→ P ′ is a regular immersion of codimension d, all complexes in this

diagram are acyclic except in degree d, so that, up to translation by −d, the

diagram is actually a diagram of morphisms of OP ′-modules. It follows that

its commutativity can be checked locally on P ′. Thus, we may assume that

P is affine and that the ideal I of Y in P is generated by a regular sequence

t1, . . . , td. Then, the ideal I ′ of Y ′ in P ′ is generated by the images t′1, . . . , t
′
d

of t1, . . . , td in OP ′ , which form a regular sequence. Let V = (V1, . . . , Vd)

be the open covering of P \ Y defined by the sequence (t1, . . . , td). For any

section a ∈ Γ(P,OP ), let us still denote by a/t1 · · · td the image of a/t1 · · · td ∈
Γ(V1 ∩ · · · ∩ Vd,OP ) under the canonical homomorphisms

Γ(V1 ∩ · · · ∩ Vd,OP )→ Hd−1(P \ Y,OP )→ Hd
Y (P,OP ) = Γ(P,HdY (OP )).

Then the canonical morphism

ωY/P
∼−−→ ExtdOP (OY ,OP )→ HdY (OP )

maps (t̄∨1 ∧ · · · ∧ t̄∨d ) ⊗ a to ε(d)a/t1 · · · td, where ε(d) ∈ {±1} only depends

upon d (see [Con00, p. 252-254]). The commutativity of (B.6.5) follows. �

Proof of Case (b). When u is residually stable, the diagram analogous to

(B.6.1) commutes, thanks to [Con00, 3.4.3, (TRA4)]. Moreover, the isomor-

phisms eπ and di entering in the local definition of λf in B.1.4(c) also commute

with base change by u, thanks to [Con00, p. 139, (VAR6)]. Then it suffice to

observe that ηi commutes with flat base change, which is clear. �

Proof of Case (c). When f is flat, f is a CM map, and the results of

[Con00, 3.5 –3.6] can be applied. Then the commutativity of (B.6.1) follows

from [Con00, Th. 3.6.5], provided one checks that λf identifies the base change

isomorphism (A.3.1) for ωY/X with the more subtle base change isomorphism

βf,u for ωf defined in [Con00, Th. 3.6.1]. As we will not use Case (c) in this

article, we leave the details to the reader. �

B.7. Let X be a noetherian scheme with a dualizing complex, and f :

Y → X a proper complete intersection morphism of virtual relative dimen-

sion 0. In Db
coh(X) one can define a “trace morphism”

(B.7.1) τf : Rf∗(OY ) −→ OX
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as follows. Thanks to the relative duality theorem (see [Har66, VII, 3.4] or

[Con00, Th. 3.4.4]), defining τf is equivalent to defining a morphism OY →
f !OX . Using the isomorphism λf , this is also equivalent to defining a morphism

(B.7.2) ϕf : OY −→ ωY/X ,

i.e., a section of the invertible sheaf ωY/X . We define ϕf as being the morphism

that maps 1 to the canonical section δf of ωY/X , defined in A.7.

From this construction, it follows that the morphism τf can be described

equivalently either as the composition

(B.7.3) τf : Rf∗(OY )
Rf∗(λf◦ϕf )
−−−−−−−→ Rf∗(f

!OX)
Trf−−→ OX ,

or as the composition

(B.7.4) τf : Rf∗(OY )
Rf∗(ϕf )
−−−−−→ Rf∗(ωY/X)

Tr ]
f−−→ OX ,

where Tr ]f is the trace map defined in (B.3.1).

Before proving Theorem 3.1, we relate τf to the residue symbol defined

in [Con00, (A.1.4)] (which differs by a sign from Hartshorne’s definition in

[Har66]).

Proposition B.8. With the hypotheses of B.7 assume, in addition, that

f is finite and flat and that f = π◦i, where π is smooth of relative dimension d

and i is a closed immersion, globally defined by a regular sequence (t1, . . . , td)

of sections of OP . Then, for any section a of OP , with reduction ā on Y , we

have

(B.8.1) τf (ā) = ResP/X

ñ
a dt1 ∧ · · · ∧ dtd

t1, . . . , td

ô
.

Proof. Let ω = a dt1 ∧ · · · ∧ dtd. By construction, the residue symbol is

given by

(B.8.2) ResP/X

ñ
ω

t1, . . . , td

ô
= (−1)d(d−1)/2 ϕω(1),

where ϕω : f∗OY → OX is the image of (t∨1 ∧· · ·∧t∨d )⊗i∗(ω) by the isomorphism

of complexes concentrated in degree 0 [Con00, (A.1.3)]:

(B.8.3) ωY/P [−d]
L
⊗OY Li

∗(ωP/X [d])
η−1
i−−→
∼

i[π]OX
ψ−1
i,π−−→
∼

f [OX .

Here, f [OX = HomOX (f∗OY ,OX), viewed as a OY -module, and ψi,π is the

canonical isomorphism of functors f [
∼−−→ i[π]. Since Trff is the morphism

f∗HomOX (f∗OY ,OX)→ OX given by evaluation at 1, we can use the isomor-

phism df : f [
∼−−→f ! and the equality Trf◦f∗(df )=Trff [Con00, 3.4.3, (TRA2)]
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to write

(B.8.4)

ResP/X

ñ
ω

t1, . . . , td

ô
= (−1)d(d−1)/2 Trf (f∗(df◦ψ−1

i,π ◦η
−1
i )(t∨1∧· · ·∧t∨d⊗i∗(ω))).

On the other hand, by definition, we have

ζ ′i,π(δf ) = (−1)d(d−1)/2 t∨1 ∧ · · · ∧ t∨d ⊗ i∗(dt1 ∧ · · · ∧ dtd),
so from (B.7.3), we deduce the equality

τf (ā) = Trf (f∗(λf ◦ ϕf )(ā))

= (−1)d(d−1)/2 Trf (f∗(c
−1
i,π ◦ i

!(eπ) ◦ di ◦ η−1
i )(t∨1 ∧ · · · ∧ t∨d ⊗ i∗(ω))).

Therefore, it suffices to check that

df ◦ ψ−1
i,π = c−1

i,π ◦ i
!(eπ) ◦ di,

and this results from (VAR5) [Con00, (3.3.26)]. �

B.9. Proof of Theorem 3.1.
(i) The transitivity formula (3.1.1) is the equality of the exterior com-

posites in the diagram

Rf∗Rg∗OZ
Rf∗Rg∗(ϕg) //

Rf∗Rg∗(ϕfg)

��

Rf∗Rg∗ωZ/Y

Rf∗(Tr ]g )

��

Rf∗Rg∗(Id⊗Lg∗(ϕf ))
��

Rf∗Rg∗ωZ/X
Rf∗Rg∗(ζ

′
g,f )
//

Tr ]
fg

��

Rf∗Rg∗(ωZ/Y
L
⊗OZ Lg∗ωY/X)

∼
��

Rf∗((Rg∗ωZ/Y )
L
⊗OY ωY/X)

Rf∗(Tr ]g⊗Id)

��
OX Rf∗ωY/X

Tr ]
foo Rf∗OY ,

Rf∗(ϕf )oo

where the upper left square commutes thanks to (A.8.1), the lower left square

is the commutative square (B.5.1), and the right triangle commutes by func-

toriality.

(ii) Thanks to Proposition B.6 and to the description (B.7.4) of τf , the

assertion follows from the compatibility of the canonical section δf with Tor-

independent pull-backs (proved in Proposition A.8(ii)) and the functoriality of

the base change morphism.

(iii) To prove (3.1.3), it suffices to prove that the equality holds in the

henselization Oh
X,x of the local ring of X at each point x. As the morphism

SpecOh
X,x → X is residually stable [Con00, p. 132], Proposition B.6 and the

commutation with base change of the classical trace map for the finite locally

free algebra f∗OY allow to assume that X = SpecA, where A is a henselian,
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noetherian local ring. Then Y is a disjoint union of open subschemes Yi =

SpecBi, where Bi is a finite local algebra over A. Each of the morphisms

Yi → X is a complete intersection morphism of virtual relative dimension 0

(since this is a local condition on Y ), and the additivity of the trace (valid

both for Trf , hence for τf , and for tracef∗OY /OX ) shows that it suffices to

prove (3.1.3) for each morphism Yi → X. So we may assume that B is local.

We can choose a presentation B ∼= C/I, where C is a smooth A-algebra and I

is an ideal in C. Let P = SpecC, I = IOP , and let y ∈ Y ⊂ P be the closed

point. Then Iy is generated by a regular sequence (t1, . . . , td). Shrinking P

if necessary, we may assume that t1, . . . , td generate I globally on P , so that

the hypotheses of B.8 are satisfied. Then (3.1.3) follows from (B.8.1) and from

property (R6) of the residue symbol [Con00, p. 240]. �
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M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N.

Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653. Zbl 0237.00012.

http://dx.doi.org/10.1007/BFb0061319.

[SGA4 1
2 ] P. Deligne, Cohomologie Étale, Lecture Notes in Math. 569, Springer-
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et N. Katz. MR 0354657. Zbl 0258.00005. http://dx.doi.org/10.1007/

BFb0060505.

[Tsu98] T. Tsuji, p-adic Hodge theory in the semi-stable reduction case, in Pro-

ceedings of the International Congress of Mathematicians, Vol. II (Berlin,

1998), Doc. Math. extra volume II, 1998, pp. 207–216. MR 1648071.

Zbl 0937.14011.

[Tsu99] , p-adic étale cohomology and crystalline cohomology in the semi-

stable reduction case, Invent. Math. 137 (1999), 233–411. MR 1705837.

Zbl 0945.14008. http://dx.doi.org/10.1007/s002220050330.

[Tsu04] N. Tsuzuki, Cohomological descent in rigid cohomology, in Geometric As-

pects of Dwork Theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG,

Berlin, 2004, pp. 931–981. MR 2099093. Zbl 1073.14026. http://dx.doi.

org/10.1515/9783110198133.

(Received: September 3, 2010)

(Revised: September 11, 2011)
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