
Annals of Mathematics 176 (2012), 383–412
http://dx.doi.org/10.4007/annals.2012.176.1.7

A counterexample to the Hirsch Conjecture

By Francisco Santos

To Victor L. Klee (1925–2007), in memoriam.

Abstract

The Hirsch Conjecture (1957) stated that the graph of a d-dimensional

polytope with n facets cannot have (combinatorial) diameter greater than

n−d. That is, any two vertices of the polytope can be connected by a path

of at most n− d edges.

This paper presents the first counterexample to the conjecture. Our

polytope has dimension 43 and 86 facets. It is obtained from a 5-dimen-

sional polytope with 48 facets that violates a certain generalization of the

d-step conjecture of Klee and Walkup.

1. Introduction

The Hirsch Conjecture is the following fundamental statement about the

combinatorics of polytopes. It was stated by Warren M. Hirsch in 1957 in

the context of the simplex method, and publicized by G. Dantzig in his 1963

monograph on linear programming [11]:

The (combinatorial) diameter of a polytope of dimension d with

n facets cannot be greater than n− d.

Here we call combinatorial diameter of a polytope the maximum number

of steps needed to go from one vertex to another, where a step consists in

traversing an edge. Since we never refer to any other diameter in this paper,

we will often omit the word “combinatorial.” We say that a polytope is Hirsch

if it satisfies the conjecture, and non-Hirsch if it does not.

Our main result (Corollary 1.7) is the construction of a 43-dimensional

polytope with 86 facets and diameter (at least) 44. Via products and glue-

ing copies of it we can also construct an infinite family of polytopes in fixed
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dimension d with increasing number n of facets and of diameter bigger than

(1 + ε)n for a positive constant ε (Theorem 1.8).

Linear programming, the simplex method and the Hirsch Conjecture. Lin-

ear programming (LP) is the problem of maximizing (or minimizing) a linear

functional subject to linear inequality constraints. For more than 30 years the

only applicable method for LP was the simplex method, devised in 1947 by

G. Dantzig [10]. This method solves a linear program by first finding a vertex

of the feasibility region P , which is a facet-defined polyhedron, and then jump-

ing from vertex to neighboring vertex along the edges of P , always increasing

the functional to be maximized. When such a pivot step can no longer increase

the functional, convexity guarantees that we are at the global maximum. (A

pivot rule has to be specified for the algorithm to choose among the possible

neighboring vertices; the performance of the algorithm may depend on the

choice.)

To this day, the complexity of the simplex method is quite a mystery.

Exponential (or almost) worst-case behavior of the method is known for most

of the pivot rules practically used or theoretically proposed. (For two recent

breakthrough additions see [16], [17].) But on the other hand, as M. Todd

recently put it, “the number of steps [that the simplex method takes ] to solve

a problem with m equality constraints in n nonnegative variables is almost

always at most a small multiple of m, say 3m” [44]. Because of this “the

simplex method has remained, if not the method of choice, a method of choice,

usually competitive with, and on some classes of problems superior to, the

more modern approaches” [44]. This is so even after the discovery, 30 years

ago, of polynomial time algorithms for linear programming by Khachiyan and

Karmarkar [26], [21]. In fact, in the year 2000 the simplex method was selected

as one of the “ten algorithms with the greatest influence on the development

and practice of science and engineering in the 20th century” by the journal

Computing in Science and Engineering [13].

It is also worth mentioning that Khachiyan and Karmarkar’s algorithms

are polynomial in the bit model of complexity but they are not polynomial

in the real number machine model of Blum et al. [5], [6]. Algorithms that

are polynomial in both models are called strongly polynomial. S. Smale [40]

listed among his “mathematical problems for the next century” the question

whether linear programming can be performed in strongly polynomial time.

A polynomial pivot rule for the simplex method would answer this in the

affirmative.

For information on algorithms for linear programming and their complex-

ity, including attempts to explain the good behavior of the simplex method
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without relying on bounds for the diameters of all polytopes, see [7], [19], [37],

[41], [42].

Brief history of the Hirsch Conjecture. Warren M. Hirsch (1918–2007), a

professor of probability at the Courant Institute, communicated his conjecture

to G. Dantzig in connection to the simplex method: the diameter of a polytope

is a lower bound (and, hopefully, an approximation) to the number of steps

taken by the simplex method in the worst case. Hirsch had verified the con-

jecture for n− d ≤ 4 and Dantzig included this statement and the conjecture

in his 1963 book [11, p. 160].

The original conjecture did not distinguish between bounded or unbounded

feasibility regions. In modern terminology, a bounded one is a (convex) poly-

tope while a perhaps-unbounded one is a polyhedron. But the unbounded case

was disproved by Klee and Walkup [34] in 1967 with the construction of a

polyhedron of dimension four with eight facets and diameter 5. Since then the

expression “Hirsch Conjecture” has been used referring to the bounded case.

In the same paper, Klee and Walkup established the following crucial

statement. See a proof in Section 2.

Lemma 1.1 (Klee, Walkup [34]). For positive integers n > d, let H(n, d)

denote the maximum possible diameter of the graph of a d-polytope with n

facets. Then, H(n, d) ≤ H(2n− 2d, n− d). Put differently,

∀m ∈ N, max
d∈N
{H(d+m, d)} = H(2m,m).

Corollary 1.2 (d-step Theorem, Klee-Walkup [34, Th. 2.5]). The fol-

lowing statements are equivalent :

(1) H(n, d) ≤ n− d for all n and d (Hirsch Conjecture).

(2) H(2d, d) ≤ d for all d (d-step Conjecture).

The Hirsch Conjecture holds for n ≤ d+ 6. Klee and Walkup proved the

d-step Conjecture for d ≤ 5, and the case d = 6 has recently been verified by

Bremner and Schewe [9]. In a previous paper [31], Klee had shown the Hirsch

Conjecture for d = 3. Together with the cases (n, d) ∈ {(11, 4), (12, 4)} [8], [9],

these are all the parameters where the Hirsch Conjecture is known to hold.

The best upper bounds we have for H(n, d) in general are a quasi-polyno-

mial one by Kalai and Kleitman [25] and one linear in fixed dimension proved

by Barnette and improved by Larman and then Barnette again [1], [3], [35].

These bounds take the following form (the second one assumes d ≥ 3):

H(n, d) ≤ nlog2(d)+1, H(n, d) ≤ 2d−2

3
n.

In particular, no polynomial upper bound is known. Its existence is

dubbed the polynomial Hirsch Conjecture.



386 FRANCISCO SANTOS

Conjecture 1.3 (Polynomial Hirsch Conjecture). There is a polynomial

f(n) such that the diameter of every polytope with n facets is bounded above

by f(n).

Of course, apart from its central role in polytope theory, the significance

of this conjecture is that polynomial pivot rules cannot exist for the simplex

method unless it holds. For more information on these and other results see

the chapter that Klee wrote in Grünbaum’s book [32] and the survey pa-

pers [27], [33].

Our counterexample. The d-step Theorem stated above implies that to

prove or disprove the Hirsch Conjecture there is no loss of generality in assum-

ing n = 2d. A second reduction is that, for every n and d, the maximum of

H(n, d) is always achieved at a simple polytope (a d-polytope in which every

vertex belongs to exactly d facets). Simple polytopes are especially relevant

for linear programming. They are obtained when the system of inequalities is

sufficiently generic.

The first ingredient in our proof is the observation that if we start with a

polytope that is at the same time nonsimple and has n > 2d, then the tech-

niques used in these two reductions can be combined to get a simple (n− d)-

polytope with 2n − 2d facets and not only maintain its diameter (or, to be

more precise, the distance between two distinguished nonsimple vertices), but

actually increase it. We call this the Strong d-step Theorem and prove it in Sec-

tion 2. Although the theorem can be stated more generally (see Remark 2.7),

the version we need has to do with the following class of polytopes.

Definition 1.4. A d-spindle is a d-polytope P having two distinguished

vertices u and v such that every facet of P contains exactly one of them. See

Figure 1. The length of a spindle is the graph distance between u and v.

Equivalently, a spindle is the intersection of two polyhedral convex cones

with apices at u and v and with both their interiors containing the open seg-

ment uv.

Theorem 1.5 (Strong d-step Theorem for spindles). If P is a spindle

of dimension d, with n facets and length l, then there is another spindle P ′

of dimension n − d, with 2n − 2d facets and with length at least l + n − 2d.

In particular, if l > d, then P ′ violates the d-step Conjecture, hence also the

Hirsch Conjecture.

The second ingredient in our disproof is the explicit construction of a

spindle of dimension five and length six that we describe in Section 3.

Theorem 1.6. There is a 5-dimensional spindle (with 48 facets and 322

vertices) of length six.
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Figure 1. A spindle.

That our spindle has length six is easy to verify computationally. Still, we

include two computer-free proofs in Sections 4 and 5. Putting Theorems 1.5

and 1.6 together we get

Corollary 1.7. There is a non-Hirsch polytope of dimension 43 with 86

facets.

Section 6 is devoted to showing how to derive an infinite family of non-

Hirsch polytopes from the first one.

Theorem 1.8. There is a fixed dimension d, a positive ε > 0, and an

infinite family of d-polytopes Pk each with nk facets and with diameter bigger

than (1 + ε)nk.

For example, from the non-Hirsch polytope in this paper we get ε ' 1/86

in dimension 86 and ε ' 1/43 in high d. With the one announced in [36] (see

Theorem 1.12 below) one gets ε ' 1/40 in dimension 40 and ε ' 1/20 in high d.

Discussion. Our counterexample disproves as a by-product the following

two statements, originally posed in the hope of shedding light on the Hirsch

Conjecture:

(1) Provan and Billera [38] introduced the hierarchy of k-decomposable sim-

plicial complexes: k-decomposability is stronger than (k + 1)-decompos-

ability for every k, and the boundary of every simplicial d-polytope is
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(d− 1)-decomposable (or shellable). They also showed that 0-decompos-

able (or vertex decomposable) complexes satisfy (the polar of) the Hirsch

Conjecture. Nonvertex-decomposable polytopes were previously found by

Kleinschmidt [33, p. 742], but it would be interesting to explore whether

our non-Hirsch polytope, besides not being 0-decomposable, fails also to

be 1-decomposable (or higher).

(2) Todd [43] showed that from any unbounded non-Hirsch polyhedron, such

as the one previously found by Klee and Walkup, one can easily obtain

a counterexample to the so-called monotone Hirsch Conjecture. Still,

the strict monotone Hirsch Conjecture of Ziegler [45], stronger than the

Hirsch Conjecture, was open.

Still, our techniques leave the underlying problem—how large can the

diameter of a polytope be—almost as open as it was before. In particular, we

cannot answer the following question.

Question 1.9. Is there a constant c (independent of d) such that the di-

ameter of every d-polytope with n facets is bounded above by cn?

We suspect the answer to be negative, but our lack of knowledge somehow

confirms the following sentence from [33]: Finding a counterexample will be

merely a small first step in the line of investigation related to the conjecture.

Another “small step” has recently been given by F. Eisenbrand, N. Hähnle,

A. Razborov and T. Rothvoß [14], with the introduction of certain abstract

generalizations of boundary complexes of polyhedra and the construction of

objects of super-linear diameter in this generalized setting. By further analyz-

ing this setting, N. Hähnle has posed the following tempting and more explicit

version of Conjecture 1.3.

Conjecture 1.10 ([22]). The diameter of every d-polytope with n facets

is bounded above by dn.

Thanks to Remark 6.4, this conjecture is (almost) equivalent to

Conjecture 1.11. The diameter of every d-polytope with n facets is

bounded above by d(n− d).

To finish, let us mention two additional results that were obtained after

the first version of this paper was made public. On the one hand, relying on the

reductions that we introduce in Section 5.1, Santos, Stephen and Thomas [39]

have shown that all 4-spindles have length at most four [39]. Hence, spin-

dles of dimension five are truly needed to obtain non-Hirsch polytopes via

Theorem 1.5. On the other hand, Matschke, Santos and Weibel [36] have con-

structed a 5-spindle of length six with only 25 facets, from which Theorem 1.6

gives
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Theorem 1.12 (Matschke, Santos, Weibel [36]). There is a non-Hirsch

polytope of dimension 20 with 40 facets and 36, 442 vertices. It has diameter 21.

Apart from the decrease in dimension, the smaller size of this example

has allowed us to explicitly compute coordinates for the non-Hirsch polytope

in question. Doing the same with the 43-dimensional example presented in this

paper seemed out of reach. We would need to apply 38 times the operation of

wedge followed by perturbation in the proof of Theorem 1.5 (see Section 2.2).

Julian Pfeifle (personal communication) wrote a small program to automati-

cally do this and, using a standard desktop computer with 2GB of RAM, was

able to undertake the first nine iterations. Experimentally, he found that each

iteration more or less doubled the number of vertices (and multiplied by four

or five the computation time) indicating that the final non-Hirsch polytope

has about 240 vertices. To make things worse, the tower of 38 perturbations

would give rise to either huge rational coefficients or very delicate numerical

approximation issues.

2. A Strong d-step Theorem for spindles

We find it easier to work in a polar setting in which we want to travel from

facet to facet of a polytope Q crossing ridges (codimension-two faces), rather

than travel from vertex to vertex along edges. That is, we are interested in the

following dual version of the Hirsch Conjecture.

Definition 2.1. A d-polytope Q with n vertices is a dual-Hirsch polytope

if n − d dual steps suffice to travel from any facet of Q to any other facet.

A dual step consists in moving from one facet F of Q to an adjacent one F ′,

meaning by this that F and F ′ share a ridge of Q.

Clearly, Q is dual-Hirsch if and only if its polar polytope is Hirsch. In the

rest of the paper we omit the word dual from our dual paths and dual steps.

2.1. Two classical reductions. It is known since the 1960’s that to prove

or disprove the (dual) Hirsch Conjecture it is enough to look at simplicial poly-

topes with twice as many vertices as their dimension. Since our Strong d-step

Theorem is based in combining both reductions, let us see how they work.

For the first reduction, following Klee [29], [30] we use the operation of

pushing vertices. Let Q be a polytope with vertices V , and let v ∈ V be one of

them. We say that a polytope Q′ is obtained from Q by pushing v if the vertices

of Q′ are V \ {v} ∪ {v′} for a certain point v′ ∈ Q and the only hyperplanes

spanned by vertices of Q that intersect the segment vv′ are those containing v.

Put differently, the vertex v is pushed to a new position v′ within the polytope

Q but sufficiently close to its original position. We emphasize that we admit v′

to be in the boundary of Q. In the standard notion of pushing, v′ is required

to be in the interior of Q.
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Lemma 2.2. Let Q′ be obtained from Q by pushing v. Then

(1) Let F ′ be a facet of Q′ with vertex set S′ and let S = S′ \ {v′} ∪ {v} or

S = S′ depending on whether v′ ∈ F ′ or not. Then, there is a unique

facet φ(F ′) of Q such that S ⊂ φ(F ′).

(2) The map F ′ 7→ φ(F ′) sends adjacent facets of Q′ to either the same or

adjacent facets of Q. (That is, φ is a simplicial map between the dual

graphs of Q′ and Q.)

Proof. For part (1), consider what happens when we continuously move

v′ to its original position v along the segment vv′. We call Q(t), F (t), S(t)

and v(t) the polytope, facet, vertex set, and vertex obtained at moment t,

with v′ = v(1) and v = v(0). The assumption that no hyperplane spanned by

vertices of Q intersects vv′ unless it contains v implies that the combinatorics

of Q(t) remains the same at every moment t > 0; changes will happen only

at t = 0. Now, every facet-defining hyperplane of Q(t) will tend to a facet-

defining hyperplane of Q(0) (which implies part (1)) unless the vertex set S(t)

spanning a certain facet F (t) collapses to lie in a flat of codimension two; put

differently, unless F (t) is a pyramid with apex at v(t) over a codimension two

face G′ of Q′ with v in the affine span of G′. We claim that the assumption

v′ ∈ Q rules out this possibility. Indeed, in this situation the hyperplane H ′

spanned by F (t) is independent of t for t > 0 and it contains the segment

vv′. Let w be the last point where the ray from v through v′ meets Q. Then,

w is a convex combination of vertices of Q different from v and it lies in the

hyperplane H ′, so it lies in the facet F (t) for every t > 0. Since w is further

from G′ than v(t), F (t) cannot be a pyramid with apex at v(t) and base G′.

For part (2) we reinterpret (the proof of) part (1) as saying: when t goes

from 1 to 0 the combinatorics of Q′ remains the same except that at t = 0, some

groups of facets of Q′ merge to single facets of Q. This implies the claim. �

Corollary 2.3 (Klee [29]). For every polytope Q, there is a simplicial

polytope Q′ of the same dimension and number of vertices and with the same

or greater dual diameter.

For the next lemma, and for the proof of Theorem 2.6, we introduce the

one-point-suspension. For a given vertex v of a d-polytope Q with n vertices,

the one-point-suspension Sv(Q) is constructed by embedding Q in a hyperplane

in Rd+1 and adding two new vertices u and w on opposite sides of that hyper-

plane, such that the segment uw contains v. This makes Sv(Q) have dimension

d + 1 and n + 1 vertices. (We added two, but v is no longer a vertex.) The

facets of Sv(Q) are of two types:

Sv(F ) for each facet F of Q with v ∈ F , and

F ∗ u and F ∗ w for each facet F of Q with v 6∈ F .
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In this formula, F ∗ u denotes the pyramid over F with apex at u. See [12] or

[28] for more details and Figure 2 for an illustration. One-point-suspensions

appear in the literature also under other names, such as dual wedges or vertex

splittings.

Sv(Q) ⊂ R3

v

u

w

Q ⊂ R2

v

Figure 2. The one-point-suspension of a pentagon is a simplicial

3-polytope with six vertices and eight facets.

Lemma 2.4. Let F1 and F2 be two facets of a polytope Q, and let ‹Q :=

Sv(Q) for some vertex v. For i = 1, 2, let ‹Fi ≤ ‹Q denote the facet Sv(Fi) if

v ∈ Fi or one of the facets Fi ∗u or Fi ∗w if v 6∈ Fi. Then, the distance between‹F1 and ‹F2 in the dual graph of ‹Q is greater than or equal to the distance between

F1 and F2 in the dual graph of Q.

Proof. The dual graph of ‹Q projects down to that of Q by sending each

facet Sv(F ), F ∗ u or F ∗ w to the facet F of Q that it came from. Graph-

theoretically, this projection amounts to contracting all the dual edges between

F ∗ u and F ∗ w for each facet F ≤ Q not containing v. �

Proof of Lemma 1.1. We prove that H(n, d) ≤ H(2n − 2d, n − d) by in-

duction on |n−d| and separating the cases n > 2d and n < 2d. If n < 2d, then

every pair u, v of vertices of a d-polytope P with n facets lie in some common

facet F . F is a polytope of dimension d − 1 with at most n − 1 facets so the

distance from u to v in F is bounded by H(n − 1, d − 1). If n > 2d, apply

Lemma 2.4 to a d-polytope Q with n vertices whose dual diameter achieves

H(n, d), to get H(n, d) ≤ H(n+ 1, d+ 1). �

2.2. The Strong d-step Theorem. The following class of polytopes are the

polars of the spindles mentioned in Theorem 1.5.

Definition 2.5. A prismatoid is a polytope having two parallel facets Q+

and Q− that contain all vertices. We call Q+ and Q− the base facets of Q.

The width of a prismatoid is the dual graph distance between Q+ and Q−.

The “base facets” of a prismatoid may not be unique, but they are part

of the definition. For example, a cube or an octahedron are prismatoids with
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respect to any of their pairs of opposite facets. Observe that the requirement of

Q+ and Q− to be parallel is not especially relevant, as long as they are disjoint.

If Q+ and Q− are disjoint facets of an arbitrary polytope Q, then a projective

transformation can make them parallel without changing the combinatorics of

Q (see, e. g., [45, p. 69]). The following statement is equivalent to Theorem 1.5.

Theorem 2.6 (Strong d-step Theorem for prismatoids). If Q is a prisma-

toid of dimension d with n vertices and width l, then there is another prismatoid

Q′ of dimension n− d, with 2n− 2d vertices and width at least l + n− 2d. In

particular, if l > d, then Q′ violates the (dual) d-step Conjecture, hence also

the (dual) Hirsch Conjecture.

Proof. We call the number s = n − 2d the asimpliciality of Q and prove

the theorem by induction on s. Since every facet of a d-polytope has at least

d vertices, s is always nonnegative. The base case of s = 0 is tautological.

For the inductive step, we show that if s > 0, we can construct from Q a new

prismatoid ‹Q with dimension one higher, one vertex more (in particular, the

“asimpliciality” has decreased by one) and width at least one more than Q.

Since s > 0, at least one of Q+ and Q−, say Q+, is not a simplex. (The

other one, Q−, may or may not be a simplex.) Let v be a vertex of Q−, and

let Sv(Q) be the one-point-suspension of Q over v. Let ‹Q− = Sv(Q−) be the

one-point-suspension of Q−, which appears as a facet of Sv(Q). Observe that

Sv(Q) is almost a prismatoid: its faces ‹Q− and Q+ contain all vertices and they

lie in two parallel hyperplanes. The only problem is that Q+ is not a facet,

it is a ridge; but since we know that Q+ is not a simplex, moving its vertices

slightly in the direction of the segment uw creates a new facet ‹Q+ parallel to‹Q−, and these two facets contain all the vertices of the new polytope. This

new polytope is a prismatoid, which we denote ‹Q (In fact, moving a single

vertex of Q+ is enough to achieve this.) See Figure 3 for an illustration. In

the figure, we draw several points along the edge Q+ to convey the fact that

Q+ is not a simplex; these points have to be understood as vertices of Q.

By Lemma 2.4, the distance from ‹Q− to any of Q+ ∗ u and Q+ ∗ w in

Sv(Q) is (at least) l. To make sure that the width of ‹Q is at least l+ 1, we do

the perturbation from Sv(Q) to ‹Q in the following special manner. Let a be a

vertex of Q+, and assume that the only nonsimplicial facets of Sv(Q) containing

a are Q+∗u and Q+∗w. (If that is not the case, we first push a to a point in the

interior of Q+ but otherwise generic, which maintains all the properties we need

and does not decrease the dual distances, by Lemma 2.2.) We now get ‹Q by

moving only a, in a direction parallel to Q− and away from Q+, to a position a′.

Then Q+ will be replaced by a pyramid ‹Q+ := conv(vertices(Q+) \ a) ∗ a′.
The genericity assumption on a implies that apart from the creation of‹Q+, the only change to the face lattice of Sv(Q) is that the two facets Q+ ∗ u
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Q̃+

ww

Q+

v

Q+

Q−

Q̃− := Sv(Q
−)

Sv(Q) ⊂ Rd+1

Q̃−

Q ⊂ Rd

‹Q ⊂ Rd+1

u u

Figure 3. Perturbing a base facet in the one-point-suspension

Sv(Q) of a prismatoid, we get a new prismatoid ‹Q. The extra

dots in the facet Q+ are meant to be vertices of it, and they

convey the hypothesis that Q+ is not a simplex.

and Q+ ∗ w get refined as two complexes U ∗ u and W ∗ w, where U and W

are the lower and upper envelopes of the facet ‹Q+. (Here we are considering

the direction uw as vertical, with w above u.) The width of ‹Q is at least l+ 1

since in order to get out of ‹Q+, the first step will send us to a facet in either

U ∗ u or W ∗w. That facet is at least at the same distance from ‹Q− as Q+ ∗ u
or Q+ ∗ w were, by the same arguments as in the proof of Lemma 2.2. �

Remark 2.7. The following version of the Strong d-step Theorem is also

true, with essentially the same proof. Let Q be a d-polytope with n vertices

and containing two disjoint facets Q+ and Q− that use in total m of the vertices

for some m > 2d. Let l be the dual graph distance from Q+ to Q−. Then,

there is a (m− d)-polytope Q′ with n+m− 2d vertices and having two facets

Q+′ and Q−
′

at distance l+m− 2d. In particular, if l > (n−m) + d, then Q′

is non-Hirsch. The prismatoid version is the case n = m.

3. A 5-prismatoid without the d-step property

In the light of Theorem 2.6, we say that a prismatoid has the d-step prop-

erty if its width does not exceed its dimension. It is an easy exercise to show

that every 3-dimensional prismatoid has this property. For 4-dimensional ones,

the result is still true is true, although not obvious anymore [39]. In dimension

five, however, we have the following statement, which implies Theorem 1.6.
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Theorem 3.1. The 5-dimensional prismatoid with the 48 rows of the

matrices of Table 1 as vertices has width six.



x1 x2 x3 x4 x5

1+ 18 0 0 0 1

2+ −18 0 0 0 1

3+ 0 18 0 0 1

4+ 0 −18 0 0 1

5+ 0 0 45 0 1

6+ 0 0 −45 0 1

7+ 0 0 0 45 1

8+ 0 0 0 −45 1

9+ 15 15 0 0 1

10+ −15 15 0 0 1

11+ 15 −15 0 0 1

12+ −15 −15 0 0 1

13+ 0 0 30 30 1

14+ 0 0 −30 30 1

15+ 0 0 30 −30 1

16+ 0 0 −30 −30 1

17+ 0 10 40 0 1

18+ 0 −10 40 0 1

19+ 0 10 −40 0 1

20+ 0 −10 −40 0 1

21+ 10 0 0 40 1

22+ −10 0 0 40 1

23+ 10 0 0 −40 1

24+ −10 0 0 −40 1





x1 x2 x3 x4 x5

1− 0 0 0 18 −1

2− 0 0 0 −18 −1

3− 0 0 18 0 −1

4− 0 0 −18 0 −1

5− 45 0 0 0 −1

6− −45 0 0 0 −1

7− 0 45 0 0 −1

8− 0 −45 0 0 −1

9− 0 0 15 15 −1

10− 0 0 15 −15 −1

11− 0 0 −15 15 −1

12− 0 0 −15 −15 −1

13− 30 30 0 0 −1

14− −30 30 0 0 −1

15− 30 −30 0 0 −1

16− −30 −30 0 0 −1

17− 40 0 10 0 −1

18− 40 0 −10 0 −1

19− −40 0 10 0 −1

20− −40 0 −10 0 −1

21− 0 40 0 10 −1

22− 0 40 0 −10 −1

23− 0 −40 0 10 −1

24− 0 −40 0 −10 −1


Table 1. The 48 vertices of a 5-prismatoid without the d-step property.

Q is small enough for the statement of Theorem 3.1 to be verified compu-

tationally, which has been done independently by Edward D. Kim and Julian

Pfeifle with the software polymake [18]. Still, in Sections 4 and 5 we give two

computer-free (but not “computation-free”) proofs. Before going into details

we list some properties of Q that follow directly from its definition:

• The first 24 vertices (labeled 1+ to 24+) and the last 24 vertices (labeled

1− to 24−) span two facets of Q, which we denote Q+ and Q−, lying in the

hyperplanes {x5 = +1} and {x5 = −1}. Hence, Q is indeed a prismatoid.

• Q is symmetric under the orthogonal transformation (x1, x2, x3, x4, x5)

7→ (x4, x3, x1, x2,−x5), and this symmetry sends Q+ to Q−, with the ver-

tex labeled i+ going to the one labeled i−. (Observe, however, that this

symmetry is not an involution.)

polymake
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• Q+ and Q− (hence also Q) are themselves invariant under any of the

following 32 orthogonal transformations:â±1 0 0 0 0

0 ±1 0 0 0

0 0 ±1 0 0

0 0 0 ±1 0

0 0 0 0 1

ì
,

â
0 ±1 0 0 0

±1 0 0 0 0

0 0 0 ±1 0

0 0 ±1 0 0

0 0 0 0 1

ì
.

That is, they are symmetric under changing the sign of any of the first

four coordinates and also under the simultaneous transpositions x1 ↔ x2
and x3 ↔ x4.

In what follows we denote Σ as the symmetry group of Q (of order 64)

and Σ+ as the index-two subgroup that preserves Q+ and Q−.

4. First proof of Theorem 3.1

The first proof of Theorem 3.1 goes by explicitly describing the adjacency

graph between orbits of facets of Q which, thanks to symmetry, is not too

difficult.

Theorem 4.1. (1) The 2+20×16 = 322 inequalities of Table 2 define

facets of Q. A and L are the bases of the prismatoid. Among the rest,

the 32 labeled with the same letter form a Σ+-orbit. There are six

Σ-orbits, obtained as the Σ+-orbit unions A ∪ L, B ∪K, C ∪ J, D ∪ I,

E ∪H, and F ∪G.

(2) These are all the facets of Q.

(3) The only adjacencies between facets of Q in different Σ+-orbits of facets

of Q are the ones shown in Figure 4.

Part 3 implies Theorem 3.1. In Figure 4 it is clear that six steps are

necessary (and sufficient) to go from the facet Q+ to the facet Q− (labeled A

and L).

(4,−1)

C

D J

BA

I

E

F

G

H K L

(3,0) (2,1) (1,2) (0,3) (−1,4)

Figure 4. The adjacencies between facets of Q, modulo symme-

try. Dashed lines separate facets according to their bidimension.

We say that a facet has bidimension (i, j) if it is the convex hull

of an i-face of Q+ and a j-face of Q−. The empty face is con-

sidered to have dimension −1.
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A : 1 −x5 ≥ 0.

B±,±,±,± : 315
2 − 135

2 x5 ≥ ±5x1 ±x2 ±2x3 ±x4.

B′±,±,±,± : 315
2 − 135

2 x5 ≥ ±5x2 ±x1 ±2x4 ±x3.

C±,±,±,± : 135 −45x5 ≥ ±4x1 ±2x2 ± 7
4x3 ± 5

4x4.

C′±,±,±,± : 135 −45x5 ≥ ±4x2 ±2x1 ± 7
4x4 ± 5

4x3.

D±,±,±,± : 135 −45x5 ≥ ±4x1 ±x2 ±2x3 ±x4.

D′±,±,±,± : 135 −45x5 ≥ ±4x2 ±x1 ±2x4 ±x3.

E±,±,±,± : 105 −30x5 ≥ ±3x1 ± 3
2x2 ± 3

2x3 ±x4.

E′±,±,±,± : 105 −30x5 ≥ ±3x2 ± 3
2x1 ± 3

2x4 ±x3.

F±,±,±,± : 75 −15x5 ≥ ±2x1 ±x2 ±x3 ±x4
F′±,±,±,± : 75 −15x5 ≥ ±2x2 ±x1 ±x4 ±x3

G±,±,±,± : 75 +15x5 ≥ ±2x4 ±x3 ±x1 ±x2
G′±,±,±,± : 75 +15x5 ≥ ±2x3 ±x4 ±x2 ±x1

H±,±,±,± : 105 +30x5 ≥ ±3x4 ± 3
2x3 ± 3

2x1 ±x2.

H′±,±,±,± : 105 +30x5 ≥ ±3x3 ± 3
2x4 ± 3

2x2 ±x1.

I±,±,±,± : 135 +45x5 ≥ ±4x4 ±x3 ±2x1 ±x2.

I′±,±,±,± : 135 +45x5 ≥ ±4x3 ±x4 ±2x2 ±x1.

J±,±,±,± : 135 +45x5 ≥ ±4x4 ±2x3 ± 7
4x1 ± 5

4x2.

J′±,±,±,± : 135 +45x5 ≥ ±4x3 ±2x4 ± 7
4x2 ± 5

4x1.

K±,±,±,± : 315
2 + 135

2 x5 ≥ ±5x4 ±x3 ±2x1 ±x2.

K′±,±,±,± : 315
2 + 135

2 x5 ≥ ±5x3 ±x4 ±2x2 ±x1.

L : 1 +x5 ≥ 0.

Table 2. The 322 facets of Q.

Proof of Theorem 4.1. In part one, the assertions about Σ and Σ+-orbits

are straightforward, from the aspect of the inequalities. To check that these

322 inequalities define facets, we need to consider a single representative from

each Σ-orbit. For the base facets this is obvious, and for the rest we choose



A COUNTEREXAMPLE TO THE HIRSCH CONJECTURE 397

the following representatives:

B+,+,+,+ : 315
2 −135

2 x5 ≥ 5x1 +x2 +2x3 +x4,

C+,+,+,+ : 135 −45x5 ≥ 4x1 +2x2 +7
4x3 +5

4x4,

D+,+,+,+ : 135 −45x5 ≥ 4x1 +x2 +2x3 +x4,

E+,+,+,+ : 105 −30x5 ≥ 3x1 +3
2x2 +3

2x3 +x4,

F+,+,+,+ : 75 −15x5 ≥ 2x1 +x2 +x3 +x4.

We leave it to the reader to check that these five inequalities are satisfied

on all 48 vertices of Q, and with equality precisely in the vertices listed for

each in Table 3. This task is not as hard as it seems since only the vertices

with nonnegative coordinates x1, x2, x3 and x4 need to be checked. (There

are sixteen of them.) The five matrices have rank five, which shows that the

vertices in each of them span at least an affine hyperplane. Hence, they all

define facets of Q.

For parts 2 and 3 we look more closely at the matrices in Table 3 and

observe that

• The facets of types D, E and F are simplices, since they have five

vertices: three in Q+ and two in Q−, or vice-versa.

• The facets of type C are iterated pyramids, with two apices in Q−,

over a quadrilateral in Q+. Indeed, the vertices 9+, 13+, 17+ and 21+

form a planar quadrilateral, since

2v9+ + 4v13+ = 3v17+ + 3v21+ .

• The facets of type B are pyramids, with apex in Q− over a triangular

prism in Q+. Indeed, the six vertices in Q+ form a triangular prism

since the rays −−−−→v1+v5+ , −−−−−→v9+v17+ and −−−−−−→v21+v13+ collide at the point o =

(−30, 0, 120, 0, 1). This follows from the following equalities, and is

illustrated in Figure 5:

8

3
v5+ −

5

3
v1+ = 3v17+ − 2v9+ = 4v13+ − 3v21+ = o.

With this information, we can prove parts 2 and 3 together by simply con-

structing the dual graph, that is, by looking at adjacencies between facets. The

simplices of types D, E and F need to have five neighboring facets, the double

pyramid of type C needs six, and the pyramid over a triangular prism needs

six too. So, it suffices to check the following adjacencies, which can be done

by tracking the vertices in the five representative facets and the permutations

of facets within each Σ-orbit induced by the symmetries of Q.

• The following facets are neighbors of B+,+,+,+:

A B+,−,+,+ B+,+,−,+ B+,+,+,− C+,+,+,+ D+,+,+,+.
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facet vertices

B+,+,+,+ :



x1 x2 x3 x4 x5
1+ 18 0 0 0 1
5+ 0 0 45 0 1
9+ 15 15 0 0 1
13+ 0 0 30 30 1
17+ 0 10 40 0 1
21+ 10 0 0 40 1
5− 45 0 0 0 −1


,

C+,+,+,+ :



x1 x2 x3 x4 x5
9+ 15 15 0 0 1
13+ 0 0 30 30 1
17+ 0 10 40 0 1
21+ 10 0 0 40 1
5− 45 0 0 0 −1
13− 30 30 0 0 −1

,

D+,+,+,+ :

âx1 x2 x3 x4 x5
5+ 0 0 45 0 1
13+ 0 0 30 30 1
17+ 0 10 40 0 1
5− 45 0 0 0 −1
17− 40 0 10 0 −1

ì
,

E+,+,+,+ :

âx1 x2 x3 x4 x5
13+ 0 0 30 30 1
17+ 0 10 40 0 1
5− 45 0 0 0 −1
13− 30 30 0 0 −1
17− 40 0 10 0 −1

ì
,

F+,+,+,+ :

âx1 x2 x3 x4 x5
13+ 0 0 30 30 1
21+ 10 0 0 40 1
5− 45 0 0 0 −1
13− 30 30 0 0 −1
17− 40 0 10 0 −1

ì
.

Table 3. Vertex-facet incidence for the representative facets.

• The following facets are neighbors of C+,+,+,+:

B+,+,+,+ C+,+,−,+ C+,+,+,− C ′+,+,+,+ E+,+,+,+ F+,+,+,+.

• The following facets are neighbors of D+,+,+,+:

B+,+,+,+ D+,−,+,+ D+,+,+,− E+,+,+,+ G+,+,+,+.
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9

+
17

21
+

13
+

5
+

+
1

+

o

Figure 5. The prism contained in B+,+,+,+.

• The following facets are neighbors of E+,+,+,+:

C+,+,+,+ D+,+,+,+ E+,+,+,− F+,+,+,+ G+,+,+,+.

• The following facets are neighbors of F+,+,+,+:

C+,+,+,+ E+,+,+,+ F+,−,+,+ H ′+,+,+,+ I ′+,+,+,+. �

5. Second proof of Theorem 3.1

The second proof of Theorem 3.1 reduces the study of the combinatorics

of d-prismatoids to that of pairs of geodesic maps in the (d− 2)-sphere.

5.1. From prismatoids to pairs of geodesic maps. The intersection of a

prismatoid with an intermediate hyperplane equals the Minkowski sumQ++Q−

of its two bases. More precisely,

Proposition 5.1. If Q is a prismatoid with base facets Q+ and Q− and

H is an intermediate hyperplane parallel to Q+ and Q−, then

Q ∩H = λ1Q
+ + λ2Q

−,

where λ1 + λ2 = 1 and λ1 : λ2 = dist(H,Q+) : dist(H,Q−) (the ratio of

distances from H to Q+ and Q−).

Every face F (facet or not) of a Minkowski sum Q+ + Q− decomposes

uniquely as a sum F+ + F− of faces of Q+ and Q−. We call bi-dimension of

F the pair (dim(F+),dim(F−)). Proposition 5.1 implies that every facet of

Q other than the two bases induces a facet in the Minkowski sum Q+ + Q−.

More precisely, the dual graph of Q++Q− equals the dual graph of Q with the

two base facets removed. Since the facets of Q+ +Q− corresponding to facets

of Q adjacent to Q+ (respectively, to Q−) are those of bi-dimension (d− 1, ∗)
(respectively, (∗, d− 1)), the d-step property for Q translates to the following

property for the pair of polytopes (Q+, Q−).
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Definition 5.2. Let Q+ and Q− be two polytopes of dimension d− 1 with

the same or parallel affine spans. The pair (Q+, Q−) has the d-step property if

there is a sequence F1, F2, . . . , Fk of facets of Q++Q−, with k ≤ d−1, such that

• The bi-dimension of F1 and the bi-dimension of Fk are (d − 1, ∗) and

(∗, d− 1).

• Fi is adjacent to Fi+1 for all i.

That is to say, we ask whether we can go from an F to an F ′ in d − 2

steps, where F and F ′ are facets of Q+ +Q− of a special type.

Proposition 5.3. A prismatoid with base facets Q+ and Q− has the d-

step property if and only if the pair (Q+, Q−) has the d-step property.

The good thing about Proposition 5.3 is that it reduces the dimension

by one. In order to study our prismatoid of dimension five we only need to

understand its two bases, of dimension four. Before doing this let us make one

more translation, to the language of normal fans or normal maps.

The normal cone of a face F of a polytope P ⊂ Rd is the set of linear

functionals

{φ ∈ (Rd)∗ : φ|F is constant and max
p∈P

φ(p) = max
p∈F

φ(p)}.

The normal cones of faces of P form a complex N (P ) of polyhedral cones

called the normal fan of P . We call the intersection of this fan with the unit

sphere the normal map of P . (This is called the gaussian map of P in [15].

Incidentally, the reading of [15] was our initial inspiration for attempting to

disprove the Hirsch Conjecture via prismatoids.) The normal map of a d-

polytope P is a polyhedral complex of spherical polytopes decomposing Sd−1.

We call such objects geodesic maps. (A priori, a geodesic map may not be the

normal map of any polytope.)

The following definition and theorem translate Proposition 5.3 into the

language of geodesic maps. Note that since our polytopes Q+ and Q− are

meant to be facets of a d-polytope, their normal maps lie in the sphere Sd−2.

Definition 5.4. Let G+ and G− be two geodesic maps in the sphere Sd−2.

(1) The common refinement of G+ and G− is the geodesic map whose cells

are all the possible intersections of a cell of G+ and a cell of G−.

(2) The pair (G+,G−) has the d-step property if the 1-skeleton of their

common refinement contains a path of length at most d − 2 from a

vertex of G+ to a vertex of G−.

Theorem 5.5. Let Q+ and Q− be two polytopes in Rd−1, with normal

maps G+ and G−. The pair (Q+, Q−) has the d-step property if and only if the

pair (G+,G−) has the d-step property.
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2nd step

v

1st step

Figure 6. A pair of periodic maps in the plane without the

d-step property.

Using the formalism of geodesic maps, Santos, Stephen and Thomas [39]

have shown that 4-prismatoids have the d-step property. That is to say, they

show that if a pair of graphs is embedded in the 2-sphere it is always possible

to go from a vertex of one to a vertex of the other traversing at most two edges

of their common refinement. The following example, which can be understood

as a pair of geodesic maps in the flat torus, shows that the reason for this is

not “local.”

Example 5.6 (A pair of periodic maps in the plane without the d-step

property). Figure 6 shows (portions of) two maps drawn in the plane, one

with its 1-skeleton in black and the other in grey. They are meant to be

periodic and have the same symmetry group, vertex-transitive in both. The

pair does not have the d-step property. We cannot go in two steps from a

vertex v of the black map to a vertex of the grey map.

5.2. A pair of geodesic maps in S3 without the d-step property. Let us

now concentrate on the facet Q+ of our 5-dimensional prismatoid Q. In the

light of Proposition 5.3 we can think of Q+ as lying in R4 and omit its last

coordinate.

Lemma 5.7. Q+ has 32 facets, given by the following inequalities :

±5x1 ± x2 ± 2x3 ± x4 ≤ 90,

±x1 ± 5x2 ± x3 ± 2x4 ≤ 90.

The symmetry group Σ+ of Q+ acts transitively on them.

Observe that Lemma 5.7 describes Q+ as the intersection of two cross-

polytopes, so its polar is the common convex hull of two combinatorial 4-cubes.

This partially explains why this polar is a cubical polytope (see Remark 5.8).
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Proof. That Σ+ acts transitively on these inequalities is clear from the

form of them and the description of Σ+ in Section 3. Symmetry has the

consequence that in order to prove that all the inequalities define facets, we

just need to consider one of them. Take, for instance,

5x1 + x2 + 2x3 + x4 ≤ 90.

Direct inspection shows that the inequality is valid on the 24 vertices of Q+,

and that it is met with equality precisely in the following six:



x1 x2 x3 x4

1+ 18 0 0 0

5+ 0 0 45 0

9+ 15 15 0 0

13+ 0 0 30 30

17+ 0 10 40 0

21+ 10 0 0 40


.

Since the top 4 × 4 submatrix is regular, these six points span the affine hy-

perplane 5x1 + x2 + 2x3 + x4 = 90, hence they define a facet F .

We still need to check that there are no other facets apart from the 32

in the statement. For this, consider the following equalities, in which vi+

represents (the actual vector of coordinates of) the vertex labeled i+:

8

3
v5+ −

5

3
v1+ = 3v17+ − 2v9+ = 4v13+ − 3v21+ = o.

These equalities say that the rays −−−−→v1+v5+ , −−−−−→v9+v17+ and −−−−−−→v21+v13+ collide at the

point o = (−30, 0, 120, 0, 1), so that F is combinatorially a triangular prism,

as was shown in Figure 5. So, we only need to check that the five neighbors of

F are in our stated list of facets. This is true since

• v5+ , v13+ , v17+ ∈ {−5x1 +x2 + 2x3 +x4 = 90} (x1 = 0 in these points).

• v1+ , v5+ , v13+v21+ ∈ {5x1 − x2 + 2x3 + x4 = 90} (x2 = 0 in them).

• v1+ , v9+ , v21+ ∈ {5x1 + x2 − 2x3 + x4 = 90} (x3 = 0 in them).

• v1+ , v5+ , v9+ , v17+ ∈ {5x1 + x2 + 2x3 − x4 = 90} (x4 = 0 in them).

• v9+ , v13+ , v17+ , v21+ ∈ {x1 + 5x2 + x3 + 2x4 = 90}. �

This description of the facets of Q+ translates nicely to the normal map

G+ of Q+. For the sake of having nice integer coordinates, we consider this

map as lying in the sphere of radius
√

31 rather than radius 1. (However, we

still denote this dilated sphere S3, for simplicity.) That is, the vertices of G+
are the following points:

p±,±,±,± := (±5,±1,±2,±1), p′±,±,±,± := (±1,±5,±1,±2).

Observe that they all lie in a torus {x21+x22 = 26, x23+x24 = 5}, which we denote

T+. It is quite natural then to picture them on the flat torus. This is what
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Figure 7. G+, drawn on a flat torus.

we do in Figure 7, where the horizontal and vertical coordinates represent the

angle along the circles {x21 + x22 = 26} and {x23 + x24 = 5}, respectively. The

grey dashed lines divide the torus into its sixteen octants. The 32 dots are the

vertices of G+, and the segments joining them represent its edges. Of course,

the true edges in S3 do not go along T+. In particular, the crossings we see in

the picture are an artifact.

As seen in the matrix defining Q+, there are five orbits of facets of G+
(i.e., vertices of Q+) modulo Σ+. Representatives of them are, for example,

the normal cones of vertices 3+, 7+, 9+, 13+ and 22+ that we highlight in

Figure 8. The eight “vertical strips” in the orbits of cone(3+) and cone(9+)

glue together to form a (polyhedral) solid torus subdivided into eight slices,

each of which is combinatorially a 3-cube. The eight horizontal strips form a

second solid torus. These two tori are glued along the sixteen diagonal edges

and eight of the vertical rectangles in the pictures, leaving eight empty regions

in between. These regions are filled in by the other eight cones, in the orbit of

cone(22+).

Remark 5.8. All the facets of G+ are combinatorially equivalent to the

3-cube. That is, Q+ is polar to a cubical polytope. In fact, it was communicated

to us by M. Joswig and G. Ziegler that the polar of Q+ is one of the neighborly

cubical polytopes (with the graph of the 5-cube) that they constructed in [24]

and had been previously found by Blind and Blind [4].
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cone(3+) cone(7+)

cone(9+) cone(13+) cone(22+)

Figure 8. Representatives of the five orbits of facets of G+.

Now that we understand G+, let us draw the normal map G− of Q−, whose

vertices are (remember the symmetry that sends Q+ to Q−):

(±1,±2,±5,±1), (±2,±1,±1,±5).

Although these points lie in a different torus in S3 than the vertices of G+,

it is natural to draw them in the same flat torus (Figure 9). Basically, what

we are doing is projecting every point (aeix, beiy) of the sphere S3 ⊂ C2 to

its longitude and latitude (x, y) in the square. Observe the similarity between

Figures 9 and 6.

Lemma 5.9. (1) Every vertex of G− lies in the interior of one of the

four facets of G+ of the orbit of cone(7+).

(2) Similarly, every vertex of G+ lies in the interior of one of the four

facets of G− of the orbit of cone(7−).

(3) If v is a vertex of G+ and C the facet of G− containing it, no vertex of

C lies in a facet of G+ having v as a vertex.

Proof. Since both maps have the same symmetry group (the group Σ+ of

the previous section) and the group is transitive on the vertices, we only need

to prove the lemma for a single vertex v. We take v = (5, 1, 2, 1) and show that

it is contained in the interior of the facet cone(5−). By definition, the vertices

of G− on this facet are those satisfying the equation 45x1 = 90, that is, x1 = 2.
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Figure 9. The normal maps G+ (dark) and G− (light), drawn

on the same flat torus.

They are the eight vertices of the form

(2,±1,±1,±5).

Hence, the facet inequality description of cone(5−) is

cone(5−) = {(p1, p2, p3, p4) ∈ S3 : ±2p2 ≤ p1,±2p3 ≤ p1,±2p4 ≤ 5p1}.

The proof of part 1 (and 2) finishes by noticing that (5, 1, 2, 1) satisfies these

six inequalities strictly.

For part 3, we look at what facets of G+ contain the vertices of cone(5−).

They have to be in the Σ+-orbit of cone(7+), and the pictures (see Figure 10)

tell us that they are the facets cone(7+) and cone(8+), none of whose vertices

is the original v. �

Figure 10. Proof of Lemma 5.9. The facet C of G+ containing

v1 (left) and the two facets of G− containing the vertices of C

(right).
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Part 3 of Lemma 5.9 is the key to finishing the proof of Theorem 3.1. In

the following statement we say that a pair (G+,G−) of geodesic maps on Sd−2

are transversal if whenever respective cells C1 and C2 of them intersect, we

have

dim(C1) + dim(C2) = d− 2 + dim(C1 ∩ C2).

Proposition 5.10. Let (G+,G−) be a transversal pair of geodesic maps

in the (d− 2)-sphere. If there is a path of length d− 2 between a vertex v1 of

G+ and a vertex v2 of G−, then the facet of G− containing v1 in its interior

has v2 as a vertex and the facet of G+ containing v2 in its interior has v1 as a

vertex.

Proof. For every cell C1 ∩ C2 of the common refinement of G+ and G−,

we call (dim(C1),dim(C2)) the bi-dimension of C1 ∩ C2. Let v = C1 ∩ C2

be a vertex incident to an edge e = D1 ∩ D2. Transversality implies that if

the bi-dimension of v is (i, j), then the bi-dimension of e is one of (i + 1, j)

or (i, j + 1). (The former occurs if C1 ≤ D1 and C2 = D2 and the latter if

C1 = D1 and C2 ≤ D2.) As a consequence, the bi-dimension of the other end

of e is one of (i + 1, j − 1), (i, j) or (i − 1, j + 1). That is, bi-dimensions of

consecutive vertices on a path differ by at most one unit on each coordinate.

Since v1 and v2 have bi-dimensions (0, d− 2) and (d− 2, 0), along a path

of d− 2 steps connecting them the first coordinate of the bi-dimension always

increases and the second coordinate always decreases. This means that we

move along a flag (a chain of cells each contained in the next) of G+, and at

the end we finish in a facet having v1 as a vertex. Similarly, the facet of G−
where we started has v2 as a vertex. �

So, Theorem 3.1 follows from Lemma 5.9 and Proposition 5.10 if we show

that the pair (G+,G−) we are dealing with is transversal. The pair being

transversal is equivalent to every proper face F of Q satisfying

dim(F ∩Q+) + dim(F ∩Q−) = dim(F )− 1.

This needs only be checked for facets and was actually implicitly shown in

the description of the facets of Q given in Section 4 (see Figure 4, and the

proof of parts 2 and 3 of Theorem 4.1). Alternatively, this second proof can be

finished with a perturbation argument: Even if (G+,G−) was not transversal,

any sufficiently generic and sufficiently small rotation of one of the maps will

make the pair transversal without destroying the property stated in part 3 of

Lemma 5.9.

6. An infinite family of non-Hirsch polytopes

In this section we show general procedures to construct new non-Hirsch

polytopes from old ones. All the techniques we use are quite standard. Our
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result is that there is a fixed dimension d in which we can build an infinite

sequence of non-Hirsch polytopes with diameter exceeding the Hirsch bound

by a fixed fraction.

If we do not ask for a fixed dimension, the result is straightforward (see,

e.g., [34, Prop. 1.3]).

Lemma 6.1. Let P be a d-polytope with n facets and let its diameter be

(1 + ε)(n− d) for a certain ε > 0. Then the k-fold product P k is a kd-polytope

with kn facets and with diameter (1 + ε)(kn− kd).

In fixed dimension we use the following glueing lemma. It appears, for

example, in [23].

Lemma 6.2. Let P1 and P2 be simple polytopes of the same dimension d,

having respectively n1 and n2 facets, and with diameters l1 and l2. Then, there

is a simple d-polytope with n1+n2−d facets and with diameter at least l1+l2−1.

Corollary 6.3. If P is a simple d-polytope with n facets and diameter l,

then for each k there is a d-polytope Pk with k(n− d) + d facets and diameter

at least k(l − 1) + 1. In particular, if P is non-Hirsch, then Pk is non-Hirsch

as well.

Proof. By induction on k, applying Lemma 6.2 to Pk−1 and P1 := P . For

the second part, assume that P is non-Hirsch. That is, l ≥ n− d+ 1. Then

k(n− d) + d− d = k(n− d) ≤ k(l − 1),

so Pk is non-Hirsch as well. �

Remark 6.4 (McMullen, personal communication). It is a consequence of

Corollary 6.3 that if there is a linear bound, say H(n, d) ≤ an + b, for the

diameters of polytopes of a fixed dimension d, then one has also the bound

H(n, d) ≤ a(n − d) + 1 (in the same dimension). Indeed, from a d-polytope

with n facets and diameter a(n− d) + 2 (or higher), the corollary above gives

d-polytopes in which the ratio of diameter to number of facets tends to (at

least)

lim
k→∞

k(a(n− d) + 1) + 1

k(n− d) + d
= a+

1

n− d
> a.

As one referee pointed out to us, this remark is reminiscent of Lemma 2 in [2]:

let F1(n, d) denote the maximum number of edges of all simplicial d-polytopes

with n vertices. If F1(n, d) ≥ dn − b holds all n and d and some constant b,

then F1(n, d) ≥ d(n− d) +
(d
2

)
also holds.

It is a consequence of Corollary 6.3 (and a special case of the remark above)

that the dimensions for which Theorem 1.8 holds are those for which there is

a polytope violating the Hirsch bound by at least two. Lemma 6.1 implies

that this is the case for dimension 2d if there is a non-Hirsch d-polytope. To



408 FRANCISCO SANTOS

give a more explicit statement, we call Hirsch excess (or simply excess) of a

d-polytope with n facets and diameter l the ratio

l

n− d
− 1.

Theorem 6.5. Let P be a non-Hirsch polytope of dimension d and ex-

cess ε. Then, for each k ∈ N, there is an infinite family of non-Hirsch polytopes

of dimension kd and with excess greater thanÅ
1− 1

k

ã
ε.

Proof. Let n be the number of facets of P , and let l = (n − d)(ε + 1) be

its diameter. The k-fold power P k has dimension kd, it has kn facets and it

has diameter kl. Now, glue an arbitrary number, say j of copies of P k to one

another. Corollary 6.3 says that the polytope Pk,l so obtained has dimension

kd, it has j(kn − kd) + kd facets and it has diameter j(kl − 1) + 1. Let us

compute its excess:

j(kl − 1) + 1

j(kn− kd)
− 1 =

jk(l − n+ d)− j + 1

jk(n− d)
= ε− j − 1

jk(n− d)
> ε− 1

k(n− d)
.

To finish the proof we just need to show that 1
n−d ≤ ε. This is so because

ε = l−n+d
n−d and l − n+ d ≥ 1. �

In particular, starting with the non-Hirsch polytope of Corollary 1.7,

which has dimension 43, 86 facets and diameter 44 (ε = 1/43), we can get

infinite sequences of excess 1/86 in dimension 86 and of excess as close to 1/43

as we want in fixed (but very high) dimension d. With the improved coun-

terexamples announced in [36], the numbers 43 and 86 can be replaced by 20

and 40, respectively.

Remark 6.6. From the last sentence in the proof of Theorem 6.5 we see

that if P violates the Hirsch inequality by an amount b = l − n + d greater

than 1, then the conclusion of the theorem can be improved toÅ
1− 1

bk

ã
ε.

That is, the lower bound for the excess that we get in each dimension is slightly

increased, but it is still smaller than the original excess ε of P . We do not know

of any operation that can be applied to a non-Hirsch polytope and yield another

one with higher excess.
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[14] F. Eisenbrand, N. Hähnle, A. Razborov, and T. Rothvoß, Diame-

ter of polyhedra: limits of abstraction, Math. Oper. Res. 35 (2010), 786–794.

MR 2777514. Zbl 1226.52004. http://dx.doi.org/10.1287/moor.1100.0470.

[15] E. Fogel, D. Halperin, and C. Weibel, On the exact maximum complexity

of Minkowski sums of polytopes, Discrete Comput. Geom. 42 (2009), 654–669.

MR 2556461. Zbl 1207.52012. http://dx.doi.org/10.1007/s00454-009-9159-1.

[16] O. Friedmann, A subexponential lower bound for Zadeh’s pivoting rule for

solving linear programs and games, in Integer Programming and Combinatorial

Optimization, 15th International Conference (IPCO 2011, New York, NY), Lect.

Notes Comp. Sci. 6655, Springer-Verlag, New York, 2011, pp. 192–206. http:

//dx.doi.org/10.1007/978-3-642-20807-2 16.

[17] O. Friedmann, T. Hansen, and U. Zwick, Subexponential lower bounds for

randomized pivoting rules for the simplex algorithm, in STOC ’11:Proceedings

of the 43rd Annual ACM Symposium on Theory of Computing (San Jose, Cali-

fornia), ACM, New York, 2011, pp. 283–292. http://dx.doi.org/10.1145/1993636.

1993675.

[18] E. Gawrilow and M. Joswig, Polymake: a framework for analyzing convex

polytopes, in Polytopes—Combinatorics and Computation (Oberwolfach, 1997),
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