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Compact group automorphisms,
addition formulas and

Fuglede-Kadison determinants

By Hanfeng Li

Abstract

For a countable amenable group Γ and an element f in the integral

group ring ZΓ being invertible in the group von Neumann algebra of Γ,

we show that the entropy of the shift action of Γ on the Pontryagin dual

of the quotient of ZΓ by its left ideal generated by f is the logarithm

of the Fuglede-Kadison determinant of f . For the proof, we establish an

`p-version of Rufus Bowen’s definition of topological entropy, addition for-

mulas for group extensions of countable amenable group actions, and an

approximation formula for the Fuglede-Kadison determinant of f in terms

of the determinants of perturbations of the compressions of f .

1. Introduction

There are two motivations for this paper. First, for topological or measure-

preserving actions of countable amenable groups, one has the entropy defined in

[57], [60]. But unlike the case of Z-actions or Zd-actions (for 2 ≤ d <∞), not

many examples have been calculated for nonabelian group actions. Second,

the study of automorphisms of compact metrizable groups has drawn much

attention in the development of ergodic theory, because of the rich interplay

between dynamics and compact group structures. Though the Z-actions of

compact metrizable groups by automorphisms are well understood (cf. [39],

[43], [52], [82], [81]), and much is known for Zd-actions (cf. [42], [73], [78],

[71], [67], [40], [41], [72], [21], [36]), very little has been understood for general

countable amenable group actions (cf. [3], [13], [17], [20], [54], [55]).

In this paper, we calculate the entropy for a rich class of actions of count-

able amenable groups on compact metrizable groups by automorphisms, pro-

viding some steps towards understanding the entropy theory of such algebraic

actions.
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Let Γ be a countable amenable group, and let f be an element in the

integral group ring ZΓ. One may consider the quotient ZΓ/ZΓf of ZΓ by the

left ideal ZΓf generated by f . Then Γ acts on the abelian group ZΓ/ZΓf by

automorphisms via left translation, and hence it acts on its Pontryagin dual

(a compact metrizable abelian group)

Xf := Ÿ�ZΓ/ZΓf

by automorphisms. Denote the latter action by αf . Explicitly, Xf consists of

elements h in (R/Z)Γ satisfying∑
γ∈Γ

fγhγ−1γ′ = 0

for all γ′ ∈ Γ, and the action αf is the restriction of the right shift action of Γ

on (R/Z)Γ to Xf , i.e., (γh)γ′ = hγ′γ for all h ∈ Xf and γ, γ′ ∈ Γ (see Section 3).

The topological entropy and the measure-theoretical entropy (with respect to

the normalized Haar measure) of αf coincide [13], and will be denoted by

h(αf ).

When Γ = Z, one may identify ZΓ with the one-variable Laurent poly-

nomial ring Z[u±1] via identifying 1 ∈ Z = Γ with u. Writing f ∈ ZΓ as

u−k(
∑n
j=0 cju

j) with n ≥ 0 and cnc0 6= 0, and denoting by λ1, . . . , λn the roots

of
∑n
j=0 cju

j , Yuzvinskĭı [82] showed that

(1) h(αf ) = log |cn|+
n∑
j=1

log+ |λj |,

where log+ t = log max(1, t) for t ≥ 0. In general, Yuzvinskĭi calculated the

entropy of any endomorphism of a compact metrizable group [82].

When Γ = Zd for some 1 ≤ d < ∞, one may identify ZΓ with the

d-variable Laurent polynomial ring Z[u±1
1 , . . . , u±1

d ] naturally. For nonzero f ∈
ZΓ = Z[u±1

1 , . . . , u±1
d ], Lind, Schmidt and Ward [42], [71] showed that

(2) h(αf ) = logM(f),

where M(f) is the Mahler measure of f ([50], [51]) defined as

M(f) = exp

Å∫
Td

log |f(s)| ds
ã

for T being the unit circle in C and Td being endowed with the normalized Haar

measure. (When f = 0, clearly h(αf ) = ∞.) This is the main step in their

calculation for the entropy of any action of Zd on a compact metrizable group

by automorphisms [42], [71]. In the case d = 1, the calculation (2) reduces to

(1) via Jensen’s formula.

Several years before Mahler introduced the Mahler measure, Fuglede and

Kadison [24] introduced a determinant detAf for invertible elements f in a
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unital C∗-algebra A with respect to a tracial state trA. It has found wide

application in the study of L2-invariants [48]. For a discrete group Γ, the group

ring ZΓ sits naturally in the left group von Neumann algebra LΓ. Furthermore,

LΓ has a canonical tracial state trLΓ. Thus one may consider detLΓf for

invertible f ∈ LΓ. When Γ = Zd, f ∈ ZΓ is invertible in LΓ if and only if f

has no zero point on Td. In such case, detLΓf is exactly M(f) [13].

In [13] Deninger pointed out the possibility of h(αf ) = log detLΓf for

general countable amenable groups Γ and f ∈ ZΓ, and confirmed it in the

special case that f is invertible in `1(Γ) (this is stronger than the condition

that f is invertible in LΓ; see Appendix A) and positive in LΓ and that Γ

has a log-strong Følner sequence. Deninger and Schmidt [17] also confirmed

it in the special case that f is invertible in `1(Γ) and that Γ is (amenable

and) residually finite. The connection between entropy, Mahler measure and

Fuglede-Kadison determinant has been further explored by Deninger in [15],

[16], [14].

Our main result in this paper is

Theorem 1.1. Let Γ be a countable amenable group, and let f ∈ ZΓ be

invertible in LΓ. Then

h(αf ) = log detLΓf.

One of the dynamical consequences of Theorem 1.1 and the general prop-

erties of the Fuglede-Kadison determinant is that under the hypothesis of The-

orem 1.1, the actions αf and αf∗ have the same entropy, where f∗ is the adjoint

of f defined as (f∗)γ = fγ−1 for all γ ∈ Γ. This is a very nontrivial fact, as

a priori there is no relation between αf and αf∗ unless f is in the center of ZΓ.

Our proof of Theorem 1.1 consists of three steps.

In the first step, we establish Theorem 1.1 under the further assumption

that f is positive in LΓ. Since the invertibility of f in LΓ means that f−1

exists as a bounded linear operator on `2(Γ), while Rufus Bowen’s definition of

topological entropy is taking the maximum of distances between finite orbits

of points and should be thought of an `∞-distance, we develop an `2-version

of his definition in Section 4, which is of independent interest. Then we prove

the positive case of Theorem 1.1 in Section 5, using an estimate of number of

integral points in balls and an approximation formula of Deninger for detLΓf

in such case.

In the second step, we prove the Yuzvinskĭı addition formula in Section 6,

which says that the entropy of a Γ-action on a compact metrizable group by

automorphisms is the sum of the entropy of the restriction of the action to

an invariant closed normal subgroup and the entropy of the induced action

on the quotient group. This formula allows us to reduce the calculation for

the entropy of one action to that for the entropy of simpler actions. In fact,
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we establish addition formulas for group extensions in both topological and

measure-theoretical settings, and the formula in either of these settings implies

the Yuzvinskĭı addition formula. The proof for each of these addition formulas

employs both topological and measure-theoretical tools, using generalization

of the various fibre and conditional entropies studied in [19], and the addition

formula for Γ-extensions in [79], [12] which in turn depends on Rudolph and

Weiss’s orbit equivalence method in [68].

The third step is to prove h(αf ) ≥ log detLΓf under the hypothesis in

Theorem 1.1. Compared to the positive case in step one, the main difficulty

here is that the compression of f to a nonempty finite subset of Γ map fail

to be invertible. Our method of dealing with this difficulty is to perturb the

compression of f to an invertible linear operator. For this purpose, in Section 7

we establish an approximation formula for log detLΓf in terms of the deter-

minants of the compressions. This uses an approximation formula for traces,

initiated by Lück in work on L2-invariants [47] and extended by Schick in [69].

We complete the third step in Section 8, using Ornstein and Weiss’s theory of

quasitiling in [60].

The proof of Theorem 1.1, which uses the fact that the Fuglede-Kadison

determinants of f and f∗ are equal, is finished in Section 9. Some dynamical

consequences of the theorem including the equality of h(αf ) and h(αf∗) are

also established there. We recall some background in Section 2 and give a

proof of the case Γ is finite in Section 3, which shows clearly how the entropy

and the Fuglede-Kadison determinant are connected via several equalities. In

an appendix, we compare invertibility in `1(Γ) and LΓ.

Recently, entropy has been defined for continuous actions of a countable

sofic group on compact metrizable spaces and measure-preserving actions of

a countable sofic group on standard probability measure spaces, with respect

to a sofic approximation sequence of the sofic group [4], [34]. The class of

sofic groups include all discrete amenable groups and residually finite groups.

The sofic entropies coincide with the classical entropies when the sofic group is

amenable [6], [35]. For a countable residually finite (not necessarily amenable)

group Γ and an f ∈ ZΓ, when the sofic approximation sequence of Γ comes from

a sequence of finite-index normal subgroups of Γ, in various cases it has been

shown that the sofic topological entropy and the sofic measure entropy (for the

normalized Haar measure of Xf ) of αf are equal to log detLΓf [5], [7], [34].

Throughout this paper, for a group G, we denote by eG the identity ele-

ment of G. For a discrete group Γ, we write C[[Γ]], R[[Γ]] and Z[[Γ]] for CΓ,

RΓ and ZΓ respectively. For a finite set F , we write C[F ] for CF and equip it

with the standard `2-norm. For a Hilbert space H, we denote by B(H) the set

of bounded linear operators on H, and equip it with the operator norm ‖ · ‖.
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2. Preliminaries

2.1. Background on entropy theory. In this subsection we recall some

background about the entropy theory. The reader is referred to [25], [57],

[61], [77] for details. Throughout this paper Γ will be a discrete amenable

group, unless specified otherwise. The amenability of Γ means that Γ has a

(left) Følner net {Fn}n∈J , i.e., each Fn is a nonempty finite subset of Γ, and

limn→∞
|KFn∆Fn|
|Fn| = 0 for every finite subset K of Γ [63].

The following subadditivity result is known as the Ornstein-Weiss lemma

[44, Th. 6.1].

Proposition 2.1. If ϕ is a real-valued function that is defined on the set

of nonempty finite subsets of Γ and satisfies

(1) 0 ≤ ϕ(F ) < +∞,

(2) ϕ(F ) ≤ ϕ(F ′) for all F ⊆ F ′,
(3) ϕ(Fγ) = ϕ(F ) for all nonempty finite F ⊆ Γ and γ ∈ Γ,

(4) ϕ(F ∪ F ′) ≤ ϕ(F ) + ϕ(F ′) if F ∩ F ′ = ∅,
then 1

|F |ϕ(F ) converges to some limit b as the set F becomes more and more

(left) invariant in the sense that for every ε > 0, there exist a nonempty finite

set K ⊆ Γ and a δ > 0 such that
∣∣∣ 1
|F |ϕ(F )− b

∣∣∣ < ε for all nonempty finite sets

F ⊆ Γ satisfying |KF∆F | ≤ δ|F |.

Let α be an action of Γ on a compact Hausdorff space X by homeomor-

phisms. For any open cover U of X and any nonempty finite subset F of Γ,

set UF =
∨
γ∈F γ

−1U and denote by N(U) the minimal number of elements in

U needed to cover X. Then the function F 7→ logN(UF ) defined on the set

of nonempty finite subsets of Γ satisfies the conditions in Proposition 2.1, and

hence 1
|F | logN(UF ) converges as F becomes more and more (left) invariant.

We denote this limit by htop(α,U). The topological entropy of α, denoted by

htop(α), is defined as the supremum of htop(α,U) over all finite open covers U

of X.
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Let α be an action of Γ on a probability space (X,B, µ) by automorphisms.

For any finite measurable partition P = {P1, . . . , Pk} of X and any nonempty

finite subset F of Γ, set PF =
∨
γ∈F γ

−1P and Hµ(P) =
∑k
j=1−µ(Pj) logµ(Pj),

where we take the convention that 0 log 0 = 0 so that the function t 7→ t log t

is continuous for 0 ≤ t ≤ 1. The function F 7→ Hµ(PF ) defined on the set of

nonempty finite subsets of Γ satisfies the conditions in Proposition 2.1, and

hence 1
|F | log Hµ(PF ) converges as F becomes more and more (left) invariant.

We denote this limit by hµ(α,P). The measure entropy or Kolmogorov-Sinai

entropy of α, denoted by hµ(α), is defined as the supremum of hµ(α,P) over

all finite measurable partitions P of X.

A topological space is called a Polish space if it is separable and admits a

compatible complete metric. A probability space (X,B, µ) is called a standard

if B is the Borel σ-algebra for some Polish topology on X. Suppose that

(X,B, µ) is standard and that B′ is a sub-σ-algebra of B. Then there is a

map E(·|B′) : L1(X,B, µ) → L1(X,B′, µ), called the conditional expectation,

determined by ∫
A
E(f |B′)(x) dµ(x) =

∫
A
f(x) dµ(x)

for every f ∈ L1(X,B, µ) and A ∈ B′. Here one can use either complex

or real valued functions for L1(X,B, µ) and L1(X,B′, µ). For any A ∈ B,

one has 0 ≤ E(1A|B′)(x) ≤ 1 for µ a.e. x ∈ X, where 1A denotes the

characteristic function of A. For any finite measurable partition P of X,

set Hµ(P|B′) =
∑
P∈P−

∫
P logE(1P |B′)(x) dµ(x). Now assume further that

B′ is Γ-invariant. Then the function F 7→ Hµ(PF |B′) defined on the set of

nonempty finite subsets of Γ satisfies the conditions in Proposition 2.1, and

hence 1
|F |Hµ(PF |B′) converges as F becomes more and more (left) invariant.

We denote this limit by hµ(α,P|B′). The conditional entropy of α given B′,

denoted by hµ(α|B′), is defined as the supremum of hµ(α,P|B′) over all finite

measurable partitions P of X.

For a compact space X, denote by BX the Borel σ-algebra of X. If α is

an action of Γ on a compact space X by homeomorphisms, and µ is a regular

Γ-invariant Borel probability measure on X, then α is also an action of Γ on

the probability space (X,BX , µ) by automorphisms.

Note that every (continuous) automorphism of a compact group preserves

the normalized Haar measure. Thus if α is an action of Γ on a compact group

G by automorphisms, it automatically preserves the normalized Haar measure

µ of G. Then we have both the topological entropy htop(α) and the measure

entropy hµ(α). It is a result of Deninger that these two entropies coincide [13,

Th. 2.2]. (It was assumed in [13, Th. 2.2] that G is abelian; but this is not

needed. The case Γ = Z was proved by Berg [2]; the case Γ = Zd was proved
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by Lind et al. [42, p. 624], [71, Th. 13.3].) Thus we shall denote htop(α) and

hµ(α) simply by h(α).

2.2. Background on group von Neumann algebras and Fuglede-Kadison

determinants. In this subsection we recall some background about the group

von Neumann algebra and the Fuglede-Kadison determinant.

For a Hilbert space H, the set B(H) is a ∗-algebra with T ∗ being the

adjoint of T , and it is equipped with the operator norm ‖ · ‖. A C∗-algebra

is a sub-∗-algebra of B(H) for some Hilbert space H, closed under ‖ · ‖. An

element a in A is called positive and written as a ≥ 0 if a = b∗b for some b ∈ A.

A tracial state of a unital C∗-algebra A is a linear functional trA : A→ C such

that trA takes value 1 at the identity of A, |trA(a)| ≤ ‖a‖ and trA(ab) = trA(ba)

for all a, b ∈ A. We refer the reader to [31], [75] for details.

In this paper we shall need only three classes of C∗-algebras and tracial

states. The first class is the C∗-algebra B(`2n) for each n ∈ N. Each B(`2n)

has a unique tracial state trB(`2n). If we take an orthonormal basis of `2n and

identify B(`2n) with Mn(C), then trB(`2)(a) = 1
n

∑n
j=1 aj,j for every matrix

a = (ai,j)1≤i,j≤n ∈Mn(C).

Let Γ be a discrete amenable group. The complex group algebra CΓ

consists of elements in CΓ with finite support. Its multiplication is defined as

(fg)γ′ =
∑
γ∈Γ fγgγ−1γ′ for all f, g ∈ CΓ and γ ∈ Γ. We shall also extend this

multiplication to the cases like g ∈ C[[Γ]], or f ∈ ZΓ and g ∈ (R/Z)Γ whenever

it can be defined. One may identify CΓ as a linear subspace of `2(Γ) naturally.

For each f ∈ CΓ, its left multiplication g 7→ fg for g ∈ CΓ extends to a

bounded linear map of `2(Γ). In this way we shall identify CΓ as a subalgebra

of B(`2(Γ)). It is easily checked that CΓ is closed under taking adjoint in

B(`2(Γ)). Explicitly, (f∗)γ = fγ−1 for all f ∈ CΓ and γ ∈ Γ. The second class

of C∗-algebras we need, the left group von Neumann algebra LΓ, is defined as

the closure of CΓ under the strong operator topology. Explicitly, LΓ consists of

T ∈ B(`2(Γ)) commuting with the right regular representation ρ of Γ on `2(Γ),

i.e., (T (hγ))γ′γ = (Th)γ′ for all h ∈ `2(Γ) and γ, γ′ ∈ Γ, where (hγ)γ′′γ = hγ′′

for all γ′′ ∈ Γ. The algebra LΓ has a canonical tracial state trLΓ defined as

trLΓ(a) = 〈aeΓ, eΓ〉. The trace trLΓ is faithful in the sense that if a ∈ LΓ is

positive and trLΓ(a) = 0, then a = 0. Throughout this article, we fix this

tracial state of LΓ, and the determinant detLΓ is calculated with respect to it.

Another way to describe the elements of LΓ is that they are the elements

h of C[[Γ]] for which the map from CΓ to `2(Γ) sending x to hx is well defined

and extends to a bounded linear operator on `2(Γ). It is easy to see that if h1

and h2 are in R[[Γ]], then h1 + ih2 is in LΓ if and only if both h1 and h2 are in

LΓ. It follows that if h ∈ R[[Γ]] ∩ LΓ is invertible in LΓ, then its inverse lies

in R[[Γ]] and hence preserves `2R(Γ).
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The third class of C∗-algebras we need is the unital commutative C∗-alge-

bras. They can be described as unital commutative Banach complex algebras

A with a ∗-operation satisfying (a∗)∗ = a, (λa+ b)∗ = λ̄a∗ + b∗, (ab)∗ = b∗a∗,

‖a∗‖ = ‖a‖ and ‖a∗a‖ = ‖a‖2 for all a, b ∈ A and λ ∈ C.

For a tracial state trA of a unital C∗-algebra A, the Fuglede-Kadison de-

terminant of an invertible a ∈ A with respect to trA [24] is defined as

(3) detAa := exp(trA log |a|) = exp

Å
1

2
trA log(a∗a)

ã
,

where |a| = (a∗a)1/2 is the absolute part of a. (The Fuglede-Kadison determi-

nant is also defined for noninvertible elements of A, but the definition is more

involved.) For details and applications of the Fuglede-Kadison determinant to

L2-invariants, see [48].

For any n ∈ N and any invertible a ∈ B(`2n), one has detB(`2n)(a) =

|det a|1/n.

Among many nice properties of the Fuglede-Kadison determinant, we shall

need the following ones.

Theorem 2.2. [24, Lemma 1, Th. 1] Let tr be a tracial state of a unital

C∗-algebra A. Then

(1) for any invertible a ∈ A, one has detA(a) = detA(a∗);

(2) for any 0 ≤ a ≤ b in A with a being invertible in A, one has detAa ≤
detAb.

3. Finite group case

In this section we prove Theorem 1.1 for the case Γ is finite. This case is

easily proved and appeared in [13, §7]. However, we choose to give a proof of

this case here, since it reveals the essence of the equality in Theorem 1.1.

The following lemma is well known [74, Lemma 4]. For the convenience

of the reader, we give a proof.

Lemma 3.1. Let n ∈ N, and let T : Cn → Cn be an invertible linear map,

preserving Zn. Then | detT | = |Zn/TZn|.

Proof. Note that TZn has rank n. By the elementary divisor theorem [37,

Th. III.7.8], there are a basis e1, . . . , en of Zn and nonzero integers k1, . . . , kn
such that k1e1, . . . , knen is a basis of TZn. Since Te1, . . . , T en is also a basis of

TZn, there exists Q ∈ GLn(Z) with (Te1, . . . , T en) = (k1e1, . . . , knen)Q. Then

the matrix of T under the basis e1, . . . , en is diag(k1, . . . , kn) ·Q. Thus

�(4) | detT | = | det(diag(k1, . . . , kn) ·Q)| =
∣∣∣∣∣ ∏

1≤j≤n
kj

∣∣∣∣∣ = |Zn/TZn|.
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Let Γ be a discrete amenable group, and let f ∈ ZΓ. The canonical pairing

between ZΓ and its Pontryagin dual ”ZΓ = (R/Z)Γ is given by

〈g, h〉 =
∑
γ∈Γ

gγhγ

for all g ∈ ZΓ and h ∈ (R/Z)Γ. It is easy to check that

〈gf, h〉 = 〈g, hf∗〉

for all g ∈ ZΓ and h ∈ (R/Z)Γ. It follows that Xf = {h ∈ (R/Z)Γ : hf∗ = 0}
and αf is the restriction of the left shift action of Γ on (R/Z)Γ to Xf . For

h ∈ (R/Z)Γ, denote by h̃ the “adjoint” element in (R/Z)Γ defined as h̃γ = hγ−1

for all γ ∈ Γ. Note that the map h 7→ h̃ is an automorphism of the compact

group (R/Z)Γ and intertwines the left and right shift actions of Γ. The image

of Xf under this map is {h ∈ (R/Z)Γ : fh = 0}. In the rest of this paper, we

shall write

Xf = {h ∈ (R/Z)Γ : fh = 0},(5)

and under this identification, αf is the restriction of the right shift action of Γ

on (R/Z)Γ to Xf .

Theorem 3.2. Let Γ be a finite group, and let f ∈ ZΓ be invertible in

LΓ. Then

h(αf ) =
1

|Γ|
log |Xf | =

1

|Γ|
log |ZΓ/fZΓ| = 1

|Γ|
log |det f | = log detLΓf.

Proof. From the definition of topological entropy, we have that h(αf ) =
1
|Γ| log |Xf |. Note that both Xf and ZΓ/fZΓ are abelian groups. We claim

that they are isomorphic. Writing (R/Z)Γ as RΓ/ZΓ, we may identify Xf with

{g ∈ RΓ : fg ∈ ZΓ}/ZΓ. Since the left multiplication by f restricts to a group

automorphism of RΓ and sends ZΓ onto fZΓ, the claim is proved. It follows

that |Xf | = |ZΓ/fZΓ|.
By Lemma 3.1 one has |ZΓ/fZΓ| = | det f |. Note that the unique tra-

cial state of B(`2(Γ)) restricts to the canonical trace of LΓ. Thus detLΓf =

detB(`2(Γ))f = |det f |
1
|Γ| . �

Notation 3.3. For any nonempty finite subset F of Γ, denote by pF the

restriction map C[[Γ]] → C[F ] and by ιF the embedding C[F ] → `2(Γ). For

f ∈ LΓ, set fF := pF ◦ f ◦ ιF ∈ B(C[F ]).

Now consider the case Γ is infinite countable. Let {Fn}n∈N be a (left)

Følner sequence of Γ, and let f ∈ ZΓ be invertible in LΓ. Since Fn is the
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analogue of a finite group, the analogue of Theorem 3.2 is

h(αf ) = lim
ε→0

1

|Fn|
log sFn,∞(ε) =

1

|Fn|
log |Z[Fn]/fFnZ[Fn]|

=
1

|Fn|
log |det fFn | = log detLΓf

for each n ∈ N, where sFn,∞(ε) is the cardinality of certain set resembling

Xf restricted to Fn and will be defined at the beginning of Section 5. On the

other hand, Fn approximates Γ as n→∞. Thus a more precise and reasonable

analogue of Theorem 3.2 is

h(αf ) = lim
ε→0

lim
n→∞

1

|Fn|
log sFn,∞(ε) = lim

n→∞
1

|Fn|
log |Z[Fn]/fFnZ[Fn]|(6)

= lim
n→∞

1

|Fn|
log |det fFn | = log detLΓf.

Indeed, this is the intuition behind Theorem 1.1. But there is some immedi-

ate difficulty even for making sense of (6). For instance, fFn may fail to be

invertible. In such case, |Z[Fn]/fFnZ[Fn]| =∞ and det fFn = 0.

4. `p-version of R. Bowen’s definition of topological entropy

In this section we prove Theorem 4.2, providing an `p-version of R. Bowen’s

definition of topological entropy. Throughout this section Γ is a discrete

amenable group.

Let α be an action of Γ on a compact Hausdorff space X by homeomor-

phisms. Recall that a continuous pseudometric on X is a symmetric continuous

map X×X → R+, vanishing on the diagonal of X×X and satisfying the trian-

gle inequality. Denote by M the set of all continuous pseudometrics on X. Let

ϑ ∈M. For a nonempty finite subset F ⊆ Γ, 1 ≤ p ≤ ∞ and x, y ∈ X, denote

by dϑ,F,p(x, y) the quotient of the `p-norm of the function γ 7→ ϑ(γx, γy) on F

divided by |F |1/p. We say that E ⊆ X is [ϑ, F, p, ε]-separated if for any x 6= y in

E, dϑ,F,p(x, y) > ε. We say that E ⊆ X is [ϑ, F, p, ε]-spanning if for any x ∈ X,

there is some y ∈ E with dϑ,F,p(x, y) ≤ ε. Denote by sϑ,F,p(ε) (rϑ,F,p(ε) resp.)

the maximal (minimal resp.) cardinality of [ϑ, F, p, ε]-separated ([ϑ, F, p, ε]-

spanning resp.) subsets of X.

Lemma 4.1. Let α be an action of Γ on a compact Hausdorff space X by

homeomorphisms. Let ϑ be a continuous pseudometric of X . For any ε > 0,

λ > 1 and 1 ≤ p < ∞, there exists some ε′ > 0 such that λ|F |sϑ,F,p(ε
′) ≥

sϑ,F,∞(ε) for all nonempty finite subsets F of Γ.

Proof. Cover X by finitely many, say M , closed ϑ-balls of radius ε/2. By

Stirling’s formula there is some c ∈ (0, 1/2) such that
( n
cn

)
≤ λn/2 for all n ∈ N.

We may assume that M c ≤ λ1/2. Set ε′ = c
1
p ε/2.
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Let F be a nonempty finite subset of Γ, and let E be a [ϑ, F,∞, ε]-separated

subset of X with |E| = sϑ,F,∞(ε). For each x ∈ E, denote by B(x, ε/2) the set

of elements y in E such that |{γ ∈ F : ϑ(γx, γy) > ε/2}| < c|F |. If x and y

are in E and y 6∈ B(x, ε/2), then

dϑ,F,p(x, y) >
((ε/2)pc|F |)1/p

|F |1/p
= (ε/2)c1/p = ε′.

Take a subset E′ of E maximal with respect to the property that for any

x 6= y in E′, y /∈ B(x, ε/2). Then
⋃
x∈E′ B(x, ε/2) = E and E′ is [ϑ, F, p, ε′]-

separated. Denote by D the maximum of |B(x, ε/2)| over all x ∈ E. Then

D|E′| ≥ |E|. Thus it suffices to show that λ|F | ≥ D.

Fix x ∈ E. For any y ∈ B(x, ε/2), there is some Ky ⊆ F with |Ky| =

bc|F |c and ϑ(γx, γy) ≤ ε/2 for all γ ∈ F \Ky, where btc denotes the largest

integer no bigger than t. Then there are a subset B′ of B(x, ε/2) with |B′| ≥
|B(x, ε/2)|/

( |F |
c|F |
)

and a subset K of F with |K| = bc|F |c such that Ky = K

for all y ∈ B′. Then ϑ(γy, γz) ≤ ϑ(γy, γx)+ϑ(γx, γz) ≤ ε for all y, z ∈ B′ and

γ ∈ F \K. Note that, as a subset of E, B′ is [ϑ, F,∞, ε]-separated. It follows

that for any y 6= z in B′, there is some γ in K with ϑ(γy, γz) > ε. Then γy

and γz must lie in different closed balls which we take at the beginning of the

proof. Consequently, |B′| ≤M |K|. Therefore

|B(x, ε/2)| ≤ |B′|
Ç
|F |
c|F |

å
≤M c|F |λ|F |/2 ≤ λ|F |.

This finishes the proof of the lemma. �

We say that an open subset U of X is generated by ϑ if U is in the

weakest topology of X making ϑ continuous; i.e., U is a union of open ϑ-balls

with positive radii. We say that a finite open cover U = {U1, . . . , Un} of X is

generated by ϑ if each Uj is generated by ϑ. For any nonempty finite subset

F of Γ, we define ϑF ∈ M by setting ϑF (x, y) = maxγ∈F ϑ(γx, γy) for all

x, y ∈ X. We say that an open subset U of X is generated by ϑ under α if

U is contained in the weakest topology on X making all the pseudometrics

(x, y) 7→ ϑ(γx, γy) continuous; equivalently, U is a union of open sets UF
generated by ϑF for F running over nonempty finite subsets of Γ. We say that

the topology of X is generated by ϑ under α if the topology on X is exactly the

weakest topology making all the pseudometrics (x, y) 7→ ϑ(γx, γy) continuous.

Having zero ϑ-distance is an equivalence relation on X. For x ∈ X, denote

by [x] its equivalence class. Denote by Xϑ the quotient space of X consisting

of all such equivalence classes, equipped with the quotient topology. Then ϑ

induces a metric on Xϑ. Equip (Xϑ)Γ with the right shift action of Γ. It is

easy to see that the topology of X is generated by ϑ under α if and only if the

natural Γ-equivariant continuous map X → (Xϑ)Γ sending x to γ 7→ [γx] is an
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embedding, if and only if any two points x and y of X are equal exactly when

ϑ(γx, γy) = 0 for all γ ∈ Γ. We say that a finite open cover U = {U1, . . . , Un}
of X is generated by ϑ under α if each Uj is so.

The case p = ∞ and Γ = Zd of the following theorem was proved by

Schmidt [71, Prop. 13.7], and the case p = ∞ for general Γ was proved by

Deninger [13, Prop. 2.3]. For completeness we include also a proof for the case

p =∞ here.

Theorem 4.2. Let α be an action of Γ on a compact Hausdorff space X

by homeomorphisms. Let ϑ be a continuous pseudometric of X . Let {Fn}n∈J
be a (left) Følner net of Γ. For any 1 ≤ p ≤ ∞, we have

sup
U

htop(α,U) = lim
ε→0

lim sup
n→∞

1

|Fn|
log sϑ,Fn,p(ε) = lim

ε→0
lim inf
n→∞

1

|Fn|
log sϑ,Fn,p(ε)

= lim
ε→0

lim sup
n→∞

1

|Fn|
log rϑ,Fn,p(ε) = lim

ε→0
lim inf
n→∞

1

|Fn|
log rϑ,Fn,p(ε),

where U runs through all finite open covers of X generated by ϑ under α. In

particular, if the topology of X is generated by ϑ under α, then we have

htop(α) = lim
ε→0

lim sup
n→∞

1

|Fn|
log sϑ,Fn,p(ε) = lim

ε→0
lim inf
n→∞

1

|Fn|
log sϑ,Fn,p(ε)

= lim
ε→0

lim sup
n→∞

1

|Fn|
log rϑ,Fn,p(ε) = lim

ε→0
lim inf
n→∞

1

|Fn|
log rϑ,Fn,p(ε).

Proof. We prove first the theorem for p =∞. Note that

rϑ,F,∞(ε) ≤ sϑ,F,∞(ε) ≤ rϑ,F,∞(ε/2).

Thus it suffices to show that

sup
U

htop(α,U) ≥ lim
ε→0

lim sup
n→∞

1

|Fn|
log sϑ,Fn,∞(ε)

and

sup
U

htop(α,U) ≤ lim
ε→0

lim inf
n→∞

1

|Fn|
log sϑ,Fn,∞(ε).

Let ε > 0. Take a finite open cover U of X consisting of open ϑ-balls with

radius ε/2. Then U is generated by ϑ. We have sϑ,F,∞(ε) ≤ N(UF ) for every

nonempty finite subset F of Γ, and hence lim supn→∞
1
|Fn| log sϑ,Fn,∞(ε) ≤

htop(α,U). Therefore limε→0 lim supn→∞
1
|Fn| log sϑ,Fn,∞(ε) ≤ supU htop(α,U).

Let U be a finite open cover of X generated by ϑ under α. Then we can

find a finite open cover V of X finer than U such that V is generated by ϑK for

some nonempty finite subset K of Γ. It follows that there exists some ε > 0

such that every open ϑK-ball with radius 3ε is contained in some element of V.

Cover X by finitely many, say M , open ϑ-balls with radius ε. We have

M |KF\F |rϑ,F,∞(ε) ≥ rϑ,KF,∞(2ε) ≥ N(VF ) ≥ N(UF )
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for every nonempty finite subset F of Γ; hence lim infn→∞
1
|Fn| log rϑ,Fn,∞(ε) ≥

htop(α,U). Therefore limε→0 lim infn→∞
1
|Fn| log rϑ,Fn,∞(ε) ≥ supU htop(α,U).

This proves the case p =∞.

Now the case 1 ≤ p <∞ follows from the case p =∞, the facts sϑ,F,p(ε) ≤
sϑ,F,∞(ε) and rϑ,F,p(ε) ≤ sϑ,F,p(ε) ≤ rϑ,F,p(ε/2), and Lemma 4.1. �

5. Positive case

In this section we show that the intuitive equalities (6) do hold when f

is positive (Theorem 5.6). This proves Theorem 1.1 in such case. Throughout

this section Γ is a discrete amenable group.

Denote by ϑ the metric on R/Z induced from the standard metric on R,

i.e., ϑ(t mod Z, t′ mod Z) = minm∈Z |t − t′ − m|. Recall the identification

(5). Via the projection Xf → R/Z sending x to xeΓ , we shall think of ϑ as a

continuous pseudometric on Xf . Clearly the topology of Xf is generated by

ϑ under αf . Thus we can apply Theorem 4.2. We shall make use of the cases

p = 2 and p =∞. We shall abbreviate sϑ,F,p(ε) as sF,p(ε) etc.

The following result is crucial for the comparison of sF,p(ε), rF,p(ε) and

|Z[Fn]/fFnZ[Fn]|.

Lemma 5.1. There exists some universal constant C > 0 such that for

any λ > 1, there is some δ > 0 so that for any nonempty finite set Y , any

positive integer n with |Y | ≤ δn and any M ≥ 1, one has

|{x ∈ Z[Y ] : ‖x‖2 ≤M · n1/2}| ≤ CλnM |Y |.

Proof. Let δ > 0 be a small number less than e−1, which we shall deter-

mine later. Let Y be a nonempty finite set and n be a positive integer with

|Y | ≤ δn. For each x ∈ Z[Y ], denote {z ∈ R[Y ] : 0 ≤ zy−xy ≤ 1 for all y ∈ Y }
by Dx. Denote {x ∈ Z[Y ] : ‖x‖2 ≤ M · n1/2} by S, and denote the union of

Dx for all x ∈ S by DS . Then the (Euclidean) volume of DS is equal to |S|.
Note that ‖z‖2 ≤M · n1/2 + n1/2 ≤ 2Mn1/2 for every z ∈ DS .

A simple calculation shows that the function ς(t) := (n/t)t/2 is increas-

ing for 0 < t ≤ ne−1. The volume of the unit ball of R[Y ] under ‖ · ‖2 is

π|Y |/2/(|Y |/2)! [11, p. 9]. By Stirling’s formula there exists some constant

C ′ > 0 such that m! ≥ C ′
√
m(me )m for all m ≥ 1. Thus the volume of DS is

no bigger than

(π|Y |/2(2Mn1/2)|Y |)/(|Y |/2)!≤(π|Y |/2(2Mn1/2)|Y |)/(C ′
»
|Y |/2(|Y |/(2e))|Y |/2)

≤CC |Y |1 (n/|Y |)|Y |/2M |Y | = CC
|Y |
1 ς(|Y |)M |Y |

≤CCδn1 ς(δn)M |Y | = CCδn1 δ−δn/2M |Y |,
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where C =
√

2/C ′ and C1 = 2
√

2eπ. Take δ > 0 so small that Cδ1δ
−δ/2 ≤ λ.

Then the volume of DS is no bigger than CλnM |Y |. Consequently, |S| ≤
CλnM |Y |. �

We need the following result of Deninger. (Note that the assumption in

[13, Cor. 3.4] that Γ is finitely generated is not needed.) In Corollary 7.2 we

shall generalize the equality part to nonpositive elements in the presence of

perturbations. Recall the notations pF and fF in Notation 3.3.

Lemma 5.2. [13, Th. 3.2, Prop. 3.3, Cor. 3.4] Let f ∈ ZΓ be invertible

and positive in LΓ. Then fF is invertible and ‖(fF )−1‖ ≤ ‖f−1‖ for every

nonempty finite subset F of Γ, and

detLΓf = lim
n→∞

|det fFn |1/|Fn| = lim
n→∞

|Z[Fn]/fFnZ[Fn]|1/|Fn|

for any (left) Følner net {Fn}n∈J of Γ.

Notation 5.3. For f ∈ CΓ, denote by Kf the union of the supports of f

and f∗, and the identity of Γ.

Lemma 5.4. Let f ∈ ZΓ be invertible and positive in LΓ. Then for any

λ > 1 and ε > 0, there is some δ > 0 such that when a nonempty finite subset

F ⊆ Γ satisfies |K2
fF \ F | ≤ δ|F | we have

sF,2(ε) ≤ Cλ|F ||Z[F ]/fFZ[F ]|,

where C is the universal constant in Lemma 5.1.

Proof. Write K for Kf . Take 1 > δ > 0 such that (‖f−1‖ · ‖f‖ · 21/2)δ ≤
λ1/2 and δ1/2‖f−1‖ ·‖f‖1 ≤ ε, and that δ satisfies the conclusion of Lemma 5.1

for λ′ = λ1/2. Let F satisfy the hypothesis.

Take an [F, 2, ε]-separated subset E ⊆ Xf with |E| = sF,2(ε). For each

x ∈ E denote by x̃ the element in [0, 1)Γ such that x is the image of x̃ under

the natural map [0, 1)Γ → (R/Z)Γ. Then fx̃ ∈ Z[[Γ]], and hence pF (fx̃) ∈
Z[F ]. Denote by ϕF the quotient map Z[F ] → Z[F ]/fFZ[F ]. We get a map

ψ : E → Z[F ]/fFZ[F ] sending x to ϕF (pF (fx̃)). It suffices to show that for

any a ∈ Z[F ]/fFZ[F ], the preimage of a under ψ has at most Cλ|F | elements.

Fix a ∈ Z[F ]/fFZ[F ] and y ∈ ψ−1(a).

For each x ∈ E, set x′ = pKF (x̃). We shall identify C[KF ] naturally

as a subspace of `2(Γ) via the embedding ιKF in Notation 3.3. Note that

ψ(x) = ϕF (pF (fx′)). Suppose that x ∈ ψ−1(a). Then pF (f(x′ − y′)) lies in

fFZ[F ], and hence

pF (f(x′ − y′)) = fF (hx)(7)

for some hx ∈ Z[F ]. Set zx = f(x′ − y′)− fhx. Then

pF (zx) = pF (f(x′ − y′)− fhx) = pF (f(x′ − y′))− fF (fhx) = 0.
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Thus zx is in RΓ and vanishes on F , and

f(x′ − y′) = fhx + zx.(8)

By Lemma 5.2, the linear operator fF is invertible and ‖(fF )−1‖ ≤ ‖f−1‖.
From (7) we get

hx = (fF )−1(pF (f(x′ − y′))).
Thus

‖hx‖2≤‖(fF )−1‖ · ‖f‖ · ‖x′ − y′‖2 ≤ ‖f−1‖ · ‖f‖ · ‖x′ − y′‖∞ · |KF |1/2

≤‖f−1‖ · ‖f‖ · |KF |1/2 ≤ ‖f−1‖ · ‖f‖ · 21/2 · |F |1/2,

and hence

‖pKF\F (fhx)‖2 ≤ ‖f‖ · ‖hx‖2 ≤ ‖f−1‖ · ‖f‖2 · 21/2 · |F |1/2.

By Lemma 5.1, one has

|{pKF\F (fhx) : x ∈ ψ−1(a)}| ≤Cλ|F |/2(‖f−1‖ · ‖f‖2 · 21/2)|KF\F |

≤Cλ|F |/2(‖f−1‖ · ‖f‖2 · 21/2)δ|F |

≤Cλ|F |.

Thus we can find a subset W ⊆ ψ−1(a) with Cλ|F ||W | ≥ |ψ−1(a)| such that

pKF\F (fhx1) = pKF\F (fhx2) for all x1, x2 ∈ W . Let x1, x2 ∈ W . Applying

(8) to x = x1 and x = x2 respectively, we get

f(x′1 − x′2) = f(x′1 − y′)− f(x′2 − y′) = f(hx1 − hx2) + (zx1 − zx2).

Since f(hx1 − hx2) has support contained in F , while zx1 − zx2 has support

contained in K2F \ F , one has

‖zx1 − zx2‖2 = ‖pK2F\F (f(x′1 − x′2))‖2 ≤ ‖f(x′1 − x′2)‖∞ · |K2F \ F |1/2

≤‖f‖1 · ‖x′1 − x′2‖∞ · |K2F \ F |1/2 ≤ δ1/2‖f‖1 · |F |1/2,

and hence

‖pF (f−1(zx1 − zx2))‖2≤‖f−1(zx1 − zx2)‖2 ≤ ‖f−1‖ · ‖zx1 − zx2‖2
≤ δ1/2‖f−1‖ · ‖f‖1 · |F |1/2 ≤ ε|F |1/2.

If x1 6= x2, then

‖pF (f−1(zx1 − zx2))‖2 = ‖pF ((x′1 − x′2)− (hx1 − hx2))‖2
≥ dF,2(x1, x2)|F |1/2 > ε|F |1/2,

which is a contradiction. Therefore W contains at most one point. Thus

|ψ−1(a)| ≤ Cλ|F ||W | ≤ Cλ|F |,

as desired. �
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For an abelian group G, denote by Gtor the subgroup of torsion elements.

If f ∈ ZΓ and fF is invertible for some nonempty finite subset F of Γ, then

fFZ[F ] has rank |F |, and hence Z[F ]/fFZ[F ] is a finite group. In the case, we

shall apply the following result.

Lemma 5.5. Let f ∈ ZΓ be invertible in LΓ. Then for any λ > 1, there

is some δ > 0 such that for any nonempty finite subset F ⊆ Γ satisfying

|KfF \ F | ≤ δ|F |, we have

Cλ|F |sF,∞

Ç
1

2‖f‖1

å
≥ |(Z[F ]/fFZ[F ])tor|,

where C is the universal constant in Lemma 5.1.

Proof. Write K for Kf . Set D = 4‖f‖1 and ε = 2D−1. Take δ > 0 such

that (D · ‖f‖ · ‖f−1‖)δ ≤ λ1/2 and that δ satisfies the conclusion of Lemma 5.1

for λ′ = λ1/2. Let F satisfy the hypothesis.

Denote Z[F ]/fFZ[F ] by G. Let x ∈ Gtor. Take x̃ ∈ Z[F ] such that the

image of x̃ in G under the quotient map Z[F ]→ G is equal to x. Then

kx̃ = fFw

for some positive integer k and some w ∈ Z[F ]. Write 1
kw as w1 + w2 for

some w1 ∈ Z[F ] and w2 ∈ [0, 1)F . Then x̃ = fFw1 + fFw2 and ‖fFw2‖2 ≤
‖f‖ · ‖w2‖2 ≤ ‖f‖ · |F |1/2. Note that x̃ and fFw2 have the same image in G.

Thus we may replace x̃ by fFw2 and hence assume that ‖x̃‖2 ≤ ‖f‖ · |F |1/2.

Denote by ϕ the quotient map R[[Γ]]→ (R/Z)[[Γ]]. We identify C[F ] with

a subspace of `2(Γ) naturally. For any x ∈ Gtor, we have

fϕ(f−1x̃) = ϕ(f(f−1x̃)) = ϕ(x̃) = 0

in (R/Z)[[Γ]], and hence ϕ(f−1x̃) ∈ Xf by (5). This defines a map ψ : Gtor →
Xf sending x to ϕ(f−1x̃).

For each x ∈ Gtor, pick wx ∈ 1
DZ[KF \ F ] such that

‖wx − pKF\F (f−1x̃)‖∞ ≤ 1/D = ε/2

and |wx(t)| ≤ |(f−1x̃)(t)| for all t ∈ KF \ F . Then Dwx ∈ Z[KF \ F ] and

‖Dwx‖2 ≤ D‖pKF\F (f−1x̃)‖2 ≤ D · ‖f−1‖ · ‖x̃‖2 ≤ D · ‖f‖ · ‖f−1‖ · |F |1/2.
By Lemma 5.1, one has

|{Dwx : x ∈ Gtor}| ≤Cλ|F |/2(D · ‖f‖ · ‖f−1‖)|KF\F |

≤Cλ|F |/2(D · ‖f‖ · ‖f−1‖)δ|F |

≤Cλ|F |.

Thus we can find a subset W ⊆ Gtor with Cλ|F ||W | ≥ |Gtor| such that wx = wy
for all x, y ∈W .
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Now it suffices to show that ψ injects W into an [F,∞, ε]-separated subset

of Xf . Suppose that x 6= y in W and dF,∞(ψ(x), ψ(y)) ≤ ε. From the definition

of dF,∞, we have

dF,∞(ψ(x), ψ(y)) = max
γ∈F

ϑ((αf )γ(ψ(x)), (αf )γ(ψ(y)))

= max
γ∈F

ϑ((ψ(x))γ , (ψ(y))γ).

For each γ ∈ F , one gets

min
m∈Z
|(f−1x̃)γ − (f−1ỹ)γ −m| = ϑ((ψ(x))γ , (ψ(y))γ) ≤ ε,

and thus there exists hγ ∈ Z with |(f−1x̃)γ−(f−1ỹ)γ−hγ | ≤ ε. Define h ∈ Z[F ]

to be the element with value hγ for every γ ∈ F . Set

z = f−1x̃− f−1ỹ − h ∈ R[[Γ]].

Then ‖z|F ‖∞ ≤ ε. Since x and y are in W , we have wx = wy, and hence

‖z|KF\F ‖∞= ‖pKF\F (f−1x̃)− pKF\F (f−1ỹ)‖∞
≤‖pKF\F (f−1x̃)− wx‖∞ + ‖pKF\F (f−1ỹ)− wy‖∞ ≤ ε.

Write z as z1 + z2 such that the supports of z1 and z2 are contained in

KF and Γ \ KF respectively. Note that pF (fz) = pF (fz1) and ‖z1‖∞ ≤ ε.

Consequently,

‖pF (fz)‖∞ = ‖pF (fz1)‖∞ ≤ ‖fz1‖∞ ≤ ‖f‖1 · ‖z1‖∞ ≤ ε‖f‖1 = 1/2.

We have

x̃− ỹ = pF (x̃− ỹ) = pF (fh) + pF (fz) = fFh+ pF (fz).

Since x̃ − ỹ and fFh are both in Z[F ], we must have pF (fz) = 0. Therefore

x̃− ỹ = fFh ∈ fFZ[F ], contradicting the assumption x 6= y. This finishes the

proof of the lemma. �

Theorem 5.6. Let Γ be an infinite amenable group, and let f ∈ ZΓ be

positive and invertible in LΓ. Let {Fn}n∈J be a (left) Følner net of Γ. Then

for any 1/(2‖f‖1) ≥ ε > 0, one has

h(αf ) = lim
n→∞

1

|Fn|
log sFn,∞(ε) = lim

n→∞
1

|Fn|
log |Z[Fn]/fFnZ[Fn]|

= lim
n→∞

1

|Fn|
log | det fFn | = log detLΓf.

Proof. By Theorem 4.2 and Lemma 5.4, one has

h(αf ) ≤ lim inf
n→∞

1

|Fn|
log |Z[Fn]/fFnZ[Fn]|.

By Lemma 5.2, each fFn is invertible, and hence

(Z[Fn]/fFnZ[Fn])tor = Z[Fn]/fFnZ[Fn].
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Thus by Theorem 4.2 and Lemma 5.5, one has

h(αf ) ≥ lim sup
n→∞

1

|Fn|
log sFn,∞(ε) ≥ lim sup

n→∞

1

|Fn|
log |Z[Fn]/fFnZ[Fn]|

and

lim inf
n→∞

1

|Fn|
log sFn,∞(ε) ≥ lim inf

n→∞
1

|Fn|
log |Z[Fn]/fFnZ[Fn]|.

Then the first two equalities of the theorem follow. The last two equalities of

the theorem come from Lemma 5.2. �

6. Addition formulas

In this section we establish addition formulas for the entropy of group

extensions, in both topological and measure-theoretical settings (Theorems 6.1

and 6.2). From these formulas we deduce the Yuzvinskĭı addition formula

(Corollary 6.3) and use it to obtain a formula for the entropy of products fg

(Corollaries 6.5 and 6.6). Throughout this section Γ is a countable amenable

group.

Let αX , αY and αG be actions of Γ on compact metrizable spaces X, Y

and G by homeomorphisms respectively. A factor map X → Y is a continuous

surjective Γ-equivariant map. We say that αX is a (right) G-extension of αY
if there are a factor map π : X → Y and a continuous map P : X × G → X

sending (x, g) to xg such that π−1(π(x)) = xG, xg = xg′ only when g = g′, and

γ(xg) = γ(x)γ(g) for all x ∈ X, g, g′ ∈ G and γ ∈ Γ. (Usually G is a compact

metrizable group, (xg)g′ = x(gg′), and Γ acts on G by automorphisms; but

this is not necessary.) The case Γ = Z of the following theorem was proved by

R. Bowen [8, Th. 19].

Theorem 6.1 (Topological Addition Formula). Let αX , αY and αG be

actions of Γ on compact metrizable spaces X , Y and G by homeomorphisms re-

spectively. If αX is a G-extension of αY , then htop(αX) = htop(αY )+htop(αG).

Let αY be an action of Γ on a standard probability space (Y,BY , µ) by

automorphisms. Also let αG be an action of Γ on a compact metrizable group

G as (continuous) automorphisms. Endow G with its Borel σ-algebra BG and

normalized Haar measure ν. Note that every automorphism of G preserves ν.

A cocycle for αY and αG is a measurable map σ : Γ× Y → G such that

σ(γ1γ2, y) = σ(γ1, γ2y) · γ1(σ(γ2, y))(9)

for all γ1, γ2 ∈ Γ and y ∈ Y . Given a cocycle σ, one can define a skew product

action αY ×σαG of Γ on the standard probability space (Y ×G,BY ×BG, µ×ν)

by automorphisms, by

γ(y, g) = (γy, σ(γ, y) · (γg))(10)
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for γ ∈ Γ, y ∈ Y and g ∈ G. It is clear that the projection Y × G → Y is a

factor map for the actions αY ×σαG and αY in the sense that it is Γ-equivariant,

measurable and measure-preserving. The action αY ×σ αG is called a group

extension of the action αY . The case Γ = Z of the following theorem was

proved by Thomas [76], and the case Γ = Zd for 2 ≤ d < ∞ was proved by

Lind et al. [42, Th. B.1].

Theorem 6.2 (Measure-theoretical Addition Formula). Let αY and αG
be actions of Γ on a standard probability space (Y,BY , µ) and a compact metriz-

able group G by automorphisms respectively. Let σ be a cocycle for αY and

αG. Then

hµ×ν(αY ×σ αG) = hµ(αY ) + h(αG).

As a direct consequence of Theorem 6.1 we obtain the following Yuzvinskĭı

addition formula, for which the case Γ = Z was proved by Yuzvinskĭı [81] and

the case Γ = Zd for 2 ≤ d <∞ was proved by Lind et al. [42, Cor. B.2] (see also

[71, Th. 14.1]). The case Γ = Z∞ and G is abelian was proved by Miles [53,

Prop. 5.1]. The case Γ is locally normal and G is abelian and zero-dimensional

was proved by Miles and Björklund [54, Th. 3.1].

Corollary 6.3 (Yuzvinskĭı Addition Formula). Let αG1 , αG2 and αG3

be actions of Γ on compact metrizable groups G1, G2, G3 as (continuous) au-

tomorphisms respectively. Suppose that there is a Γ-equivariant short exact

sequence of compact groups

1 −→ G1 −→ G2 −→ G3 −→ 1.

Then h(αG2) = h(αG1) + h(αG3).

One can also obtain Corollary 6.3 from Theorem 6.2 via a standard pro-

cedure, as follows.

Proof of Corollary 6.3 using Theorem 6.2. We may identify G1 with its

image in G2. Denote by π the map G2 → G3. Every continuous open surjective

map between compact metrizable spaces has a Borel cross section [1, Th. 3.4.1].

Thus we can find a Borel map ψ : G3 → G2 such that π ◦ψ is the identity map

on G3. It is easily verified that the map φ : G3 ×G1 → G2 sending (g3, g1) to

ψ(g3)g1 is an isomorphism from the measurable space (G3 × G1,BG3 × BG1)

onto the measurable space (G2,BG2). Furthermore, denoting the normalized

Haar measure on Gj by νj , one sees that φ(ν3×ν1) is left-translation invariant

and hence φ(ν3 × ν1) = ν2. It is also readily checked that the map σ : Γ×G3

→ G1 defined by σ(γ, g3) = (ψ(γg3))−1 · γ(ψ(g3)) is a cocycle for the actions

αG3 and αG1 , and that φ intertwines the actions αG3 ×σ αG1 and αG2 . Thus

h(αG2) = hν3×ν1(αG3×σαG1). Theorem 6.2 implies that hν3×ν1(αG3×σαG1) =

hν3(αG3) + h(αG1). Therefore, h(αG2) = h(αG3) + h(αG1) as desired. �
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Now we use Corollary 6.3 to obtain a formula for the entropy of fg. Recall

that an element b of a ring R is called a right zero divisor if ab = 0 for some

nonzero element a of R. The following result was pointed out by Deninger [13,

p. 757]. For the convenience of the reader, we give a proof here.

Lemma 6.4. Let f, g ∈ ZΓ. Then one has a Γ-equivariant short sequence

of compact groups

1 −→ Xg −→ Xfg −→ Xf → 1,

where the homomorphism Xfg → Xf is given by left multiplication by g. It is

exact at Xg and Xfg . If furthermore g is not a right zero divisor of ZΓ, then

the above sequence is exact.

Proof. The dual sequence of the above one is the following:

0←− ZΓ/ZΓg ←− ZΓ/ZΓfg ←− ZΓ/ZΓf ←− 0,(11)

where the homomorphism ZΓ/ZΓfg ← ZΓ/ZΓf is given by right multiplica-

tion by g. By the Pontryagin duality, it suffices to show that (11) is exact at

the corresponding places. Clearly it is exact at ZΓ/ZΓg and ZΓ/ZΓfg. Now

assume that g is not a right zero divisor of ZΓ. Suppose that x ∈ ZΓ/ZΓf and

xg = 0 in ZΓ/ZΓfg. Say x is represented by x̃ in ZΓ. Then x̃g = z̃fg in ZΓ

for some z̃ ∈ ZΓ. Since g is not a right zero divisor in ZΓ, we have x̃ = z̃f in

ZΓ. Consequently, x = 0 and hence (11) is also exact at ZΓ/ZΓf . �

If α is an action of Γ on a compact Hausdorff space X by homeomorphisms

and Y is a closed invariant subspace of X, then α restricts to an action β of

Γ on Y , and from the definition of topological entropy one can see easily that

htop(α) ≥ htop(β). Combining this fact with Corollary 6.3 and Lemma 6.4, we

obtain the following product formula.

Corollary 6.5. Let f, g ∈ ZΓ. Then h(αfg) ≤ h(αf ) + h(αg). Further-

more, if g is not a right zero divisor in ZΓ, then h(αfg) = h(αf ) + h(αg).

The zero divisor conjecture states that for any torsion-free group H, the

group ring ZH has no nontrivial right zero divisors. See [48, pp. 376–379]

and [56, pp. 62–63] for the relation between the zero divisor conjecture and

other conjectures such as the (strong) Atiyah conjecture and the embedding

conjecture. Recall that the class of elementary amenable groups is the smallest

class of groups containing all cyclic and all finite groups and being closed

under taking group extensions and direct unions. Because of Linnell’s work

on the strong Atiyah conjecture [45] (see also [70], [18]), we know that the

zero divisor conjecture holds for all torsion-free groups in the smallest class

of groups containing all free groups and being closed under extensions with

elementary amenable quotients and under direct unions. In particular, the

zero divisor conjecture holds for all torsion-free elementary amenable groups.
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See also [62, Ch. 13] for work on the zero divisor problem of KH for a field K

and a group H.

If f = 0 in ZΓ, then αf is the full shift action of Γ on (R/Z)Γ, and hence

h(αf ) =∞. Thus we have

Corollary 6.6. Suppose that Γ is torsion-free and satisfies the zero di-

visor conjecture. Then for any f, g ∈ ZΓ, one has h(αfg) = h(αf ) + h(αg).

R. Bowen’s proof of Theorems 6.1 in the case Γ = Z is purely topological,

while the proofs of Thomas and Lind et al. for Theorem 6.2 in the case Γ = Zd is

purely using ergodic theory and depends on a technique of Yuzvinskĭı reducing

G to simpler compact groups. Our proof for these addition formulas, in each

setting, employ both topological and measure-theoretical tools. There are two

main tools used in our proof. One is Ward and Zhang’s addition formula

[79, Th. 4.4] (see also [12, Th. 0.2]), a generalization of the Abramov-Rohlin

addition formula. Another is the various kinds of fibre entropy for topological

extensions. In particular, our proof of Theorem 6.2, even in the case Γ = Zd,
is completely different from that of Thomas and Lind et al.

The rest of this section is devoted to the proofs of Theorems 6.1 and 6.2.

Fix a (left) Følner sequence {Fn}n∈N of Γ.

A systematic study of various fibre and conditional entropies was carried

out in [19] for dynamical systems of continuous maps on compact Hausdorff

spaces. It will be interesting to see to what extent the results in [19] generalize

to actions of discrete amenable groups. Here we confine ourselves to extend

a few definitions and results in [19] to Γ-actions, needed for the proofs of

Theorems 6.1 and 6.2.

Let αX be an action of Γ on a compact metrizable space X by home-

omorphisms. Denote by MΓ(X) the set of all Γ-invariant Borel probability

measures on X. For any finite open cover U of X and any subset Z ⊆ X,

denote by N(U|Z) the minimal number of elements in U needed to cover Z.

Set UF :=
∨
γ∈F γ

−1U for a nonempty finite subset F of Γ, and set

htop(αX ,U|Z) := lim sup
n→∞

1

|Fn|
logN(UFn |Z).

Let αY be an action of Γ on another compact metrizable space Y by

homeomorphisms. Consider a factor map π : X → Y . Given a finite open

cover U of X, note that the function y 7→ N(U|π−1(y)) for y ∈ Y is upper

semicontinuous and hence is a Borel function. Let ν ∈MΓ(Y ). Set

H(U|ν) :=

∫
Y

logN(U|π−1(y)) dν(y).

It is easy to verify that the function F 7→ H(UF |ν) defined on the set of

nonempty finite subsets of Γ satisfies the hypothesis in Proposition 2.1, and
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hence limn→∞
1
|Fn|H(UFn |ν) exists and does not depend on the choice of the

Følner sequence {Fn}n∈N.

Definition 6.7. Let U be a finite open cover of X. For y ∈ Y , we define

the topological fibre entropy of U given y as htop(αX ,U|π−1(y)) and denote it

by htop(αX ,U|y). For any ν ∈ MΓ(Y ), we define the topological fibre entropy

of U given ν as limn→∞
1
|Fn|H(UFn |ν) and denote it by htop(α,U|ν). We de-

fine the topological fibre entropy of αX given y, and given ν, respectively, as

supU htop(αX ,U|y) and supU htop(αX ,U|ν) respectively for the supremum be-

ing taken over all finite open covers of X, and denote them by htop(αX |y) and

htop(αX |ν) respectively.

The following result is the analogue of part of [19, Th. 3].

Lemma 6.8. Let αX and αY be actions of Γ on compact metrizable spaces

X and Y respectively. Let π : X → Y be a factor map. Then we have

sup
y∈Y

htop(αX |y) ≥ sup
ν∈MΓ(Y )

htop(αX |ν).

Proof. It suffices to prove supy∈Y htop(αX ,U|y) ≥ htop(αX ,U|ν) for every

finite open cover U of X and every ν ∈ MΓ(Y ). Since the function y 7→
N(UF |π−1(y)) is a Borel function on Y for any nonempty finite subset F of Γ,

the function y 7→ htop(αX ,U|y) is also Borel. Note that

1

|F |
logN(UF |π−1(y)) ≤ 1

|F |
logN(UF ) ≤ logN(U)(12)

for any nonempty finite subset F of Γ and y ∈ Y . Thus

sup
y∈Y

htop(αX ,U|y)≥
∫
Y

htop(αX ,U|y) dν(y)

=

∫
Y

lim
n→∞

sup
m≥n

1

|Fm|
logN(UFm |π−1(y)) dν(y)

= lim
n→∞

∫
Y

sup
m≥n

1

|Fm|
logN(UFm |π−1(y)) dν(y)

≥ lim
n→∞

sup
m≥n

1

|Fm|

∫
Y

logN(UFm |π−1(y)) dν(y)

= lim
n→∞

sup
m≥n

1

|Fm|
H(UFm |ν)

= htop(αX ,U|ν),

where the third lines comes from Lebesgue’s monotone convergence theorem

[66, Th. 1.26] and the uniform upper bound in (12). �

The factor map π : X → Y induces a surjective continuous affine map

from the space M(X) of Borel probability measures on X to M(Y ). For any



ENTROPY AND DETERMINANT 325

ν ∈ MΓ(Y ), take µ′ ∈ M(X) with π(µ′) = ν and let µ be a limit point of

the sequence { 1
|Fn|

∑
γ∈Fn

γµ′}n∈N in the compact space M(X). Then µ is in

MΓ(X) and π(µ) = ν. Thus

π(MΓ(X)) = MΓ(Y ).(13)

Note that π−1(BY ) is a Γ-invariant sub-σ-algebra of BX . We shall identify

BY with π−1(BY ). We write Hµ(·|π−1(BY )) and hµ(·|π−1(BY )) simply as

Hµ(·|BY ) and hµ(·|BY ) respectively.

The following result is the analogue of part of [19, Th. 4].

Lemma 6.9. Let the assumptions be as in Lemma 6.8. For any ν ∈
MΓ(Y ), we have

htop(αX |ν) ≥ sup
µ∈MΓ(X),πµ=ν

hµ(αX |BY ).

Proof. We combine the ideas in the proofs of [19, Th. 4] and [57, Th. 5.2.8].

Let µ ∈MΓ(X) with π(µ) = ν. Let P = {P1, . . . , Pk} be a finite Borel partition

of X, and let ε > 0. It suffices to show that there exists a finite open cover U

of X such that hµ(αX ,P|BY ) ≤ htop(αX ,U|ν) + ε.

We may assume that min1≤i≤k µ(Pi) > 0. Let δ be a small positive con-

stant which we shall determine later. Since µ is regular [32, Th. 17.11], we

may find an open set Ui ⊇ Pi for each 1 ≤ i ≤ k such that µ(Ui \ Pi) < δ.

Then U = {U1, . . . , Uk} is an open cover of X.

Let F be a nonempty finite subset of Γ. Define an equivalence relation ∼
on Y as y ∼ y′ whenever π−1(y) and π−1(y′) are covered by exactly the same

subfamilies of UF . Denote by β the finite partition of Y into the equivalence

classes. It is readily verified that each item of β is the intersection of a closed

set and an open set, and hence is Borel. For each D ∈ β, we can find some

VD ⊆ UF such that VD covers π−1(D) and |VD| = N(UF |π−1(y)) for every

y ∈ D. It is easy to construct a Borel partition QD = {QD,R : R ∈ VD}
of π−1(D) with QD,R ⊆ R for each R ∈ VD. Set QR :=

⋃
D∈β QD,R for

R ∈ ⋃D∈β VD. Then Q := {QR : R ∈ ⋃D∈β VD} is a Borel partition of X.

For any finite Borel partition P′ of X, denote by P̂′ the σ-algebra generated

by the items of P′. Note that for any m-item Borel partition P′ of X, one has

Hµ(P′) ≤ logm [77, p. 80]. Thus

(14) Hµ(Q|β̂) ≤
∑
D∈β

ν(D) log |VD| =
∫
Y

logN(UF |π−1(y)) dν(y) = H(UF |ν).

We say that a finite partition P′ of X is adapted to a finite open cover

U′ of X if there is an injective (not necessarily surjective) map ψ from P′

to U′ such that each P ∈ P′ is contained in ψ(P ). Denote by Rµ(U′) the

supremum of Hµ(P′|Q̂′) for all Borel partitions P′ and Q′ of X adapted to U′.
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By [57, Prop. 5.2.11], one has Rµ(U′∨V′) ≤ Rµ(U′)+Rµ(V′) for all finite open

covers U′ and V′ of X. Note that both PF and Q are adapted to UF and hence

Hµ(PF |Q̂) ≤ Rµ(UF ) ≤ |F |Rµ(U).(15)

For two sub-σ-algebras B1 and B2 of BX , denote by B1 ∨ B2 the sub-σ-

algebra of BX generated by B1 and B2. We have

Hµ(PF |BY ) ≤ Hµ(PF ∨ Q|BY )

= Hµ(Q|BY ) + Hµ(PF |Q̂ ∨BY )

≤ Hµ(Q|β̂) + Hµ(PF |Q̂)

(14),(15)

≤ H(UF |ν) + |F |Rµ(U).

Divide both sides of the above inequality by |F |, replace F by Fn and take

limits. We obtain hµ(αX ,P|BY ) ≤ htop(αX ,U|ν) +Rµ(U). It remains to show

that Rµ(U) ≤ ε when δ is small enough.

We may assume that δ< 1
k min1≤i≤k µ(Pi). Then the sum of the µ-measures

of the elements in any proper subset of U is strictly less than 1. It fol-

lows that every Borel partition of X adapted to U has exactly k items. Let

P′ = {P ′1, . . . , P ′k} and Q′ = {Q′1, . . . , Q′k} be Borel partitions of X adapted

to U with P ′i , Q
′
i ⊆ Ui for each 1 ≤ i ≤ k. By [57, Lemma 4.3.9], one has

Hµ(P′|Q̂′) ≤ 2k2ξ(2d(P′,Q′)/k2), where d(P′,Q′) := 1
2

∑
1≤i≤k µ(P ′i 4 Q′i) and

ξ(t) := max0≤s≤t(−s log s) for 0 ≤ t ≤ 1. Note that∑
1≤i≤k

µ(P ′i \Q′i)≤
∑

1≤i≤k
µ(Ui \Q′i) =

∑
1≤i≤k

(µ(Ui)− µ(Q′i))

=
∑

1≤i≤k
µ(Ui)− 1 =

∑
1≤i≤k

(µ(Ui)− µ(Pi))

=
∑

1≤i≤k
µ(Ui \ Pi) < kδ.

Similarly,
∑

1≤i≤k µ(Q′i\P ′i ) < kδ. It follows that d(P′,Q′) < kδ. ThusRµ(U) ≤
2k2ξ(2δ/k). Therefore it suffices to require further ξ(2δ/k) ≤ ε/(2k2). �

The case Γ = Z of the next theorem was proved by R. Bowen [8, Th. 17].

Our proof for the general case takes the approach in [19].

Theorem 6.10. Let the assumptions be as in Lemma 6.8. We have

htop(αX) ≤ htop(αY ) + sup
y∈Y

htop(αX |y).

Proof. By Theorem 0.2 of [12], when Γ is infinite, we have

hµ(αX) = hπµ(αY ) + hµ(αX |BY )(16)
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for every µ ∈ MΓ(X). If Γ is finite and αZ is an action of Γ on a standard

probability space (Z,BZ , µZ) by automorphisms and D is a Γ-invariant sub-

σ-algebra of BZ , then clearly hµZ (αZ |D) = H(µZ |D)
|Γ| , where H(µZ |D) denotes

the supremum of HµZ (P|D) for P running over all finite measurable parti-

tions of Z. If µZ is purely atomic in the sense that
∑
z∈Z µZ({z}) = 1, then

H(µZ |{∅, Z}) =
∑
z∈Z −µZ({z}) logµZ({z}). If µZ is not purely atomic, then

there is some Z ′ ∈ BZ with µZ(Z ′) > 0 such that Z ′ equipped with the re-

striction of BZ and µZ is isomorphic to the interval [0, µZ(Z ′)] equipped with

the Borel structure of its canonical topology and the Lebesgue measure [32,

Th. 17.41], and hence H(µZ |{∅, Z}) = ∞. It follows easily that the formula

(16) holds also when Γ is finite.

By the variational principle [57, p. 76], we have

htop(αX) = sup
µ∈MΓ(X)

hµ(αX) and htop(αY ) = sup
ν∈MΓ(Y )

hν(αY ).

Thus Theorem 6.10 follows from Lemmas 6.8 and 6.9, and (16). �

Fix a compatible matrix d on X. For any ε > 0 and any nonempty finite

subset F ⊆ Γ, we say that a set E ⊆ X is (F, ε)-separated if for any x 6= y

in E there is some γ ∈ F with d(γx, γy) > ε, and we say that a set E′ ⊆ X

(F, ε)-spans another subset Z ⊆ X if for any x ∈ Z there is some y ∈ E′

with d(γx, γy) ≤ ε for all γ ∈ F . For any Z ⊆ X, denote by rF (ε, Z) the

smallest cardinality of any set E which (F, ε)-spans Z and denote by sF (ε, Z)

the largest cardinality of any (F, ε)-separated set E contained in Z.

It is routine to prove the following lemma (cf. [8, Lemma 1] [13, Prop.

2.1]).

Lemma 6.11. Let αX be an action of Γ on a compact metrizable space X

by homeomorphisms. For any Z ⊆ X , we have

sup
U

htop(αX ,U|Z) = lim
ε→0

lim sup
n→∞

1

|Fn|
log rFn(ε, Z)

= lim
ε→0

lim sup
n→∞

1

|Fn|
log sFn(ε, Z),

where the supremum is taken over all finite open covers of X .

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. If Γ is finite and αZ is an action of Γ on a compact

Hausdorff space Z by homeomorphisms, then clearly htop(αZ) = log |Z|
|Γ| when

Z is finite while htop(αZ) =∞ when Z is infinite. It follows that Theorem 6.1

holds when Γ is finite. Thus we may assume that Γ is infinite. We follow the

proof of [8, Th. 19], but using Theorem 6.10 and Lemma 6.11.
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Fix compatible metrics dX , dY and dG for X, Y and G respectively. To

show htop(αX) ≤ htop(αY ) + htop(αG), by Theorem 6.10 it suffices to show

htop(αX |y) ≤ htop(αG) for every y ∈ Y . Take z ∈ π−1(y). Given ε > 0,

take δ > 0 such that dX(xg1, xg2) ≤ ε for any x ∈ X and g1, g2 ∈ G with

dG(g1, g2) ≤ δ. Let F be a nonempty finite subset of Γ. If a subset E of

G (F, δ)-spans G, then zE (F, ε)-spans zG = π−1(y). Thus rF (ε, π−1(y)) ≤
rF (δ,G). By Lemma 6.11, we get htop(αX |y) ≤ htop(αG) as desired.

Next we show htop(αX) ≥ htop(αY ) + htop(αG). Given ε > 0, since X

and G are compact and xg = xg′ only when g = g′, we can find δ > 0

such that dX(x1, x2) > δ for any x1, x2 ∈ X with dY (π(x1), π(x2)) > ε, and

that dX(xg1, xg2) > δ for any x ∈ X and g1, g2 ∈ G with dG(g1, g2) > ε.

Let F be a nonempty finite subset of Γ. Let EY and EG be subsets of Y

and G being (F, δ)-separated respectively. Take EX ⊆ X such that the re-

striction of π on EX maps EX bijectively to EY . We claim that |EXEG| =

|EX | · |EG| and that EXEG is (F, δ)-separated. If x1, x2 are distinct points

in EX and g1, g2 ∈ EG, then π(x1), π(x2) ∈ EY are distinct, thus for some

γ∈F , one has dY (π(γ(x1g1)), π(γ(x2g2))) = dY (γπ(x1), γπ(x2)) > ε and hence

dX(γ(x1g1), γ(x2g2)) > δ. If g1, g2 are distinct points in EG and x ∈ EX , then

for some γ ∈ F , one has dG(γ(g1), γ(g2)) > ε and hence dX(γ(xg1), γ(xg2)) =

dX(γ(x)γ(g1), γ(x)γ(g2)) > δ. This proves the claim. Thus

sF (δ,X) ≥ sF (ε, Y )sF (ε,G).

By Lemma 6.11, we get htop(αX) ≥ htop(αY ) + htop(αG), as desired. �

Let X be a G-extension of Y . In the second paragraph of the proof of

Theorem 6.1, we have proved that htop(αX |y) ≤ htop(αG) for every y ∈ Y . The

argument in the third paragraph of the proof also shows that htop(αX |y) ≥
htop(αG) for every y ∈ Y . For later use, we record this as

Lemma 6.12. Let the assumptions be as in Theorem 6.1. Then htop(αX |y)

= htop(αG) for every y ∈ Y .

Next we consider group extensions constructed out of continuous cocycles.

Lemma 6.13. Let αY and αG be actions of Γ on a compact metrizable

space Y and a compact metrizable group G by homeomorphisms and (continu-

ous) automorphisms respectively. Let σ : Γ× Y → G be a continuous cocycle,

i.e. a continuous map satisfying (9). Consider the action αY ×σ αG of Γ on

the compact metrizable space Y ×G by homeomorphisms, defined by (10). For

any µ ∈MΓ(Y ), denoting by ν the normalized Haar measure of G, we have

hµ×ν(αY ×σ αG|BY ) = h(αG).
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Proof. Note that αY ×σ αG is a G-extension of αY and π(µ × ν) = µ,

where π denotes the projection Y ×G→ Y . From Lemmas 6.8, 6.9 and 6.12,

we have

hµ×ν(αY ×σ αG|BY ) ≤ htop(αY ×σ αG|µ) ≤ sup
y∈Y

htop(αY ×σ αG|y) = h(αG).

Thus it suffices to show hµ×ν(αY ×σ αG|BY ) ≥ h(αG).

Take compatible metrics dY and dG on Y and G respectively. Replac-

ing dG(·, ·) by
∫
G dG(g·, g·) dν(g) if necessary, we may assume that dG is left-

translation invariant. We endow Y ×G with the metric dY×G((y1, g1), (y2, g2))

= max(dY (y1, y2), dG(g1, g2)).

Let ε > 0 and F be a nonempty finite subset of Γ. Let E be an (F, ε)-

separated subset ofG with |E| = sF (ε,G). Set V ={g ∈ G : maxγ∈F dG(γg, eG)

≤ ε/2}, where eG denotes the identity element of G. Then V is a closed subset

of G, and the sets gV for g ∈ E are pairwise disjoint. Thus 1 ≥ ν(
⋃
g∈E gV ) =∑

g∈E ν(gV ) = |E|ν(V ). Therefore ν(V ) ≤ |E|−1.

Let P be a finite Borel partition of Y ×G with each item having diameter

no bigger than ε/2, under dY×G. Let P be an item of PF , and let (y, g1), (y, g2)

∈ P . Then for each γ ∈ F , one has

ε/2≥ dY×G(γ(y, g1), γ(y, g2))

= dY×G((γy, σ(γ, y)(γg1)), (γy, σ(γ, y)(γg2)))

= dG(σ(γ, y)(γg1), σ(γ, y)(γg2))

= dG(γg1, γg2)) = dG(γ(g−1
1 g2), eG),

where the last two equalities come from the left-translation invariance of dG.

Thus g−1
1 g2 ∈ V , and hence g2 ∈ g1V . It follows that

E(1P |BY )(x) =

∫
G

1P (π(x), g′) dν(g′) ≤ ν(V ) ≤ |E|−1

for µ × ν a.e. x ∈ Y × G, where 1P denotes the characteristic function of P .

Therefore

Hµ×ν(PF |BY ) =
∑
P∈PF

∫
Y×G

−1P (x) logE(1P |BY )(x) d(µ× ν)(x)

≥
∑
P∈PF

∫
Y×G

−1P (x) log |E|−1 d(µ× ν)(x)

= log |E| = log sF (ε,G).

It follows that hµ×ν(αX ×σ αG,P|BY ) ≥ lim supn→∞
1
|Fn| log sFn(ε,G). By

Lemma 6.11, we get hµ×ν(αY ×σ αG|BY ) ≥ h(αG) as desired. �

Now we show that every measure-theoretical group extension has a topo-

logical model.
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Lemma 6.14. Let the assumptions be as in Theorem 6.2. Then there

exists a compact metrizable space Y ′ containing Y such that Y is a dense

Borel subset of Y ′, BY is the restriction of BY ′ on Y , the action of Γ on Y

extends to an action of Γ on Y ′ by homeomorphisms, the measure µ extends to

a Γ-invariant Borel probability measure on Y ′, and σ extends to a continuous

cocycle Γ× Y ′ → G.

Proof. Denote by B(Y ) the set of bounded C-valued Borel functions on Y .

It is complete under the supremum norm ‖ · ‖ and is a unital algebra under

the pointwise addition and multiplication. Furthermore, it is a ∗-algebra with

the ∗-operation defined by f∗(y) = f(y) for f ∈ B(Y ) and y ∈ Y . It is clear

that ‖f∗f‖ = ‖f‖2 for every f ∈ B(Y ). Thus B(Y ) is a unital commutative

C∗-algebra (see Section 2.2). Note that the action of Γ on Y induces an action

of Γ on B(Y ) as isometric ∗-algebra automorphisms naturally.

Since BY is the Borel σ-algebra for some Polish topology on Y , we can

find a countable subset W of BY separating the points of Y . That is, for any

distinct y1, y2 in Y , we can find A ∈ W such that 1A(y1) 6= 1A(y2), where 1A
denotes the characteristic function of A. Set V1 = {1A ∈ B(Y ) : A ∈W}.

Note that the algebra C(G) of continuous C-valued functions on G is also

a normed space under the supremum norm. Since G is compact metrizable,

C(G) is separable. Write σ as σγ : Y → G for γ ∈ Γ. That is, σγ(y) = σ(γ, y)

for γ ∈ Γ and y ∈ Y . Then f ◦ σγ is in B(Y ) for every f ∈ C(G) and γ ∈ Γ.

Set V2 = {f ◦ σγ ∈ B(Y ) : f ∈ C(G), γ ∈ Γ}. Since C(G) is separable and Γ

is countable, V2 is a separable subset of B(Y ).

Denote by A the closed Γ-invariant sub-∗-algebra of B(Y ) generated by

V1 ∪ V2. Then A is separable and contains the constant functions. Denote by

Y ′ the Gelfand spectrum of A , i.e., the set of all unital algebra homomorphisms

A → C [10, p. 219]. Note that Y ′ is contained in the unit ball of the Banach

space dual A ′ of A [10, Prop. VII.8.4]. Endowed with the relative weak∗-

topology, Y ′ is a compact Hausdorff space [10, Prop. VII.8.6]. Since A is

separable, Y ′ is metrizable. Clearly the action of Γ on A induces an action of

Γ on Y ′ by homeomorphisms.

For each y ∈ Y , the evaluation at y gives rise to an element ψ(y) of Y ′.

Since W separates the points of Y , the map ψ : Y → Y ′ is injective. Consider

the Gelfand transform ϕ : A → C(Y ′) defined by ϕ(a)(y′) = y′(a) for a ∈ A
and y′ ∈ Y ′ [10, p. 220]. Note that A is a unital commutative C∗-algebra.

Thus ϕ is an isometric ∗-isomorphism of A onto C(Y ′) [10, Th. VIII.2.1]. Also

note that ϕ(f)◦ψ = f for every f ∈ A . It follows that ψ is measurable and Γ-

equivariant. Recall that a measurable space (X,BX) is called a standard Borel

space if BX is the Borel σ-algebra for some Polish topology on X. The Lusin-

Souslin theorem says that for any injective measurable map ζ from one stan-

dard Borel space (X,BX) to another standard Borel space (Z,BZ), the image
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ζ(X) is measurable and ζ is an isomorphism from (X,BX) to (ζ(X),BZ |ζ(X))

[32, p. 89]. Thus, identifying Y with ψ(Y ), we have Y ∈ BY ′ and BY is the

restriction of BY ′ on Y . Then µ can be though of as a Borel probability mea-

sure on Y ′ via setting µ(Y ′ \Y ) = 0. Clearly µ is still Γ-invariant. Note that Y

separates ϕ(A ) = C(Y ′). By the Urysohn lemma [33, p. 115], for any disjoint

nonempty closed subsets Z1 and Z2 of Y ′, there exists f ∈ C(Y ′) with f |Z1 = 1

and f |Z2 = 0. It follows that Y is dense in Y ′.

Each γ ∈ Γ and each y′ ∈ Y ′ give rise to a unital algebra homomorphism

C(G) → C sending f to y′(f ◦ σγ). Note that every unital algebra homo-

morphism C(G) → C is given by the evaluation at a unique point of G [32,

Th. VII.8.7]. Thus there is a unique point in G, denoted by σ′γ(y′), such that

f(σ′γ(y′)) = y′(f ◦ σγ) for every f ∈ C(G). Clearly the map σ′γ : Y ′ → G is

continuous and extends σγ for every γ ∈ Γ. Write σ′(γ, y′) for σ′γ(y′). Since Y

is dense in Y ′, by continuity σ′ also satisfies the cocycle condition (9). �

We are ready to prove Theorem 6.2.

Proof of Theorem 6.2. By Lemmas 6.14 and 6.13, we have hµ×ν(αY ×σ
αG|BY ) = h(G). Thus the desired formula follows from Ward and Zhang’s

addition formula hµ×ν(αY ×σαG) = hµ(αY )+hµ×ν(αY ×σαG|BY ) [79, Th. 4.4],

[12, Th. 0.2]. �

7. Approximation of Fuglede-Kadison determinant

Throughout this section Γ will be a discrete amenable group. As we

pointed out at the end of Section 3, one of the main difficulties to establish

the intuitive equalities (6) is that fFn may fail to be invertible even when f is

invertible in LΓ. Our method of dealing with this difficulty is to “perturb” fFn

to make it invertible. Here the meaning of Sn ∈ B(C[Fn]) being a perturbation

of fFn is that rank(Sn−fFn) is small compared to |Fn|. Our task in this section

is to calculate detLΓf in terms of the determinants of Sn. Though Corollary 7.2

gives a precise formula for such a calculation, for some technical reason that

will be explained in Remark 8.2, we have to get an approximate formula as

follows.

Theorem 7.1. Let f ∈ CΓ be invertible in LΓ. For any C1 > 0 and ε > 0,

there exists δ > 0 such that if {Fn}n∈J is a (left) Følner net of Γ and Sn ∈
B(C[Fn]) is invertible for each n ∈ J such that supn∈J max(‖Sn‖, ‖S−1

n ‖) ≤ C1

and lim supn→∞
rank(Sn−fFn )

|Fn| ≤ δ, then

lim sup
n→∞

∣∣∣ log detLΓf −
1

|Fn|
log |detSn|

∣∣∣ < ε.

Proof. Let δ > 0 be a small number whose value will be determined later.

Let {Fn}n∈J and {Sn}n∈J satisfy the hypothesis.
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Note that supn∈J max(‖S∗nSn‖, ‖(S∗nSn)−1‖) ≤ C2
1 . Thus there is a closed

finite interval I in R depending only on C1 such that I does not contain 0 and

the spectra of f∗f and S∗nSn are contained in I for each n ∈ J .

Let n ∈ J . From

S∗nSn − (fFn)∗fFn = (Sn − fFn)∗Sn + (fFn)∗(Sn − fFn),

we have

rank(S∗nSn − (fFn)∗fFn) ≤ rank((Sn − fFn)∗Sn) + rank((fFn)∗(Sn − fFn))

≤ rank((Sn − fFn)∗) + rank(Sn − fFn)

= 2rank(Sn − fFn).

Recall the operators pFn and ιFn in Notation 3.3 and the set Kf in Notation 5.3.

When restricted on `2(Γ), one has pFn = (ιFn)∗. Thus

(fFn)∗fFn − (f∗f)Fn = (fFn)∗fFn − pFnf
∗fιFn

= (fFn)∗fFn − (fιFn)∗fιFn

= (fFn − fιFn)∗fFn + (fιFn)∗(fFn − fιFn),

and hence

rank((fFn)∗fFn − (f∗f)Fn)

≤ rank((fFn − fιFn)∗fFn) + rank((fιFn)∗(fFn − fιFn))

≤ rank((fFn − fιFn)∗) + rank(fFn − fιFn)

= 2rank(fFn − fιFn)

≤ 2|KfFn \ Fn|.
Therefore

rank(S∗nSn − (f∗f)Fn) ≤ rank(S∗nSn − (fFn)∗fFn)

+ rank((fFn)∗fFn − (f∗f)Fn)

≤ 2rank(Sn − fFn) + 2|KfFn \ Fn|.

It follows that

lim sup
n→∞

rank(S∗nSn − (f∗f)Fn)

|Fn|
≤ lim sup

n→∞

2rank(Sn − fFn)

|Fn|
≤ 2δ.

Denote by tr the trace of B(C[Fn]) taking value 1 on minimal projections.

By the Weierstrass approximation theorem [66, p. 312] we can find a real

polynomial Q such that |Q(x)− log x| ≤ ε/2 for all x ∈ I. Then

(17)
1

|Fn|
|tr(Q(S))− tr(logS)| ≤ ‖Q(S)− logS‖ ≤ ε/2

for all self-adjoint S ∈ B(C[Fn]) with spectrum contained in I, and

(18) ‖trLΓ(Q(T ))− trLΓ(log T )‖ ≤ ‖Q(T )− log T‖ ≤ ε/2
for all self-adjoint T ∈ LΓ with spectrum contained in I.
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For noncommutative variables X and Y , we have Q(X + Y ) = Q(X) +∑k
j=1Qj(X,Y ) for some two-variable noncommutative monomials Qj with

Y appearing in Qj . Fix 1 ≤ j ≤ k. Then supn∈J ‖Qj((f∗f)Fn , S
∗
nSn −

(f∗f)Fn)‖ ≤ Dj for some constant Dj depending only on Qj , ‖f‖ and C1.

Furthermore,

lim sup
n→∞

rank(Qj((f
∗f)Fn , S

∗
nSn − (f∗f)Fn))

|Fn|

≤ lim sup
n→∞

rank(S∗nSn − (f∗f)Fn)

|Fn|
≤ 2δ.

For any S ∈ B(C[Fn]), extending an orthonormal basis e1, . . . , erank(S) of

the range of S to an orthonormal basis e1, . . . , e|Fn| of C[Fn], one sees that

erank(S)+1, . . . , e|Fn| are orthogonal to the range of S, and hence

|tr(S)|= |
|Fn|∑
j=1

〈Sej , ej〉 |= |
rank(S)∑
j=1

〈Sej , ej〉 | ≤
rank(S)∑
j=1

| 〈Sej , ej〉 | ≤ rank(S)·‖S‖.

It follows that lim supn→∞
|tr(Qj((f∗f)Fn ,S

∗
nSn−(f∗f)Fn ))|

|Fn| ≤ 2δDj , and hence

lim sup
n→∞

1

|Fn|
|tr(Q(S∗nSn))− tr(Q((f∗f)Fn))| ≤ 2δD,

where D =
∑k
j=1Dj . By a result of Lück and Schick [47], [69, Lemma 4.6],

[48, Lemma 13.42], [13, p. 745], for any T ∈ LΓ, one has

trLΓ(Q(T )) = lim
n→∞

1

|Fn|
tr(Q(TFn)).

Thus

(19) lim sup
n→∞

∣∣∣trLΓ(Q(f∗f))− 1

|Fn|
tr(Q(S∗nSn))

∣∣∣ ≤ 2δD.

Combining (17), (18) and (19) together, we get

lim sup
n→∞

∣∣∣trLΓ(log(f∗f))− 1

|Fn|
tr(log(S∗nSn))

∣∣∣ ≤ ε+ 2δD.

That is,

lim sup
n→∞

∣∣∣ log detLΓ(f∗f)− 1

|Fn|
log det(S∗nSn)

∣∣∣ ≤ ε+ 2δD.

As log detLΓ(f∗f) = 2 log detLΓf and det(S∗nSn) = | detSn|2, we get

lim sup
n→∞

∣∣∣ log detLΓf −
1

|Fn|
log | detSn|

∣∣∣ ≤ ε/2 + δD.

Now we just need to take δ < ε/(2D). �
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Corollary 7.2. Let f ∈ CΓ be invertible in LΓ. Let {Fn}n∈J be a (left)

Følner net of Γ and Sn ∈ B(C[Fn]) be invertible for each n ∈ J such that

supn∈J max(‖Sn‖, ‖S−1
n ‖) <∞ and limn→∞ rank(Sn − fFn)/|Fn| = 0. Then

log detLΓf = lim
n→∞

1

|Fn|
log |detSn|.

8. Proof of h(αf ) ≥ log detLΓf

In this section we show h(αf ) ≥ log detLΓf for any f ∈ ZΓ invertible in

LΓ (Lemma 8.5). Throughout this section Γ is a discrete amenable group.

For f ∈ CΓ, recall that Kf denotes the union of the supports of f and

f∗, and the identity of Γ. For a finite subset F of Γ, we identify C[F ] with a

subspace of `2(Γ) naturally. In particular, if F ′ ⊆ F are finite subsets of Γ,

then C[F ] is the direct sum of C[F ′] and C[F \ F ′].

Lemma 8.1. Let f ∈ ZΓ be invertible in LΓ. Then for any λ > 1 and

C1 ≥ 1, there is some δ > 0 such that, for any M ≥ 1 and any nonempty finite

subsets F ′ ⊆ F of Γ satisfying |KfF \ F | ≤ δ|F | and |F \ F ′| ≤ δ|F |, if TF is

a linear map C[F \ F ′] → C[F ] with MTF (Z[F \ F ′]) ⊆ Z[F ] and ‖TF ‖ ≤ C1

so that the linear map SF : C[F ] → C[F ] defined as fF on C[F ′] and TF on

C[F \ F ′] is invertible in B(C[F ]), then

Cλ|F |M |KfF\F |rF,∞
( 1

8‖f‖1

)
≥ |detSF |,

where C is the universal constant in Lemma 5.1.

Proof. The proof is similar to that of Lemma 5.5. Write K for Kf . Set

D = 8‖f‖1 and ε = D−1. Take 1 > δ > 0 such that (2D(‖f‖+C1)‖f−1‖)2δ ≤
λ1/2 and δ1/2 ≤ ‖f−1‖, and that δ′ = 2δ satisfies the conclusion of Lemma 5.1

for λ′ = λ1/2. Let F , F ′ and TF satisfy the hypothesis.

Consider S′F ∈ B(C[F ]) defined as fF on C[F ′] and MTF on C[F \ F ′].
Then detS′F = M |F\F

′| detSF and ‖S′F ‖ ≤ ‖f‖+MC1 ≤ (‖f‖+ C1)M . Note

that S′F (Z[F ]) ⊆ Z[F ], and hence |detS′F | = |Z[F ]/S′FZ[F ]| by Lemma 3.1.

Thus it suffices to show

Cλ|F |M |KF\F
′|rF,∞(ε) ≥ |Z[F ]/S′FZ[F ]|.

Let x ∈ Z[F ]/S′FZ[F ]. Take x̃ ∈ Z[F ] such that the image of x̃ in

Z[F ]/S′FZ[F ] under the quotient map Z[F ] → Z[F ]/S′FZ[F ] is equal to x.

Since S′F is invertible, one has

x̃ = S′Fw

for some w ∈ R[F ]. Write w as w1 + w2 for some w1 ∈ Z[F ] and w2 ∈ [0, 1)F .

Then x̃ = S′Fw1 + S′Fw2 and

‖S′Fw2‖2 ≤ ‖S′F ‖ · ‖w2‖2 ≤ (‖f‖+ C1)M |F |1/2.
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Note that x̃ and S′Fw2 have the same image in Z[F ]/S′FZ[F ]. Thus we may

replace x̃ by S′Fw2 and hence assume that ‖x̃‖2 ≤ (‖f‖+ C1)M |F |1/2.

Denote by ϕ the quotient map R[[Γ]]→ (R/Z)[[Γ]]. For each element x of

Z[F ]/S′FZ[F ], one has

fϕ(f−1x̃) = ϕ(f(f−1x̃)) = ϕ(x̃) = 0

in (R/Z)[[Γ]], and hence ϕ(f−1x̃) ∈ Xf by (5). This defines a map ψ :

Z[F ]/S′FZ[F ]→ Xf sending x to ϕ(f−1x̃).

For each x ∈ Z[F ]/S′FZ[F ], pick wx ∈ 1
DZ[KF \ F ] such that

‖wx − pKF\F (f−1x̃)‖∞ ≤ 1/D = ε

and |wx(t)| ≤ |(f−1x̃)(t)| for all t ∈ KF \ F . Then Dwx ∈ Z[KF \ F ] and

‖Dwx‖2 ≤ D‖pKF\F (f−1x̃)‖2 ≤ D·‖f−1‖·‖x̃‖2 ≤ D(‖f‖+C1)M‖f−1‖·|F |1/2.

Take an [F,∞, ε]-spanning subset E ⊆ Xf with |E| = rF,∞(ε). For each

v ∈ E set Wv = {x ∈ Z[F ]/S′FZ[F ] : dF,∞(ψ(x), v) ≤ ε}. Then
⋃
v∈EWv =

Z[F ]/S′FZ[F ]. Now it suffices to show that

|Wv| ≤ Cλ|F |M |KF\F
′|

for each v ∈ E. Fix v ∈ E and y ∈Wv.

Let x ∈Wv. Then

max
γ∈F

ϑ((ψ(x))γ , (ψ(y))γ) = dF,∞(ψ(x), ψ(y))

≤ dF,∞(ψ(x), v) + dF,∞(ψ(y), v) ≤ 2ε.

For each γ ∈ F ′, take (hx)γ ∈ Z such that |(f−1x̃)γ − (f−1ỹ)γ − (hx)γ | ≤ 2ε.

Similarly, for each γ ∈ F \ F ′, take (θx)γ ∈ Z such that |(f−1x̃)γ − (f−1ỹ)γ −
(θx)γ | ≤ 2ε. Define hx ∈ Z[F ′] to be the element taking value (hx)γ at each

γ ∈ F ′. Also define θx ∈ Z[F \F ′] to be the element taking value (θx)γ at each

γ ∈ F \ F ′. Set

zx = f−1x̃− f−1ỹ − hx − θx − wx + wy ∈ R[[Γ]].(20)

Then

‖zx|F ′‖∞ = ‖(f−1x̃− f−1ỹ − hx)|F ′‖∞ ≤ 2ε,

‖zx|F\F ′‖∞ = ‖(f−1x̃− f−1ỹ − θx)|F\F ′‖∞ ≤ 2ε,

‖zx|KF\F ‖∞ = ‖(f−1x̃− f−1ỹ − wx + wy)|KF\F ‖∞
≤ ‖(f−1x̃− wx)|KF\F ‖∞ + ‖(f−1ỹ − wy)|KF\F ‖∞ ≤ 2ε,

and thus

‖zx|KF ‖∞ ≤ 2ε.
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It follows that

‖θx‖2≤‖f−1x̃‖2 + ‖f−1ỹ‖2 + ‖pF\F ′(zx)‖2
≤ 2(‖f‖+ C1)M‖f−1‖ · |F |1/2 + (2ε)δ1/2|F |1/2

≤D(‖f‖+ C1)M‖f−1‖ · |F |1/2.

Note that θx +Dwx ∈ Z[KF \ F ′] with

‖θx +Dwx‖2 ≤ 2D(‖f‖+ C1)M‖f−1‖ · |F |1/2

and |KF \ F ′| ≤ 2δ|F | = δ′|F |. By Lemma 5.1, one has

|{θx +Dwx : x ∈Wv}| ≤Cλ|F |/2(2D(‖f‖+ C1)M‖f−1‖)|KF\F ′|

≤Cλ|F |/2(2D(‖f‖+ C1)‖f−1‖)2δ|F |M |KF\F
′|

≤Cλ|F |M |KF\F ′|.

Thus we can find a subset W ′v ⊆ Wv with Cλ|F |M |KF\F
′||W ′v| ≥ |Wv| such

that θx1 + Dwx1 = θx2 + Dwx2 for all x1, x2 ∈ W ′v. Since θx ∈ R[F \ F ′] and

wx ∈ R[KF \ F ] for all x ∈ W ′v, we have θx1 = θx2 and wx1 = wx2 for all

x1, x2 ∈W ′v.
Now it suffices to show that |W ′v| ≤ 1. Suppose that x1 6= x2 in W ′v.

Applying (20) to x = x1 and x = x2 respectively, one gets

f−1x̃1 − f−1x̃2 = hx1 − hx2 + zx1 − zx2 .

Write zx1 − zx2 as z1 + z2 such that the supports of z1 and z2 are contained

in KF and Γ \ KF respectively. Note that pF (f(zx1 − zx2)) = pF (fz1) and

‖z1‖∞ ≤ 4ε. Consequently,

‖pF (f(zx1−zx2))‖∞ = ‖pF (fz1)‖∞ ≤ ‖fz1‖∞ ≤ ‖f‖1 ·‖z1‖∞ ≤ 4ε‖f‖1 = 1/2.

We have

x̃1 − x̃2 = pF (x̃1 − x̃2) = pF (f(hx1 − hx2)) + pF (f(zx1 − zx2))

=S′F (hx1 − hx2) + pF (f(zx1 − zx2)).

Since x̃1− x̃2 and S′F (hx1 −hx2) are both in Z[F ], we get pF (f(zx1 − zx2)) = 0.

Therefore x̃1 − x̃2 = S′F (hx1 − hx2) ∈ S′FZ[F ], contradicting the assumption

x1 6= x2. This finishes the proof of the lemma. �

Remark 8.2. Note that in Lemma 8.1 the operator SF may fail to pre-

serve Z[F ], while the norm ‖S′F ‖ of the operator S′F defined in the second

paragraph of the proof of Lemma 8.1 may be large when M gets large. In-

deed, this is what happens when we construct Sn in the proof of Lemma 8.5

below. A modification of the proofs of Lemmas 5.4, 5.5 and 8.1 shows that

if f ∈ ZΓ is invertible in LΓ, and there are a (left) Følner net {Fn}n∈J of Γ

and an invertible Sn ∈ B(C[Fn]) preserving Z[Fn] for each n ∈ J such that

supn∈J max(‖Sn‖, ‖S−1
n ‖) < ∞ and limn→∞ rank(Sn − fFn)/|Fn| = 0, then
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h(αf ) = limn→∞
1
|Fn| log |detSn|. Combined with Corollary 7.2, this proves

Theorem 1.1 for such case, without using Theorem 5.6 and Corollary 6.5.

When Γ is also residually finite, Weiss showed that there are a net {Γn}n∈J of

finite-index normal subgroups of Γ and a (left) Følner net {Fn}n∈J of Γ such

that the quotient map Γ→ Γ/Γn maps Fn bijectively to Γ/Γn for each n ∈ J
[80, §2] (see also [17, Cor. 5.6]). Via taking Sn to be the image of f in C(Γ/Γn)

and identifying B(`2(Γ/Γn)) and B(C[Fn]), it is easily checked that when Γ

is residually finite, {Fn}n∈J and {Sn}n∈J satisfying the above conditions do

exist. However, we have not been able to show the existence of such {Fn}n∈J
and {Sn}n∈J in general. This is why we have to use Theorem 7.1, Lemma 8.5

and Ornstein and Weiss’s theory of quasitiling.

For ε > 0, we say that a family of finite subsets {F1, . . . , Fm} of Γ are

ε-disjoint if there are F ′j ⊆ Fj for all 1 ≤ j ≤ m such that F ′1, . . . , F
′
m are

pairwise disjoint, and |F ′j | ≥ (1 − ε)|Fj | for all 1 ≤ j ≤ m. We need the

following theorem of Ornstein and Weiss.

Theorem 8.3 ([60, p. 24, Th. 6]). Let ε>0, and let K be a nonempty finite

subset of Γ. Then there exist δ > 0 and nonempty finite subsets K ′, F1, . . . , Fm
of Γ such that

(1) |{g ∈ Fj : Kg ⊆ Fj}| ≥ (1− ε)|Fj | for each 1 ≤ j ≤ m;

(2) for any nonempty finite subset F of Γ satisfying |K ′F \ F | ≤ δ|F |,
there are finite subsets D1, . . . , Dm of Γ such that

⋃
1≤j≤m FjDj ⊆ F ,

the family {Fjc : 1 ≤ j ≤ m, c ∈ Dj} of subsets of Γ is ε-disjoint and

|⋃1≤j≤m FjDj | ≥ (1− ε)|F |.

Remark 8.4. In Theorem 8.3, choosing Fc,j ⊆ Fj for every 1 ≤ j ≤ m and

c ∈ Dj such that |Fc,j | ≥ (1 − ε)|Fj | for all 1 ≤ j ≤ m and c ∈ Dj , and that

the family {Fc,jc : 1 ≤ j ≤ m, c ∈ Dj} of subsets of Γ is pairwise disjoint, and

noticing that Fc,j is one element in the finite set {W ⊆ Fj : |W | ≥ (1−ε)|Fj |},
we see that we can actually require the family {Fjc : 1 ≤ j ≤ m, c ∈ Dj} to be

pairwise disjoint.

Lemma 8.5. Let Γ be an infinite amenable group, and let f ∈ ZΓ be

invertible in LΓ. For any (left) Følner net {Fn}n∈J of Γ, one has

lim inf
n→∞

1

|Fn|
log rFn,∞

Ç
1

8‖f‖1

å
≥ log det f.

Proof. Set C1 = max(‖f‖, ‖f−1‖) + 2. Let λ > 1 and ε > 0. Take δ > 0

working for both Theorem 7.1 and Lemma 8.1. Denote by K the union of the

supports of f and f∗, and the identity of Γ.

By Theorem 8.3 and Remark 8.4, there exist nonempty finite subsets

W1, . . . ,Wm of Γ and N ∈ J such that
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(I) |W ′j | ≥ (1 − δ
2)|Wj | for each 1 ≤ j ≤ m, where W ′j = {g ∈ Wj : Kg ⊆

Wj};
(II) for any n ≥ N , there are finite subsets Dn,1, . . . , Dn,m of Γ such that⋃

1≤j≤mWjDn,j ⊆ Fn, the family {Wjc : 1 ≤ j ≤ m, c ∈ Dn,j} of

subsets of Γ is pairwise disjoint and |⋃1≤j≤mWjDn,j | ≥ (1− δ
2)|Fn|.

We may also assume that

(III) for any n ≥ N , one has |KFn \ Fn| ≤ δ|Fn|.
We construct Tn for each n ≥ N satisfying the hypothesis in Lemma 8.1 for

some M not depending on n such that the associated Sn satisfies the hypothesis

in Theorem 7.1. For this purpose, we shall construct Tn on C[Wj ] first, then

transfer them to C[Fn].

Fix 1 ≤ j ≤ m. Since KW ′j ⊆ Wj , we have fWj = f on C[W ′j ]. Write

(fC[W ′j ])
⊥ for the orthogonal complement of fC[W ′j ] in C[Wj ]. Note that the

dimension of (fC[W ′j ])
⊥ is equal to |Wj \W ′j | and that (fC[W ′j ])

⊥ is the linear

span of (fC[W ′j ])
⊥∩Q[Wj ]. Identify Wj with the standard orthonormal basis of

C[Wj ]. Take an orthonormal basis {eg : g ∈Wj \W ′j} of (fC[W ′j ])
⊥, consisting

of elements in R[Wj ]. Taking e′g ∈ (fC[W ′j ])
⊥ ∩ Q[Wj ] close enough to eg for

all g ∈ Wj \W ′j , we find that the linear map ‹Tj : C[Wj \W ′j ] → (fC[W ′j ])
⊥

sending g to e′g is bijective and max(‖‹Tj‖, ‖‹T−1
j ‖) ≤ 2. Then there exists

Mj ∈ N such that Mj
‹Tj(Z[Wj \ W ′j ]) ⊆ Z[Wj ]. Note that the linear map

S̃j : C[Wj ]→ C[Wj ] defined as fWj on C[W ′j ] and ‹Tj on C[Wj\W ′j ] is invertible,

and ‖S̃−1
j ‖ ≤ ‖f−1‖+ 2.

Set M =
∏

1≤j≤mMj . Now let n ≥ N . Let Dn,1, . . . , Dn,m be as in (II)

above. Set F ′n =
⋃

1≤j≤mW
′
jDn,j . Then |Fn \ F ′n| ≤ δ|Fn|. Next we define the

desired linear map Tn : C[Fn \F ′n]→ C[Fn]. On C[Fn \ (
⋃

1≤j≤mWjDn,j)], the

map Tn is the identity map. On C[(Wj \W ′j)c] for 1 ≤ j ≤ m and c ∈ Dn,j , the

map Tn is the same as ‹Tj on C[Wj \W ′j ], if we identify C[Wj \W ′j ] and C[Wj ]

with C[(Wj \W ′j)c] and C[Wjc] respectively via the right multiplication by c.

Then MTn(Z[Fn \ F ′n]) ⊆ Z[Fn] and ‖Tn‖ ≤ 2. Denote by Sn the linear map

C[Fn] → C[Fn] that is equal to fFn on C[F ′n] and equal to Tn on C[Fn \ F ′n].

Clearly ‖Sn‖ ≤ ‖f‖ + 2. Note that the restriction of Sn on C[Wjc] for each

1 ≤ j ≤ m and c ∈ Dn,j , or on C[Fn \ (
⋃

1≤j≤mWjDn,j)] is an isomorphism,

and the norm of the inverse of this restriction is bounded above by ‖f−1‖+ 2.

Thus Sn is invertible with ‖S−1
n ‖ ≤ ‖f−1‖+ 2. By Lemma 8.1 we have

Cλ|Fn|M |KFn\Fn|rFn,∞

Ç
1

8‖f‖1

å
≥ |detSn|,

where C is the universal constant in Lemma 5.1. Therefore

lim inf
n→∞

Ç
1

|Fn|
log rFn,∞

Ç
1

8‖f‖1

å
− 1

|Fn|
log |detSn|

å
≥ − log λ.(21)
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Since Sn and fFn coincide on C[F ′n], we have rank(Sn−fFn) ≤ |Fn \F ′n| ≤
δ|Fn|. By Theorem 7.1, we get

lim sup
n→∞

∣∣∣ log detLΓf −
1

|Fn|
log |detSn|

∣∣∣ < ε.(22)

Combining (21) and (22), we get

lim inf
n→∞

Ç
1

|Fn|
log rFn,∞

Ç
1

8‖f‖1

å
− log detLΓf

å
≥ − log λ− ε.

Since λ > 1 and ε > 0 are arbitrary, the lemma is proved. �

9. Proof of Theorem 1.1 and consequences

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 3.2, we may assume that Γ is infinite.

Let {Fn}n∈N be a (left) Følner sequence of Γ. By Theorem 4.2 and Lemma 8.5,

we have

h(αf ) ≥ lim inf
n→∞

1

|Fn|
log rFn,∞

Ç
1

8‖f‖1

å
≥ log detLΓf.

Applying the inequality to f∗, we also have

h(αf∗) ≥ log detLΓf
∗.

Then we have

h(αf∗f ) = h(αf∗) + h(αf ) ≥ log detLΓf
∗ + log detLΓf = 2 log detLΓf

= log detLΓ(f∗f) = h(αf∗f ),

where the first equality comes from Corollary 6.5, the second one comes from

Theorem 2.2, the third one comes from the definition of detLΓf and the last

one comes from Theorem 5.6. Thus h(αf ) = log detLΓf . �

Since sF,∞(ε) ≥ rF,∞(ε) for any nonempty finite subset F of Γ and ε > 0,

in the proof of Theorem 1.1 we actually have proved the following result.

Corollary 9.1. Let Γ be a countable amenable group, and let f ∈ ZΓ

be invertible in LΓ. For any 1
8‖f‖1 ≥ ε > 0 and any (left) Følner sequence

{Fn}n∈N of Γ, one has

h(αf ) = lim
n→∞

1

|Fn|
log rFn,∞(ε) = lim

n→∞
1

|Fn|
log sFn,∞(ε).

The follow result is a consequence of Theorems 1.1 and 2.2.

Corollary 9.2. Let Γ be a countable amenable group, and let f ∈ ZΓ

be invertible in LΓ. Then h(αf ) = h(αf∗).
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The following result is a generalization of [17, Cor. 6.6], whose proof we

follow.

Corollary 9.3. Let Γ be a countable amenable group, and let f, g ∈ ZΓ

be invertible in LΓ with 0 ≤ f ≤ g. Then h(αf ) ≤ h(αg). Furthermore,

h(αf ) = h(αg) if and only if f = g.

Proof. The inequality follows from Theorems 1.1 and 2.2. Suppose that

h(αf ) = h(αg). Set h = log g − log f . Then

trLΓ(h) = trLΓ log g−trLΓ log f = log detLΓg− log detLΓf = h(αg)−h(αf ) = 0.

Note that the function log is operator monotone in the sense that for any

invertible bounded positive operators T, S on a Hilbert space H with T ≤ S,

one has log T ≤ logS [46], [64, p. 10]. Thus h ≥ 0. Since trLΓ is faithful and

trLΓh = 0, we get h = 0. Thus f = g. �

Appendix A. Comparison of invertibility in `1(Γ) and LΓ

A Banach complex algebra A with an operation ∗ is called a Banach

∗-algebra if (a∗)∗ = a, (λa + b)∗ = λ̄a∗ + b∗, (ab)∗ = b∗a∗, and ‖a∗‖ = ‖a‖ for

all a, b ∈ A and λ ∈ C. A representation of a Banach ∗-algebra A on a Hilbert

space H is a ∗-homomorphism π : A→ B(H). A Banach ∗-algebra A is called

an A∗-algebra if it has an injective representation π. For an A∗-algebra A, there

is a C∗-algebra C∗(A) and an injective ∗-homomorphism A ↪→ C∗(A) with

dense image such that every ∗-homomorphism A→ B of A into a C∗-algebra

B extends to a unique ∗-homomorphism C∗(A)→ B. The C∗-algebra C∗(A)

is unique up to isomorphism and is called the enveloping C∗-algebra of A

[75, p. 42]. Explicitly, the norm ‖ · ‖C∗(A) of C∗(A) is given by ‖a‖C∗(A) =

supπ ‖π(a)‖ for a ∈ A, where π runs over all representations of A.

A unital Banach ∗-algebra A is called symmetric if for each a ∈ A, the

spectrum of a∗a in A is contained in R≥0. It is well known that a unital

A∗-algebra A is symmetric if and only if for each a ∈ A, the spectra of a in

A and C∗(A) are the same. We recall briefly the reason here. The “if” part

follows from the fact that every C∗-algebra is symmetric. Assume that A is

symmetric. By a result of Raikov [65], [58, p. 308, Cor. 4], for every a ∈ A
with a∗ = a, the spectral radius of a in A is equal to ‖a‖C∗(A). According to

an observation of Hulanicki [27, Prop. 2.5] (see also [22, Prop. 6.1]), for every

a ∈ A with a∗ = a, the spectra of a in A and C∗(A) are the same. It follows

that for every a ∈ A, the spectra of a in A and C∗(A) are the same (see for

example [22, p. 804]).

Let Γ be a discrete (not necessarily amenable) group. Then `1(Γ) is a

unital Banach ∗-algebra with the algebraic operations extending those of CΓ.

The embedding CΓ ↪→ LΓ extends to an injective representation `1(Γ) ↪→ LΓ.
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Thus `1(Γ) is an A∗-algebra, and for every a ∈ `1(Γ), if a is invertible in `1(Γ),

then it is invertible in LΓ. The enveloping C∗-algebra of `1(Γ) is denoted by

C∗(Γ) and is called the (maximal) group C∗-algebra of Γ. The embedding

`1(Γ) ↪→ LΓ extends to a ∗-homomorphism ψ : C∗(Γ) → LΓ. The group Γ is

amenable if and only if ψ is injective [63, Th. 4.21]. Thus, when Γ is amenable,

`1(Γ) is symmetric if and only if for any a ∈ `1(Γ), the spectra of a in `1(Γ)

and LΓ are the same.

If Γ is a finite extensions of a discrete nilpotent group, then `1(Γ) is sym-

metric [38], [49], and hence for any a ∈ `1(Γ), a is invertible in `1(Γ) if and

only if it is invertible in LΓ.

Nica showed that if Γ is a finitely generated group of subexponential

growth, then for any a ∈ CΓ, a is invertible in `1(Γ) if and only if it is in-

vertible in LΓ [59, p. 3309].

Jenkins [29], [30] showed that if Γ is a discrete group containing two

elements generating a free subsemigroup, then `1(Γ) is not symmetric. Under

the same assumption, Nica showed that there exist a ∈ CΓ that are invertible

in LΓ but not invertible in `1(Γ) [59, Prop. 52]. In fact, in such a case there

exist a ∈ ZΓ that are invertible in C∗(Γ) (in particular, invertible in LΓ)

but not invertible in `1(Γ), as the following example shows. This example is

inspired by the ideas in [30]. I am grateful to Jingbo Xia for a very helpful

discussion leading to this example.

Example A.1. Let Γ be a discrete group with elements γ1, γ2 ∈ Γ gener-

ating a free subsemigroup. We claim that for every λ ∈ C with |λ| = 3, the

element

a = λeΓ − (eΓ + γ1 − γ2
1)γ2

is invertible in C∗(Γ) but not invertible in `1(Γ). Taking λ = ±3, we get

a ∈ ZΓ. The spectrum of γ1 in C∗(Γ) is contained in the unit circle T of C.

By the spectral theorem for unitaries,

‖eΓ + γ1 − γ2
1‖C∗(Γ) ≤ max

z∈T
|1 + z − z2| < 3.

Then

‖(eΓ + γ1 − γ2
1)γ2‖C∗(Γ)≤‖eΓ + γ1 − γ2

1‖C∗(Γ) · ‖γ2‖C∗(Γ)

= ‖eΓ + γ1 − γ2
1‖C∗(Γ) < 3.

It follows that a is invertible in C∗(Γ), and its inverse is given by

λ−1
∞∑
k=0

λ−k((eΓ + γ1 − γ2
1)γ2)k.
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From the natural homomorphism C∗(Γ)→ LΓ, we see that a is also invertible

in LΓ with inverse b given by the above formula. Under the natural embed-

ding LΓ → `2(Γ), b = λ−1∑∞
k=0 λ

−k((eΓ + γ1 − γ2
1)γ2)k ∈ `2(Γ). Since γ1

and γ2 generate a free subsemigroup, it is easily checked that the supports of

((eΓ+γ1−γ2
1)γ2)k for k ≥ 0 are pairwise disjoint and ‖((eΓ+γ1−γ2

1)γ2)k‖1 = 3k

for each k ≥ 0. It follows that λ−1∑∞
k=0 λ

−k((eΓ + γ1 − γ2
1)γ2)k 6∈ `1(Γ). If

a were invertible in `1(Γ), then its inverse in `1(Γ) would be b and hence

b ∈ `1(Γ), which is a contradiction. Therefore a is not invertible in `1(Γ).

There are discrete amenable groups that contain two elements gener-

ating free subsemigroups [26], [28]. Actually, Frey showed that every dis-

crete amenable group with nonamenable subsemigroups has such elements [23].

Also, Chou showed that if a finitely generated elementary amenable group has

no finite-index nilpotent subgroups, then it contains such elements [9, Th. 3.2′].

We recall the examples in [28]. Consider the action of the multiplicative group

R∗ = R \ {0} on the additive group R by multiplication. One has the semi-

direct product group R o R∗, which is R× R∗ as a set and has multiplication

(s1, t1) · (s2, t2) = (s1 + t1s2, t1t2). For any 0 ≤ a ≤ 1/2, the subgroup Γa of

RoR∗ generated by (1, a) and (1,−a) is 2-step solvable (and hence amenable),

and (1, a) and (1,−a) generate a free subsemigroup in Γa.
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