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Compact group automorphisms,
addition formulas and
Fuglede-Kadison determinants

By HANFENG L1

Abstract

For a countable amenable group I' and an element f in the integral
group ring ZI' being invertible in the group von Neumann algebra of T,
we show that the entropy of the shift action of I' on the Pontryagin dual
of the quotient of ZI' by its left ideal generated by f is the logarithm
of the Fuglede-Kadison determinant of f. For the proof, we establish an
(P-version of Rufus Bowen’s definition of topological entropy, addition for-
mulas for group extensions of countable amenable group actions, and an
approximation formula for the Fuglede-Kadison determinant of f in terms
of the determinants of perturbations of the compressions of f.

1. Introduction

There are two motivations for this paper. First, for topological or measure-
preserving actions of countable amenable groups, one has the entropy defined in
[57], [60]. But unlike the case of Z-actions or Z%-actions (for 2 < d < o), not
many examples have been calculated for nonabelian group actions. Second,
the study of automorphisms of compact metrizable groups has drawn much
attention in the development of ergodic theory, because of the rich interplay
between dynamics and compact group structures. Though the Z-actions of
compact metrizable groups by automorphisms are well understood (cf. [39],
[43], [52], [82], [81]), and much is known for Z?-actions (cf. [42], [73], [78],
[71], [67], [40], [41], [72], [21], [36]), very little has been understood for general
countable amenable group actions (cf. [3], [13], [17], [20], [54], [55]).

In this paper, we calculate the entropy for a rich class of actions of count-
able amenable groups on compact metrizable groups by automorphisms, pro-
viding some steps towards understanding the entropy theory of such algebraic
actions.
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Let I be a countable amenable group, and let f be an element in the
integral group ring ZI'. One may consider the quotient ZI'/ZT f of ZT' by the
left ideal ZI'f generated by f. Then I' acts on the abelian group ZI'/ZI'f by
automorphisms via left translation, and hence it acts on its Pontryagin dual
(a compact metrizable abelian group)

Xj:=ZUJZT f

by automorphisms. Denote the latter action by a. Explicitly, X; consists of
elements h in (R/Z)" satisfying

Z fyhy-1y =0

yel
for all v/ € T', and the action oy is the restriction of the right shift action of T’
on (R/Z)F to Xy, i.e., (yh)y = hy, forallh € Xy and v, € T (see Section 3).
The topological entropy and the measure-theoretical entropy (with respect to
the normalized Haar measure) of oy coincide [13], and will be denoted by
h(ay).

When I' = Z, one may identify ZI' with the one-variable Laurent poly-
nomial ring Z[u™!] via identifying 1 € Z = I' with u. Writing f € ZI' as
uk( 0 Cjuj) with n > 0 and ¢,cp # 0, and denoting by Aq,..., A, the roots
of 37 cju?, Yuzvinskii [82] showed that

n
(1) h(ay) = loglea| + ) log™ |Nj],
j=1
where log® ¢ = logmax(1,t) for ¢ > 0. In general, Yuzvinskii calculated the

entropy of any endomorphism of a compact metrizable group [82].
When I' = Z? for some 1 < d < oo, one may identify ZI' with the
d-variable Laurent polynomial ring Z[ufl, e ,u?l] naturally. For nonzero f €

ZT = Z[ui?, ..., u;", Lind, Schmidt and Ward [42], [71] showed that

(2) h(ay) = log M(f),
where M(f) is the Mahler measure of f ([50], [51]) defined as

M(f) = exp ([ log#(s) ds)

for T being the unit circle in C and T¢ being endowed with the normalized Haar
measure. (When f = 0, clearly h(ay) = oo.) This is the main step in their
calculation for the entropy of any action of Z% on a compact metrizable group
by automorphisms [42], [71]. In the case d = 1, the calculation (2) reduces to
(1) via Jensen’s formula.

Several years before Mahler introduced the Mahler measure, Fuglede and
Kadison [24] introduced a determinant det4f for invertible elements f in a
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unital C*-algebra A with respect to a tracial state trg. It has found wide
application in the study of L2-invariants [48]. For a discrete group I, the group
ring ZI" sits naturally in the left group von Neumann algebra £LI'. Furthermore,
LT has a canonical tracial state trgpr. Thus one may consider detgrf for
invertible f € L. When I = Z¢, f € ZT is invertible in LT if and only if f
has no zero point on T¢. In such case, detcp f is exactly M(f) [13].

In [13] Deninger pointed out the possibility of h(ay) = logdetsrf for
general countable amenable groups I' and f € ZI', and confirmed it in the
special case that f is invertible in ¢!(T") (this is stronger than the condition
that f is invertible in LI'; see Appendix A) and positive in LI and that T’
has a log-strong Fglner sequence. Deninger and Schmidt [17] also confirmed
it in the special case that f is invertible in ¢}(T') and that T' is (amenable
and) residually finite. The connection between entropy, Mahler measure and
Fuglede-Kadison determinant has been further explored by Deninger in [15],
[16], [14].

Our main result in this paper is

THEOREM 1.1. Let I" be a countable amenable group, and let f € ZI' be
invertible in LI'. Then

h(ay) = logdetgr f.

One of the dynamical consequences of Theorem 1.1 and the general prop-
erties of the Fuglede-Kadison determinant is that under the hypothesis of The-
orem 1.1, the actions ay and o+ have the same entropy, where f* is the adjoint
of f defined as (f*), = f,-1 for all ¥ € I'. This is a very nontrivial fact, as
a priori there is no relation between oy and ap« unless f is in the center of ZI'.

Our proof of Theorem 1.1 consists of three steps.

In the first step, we establish Theorem 1.1 under the further assumption
that f is positive in £LT. Since the invertibility of f in £I' means that f~!
exists as a bounded linear operator on ¢2(T"), while Rufus Bowen’s definition of
topological entropy is taking the maximum of distances between finite orbits
of points and should be thought of an ¢>-distance, we develop an ¢?-version
of his definition in Section 4, which is of independent interest. Then we prove
the positive case of Theorem 1.1 in Section 5, using an estimate of number of
integral points in balls and an approximation formula of Deninger for det,r f
in such case.

In the second step, we prove the Yuzvinskii addition formula in Section 6,
which says that the entropy of a I™-action on a compact metrizable group by
automorphisms is the sum of the entropy of the restriction of the action to
an invariant closed normal subgroup and the entropy of the induced action
on the quotient group. This formula allows us to reduce the calculation for
the entropy of one action to that for the entropy of simpler actions. In fact,
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we establish addition formulas for group extensions in both topological and
measure-theoretical settings, and the formula in either of these settings implies
the Yuzvinskii addition formula. The proof for each of these addition formulas
employs both topological and measure-theoretical tools, using generalization
of the various fibre and conditional entropies studied in [19], and the addition
formula for I'-extensions in [79], [12] which in turn depends on Rudolph and
Weiss’s orbit equivalence method in [68].

The third step is to prove h(ay) > logdeterf under the hypothesis in
Theorem 1.1. Compared to the positive case in step one, the main difficulty
here is that the compression of f to a nonempty finite subset of I' map fail
to be invertible. Our method of dealing with this difficulty is to perturb the
compression of f to an invertible linear operator. For this purpose, in Section 7
we establish an approximation formula for logdetsrf in terms of the deter-
minants of the compressions. This uses an approximation formula for traces,
initiated by Liick in work on L2-invariants [47] and extended by Schick in [69)].
We complete the third step in Section 8, using Ornstein and Weiss’s theory of
quasitiling in [60].

The proof of Theorem 1.1, which uses the fact that the Fuglede-Kadison
determinants of f and f* are equal, is finished in Section 9. Some dynamical
consequences of the theorem including the equality of h(ay) and h(ay-) are
also established there. We recall some background in Section 2 and give a
proof of the case I' is finite in Section 3, which shows clearly how the entropy
and the Fuglede-Kadison determinant are connected via several equalities. In
an appendix, we compare invertibility in ¢!(T') and £T.

Recently, entropy has been defined for continuous actions of a countable
sofic group on compact metrizable spaces and measure-preserving actions of
a countable sofic group on standard probability measure spaces, with respect
to a sofic approximation sequence of the sofic group [4], [34]. The class of
sofic groups include all discrete amenable groups and residually finite groups.
The sofic entropies coincide with the classical entropies when the sofic group is
amenable [6], [35]. For a countable residually finite (not necessarily amenable)
group I' and an f € ZI', when the sofic approximation sequence of I comes from
a sequence of finite-index normal subgroups of I', in various cases it has been
shown that the sofic topological entropy and the sofic measure entropy (for the
normalized Haar measure of X¢) of a; are equal to logdetsr f [5], [7], [34].

Throughout this paper, for a group G, we denote by eg the identity ele-
ment of G. For a discrete group I', we write C[[I']], R[[I']] and Z[[I']] for C,
RI and Z' respectively. For a finite set F, we write C[F] for CF and equip it
with the standard £2-norm. For a Hilbert space H, we denote by B(H) the set
of bounded linear operators on H, and equip it with the operator norm || - ||.
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2. Preliminaries

2.1. Background on entropy theory. In this subsection we recall some
background about the entropy theory. The reader is referred to [25], [57],
[61], [77] for details. Throughout this paper I' will be a discrete amenable
group, unless specified otherwise. The amenability of I' means that I' has a
(left) Folner net {F, }ney, i.e., each F), is a nonempty finite subset of I', and
lim,, oo % = 0 for every finite subset K of I' [63].

The following subadditivity result is known as the Ornstein-Weiss lemma
[44, Th. 6.1].

PROPOSITION 2.1. If ¢ is a real-valued function that is defined on the set
of nonempty finite subsets of I' and satisfies

(1) 0 < o(F) < +oo,

(2) o(F) < @(F'") for all F C F,

(3) w(F7) = @(F) for all nonempty finite F CT and v €T,

(4) e(FUF') < @(F) +@(F') if FNF' =,
then ﬁgp(F) converges to some limit b as the set F' becomes more and more
(left) invariant in the sense that for every e > 0, there exist a nonempty finite
set K CT and a § > 0 such that ‘ﬁgo(F) - b’ < ¢ for all nonempty finite sets
F CT satisfying | KFAF| < §|F|.

Let o be an action of I' on a compact Hausdorff space X by homeomor-
phisms. For any open cover U of X and any nonempty finite subset F' of I,
set U =\/,cp 77U and denote by N(U) the minimal number of elements in
U needed to cover X. Then the function F + log N(U!) defined on the set
of nonempty finite subsets of I' satisfies the conditions in Proposition 2.1, and
hence ﬁ log N(U) converges as F' becomes more and more (left) invariant.
We denote this limit by hiop(a, U). The topological entropy of o, denoted by
hiop (@), is defined as the supremum of heop(cr, U) over all finite open covers U
of X.
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Let a be an action of I" on a probability space (X, B, i) by automorphisms.
For any finite measurable partition P = {Pi,..., Py} of X and any nonempty
finite subset F of T, set P¥' = \/,cp 7y~ !P and H,(P) = Zle —u(Pj) log (Pj),
where we take the convention that 0log(0 = 0 so that the function t — tlogt
is continuous for 0 < ¢ < 1. The function F +— H,(P) defined on the set of
nonempty finite subsets of I' satisfies the conditions in Proposition 2.1, and
hence ﬁ log H, (PF) converges as F becomes more and more (left) invariant.
We denote this limit by h,(c,P). The measure entropy or Kolmogorov-Sinai
entropy of «, denoted by h,(«a), is defined as the supremum of h,(a,P) over
all finite measurable partitions P of X.

A topological space is called a Polish space if it is separable and admits a
compatible complete metric. A probability space (X, B, u) is called a standard
if B is the Borel g-algebra for some Polish topology on X. Suppose that
(X,B,u) is standard and that B’ is a sub-o-algebra of B. Then there is a
map E(-|B’) : LY X, B, u) — LY(X, B, u), called the conditional expectation,
determined by

[ BG1B)@ dute) = [ $()dula)
A A

for every f € L'(X,B,pu) and A € B’. Here one can use either complex
or real valued functions for L'(X,B,u) and L'(X,B’,u). For any A € B,
one has 0 < E(14|B")(z) < 1 for p a.e. x € X, where 14 denotes the
characteristic function of A. For any finite measurable partition P of X,
set H,(P|B') = Y pep — [plogE(1p|B’)(z) du(x). Now assume further that
B’ is T-invariant. Then the function F' — H,(P¥|B’) defined on the set of
nonempty finite subsets of I' satisfies the conditions in Proposition 2.1, and
hence ﬁHu(fPF |B’) converges as F' becomes more and more (left) invariant.
We denote this limit by h,(a, P|B’). The conditional entropy of o given B,
denoted by h,(a|B’), is defined as the supremum of hy,(«, P|B’) over all finite
measurable partitions P of X.

For a compact space X, denote by Bx the Borel o-algebra of X. If « is
an action of I on a compact space X by homeomorphisms, and pu is a regular
I'-invariant Borel probability measure on X, then « is also an action of I' on
the probability space (X, Bx, ) by automorphisms.

Note that every (continuous) automorphism of a compact group preserves
the normalized Haar measure. Thus if « is an action of I' on a compact group
G by automorphisms, it automatically preserves the normalized Haar measure
p of G. Then we have both the topological entropy hiop(c) and the measure
entropy h, (). It is a result of Deninger that these two entropies coincide [13,
Th. 2.2]. (It was assumed in [13, Th. 2.2] that G is abelian; but this is not
needed. The case I' = Z was proved by Berg [2]; the case I' = Z? was proved
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by Lind et al. [42, p. 624], [71, Th. 13.3].) Thus we shall denote hyop(cv) and
h,(c) simply by h(c).

2.2. Background on group von Neumann algebras and Fuglede-Kadison
determinants. In this subsection we recall some background about the group
von Neumann algebra and the Fuglede-Kadison determinant.

For a Hilbert space H, the set B(H) is a x-algebra with 7% being the
adjoint of T, and it is equipped with the operator norm || - ||. A C*-algebra
is a sub-x-algebra of B(H) for some Hilbert space H, closed under || -||. An
element a in A is called positive and written as a > 0 if a = b*b for some b € A.
A tracial state of a unital C*-algebra A is a linear functional try : A — C such
that try takes value 1 at the identity of A, [tra(a)| < ||a|| and tr4(ab) = tr4(ba)
for all a,b € A. We refer the reader to [31], [75] for details.

In this paper we shall need only three classes of C*-algebras and tracial
states. The first class is the C*-algebra B(¢2) for each n € N. Each B({2)
has a unique tracial state trp(z). If we take an orthonormal basis of 2 and
identify B((%) with M,(C), then trp(z)(a) = %Z?:l aj; for every matrix
a = (aij)1<ij<n € Mn(C).

Let T" be a discrete amenable group. The complex group algebra CI’
consists of elements in C' with finite support. Its multiplication is defined as
(f9)y = Xver f19y-14 for all f,g € CT" and v € T'. We shall also extend this
multiplication to the cases like g € C[[T']], or f € ZT and g € (R/Z)" whenever
it can be defined. One may identify CI" as a linear subspace of £?(I') naturally.
For each f € CI, its left multiplication g — fg for ¢ € CI' extends to a
bounded linear map of £2(I'). In this way we shall identify CI" as a subalgebra
of B(£2(T")). It is easily checked that CI' is closed under taking adjoint in
B(¢*(T)). Explicitly, (f*), = f,-1 for all f € CT" and v € I". The second class
of C*-algebras we need, the left group von Neumann algebra LI, is defined as
the closure of CI" under the strong operator topology. Explicitly, £I" consists of
T € B(¢*(T)) commuting with the right regular representation p of I on £2(T'),
i.e., (T(hy))yy = (Th) for all h € £2(T') and v, € T, where (hy)qry = hon
for all v € T. The algebra LI' has a canonical tracial state trgr defined as
trgr(a) = (aep,er). The trace trgp is faithful in the sense that if a € LT is
positive and trgr(a) = 0, then a = 0. Throughout this article, we fix this
tracial state of LI, and the determinant det.p is calculated with respect to it.

Another way to describe the elements of LI is that they are the elements
h of C[[I']] for which the map from CI to £%(T) sending z to hx is well defined
and extends to a bounded linear operator on ¢2(I'). It is easy to see that if hy
and hg are in R[[I']], then h; +iho is in LT if and only if both hy and hg are in
LT. It follows that if h € R[[I']] N LT is invertible in LT, then its inverse lies
in R[[I']] and hence preserves ¢2(T).
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The third class of C*-algebras we need is the unital commutative C*-alge-
bras. They can be described as unital commutative Banach complex algebras
A with a *-operation satisfying (a*)* = a, (A\a + b)* = Xa* + b*, (ab)* = b*a*,
lla*|| = ||a|| and ||a*a|| = ||a||?® for all a,b € A and \ € C.

For a tracial state try of a unital C*-algebra A, the Fuglede-Kadison de-
terminant of an invertible a € A with respect to try [24] is defined as

1
(3) detga := exp(tra log|a|) = exp (itrA log(a*a)) ,

where |a| = (a*a)'/? is the absolute part of a. (The Fuglede-Kadison determi-
nant is also defined for noninvertible elements of A, but the definition is more
involved.) For details and applications of the Fuglede-Kadison determinant to
L%-invariants, see [48].

For any n € N and any invertible a € B(¢2), one has detp(z)(a) =
| det a|'/™.

Among many nice properties of the Fuglede-Kadison determinant, we shall
need the following ones.

THEOREM 2.2. [24, Lemma 1, Th. 1] Let tr be a tracial state of a unital
C*-algebra A. Then

(1) for any invertible a € A, one has deta(a) = det4(a*);
(2) for any 0 < a < b in A with a being invertible in A, one has detqa <
det 4b.

3. Finite group case

In this section we prove Theorem 1.1 for the case I' is finite. This case is
easily proved and appeared in [13, §7]. However, we choose to give a proof of
this case here, since it reveals the essence of the equality in Theorem 1.1.

The following lemma is well known [74, Lemma 4]. For the convenience
of the reader, we give a proof.

LEMMA 3.1. Letn € N, and let T : C* — C" be an invertible linear map,
preserving 2. Then |detT| = |Z™/TZ"|.

Proof. Note that TZ"™ has rank n. By the elementary divisor theorem [37,
Th. I11.7.8], there are a basis e1,...,e, of Z" and nonzero integers ki, ..., ky
such that kqieq,..., ke, is a basis of TZ™. Since Teq,...,Te, is also a basis of
T7", there exists Q € GL,,(Z) with (Tey,...,Te,) = (kie1, ..., kye,)Q. Then
the matrix of 7" under the basis ey, ..., e, is diag(ki,...,k,) - Q. Thus

IT %

1<j<n

(4)  |detT| = | det(diag(ki, ..., kn) - Q)] = = |Z"/TZ"). O
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Let I" be a discrete amenable group, and let f € ZI'. The canonical pairing
between ZI' and its Pontryagin dual ZI' = (R/Z)" is given by

(g’ h) = Z g'yh’y

vyel

for all g € ZI" and h € (R/Z)'. Tt is easy to check that

(gf:h) = (g, hf7)

for all g € ZT' and h € (R/Z)". Tt follows that Xy = {h € (R/Z)' : hf* = 0}
and ay is the restriction of the left shift action of I' on (R/Z)' to X;. For
h € (R/Z)T, denote by h the “adjoint” element in (R/Z)" defined as h., = byt
for all v € I'. Note that the map h — h is an automorphism of the compact
group (R/Z)'" and intertwines the left and right shift actions of I'. The image
of X7 under this map is {h € (R/Z)' : fh = 0}. In the rest of this paper, we
shall write

(5) Xy ={he[R/Z)": fh =0},
and under this identification, oy is the restriction of the right shift action of I
on (R/Z)F to Xj.

THEOREM 3.2. Let I' be a finite group, and let f € ZI' be invertible in
L. Then
1 1

1

log |ZT'/ fZT| = T

log | det f| = log detsr f.
Proof. From the definition of topological entropy, we have that h(ay) =
ITII log | X¢|. Note that both Xy and ZI'/ fZI' are abelian groups. We claim
that they are isomorphic. Writing (R/Z)" as R['/ZI', we may identify X ; with
{g e RT': fg € ZT'}/ZT. Since the left multiplication by f restricts to a group
automorphism of RI" and sends ZI" onto fZI', the claim is proved. It follows
that | X¢| = |ZI'/ fZI'|.
By Lemma 3.1 one has |ZI'/ fZT'| = |det f|. Note that the unique tra-
cial state of B(¢2(T')) restricts to the canonical trace of LI'. Thus detspf =
1
detB(p(p))f = | det f|m [l
Notation 3.3. For any nonempty finite subset F' of I', denote by pg the
restriction map C[[[']] — C[F] and by ¢tz the embedding C[F] — ¢*(T). For
f €LY, set fp:=ppo foip € B(C[F]).

Now consider the case I' is infinite countable. Let {F,},en be a (left)
Fglner sequence of I', and let f € ZI' be invertible in LI'. Since F,, is the
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analogue of a finite group, the analogue of Theorem 3.2 is

h(af)—hm log |Z[Fy]/ fr, Z]Fy]|

1

log s, 00(€) =
0 |Fl IF |
’F ’ 1Og ‘ det an| - IOg detLFf
for each n € N, where sp, o(¢) is the cardinality of certain set resembling
X restricted to F), and will be defined at the beginning of Section 5. On the
other hand, F;, approximates I" as n — oco. Thus a more precise and reasonable
analogue of Theorem 3.2 is

1
(6) h(ay)=lim lim 7 ylogan,oo( ):nlggoﬁlog |Z[F)/ fr, Z|Fy]|

= lim F—log\det fr,| =logdetsrf.

Indeed, this is the intuition behind Theorem 1.1. But there is some immedi-
ate difficulty even for making sense of (6). For instance, fr, may fail to be
invertible. In such case, |Z[F,]/ fr, Z[Fy]| = oo and det fr, = 0.

4. (P-version of R. Bowen’s definition of topological entropy

In this section we prove Theorem 4.2, providing an ¢P-version of R. Bowen’s
definition of topological entropy. Throughout this section I' is a discrete
amenable group.

Let o be an action of I' on a compact Hausdorff space X by homeomor-
phisms. Recall that a continuous pseudometric on X is a symmetric continuous
map X x X — R, vanishing on the diagonal of X x X and satisfying the trian-
gle inequality. Denote by M the set of all continuous pseudometrics on X. Let
¥ € M. For a nonempty finite subset F CI', 1 < p < oo and z,y € X, denote
by dy rp(x,y) the quotient of the fP-norm of the function v — ¥(yx,~vy) on F
divided by |F|'/?. We say that E C X is [0, F, p, €]-separated if for any x # y in
E, dy pp(z,y) >e. Wesay that E C X is [0, F, p, €|-spanning if for any z € X,
there is some y € E with dy p,(2,y) < €. Denote by sy rp(e) (ro,rp(e) resp.)
the maximal (minimal resp.) cardinality of [0, F,p, €]-separated ([9, F,p,¢]-
spanning resp.) subsets of X.

LEMMA 4.1. Let o be an action of I' on a compact Hausdorff space X by
homeomorphisms. Let ¥ be a continuous pseudometric of X. For any e > 0,
A>1and 1 < p < oo, there exists some & > 0 such that Nlsy p,(e') >
59 Foo(€) for all nonempty finite subsets F' of T'.

Proof. Cover X by finitely many, say M, closed ¥-balls of radius €/2. By
Stirling’s formula there is some ¢ € (0,1/2) such that () < A"/2 for all n € N.

1
We may assume that M¢ < /2. Set ¢/ = cre/2.
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Let F' be a nonempty finite subset of I', and let E be a [J, F, 0o, ]-separated
subset of X with |E| = sy roo(€). For each z € E, denote by B(z,/2) the set
of elements y in F such that [{y € F': 9(yx,vy) > €/2}| < c|F|. If z and y
are in F and y ¢ B(x,¢/2), then

((e/2)Pc|FI)'/P

e = €/ =g

dﬁ,F,p(I'? y) >
Take a subset E' of E maximal with respect to the property that for any
x#yin E',y ¢ B(x,e/2). Then J,ep B(x,e/2) = E and E' is [0, F,p, |-
separated. Denote by D the maximum of |B(z,e/2)| over all € E. Then
D|E'| > |E|. Thus it suffices to show that A\*1 > D.

Fix ¢ € E. For any y € B(x,¢/2), there is some K, C F with |Ky| =
lc|F|] and d(yz,vy) < /2 for all v € F'\ K, where |t] denotes the largest
integer no bigger than ¢. Then there are a subset B’ of B(x,e/2) with |B’| >
|B(x,2/2)|/([7) and a subset K of F with |K| = [¢[F]|| such that K, = K
for all y € B'. Then 9(yy,vz) < ¥ (yy,vx) + I (yx,vz) < e for all y, z € B and
v € F'\ K. Note that, as a subset of FE, B’ is [¢, F, 00, ¢]-separated. It follows
that for any y # 2z in B’, there is some 7 in K with ¥(yy,vz) > ¢. Then vy
and vz must lie in different closed balls which we take at the beginning of the
proof. Consequently, |B’| < MIX|. Therefore

B(z,e/2)] < yB'y(f;'Q < MEFINP2 <\l

This finishes the proof of the lemma. ([l

We say that an open subset U of X is generated by v if U is in the
weakest topology of X making ¥ continuous; i.e., U is a union of open 9-balls
with positive radii. We say that a finite open cover U = {Uy,...,U,} of X is
generated by v if each Uj is generated by ). For any nonempty finite subset
F of T, we define 9" € M by setting 9 (z,y) = max,cpI(yz,vy) for all
z,y € X. We say that an open subset U of X is generated by ¥ under o if
U is contained in the weakest topology on X making all the pseudometrics
(z,y) — O(yz,~vy) continuous; equivalently, U is a union of open sets Up
generated by ¥ for F' running over nonempty finite subsets of I'. We say that
the topology of X is generated by ¥ under « if the topology on X is exactly the
weakest topology making all the pseudometrics (x,y) — ¥(vyx,vy) continuous.
Having zero J-distance is an equivalence relation on X. For z € X, denote
by [z] its equivalence class. Denote by Xy the quotient space of X consisting
of all such equivalence classes, equipped with the quotient topology. Then ¢
induces a metric on Xy. Equip (Xy)" with the right shift action of T'. It is
easy to see that the topology of X is generated by 1 under « if and only if the
natural I'-equivariant continuous map X — (Xy)' sending x to v+ [yz] is an
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embedding, if and only if any two points x and y of X are equal exactly when
Y(yzx,yy) = 0 for all v € I'. We say that a finite open cover U = {Uy,...,U,}
of X is generated by ¥ under « if each Uj is so.

The case p = oo and I' = Z? of the following theorem was proved by
Schmidt [71, Prop. 13.7], and the case p = oo for general I" was proved by
Deninger [13, Prop. 2.3]. For completeness we include also a proof for the case
p = o0 here.

THEOREM 4.2. Let a be an action of I' on a compact Hausdorff space X
by homeomorphisms. Let 9 be a continuous pseudometric of X. Let {Fy,}ney
be a (left) Folner net of T'. For any 1 < p < oo, we have

1 1
h U) = lim li —1 — lim lim inf ——1
Sup top(, U) = lim lim sup N 0g 59,7, p(€) = lim lim in TN 08 59, F, p(€)

o 1 oo 1
= glg% hqurisgp A logry p, p(e) = ilg% lim inf A logry F, p(€),

where U runs through all finite open covers of X generated by ¥ under .. In
particular, if the topology of X is generated by ¥ under «, then we have

- 1 Coee ]
hiop (@) = 212% hgi)solép Tl log sy, r, p(€) = ;g% lim inf Tl log s9, 1, p(€)

- 1 N
= limg lim sup ] log79,F, p(¢) = lim lim inf T log g F,, p(€)-

Proof. We prove first the theorem for p = oco. Note that

Tﬂ,F,oo(E) < 519,F7oo(5) < 7"197[7700(6/2).

Thus it suffices to show that

1
h U) > lim li |
s%p top (@, )—5133) im sup T 08 59 F, .00 (€)

and

1
< Ton Tim '
s%p hiop (0, U) < gg% hﬁgggf 7|Fn| log s9. 7, 00 (€)

Let € > 0. Take a finite open cover U of X consisting of open ¥-balls with
radius £/2. Then U is generated by 9. We have sy r () < N(U) for every
nonempty finite subset F' of I', and hence limsup,, . ﬁlog 89, F,,00(€) <
hiop(a, U). Therefore lim._,olimsup,,_, ., ﬁ log 59, F,,,00(€) < supy hiop(c, U).

Let U be a finite open cover of X generated by ¢ under «. Then we can
find a finite open cover V of X finer than U such that V is generated by 9* for
some nonempty finite subset K of I'. It follows that there exists some € > 0
such that every open 9¥%-ball with radius 3¢ is contained in some element of V.
Cover X by finitely many, say M, open 9-balls with radius . We have

M‘KF\F‘W,F,OO(@ > Tﬁ,KF,oo(25) 2 N(VF) 2 N(uF)
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for every nonempty finite subset F' of T'; hence lim inf,, \Filnl log ry £, 00(€) >
hiop(a, U). Therefore lim._,liminf,, ﬁ log 79 F,.00(€) > supy hiop (o, U).
This proves the case p = c.

Now the case 1 < p < oo follows from the case p = oo, the facts sy rp(€)
59 Foo(€) and ry pp(e) < sy pp(e) < ry rpp(e/2), and Lemma 4.1.

O IA

5. Positive case

In this section we show that the intuitive equalities (6) do hold when f
is positive (Theorem 5.6). This proves Theorem 1.1 in such case. Throughout
this section I' is a discrete amenable group.

Denote by ¥ the metric on R/Z induced from the standard metric on R,
ie., 9(t mod Z, t' mod Z) = miny,ez |t —t' — m|. Recall the identification
(5). Via the projection Xy — R/Z sending x to .., we shall think of ¥ as a
continuous pseudometric on X;. Clearly the topology of X is generated by
¥ under ay. Thus we can apply Theorem 4.2. We shall make use of the cases
p =2 and p = co. We shall abbreviate sy rp(e) as spp(e) ete.

The following result is crucial for the comparison of sg (), 7rp(e) and

‘Z[Fn]/anZ[Fn”'

LEMMA 5.1. There exists some universal constant C > 0 such that for
any A > 1, there is some 6 > 0 so that for any nonempty finite set Y, any
positive integer n with |Y| < on and any M > 1, one has

Hz e ZIY]: ||lzlla < M - 02} < oX" MY,

Proof. Let 6 > 0 be a small number less than e~!, which we shall deter-
mine later. Let Y be a nonempty finite set and n be a positive integer with
|Y| < én. For each x € Z[Y], denote {z € R[Y]: 0 < zy—z, < 1forall y € Y}
by D,. Denote {z € Z[Y] : |z]la < M -n'/?} by S, and denote the union of
D, for all x € S by Dg. Then the (Euclidean) volume of Dg is equal to |S].
Note that ||z]|s < M - n'/2 + nl/2 < 2Mn'/? for every z € Dyg.

A simple calculation shows that the function <(t) := (n/t)"/? is increas-
ing for 0 < t < ne~!. The volume of the unit ball of R[Y] under || - |2 is
7Y12/(Jy|/2)! [11, p. 9]. By Stirling’s formula there exists some constant
C' > 0 such that m! > C'\/m(2)™ for all m > 1. Thus the volume of Dg is
no bigger than

(w2 @M /(Y| /2)t < (2 V2 20 2 /(Y | /201 |/ (26)) Y12

<00y /MM = ooy ]
<CC(sn) MY = cofrs—om/2 pIV]
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where C' = v/2/C" and C; = 2v/2er. Take § > 0 so small that C{6—9/2 < \.
Then the volume of Dg is no bigger than CA"M/Y!.  Consequently, IS] <
XMl O

We need the following result of Deninger. (Note that the assumption in
[13, Cor. 3.4] that I' is finitely generated is not needed.) In Corollary 7.2 we
shall generalize the equality part to nonpositive elements in the presence of
perturbations. Recall the notations pr and fr in Notation 3.3.

LEMMA 5.2. [13, Th. 3.2, Prop. 3.3, Cor. 3.4] Let f € ZI' be invertible
and positive in LT'. Then fr is invertible and ||(fr)~Y| < ||f71|| for every
nonempty finite subset F of I', and

deterf = Jim, |det fr, |01 = Jim [Z(F2)/ fr, Z{F)
for any (left) Folner net {F,}ncy of T.

Notation 5.3. For f € CI', denote by K the union of the supports of f
and f*, and the identity of T

LEMMA 5.4. Let f € ZI' be invertible and positive in LI'. Then for any

A>1 and € > 0, there is some § > 0 such that when a nonempty finite subset
F CT satisfies |KJ%F\F| < §|F| we have

spa(e) < CNFIZ[F)/ fpZ[F)),
where C' is the universal constant in Lemma 5.1.

Proof. Write K for K. Take 1 > ¢ > 0 such that (||~ - || f]| - 2/2)° <
A2 and 62| 1| || f|l1 < €, and that § satisfies the conclusion of Lemma 5.1
for N = AY/2. Let F satisfy the hypothesis.

Take an [F, 2, e|-separated subset £ C X; with |E| = spa(e). For each
r € E denote by ¥ the element in [0, 1)l such that z is the image of # under
the natural map [0,1)1' — (R/Z)'. Then f& € Z[[I]], and hence pp(f¥) €
Z[F]. Denote by ¢p the quotient map Z[F| — Z[F]/frZ[F]. We get a map
Y E — Z[F]/frZ[F] sending = to ¢r(pr(fZ)). It suffices to show that for
any a € Z[F]/frZ[F)], the preimage of a under ¢ has at most CA¥| elements.
Fix a € Z[F]/frZ[F] and y € ¢~ 1(a).

For each x € E, set 2’ = pxp(Z). We shall identify C[K F| naturally
as a subspace of /2(I') via the embedding txr in Notation 3.3. Note that
Y(z) = pp(pr(fr’)). Suppose that x € ¥ ~1(a). Then pr(f(2’ —4')) lies in
fFZ]F], and hence

(7) pr(f(a’ —y) = fr(ha)
for some h, € Z[F]. Set z, = f(2' —y') — fhy. Then
pr(zz) = pr(f(2' —y') — fhe) = pr(f(2’ —y") — fr(fhe) = 0.
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Thus z; is in RI" and vanishes on F', and

(8) f@' —y') = fhe + 2.
By Lemma 5.2, the linear operator fr is invertible and ||(fr)~! < |If7.
From (7) we get
he = (fr) " or(f(2" = y))).
Thus

bl < NCER) T IA - 2" = o ll2 < M- 2 = o lloo - [P
<M NN B EM2 < )22 | F P,
and hence
P\ e (Fha)llz < IF1 - hallz < LFH - 1LFIZ - 222 |2
By Lemma 5.1, one has
{pxrr(fhe) : € 7 (a)} < CNFI2( 7| - || £ - 21/2) N
<AV =2 | £ - 2/2)00E
< NP

Thus we can find a subset W C ¥~(a) with CAFI|W| > [~ (a)| such that

pr\F(fhe) = Prp\F(fha,) for all x1,22 € W. Let x1,22 € W. Applying
(8) to z = x1 and x = x9 respectively, we get

f(xll - x/Q) = f(xll - y/) - f(x/2 - y/) = f(hzl - h‘(EQ) + (Za:l - Z:vz)-

Since f(hg, — hy,) has support contained in F, while z;, — z,, has support
contained in K2F \ F, one has

22, — 2asll2 = IPr2e\ p(f (@) — 25)ll2 < [ £(2) — @)oo - [K2F \ F|/?
<Iflls - o) — hlloo - [E2F\ FIM2 < 6Y2| £y - |FIY2,
and hence

HpF(fil(Zﬂn - ng))”Q < Hfil(zm - Zl‘z)HQ < Hfle ’ HZZ'I - ZI2H2
<SPl [PV < e VR,

If 1 # x9, then
lpr(f~ (2o = 20))ll2 = pp((2] = 2%) = (hay = hay)) 2
> dpa(v1,22)|F|Y? > ¢|F|V2,
which is a contradiction. Therefore W contains at most one point. Thus
[ )] < CAFIw] < oA,
as desired. O
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For an abelian group G, denote by Gt the subgroup of torsion elements.
If f € ZI" and fr is invertible for some nonempty finite subset F' of I', then
fFZ[F] has rank |F|, and hence Z[F]/frZ[F] is a finite group. In the case, we
shall apply the following result.

LEMMA 5.5. Let f € ZI' be invertible in LI'. Then for any A > 1, there
is some & > 0 such that for any nonempty finite subset F© C T' satisfying
|K+F \ F| < 0|F|, we have

O lsp (5777 ) 2 (@Y S D,

1
2[| f{lx
where C' is the universal constant in Lemma 5.1.

Proof. Write K for Ky. Set D = 4| f||; and ¢ = 2D~1. Take § > 0 such
that (D-||f]|-|f~"])° < A/2 and that § satisfies the conclusion of Lemma 5.1
for X = A\/2. Let F satisfy the hypothesis.

Denote Z[F]/frZ[F] by G. Let z € Gior. Take & € Z[F] such that the
image of Z in G under the quotient map Z[F] — G is equal to x. Then
kT = frw

for some positive integer k and some w € Z[F]. Write %w as wi + wy for
some w; € Z[F] and wo € [0,1)F. Then & = frw; + frws and || frwsllz <

I£Il - [lwalla < I£]l - |F|*/?. Note that Z and fpws; have the same image in G.

Thus we may replace Z by frws and hence assume that ||Z||2 < ||f]| - |[F|"/2.

Denote by ¢ the quotient map R[[I']] — (R/Z)[[I']]. We identify C[F] with
a subspace of £2(I') naturally. For any x € Gior, we have
Fe(f12) = o(f(f7'7)) = (&) = 0
in (R/Z)[[I']], and hence ¢(f~'Z) € Xy by (5). This defines a map 1 : Gyor —
X sending x to p(f12).
For each x € Gy, pick w, € %Z[KF \ F| such that
lwe = Py e (f 1) oo < 1/D = ¢/2
and |w,(t)] < |[(f~12)(t)| for all t € KF \ F. Then Dw, € Z|KF \ F] and
|Dwels < Dllppe(f " @)lle < D [1F7H - @l < DA 1M - [F1Y2
By Lemma 5.1, one has
{Dwy : @ € Gioe}| <CAFVZ(D | £ f7H)EN
<SONFED - If| - 1 £7H)°
< OAFI,

Thus we can find a subset W C Giop with CAIF |W| > |Ghor| such that w, = wy
for all x,y € W.
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Now it suffices to show that v injects W into an [F, 0o, ¢]-separated subset
of X¢. Suppose that x # yin W and dp (¢(), 9 (y)) < €. From the definition
of dp o, we have

dF oo (9(2), ¥ (y)) = maxv((ap)y (P(x)), (af)y (¥ (y)))

yeF

= max V(¢ (x)), (¥ (y))~)-

veF
For each v € F, one gets
min |(f 1)y — (779)s — m| = D), (W)s) < &
and thus there exists h,, € Z with |(f %), —(f7'§)y—h,| < e. Define h € Z[F]
to be the element with value h.,, for every v € F'. Set
z=f"1E— f'g—nh e R[]
Then ||z|p|loc < €. Since x and y are in W, we have w, = w,, and hence

121k Flloo = IPx e (f 7' E) = i e (F )00
< HPKF\F(f_Iff) — Wyloo + HpKF\F(f_lg) —wylleo < e

Write z as z1 + 2o such that the supports of z; and z9 are contained in
KF and T'\ KF respectively. Note that prp(fz) = pr(fz1) and ||z1]|c < e.
Consequently,

Ipr(f2) oo = llpr(f21)lloo < [ f21lloe < NI fll1 - ll21llee < ellfll1 = 1/2.
We have

T —g=pr@—7)=pr(fh) +pr(fz) = frh+pr(fz).
Since & — g and fph are both in Z[F], we must have pp(fz) = 0. Therefore

T —y = frh € frZ[F], contradicting the assumption x # y. This finishes the
proof of the lemma. O

THEOREM 5.6. Let I' be an infinite amenable group, and let f € ZI' be
positive and invertible in LT'. Let {F,}nes be a (left) Folner net of I'. Then
for any 1/(2||f|l1) > € > 0, one has

: 1 . 1
h(ay) = nh_{{}o W log sp, ,00(€) = nh—>n§o w log |Z[Fy)/ fr, ZFy]|
1
:nlgrgo W log | det fr,| = logdetsrf.

Proof. By Theorem 4.2 and Lemma 5.4, one has

L 1
h(ay) < liminf ——log [Z[Fy]/ fr, Z[Fn]l.

|l

By Lemma 5.2, each fr, is invertible, and hence

(Z[Fn]/anZ[Fn])tor = Z[Fn]/anZ[Fn]~
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Thus by Theorem 4.2 and Lemma 5.5, one has

1 1
h(ayf) > limsup ——log sF, oo (€) > limsup —— log |Z[F},]/ fr, Z[F3.]|

and
o 1 . 1
hnnl)ggf w log SFn,oo(g) > hnnl)g.}f w log |Z[Fn]/anZ[Fn] ’
Then the first two equalities of the theorem follow. The last two equalities of

the theorem come from Lemma 5.2. O

6. Addition formulas

In this section we establish addition formulas for the entropy of group
extensions, in both topological and measure-theoretical settings (Theorems 6.1
and 6.2). From these formulas we deduce the Yuzvinskii addition formula
(Corollary 6.3) and use it to obtain a formula for the entropy of products fg
(Corollaries 6.5 and 6.6). Throughout this section I' is a countable amenable
group.

Let ax, ay and ag be actions of I' on compact metrizable spaces X, Y
and G by homeomorphisms respectively. A factor map X — Y is a continuous
surjective I'-equivariant map. We say that ax is a (right) G-extension of ay
if there are a factor map 7 : X — Y and a continuous map P : X x G — X
sending (z, g) to xg such that 7! (7 (z)) = G, xg = z¢’ only when g = ¢/, and
v(zg) = v(x)y(g) for all z € X, ¢g,¢' € G and v € T. (Usually G is a compact
metrizable group, (zg)g’ = z(g¢’), and T acts on G by automorphisms; but
this is not necessary.) The case I' = Z of the following theorem was proved by
R. Bowen [8, Th. 19].

THEOREM 6.1 (Topological Addition Formula). Let ax, ay and ag be
actions of I' on compact metrizable spaces X, Y and G by homeomorphisms re-
spectively. If ax is a G-extension of ay, then hiop(ax) = hiop(ay ) +hiep(ag).

Let ay be an action of I on a standard probability space (Y, By, u) by
automorphisms. Also let ag be an action of I' on a compact metrizable group
G as (continuous) automorphisms. Endow G with its Borel o-algebra B and
normalized Haar measure v. Note that every automorphism of G preserves v.
A cocycle for ay and ag is a measurable map o : I' X Y — G such that

9) o(my2,y) = o(v1,729) - n(e(v2,9))

for all v1,72 € I' and y € Y. Given a cocycle o, one can define a skew product
action ay X, of ' on the standard probability space (Y x G, By X Bg, uxv)
by automorphisms, by

(10) Yy, 9) = (vy,0(v,9) - (v9))
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fory eI,y €Y and g € G. It is clear that the projection Y x G — Y is a
factor map for the actions ay X,a¢g and ay in the sense that it is I-equivariant,
measurable and measure-preserving. The action ay X, ag is called a group
extension of the action ay. The case I' = Z of the following theorem was
proved by Thomas [76], and the case I' = Z% for 2 < d < oo was proved by
Lind et al. [42, Th. B.1].

THEOREM 6.2 (Measure-theoretical Addition Formula). Let ay and ag
be actions of T on a standard probability space (Y, By, u) and a compact metriz-
able group G by automorphisms respectively. Let o be a cocycle for ay and
aq. Then

h;,LXl/(aY Xo OéG) = hu(aY) + h(aG)'

As a direct consequence of Theorem 6.1 we obtain the following Yuzvinskii
addition formula, for which the case I' = Z was proved by Yuzvinskii [81] and
the case I' = Z% for 2 < d < oo was proved by Lind et al. [42, Cor. B.2] (see also
[71, Th. 14.1]). The case I' = Z*° and G is abelian was proved by Miles [53,
Prop. 5.1]. The case I is locally normal and G is abelian and zero-dimensional
was proved by Miles and Bjorklund [54, Th. 3.1].

COROLLARY 6.3 (Yuzvinskii Addition Formula). Let ag,, ag, and ag,
be actions of I' on compact metrizable groups G1,G2,Gs as (continuous) au-
tomorphisms respectively. Suppose that there is a I'-equivariant short exact
sequence of compact groups

1— G — Gy — G — 1.
Then h(ag,) = h(ag,) + h(ag,).

One can also obtain Corollary 6.3 from Theorem 6.2 via a standard pro-
cedure, as follows.

Proof of Corollary 6.3 using Theorem 6.2. We may identify G; with its
image in G. Denote by 7 the map Gy — G3. Every continuous open surjective
map between compact metrizable spaces has a Borel cross section [1, Th. 3.4.1].
Thus we can find a Borel map ¢ : G3 — G4 such that o1 is the identity map
on Gi. It is easily verified that the map ¢ : G3 x G; — G2 sending (g3, g1) to
¥ (g3)g1 is an isomorphism from the measurable space (G3 x G1,Bg, X Bg,)
onto the measurable space (G2, Bg,). Furthermore, denoting the normalized
Haar measure on G; by v}, one sees that ¢(v3 x v1) is left-translation invariant
and hence ¢(v3 X v1) = vo. It is also readily checked that the map o : I' X G5
— G defined by o(v,93) = (¥(v93)) ™1 - v(¥(g3)) is a cocycle for the actions
ag, and ag,, and that ¢ intertwines the actions ag, X, ag, and ag,. Thus
h(ag,) = hysxu (@G X0 @@, ). Theorem 6.2 implies that hy, x., (ags Xo ;) =
hy, (ags) + h(ag, ). Therefore, h(ag,) = h(ag,) + h(ag,) as desired. O
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Now we use Corollary 6.3 to obtain a formula for the entropy of fg. Recall
that an element b of a ring R is called a right zero divisor if ab = 0 for some
nonzero element a of R. The following result was pointed out by Deninger [13,
p. 757]. For the convenience of the reader, we give a proof here.

LEMMA 6.4. Let f,g € ZI'. Then one has a I'-equivariant short sequence
of compact groups
1 — Xy — Xpg — Xy — 1,
where the homomorphism X4 — Xy is given by left multiplication by g. It is
exact at Xy and Xyq. If furthermore g is not a right zero divisor of ZI', then
the above sequence is exact.

Proof. The dual sequence of the above one is the following;:
(11) 0«— ZI'/ZTg «— ZU'JZT fg «— ZUJZT f <— 0,

where the homomorphism ZI'/ZI'fg < ZT'/ZT f is given by right multiplica-
tion by g. By the Pontryagin duality, it suffices to show that (11) is exact at
the corresponding places. Clearly it is exact at ZI'/ZI'g and ZI'/ZT' fg. Now
assume that g is not a right zero divisor of ZI'. Suppose that z € ZI'/ZT'f and
xg = 01in ZI'/ZT fg. Say x is represented by Z in ZI'. Then Zg = Zfg in ZT'
for some zZ € ZI'. Since g is not a right zero divisor in ZI', we have £ = zf in
ZT'. Consequently, z = 0 and hence (11) is also exact at ZI'/ZI'f. O

If v is an action of I" on a compact Hausdorff space X by homeomorphisms
and Y is a closed invariant subspace of X, then « restricts to an action 8 of
I" on Y, and from the definition of topological entropy one can see easily that
hiop(a) > hiop(B). Combining this fact with Corollary 6.3 and Lemma 6.4, we
obtain the following product formula.

COROLLARY 6.5. Let f,g € ZI'. Then h(ayg) < h(ay) + h(ay). Further-
more, if g is not a right zero divisor in ZI', then h(asy) = h(ay) + h(ay).

The zero divisor conjecture states that for any torsion-free group H, the
group ring ZH has no nontrivial right zero divisors. See [48, pp. 376-379]
and [56, pp. 62-63] for the relation between the zero divisor conjecture and
other conjectures such as the (strong) Atiyah conjecture and the embedding
conjecture. Recall that the class of elementary amenable groups is the smallest
class of groups containing all cyclic and all finite groups and being closed
under taking group extensions and direct unions. Because of Linnell’s work
on the strong Atiyah conjecture [45] (see also [70], [18]), we know that the
zero divisor conjecture holds for all torsion-free groups in the smallest class
of groups containing all free groups and being closed under extensions with
elementary amenable quotients and under direct unions. In particular, the
zero divisor conjecture holds for all torsion-free elementary amenable groups.
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See also [62, Ch. 13] for work on the zero divisor problem of K H for a field K
and a group H.

If f =0in ZI, then ay is the full shift action of T on (R/Z)", and hence
h(af) = co. Thus we have

COROLLARY 6.6. Suppose that I is torsion-free and satisfies the zero di-
visor conjecture. Then for any f,g € ZI', one has h(ag) = h(ay) + h(ay).

R. Bowen’s proof of Theorems 6.1 in the case I' = Z is purely topological,
while the proofs of Thomas and Lind et al. for Theorem 6.2 in the case I' = Z% is
purely using ergodic theory and depends on a technique of Yuzvinskii reducing
G to simpler compact groups. Our proof for these addition formulas, in each
setting, employ both topological and measure-theoretical tools. There are two
main tools used in our proof. One is Ward and Zhang’s addition formula
[79, Th. 4.4] (see also [12, Th. 0.2]), a generalization of the Abramov-Rohlin
addition formula. Another is the various kinds of fibre entropy for topological
extensions. In particular, our proof of Theorem 6.2, even in the case I' = Z¢,
is completely different from that of Thomas and Lind et al.

The rest of this section is devoted to the proofs of Theorems 6.1 and 6.2.
Fix a (left) Folner sequence {F), }nen of T.

A systematic study of various fibre and conditional entropies was carried
out in [19] for dynamical systems of continuous maps on compact Hausdorff
spaces. It will be interesting to see to what extent the results in [19] generalize
to actions of discrete amenable groups. Here we confine ourselves to extend
a few definitions and results in [19] to I'-actions, needed for the proofs of
Theorems 6.1 and 6.2.

Let ax be an action of I' on a compact metrizable space X by home-
omorphisms. Denote by Mp(X) the set of all I'-invariant Borel probability
measures on X. For any finite open cover U of X and any subset Z C X,
denote by N(U|Z) the minimal number of elements in U needed to cover Z.
Set UF := Vqer 4~ 'U for a nonempty finite subset F of I', and set

1
hiop(ax, U|Z) = limsup ——

log N (U | Z).

Let ay be an action of I' on another compact metrizable space Y by
homeomorphisms. Consider a factor map w : X — Y. Given a finite open
cover U of X, note that the function y — N(U|r~1(y)) for y € Y is upper

semicontinuous and hence is a Borel function. Let v € Mp(Y). Set
HUY) = [ log N~ (1) du(y).

It is easy to verify that the function F' +— H(UY|v) defined on the set of
nonempty finite subsets of I' satisfies the hypothesis in Proposition 2.1, and
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hence lim,,_,s0 ﬁH(UF "|v) exists and does not depend on the choice of the
Fglner sequence {F, }pen.

Definition 6.7. Let U be a finite open cover of X. For y € Y, we define
the topological fibre entropy of U given y as hyop(ax, Ulr "1 (y)) and denote it
by hiop(ax,Uly). For any v € Mr(Y'), we define the topological fibre entropy
of U given v as limy, ﬁH(an’V) and denote it by hiop (o, U|r). We de-
fine the topological fibre entropy of ax given y, and given v, respectively, as
supy hiop(ax, Uly) and supy heop(ax, U|v) respectively for the supremum be-
ing taken over all finite open covers of X, and denote them by h¢op(cx|y) and
hiop(ax|v) respectively.

The following result is the analogue of part of [19, Th. 3].

LEMMA 6.8. Let ax and ay be actions of I' on compact metrizable spaces
X and Y respectively. Let m: X — Y be a factor map. Then we have

sup hyop(ax|y) > sup  hyop(ax|v).
yey VEMF(Y)

Proof. Tt suffices to prove sup,cy heop(ax, Uly) > hiop(ax, Ulv) for every
finite open cover U of X and every v € Mp(Y). Since the function y —
N(UF|7=1(y)) is a Borel function on Y for any nonempty finite subset F' of T,
the function y — heop(ax, Uly) is also Borel. Note that
1 1

log N(UF |7~ (y)) < log N(UF) < log N(U)
[F| [F]
for any nonempty finite subset F' of I' and y € Y. Thus

sup htop(aqu‘y / htop(aX7u|y) dy(y)
yey

(12)

:/Y lim sup 7, |10gN(uFm|7T (y)) dv(y)

n—oo m>n

log N (U™ [~ (y)) dv(y)

= lim sup
n—00 Ym>n’ m|

> lim su /10 NUF’”W dv
2 Jin, sup e | og 7 () dv(y)
= lim su H(U™ |y
0o ol Tl HU™[v)
= htop(aXu u| ))
where the third lines comes from Lebesgue’s monotone convergence theorem
[66, Th. 1.26] and the uniform upper bound in (12). O

The factor map 7 : X — Y induces a surjective continuous affine map
from the space M (X) of Borel probability measures on X to M(Y'). For any



ENTROPY AND DETERMINANT 325

v e Mp(Y), take p/ € M(X) with 7(/) = v and let u be a limit point of
the sequence {‘F—i' > ver, Y tnen in the compact space M (X). Then p is in
Mr(X) and 7(u) = v. Thus

(13) m(Mr (X)) = Mp(Y).

Note that 7—1(By) is a I'-invariant sub-o-algebra of By. We shall identify
By with 771(By). We write H,(-|7r~(By)) and h,(:|7~}(By)) simply as
H,(-|By) and h,(-|By) respectively.

The following result is the analogue of part of [19, Th. 4].

LEMMA 6.9. Let the assumptions be as in Lemma 6.8. For any v €
Mr(Y), we have

hiop(ax|v) > sup h,(ax|By).
pPEMp(X),mu=v

Proof. We combine the ideas in the proofs of [19, Th. 4] and [57, Th. 5.2.8].
Let p € Mr(X) with m(p) = v. Let P = {P,..., Py} be a finite Borel partition
of X, and let € > 0. It suffices to show that there exists a finite open cover U
of X such that h,(ax,P|By) < hiop(ax, Uly) + €.

We may assume that minj<;<j u(FP;) > 0. Let 0 be a small positive con-
stant which we shall determine later. Since p is regular [32, Th. 17.11], we
may find an open set U; O P; for each 1 < ¢ < k such that u(U; \ P;) < 0.
Then U = {Uy, ..., Uy} is an open cover of X.

Let F' be a nonempty finite subset of I'. Define an equivalence relation ~
on Y as y ~ ¢y’ whenever 77! (y) and 7~!(y/) are covered by exactly the same
subfamilies of UF'. Denote by § the finite partition of Y into the equivalence
classes. It is readily verified that each item of § is the intersection of a closed
set and an open set, and hence is Borel. For each D € §, we can find some
Vp C UF such that Vp covers 7~ (D) and [Vp| = N(UF |7~ 1(y)) for every
y € D. It is easy to construct a Borel partition Qp = {Qpr : R € Vp}
of 771(D) with Qp,r € R for each R € Vp. Set Qr = Upep@p,r for
R € UpepVp. Then Q := {Qr : R € UpepVp} is a Borel partition of X.
For any finite Borel partition P’ of X, denote by P’ the o-algebra generated
by the items of P’. Note that for any m-item Borel partition P’ of X, one has
H,(P?") <logm [77, p. 80]. Thus

(14) HL(QIB) < > v(D)log|Vp| =/ log N(UF |7~ (y)) dv(y) = H(U |v).
Dep Y
We say that a finite partition P’ of X is adapted to a finite open cover
U of X if there is an injective (not necessarily surjective) map 1 from P’
to U such that each P € P is contained in ¢ (P). Denote by R,(U') the
supremum of H,, (¥’ Q') for all Borel partitions P’ and Q' of X adapted to W'
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By [57, Prop. 5.2.11], one has R, (W VV') < R, (W)+ R, (V') for all finite open
covers W and V' of X. Note that both P and Q are adapted to U and hence
(15) H,(PFQ) < R, (UF) < |F|R,(W).
For two sub-c-algebras B; and By of Bx, denote by By V By the sub-o-
algebra of Bx generated by B; and Bs. We have
H,(PF|By) < HL(PFvQBy)
= H,(QBy)+ Hu(PF|QV By)

< Hu(Q8) + Hu(PF]Q)

(15

9,05
< HUF W) + |FIR,(W).

N
—~

Divide both sides of the above inequality by |F|, replace F' by F, and take
limits. We obtain h,(ax,P|By) < hiep(ax,Ulr) + R, (U). It remains to show
that R, (U) < e when ¢ is small enough.

We may assume that § < § minj<;<j u(P;). Then the sum of the y-measures
of the elements in any proper subset of U is strictly less than 1. It fol-
lows that every Borel partition of X adapted to U has exactly k items. Let
Pr={P,...,P} and Q' = {Q],...,Q}} be Borel partitions of X adapted
to U with P/,Q; C U; for each 1 < i < k. By [57, Lemma 4.3.9], one has
H,(PQ) < 2k2€(2d(P', Q') /k?), where d(P', Q) := 1 Y1cicp (P! A Q}) and
&(t) := maxp<s<t(—slogs) for 0 <t < 1. Note that

ST ouPNQN< Y. wUN\Q) = > (u(Us) — n(Q5))

1<i<k 1<i<k 1<i<k
= > wli)—1= > (ul;) - wP))
1<i<k 1<i<k
= > ulUi\ P) < kb
1<i<k
Similarly, Y1 <;<x w(Q;\P;) < ké. It follows that d(P’, Q") < k. Thus R,(U) <
2k2¢(20/k). Therefore it suffices to require further £(26/k) < €/(2k?). O

The case I' = Z of the next theorem was proved by R. Bowen [8, Th. 17].
Our proof for the general case takes the approach in [19].

THEOREM 6.10. Let the assumptions be as in Lemma 6.8. We have

hiop(ax) < heop(ay) + sup heop(ax|y).
ye

Proof. By Theorem 0.2 of [12], when T is infinite, we have

(16) hM(OZX) = hﬂ'u(aY) + hM(O‘X|BY)
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for every p € Mp(X). If T' is finite and oy is an action of I" on a standard
probability space (Z,Bz, uz) by automorphisms and D is a -invariant sub-
o-algebra of Bz, then clearly h,,(az|D) = %, where H(uz|D) denotes
the supremum of H,,(P|D) for P running over all finite measurable parti-
tions of Z. If uz is purely atomic in the sense that > .c, puz({z}) = 1, then
H(puzl{0,2}) =Y .ez —pz({z}) log uz({z}). If pz is not purely atomic, then
there is some Z' € By with uz(Z") > 0 such that Z’ equipped with the re-
striction of Bz and pyz is isomorphic to the interval [0, uz(Z’)] equipped with
the Borel structure of its canonical topology and the Lebesgue measure [32,
Th. 17.41], and hence H(uz|{0,Z}) = oo. It follows easily that the formula
(16) holds also when T is finite.
By the variational principle [57, p. 76], we have

hiop(ax) = sup hy(ax) and hyp(ay) = sup hy(ay).
peMr(X) veMr (Y)
Thus Theorem 6.10 follows from Lemmas 6.8 and 6.9, and (16). O

Fix a compatible matrix d on X. For any € > 0 and any nonempty finite
subset F' C T', we say that a set E C X is (F,¢)-separated if for any = # y
in E there is some v € F with d(yz,vy) > €, and we say that a set £/ C X
(F,e)-spans another subset Z C X if for any = € Z there is some y € E’
with d(yz,~vy) < € for all v € F. For any Z C X, denote by rr(e,Z) the
smallest cardinality of any set £ which (F,¢)-spans Z and denote by sp(e, Z)
the largest cardinality of any (F,¢)-separated set E contained in Z.

It is routine to prove the following lemma (cf. [8, Lemma 1] [13, Prop.
2.1]).

LEMMA 6.11. Let ax be an action of I' on a compact metrizable space X

by homeomorphisms. For any Z C X, we have

1
sup heop(ax, U|Z) = lim lim sup —— log 7, (¢, Z)
U

e—=0 n—oco |Fn’

1
= lim limsup —— log sg. (&, Z),
iy lim sup 1y log sr (& 2)

where the supremum is taken over all finite open covers of X.

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. If I is finite and a7z is an action of I" on a compact

Hausdorff space Z by homeomorphisms, then clearly hyop(az) = loigr‘lz‘ when

Z is finite while hyop(az) = oo when Z is infinite. It follows that Theorem 6.1
holds when I is finite. Thus we may assume that I' is infinite. We follow the
proof of [8, Th. 19], but using Theorem 6.10 and Lemma 6.11.
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Fix compatible metrics dx, dy and dg for X, Y and G respectively. To
show heop(ax) < heop(ay) + hiop(aa), by Theorem 6.10 it suffices to show
heop(ax|y) < hiop(ag) for every y € Y. Take z € n71(y). Given € > 0,
take 6 > 0 such that dx(zg1,x2g2) < € for any z € X and ¢1,92 € G with
dc(g1,92) < 0. Let F be a nonempty finite subset of I'. If a subset E of
G (F,6)-spans G, then zE (F,¢)-spans zG = 7~ 1(y). Thus rp(e,771(y)) <
rr (9, G). By Lemma 6.11, we get hiop(ax|y) < hiop(aq) as desired.

Next we show heop(ax) > hiop(ay) + hiop(ag). Given € > 0, since X
and G are compact and xg = z¢’ only when g = ¢/, we can find 6§ > 0
such that dx(z1,x2) > § for any z1,29 € X with dy(7w(x1),7(z2)) > €, and
that dx(zg1,2g2) > d for any x € X and ¢1,92 € G with dg(g1,92) > e.
Let F' be a nonempty finite subset of I'. Let Ey and Eg be subsets of Y
and G being (F,§)-separated respectively. Take Ex C X such that the re-
striction of m on Ex maps Ex bijectively to Ey. We claim that |ExFEg| =
|Ex| - |Eq| and that ExEq is (F,¢)-separated. If xj,zo are distinct points
in Ex and g1,92 € Eg, then w(z1),m(z2) € Ey are distinct, thus for some
v € F, one has dy (m(y(z191)), 7(v(x292))) = dy (ym(z1), y7m(x2)) > € and hence
dx(y(x191),7v(z2g2)) > 6. If g1, g2 are distinct points in Fg and « € Ex, then
for some vy € F, one has dg(v(91),7(92)) > € and hence dx(y(zg1),v(zg2)) =
dx (v(z)v(g1),v(z)v(g2)) > d. This proves the claim. Thus

sp(60,X) > sp(e,Y)sr(e, G).
By Lemma 6.11, we get hop(ax) > hiop(y) + hiop(a), as desired. O

Let X be a G-extension of Y. In the second paragraph of the proof of
Theorem 6.1, we have proved that hop(ax|y) < hiop(a) for every y € Y. The
argument in the third paragraph of the proof also shows that hyop(ax|y) >
hiop () for every y € Y. For later use, we record this as

LEMMA 6.12. Let the assumptions be as in Theorem 6.1. Then hyop(ax|y)
= hiop(aq) for every y € Y.

Next we consider group extensions constructed out of continuous cocycles.

LEMMA 6.13. Let ay and ag be actions of I' on a compact metrizable
space Y and a compact metrizable group G by homeomorphisms and ( continu-
ous) automorphisms respectively. Let o : T' XY — G be a continuous cocycle,
i.e. a continuous map satisfying (9). Consider the action ay X, ag of I' on
the compact metrizable space Y x G by homeomorphisms, defined by (10). For
any p € Mr(Y'), denoting by v the normalized Haar measure of G, we have

huxu(aY Xo aG’BY) = h(aG)‘
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Proof. Note that ay X, ag is a G-extension of ay and w(p X v) = p,
where 7 denotes the projection Y x G — Y. From Lemmas 6.8, 6.9 and 6.12,
we have

h,u><1/(04Y Xo aG|BY) < htop(aY X Oég|M) < Sughtop(aY Xo aG‘y) = h(aG)'
ye

Thus it suffices to show h,x, (ay Xs ag|By) > h(ag).

Take compatible metrics dy and dg on Y and G respectively. Replac-
ing dg(-,-) by [5da(g-, g-) dv(g) if necessary, we may assume that dg is left-
translation invariant. We endow Y x G with the metric dy x¢((y1, 91), (y2, 92))
= max(dy (y1,92), dc (91, 92))-

Let € > 0 and F' be a nonempty finite subset of I'. Let E be an (F,¢)-
separated subset of G with |E| = sp(e,G). Set V={g € G : maxycr da(v9,eq)
< ¢/2}, where e denotes the identity element of G. Then V' is a closed subset
of G, and the sets gV for g € E are pairwise disjoint. Thus 1 > v(Uyerp gV) =
Syerv(gV) = |E|v(V). Therefore v(V) < |E|7L.

Let P be a finite Borel partition of Y x G with each item having diameter
no bigger than £/2, under dyx¢. Let P be an item of P¥', and let (y, g1), (v, g2)
€ P. Then for each v € F, one has

e/2>dyxc(v(y, 91):7(y, 92))
=dyxc((vy, o (v, 9)(vg1)), (vy, o (7, ¥) (792)))
=da(o(v,9)(v91), 0 (7, y)(792))
=da(v91,792)) = da(v(91 ' 92), €c),

where the last two equalities come from the left-translation invariance of dg.
Thus g; lgo € V, and hence gy € 1 V. It follows that

E(1p|By)(z) = /G Lp(n(x),g") dv(g') < v(V) < BT

for p x v a.e. x € Y X G, where 1p denotes the characteristic function of P.
Therefore

F — — ) lo x X V)T
H,pe (P rBY>—P§F / () g E(Lp[By) (a) d(s x 1)(@)

> 3 [ —lp(@)log Bl d(u x v)(@)
pepr U X
=log |E| = log sr(e, G).

It follows that h,x,(ax X, ag,P|By) > limsupnﬁoo‘F—i'logan(a, G). By
Lemma 6.11, we get h,x,(ay X, ag|By) > h(ag) as desired. O

Now we show that every measure-theoretical group extension has a topo-
logical model.
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LEMMA 6.14. Let the assumptions be as in Theorem 6.2. Then there
exists a compact metrizable space Y' containing Y such that Y is a dense
Borel subset of Y', By is the restriction of By: on'Y, the action of I' on'Y
extends to an action of I' on' Y’ by homeomorphisms, the measure p extends to
a I'-invariant Borel probability measure on'Y', and o extends to a continuous
cocycle ' x Y — G.

Proof. Denote by Z(Y') the set of bounded C-valued Borel functions on Y.
It is complete under the supremum norm || - || and is a unital algebra under
the pointwise addition and multiplication. Furthermore, it is a x-algebra with
the *-operation defined by f*(y) = f(y) for f € B(Y) and y € Y. Tt is clear
that ||f*f|| = ||f]|? for every f € B(Y). Thus %(Y) is a unital commutative
C*-algebra (see Section 2.2). Note that the action of I on Y induces an action
of I' on #(Y) as isometric *-algebra automorphisms naturally.

Since By is the Borel g-algebra for some Polish topology on Y, we can
find a countable subset W of By separating the points of Y. That is, for any
distinct y1,y2 in Y, we can find A € W such that 14(y1) # 14(y2), where 14
denotes the characteristic function of A. Set Vi = {14 € B(Y): A€ W}.

Note that the algebra C(G) of continuous C-valued functions on G is also
a normed space under the supremum norm. Since G is compact metrizable,
C(G) is separable. Write o as 0y : Y — G for v € I'. That is, 0,(y) = o(7,)
foryeI'and y € Y. Then foo, isin B(Y) for every f € C(G) and v € I.
Set Vo = {foo, e BY): feC(G),y €T} Since C(G) is separable and T’
is countable, V5 is a separable subset of Z(Y).

Denote by o the closed I'-invariant sub-*-algebra of #(Y) generated by
V1 UV, Then & is separable and contains the constant functions. Denote by
Y’ the Gelfand spectrum of <7, i.e., the set of all unital algebra homomorphisms
o/ — C [10, p. 219]. Note that Y’ is contained in the unit ball of the Banach
space dual &7’ of </ [10, Prop. VIL.8.4]. Endowed with the relative weak*-
topology, Y’ is a compact Hausdorff space [10, Prop. VIL.8.6]. Since < is
separable, Y is metrizable. Clearly the action of I on 7 induces an action of
I' on Y’ by homeomorphisms.

For each y € Y, the evaluation at y gives rise to an element 1 (y) of Y.
Since W separates the points of Y, the map v : Y — Y is injective. Consider
the Gelfand transform ¢ : o — C(Y') defined by p(a)(y’) = v/(a) for a € &
and ¥ € Y’ [10, p. 220]. Note that 7 is a unital commutative C*-algebra.
Thus ¢ is an isometric *-isomorphism of .7 onto C'(Y”) [10, Th. VIII.2.1]. Also
note that p(f)ow = f for every f € 7. It follows that 1 is measurable and I'-
equivariant. Recall that a measurable space (X, Bx) is called a standard Borel
space if Bx is the Borel og-algebra for some Polish topology on X. The Lusin-
Souslin theorem says that for any injective measurable map ¢ from one stan-
dard Borel space (X, Bx) to another standard Borel space (Z, Bz), the image
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¢(X) is measurable and ¢ is an isomorphism from (X, Bx) to (((X), Bz[¢(x))
[32, p. 89]. Thus, identifying Y with ¥ (Y"), we have Y € By, and By is the
restriction of Bys on Y. Then u can be though of as a Borel probability mea-
sure on Y’ via setting pu(Y’\Y) = 0. Clearly p is still I-invariant. Note that Y’
separates p(«7) = C(Y”'). By the Urysohn lemma [33, p. 115], for any disjoint
nonempty closed subsets Z; and Z3 of Y, there exists f € C'(Y’) with f|z, =1
and f|z, = 0. It follows that Y is dense in Y.

Each v € I" and each 3’ € Y’ give rise to a unital algebra homomorphism
C(G) — C sending f to y/(f o 0,). Note that every unital algebra homo-
morphism C(G) — C is given by the evaluation at a unique point of G [32,
Th. VII.8.7]. Thus there is a unique point in G, denoted by o’ (y/), such that
f(el(y) = y'(f o 0y) for every f € C(G). Clearly the map o, : Y' — G is
continuous and extends o, for every v € I'. Write o’(v,y’) for o/, (y'). Since Y
is dense in Y, by continuity ¢’ also satisfies the cocycle condition (9). O

We are ready to prove Theorem 6.2.

Proof of Theorem 6.2. By Lemmas 6.14 and 6.13, we have h,,(ay X,
ag|By) = h(G). Thus the desired formula follows from Ward and Zhang’s
addition formula h, . (ay Xsaq) = hy(ay)+hux (ay Xeag|By) [79, Th. 4.4],
[12, Th. 0.2]. O

7. Approximation of Fuglede-Kadison determinant

Throughout this section I" will be a discrete amenable group. As we
pointed out at the end of Section 3, one of the main difficulties to establish
the intuitive equalities (6) is that fr, may fail to be invertible even when f is
invertible in £I'. Our method of dealing with this difficulty is to “perturb” fg,
to make it invertible. Here the meaning of S,, € B(C[F,,]) being a perturbation
of fr, is that rank(S, — fr,) is small compared to |F,,|. Our task in this section
is to calculate detsp f in terms of the determinants of S),. Though Corollary 7.2
gives a precise formula for such a calculation, for some technical reason that
will be explained in Remark 8.2, we have to get an approximate formula as
follows.

THEOREM 7.1. Let f € CI' be invertible in LI'. For any C1 > 0 ande > 0,
there exists 6 > 0 such that if {Fy}nes is a (left) Folner net of ' and S,, €

B(C[F})) is invertible for eachn € J such that sup,,c y max(||Sy||, |15, ) < C1

and limsup,,_, mm{(ﬁ%ﬁm <4, then

1
lim sup ‘ logdeterf — —— log| detSn]‘ <e.

Proof. Let § > 0 be a small number whose value will be determined later.
Let {F,}nes and {S, }nes satisfy the hypothesis.
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Note that sup,,c; max(||S:Su|, [|(S5:S,) 1) < C2. Thus there is a closed
finite interval I in R depending only on Cy such that I does not contain 0 and
the spectra of f*f and S;;S,, are contained in I for each n € J.

Let n € J. From

Sy S — ()" fr, = (Sn — f£,)*Sn + (fF,) (S — fF,),
we have
rank(Sy S, — (fr,)" fr,) < rank((S, — fr,)"Sn) + rank((fr,)*(Sn — fF,))
<rank((Sn — fr,)") + rank(S, — fr,)
= 2rank(S,, — fp,)-

Recall the operators pr, and ¢, in Notation 3.3 and the set Ky in Notation 5.3.
When restricted on £2(T), one has pg, = (1f,)*. Thus

(fE) fE, — (f*f)F, = (fr,) fr, —PE. [ fiF,
= (fr,)" fr, — (ftr,)" fir,
= (fr, — for)" fr, + (fLr) (fF, — fLF,),

and hence

rank((fr,)* fr, — (f*f)F.)
< rank((fr, — fir,)" fF,) + rank((fer,)"(fR, — fiF,))
<rank((fr, — ftr,)") + rank(fr, — fir,)
= 2rank(fr, — fip,)
< 2K F, \ Fyl.
Therefore
rank(S; S, — (f*f)r,) <rank(S;S, — (fr,)" fr,)
+rank((fr,) fr, — (f*f)F.)
< 2rank(S, — fr,) + 2]Kan \ F|.

It follows that
k(S*S, — (f* 2rank (S, —
lim sup rank (5,5 — (£ 1) ra) < limsup rank(Sh — fr,) < 26.

Denote by tr the trace of B(C[F},]) taking value 1 on minimal projections.
By the Weierstrass approximation theorem [66, p. 312] we can find a real
polynomial @ such that |Q(z) —logz| <e/2 for all x € I. Then

1
(17) Wltr(Q(S)) — tr(log )| < [|Q(S) —log S| < /2
for all self-adjoint S € B(C[F,]) with spectrum contained in I, and
(18) [trer(Q(T)) — trer(log T)|| < [[Q(T) — log T| < /2

for all self-adjoint T' € LI" with spectrum contained in I.
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For noncommutative variables X and Y, we have Q(X +Y) = Q(X) +
Z?:l Q;(X,Y) for some two-variable noncommutative monomials @; with
Y appearing in @;. Fix 1 < j < k. Then sup,c;||Q;((f*f)F,,S5Sn
(f*f)r)|l < Dj for some constant D; depending only on Q;, ||f|| and Cj.
Furthermore,

vank(Q,((/* )y S5Sn — (1))

I
P F|
k(S*S, — (f*

For any S € B(C[F,]), extending an orthonormal basis e1,...,€rank(s) Of
the range of S to an orthonormal basis e1, ..., e, of C[F},], one sees that
€rank(S)+1; - - - » €|F,| are orthogonal to the range of S, and hence

| Fn| rank(.S) rank(S)
te(S)[=1D_(Sejoe) =] Y (Sejieid[ < D [(Sejie;) | < rank(S)-|S].

j=1 j=1 j=1

It follows that lim sup,,_, ‘tr(Qj((f*f)F"‘}gflS"_(f*f)F”))l < 20Dj, and hence

fm s - ||tr< (550)) = t(QU(F* )i))| < 26D,

n—0o0

where D = Z?:l D;. By a result of Liick and Schick [47], [69, Lemma 4.6],
[48, Lemma 13.42], [13, p. 745], for any T € LI, one has

trer(QUT)) = Jim o tr(Q(TE, ).

Thus
(19) limsup |trer(Q(/*f) - Wtr@(s:;sn))] < 26D.
Combining (17), (18) and (19) together, we get

lim sup ‘trmﬂ log(f*f)) — tr(log(S;:Sn))‘ <e+2iD.

That is,

lim sup ’ logdetsr(f*f) — log det (S} Sy, )‘ <e+26D.

n—s00 |Fnl

As logdetsr(f*f) = 2logdeterf and det(S* ) = | det S, |2, we get

hmsup‘logdetmﬂf log | det S, |‘ <e/2+0D.

Hsne IF |

Now we just need to take 6 < e/(2D). O



334 HANFENG LI

COROLLARY 7.2. Let f € CI' be invertible in LT'. Let {F,,}nes be a (left)
Folner net of T' and S, € B(C[F,]) be invertible for each n € J such that
sup,,c; max(||Sy|l, 1S, 1) < 0o and limy, oo rank(S,, — fr,)/|Fn| = 0. Then

1
logdeterf = nlim —

log | det S, |.

8. Proof of h(ay) > logdetsr f

In this section we show h(ay) > logdeter f for any f € ZI' invertible in
LT (Lemma 8.5). Throughout this section I' is a discrete amenable group.

For f € CI', recall that Ky denotes the union of the supports of f and
f*, and the identity of I". For a finite subset F' of T', we identify C[F] with a
subspace of ¢2(I') naturally. In particular, if F’ C F are finite subsets of T,
then C[F] is the direct sum of C[F’] and C[F\ F”].

LEMMA 8.1. Let f € ZI' be invertible in LI'. Then for any A > 1 and
C1 > 1, there is some § > 0 such that, for any M > 1 and any nonempty finite
subsets F' C F of T satisfying |K¢F \ F| < §|F| and |F \ F'| < 0|F|, if Tr is
a linear map C[F \ F'] — C[F] with MTr(Z[F \ F']) C Z|F] and |Tr| < Ci
so that the linear map Sg : C[F| — C[F)| defined as fr on C[F']| and Tr on
C[F \ F'] is invertible in B(C[F)]), then

CAFIMIRT P\Flyp > | det Sr,

1
ST

where C is the universal constant in Lemma 5.1.

Proof. The proof is similar to that of Lemma 5.5. Write K for K. Set
D =8|/f||1 and ¢ = D™1. Take 1 > § > 0 such that (2D(||f|| + C)||f )% <
A/2 and 6Y/2 < || f~!|, and that &' = 2§ satisfies the conclusion of Lemma 5.1
for N = A2, Let F, F’ and T satisfy the hypothesis.

Consider S € B(C[F]) defined as fp on C[F'] and MTr on C[F \ F’].
Then det S, = MF\F'l det S and ||S%| < || £l + MCy < (||f]| + C1)M. Note
that S%(Z[F]) C Z[F], and hence |det Si| = |Z[F]/SRZ[F]| by Lemma 3.1.
Thus it suffices to show

CANFIMIEEN i (e) > |Z[F) /SR Z[F]].

Let ¢ € Z[F]/SRZ[F]. Take & € Z[F] such that the image of Z in
Z[F)/SpZ[F)] under the quotient map Z[F| — Z[F]|/SpZ[F] is equal to .
Since S is invertible, one has

T = Spw

for some w € R[F]. Write w as w; + ws for some w; € Z[F] and wy € [0,1)F.
Then Z = Spw; + Spws and

1Spwalla < [SEIl - walla < (£ + C1)M|F|/2.
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Note that & and S%ws have the same image in Z[F]/SRZ[F]. Thus we may
replace & by S%ws and hence assume that ||Z||s < (||f|| + C1)M|F|'/2.
Denote by ¢ the quotient map R|[[[']] — (R/Z)[[I']]. For each element = of
Z[F)/SpZ[F), one has
Fe(f~2) = o(f(f 7)) = p() = 0
in (R/Z)[[T]], and hence ¢(f~*#) € X; by (5). This defines a map 1 :
Z[F)/SRZ[F) — X sending z to ¢(f~17).
For each x € Z[F]/SRLZ[F], pick w, € SZ[KF \ F] such that
lwe — prp\p(f ' E) oo <1/D =€
and |w,(t)] < |(f~12)(t)| for all t € KF \ F. Then Dw, € Z|KF \ F] and
1Dwell2 < Dllpgcpp(f ' #)ll2 < D-If7H-IE ]2 < DALFI+COMIF-|FIV.

Take an [F, 0o, e]-spanning subset £ C X with |E| = rpo(€). For each
v e Eset W, ={z € Z[F|/SFZF] : dpoo(¥(x),v) < e}. Then Jyep Wy =
Z[F)/SpZ[F). Now it suffices to show that

W,| < CAFI IR\

for each v € F. Fix v € E and y € W,,.
Let x € W,,. Then

max V(0 (2))y, (¥ (W))y) = droo(¥(2), ¥(y))
< dpoo(Y(x),v) + droo(V(y),v) < 2e.

For each v € F/, take (hy)y € Z such that [(f712)y — (f719)y — (ha)s| < 2e.
Similarly, for each v € F'\ F', take (0;), € Z such that |(f71%), — (f14), —
(02)~| < 2e. Define h, € Z[F'] to be the element taking value (h;), at each
v € F'. Also define 0, € Z[F'\ F’] to be the element taking value (6;), at each
ve€F\F'. Set

(20) 2o = [ — Y — hy — 0p — wy +wy € R[]
Then
Izl prlloo = 1(F 712 = F715 = ha) | lloo < 2,
zel e lloo = 1(F 712 = £715 = 02) |\l < 26,
lzelkp\plloo = (F 718 — £~ 1y_wx+wy)|KF\FHOO
<N = wa)lkr\Flloo + 1710 — wy) km\Fllo < 26,
and thus

22|k Flloc < 2e.
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It follows that

16zll2 < Nf 7 22 + 1F G2 + lpeyer (22) 12
<2(|IfIl + COMI M- [FIVZ + (20)8"2|F|/2
<D(Ifll+Co)M|f) - |FI2.
Note that 0, + Dw, € Z|KF \ F'] with
162 + Dwglla < 2D(|f | + COM| | - | F[V?
and |KF \ F'| <2§|F| = ¢'|F|. By Lemma 5.1, one has
{02 + Duwy @ € W} < CAFVZ@D(| £ + Cryd | £~ AT
< ONFIP@D(||f ]| + Co)llf ) ]
< ONFIpfIEENE']
Thus we can find a subset W/ C W, with CAFIMIEFNW!| > |W,| such
that 0, + Dwy, = 0, + Dw,, for all x1,29 € W/. Since 6, € R[F \ F'] and
w, € RIKF \ F| for all x € W/, we have 0,, = 0,, and w,, = w,, for all
x1,To € Wé
Now it suffices to show that |[W]| < 1. Suppose that x; # x9 in W).
Applying (20) to z = x; and x = x5 respectively, one gets
f—li,‘I - f_lfé — h:m - h’xz + le - ZIQ'
Write 2, — 2z, as 21 + 22 such that the supports of z; and zy are contained
in KF and I' \ KF respectively. Note that pr(f(zs, — 22,)) = pr(fz1) and
|21 |lcc < 4e. Consequently,
127 (f (221 = 222)) oo = llPF(f21) o0 < 1 f21llo0 < (11l [l21]lc0 < 4el[f]la = 1/2.
We have

1 — T2 :pF(ﬁ - %) :pF(f(hﬂ?l - hw)) +pF(f(ZI1 - Zzz))
= S%(hm — hay) + 0E(f (221 — 223))-

Since z1 — x3 and S (hy, — ha,) are both in Z[F], we get pp(f (22, — 22,)) = 0.
Therefore 1 — 23 = Sp(hy, — ha,) € SEZ[F], contradicting the assumption
21 # x2. This finishes the proof of the lemma. O

Remark 8.2. Note that in Lemma 8.1 the operator Sr may fail to pre-
serve Z[F], while the norm ||S%| of the operator S% defined in the second
paragraph of the proof of Lemma 8.1 may be large when M gets large. In-
deed, this is what happens when we construct S,, in the proof of Lemma 8.5
below. A modification of the proofs of Lemmas 5.4, 5.5 and 8.1 shows that
if f € ZT is invertible in LT, and there are a (left) Folner net {F)}nes of T
and an invertible S, € B(C[F},]) preserving Z[F,| for each n € J such that
sup,c; max(|| S|, 1S5 2) < oo and limy,_eo rank(S, — fr,)/|Fn| = 0, then
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h(ay) = lim, oo \Filnl log | det S,|. Combined with Corollary 7.2, this proves
Theorem 1.1 for such case, without using Theorem 5.6 and Corollary 6.5.
When T is also residually finite, Weiss showed that there are a net {I'),} e of
finite-index normal subgroups of I and a (left) Folner net {F), },cs of T such
that the quotient map I' — I'/T',, maps F,, bijectively to I'/T",, for each n € J
[80, §2] (see also [17, Cor. 5.6]). Via taking S,, to be the image of f in C(I'/T',)
and identifying B(¢*(T'/T',)) and B(C[F},]), it is easily checked that when I'
is residually finite, {F), }necs and {S,}nes satisfying the above conditions do
exist. However, we have not been able to show the existence of such {F), },es
and {Sy, }nes in general. This is why we have to use Theorem 7.1, Lemma 8.5
and Ornstein and Weiss’s theory of quasitiling.

For ¢ > 0, we say that a family of finite subsets {F},...,F,,} of T are
e-disjoint if there are Fj’ C Fj for all 1 < j < m such that F|,..., F), are
pairwise disjoint, and [Fj| > (1 —¢)[Fj| for all 1 < j < m. We need the
following theorem of Ornstein and Weiss.

THEOREM 8.3 ([60, p. 24, Th. 6]). Let £ >0, and let K be a nonempty finite
subset of T'. Then there exist 6 > 0 and nonempty finite subsets K', Fy, ..., Fp,
of T' such that

(1) Hg€ Fj: Kg C F;}| > (1 —¢)|F}| for each 1 < j < m;

(2) for any nonempty finite subset F of T satisfying |K'F \ F| < 6|F],
there are finite subsets D1, ..., Dy, of I' such that Ji<j<m FjD; C F,
the family {Fjc:1 < j < m,c € D;} of subsets of I is e-disjoint and
|Ui<j<m FiDj| = (1 — )| F].

Remark 8.4. In Theorem 8.3, choosing F,. ; C Fj for every 1 < j < m and
c € Dj such that |F, ;| > (1 —¢)|Fj| for all 1 < j < m and ¢ € Dj, and that
the family {F¢jc:1 < j <m,c e D;} of subsets of I' is pairwise disjoint, and
noticing that F¢ ; is one element in the finite set {W C Fj : [W| > (1 —¢)|Fjl},
we see that we can actually require the family {Fjc:1 < j <m,c € D;} to be
pairwise disjoint.

LEMMA 8.5. Let I' be an infinite amenable group, and let f € ZI' be
invertible in LT'. For any (left) Folner net {F,},cy of T', one has

> > logdet f.

1 1
liminf ——log7F, oo (
8|1 fllx

Proof. Set C1 = max(||f]|,[|f7!) +2. Let A > 1 and & > 0. Take § > 0
working for both Theorem 7.1 and Lemma 8.1. Denote by K the union of the
supports of f and f*, and the identity of I.

By Theorem 8.3 and Remark 8.4, there exist nonempty finite subsets
Wi,...,Wy of I' and N € J such that
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@ Wil > (1~ 2)|Wj| for each 1 < j < m, where W;={geW;: KgC
Wi};

(I) for any n > N, there are finite subsets D, 1,..., Dy, of I' such that
Ui<j<m WjDnj € Fy, the family {Wjc : 1 < j < m,c € Dy j} of
subsets of I' is pairwise disjoint and | i<j<m WjDn | > (1 — %)]Fn|

We may also assume that
(III) for any n > N, one has |KF,, \ F,,| < d|F,|.

We construct T;, for each n > N satisfying the hypothesis in Lemma 8.1 for
some M not depending on n such that the associated S,, satisfies the hypothesis
in Theorem 7.1. For this purpose, we shall construct T;, on C[W}] first, then
transfer them to C[F,,].

Fix 1 < j < m. Since KW C Wj, we have fy;, = f on C[W]]. Write
(f(C[VVJf])L for the orthogonal complement of fC[W}] in C[W;]. Note that the
dimension of (fC[W’]) is equal to [W;\ W] and that (fC[W’])J- is the linear
span of (fC[W; ENQ[W;]. Identify W; with the standard orthonormal basis of
C[Wj]. Take an orthonormal basis {e;4 : g € W;\ W;} of (f(C[W]’]) , consisting
of elements in R[W;]. Taking e}, € (f(C[W’]) N Q[W;] close enough to e, for
all g € W; \ Wj, we find that the linear map T] P CW;\ W)l — (fC[W]’])J‘
sending g to e is bijective and max(||1~}|\, HT;IH) < 2. Then there exists
M, € N such that M;T;(Z[W; \ Wj]) € Z[W;]. Note that the linear map
§j : C[W;] — C[Wj] defined as fy; on C[IW;] and T on C[W;\Wj] is invertible,
and ||5; | < |If 71| + 2.

Set M = [[i<j<m M;j. Now let n > N. Let Dy 1,..., Dpm be as in (II)
above. Set Iy, = Ui<j<m WDy j. Then |F, \ F},| < 6|F,|. Next we define the
desired linear map T, : C[F,, \ F}] = C[F,]. On C[F,, \ (Ui<j<m W;jDhn,j)], the
map T, is the identity map. On C[(WJ\W;)C] for 1 <j <mandce€ D,j, the
map T, is the same as Tj on C[W; \ W], if we identify C[W; \ W}] and C[W}]
with C[(W; \ W})c] and C[Wj¢] respectively via the right multiplication by c.
Then MT,(Z[F, \ F}]) C Z[F,] and ||T,,|| < 2. Denote by S, the linear map
C[F,] — C[F,] that is equal to fg, on C[F,]| and equal to T,, on C[F, \ F}].
Clearly [|S,|| < ||f|l + 2. Note that the restriction of S,, on C[Wj¢] for each
1 <j<mandcé€ Dyj, or on C[Fy, \ (Ui<j<m WjDn,j)] is an isomorphism,
and the norm of the inverse of this restriction is bounded above by ||| + 2.
Thus Sy, is invertible with ||S;!|| < [|f~!|| + 2. By Lemma 8.1 we have

1
C)\|FH\M|KFn\Fn|TFn o <> > |det S|,
A8

where C is the universal constant in Lemma 5.1. Therefore
1

(21) hmlnf( log7F, 0o () log | det S, |> —log .
|l 81 flh)  IFul
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Since S, and fp, coincide on C[F)], we have rank(S,, — fr,) < |F,\ F}| <
0| Fy|. By Theorem 7.1, we get

1
(22) lim sup ’ logdetsrf — ——

Combining (21) and (22), we get

log | detSn|‘ <e.

1 1
lim inf ( log7F, oo () — log detgpf) > —log\—e.
8[1.f 1l

Since A > 1 and € > 0 are arbitrary, the lemma is proved. O

9. Proof of Theorem 1.1 and consequences
We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 3.2, we may assume that I' is infinite.
Let {F}, }nen be a (left) Folner sequence of I'. By Theorem 4.2 and Lemma 8.5,
we have

1
h(ay) > liminf ——logrp, oo (

1
— | > 10gdetgrf.
8||f||1)

Applying the inequality to f*, we also have
h(ays-) > logdeter f*.
Then we have
h(ag«f) =h(ap) + h(as) > logdetsr f* + logdetsr f = 2logdeter f
=logdeter(f*f) = h(ayy),

where the first equality comes from Corollary 6.5, the second one comes from
Theorem 2.2, the third one comes from the definition of det;rf and the last
one comes from Theorem 5.6. Thus h(ay) = logdeter f. O

Since Spoo(€) > TFoo(€) for any nonempty finite subset F' of I' and € > 0,
in the proof of Theorem 1.1 we actually have proved the following result.

COROLLARY 9.1. Let ' be a countable amenable group, and let f € ZI’
be invertible in LI'. For any ﬁ > e > 0 and any (left) Folner sequence
{F.}nen of T, one has

. 1 , 1
h(ay) = Jim. ] logrp, () = Jim 7 log sF,, 00 (€)-

The follow result is a consequence of Theorems 1.1 and 2.2.

COROLLARY 9.2. Let ' be a countable amenable group, and let f € ZI’
be invertible in LI'. Then h(ay) = h(ay-).
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The following result is a generalization of [17, Cor. 6.6], whose proof we
follow.

COROLLARY 9.3. Let I' be a countable amenable group, and let f,g € ZT’
be invertible in LI with 0 < f < g. Then h(ay) < h(ay). Furthermore,

h(ay) = h(oy) if and only if f = g.

Proof. The inequality follows from Theorems 1.1 and 2.2. Suppose that
h(ay) = h(oy). Set h =logg — log f. Then

trer(h) = trerlog g—trerlog f = logdetgrg—logdeter f = h(ay) —h(ay) = 0.

Note that the function log is operator monotone in the sense that for any
invertible bounded positive operators T',.S on a Hilbert space H with T' < S,
one has logT < log S [46], [64, p. 10]. Thus h > 0. Since trgr is faithful and
trerh =0, we get A = 0. Thus f =g. O

Appendix A. Comparison of invertibility in ¢!(I') and LT

A Banach complex algebra A with an operation * is called a Banach
x-algebra if (a*)* = a, (A\a + b)* = Xa* + b*, (ab)* = b*a*, and ||a*|| = ||a|| for
all a,b € A and A € C. A representation of a Banach x-algebra A on a Hilbert
space H is a x-homomorphism 7 : A — B(H). A Banach x-algebra A is called
an A*-algebra if it has an injective representation 7. For an A*-algebra A, there
is a C*-algebra C*(A) and an injective *-homomorphism A — C*(A) with
dense image such that every x-homomorphism A — % of A into a C*-algebra
2 extends to a unique *-homomorphism C*(A) — A. The C*-algebra C*(A)
is unique up to isomorphism and is called the enveloping C*-algebra of A
(75, p. 42]. Explicitly, the norm || - [|g«(4y of C*(A) is given by |la|lc+4) =
sup, ||7(a)| for a € A, where 7 runs over all representations of A.

A unital Banach x-algebra A is called symmetric if for each a € A, the
spectrum of a*a in A is contained in R>p. It is well known that a unital
A*-algebra A is symmetric if and only if for each a € A, the spectra of a in
A and C*(A) are the same. We recall briefly the reason here. The “if” part
follows from the fact that every C*-algebra is symmetric. Assume that A is
symmetric. By a result of Raikov [65], [58, p. 308, Cor. 4], for every a € A
with a* = a, the spectral radius of a in A is equal to ||a||c«(4). According to
an observation of Hulanicki [27, Prop. 2.5] (see also [22, Prop. 6.1]), for every
a € A with a* = a, the spectra of a in A and C*(A) are the same. It follows
that for every a € A, the spectra of a in A and C*(A) are the same (see for
example [22, p. 804]).

Let T' be a discrete (not necessarily amenable) group. Then ¢}(T) is a
unital Banach *-algebra with the algebraic operations extending those of CI'.
The embedding CI" < LT extends to an injective representation ¢! (I') < LT,
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Thus ¢}(T') is an A*-algebra, and for every a € ¢}(T), if a is invertible in ¢}(T),
then it is invertible in £I'. The enveloping C*-algebra of ¢!(I') is denoted by
C*(I') and is called the (mazimal) group C*-algebra of I'. The embedding
¢Y(T) = LT extends to a *-homomorphism 1 : C*(TI') — LI'. The group I is
amenable if and only if 1 is injective [63, Th. 4.21]. Thus, when I" is amenable,
¢Y(T) is symmetric if and only if for any a € ¢}(I'), the spectra of a in ¢}(T)
and LI' are the same.

If T is a finite extensions of a discrete nilpotent group, then ¢!(T) is sym-
metric [38], [49], and hence for any a € ¢}(T), a is invertible in ¢!(T") if and
only if it is invertible in LT.

Nica showed that if I' is a finitely generated group of subexponential
growth, then for any a € CI, a is invertible in ¢!(I") if and only if it is in-
vertible in £T" [59, p. 3309].

Jenkins [29], [30] showed that if I' is a discrete group containing two
elements generating a free subsemigroup, then £!(T) is not symmetric. Under
the same assumption, Nica showed that there exist a € CI' that are invertible
in LT but not invertible in ¢}(T') [59, Prop. 52]. In fact, in such a case there
exist a € ZI' that are invertible in C*(I") (in particular, invertible in LT")
but not invertible in ¢!(I"), as the following example shows. This example is
inspired by the ideas in [30]. I am grateful to Jingbo Xia for a very helpful
discussion leading to this example.

Example A.1. Let T" be a discrete group with elements ~1,v2 € I' gener-
ating a free subsemigroup. We claim that for every A € C with |A| = 3, the
element

a = Xer — (er + 71 — 7)Y

is invertible in C*(I') but not invertible in ¢}(I'). Taking A = 43, we get
a € ZI'. The spectrum of v; in C*(I") is contained in the unit circle T of C.
By the spectral theorem for unitaries,

ler +m — Vi llox(r) < max|1+ 2 - 2| < 3.

Then

l(er +m — ) 2lle=@ < ller + 71 = i llexry - el
=ller + 11 — Yillory < 3.

o (r)

It follows that a is invertible in C*(T"), and its inverse is given by

AT AR ((er + 1 — D))k
k=0
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From the natural homomorphism C*(I") — LT, we see that a is also invertible
in L' with inverse b given by the above formula. Under the natural embed-
ding LT — 2(T), b = A2 A F((er + 71 — 7¥)72)* € 4(T). Since 11
and 79 generate a free subsemigroup, it is easily checked that the supports of
((er+71—2)72)¥ for k > 0 are pairwise disjoint and ||((ep+v1—~2)72)|l1 = 3*
for each k > 0. It follows that A™1 S22 A 7*((er +v1 — 7))k ¢ ¢1(T). If
a were invertible in ¢!(T'), then its inverse in ¢!(I') would be b and hence
b € £1(T'), which is a contradiction. Therefore a is not invertible in £}(T).

There are discrete amenable groups that contain two elements gener-
ating free subsemigroups [26], [28]. Actually, Frey showed that every dis-
crete amenable group with nonamenable subsemigroups has such elements [23].
Also, Chou showed that if a finitely generated elementary amenable group has
no finite-index nilpotent subgroups, then it contains such elements [9, Th. 3.2/].
We recall the examples in [28]. Consider the action of the multiplicative group
R* = R\ {0} on the additive group R by multiplication. One has the semi-
direct product group R x R*, which is R x R* as a set and has multiplication
(s1,t1) - (s2,t2) = (s1 + tis2,t1t2). For any 0 < a < 1/2, the subgroup I, of
R x R* generated by (1,a) and (1, —a) is 2-step solvable (and hence amenable),
and (1,a) and (1, —a) generate a free subsemigroup in T',.
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