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Minimal co-volume hyperbolic lattices, II:
Simple torsion in a Kleinian group

By T. H. Marshall and G. J. Martin

Abstract

This paper represents the final step in solving the problem, posed by

Siegel in 1945, of determining the minimal co-volume lattices of hyperbolic

3-space H (also Problem 3.60 (F) in the Kirby problem list from 1993).

Here we identify the two smallest co-volume lattices. Both these groups

are two-generator arithmetic lattices, generated by two elements of finite

orders 2 and 3. Their co-volumes are 0.0390 . . . and 0.0408 . . . ; the precise

values are given in terms of the Dedekind zeta function of a number field

via a formula of Borel.

Our earlier work dealt with the cases when there is a finite spherical

subgroup or high order torsion in the lattice. Thus, here we are concerned

with the study of simple torsion of low order and the geometric structure of

Klein 4-subgroups of a Kleinian group. We also identify certain universal

geometric constraints imposed by discreteness on Kleinian groups which

are of independent interest.

To obtain these results we use a range of geometric and arithmetic cri-

teria to obtain information on the structure of the singular set of the asso-

ciated orbifold and then co-volume bounds by studying equivariant neigh-

bourhoods of fixed point sets, together with a rigorous computer search of

certain parameter spaces for two-generator Kleinian groups.

1. Introduction

A Kleinian group Γ is a discrete nonelementary subgroup of the orienta-

tion preserving isometry group of hyperbolic 3-space, Isom+(H3). In this set-

ting nonelementary means not virtually abelian. The orbit spaces of Kleinian

groups are hyperbolic 3-orbifolds,

Q = H3/Γ.

Q is a hyperbolic manifold if Γ is torsion-free — that is if Γ has no elements of

finite order. The Kleinian group Γ is called a lattice if the hyperbolic volume

vol(Q) <∞.
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In 1945 Siegel [30] posed the question of identifying the numbers µn de-

fined to be the infimum of co-volumes among all lattices acting on hyperbolic

n-space. He solved this problem in dimension 2 (µ2 = π/21 from the (2,3,7)-

triangle group) and suggested (since at that time the theory of covering spaces

was not well developed) a connection to Hurwitz’ 84g − 84 Theorem of 1892

[19]. This was later established by Macbeath [22]. Mostow’s rigidity theo-

rem [26] and Selberg’s Lemma [29] establish the connection between minimal

co-volume lattices of hyperbolic n-space, n ≥ 3, and maximal automorphism

groups of hyperbolic manifolds, more generally. This is discussed in the case

of three dimensions in [5], the sharp bounds being a consequence of the results

established here.

The series of papers [12], [15], [13], [10] identified many universal geometric

criteria satisfied by Kleinian groups in 3-dimensions and discussed connections

with arithmeticity that underpin many of the results here.

Our main theorem, Theorem 1.1 below, identifies the two lattices of H3 of

smallest co-volume. Surprisingly, both of these are generated by two elements

of finite orders 2 and 3.

Theorem 1.1. Let Γ be a Kleinian group. Then either

vol(H3/Γ) = vol(H3/Γ0) = 2753/22−7π−6ζk(2) = 0.0390 . . . and Γ = Γ0, or

vol(H3/Γ) = vol(H3/Γ1) = 2833/22−7π−6ζk′(2) = 0.0408 . . . and Γ = Γ1, or

vol(H3/Γ) > V0 := 0.041.

(The equality here is up to conjugacy.) Here is a description of the two

groups Γ0 and Γ1 and the associated arithmetic data:

• Γ0 is a two-generator arithmetic Kleinian group obtained as a Z2-extension

of the index 2 orientation preserving subgroup of the group generated by

reflection in the faces of the 3-5-3-hyperbolic Coxeter tetrahedron, and ζk
is the Dedekind zeta function of the underlying number field Q(γ0), with γ0
a complex root of γ4 + 6γ3 + 12γ2 + 9γ+ 1 = 0, of discriminant −275. The

associated quaternion algebra is unramified. This group has a discrete and

faithful representation in SL(2,C), determined uniquely up to conjugacy,

generated by two matrices A and B with tr2(A) = 0, tr2(B) = 1 and

tr(ABA−1B−1)− 2 = γ0.

• Γ1 is a two-generator arithmetic Kleinian group, and ζk′ is the Dedekind

zeta function of the underlying number field Q(γ1), with γ1 a complex

root of γ4 + 5γ3 + 7γ2 + 3γ + 1 = 0, of discriminant −283. The asso-

ciated quaternion algebra is unramified. This group has a discrete and

faithful representation in SL(2,C), determined uniquely up to conjugacy,

generated by two matrices A and B with tr2(A) = 0, tr2(B) = 1 and

tr(ABA−1B−1)− 2 = γ1.
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In particular we solve Siegel’s problem in dimension 3.

Corollary 1.1. µ3 = 2753/22−7π−6ζk(2) = 0.03905 . . . .

The volume formulas here are found in Borel’s important paper [2] giving

co-volume bounds for maximal arithmetic hyperbolic lattices in three dimen-

sions.

Notice that in both instances above A represents an element of order 2

and B an element of order 3. Indeed it would also appear quite likely that the

next two smallest co-volume lattices contain groups generated by two elements

of finite orders 2 and 3 with low index. The co-volumes of these lattices would

be 313/22−6π−4(NP3 − 1)ζk(2) = 0.0659 . . . , ζk is the Dedekind zeta function

of the number field Q(γ3), γ3 a complex root of γ3 + 4γ2 + 5γ + 3 = 0 of

discriminant −31 and the quaternion algebra ramified at the finite place P3.
This group contains orbifold (3,0)-(3,0) Dehn surgery on the Whitehead link as

a subgroup of index 8 and so a group generated by elements of order 2 and 3 of

index 4. Next, 443/22−6π−4(NP2−1)ζk(2) = 0.0661 . . . , ζk is the Dedekind zeta

function of the number field Q(γ4), γ4 a complex root of γ3 + 4γ2 + 4γ+ 2 = 0

of discriminant −44, and the quaternion algebra ramified at the finite place P2
contains a group generated by elements of order 2 and 3 also of index 4.

1.1. Basic notation and strategy of proof. Before we give the basic strategy

of the proof of Theorem 1.1 we need to set up some notation and give a few

definitions. We denote by ρ(A,B) the (hyperbolic) distance between A and B,

where each of A and B is either a point or a subset of H3. Typically A and B

are both geodesics, and in this case, we also have a notion of complex distance.

Suppose `1 and `2 are two hyperparallel oriented geodesics in H3. We let `

be their common perpendicular, pi the point of intersection of `i with ` and Πi

the halfplane with boundary geodesic ` that contains the ray along `i emanating

from pi in the direction given by the orientation of `i. These two halfplanes

meet along `, and we define the angle between `1 and `2 to be the angle from

Π1 to Π2 measured anticlockwise, as determined by the orientation of ` from

p1 to p2 and the right-hand rule. This angle is well defined (modulo 2π) and

independent of the order in which the geodesics are given. If the geodesics are

unoriented, then the angle between them is still defined modulo π. Observe

that if `1 and `2 cross, then the angle between them is only defined modulo

supplementation. We define the angle between geodesics that meet only on

the boundary to be zero. The complex distance ∆(`1, `2) between `1 and `2
is now defined to be δ + iφ, where δ and φ are respectively the distance and

the angle between `1 and `2. We are mostly concerned with the real distance

ρ(`1, `2) between geodesics.
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Every loxodromic or elliptic element f in a Kleinian group Γ fixes two

points of the Riemann sphere Ĉ = ∂H3, and the closed hyperbolic line in H3

joining these two points is called the axis of f , denoted ax(f). Such an f

translates along this axis by an amount τf ≥ 0, the translation length, and

rotates by an angle ηf ∈ (−π, π], the holonomy or rotation angle, about this

axis. If f is elliptic (τf = 0), then it is a rotation of some finite period (the

order) about its axis, the axis itself being exactly the fixed point set of f . In

this case the holonomy is just the rotation angle and is only defined up to sign.

If f is loxodromic (τf > 0), then we can define ηf unambiguously (modulo 2π)

by orienting ax(f) in the direction of translation and letting ηf be measured

anticlockwise as determined by this orientation and the right-hand rule.

An elliptic f is called simple if for all h ∈ Γ,

(1) h(ax(f)) ∩ ax(f) = ∅ or h(ax(f)) = ax(f).

Thus, for simple f , the translates of the axis of f will form a disjoint collection

of hyperbolic lines. More generally, for any set X ⊂ H3, if for all h ∈ Γ,

(2) h(X) ∩X = ∅ or h(X) = X,

then X is called precisely invariant — a term introduced by Maskit. A collar

of radius r about a subset E ⊂ H3 is

C(E, r) = {x ∈ H3 : ρ(x,E) ≤ r}.

The collaring radius of a nonparabolic f ∈ Γ is the supremum of those

numbers r for which ax(f) has a precisely invariant collar of radius r. Such an

r always exists for the loxodromic of shortest translation in a Kleinian group

since (roughly) it will project to the shortest geodesic and this geodesic will be

embedded. Further, every lattice is geometrically finite and so, in particular,

the spectrum of traces of elements in the groups will be discrete and there will

be a loxodromic with shortest translation length (which, for brevity, we will

refer to as a shortest loxodromic).

If g is an elliptic element that is not simple, then g lies in a triangle sub-

group that is either spherical (finite) or euclidean should H3/Γ not be compact.

Accordingly any elliptic element of order n ≥ 7 is simple, but it may lie in a

dihedral subgroup.

In [12] we show that given elliptic elements f and g of order p and q gen-

erating a Kleinian group, the allowable (hyperbolic) distances δi(p, q) between

their axes has an initially discrete spectrum and, crucially, the first several

initial values of the spectrum (at least for p, q ≤ 6) are uniquely attained for

arithmetic lattices [10]. In [17] a “collar-volume” formula is established which

gives co-volume estimates simply in terms of the collaring radius of an elliptic

axis. This radius is bounded below by half the minimum possible distance be-

tween axes of order p. This minimum is δ1(p, p). For p ≥ 7, the value δ1(p, p) =
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1/2 sin(π/p) gives enough volume to exceed the co-volume of PGL(2,O√−3).
This group has been identified as the minimal co-volume noncompact lattice

by Meyerhoff [25] and is also known to be the minimal co-volume lattice con-

taining torsion of order ≥ 6, [17]. Combining these results gives

Theorem 1.2. If Γ is a Kleinian group containing either a parabolic el-

ement or an elliptic element of order p ≥ 6, then

vol(H3/Γ) ≥ vol(H3/PGL(2,O√−3)) = 0.0846 . . . .

This result is sharp.

These arguments need to be slightly refined to deal with simple torsion of

order 4 and 5, and this is also done in [17] with the lower bound 0.041 given.

(This is not sharp and probably far from what is true.)

If our Kleinian group is torsion-free, then the collar-volume formula to-

gether with the (log 3)/2 theorem of Gabai, Meyerhoff and Thurston [9] easily

give considerably larger volume estimates; see [17]. Gabai, Meyerhoff and Mil-

ley [8] have recently proved the sharp result: the minimum covolume in the

torsion-free case is attained by the Weeks manifold of volume 0.94 . . . .

If there is a nonsimple elliptic, or equivalently when there is a finite spher-

ical subgroup, the arguments are of a different nature but still based on knowl-

edge of the spectra of possible axial distances for elliptics of orders 3, 4 and 5.

A spherical point is a point stabilized by a spherical triangle subgroup of a

Kleinian group — namely, the tetrahedral, octahedral and icosahedral groups

A4, S4 and A5. Geometric position arguments based around the axes ema-

nating from a spherical point show the distances between spherical points to

be uniformly bounded below. In [18] we identify the initial part of this spec-

tra of distances, significantly extending earlier work of Derevnin and Mednykh,

[6]. Again, a crucial point is establishing arithmeticity of the first few extrema.

This enables us to use arithmetic criteria to eliminate small configurations from

consideration. Once this is done, a ball of maximal radius about a suitable

spherical point will be precisely invariant and provide volume bounds. There

are of course additional complications, but in the end we obtain the main re-

sult of [18], which is our Theorem 1.1 in the case that Γ has a tetrahedral,

octahedral or icosahedral subgroup.

The above discussion shows us that there are two remaining cases to deal

with in order to identify the two smallest co-volume Kleinian groups Γ: the

case where Γ contains a simple elliptic of order 3, and the case where all elliptics

in Γ are order 2. Most of the work of proving Theorem 1.1 comes from the

latter case. Here, two elements of order 2 can only meet at right angles and

then they generate a Klein 4-group. Already in [17] it was shown that these

Klein 4-groups appear in many extremal situations.
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One of the first results we establish is the following universal constraint

concerning discrete groups generated by two loxodromics whose axes meet

orthogonally. Groups with orthogonal loxodromics appear naturally as they

“wind up” Klein 4-groups when projected to the quotient orbifold. In the

case of two dimensions, Beardon gives an account of this and related universal

constraints; see [1, Ch. 11].

Theorem 1.3. Let f and g be loxodromic transformations generating a

discrete group such that the axes of f and g meet at right angles. Let τf and

τg be the respective translation lengths of f and g. Then

(3) max{τf , τg} ≥ λ⊥,

where

(4) λ⊥ = arccosh

Ç√
3 + 1

2

å
= 0.831446 . . . .

Equality holds when 〈f, g〉 is the two-generator arithmetic torsion-free lattice

with presentation

Γ = 〈f, g : fg−1fgfgf−1gfg = gfg2fgf−1g2f−1 = 1〉.

This group is a four-fold cover of (4,0) and (2,0) Dehn surgery on the 2 bridge

link complement 622 of Rolfsen’s tables, [28]. H3/Γ0 has volume 1.01494160 . . . ,

Chern-Simons invariant 0 and homology Z3 + Z6.

This result significantly refines a particular case of an earlier theorem [14]

concerning groups generated by loxodromics with intersecting axes. We expect

that Theorem 1.3 represents the extreme case independently of the angle at

which the axes of loxodromics meet.

1.2. Outline of the Proof for Theorem 1.1. As noted above, we are reduced

to proving this theorem in the cases where Γ has either a simple elliptic of

order 3 or no elliptics of order greater than 2. Our first step is to prove

Theorem 1.3 above (Sections 3–6). Next, we establish some collar-volume

estimates (Sections 8 and 9), the main result being

Lemma 1.1. If g is a loxodromic in a Kleinian group Γ that has a common

axis with an elliptic of order k and a collaring radius of at least ck, where

c1 = 0.345, c3 = 0.294 and ck = 0.4075 for k 6= 1, 3, then vol(H3/Γ) > V0.

Here and subsequently we interpret the statement that g has a common

axis with an elliptic of order 1 to mean that g has a common axis with no

elliptic.

From the elliptic collaring theorems and the identification of all the small

extremals as arithmetic in [10], any loxodromic in a Kleinian group that shares

its axis with an elliptic of order 3 has collaring radius at least 0.294, or else
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Γ is arithmetic and is either one of the groups Γ0, Γ1 of Theorem 1.1, or has

co-volume greater than V0. Lemma 1.1 thus gives Theorem 1.1 in the case

where Γ has 3-torsion.

In the remaining case — where there is only 2-torsion — we prove (Sec-

tion 10) the following upper bound on the shortest translation length in the

extremal case; Theorem 1.3 plays an important part in establishing this.

Lemma 1.2. A Kleinian group Γ with no elliptics of order 3 or more and

co-volume at most V0 has a shortest loxodromic with translation length τ ≤
0.497. This loxodromic does not share its axis with any elliptic element of Γ.

After a preliminary collaring estimate (Section 11), we complete the proof

of Theorem 1.1 by combining the above with the following result (Section 12).

Lemma 1.3. There is no Kleinian group Γ with co-volume less than V0,

no elliptics of order 3 or more, and shortest loxodromic with translation length

τ ≤ 0.497 and collaring radius r ≤ 0.345.

Remark on computer assistance. The proof of our results will be com-

puter assisted in a number of places, though this assistance occurs only in

a mild way. We rigorously search certain regions to show there are no dis-

crete groups within, somewhat akin to the search of [9]. Here however, we

shall use new polynomial trace identities to provide inequalities analagous to

Jørgensen’s well-known result [20]. Most of our searches are broken down

into lesser searches that take anything from a few minutes to 60 hours on a

Macintosh G5, using (very simple) code written in Mathematica. Most of the

computation is in the proof of Lemma 1.3.

All our computations take the same general form: we are given a domain

U ⊆ C2 and a collection Q = {qi | i ∈ I} of real valued functions defined on

C2, and we must show that, at each point of U , at least one of the functions is

positive. In each of the proofs involving a machine computation (Theorem 1.3,

Lemmas 1.1 and 1.2) we will simply find the domain U and the family Q.

We relegate details of the computation (mostly finding Lipschitz bounds) to

Appendix 1.

We point out that it is entirely possible that minor modifications to the

Gabai-Meyerhoff-Thurston [9] search may reproduce most of the results here.

This modification would be to the way certain regions are eliminated. In

particular, one would need to identify those subregions where a contradiction to

a choice of shortest loxodromic was achieved by identifying an elliptic of order

2 or 3. Presumably this is a very small part of the parameter space searched.

Further, the collar-volume estimate shows one does not have to search all the

way out to 1
2 log 3. This would save a considerable amount of computation.

However we did not take this approach. Firstly, despite some attempts we were
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not able to rewrite and run the code successfully. Second, our aim here was to

produce results that could be verified on a reasonable machine in a reasonable

amount of time. Thus we used geometry to reduce the size of search spaces as

much as possible. Another of our aims was the hope that the simplified search

procedure presented here using polynomial trace identities and generalisations

of Jørgensen’s inequality will be implemented to eventually give an alternative

and simpler proof of the important 1
2 log 3 theorem of [9].

2. Discrete groups and polynomial trace identities

For each f ∈ Isom+(H3), we define the trace of f , which we denote by

tr(f), by choosing a matrix representative for f in PSL(2,C),

A =

Ç
a b

c d

å
for f |C =

az + b

cz + d
,

and letting tr(f) = tr(A); thus tr(f) is defined up to sign. We then define, for

f, g ∈ Isom+(H3),

β(f) = tr2(f)− 4 and γ(f, g) = tr[f, g]− 2.

(tr[f, g] is defined unambiguously by representing [f, g] by a matrix of the form

[A,B].)

The parameters defined above conveniently encode various other geometric

quantities. For instance, γ(f, g) = 0 if and only if f and g share a common

fixed point in Ĉ, an elementary fact proved in [1], which we will often use in

what follows. Other examples are the following. If f and g are each elliptic or

loxodromic, with translation lengths τf and τg respectively and holonomies ηf
and ηg respectively, then we have [16]

β(f) = 4 sinh2
Å
τf + iηf

2

ã
= 2 (cosh(τf + iηf )− 1) ,(5)

β(g) = 4 sinh2
Å
τg + iηg

2

ã
= 2 (cosh(τg + iηg)− 1) ,(6)

γ(f, g) =
β(f)β(g)

4
sinh2[∆(ax(f), ax(g))].(7)

Recall from Section 1.1 that the angle φ in the complex distance δ+ iφ :=

∆(ax(f), ax(g)) is defined modulo π, so that the right-hand side of (7) is well

defined.

From (5)–(7), we derive

cosh(τf ) =
|β(f) + 4|+ |β(f)|

4
,(8)

cos(ηf ) =
|β(f) + 4| − |β(f)|

4
,(9)
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cosh(2δ) =

∣∣∣∣∣ 4γ(f, g)

β(f)β(g)
+ 1

∣∣∣∣∣+
∣∣∣∣∣ 4γ(f, g)

β(f)β(g)

∣∣∣∣∣ ,(10)

cos(2φ) =

∣∣∣∣∣ 4γ(f, g)

β(f)β(g)
+ 1

∣∣∣∣∣−
∣∣∣∣∣ 4γ(f, g)

β(f)β(g)

∣∣∣∣∣ .(11)

We are often concerned with the case where one of the isometries, say g, is of

order 2, in which case β(g) = −4, and (10) and (11) take the simpler form

cosh(2δ) = |1− γ(f, g)/β(f)|+ |γ(f, g)/β(f)|,(12)

cos(2φ) = |1− γ(f, g)/β(f)| − |γ(f, g)/β(f)|.(13)

We view the space of all two-generator Kleinian groups modulo conjugacy

as a subset of the three complex dimensional space C3 via the map

(14) 〈f, g〉 → (γ, β, β′),

where here β = β(f), β′ = β(g) and γ = γ(f, g).

A fundamental problem is to find the points in C3 that correspond to

discrete two-generator groups. This space has very complicated structure, but

those points corresponding to two-generator lattices will be isolated. In order

to identify these groups we will have to develop tests — such as Jørgensen’s

inequality — that identify nondiscrete groups. Our computer searches analyze

particularly important parts of C3; specifically, certain slices of co-dimension

one or two. These slices arise as there is a projection from the three complex

dimensional space of discrete groups to the two complex dimensional slice

β′ = −4 that preserves discreteness and which comes about roughly because

we can assume one generator has order 2. This is only a property of two-

generator groups [3].

Lemma 2.1. Suppose (γ, β, β′) are the parameters of a discrete group.

Then so are (γ, β,−4):

(15) (γ, β, β′) discrete⇒ (γ, β,−4) discrete.

Further, away from a small finite set of exceptional parameters this projection

also preserves the property of being nonelementary.

This exceptional set will not concern us greatly here as it occurs only

in the presence of finite spherical triangle subgroups (other than the Klein

4-group). The proof of Lemma 2.1 consists in examining the parameters for the

Z2 extensions of the discrete subgroup 〈f, gfg−1〉, generated by two elements

with the same trace; see [14].

We now discuss a very interesting family of polynomial trace identities

that will be used to obtain geometric information about Kleinian groups [14].



270 T. H. MARSHALL and G. J. MARTIN

Let 〈a, b〉 be the free group on the two letters a and b. We say that a word

w ∈ 〈a, b〉 is a good word if w can be written as

(16) w = bs1ar1bs2ar2 · · · bsm−1arm−1bsm ,

where s1 ∈ {±1}, sj = (−1)j+1s1 and rj 6= 0 but are otherwise unconstrained.

The good words start with b and end in b±1 depending on whether m is even

or odd; the exponents of b alternate in sign. The following theorem is a key

tool used in the study of the parameter spaces of discrete groups.

Theorem 2.1 ([14, Th. 7.13]). Let w = w(a, b) ∈ 〈a, b〉 be a good word,

β = β(f) and γ = γ(f, g). Then there is a monic polynomial pw of two complex

variables, having integer coefficients such that

(17) γ(f, w(f, g)) = pw(γ, β)

with pw(0, β) = 0.

There are three things to note. The first is that if we assume that b2 = 1,

then the alternating sign condition is redundant and every w(a, b), where w

takes the form (16), is good. The second thing is that there is a natural

semigroup operation on the good words. If w1 = w1(a, b) and w2 = w2(a, b)

are good words, then so is

(18) w1 ∗ w2 = w1(a,w2(a, b)).

That is, we replace every instance of b in w1 with w2(a, b). So, for example,

(bab−1ab) ∗ (bab−1) = bab−1a(bab−1)−1abab−1 = bab−1aba−1b−1abab−1.

It is not too difficult to see that

(19) pw1∗w2(γ, β) = pw1(pw2(γ, β), β),

which corresponds to polynomial composition in the first slot. For a two gen-

erator Kleinian group 〈f, g〉, we make the assignment

f 7→ a, g 7→ b

and correspondingly call w(f, g) a good word. Notice the obvious fact that

〈f, g〉 Kleinian implies 〈f, w(f, g)〉 discrete. Finally note that for any word

w = w(f, g) and m,n ∈ Z, γ(f, fmwfn) = γ(f, w) so that the requirement

that the word start and end in a nontrivial power of b is simply to avoid some

obvious redundancy.

Let us give two simple examples of word polynomials and how they gen-

erate inequalities. This might seem an aside to our task of studying small

co-volume lattices, but our computer searches amount in large part to mech-

anising the following arguments. The direct calculation of the polynomial pw
from w by hand can be a little tricky but can be done for some short words w;

see [14].



MINIMAL CO-VOLUME HYPERBOLIC LATTICES, II 271

First is the classical example:

(20) w = bab−1, pw(z) = z(z − β).

Here z = γ(f, g) and β = β(f). We suppress β and treat z as a variable. The

next two examples come from the good words

w = bab−1ab, pw(z) = z(1 + β − z)2,
w = bab−1a−1b, pw(z) = z(1− 2β + 2z − βz + z2).

Let us indicate how these words are used to describe parts of the parameter

space for two-generator Kleinian groups. We take for granted the well-known

fact that the space of discrete nonelementary groups is closed. Jørgensen gave

a proof of this as a consequence of his inequality, and it is a very general fact

concerning groups of isometries of negative curvature. Let us use the first

word w = bab−1 and its associated polynomial to recover Jørgensen’s trace

inequality from the fact that the space is closed. Consider

J = min{|γ|+ |β| : (γ, β, β′) are the parameters of a Kleinian group}.

This minimum is attained by some Kleinian group Γ = 〈f, g〉. If Γ′ = 〈f, gfg−1〉
is Kleinian (it is certainly discrete), then, by minimality,

|γ|+ |β| ≤ |γ(γ − β)|+ |β|,(21)

1≤ |γ − β|,(22)

as γ 6= 0. (As noted above, γ = 0 implies that f and g share a fixed point on

Ĉ, so Γ could not be Kleinian.) If f has order 2, 3, 4 or 6, |β| ≥ 1, so J ≥ 1,

and there is nothing more to prove. In all other cases, it follows from the

classification theorem [1] of elementary discrete groups that Γ′ is elementary

implies f and gfg−1 have the same fixed point set. Thus, g fixes or permutes

the fixed point set of f , implying that Γ is elementary, a contradiction.

We have shown that at the minimum we must have either |β| ≥ 1 or

|γ − β| ≥ 1 and so J = |γ| + |β| ≥ 1. This is Jørgensen’s inequality. This

inequality is attained with equality (the argument shows that in fact (21)

holds with equality) for representations of the (2, 3, p)-triangle groups.

As far as our search for Kleinian group parameters in C3 is concerned,

Jørgensen’s inequality tell us that the region

{(γ, β, β′) : |γ|+ |β| < 1 or |γ|+ |β′| < 1}

contains no parameters for Kleinian groups. We will want to extend this region

significantly, to identify the places where Kleinian groups actually are. Follow-

ing the argument that produces Jørgensen’s inequality, we will consider other

polynomial trace identities to get further inequalities. A point to observe here

is that in more general situations — that is for other polynomials — we must

examine and eliminate, for some geometric reason, the zero locus of pw. (In the
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above example the variety {γ = β} was eliminated through the classification

of the elementary groups; we will consistently ignore the locus {γ = 0} when

the groups in question are Kleinian.) When pw 6= 0, basically Γ′ = 〈f, w(f, g)〉
is Kleinian and so a candidate for a minimisation procedure.

So for instance, if we minimize |γ|+ |1+β| and use the second polynomial

z(1 + β − z)2, we see that at the minimum

|γ|+ |1 + β| ≤ |γ(1 + β − γ)2|+ |1 + β|,
1≤ |1 + β − γ|

and so |γ| + |1 + β| ≥ 1. The zero locus we need to consider this time is

the set {γ = 1 + β}; these groups are Nielsen equivalent to groups generated

by elliptics of order 2 and 3 [14]. In particular, this gives us the following

inequality which we will use later.

Lemma 2.2. Let 〈f, g〉 be a Kleinian group. Then

|γ|+ |1 + β| ≥ 1

unless γ = 1+β (in which case it follows that fg or fg−1 is elliptic of order 3).

As a consequence, if f has order 6, then β = −1 and we have

Corollary 2.1. If 〈f, g〉 is a Kleinian group and f is elliptic of order 6,

then

(23) |γ(f, g)| ≥ 1.

This result is entirely analogous to the Shimizu-Leutbecher inequality for

groups with one generator parabolic [1]. More generally, each good word gives

rise to some such inequality in an analogous fashion.

There are a couple of further points we wish to make here. Suppose that

we have eliminated a certain region from the possible values for (γ, β,−4)

among Kleinian groups. Then (pw(γ, β), β,−4) also cannot lie in this region.

Thus, for instance, from Jørgensen’s inequality we have

Lemma 2.3. Let 〈f, g〉 be a Kleinian group. Then

|pw(γ, β)|+ |β| ≥ 1

unless pw(γ, β) = 0.

A useful special case (using (20)) is

Lemma 2.4. Let 〈f, g〉 be a Kleinian group. Then

(24) |γ(γ − β)|+ |β| ≥ 1

unless γ = β.
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The restrictive condition pw(γ, β) = 0 of Lemma 2.3 implies that f and

w = w(f, g) share a fixed point on Ĉ. We may use discreteness and geometry

to find implications of this equation that can be used to eliminate it. For

instance, if f is loxodromic, discreteness implies that w is not parabolic (see

[1]) and that w and f have the same axis. Thus [f, w] = Identity, identifying

a relation in the group. If f has some other special property such as being

primitive, then w is either elliptic or a power of f , giving further relations.

These additional properties of w in turn place greater constraints on γ and β.

The parameters of the commutator [f, g] are easily derived from those of

f and g. Specifically,

(25) β([f, g]) = tr2[f, g]− 4 = (γ + 2)2 − 4 = γ(γ + 4)

and

(26) γ([f, g], f) = γ(f, gf−1g−1) = γ(f, gfg−1) = γ(γ − β),

using the fact that [a, ab], [a, b] and ([a, b−1])
−1

are all conjugate, together with

(20) for the last equation.

3. Orthogonal axes

The aim of this and the next three sections is to prove Theorem 1.3. We

first prove the special case that f and g have the same trace. In that case we

can say somewhat more.

Theorem 3.1. Let f and g be loxodromic transformations whose axes

meet at right angles and for which β(f) = β(g). If 〈f, g〉 is discrete, then their

translation lengths satisfy

(27) τf = τg ≥ 1.06

unless

τf ∈ {λ⊥, 0.8538 . . . , 0.8812 . . . , 1.0098 . . . , 1.045 . . . , 1.0594 . . .}.

Each of the above values is attained in a two-generator arithmetic lattice.

Proof. Let φ be an elliptic element of order 4 whose axis is orthogonal to

the hyperbolic plane spanned by the axes of f and g, and that passes through

the point of intersection of these two axes. Then

φfφ−1 = g±1, φ2fφ−2 = f−1, φ2gφ−2 = g−1,

and thus the group 〈f, g, φ〉 = 〈f, φ〉 contains the group 〈f, g〉 with index at

most 4. Hence 〈f, φ〉 is discrete if and only if 〈f, g〉 is discrete.

Now ψ = fφf−1 and φ are two elliptic elements of order 4 in a discrete

group. The axis of f forms the common perpendicular between the axes of φ

and ψ. Clearly τf = ρ(ψ, φ). We are now in a position to apply our knowledge
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of the initial part of the spectra of distances between the axes of elliptics of

order 4 generating a discrete group (see [12]), and this is the list presented

above. Furthermore, the arithmeticity of the groups in question is decided in

[10]. The smallest value is obtained in the arithmetic lattice generated by two

elements ϕ of order 2 and ψ of order 4 with γ(ϕ,ψ) = (−1 + i
√

3)/2. �

Actually, there is another relevant result here whose proof is more or

less the same, once one adds the additional four-fold symmetries through the

axes. One needs then to observe that two octahedral subgroups that contain a

common element of order 4 are at distance at least 1.0594 . . . ; see [18] for this

and related results for the other spherical triangle groups.

Theorem 3.2. Let f, g and h be loxodromic transformations whose axes

all meet at right angles and for which β(f) = β(g) = β(h). If 〈f, g, h〉 is

discrete, then

(28) τf = τg = τh ≥ 1.0594 . . . .

This value is sharp and occurs when 〈f, g〉 (and hence 〈f, g, h〉) is a specific

arithmetic lattice.

If z is a complex root of z3 + z2− z+ 1, then the number 1.0594 . . . is the

real part of 2arcsinh
(»

z/2
)
.

In the same vein we have the following

Lemma 3.1. Let f and g be loxodromic transformations whose axes are

distinct and meet (possibly on the boundary), and for which β(f) = β(g). If

there are elliptics φ and χ of order 2 that have the same axes as f and g

respectively, and 〈f, g, φ, χ〉 is discrete, then

(29) τf = τg ≥ λ⊥.

Proof. By discreteness, the axes can only meet at an angle of π/n (n =

2, 3, . . . ). If ρ is rotation through an angle of π/n around the common per-

pendicular of ax(f) and ax(g), then 〈f, g, φ, χ, ρ〉 is still discrete, and the in-

tersection point of ax(f) and ax(g) is on the axis of an elliptic of order 2n in

this group. Two such axes must be at distance at least λ⊥ [12], which gives

(29). �

The previous three arguments have used the special symmetry of the sit-

uation in which we have equal traces. Next we give another intriguing conse-

quence of the hypotheses of Theorem 3.1, which points the way to the more

general result since it does not use the inherent symmetry of the situation in

quite the same manner.
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Theorem 3.3. Let f and g be loxodromic transformations whose axes

meet at right angles and for which β(f) = β(g). If 〈f, g〉 is discrete, then for

all m ∈ Z \ {0},

(30) |β(fm)| ≥ 1 and |4 + β(fm)| ≥ 1.

Proof. Since f and g have axes that meet at right angles, we have

(31) γ(f, g) = −β(f)β(g)

4
= −β

2

4
,

where β = β(f). Define the quadratic polynomial

pβ(z) = z(z − β).

If |β| < 1, then 0 is an attracting fixed point for the iteration of this polynomial,

its only preimages being 0, β. The critical point for this polynomial is β/2, and

its forward image is the point pβ(β/2) = β/2(β/2−β) = −β2/4 = γ(f, g) = γ.

Set

h1 = gfg−1, and hn+1 = hnfh
−1
n .

Then we have the polynomial trace identities,

γ(f, hn) = pnβ(γ).

In particular, the sequence {2+pnβ(γ)}∞n=1 is a sequence of traces in the discrete

group 〈f, g〉. Since pβ is quadratic, under iteration the critical point, and

therefore its image γ, must converge to the fixed point (see [4])

pnβ(γ)→ 0 as n→∞.

This will eventually contradict Jørgensen’s inequality (in fact this is easily

seen to be a contradiction in itself), unless for some n we have pnβ(γ) = 0.

If n = 1, then γ = β which implies β = −4 and f is elliptic of order 2, a

contradiction. Otherwise we have n ≥ 2 and pn−1β (γ) = β. Thus 〈f, hn−1〉
is a discrete nonelementary group with parameters β(f) = β(hn−1) = β and

γ(f, hn−1) = β. There are many ways to proceed from here to a contradiction;

see [14].

Next observe that if φ is an elliptic of order 2 sharing its axis with f and

ψ is an elliptic of order 2 sharing its axis with g, then 〈f, g, φ, ψ〉 contains 〈f, g〉
with index at most 4 and is therefore discrete. Then q1 = fφ and g1 = gψ are

both loxodromic with perpendicular axes, and

(32) β(q1) = 4 sinh2

Ç
τf + i(θf + π)

2

å
= −4 cosh2

Å
τf + iθf

2

ã
= −4− β,

which, together with the first part, proves the result. �
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Actually the reader should see that there is considerably more here. If

|2+β| < 1, then 1+β is an attracting fixed point of pβ. Groups with γ = 1+β

are Nielsen equivalent to groups generated by elliptics of orders 2 and 3. A

sequence of γ values converging to 1+β is not possible. (Use the trace identity

γ(f, gfg−1fg) = γ(1 + β − γ)2 to find a sequence converging to 0.) The

argument of Theorem 3.3 produces

Theorem 3.4. Let f and g be loxodromic transformations whose axes

meet at right angles and for which β(f) = β(g). If 〈f, g〉 is discrete and

contains no elliptics of order 3, then for all m ∈ Z \ {0},

(33) |2 + β(fm)| ≥ 1.

Notice that this inequality is symmetric under the involution β ↔ −4−β
that we used in the previous result.

Many more arguments of this type are possible; essentially one only needs

that β
2 −

β2

4 lies in the hyperbolic part of the Mandelbrot set, and so this itera-

tion procedure converges to an attracting fixed point. Moreover, the argument

only requires that γ = −β(f)β(g)/4 lies in the interior of the filled-in Julia set

of the polynomial.

Unfortunately, while this approach is effective for certain cases, estimating

the size of filled-in Julia sets is quite difficult, although it is this process that

in many ways underpins our search. We shall instead seek polynomial trace

identities that bound parameters for discrete groups and turn this information

into estimates on the geometric quantities, such as translation length.

4. Proof of Theorem 1.3

The proof of Theorem 1.3 involves a simple computer search. The main

computation is described in Section 6. Here we establish some preliminary

results.

4.1. An extension. Let f and g be as in the statement of Theorem 1.3.

We begin by observing that the symmetry of the situation allows a reduction

of the possible holonomies of the loxodromics f and g, just as in Theorem 3.3.

Let φ be the elliptic of order 2 that shares an axis with f , and let χ be

the elliptic of order 2 that shares its axis with g. Then, of course,

φf = fφ, χg = gχ, φg = g−1φ, χf = f−1χ,

and these relations show that the group 〈f, g, χ, φ〉 contains 〈f, g〉 with index at

most 4, whence both groups are discrete and nonelementary. We may therefore

replace f by fφ and/or g by gφ, keeping the hypotheses of the theorem intact,

but with the better holonomy bounds

(34) 0 ≤ ηf ≤ π/2, −π/2 ≤ ηg ≤ π/2,



MINIMAL CO-VOLUME HYPERBOLIC LATTICES, II 277

where, by symmetry (more precisely, by conjugating the group, if necessary,

by a reflection in a plane containing ax(f)), we have assumed that ηf ≥ 0.

Indeed, somewhat more is true. Since τfkφε = kτf , we may replace f by

any element (not of order 2) in the group 〈f, φ〉, and similarly for g. This is

especially useful if the holonomy of f or g is large, but the translation length

is small.

Next, if

(35) f1 ∈ 〈f, φ〉, g1 ∈ 〈g, χ〉,

then (7) gives

(36) γ(f1, g1) = −β(f1)β(g1)

4
.

4.2. Small translation length. We now eliminate the case where either of

the translation lengths is small.

Lemma 4.1. Let f and g be loxodromic transformations generating a dis-

crete group such that the axes of f and g meet at right angles. If min{τf , τg} ≤
0.215, then

(37) max{τf , τg} ≥ λ⊥.

Proof. We choose f1, g1 as in (35) (that is, one element from the stabiliser

of each axis) and consider h = g1f1g
−1
1 . Then we set

γ′ = γ(f1, h) = γ(γ − β), where γ = γ(f1, g1), β = β(f1).

Moreover, (5) gives

(38) β(g21) = β(g1)(β(g1) + 4).

The group 〈f1, h〉 will be nonelementary, and so Jørgensen’s inequality

tells us that |γ′|+ |β| ≥ 1, whence using (36) and (38) we deduce∣∣∣∣∣β(f1)β(g1)

4

∣∣∣∣∣
∣∣∣∣∣−β(f1)β(g1)

4
− β(f1)

∣∣∣∣∣+ |β(f1)| ≥ 1,(39)

|β(f1)|
Ç
|β(f1)|

∣∣∣∣∣β(g1)(β(g1) + 4)

4

∣∣∣∣∣+ 4

å
≥ 4,

|β(f1)|
Ç
|β(f1)|

∣∣∣∣∣β(g21)

4

∣∣∣∣∣+ 4

å
≥ 4.

We now consider what happens for various choices of g1. First, we put

g1 = g. If we assume τg ≤ λ⊥, we have

|β(g21)|
4

≤ cosh2(τg) ≤ 1.8661
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so that from (39),

(40) |β(f1)| ≥ 0.7426.

This estimate is akin to the estimate |β| > 1, which we easily obtained for the

case of equal traces. Of course by symmetry, (40) also holds with g1 replacing

f1. If we assume that τf ≤ 0.215 and put

• f1 = f if 0 ≤ ηf ≤ 0.86,

• f1 = f3φ if 0.86 ≤ ηf ≤ 1.2, and

• f1 = f2φ if 1.2 ≤ ηf ≤ π/2,

then for each such choice we obtain |β(f1)| < 0.7426, which contradicts (40).

�

5. The extremal group

The statement of Theorem 1.3 contains a claim regarding sharpness, which

is attained by the arithmetic torsion-free lattice 〈f, g〉 with complex parameters

(41) β(f) = β(g) = −3 + i
√

3, γ(f, g) =
3

2

Ä
−1 + i

√
3
ä

= −β(f)2

4
,

for which τf = τg = λ⊥ (so that this group also gives sharpness in the special

case of equal traces dealt with in Theorem 3.1).

Our method of proof for Theorem 1.3 will be to search through the values

of (βf , βg) corresponding to groups generated by two loxodromics, f and g,

with orthogonal axes, both with translation length less than λ⊥, and show

that none of these groups is discrete. The sharp example is on the boundary

of this region. The next result isolates this extremal group in the space of

discrete groups so that we do not have to search near it.

Theorem 5.1. Let 〈f, g〉 be a Kleinian group generated by two loxo-

dromics with orthogonal axes, each with translation length less than λ⊥. Then

max
¶
|βf − (−3 + i

√
3)|, |βg − (−3 + i

√
3)|
©
≥ 0.34 and(42)

max
¶
|βf − (−3− i

√
3)|, |βg − (−3− i

√
3)|
©
≥ 0.34.

If, moreover, f and g each share their axes with order 2 elliptics, then

max
¶
|βf − (−1 + i

√
3)|, |βg − (−1 + i

√
3)|
©
≥ 0.34 and(43)

max
¶
|βf − (−1− i

√
3)|, |βg − (−1− i

√
3)|
©
≥ 0.34.

Proof. We suppose that the + sign is chosen in (42). (The other case

follows by an obvious symmetry.) We let f and g satisfy the hypotheses of

the theorem and suppose that βf and βg both lie in the disk D with center
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−3 + i
√

3 and radius 0.34. By (8), both are also in the interior of 2(Eλ⊥ − 1),

where, for s > 0, Es is the region bounded by the ellipse

(44) Es = {z : |z − 1|+ |z + 1| ≤ 2 cosh(s)}.

The point −3 + i
√

3 is on the boundary of 2(Eλ⊥ − 1), so that βf and βg lie

beneath the tangent line to the ellipse at this point; a simple calculation shows

that this line has slope 2−
√

3 = tan(π/12). We set

βf = 4(z − 1), βg = 4(w − 1), γ(f, g) = −βfβg
4

,

where γ(f, g) is given by (36); thus z and w lie in the open half-disk H with

center c0 = (1 + i
√

3)/4 and radius 0.085, (strictly) beneath the line through

c0 with slope tan(π/12).

Let a, b be a pair of matrices in PSL(2,C) representing f and g respectively.

Then, up to conjugacy, we have

a =

Ç √
z

√
z − 1√

z − 1
√
z

å
, b =

Ç √
w +
√
w − 1 0

0
√
w −
√
w − 1

å
.

Motivated by the relators in our extremal group (see the statement of

Theorem 1.3), we let h and k be the transformations with respective matrix

representations

W = ab−1ababa−1bab,(45)

V = bab2aba−1b2a−1,(46)

whence

β(h) = 4wz(5− 8z + 4w(z(7− 4w)− 2 + 4z2(w − 1)))2 − 4,

β(k) = 16(w − 1)(1 + (4w − 2)z)2

× (w + 4(w − 1)(2w − 1)z + 4(1− 2w)2(w − 1)z2)

and γ(h, k) = −16(z − 1)(w − 1)[1 + (4w − 2)z]2p(z, w), where

p(z, w) = w + 4(1− 5w + 10w2 − 8w3)z

+ 16w(−4 + 18w − 25w2 + 12w3)z2

+ 64w(5− 35w + 84w2 − 86w3 + 32w4)z3

+ 256(w − 1)2w(−1 + 11w − 27w2 + 20w3)z4

+ 1024(w − 1)3(2w − 1)2w2z5.

Similarly, we define ε(h, k) to be the sum of the elements of the subsidiary

diagonal of [V,W ]. We have ε(h, k) = 16(w−1)(1+(4w−2)z)
»
z(z − 1)q(z, w),
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where

q(z, w) = 1− 3w + 4w2 − 2(4− 21w + 64w2 − 104w3 + 64w4)z

+ 8(1 + 17w − 126w2 + 280w3 − 264w4 + 96w5)z2

+ 32w(−26 + 238w − 777w2 + 1196w3 − 888w4 + 256w5)z3

+ 128w(9− 117w + 520w2 − 1114w3 + 1254w4 − 712w5 + 160w6)z4

+ 512w(w − 1)2(−1 + 19w − 87w2 + 162w3 − 128w4 + 32w5)z5

− 2048w2(1− 3w + 2w2)3z6.

We will show that whenever z, w ∈ H, some subgroup of 〈f, g〉 is not

discrete. We first suppose that γ(h, k) = ε(h, k) = 0, whence either z = 1,

w = 1, z = 0, 1 + (4w − 2)z = 0 or p(z, w) and q(z, w) vanish simultaneously.

The first three cases are impossible, since 0, 1 /∈ H. Eliminating z from the

equations p(z, w) = 0 and q(z, w) = 0 gives

(w − 1)2(1− 2w + 4w2)
2
(48w3 − 88w2 + 49w − 8) = 0,

whose solutions again lie outside H; thus 1 + (4w − 2)z = 0.

In this case we consider the group 〈h, g〉. We calculate

β(h) = −2(4w − 1)(4w2 − 5w + 2)(4w2 − 2w + 1)
2

(2w − 1)5
,

γ(h, g) =
2(w − 1)(4w − 1)(4w2 − 2w + 1)

2

(2w − 1)5
.

Now γ(h, g) has no roots in H, and a simple calculation gives |β(h)|+ |γ(h, g)|
< 1 when |w−c0| = 0.085; thus, by the maximum modulus principle, applied to

the subharmonic function |β|+|γ|, this inequality remains true when |w−c0| ≤
0.085. Thus, by Jørgensen’s inequality, 〈h, g〉 is not discrete. Note that in the

case z = w = c0, we get the extremal group (41), for which h and k both

reduce to the identity.

We next suppose that γ(h, k) = 0, but ε(h, k) 6= 0, whence p(z, w) = 0.

In this case the axes of h and k (if neither of these are parabolic) are distinct,

and by (7), meet on the sphere at infinity. In particular, if 〈h, k〉 is discrete,

then either at least one of h and k is parabolic, or by the classification of the

elementary groups [1], both are elliptic of order 2, 3, 4 or 6; that is,

(47) β(h) = 0 or β(k) = 0 or β(k) ∈ {0,−1,−2,−3,−4}.

An easy computation shows that the pairs of equations p(z, w) = β(h) = 0,

p(z, w) = β(k) = 0 and each pair of equations p(z, w) = 0 and β(k) = −n,

for n ∈ {0, 1, 2, 3, 4}, have no solution in (z, w) ∈ H2; thus 〈h, k〉 cannot be

discrete in this case.
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Since we have now dealt with the case γ(h, k) = 0, it now suffices, by

Jørgensen’s inequality, to show that

(48) |β(h)|+ |γ(h, k)| < 1

when (z, w) ∈ H × H. Again, by the maximum modulus principle, we need

only prove this inequality on the product of the boundaries, which is a straight-

forward maximization problem in two real variables. This completes the proof

of (42).

To prove (43), if f and g share their axes with order 2 elliptics φ and χ,

respectively, then we apply (42) to the loxodromics fφ and gχ, and we use

β(f) + β(fφ) = β(g) + β(gχ) = −4. �

Remark. We need to use the half-disk H rather than the disk only when

proving (48); even here a whole disk can be used but with a slightly smaller

radius (0.3 rather than 0.34).

6. More tests

So far, in the above we have only used Jørgensen’s inequality to generate

constraints on parameters. However, to get to what we want we must develop

more subtle discreteness tests. The first is a sharp generalisation [11], [3] of

another result of Jørgensen [21], who found universal constraints on discrete

groups generated by elements with the same trace.

Lemma 6.1. Let f and g generate a discrete nonelementary group. Let

γ = γ(f, g) and β ∈ {βf , βg}. If β 6= −4 and β 6= γ, then

(49) |γ(γ − β)| ≥ 2− 2 cos(π/7) = 0.198 . . . .

This inequality is sharp and uniquely attained in the (2,3,7)-triangle group.

Notice that if f and g have axes meeting at right angles, then (36) iden-

tifies γ, and if we put β′ = βg, the inequality reads as

(50) |β2||β′(β′ + 4)| = |β(f)|2|β(g2)| ≥ 16× 0.198 = 3.168,

which has obvious implications.

We need a few more tools to prove Theorem 1.3. First we identify the

search space we will use in the proof.

Lemma 6.2. If f and g are loxodromics whose axes meet at right angles

that generate a discrete nonelementary, and if max{τf , τg} < λ⊥, then there



282 T. H. MARSHALL and G. J. MARTIN

exist such loxodromics for which each β ∈ {βf , βg} satisfies each of

β ∈ 2(Eλ⊥ − 1), β /∈ 2(E0.215 − 1), <e(β) ≥ −2, |β| ≥ 0.7426,(51)

max{|βf + 1 +
√

3i|, |βg + 1 +
√

3i|} ≥ 0.34 and

max{|βf + 1−
√

3i|, |βg + 1−
√

3i|} ≥ 0.34,

where Es is defined at (44).

Proof. The first inequality follows from the hypothesis max{τf , τg} < λ⊥
and (5), and the second similarly from Lemma 37. By (34), we may assume

that holonomies of f and g do not exceed π/2 in absolute value, whence (5)

again gives the third inequality. The remaining inequalities follow from (40)

and (43). �

Since the space of discrete nonelementary groups is closed, it follows that

the space of discrete groups we wish to discuss is compact. Hence there are

loxodromics f and g with axes at right angles, such that the group 〈f, g〉 is

discrete and the sum τf + τg is minimized. We will show that, when βf , βg
satisfy (51), it is always possible to find another such pair of loxodromics, whose

translation lengths have a smaller sum than τf+τg, a contradiction. Lemma 6.5

below shows how this contradiction can be established computationally.

The argument depends on constructing loxodromics as a product of two

order-2 elliptics. The first lemma below shows how we can append such elliptics

to a group, while preserving discreteness.

Lemma 6.3. If Γ is discrete group, f ∈ Γ is not parabolic or the identity,

h ∈ Γ, f̃ = hfh−1 and ψ, ψ̃ are the two elliptics of order 2 which interchange

ax(f) and ax(f̃), then the group Γ1 generated by ψ and ψ̃ together with the

stabilizer of ax(f) in Γ is discrete. If ax(f̃) is the closest translate of ax(f)

in Γ, then it is also closest in Γ1.

Proof. Let k be in the stabilizer of ax(f) in Γ. We have ψk = (ψkψ−1)ψ =

(hkh−1)
±1
ψ. Similarly, ψ̃k = (hkh−1)

∓1
ψ̃. Thus, by advancing ψ and ψ̃ to the

right of each word, every isometry in Γ1 can be written α, αψ, αψ̃ or αψψ̃ (ψ

and ψ̃ commute), where α is the group generated by the stabilizers of ax(f)

and ax(f̃). Hence Γ1 is discrete and the translates of ax(f) in Γ1 are also

translates of ax(f) in Γ (ψ(ax(f)) = ψ̃(ax(f)) = ax(f̃)). �

Lemma 6.4. Let f, g ∈ Isom+(H3), with f neither the identity or para-

bolic. Then

(52) cosh(ρ(ax(f), ax(gfg−1)) =

∣∣∣∣∣γ(f, g)

β(f)
− 1

∣∣∣∣∣+
∣∣∣∣∣γ(f, g)

β(f)

∣∣∣∣∣ .
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Proof. Let ψ be an order-2 elliptic that interchanges ax(f) and ax(gfg−1)

= g(ax(f)), chosen so that ψf−1ψ = gf−1g−1, whence γ(f, ψ) = γ(f, g). Since

ρ(ax(f), ax(gfg−1) = 2ρ(ax(f), ax(ψ)), the lemma now follows from (12). �

Now suppose that f and g are loxodromics whose axes meet at right angles,

which generate a discrete nonelementary group with max{τf , τg} < λ⊥, and

suppose that τf + τg is minimized subject to these conditions.

As in Section 4.1, we may extend the group 〈f, g〉, retaining discreteness,

by the addition of two elements of order 2, φ and χ sharing their axes with f

and g respectively. We note that

φf = fφ and χg = gχ.

If s ∈ 〈f, g〉, then ax(sfs−1) = ax(sφs−1) = s(ax(f)). Since ax(f) and

ax(sfs−1) are also the axes of the order-2 elliptics, they must either be hyper-

parallel (i.e., ρ(ax(f), ax(sfs−1)) > 0) or coincide, by Lemma 3.1.

Suppose ax(f) and ax(sfs−1) are hyperparallel. Then, as in Lemma 6.3,

we extend 〈f, φ, sfs−1, sφs−1〉, by adding the order-2 elliptics ψ and ψ̃ that

interchange ax(f) and ax(sfs−1), obtaining the discrete group

〈f, φ, sfs−1, sφs−1, ψ, ψ̃〉.

In this group φ and ψ are elliptics of order 2 with hyperparallel axes, so their

product g′ = ψφ is loxodromic with translation length

τg′ = 2ρ(ax(φ), ax(ψ)) = ρ(ax(f), ax(sfs−1)).

Moreover, ax(g′) is perpendicular to ax(f), so we have a contradiction to min-

imality of τf + τg if τg′ < τg. Since ax(f) and ax(g) are perpendicular, we

have τg = ρ(ax(f), ax(gfg−1)), and so by Lemma 6.4, this contradiction is

equivalent to∣∣∣∣∣γ(f, g′)

β(f)
− 1

∣∣∣∣∣+
∣∣∣∣∣γ(f, g′)

β(f)

∣∣∣∣∣ <
∣∣∣∣∣γ(f, g)

β(f)
− 1

∣∣∣∣∣+
∣∣∣∣∣γ(f, g)

β(f)

∣∣∣∣∣ .
Setting βf = β(f), γ′ = γ(f, g′), this is in turn equivalent to

(53)
∣∣γ′ − βf ∣∣+ ∣∣γ′∣∣ < |γ − βf |+ |γ| .

Now, s ∈ 〈f, g〉, and if s = w(f, g), for some good word w, then γ(f, w) is

a polynomial with integer coefficients in the variables γ and β, say

γ′ = pw(γ, β),

in which case the contradiction (53) can be written

(54) |pw(γ, βf )− βf |+ |pw(γ, βf )| < |γ − βf |+ |γ| .
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Since f and g have axes at right angles, we know that γ(f, g) = −βfβg/4.

Moreover, by Theorem 2.1, we may write pw(γ, β) = γqw(γ, β) so that (54)

becomes

(55)

∣∣∣∣βfβg4
qw(γ, βf ) + βf

∣∣∣∣+ ∣∣∣∣βfβg4
qw(γ, βf )

∣∣∣∣ < ∣∣∣∣βfβg4
+ βf

∣∣∣∣+ ∣∣∣∣βfβg4

∣∣∣∣ .
Thence, eliminating common factors (neither f nor g is parabolic), we obtain

(56) |βg qw(γ, βf ) + 4|+ |βg qw(γ, βf )| < |βg + 4|+ |βg| .

This is a testable inequality that is equivalent to τg′ < τg when s = w(f, g).

Thus, should it hold, we would have a contradiction to our choice of minimality,

provided ax(sfs−1) 6= ax(f), which holds when qw(γ, βf ) 6= 0.

Thus we have

Lemma 6.5. Let 〈f, g〉 be a discrete group generated by two loxodromics

with perpendicular axes, and let τf + τg be minimal. Set γ = γ(f, g). Then,

for every good word polynomial pw,

(57) qw(γ, βf ) = 0 or |βg qw(γ, βf ) + 4|+ |βg qw(γ, βf )| ≥ |βg + 4|+ |βg| .

Here

qw(γ, β) = pw(γ, β)/γ.

We set tw(z1, z2) to be the smaller value in the set®
|z2 + 4|+ |z2| −

∣∣∣∣z2qw Å−z1z24
, z1

ã
+ 4

∣∣∣∣
−
∣∣∣∣z2qw Å−z1z24

, z1

ã∣∣∣∣ , ∣∣∣∣qw Å−z1z24
, z1

ã∣∣∣∣´.
Of course, tw(βf , βg) ≤ 0 is equivalent to (57).

We note that, for f , g as in Lemma 6.5, (57) must also hold when f is

replaced by φf and/or g is replaced by χg. By (5), this means replacing βf
and βg by −4 − βf and −4 − βg respectively. Of course, by symmetry (57)

must also hold with f and g interchanged. Thus to prove Theorem 1.3, it now

suffices to show that each (βf , βg) that satisfies (51) also satisfies the inequality

max{tw(βf , βg), tw(βg, βf ), tw(−4− βf , βg), tw(βg,−4− βf ),(58)

tw(βf ,−4− βg), tw(−4− βg, βf )} > 0,

some good word w.
In fact, we have found that (58) holds for each such point (βf , βg) for

at least one of the twenty-one words w of the form (16) with s1 = 1 and
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(r1, r2, . . . rm−1) in the set

{(1), (−3, 1), (−1,−1), (−1, 1), (−1,−1,−1), (−3, 1,−3, 1), (−1,−1,−1,−1),

(−1,−1,−1, 1), (−1, 1,−1,−1, 1), (−1,−1, 1, 1, 1,−1,−1), (−1, 1, 1,−1, 1, 1,−1),

(−2, 1, 1), (−1,−1, 1), (−1,−1,−1, 1, 1, 1,−1), (−1,−1,−1, 1, 1, 1),

(−1,−1, 1,−1,−1, 1, 1, 1, 0), (−1,−1, 1,−1,−1,−1, 0), (−1,−1, 1, 1),

(−1, 1, 1,−1), (−2,−1, 1, 1, 1,−1), (−1,−1, 1,−1,−1, 1)}.

This is a computation of the sort described in Section 1. Some technical

details are given in Appendix 1.

7. Distances between geodesics

In this section we collect some useful formulas for the complex distance

between two geodesics. We first define some notation.

If γ is a geodesic and φ is an isometry of H3, then φ(γ) will denote the

image of γ under φ; if φ(z) = λz (λ ∈ C \ {0}), then we abbreviate this to

λγ. (Here and elsewhere we tacitly identify a Möbius transformation with

its Poincaré extension.) If γ has endpoints z1, z2, and is oriented from z1
to z2, then we assume that φ(γ) is oriented from φ(z1) to φ(z2). We let I

denote the geodesic with endpoints 0 and ∞, and abbreviate the complex

distance ∆(γ, I) to ∆(γ). If φ is an orientation preserving isometry, note that

∆(φ(γ1), φ(γ2)) = ∆(γ1, γ2) and, in particular,

∆(λγ) = ∆(γ).

Theorem 7.1 ([24]). If γ and γ′ are geodesics in H3, oriented respectively

from endpoint z1 to endpoint z2 and from endpoint w1 to endpoint w2, then

(59) sinh2
ï

1

2
∆(γ, γ′)

ò
=

(z1 − w1)(w2 − z2)
(w1 − w2)(z1 − z2)

.

In particular,

(60) sinh2[∆(γ, I)] =
4z1z2

(z1 − z2)2
,

(61) sinh2
ï

1

2
∆(γ, eβγ)

ò
=
−4z1z2

(z1 − z2)2
sinh2(β/2)

and so, combining these,

(62) sinh

ï
1

2
∆(γ, eβγ)

ò
= ±i sinh(z) sinh(β/2),

where z = ∆(γ, I) = ∆(eβγ, I).

(Note that the orientation of I above is immaterial.)
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8. Volume estimates from collars

The following gives an initial estimate of co-volume from collaring radius.

It appeared, in a more general form, in [23] and it is the “collar-volume”

estimate we referred to in the introduction. For k ∈ N, and nonimaginary

w ∈ C, we let Λk(w) denote the lattice in C generated by w and 2πi/k. We

set, for δ > 0,

(63) A(δ + iθ) =

2arcsinh

Ñ
i sinh

Ä
τ+iψ
2

ä
sinh(δ + iθ)

é
: τ ∈ [0, δ], ψ ∈ [0, 4π]

 .
If ∆(L, I) = δ+ iθ, then, by (62), ρ(L, eβL) ≤ δ if and only if β ∈ A(δ+ iθ) +

2πik (k ∈ Z).

Theorem 8.1. Let Γ be a Kleinian group, `0, a geodesic whose stabilizer

in Γ is generated by a loxodromic with translation length τ , possibly an elliptic

of order k that fixes the endpoints of `0 (in the absence of such an elliptic we

set k = 1) and possibly an elliptic of order 2 that interchanges the endpoints

of `0. If ` is a closest translate of `0, with ∆(`0, `) = δ + iθ, with δ > 0, and

E ⊆ A(δ + iθ) is convex and centrally balanced, then

τ ≥ k

8π
Area (E),

and hence

vol(H3/Γ) ≥ 1

16
sinh2(δ/2)Area (E).

Proof. We may assume that `0 = I so that Stab(I) ⊇ 〈g1, g2〉, where

g1(u) = eτ+iηu, g2(u) = e2πi/ku, and η ∈ (−πi/k, πi/k]. Since the distance

between any distinct translates of ` is at least δ, there is no nonzero point of

Λk(τ + iη) in the interior of E . Minkowski’s theorem now gives

Area (E) ≤ 4Area(C/Λk(τ + iη)) = 8πτ/k,

and the theorem follows. �

The next two results enable us to apply this theorem.

Lemma 8.1. For all real θ and δ ≥ 1
2arccosh(11/5) = 0.712708 . . . , the

region A(δ + iθ) is convex. This value is sharp.

Proof. A(δ + iθ) is bounded by the curve

f(ψ) = arcsinh

Ñ
i sinh

Ä
δ+iψ
2

ä
sinh(δ + iθ)

é
(ψ ∈ [0, 4π]),
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hence it is convex if and only if =m(f ′′(ψ)/f ′(ψ)) ≥ 0 for all ψ. Since

f ′′(ψ)/f ′(ψ) =
i cosh2(δ + iθ) sinh

Ä
δ+iψ
2

ä
2
î
cosh2(δ + iθ)− cosh2

Ä
δ+iψ
2

äó
cosh

Ä
δ+iψ
2

ä ,
A(δ + iθ) is convex when, for all ψ, the real part of

(cosh2(δ−iθ)−cosh2((δ−iψ)/2)) cosh((δ−iψ)/2) cosh2(δ+iθ) sinh((δ+iψ)/2)

is nonnegative. This real part is equal to sinh(δ)X(ψ)/16, where

X(ψ) = −2 sin2(ψ)− 2 cos(ψ) cosh(δ) + cos(4θ)

+ cosh(4δ) + 2 cosh(2δ) cos(ψ − 2θ)(cos(ψ)− cosh(δ))

+ 6 cosh(δ) sin(ψ) sin(2θ) + sin(2ψ) sin(2θ).

We have

∂X

∂ψ
= 2[cosh(δ)− 2 cos(ψ)]

× [sin(ψ) + cosh(2δ) sin(ψ − 2θ)− cos(ψ) sin(2θ)− 2 sin(2θ) cosh(δ)],

which is zero when cos(ψ) = cosh(δ)/2, and also when both

(64)

cos(ψ) =
− cosh3(δ) sin2(2θ)± (1 + cos(2θ) cosh(2δ))(cosh2(δ)− sin2(θ))/2

(sin2(θ) + cosh2(δ))
2 − 4 sin4(θ) cosh2(δ)

and

(65) sin(ψ) =
cosh(δ) sin(2θ)(1± cosh(δ))

sin2(θ) + cosh2(δ)± 2 sin2(θ) cosh(δ)
.

Substituting (64) and (65) into X gives

(cosh(δ)∓ cos(2θ))(2 cosh(δ)± 1)(cos(2θ) + cosh(2δ))2

sin2(θ) + cosh2(δ)± 2 sin2(θ) cosh(δ)
,

which is positive for all θ and all δ > 0. Thus X(ψ) ≥ 0 for all ψ when

cosh(δ) ≥ 2, and the same inequality is true when cosh(δ) < 2 if it holds for

cos(ψ) = cosh(δ)/2.

The productX(ψ)X(−ψ) is a polynomial in cos(ψ). Substituting cos(ψ) =

cosh(δ)/2 into this gives a polynomial p(v, w) in v = cosh2(δ) and w = cos(2θ):

p(v, w) =
1

4

[
16w4 + (8v − 16v2)w3 + (−32 + 120v − 63v2 + 44v3)w2

+ (−8v − 18v2 + 100v3 − 64v4)w + 16− 120v + 353v2 − 592v3

+ 260v4
]
.

This polynomial is quartic in w and has discriminant

∆ = −108v6(1− 4v)2(v − 4)6(512− 1856v + 4440v2 − 2687v3 + 320v4),

which has roots at v = 8/5, v = 4 and none in (8/5, 4).
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One easily checks that p(4, w) > 0 for all w ∈ [−1, 1] and p(v,±1) > 0 for

all v ∈ (8/5, 4], whence by continuity, p(v, w) > 0 for all w ∈ [−1, 1] and v ∈
(8/5, 4]. It follows that, for all ψ and θ, X(ψ) > 0 when v = cosh2(δ) > 8/5,

whence X(ψ) ≥ 0 when cosh2(δ) ≥ 8/5. For sharpness, observe that

p(v, 1/5) = (3/625)(5v − 8)(2575v3 − 1820v2 + 700v − 96)

is negative for v in some interval (a, 8/5). �

Lemma 8.2. Area (A(δ + iθ)) ≥ 4π sinh(δ)

eδ| sinh(δ + iθ)|
.

Proof. The region Ω = 1
2A(δ + iθ) is parametrized by

(66)

arcsinh

Ñ
i sinh

Ä
τ+iψ
2

ä
sinh(δ + iθ)

é
: τ ∈ [0, δ], ψ ∈ [0, 4π]

 .
Thus, if f(z) = arcsinh

(
i sinh(z)

sinh(δ+iθ)

)
and A is the region 0 ≤ x ≤ δ/2,

0 ≤ y ≤ 2π (z = x+ iy), then

Area(Ω) =

∫
A
|f ′(z)|2 dz =

∫
A

| cosh2(x+ iy)|
| sinh2(δ + iθ)− sinh2(x+ iy)|

dx dy

≥
∣∣∣∣∣
∫
A

sinh2(x) + cos2(y)

sinh2(δ + iθ)− sinh2(x+ iy)
dx dy

∣∣∣∣∣ .
By the substitution u = eiy, we obtain∫ 2π

0

sinh2(x) + cos2(y)

sinh2(δ + iθ)− sinh2(x+ iy)
dy(67)

=

∫
C

i(u4 + 2u2 cosh(2x) + 1)

u(au4 + bu2 + c)
du,

where C is the unit circle, a = e2x, b = −2[2 sinh2(δ + iθ) + 1] and c = e−2x.

The denominator of the integrand factorizes as

au(u2 − exp [−2x+ 2(δ + iθ)])(u2 − exp [−2x− 2(δ + iθ)]).

Thus the integrand has poles within C at u = 0 and u = ± exp [−x− (δ + iθ)]

and residues of ie2x at u = 0 and

−i((e−2(x+δ+iθ) + 2 cosh(2x) + e2(x+δ+iθ)/(4 sinh(2z))

at each of the other poles. By the residue theorem, the integral at (67) is

2π cosh(2x)

eδ+iθ sinh(δ + iθ)
,

and the required inequality follows after another integration and taking abso-

lute values. �
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Theorem 8.1, together with Lemmas 8.1 and 8.2, now gives

Lemma 8.3. A Kleinian group with an axis with collaring radius

r ≥ 1

4
arccosh(11/5) = 0.356354 . . .

has co-volume at least
π sinh(2r) sinh2(r)

4e2r cosh(2r)
.

This estimate is an increasing function of r. A simple calculation gives

Corollary 8.1. The collaring radius of any axis of a Kleinian group

whose co-volume is no more than V0 is less than 0.4075.

This gives Lemma 1.1 for k 6= 1, 3. In the next section we complete the

proof by refining the collaring estimate of Lemma 8.3 in these remaining cases.

9. Proof of Lemma 1.1

Proof of Lemma 1.1. For a contradiction we will suppose that Γ has co-

volume ≤ V0 and a loxodromic f with collaring radius rf ≥ ck, translation

length τ and holonomy η which we may assume to be in (−πi/k, πi/k]. In

view of Corollary 8.1, we may assume that k ∈ {1, 3} and that in these cases

rf ∈ [ck, 0.4075]. We normalize so that ax(f) = I, whence Stab(I) ⊇ 〈g1, g2〉,
where g1(u) = eτ+iηu and g2(u) = e2πi/ku. Let f̃ be a conjugate of f in Γ with

axis `, chosen so that δ = ρ(I, `) = 2rf , and let z = ∆(I, `) = δ + iθ, where,

by symmetry, we may assume θ ∈ [0, π/2]. By a further conjugation (using a

loxodromic that fixes 0 and ∞), we may assume that the endpoints z1 and z2
of ` are mutually reciprocal, whence, using (60) and reindexing if necessary,

we have z1 = tanh(z/2), z2 = coth(z/2).

The hypothesis that co-vol(Γ) ≤ V0 gives the inequality

(68) (0.91)−1
πτ

2k
sinh2(δ/2) ≤ V0,

where here we use Przeworski’s [27] upper bound of 0.91 for the packing density

of hyperbolic tubes (or cylinders).

Now let f(z) = ewz, and let Γ1 be defined from Γ, f and f̃ as in Lemma 6.3,

according to which the collaring radius of I in Γ1 is still δ/2. Explicitly,

Γ1 ⊇ 〈g1, g2, ψ, ψ̃〉,

where g1(u) = eτ+iηu, g2(u) = e2πi/ku,

ψ(u) =
u− tanh(z/2)

tanh(z/2)u− 1
, ψ̃(u) =

u− coth(z/2)

coth(z/2)u− 1
.

We obtain the required contradiction by showing that there are two dis-

tinct translates of I in Γ1 that are at distance less than δ from each other,
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hence a translate of I that is distance less than δ from I, contrary to the as-

sumption that ` is a closest translate. For this purpose, we define for each

lattice point α ∈ Λk(w) translates `′ = `′(z, α) and `∗ = `∗(z, α) by

(69) `′ = ψ(eα`) and `∗ = ψ̃(eα`).

The endpoints of `′ are ψ(eα tanh(z/2)) and ψ(eα coth(z/2)), which simplify

to

(70)
sinh(α/2) sinh(z)

sinh(α/2) cosh(z)− cosh(α/2)
,

sinh(α/2) cosh(z) + cosh(α/2)

sinh(α/2) sinh(z)
.

Hence by (60), we have

(71) sinh2[∆(`′, I)] = 4 sinh2(α/2) sinh2(z)[sinh2(α/2) sinh2(z)− 1].

The endpoints of `∗ are just the reciprocals of those of `′ (since ψ̃ψ(z) =

1/z), and so

(72) `∗ =

Ç
cosh(z) sinh(α/2)− cosh(α/2)

cosh(z) sinh(α/2) + cosh(α/2)

å
`′.

Now, for αβ ∈ Λk(w), let

E1(z, β) = i sinh

Å
1

2
∆[`, eβ`]

ã
= ± sinh(z) sinh(β/2),

E2(z, α, β) = i sinh

Å
1

2
∆[`′, e−β`∗]

ã
= ±2 sinh(z) sinh(α/2)[sinh(α/2) sinh(β/2) cosh(z)

+ cosh(α/2) cosh(β/2)],

E3(z, α, β) = cosh(∆[`′, eβ`′])

= 1 + 8 sinh2(z) sinh2(α/2) sinh2(β/2)(1− sinh2(z) sinh2(α/2)).

These are calculated using (62), (71) and (72). From these, we derive the real

distance functions

E1(z, β) = cosh

Å
1

2
ρ[`, eβ`]

ã
= (|E1(z, β) + 1|+ |E1(z, β)− 1|)/2,

E2(α, β, z) = cosh

Å
1

2
ρ[`′, e−β`∗]

ã
= (|E2(α, β, z) + 1|+ |E2(α, β, z)− 1|)/2,

E3(α, β, z) = cosh
Ä
ρ[`′, eβ`′]

ä
= (|E3(α, β, z) + 1|+ |E3(α, β, z)− 1|)/2.

We have the required contradiction if for each z = δ+ iθ, w = τ + iη, for which

2ck ≤ δ ≤ 0.815, 0 ≤ θ ≤ π/2,

(73) 0 < τ ≤ 2(0.91)kV0/(π sinh2(δ/2)) and − πi/k ≤ η ≤ πi/k,
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there are some α, β ∈ Λk(w) such that α 6= 0, and at least one of the following

inequalities holds:

with eβ 6= 1, cosh(δ/2)− E1(z, β)> 0,(74)

min
¶

cosh(δ/2)− E2(α, β, z), |E2(α, β, z)|
©
> 0,(75)

with eβ 6= 1, cosh(δ)− E3(α, β, z)> 0.(76)

Each of these inequalities shows that the (real) distance between some two

translates of ` is less than δ. The extra conditions (E2(α, β, z) 6= 0 in (75) and

eβ 6= 1 in (74) and (76)) ensure that these translates are distinct.

For purposes of computation it is convenient to introduce the functions

L1(k, z, w,n) = E1(z, 2πin1/k + n2w) (0 ≤ n1 < k),

and for i = 2, 3,

Li(k, z, w,n) = Ei(z, 2πin1/k + n2w, 2πin3/k + n4w) (0 ≤ n1, n3 < k),

where k is a positive integer, n ∈ Z2 in L1 and n ∈ Z4 in L2 and L3. These

are essentially the same functions as the Ei, except that we have now made

the dependence explicit on the generators of the lattice Λk(w) rather than the

lattice points themselves. We complete the proof of Lemma 1.1 by showing

that at each point of the search space (73) the function Li(k, z, w,n) is positive

for at least one of the following values of i and n. For k = 1,

i = 1 :n = (0, j), (i ≤ j ≤ 9),

i = 2 :n = (0, i, 0, j) for (i, j) = (1,−3), (1,−2), (1, 1), (1, 2), (1, 3)

(2,−3), (2,−1), (2, 1), (2, 2), (3,−2), (3,−1), (3, 1), (3, 2),

i = 3 :n = (0, 1, 0, 1), (0, 1, 0, 3), (0, 2, 0, 2), (0, 2, 0, 3), (0, 3, 0, 3),

and for k = 3,

i = 1 :n = (0, 1), (2, 1), (2, 2), (1, 0), (1, 2),

i = 2 :n = (0, 1, 1, 0), (0, 1, 1,−1), (0, 1, 1,−2), (0, 1, 2, 0), (0, 1, 2,−1),

(0, 1, 2,−2), (1, 0, 1, 2), (1, 0, 2, 2),

i = 3 :n = (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 1), (1,−1, 0, 1), (0,−1, 1,−1),

(0,−1, 1,−1), (2, 1, 2,−1), (2, 1, 0,−2), (2, 1, 1,−2).

Appendix 1 gives some more details of this computation.

10. Volume estimates

In this section we obtain some lower bounds for volume, in the absence of

elliptics of order ≥ 3. We finish the proof of Lemma 1.2.
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Lemma 10.1. Let Γ be a discrete group with no torsion of order p ≥ 3,

and shortest translation length τ . If K ⊆ H3 is convex, and if the group H

generated by the elliptics in Γ whose axes meet the interior of K

1. leaves K invariant ;

2. contains only the identity and elliptics (that is trivial, cyclic or the Klein

4-group),

and, if K/H has diameter at most τ , then Vol(K/H) ≤ Vol(H3/Γ).

Proof. Let x, y be points of the interior of K that are in the same Γ-orbit.

There is a y′ in the H-orbit of y that is distance less than τ from x. If y′ 6= x,

then there must be an elliptic ϕ ∈ Γ mapping y′ to x and, since K is convex

and ax(ϕ) passes through the midpoint of x and y′, ϕ ∈ H. Thus x and y are

in the same H-orbit, and the lemma follows. �

Lemma 10.2. Let Γ be a discrete group with no torsion of order p ≥ 3,

and shortest translation length τ . Let ` be the axis of both an order-2 elliptic ϕ

and a loxodromic with translation length σ, p a point on ` midway between two

adjacent Klein-4 fixed points (or anywhere on ` if there are no such points) and

B the solid of revolution of length min{σ/2, τ} about ` whose radius rx at dis-

placement x along ` from p is given by min{τ/2, arccosh
»

cosh(τ)/ cosh(2x)}
(|x| ≤ min{σ/4, τ/2}). Then B is convex, its interior meets no elliptic axes

other than `, B/〈ϕ〉 has diameter at most τ and

(77) vol(H3/Γ) ≥ vol(B)/2 = π

∫ a

0
min

®
sinh2(τ/2),

cosh2(τ)

cosh2(2x)
− 1

´
dx,

where a = min{σ/4, τ/2}.

Proof. The convexity of B is easy to prove (consider the analogous region

in the plane), and we omit details.

The distance between two adjacent transverse elliptic axes through ` is at

least σ/2, and other elliptic axes must be distance at least τ/2 from `. Thus

the interior of B meets no elliptic axes other than `. Let Πx be the intersection

of B with the plane that meets ` perpendicularly at the point displaced x from

p. If 0 ≤ x, y ≤ σ/4, u ∈ Πx, v ∈ Π−y and d is the distance from u to v in

B/〈ϕ〉, then by Pythagoras,

cosh(d) ≤ cosh(x+ y) cosh(rx) cosh(ry) ≤
cosh(x+ y) cosh(τ)»

cosh(2x) cosh(2y)
≤ cosh(τ),

using the logarithmic convexity of cosh(x). The volume estimate (77) then

follows from Lemma 10.1. �

Remark. When ` has no transverse elliptics, (77) applies with the upper

limit for the integral being a = τ/2.
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Lemma 10.3. An elliptic element of order 2 in a co-compact Kleinian

group Γ either shares its axis with a loxodromic of translation length ≥ λ⊥ or

has a collaring radius ≥ λ⊥/2.

Proof. Let χ ∈ Γ be an elliptic of order 2. Since Γ is co-compact, χ has

positive collaring radius and shares its axis with some loxodromic f . Let f̃ be

the nearest translate of f , and let Γ1 be defined as in Lemma 6.3. Then ψχ is a

loxodromic in Γ1 whose axis is perpendicular to ax(f). By Theorem 1.3, either

f or ψχ has translation length ≥ λ⊥, and, in the latter case, ρ(ax(f), ax(ψ)),

which is the collaring radius of f , is at least λ⊥/2. �

We now apply these results to small co-volume groups. First, the previous

lemma, Theorem 1.2, the fact that λ⊥/2 > 0.4075 and Lemma 1.1 immediately

give

Lemma 10.4. Every order-2 elliptic in a Kleinian group Γ with co-volume

≤ V0 shares its axis with a loxodromic of translation length ≥ λ⊥.

Proof of Lemma 1.2. The group Γ must have some elliptic of order 2 (oth-

erwise we are in the manifold case and the co-volume is well over V0) and, by

Lemma 10.4, this elliptic must share its axis with a loxodromic of translation

length ≥ λ⊥. Now we apply Lemma 10.2 (with σ = λ⊥). The estimate (77)

(which is clearly an increasing function of both σ and τ) gives co-vol(Γ) > V0
if τ > 0.497. The last part of the lemma now follows from Lemma 10.4. �

11. A collaring estimate

The following distance formula appeared in [24, Lemma 5.1]. The angle

between two disjoint rays is as defined in Section 1.1.

Lemma 11.1. Let g be a geodesic in H3, r1 and r2 geodesics perpendicular

to g, pi the point of intersection between ri and g, ai a point on ri at distance xi
from g (i = 1, 2), θ the angle between the two rays emanating from pi through

ai and ` the distance between p1 and p2, then

(78) cosh(ρ(a1, a2)) = cosh(x1) cosh(x2) cosh(`)− sinh(x1) sinh(x2) cos(θ).

Lemma 11.2. Let Γ be a Kleinian group with no parabolics and no torsion

of order p ≥ 3 and with shortest translation length τ , and suppose that f is a

loxodromic with this translation length. If the complex distance between ax(f)

and its nearest translate ax(f̃) is 2(r + iθ) (0 ≤ θ ≤ π/2), then

(79) sinh(r) ≥ min{sin(θ), cos(θ)} tanh(τ/2).

Proof. Let x and y be the points where ax(f) and ax(f̃) respectively meet

their common perpendicular. There is an isometry g that maps ax(f) to ax(f̃).

By composing, if necessary, with a translation along ax(f̃), we may assume that
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g is loxodromic and the distance between x′ := g(x) and y is at most τ . Let b

be the point on ax(f̃) midway between x′ and y, and set a = g−1(b), whence

ρ(a, x) = ρ(b, x′) = ρ(b, y) ≤ τ/2. Using (78),

cosh(τ) ≤ cosh(ρ(a, b)) ≤ cosh2(τ/2) cosh(2r) + sinh2(τ/2)| cos(2θ)|.

(The angle between the rays starting at x through a and starting at y through

b may be 2θ or 2θ+π.) The inequality (79) follows after some further algebraic

manipulation. �

A point to note here is that the collar estimate of Lemma 11.2 goes in the

other direction to the usual collaring theorems, which typically bound r from

below when τ is small.

12. Proof of Lemma 1.3

We suppose Γ is a Kleinian group that contradicts Lemma 1.3; that is,

Γ has co-volume less than V0, no torsion of order 3 or more, and the shortest

loxodromic in Γ has translation length at most 0.497 and collaring radius at

most 0.345.

Let f be this shortest loxodromic, f̃ a nearest conjugate of f (which is

chosen to minimize the distance between ax(f) and ax(f̃)), and let ψ be an

order-2 elliptic that interchanges these axes. Let τ and η be respectively the

translation length and holonomy of f , and let r + iθ be the complex distance

between ax(f) and ax(ψ). Thus

0 < τ ≤ τmax := 0.497, −π < η ≤ π, 0 < r ≤ 0.345,

and we may assume ψ chosen so that

0 ≤ θ ≤ π/4.

Let β = β(f), γ = γ(f, ψ) and ω = sinh2(r + iθ). By (7) and the fact that

β(ψ) = −4, we have γ = −βω. In terms of ω, (10) gives

(80) cosh(2r) = |1 + ω|+ |ω| = (|(2ω + 1) + 1|+ |(2ω + 1)− 1|)/2.

It will be convenient to use β and ω as variables in our computations.

The bounds above give that β ∈ R1 := 2(Eτmax − 1) (as defined at (44)) and

ω ∈ R2 := 0.5(Q1 − 1), where Q1 is the first quadrant of E0.69.

We will show that on the search space R1×R2 at least one of the following

is true:

(i) π
2 τ sinh2(r) > (0.91)V0;

(ii) |1− βω(4− βω)/4|+ |βω(4− βω)/4| < |1 + β/4|+ |β/4| and βω 6= 2;

(iii) |β|(|ω|+ 1) < 1;

(iv) |1 + β|+ |βω| < 1;

(v) τ < 0.0979;
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(vi) sinh(r) < min{sin(θ), cos(θ)} tanh(τ/2);

(vii) |(β + 4)β|(1 + |ω|) < 1;

(viii) |(β + 3)2β|(1 + |ω|) < 1;

or, for some good polynomial p, with ω′ = −p(−βω, β)/β,

(ix) ω′ 6= −1, 0 and |ω′ + 1|+ |ω′| < |ω + 1|+ |ω|;
(x) ω′ 6= −1, 0 and |β2ω′(ω′ + 1)| < 0.198;

(xi) ω′ 6= −1, 0 and |βω′(βω′ − 4)|+ |β2ω′(ω′ + 1)| < 1;

(xii) ω′ 6= −1, 0 and |β3(β + 4)ω′2(ω′ + 1)| < 0.198;

(xiii) ω′ 6= −1, 0 and |β3(β + 4)ω′2(ω′ + 1)|+ |βω′(βω′ − 4)| < 1.

Each of these conditions entails a contradiction.

(i) implies that co-vol(Γ) > V0, by Lemma 1.2 and (68) with k = 1;

(ii) contradicts the minimality of τ , using (8) and (25) (since [f, ψ] =

ff̃±1 ∈ Γ). The condition βω 6= 2 insures that [f, ψ] is not an elliptic of order

2;

(iii) and (iv) contradict the discreteness of 〈f, ψ〉 (hence, by Lemma 6.3,

of Γ), using Jørgensen’s inequality and Lemma 2.2, respectively;

(v) gives a contradiction, by the result in [7] that τ < 0.0979 gives a collar-

ing radius > 0.345. (This result, which was originally stated in the torsion-free

case, still applies when elliptics are present);

(vi) by Lemma 11.2;

(vii) and (viii) by Jørgensen’s inequality (applied to the groups 〈f2, ψ〉
and 〈f3, ψ〉 respectively).

The remaining conditions (ix)–(xiii) all use Theorem 2.1, by which β and

γ′ = p(γ, β) = −βω′ are parameters of a subgroup 〈f, g〉 of 〈f, ψ〉. Since ω′ 6=
−1, 0, we have γ′ 6= 0, β and so, in particular, this subgroup is nonelementary.

Using Lemmas 6.3 and 6.4, we see that (ix) contradicts the minimality of r. The

remaining conditions all contradict discreteness; this follows from Lemma 6.1

for (x) and Jørgensen’s inequality, Lemma 6.1 and Lemma 2.4, all applied to

the group 〈f, [f, g]〉, for (xi), (xii) and (xiii) respectively, using (25) and (26).

Each of the thirteen conditions above is easily written as an assertion that

some function is positive. Our computations in fact show that at each point

of the search space, either one of the conditions (i)–(viii) hold, or one of (ix)–

(xiii) holds for at least one of the 99 words w of the form (16) where s1 = 1

and (r1, r2, . . . rm−1) is one of the vectors listed in Appendix 2. We give more

details of the calculation in the next section.

13. Appendix 1: Computations

We have used machine computation in three proofs (Theorem 1.3, Lem-

mas 1.1 and 1.3). Recall that, in each case, we have identified a family of
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functions Q = {qi | i ∈ I} defined on a region U ⊆ C2. We must show that at

least one of the functions is positive at each point of U .

It will always be possible to find Lipschitz constants for these functions,

so we proceed as follows. Define the box, B(z, w, d) ⊆ C2 to be the Cartesian

product of the two squares with centers z and w, each with edge length d. We

can then find functions q̃i(z, w, d) such that

q̃i(z, w, d) ≤ qi(u, v) ∀(u, v) ∈ B(z, w, d).

Find a grid G with mesh size d so that the boxes B(z, w, d) with (z, w) ∈ G
cover U . Now define a function Test(z, w, d) recursively as follows. If B(z, w, d)

lies wholly out of U , set Test(z, w, d) = 1. If maxi{q̃i(z, w, d)} > 0, then

Test(z, w, d) takes this value. Otherwise set Test(z, w, d) to be the minimum

of Test(z ± d/4 ± id/4, w ± d/4 ± id/4, d/2) (where all four choices of sign

are made independently). That is, test each of the sixteen boxes obtained by

subdividing the original one. The process continues up to a specified maximum

number of subdivisions. We have the required result if Test(z, w, d) > 0 for

each (z, w) ∈ G. As a precaution against roundoff error, we will actually require

that Test(z, w, d) > ε = 0.0001.

For analytic functions we derive Lipschitz bounds using Taylor’s approx-

imation. More precisely, let q(z, w) be analytic, (z, w) ∈ U , d ≥ 0, m =

0, 1, 2, . . . and (z′, w′) ∈ B(z, w, d). We bound the mth term in the Taylor

series centered at (z, w) for q(z′, w′) by

qm(z, w, d) =
1

m!

m∑
i=0

Ç
m

i

å ∣∣∣∣ ∂mq

∂iz∂m−iw
(z, w)

∣∣∣∣
Ç
d√
2

åm
.

Thus, if q is a polynomial and (z′, w′) ∈ B(z, w, d), then for any N ≥ 0,

(81) |q(z, w)−q(z′, w′)| ≤
N∑
m=1

qm(z, w, d)+ |qN+1|(|z|+d/
√

2, |w|+d/
√

2, d),

where the bars around the qN+1 indicate that the absolute values are taken of

each coefficient.

When (as occurs in Lemma 1.1) q is a polynomial in hyperbolic functions,

the same bound applies with an obvious modification of the remainder term

|qN+1|; in this case absolute values are taken of all coefficients, imaginary parts

of arguments are dropped and sinh is replaced by cosh throughout.

It is now straightforward to bound all the functions that we use, in the

box B(z, w, d). In several places we encounter functions of the form h(f(z)),

where h(z) = |z| ± |1 + z|. Clearly

(82) |h(f(z))− h(f(z′))| ≤ 2|f(z)− f(z′)| ≤ 2M |z − z′|,

where M is a Lipschitz constant for f . The following estimate refines this.
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Lemma 13.1. For z ∈ C , d ≥ 0, let h(z) = |z + 1| ± |z| and

(83) ∆(z, d) = d

Ã
2

Ç
1± |z|

2 + <e(z)
|z||z + 1|

+
2d

|z + 1|(|z + 1| − d)

å
;

then

(84) |h(z)− h(z′)| ≤ ∆(z, d) when |z − z′| ≤ d.

Proof. Let

w = h(z) = (|(2z + 1) + 1| ± |(2z + 1)− 1|)/2
= cosh(<e(arccosh(2z + 1))) (with + sign)

or = cos(=m(arccosh(2z + 1))) (with − sign).

We have
∂

∂z
arccosh(2z + 1) =

2»
(2z + 1)2 − 1

,

so

|dw| ≤ 2|dz|»
|(2z + 1)2 − 1|

»
|1− h(z)2|

=
2|1− (|z| ± |z + 1|)2|1/2|dz|»

|(2z + 1)2 − 1|
=

Ã
2

Ç
1± |z|

2 + <e(z)
|z||z + 1|

å
|dz|.

Since also∣∣∣∣∣ |z|2 + <e(z)
|z||z + 1|

− |z
′|2 + <e(z′)
|z′||z′ + 1|

∣∣∣∣∣ ≤ 2|z − z′|
|z + 1|(|z + 1| − |z − z′|)

,

(84) follows. �

Usually, but not always (for example near z = −1), (84) is an improvement

on (82); we use whichever is better. In the proof of Lemma 1.3 we use these

estimates to find upper and lower bounds for cos(2θ) = |1+ω|−|ω|, cosh(2r) =

|1 + ω|+ |ω| and cosh(τ) = |β/4|+ |1 + β/4|. In the proof of Lemma 1.1, (82)

alone suffices.

It remains to specify the grid points used in the calculation. We will do

this in each case by specifying the step size and the extreme values of each of

the four (real) variables involved. The unions of the boxes centered at the grid

points will be a box that contains the search space. Since in each case we have

a search space U with curved boundary being covered by a rectangular grid,

some boxes will not lie in U . We therefore initially test each box to determine

whether or not it meets U , and we discard it if it does not.
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13.1. Theorem 1.3. The variables are β1 = x1 + iy1 and β2 = x2 + iy2.

We use step size d = 0.1 and the grid G with points (x1, x2, y1, y2), where

−1.95 ≤ x1, x2 ≤ 0.75, 0 ≤ y1 ≤ 1.85, −1.85 ≤ y1 ≤ 1.85. We use at most four

subdivisions.

13.2. Lemma 1.1. The variables are z = δ + iθ, w = τ + iη. We use

step size d = 0.02. For k = 1, we use the grid G with points (δ, θ, τ, η), with

δ = 0.70(d)0.82 (that is, δ takes the values 0.70, 0.70 + d, 0.70 + 2d . . . 0.82),

θ = 0.001(d)1.561, τ = 0.002(d)0.182, η = −3.14(d)3.14. The boxes with

edge length d, centered at these grid points, cover the search space (73).

Similarly, for k = 3, we use grid points (δ, θ, τ, η), with δ = 0.598(d)0.818,

θ = 0.001(d)1.561, τ = 0.00(d)0.80, η = −1.04(d)1.04. The calculation uses at

most three subdivisions for k = 1, and at most one for k = 3.

13.3. Lemma 1.3. The variables are β = τ + iη and ω = x + iy. For

convenience, we divide the domain of β, R1 := 2(Eτmax−1), into six subregions,

E1, E2, E3, E4, E5 and E6 corresponding to τ intervals [−2 cos(τmax)− 2,−4],

[−4,−3.5], [−3.5,−3], [−3,−2], [−2,−1] and [−1, 0]. (Jørgensen’s inequality

alone easily eliminates the piece of R1 where τ > 0.) We use step size d = 0.02

in E1 and E3, d = 0.025 in E2, d = 0.02 in E4 and E5 and d = 0.1 in

E6. The grid points are (x, y, τ, η), where x begins at x = −0.5 + d/2 and

increments in steps of d while x ≤ 0.15; y = 0(d)0.4; in the τ interval [a, b],

τ = a + d/2 (d) b − d/2, except for E1, where τ is initialized at -4.27; and

η = 0(d)ηmax, where ηmax is 0.48, 0.8, 0.94, 1.05, 1.05 and 1.0 for the regions

E1 . . . E6, respectively. At most four subdivisions are used in any of these

calculations.

14. Appendix 2: Table of polynomials

The words used in the proof of Lemma 1.3 are of the form (16) where

(r1, r2, . . . rm−1) is one of the 99 vectors in the following list:

{(1), (3), (−3,−1), (−3, 1), (−3, 2), (−3, 3), (−2,−1), (−2, 1), (−1,−1), (−1, 1),

(−3, 1,−3), (−3, 1,−2), (−3, 1, 1), (−3, 2,−3), (−3, 2,−1), (−2,−2, 1), (−2,−1,−1),

(−2, 1,−2), (−2, 2,−2), (−2, 3,−2), (−1,−1,−1), (−1, 3,−1), (−3,−1,−3, 2),

(−3,−1,−1,−3), (−3, 1,−2, 3), (−3, 2,−2,−1), (−3, 2,−2, 1), (−3, 2,−1, 2),

(−2,−3, 1,−2), (−2,−1,−1,−2), (−2, 1,−2,−1), (−2, 1,−2, 1), (−2, 1,−2, 2),

(−2, 1,−1, 2), (−2, 1, 1,−2), (−2, 1, 2,−2), (−2, 2,−3, 2), (−2, 2,−1,−1),

(−2, 2, 2,−2), (−2, 3,−1, 1), (−1,−1,−1,−1), (−1, 1,−3, 1), (−1, 1,−2, 1),

(−3,−1,−2,−1,−3), (−3,−1,−1, 1,−2), (−3,−1, 1,−2, 1), (−3, 1,−2,−3, 1),

(−3, 1,−1,−1,−1), (−3, 1,−1,−1, 2), (−3, 1, 1,−2, 1), (−3, 2,−3, 1, 1),

(−3, 2,−1, 3,−2), (−2,−1,−2,−1,−2), (−2,−1,−1,−2,−1), (−2,−1,−1,−1, 1),

(−2,−1, 1,−2, 2), (−2,−1, 1,−1,−2), (−2,−1, 1, 1, 1), (−2, 1,−3, 1,−2),
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(−2, 1,−2,−1,−1), (−2, 1,−2, 1,−2), (−2, 1, 1,−1, 1), (−2, 1, 1, 1,−1),

(−2, 2,−1, 2,−2), (−2, 2,−1, 2, 1), (−2, 3,−2, 2,−1), (−1,−2, 2,−2,−1),

(−1,−1,−2, 1,−1), (−1,−1, 1,−1,−1), (−1,−1, 2,−1,−1), (−1, 2,−2, 2,−1),

(−2,−1,−1,−1,−1, 1), (−2,−1,−1, 1,−1,−1), (−2,−1, 1,−2, 2,−2), (−2,−1, 1,−2, 2,−1),

(−2, 1,−1,−1, 1,−2), (−2, 2,−2,−1,−1, 1), (−2, 2,−1,−1,−2, 2), (−2, 2,−1,−1, 2,−2),

(−2, 2,−1, 1, 2,−1), (−1,−2,−1,−1,−2,−1), (−1,−2, 1, 1, 1,−1),

(−1,−2, 2,−1, 1,−1), (−1,−2, 2,−1, 1, 1), (−1,−1,−2,−2,−1,−1),

(−1,−1,−1,−1, 1,−1), (−1,−1,−1, 1,−1,−1)(−1,−1,−1, 2,−2, 1), ,

(−1,−1, 1,−2, 1,−1), (−1, 1,−2,−2, 1,−1), (−1, 1, 1, 1, 1,−1),

(−1, 1, 2,−2, 2,−1), (−1,−1,−1, 1,−1,−1,−1), (−1,−1, 1,−1,−1,−1, 1),

(−1,−1, 1, 1, 1, 1,−1), (−1, 1, 1, 1, 1, 1,−1), (−1,−1,−1, 1,−1,−1,−1, 1),

(−1,−1,−1, 1, 1,−1,−1,−1), (−1,−1, 1,−1,−1,−1, 1, 1)}.

Not all of these words are used in all the calculations. Below are lists

for 1 ≤ i ≤ 6 of the positions in the above vector of the words used for the

calculation with β ∈ Ei:

E1 : {4, 8, 9, 11, 12, 17, 18, 21, 24, 30, 31, 32, 33, 47, 53, 54, 60, 68, 85, 98},
E2 : {1, 2, 3, 4, 5, 8, 9, 11, 12, 15, 16, 17, 18, 21, 22, 24, 26, 28, 30, 32, 33,

35, 41, 42, 43, 37, 49, 55, 56, 57, 64, 72, 74, 80, 83, 86, 87, 88, 90, 96},
E3 : {1, 2, 4, 6, 8, 9, 12, 14, 15, 19, 21, 23, 25, 26, 27, 29, 32, 35, 36, 37, 39,

41, 42, 44, 46, 48, 50, 52, 57, 59, 64, 66, 67, 75, 77, 81, 84, 89, 91, 92, 95},
E4 : {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 26, 27, 30,

32, 34, 35, 38, 39, 40, 41, 42, 43, 45, 46, 48, 50, 55, 57, 59, 61, 63, 64, 65, 66,

67, 69, 70, 71, 73, 75, 76, 79, 82, 86, 87, 89, 91, 93, 94, 95, 96, 97, 99},
E5 : {1, 9, 20, 21, 26, 51, 62, 63, 69, 70, 78, 94, 99},
E6 : {1, 7, 9, 58, 62}.
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