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Coarse differentiation of quasi-isometries I:
Spaces not quasi-isometric to Cayley graphs

By Alex Eskin, David Fisher, and Kevin Whyte

Abstract

In this paper, we prove that certain spaces are not quasi-isometric to

Cayley graphs of finitely generated groups. In particular, we answer a

question of Woess and prove a conjecture of Diestel and Leader by showing

that certain homogeneous graphs are not quasi-isometric to a Cayley graph

of a finitely generated group.

This paper is the first in a sequence of papers proving results announced

in our 2007 article “Quasi-isometries and rigidity of solvable groups.” In

particular, this paper contains many steps in the proofs of quasi-isometric

rigidity of lattices in Sol and of the quasi-isometry classification of lamp-

lighter groups. The proofs of those results are completed in “Coarse differ-

entiation of quasi-isometries II; Rigidity for lattices in Sol and Lamplighter

groups.” The method used here is based on the idea of coarse differentia-

tion introduced in our 2007 article.

1. Introduction and statements of rigidity results

For any group Γ generated by a subset S, one has the associated Cayley

graph, CΓ(S). This is the graph with vertex set Γ and edges connecting any

pair of elements that differ by right multiplication by a generator. There is a

natural Γ action on CΓ(S) by left translation. By giving every edge length one,

the Cayley graph can be made into a (geodesic) metric space. The distance

on Γ viewed as the vertices of the Cayley graph is the word metric, defined via

the norm

‖γ‖ = inf{length of a word in the generators S representing γ in Γ}.
Different sets of generators give rise to different metrics and Cayley graphs

for a group, but one wants these to be equivalent. The natural notion of

equivalence in this category is quasi-isometry.

Definition 1.1. Let (X, dX) and (Y, dY ) be metric spaces. Given real num-

bers κ≥1 and C≥0, a map f : X→Y is called a (κ,C)-quasi-isometry if

1. 1
κdX(x1, x2)−C≤dY (f(x1), f(x2))≤κdX(x1, x2) +C for all x1 and x2 in

X; and

2. the C neighborhood of f(X) is all of Y .
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This paper begins the proofs of results announced in [EFW07] by devel-

oping the technique of coarse differentiation first described there. Proofs of

some of the results in [EFW07] are continued in [EFW]. Even though quasi-

isometries have no local structure and conventional derivatives do not make

sense, we essentially construct a “coarse derivative” that models the large scale

behavior of the quasi-isometry.

A natural question that has arisen in several contexts is whether there exist

spaces not quasi-isometric to Cayley graphs. This is uninteresting without

some assumption on homogeneity on the space, since Cayley graphs clearly

have transitive isometry group. In this paper we prove that two types of

spaces are not quasi-isometric to Cayley graphs. The first are nonunimodular

three dimensional solvable groups that do not admit left invariant metrics of

nonpositive curvature. The second are the Diestel-Leader graphs, homogeneous

graphs first constructed in [DL01] where it was conjectured that they were

not quasi-isometric to any Cayley graph. We prove this conjecture, thereby

answering a question raised by Woess in [SW90], [Wor07].

Our work is also motivated by the program initiated by Gromov to study

finitely generated groups up to quasi-isometry [Gro81], [Gro84], [Gro93]. Much

interesting work has been done in this direction; see, e.g., [Esk98], [EF97],

[FM98], [FM99], [FM00a], [FS96], [KL97], [MSW03], [Pan89b], [Sch95], [Sch96],

[Sha04], [Wor07]. For a more detailed discussion of history and motivation, see

[EFW07].

We state our results for solvable Lie groups first as it requires less discus-

sion.

Theorem 1.2. Let Sol(m,n) = RnR2 be a solvable Lie group where the R
action on R2 is defined by z·(x, y) = (emzx, e−nzy) for for m,n∈R+ with m>n.

Then there is no finitely generated group Γ quasi-isometric to Sol(m,n).

If m > 0 and n < 0, then Sol(m,n) admits a left invariant metric of

negative curvature. The fact that there is no finitely generated group quasi-

isometric to G in this case, provided m6=n, is a result of Kleiner [Kle]; see

also [Pan89a]. When m = n, the group Sol(n, n) contains cocompact lattices

which are (obviously) quasi-isometric to Sol(n, n). In the sequel to this paper

we prove that any group quasi-isometric to Sol(n, n) is virtually a lattice in

Sol(n, n) [EFW]. Many of the partial results in this paper hold for m≥n and

are used in that paper as well. Note that the assumption m ≥ n is only to fix

orientation and that the case m < n can be reduced to this one by changing

coordinates.

We also obtain the following, which is an immediate corollary of [FM00a,

Th. 5.1] and Theorem 2.1 below.
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Theorem 1.3. Sol(m,n) is quasi-isometric to Sol(m′, n′) if and only if

m′/m = n′/n.

Before stating the next results, we recall a definition of the Diestel-Leader

graphs, DL(m,n). In this setting, m,n∈Z+ and we assume m≥n. Let T1 and

T2 be regular trees of valence m+1 and n+1 respectively. Choose orientations

on the edges of T1 and T2 so that each vertex has n (resp. m) edges pointing

away from it. This is equivalent to choosing ends on these trees. We can

view these orientations as defining height functions f1 and f2 on the trees (the

Busemann functions for the chosen ends). If one places the point at infinity

determining f1 at the bottom of the page and the point at infinity determining

f2 at the top of the page, then the trees can be drawn as
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Figure 1. The trees for DL(3, 2). Figure borrowed from [PGS06].

The graph DL(m,n) is the subset of the product T1×T2 defined by f1 +f2 = 0.

There is strong analogy with the geometry of solvable groups which is made

clear in Section 3.

Theorem 1.4. There is no finitely generated group quasi-isometric to the

graph DL(m,n) for m 6= n.

For n = m, the Diestel-Leader graphs arise as Cayley graphs of lamp-

lighter groups ZoF for |F | = n. This observation was apparently first made

by R. Moeller and P. Neumann [Moe11] and is described explicitly, from two

slightly different points of view, in [Woe05] and [Wor07]. In [EFW] we clas-

sify lamplighter groups up to quasi-isometry and prove that any group quasi-

isometric to a lamplighter group is a lattice black in Isom(DL(n, n)) for some n.

As discussed above, many of the technical results in this paper are used in those

proofs.

We also obtain the following analogue of Theorem 1.3.

Theorem 1.5. If m 6= n, then DL(m,n) is quasi-isometric to DL(m′, n′)

if and only if m and m′ are powers of a common integer, n and n′ are powers

of a common integer, and logm′/ logm = log n′/ log n.

Unlike Theorem 1.3, the case of this theorem where m = n is not proven

in this paper. This version of the statement is only proven in [EFW]. The case
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when m = n here requires additional arguments. For solvable groups, Sol(n, n)

is always quasi-isometric to Sol(n′, n′) for all n and n′. As indicated by the

statement of the theorem, this is not true for DL(n, n) and DL(n′, n′) which

are only quasi-isometric when n and n′ are powers of a common integer.

The coarse differentiation approach is closely related to results proved

the method of the “iterated midpoint” which is well known in the theory of

Banach spaces; see, e.g., [Bou87], [BL00], [JLS96], [Mat99], [Pre90], [BJL+99].

Some results of some of those papers also have a similar flavor, resulting in

points where a map between Banach spaces is ε-Fréchet differentiable; i.e.,

that the map is sublinear distance from an affine map at some scale. The main

difference in proofs is that in our setting it is possible to average the inequality

as described in Section 4.2 to obtain some control on a set of large (but not

full) measure.
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2. Quasi-isometries are height respecting

A typical step in the study of quasi-isometric rigidity of groups is the

identification of all quasi-isometries of some space X quasi-isometric to the

group; see Section 7 for more details. For us, the space X is either a solvable

Lie group Sol(m,n) or DL(m,n). In all of these examples there is a special

function h : X→R, which we call the height function, and a foliation of X

by level sets of the height function. We will call a quasi-isometry of any of

these spaces height respecting if it permutes the height level sets to within

bounded distance. (In [FM00b], the term used is horizontal respecting.) For

technical reasons, it is convenient to consider the more general question of

quasi-isometries Sol(m,n)→ Sol(m′, n′).

For Sol(m,n), the height function is h(x, y, z) = z.

Theorem 2.1. For any m>n>0, any (κ,C)-quasi-isometry φ : Sol(m,n)

→ Sol(m′, n′) is within bounded distance of a height respecting quasi-isometry

φ̂. Furthermore, this distance can be taken uniform in (κ,C) and therefore, in

particular, φ̂ is a (κ′, C ′)-quasi-isometry where κ′, C ′ depend only on κ and C

and on m, n, m′, n′.



COARSE DIFFERENTIATION OF QUASI-ISOMETRIES I 225

The variant of Theorem 2.1 where m = n is more difficult and is treated

in [EFW]. Most of the argument here applies in both cases, and the only

difference occurs at what is labelled “Step II” below. For this reason results

outside that part of this paper are all proven assuming m ≥ n and not m > n.

In fact, Theorem 2.1 can be used to identify the self quasi-isometries of

Sol(m,n) completely. We will need the following definition.

Definition 2.2 (Product map, standard map). A map φ̂ : Sol(m,n) →
Sol(m′, n′) is called a product map if it is of the form (x, y, z)→(f(x), g(y), q(z))

or (x, y, z) → (g(y), f(x), q(z)), where f , g and q are functions from R → R.

A product map φ̂ is called b-standard if it is the composition of an isometry

with a map of the form (x, y, z)→ (f(x), g(y), z), where f and g are Bilipshitz

with the Bilipshitz constant bounded by b.

It is known that any height-respecting quasi-isometry is at a bounded dis-

tance from a standard map (see [FM98]) and the standard maps from Sol(m,n)

to Sol(m,n) form a group that is isomorphic to (Bilip(R) × Bilip(R))nZ/2Z
when m = n, and (Bilip(R) × Bilip(R)) otherwise. Given a metric space

X, one defines QI(X) to be the group of quasi-isometries of X modulo the

subgroup of those at finite distance from the identity. Theorem 2.1 then im-

plies that QI(Sol(m,n)) = (Bilip(R) × Bilip(R))oZ/2Z when m = n, and

(Bilip(R) × Bilip(R)) otherwise. This explicit description was conjectured by

Farb and Mosher in the case m = n.

Recall that DL(m,n) is defined as the subset of Tm+1×Tn+1, where f1(x)+

f2(y) = 0 where f1 and f2 are Busemann functions on Tm+1 and Tn+1 respec-

tively. We fix the convention that Busemann functions decrease as one moves

toward the end from which they are defined. We set h((x, y)) = fm(x) =

−fn(y), which makes sense exactly on DL(m,n)⊂Tm+1×Tn+1. Note that in

this choice Tm+1 branches downwards and Tn+1 branches upwards. The reader

can verify that the level sets of the height function are orbits for a subgroup

of Isom(DL(m,n)).

Theorem 2.3. For any m>n, any (κ,C)-quasi-isometry ϕ from DL(m,n)

to DL(m′, n′) is within bounded distance of a height respecting quasi-isometry

ϕ̂. Furthermore, the bound is uniform in κ and C .

Remark. As above, the same result is proven in [EFW] in the remaining

case when m = n.

The discussion of standard and product maps in the setting of DL(m,n) is

slightly more complicated. We let Ql be the l-adic rationals. The complement

of a point in the boundary at infinity of Tl+1 is easily seen to be isometric to

Ql with the l-adic metric. Let x be a point in Qm and y a point in Qn. There
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Figure 2. Failure of uniqueness of the (x, y, z) coordinates on

DL(m,n). The point p can be represented as (x, y, z) or as

(x′, y′, z).

is a unique vertical geodesic in DL(m,n) connecting x to y. To specify a point

in DL(m,n) it suffices to specify x, y and a height z. We will frequently abuse

notation by referring to the (x, y, z) coordinate of a point in DL(m,n) even

though this representation is highly nonunique; see Figure 2.

Theorem 2.3 can be used to identify the quasi-isometries of DL(m,n) com-

pletely. We need to define product and standard maps as in the case of solvable

groups, but there is an additional difficulty introduced by the nonuniqueness

of our coordinates. This is that maps of the form (x, y, z)→ (f(x), g(y), q(z)),

even when one assumes they are quasi-isometries, are not well defined. Dif-

ferent coordinates for the same points will give rise to different images. We

will say a quasi-isometry ψ is at bounded distance from a map of the form

(x, y, z) → (f(x), g(y), q(z)) if d(ψ(p), (f(x), g(y), q(z))) is uniformly bounded

for all points and all choices p = (x, y, z) of coordinates representing each point.

It is easy to check that (x, y, z) → (f(x), g(y), q(z)) is defined up to bounded

distance if we assume that the resulting map of DL(m,n) is a quasi-isometry.

The bound depends on κ,C,m, n,m′ and n′.

Definition 2.4 (Product map, standard map). A map φ̂ : DL(m,n) →
DL(m′, n′) is called a product map if it is within bounded distance of the form

(x, y, z)→(f(x), g(y), q(z)) or (x, y, z)→(g(y), f(x), q(z)), where f : Qm→Qm′

(or Qn′), g : Qn → Qn′ (or Qm′) and q : R → R. A product map φ̂ is

called b-standard if it is the composition of an isometry with a map within

bounded distance of one of the form (x, y, z)→ (f(x), g(y), z), where f and g

are Bilipshitz with the Bilipshitz constant bounded by b.

Again any height-respecting quasi-isometry is at a bounded distance from

a standard map, and the standard self maps of DL(m,n) form a group that is
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isomorphic to (Bilip(Qm) × Bilip(Qn))nZ/2Z when m = n and (Bilip(Qm) ×
Bilip(Qn)) otherwise. Theorem 2.1 implies that

QI(DL(m,n)) = (Bilip(Qm)×Bilip(Qn))

unless m = n when QI(DL(m,n)) = (Bilip(Qm)×Bilip(Qn))nZ/2Z.

3. Geometry of Sol(m,n) and DL(m,n)

In this section we describe the geometry of Sol(m,n) and DL(m,n), with

emphasis on the geometric facts used in our proofs. In this section we allow

the possibility that m = n. Later in the paper we will occasionally need to

develop more geometric facts about these spaces than is described here. We

defer these facts until later to increase readability, as they will all be isolated

in separate, clearly marked sections of the paper.

3.1. Geodesics, quasi-geodesics and quadrilaterals. The upper half-plane

model of the hyperbolic plane H2 is the set {(x, ξ) | ξ > 0} with the length

element ds2 = 1
ξ2

(dx2 + dξ2). If we make the change of variable z = log ξ, we

get R2 with the length element ds2 = dz2+e−2zdx2. This is the log model of the

hyperbolic plane H2. Note that changing ds2 to dz2 +e−mzdx2 we are choosing

another metric of constant negative curvature, but changing the value of the

curvature. This can be seen by checking that the substitution z→ z
m , x→ x

m is

a homothety.

The length element of Sol(m,n) is

ds2 = dz2 + e−2mzdx2 + e2nzdy2.

Thus planes parallel to the xz plane are hyperbolic planes in the log model.

Planes parallel to the yz plane are upside-down hyperbolic planes in the log

model. When m6=n, these two families of hyperbolic planes have different

normalization on the curvature. All of these copies of H2 are isometrically

embedded and totally geodesic.

• We use x, y, z coordinates on Sol(m,n), with z called the height and x

called the depth. The planes parallel to the xz plane are right-side-up

hyperbolic planes (in the log model), and the planes parallel to the yz

plane are upside-down hyperbolic planes (also in the log model).

• By “distance,” “area” and “volume” we mean these quantities in the

Sol(m,n) metric.

We will refer to lines parallel to the x-axis as x-horocycles and to lines

parallel to the y-axis as y-horocycles. This terminology is justified by the fact

that each (x or y)-horocycle is indeed a horocycle in the hyperbolic plane that

contains it.
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We now turn to a discussion of geodesics and quasi-geodesics in Sol(m,n).

Any geodesic in an H2 leaf in Sol(m,n) is a geodesic. There is a special class of

geodesics, which we call vertical geodesics. These are the geodesics that are of

the form γ(t) = (x0, y0, t) or γ(t) = (x0, y0,−t). We call the vertical geodesic

upward oriented in the first case and downward oriented in the second case. In

both cases, this is a unit speed parametrization. Each vertical geodesic is a

geodesic in two hyperbolic planes, the plane y = y0 and the plane x = x0.

Certain quasi-geodesics in Sol(m,n) are easy to describe. Given two points

(x0, y0, t0) and (x1, y1, t1), there is a geodesic γ1 in the hyperbolic plane y = y0

that joins (x0, y0, t0) to (x1, y0, t1) and a geodesic γ2 in the plane x = x1 that

joins (x1, y0, t1) to a (x1, y1, t1). It is easy to check that the concatenation of

γ1 and γ2 is a quasi-geodesic. In first matching the x coordinates and then

matching the y coordinates, we made a choice. It is possible to construct a

quasi-geodesic by first matching the y coordinates and then the x coordinates.

This immediately shows that any pair of points not contained in a hyperbolic

plane in Sol(m,n) can be joined by two distinct quasi-geodesics that are not

close together. This is an aspect of positive curvature. One way to prove that

the objects just constructed are quasi-geodesics is to note the following. The

pair of projections π1, π2 : Sol(m,n)→H2 onto the xz and yz coordinate planes

can be combined into a quasi-isometric embedding π1×π2 : Sol(m,n)→H2×H2.

This entire discussion is easily mimicked in DL(m,n) by replacing geodesics

and horocycles in hyperbolic planes with geodesics and horocycles in the cor-

responding trees. When we want to state a fact that holds both for Sol(m,n)

and DL(m,n), we refer to the model space which we denote by X(m,n).

We define the upper boundary ∂+X as the set of equivalence classes of

vertical geodesic rays going up (where two rays are considered equivalent if they

are bounded distance apart). The lower boundary ∂−X is defined similarly.

It is easy to see that if X = Sol(m,n) case, ∂+X ∼= R and ∂−X ∼= R. If

X = DL(m,n), then ∂−X ∼= Qm and ∂+X ∼= Qn. As discussed in Section 2,

if x ∈ ∂−X, y ∈ ∂+X and z ∈ R, we can define (x, y, z) ∈ X as the point at

height z on the unique vertical geodesic connecting x and y.

Landau asymptotic notation. In the following lemma and throughout the

paper, we use the notation a = O(b) to mean that a < c1b, where c1 is a

constant depending only on the quasi-isometry constants (κ,C) of φ and on

the model space or spaces (i.e., on m,n, m′, n′). We use the notation a = Ω(b)

to mean that a > c2b, where c2 depends on the same quantities as c1. We also

use the notation a � b and a � b to mean a > C1b or a < C1
−1b with the

same dependence of constants.

We state here a key geometric fact used at various steps in the proof.
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Lemma 3.1 (Quadrilaterals). Let ε > 0 depending only on m′, n′. Suppose

p1, p2, q1, q2 ∈ X(m′, n′) and γij : [0, `ij ] → X(m′, n′) are vertical geodesic

segments parametrized by arclength. Suppose C > 0 and 0 < D < ε`ij .

Assume that for i = 1, 2, j = 1, 2,

d(pi, γij(0)) ≤ C and d(qj , γij(`ij)) ≤ D,

so that γij connects the C-neighborhood of pi to the D-neighborhood of qj .

Further assume that for i = 1, 2 and all t, d(γi1(t), γi2)≥(1/10)t − C (so that

for each i, the two segments leaving the neighborhood of pi diverge right away)

and that for j = 1, 2 and all t, d(γ1j(l1j− t), γ2j)≥(1/10)t−D (so that for each

j, the two segments leaving the neighborhood of qj diverge right away). Then

there exists C1 = O(C) and D1 = O(D) such that exactly one of the following

holds :

(a) All four γij are upward oriented, p2 is within C1 of the x-horocycle passing

through p1 and q2 is within D1 of the y-horocycle passing through q1.

(b) All four γij are downward oriented, p2 is within C1 of the y-horocycle pass-

ing through p1 and q2 is within D1 of the x-horocycle passing through q1.

We think of p1, p2, q1 and q2 as defining a quadrilateral. The content of

the lemma is that any quadrilateral has its four “corners” in pairs that lie

essentially along horocycles.

In particular, if we take a quadrilateral with geodesic segments γij and

with h(p1) = h(p2) and h(q1) = h(q2) and map it forward under a (κ,C)-quasi-

isometry φ : X(m,n)→ X(m′, n′), and if we would somehow know that φ sends

each of the four γij close to a vertical geodesic, then Lemma 3.1 would imply

that φ sends the pi to a pair of points at roughly the same height.

To prove Lemma 3.1, we require a combinatorial lemma.

Lemma 3.2 (Complete bipartite graphs). Let Γ be an oriented graph with

four vertices p1, p2, q1, q2 and four edges, such that there is exactly one edge

connecting each pi to each qj . Then exactly one of the following is true:

(i) All the edges of Γ are from some pi to some qj .

(ii) All the edges of Γ are from some qj to some pi.

(iii) There exist two vertices v1 and v2 that are connected by two distinct directed

paths.

Proof. Since there are only sixteen possibilities for Γ, one can check di-

rectly. One way to organize the check is to let k denote the sum of number of

edges outgoing from p1 and the number of edges outgoing from p2. If k = 0,

(ii) holds, and if k = 4, then (i) holds. It is easy to check that for 1 ≤ k ≤ 3,

(iii) holds. �



230 ALEX ESKIN, DAVID FISHER, and KEVIN WHYTE

Proof of Lemma 3.1. Let us assume for the moment that all the geodesics

are downward oriented. Let xij , yij denote the x and y coordinates of the

vertical geodesics γij . By the assumptions near pi we have for i = 1, 2,

(1) C−1
2 ≤ ln |xi1 − xi2|e−m

′h(pi) ≤ C2,

where C2 = O(C). The upper bound comes from the fact that γi1 and γi2
come close to pi; the lower bound comes from assumption of fast divergence.

By the assumptions near qj we have, for similar reasons, that for j = 1, 2,

(2) ln |x1j − x2j |e−m
′h(qj) ≤ D1,

where D1 = O(D). Note that since for all i, j, D < ε`ij , and so the geodesics

travel a downward a long way relative to D, we have

(3) D1e
m′h(qj) � C2e

m′h(pi).

Combining the inequalities (1), (2) and (3), we see that e−m
′(h(p1)−h(p2)) =

O(C2) and also that ln |x1j − x2j |e−m′h(p1) = O(C2). This proves the lemma

under the assumption of downward orientation.

The case where all the vertical geodesics are upward oriented is identical

(except that one considers differences in y-coordinates instead).

To reduce to the cases already considered, we apply Lemma 3.2 to the

graph Γ consisting of the vertices p1, p2, q1, q2 with edges the vertical geodesics

“almost” connecting them. Suppose that possibility (iii) of Lemma 3.2 holds.

Then we would have two distinct oriented paths η1 and η2 connecting v1 and v2.

Each ηi is either a vertical geodesics, a concatenation two vertical geodesics,

one of which ends near the beginning of the other, or a similar concatenation

of three vertical geodesics. In each case it is easy to check that each ηi is close

to a vertical geodesic λ′i. (See Lemma 4.6 for a more general variant of this

fact.) But this is a contradiction in view of the divergence assumptions, since

any pair of vertical geodesics beginning and ending near the same point are

close for their entire length. Thus either (i) or (ii) of Lemma 3.2 holds. �

3.2. Volume and measure. There is a large difference between the uni-

modular and nonunimodular examples we consider, which has to do with the

measures of sets, unimodularity and amenability. In the cases where m = n,

the spaces we consider are metrically amenable and have unimodular isometry

group. When m 6= n, the spaces are not metrically amenable and the isome-

try groups are not unimodular, though the isometry group remains amenable

as a group. In particular, it is immediately clear that DL(n, n) cannot be

quasi-isometric to DL(m,n) with m 6= n (since one has metric Fölner sets and

the other does not). For the same reason, Sol(n, n) is not quasi-isometric to

Sol(m′, n′) with m′ 6= n′.
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The natural volume vol on DL(m,n) is the counting measure. The natural

volume on Sol(m,n) is vol = e(n−m)zdxdydz. Note that for the unimodular

case where m = n, the volume on Sol(m,n) is just the standard volume on R3.

In the case when m 6= n we introduce a new measure. In the case of Sol(m,n)

this is just µ = dxdydz. Note that on z level sets this is a rescaling of vol

by a factor of e(n−m)z. Analogously on DL(m,n), we choose a height function

h : DL(m,n)→Z and let µ be counting measure times nh(x)m−h(x). Recall that

we are assuming that m ≥ n. The measure µ is also introduced in [BLPS99]

and is natural for many problems.

We now define certain useful subsets of Sol(m,n). We define these sets

simply as subsets of R3. Let B(L,~0) = [− e2mL

2 , e
2mL

2 ]× [− e2nL

2 , e
2nL

2 ]× [−L
2 ,

L
2 ].

When m = n, then |B(L,~0)| ≈ Le2mL and Area(∂B(L,~0)) ≈ e2mL, so B(L) is

a Fölner set.

To define the analogous object in DL(m,n), we look at the set of points

in DL(m,n) and we fix a basepoint (~0) and a height function h with h(~0) = 0.

Let L be an even integer, and let DL(m,n)L be the h−1([−L+1
2 , L+1

2 ]). Then

B(L, ~0)) is the connected component of ~0 in DL(m,n)L. We are assuming that

the top and bottom of the box are midpoints of edges, to guarantee that they

have zero measure.

We call B(L,~0) a box of size L centered at the identity. In Sol(m,n) we

define the box of size L centered at a point p by B(L, p) = TpB(L,~0), where Tp
is left translation by p. We frequently omit the center of a box in our notation

and write B(L). For the case of DL(m,n), it is easiest to define the box B(L, p)

directly. That is, let

DL(m,n)[h(p)−L+1
2
,h(p)+L+1

2
] = h

−1
Åï
h(p)− L+ 1

2
, h(p) +

L+ 1

2

òã
and letB(L, p) be the connected component of p in DL(m,n)[h(p)−L+1

2
,h(p)+L+1

2
].

It is easy to see that isometries of DL(m,n) carry boxes to boxes.

We record the following lemma which holds for any model space X(m,n).

Lemma 3.3. When m = n, the fraction of the volume of B(L) that is

within εL of the boundary of B(L) is O(ε). In all other cases, this is true for

the µ-measure but not the volume.

We first describe B(L) in the case of Sol(m,n). In this case, the top of

B(L), meaning the set [− e2mL

2 , e
2mL

2 ]× [− e2nL

2 , e
2nL

2 ]×{L2 }, is not at all square

— the sides of this rectangle are horocyclic segments of lengths e2mL and 1; in

other words, it is just a small metric neighborhood of a horocycle. Similarly, the

bottom is also essentially a horocycle but in the transverse direction. Further,

we can connect the 1-neighborhood of any point of the top horocycle to the

1-neighborhood of any point of the bottom horocycle by a vertical geodesic
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segment, and these segments essentially sweep out the box B(L). This picture

is even easier to understand in the Diestel-Leader graphs DL(n, n), where the

boundary of the box is simply the union of the top and bottom “horocycles,”

and the vertical geodesics in the box form a complete bipartite graph between

the two. Thus a box B(L) contains a very large number of quadrilaterals.

3.3. Discretizing Sol. We describe in this section a variety of ways of see-

ing more closely the analogy between the geometry of Sol(m,n) and the geom-

etry of DL(m,n). This is done most easily by thinking about discretizations

of Sol(m,n). While we do not use these discretizations formally in our proof,

they are the reason why we sometimes only describe a proof completely in one

of the model geometries.

To see this picture most clearly, we first remark that in a box B(R) in

DL(m,n), one can form an auxiliary graph B̂(R) whose vertices consist only

of those vertices on the top and bottom of the graph and where there is an

edge between vertices whenever there is a vertical geodesic connecting them.

This graph is complete bipartite, where the parts are the top and bottom of

the box.

In Sol(m,n) one can make a similar construction. Namely given B(R),

we construct a graph B̂(R) as follows. Choose a C-net in the top and bottom

of the box. Vertices will be the points in the C-net with the bipartition into

those on the top and those on the bottom. Connect a vertex x on the top to

a vertex y on the bottom if there is a vertical leaving the 10C neighborhood

of x arriving in the 10C neighborhood of y. (The constants C and 10 are

arbitrary.) It is an elementary exercise in hyperbolic geometry to show that

B̂(R) is complete bipartite.

While we do not use the graphs B̂(R) explicitly in this paper, they contain

much of the geometry that is necessary for our arguments.

3.4. Tiling. The purpose of this subsection is to prove the following lemma.

Lemma 3.4. Choose constants L > R such that L/R∈Z. We can write

(4) B(L) =
⊔
i∈I

Bi(R) tΥ,

where µ(Υ) = O(R/L)µ(B(L)) and the implied constant depends only on the

model space. In the case when X(m,n) = DL(m,n), then Υ can be chosen to

be empty. (This is also possible for Sol(m,n) if em and en are integers.)

Remark. We will always refer to a decomposition as in equation (4) as a

tiling of B(L). We often omit specific reference to the set Υ when discussing

tilings.

Proof. For simplicity of notation, we assume B(L) is centered at the origin.

We give the proof first in the case of DL(m,n) where it is almost trivial. Since
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L
R∈Z, we can partition [−L+1

2 , L+1
2 ] into subsegments of length R which we

label S1, . . . , SJ , where J = L
R . We can then look at the sets DL(m,n)j =

h−1(Sj). Each connected component of DL(m,n)j is clearly a box Bj,k(R)

of size R. Each Bj,k(R) is either entirely inside or entirely outside of B(L).

We choose only those k for which Bj,k(R) ⊂ B(L). It is also clear that, after

reindexing, we have chosen boxes such that B(L) =
⊔
Bi(R).

In Sol(m,n) the proof is similar, though does not in general give an exact

tiling. We simply take the box B(L) and cover it as best possible with boxes

of size R. Since L
R∈Z, if we take B(R,~0) and look at translates by (0, 0, Rc) for

c an integer between −L
R and L

R , the resulting boxes are all in B(L). We then

take the resulting box B(R, (0, 0, Rc)) at height k and translate it by vectors

of the form ( ~aemcR, bencR, 0) where |a| ≤ em(L−(c+1)R) and |b| ≤ en(L−(1−c)R)

are integers. This results in boxes B(R, (a, b, c)) which we re-index as Bi(R).

It is clear that every point not in
⊔
iBi(R) is within R of the boundary of

B(L). Letting Υ = B(L) − ⊔iBi(R), we have that µ(Υ) < O(R/L)µ(B(L))

by Lemma 3.3. �

4. Step I

All the results of this section hold for X(m,n) with m≥n so, in particular,

for the case m = n. The case m = n will be used in the sequel [EFW]. Also, all

results in this section hold for quasi-isometric embeddings, i.e., maps satisfying

(1) but not (2) of Definition 1.1. Before stating the main result of this part of

the paper, we make some definitions. The first is simple and just says that a

map is close to a product map, where here close depends on the diameter of

the domain of definition.

Definition 4.1. Let E be subset of Sol(m,n) of diameter R. A quasi-

isometric embedding φ : E → Sol(m,n) is called ε-sublinear to a product map

if there is product map φ̂ from Sol(m,n) to Sol(m,n) such that d(φ̂|E , φ) ≤
O(εR).

Our arguments would be much simpler if we could show quickly that φ

restricted to a box B(R) was ε-sublinear to a product. The weaker statement,

which we prove in this section, requires another definition.

Definition 4.2. Given constants R < L, a box B(L) and a quasi-isometry

φ : B(L) → Sol(m,n), we say that φ is θ mostly ε-sublinear to product maps

at scale R if one can tile
B(L) =

⊔
i∈I

Bi(R)

and there exists a subset Ig of I with µ(
⋃
i∈Ig Bi(R)) ≥ (1− θ)µ(B(L)) so that

for any i ∈ Ig, there exists Ui ⊂ Bi(R) with µ(Ui) ≥ (1− θ)µ(Bi(R)) such that

φ restricted to each Ui is ε-sublinear to a product map.
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When considering maps that are θ mostly ε-sublinear to product maps at

scale R, we will denote by φ̂i the product map that is ε-sublinear to φ on Ui.

Note that the definition allows φ̂i 6= φ̂j .

In the this part of the paper, our aim is to prove the following

Theorem 4.3. Suppose θ > 0, ε > 0. Then there exist constants 0 < α <

β < ∆ (depending on θ, ε, κ, C and the model spaces) such that the following

holds. Let φ : X(m,n) → X(m′, n′) be a (κ,C) quasi-isometry and suppose r0

is sufficiently large (depending on κ, C , θ, ε). Then for any L > ∆r0 and any

B(L), there exists R with αr0 < R < βr0 such that φ is θ mostly ε-sublinear

to product maps scale R.

Remarks. This theorem says that every sufficiently large box B(L) can

be tiled by much smaller boxes Bi(R), and for most (i.e., 1 − θ fraction) of

the smaller boxes Bi(R) there exists a subset Ui containing 1 − θ fraction

of the µ-measure of Bi(R) on which the map is a product map, up to error

O(εR)� R. In the case where n = m, the measure of Bi(R) is independent of

i, and we have exactly |Ig| ≥ (1−θ)|I|. When m6=n, both the number of boxes

of size R in a height level set tiling and µ(Bi(R)) are functions of height. We

note here that it is possible to apply the proof of Theorem 4.3 simultaneously

to a finite collection J of boxes Bj(L) all of the same size and obtain the same

conclusions (with the same constants) on most of the boxes in J . As long as

m = n, by most boxes in J we mean most boxes with the counting measure

on J . This observation will be used in [EFW].

One should note that the number R, and the subset where we control the

map, depends on φ. Also in Theorem 4.3 there is no assertion that the product

maps φ̂i on the different boxes Bi(R) match up.

This theorem is in a sense an analogue of Rademacher’s theorem that a lip-

schitz function (or map) is differentiable almost everywhere. The boxes Bi(R)

with i∈Ig should be thought of as coarse analogues of points of differentiability.

The proof of this theorem is done in several steps. First we apply a

coarse differentiation argument to show that there exist R,L, Ig etc. as in

Theorem 4.3 such that, restricted to each Bi(R) with i∈Ig, the map φ sends

most vertical geodesics to within O(εR) of a vertical geodesic. In the second

step, we use some elementary geometry of the model space and particularly of

the set Bi(R) to show that this implies that φ is close to a product map on

most of the measure of Bi(R). In particular, we apply Lemma 3.1 in the range

of φ to the images of quadrilaterals in the domain to ensure that these images

have essentially the same geometric structure. That this is enough to control

the map on Bi(R) essentially follows from the fact that Bi(R) is basically a

complete bipartite graph on the top and bottom of the box.
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4.1. Behavior of quasi-geodesics. We begin by discussing some quanti-

tative estimates on the behavior of quasi-geodesic segments in X(m′, n′) (or

equivalently in X(m,n)). Throughout the discussion we assume α : [0, r] →
X(m′, n′) is a (κ,C)-quasi-geodesic segment for a fixed choice of (κ,C), i.e.,

α is a quasi-isometric embedding of [0, r] into X(m′, n′). A quasi-isometric

embedding is a map that satisfies point (1) in Definition 1.1 but not point (2).

All of our quasi-isometric embeddings are assumed to be continuous.

Definition 4.4 (ε-monotone). A quasigeodesic segment

α : [0, r]→ X(m′, n′)

is ε-monotone if for all t1, t2∈ [0, r] with h(α(t1))=h(α(t2)), we have |t1−t2|<εr.

Figure 3. A quasigeodesic segment which is not ε-monotone.

In Sections 5 and 6 we will also need a variant. The reader may safely

ignore this variant on first reading this section.

Definition 4.5 (Weakly (η, C1)-monotone). A quasigeodesic segment α :

[0, r] → X(m′, n′) is weakly (η, C1)-monotone if for any two points 0 < t1 <

t2 < r with h(α(t1)) = h(α(t2)), we have t2 − t1 < ηt2 + C1.

Remark. An ε-monotone quasi-geodesic α : [0, r]→X(m′, n′) is a weakly

(ε, εr)-monotone quasi-geodesic.

The following fact about ε-monotone geodesics is an easy exercise in hy-

perbolic geometry.

Lemma 4.6.

(a) Suppose α : [0, r]→ X(m′, n′) is an ε-monotone quasi-geodesic segment.

Then there exists a vertical geodesic segment λ in X(m′, n′) such that

d(α, λ) ≤ ω1εr, where ω1 depends only on the model space X(m′, n′).

(b) Suppose α : [0, r] → X(m′, n′) is a weakly (η, C1)-monotone quasi-

geodesic segment. Then there exists a vertical geodesic segment λ in

X(m′, n′) such that d(γ̄(t), λ(t)) ≤ 2κηt+ ω2C1, where ω2 depends only

on X(m′, n′).
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Proof. Both ε-monotone and weakly (η, C)-monotone imply that the pro-

jections of α onto both xz and yz hyperbolic planes are quasi-geodesics. The

result is then a consequence of the Mostow-Morse lemma and the fact that

the only geodesics shared by both families of hyperbolic planes are vertical

geodesics. One can also prove the lemma by direct computation. �

Remark. The distance d(α, λ) in (a) is the Hausdorff distance between the

sets and does not depend on parametrizations. However, the parametrization

on λ implied in (b) is not necessarily by arc length.

Lemma 4.7 (Subdivision). Suppose α : [0, r] → X(m′, n′) is a quasi-

geodesic segment that is not ε-monotone and r � C . Suppose N � 1 (de-

pending on ε, κ, C). Then

N−1∑
j=0

∣∣∣h(α( (j+1)r
N ))− h(α( jrN ))

∣∣∣ ≥ |h(α(0))− h(α(r))|+ εr

8κ2
.

Informally, the proof amounts to the assertion that if N is sufficiently

large, the total variation of the height increases after the subdivision by a

term proportional to ε; see Figure 4.

Figure 4. Proof of Lemma 4.7

Proof. Without loss of generality, we may assume that h(α(0)) ≥ h(α(t1))

= h(α(t3)) ≥ h(α(r)), where 0 = t0 < t1 < t3 < t4 = r. (If not, parametrize

in the opposite direction.) Since t3 − t1 > εr, α(t3) and α(t1) are two points

in X(m′, n′) that are at the same height and are at least εr/κ apart. Then,

by X(m′, n′) geometry, any long enough (κ,C)-quasigeodesic path connecting

α(t3) and α(t1) must contain a point q such that |h(q)−h(α(t1))| ≥ (εr)/(4κ).

Hence, there exists a point t2 with t1 < t2 < t3 such that |h(α(t2))−h(α(t1))| ≥
(εr)/(4κ). Hence,

4∑
j=1

|h(α(tj))− h(α(tj−1))| ≥ |h(α(0))− h(α(r))|+ εr

4κ
.

If N is large enough, then the points t1, t2 and t3 have good approximations

of the form jr/N , with j ∈ Z. This implies the lemma. �
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Choosing Scales. Choose 1� r0 � r1 � · · · � rS . In particular, C � r0,

and for s ∈ [0, S − 1] ∩ Z, rs+1/rs > N where N is as in Lemma 4.7.

Lemma 4.8. Suppose L � rS , and suppose α : [0, L] → X(m′, n′) is a

quasi-geodesic segment. For each s ∈ [1, S], subdivide [0, L] into L/rs segments

of length rs. Let δs(α) denote the fraction of these segments whose images are

not ε-monotone. Then
S∑
s=1

δs(α) ≤ 16κ3

ε
.

Remark. The utility of the lemma is that the right-hand side is fixed and

does not depend on S. So for S large enough, some (in fact many) δs(α) must

be small.

Proof. By applying Lemma 4.7 to each nonε-monotone segment on the

scale rS , we get

L/rS−1∑
j=1

|h(α(jrS−1))− h(α((j − 1)rS−1))|

≥
L/rS∑
j=1

|h(α(jrS))− h(α((j − 1)rS))|+ δS(α)
εL

8κ2
.

Doing this again, we get after S iterations,

L/r0∑
j=1

|h(α(jr0))− h(α((j − 1)r0))|

≥
L/rS∑
j=1

|h(α(jrS))− h(α((j − 1)rS))|+ εL

8κ2

S∑
s=1

δs(α).

But the left-hand side is bounded from above by the length and so bounded

above by 2κL. �

4.2. Averaging. In this subsection we apply the estimates from above to

images of geodesics under a quasi-isometry from X(m,n) to X(m′, n′). The idea

is to average the previous estimates over families of geodesics. In order to unify

notation for the two possible model space types, we shift the parametrization

of vertical geodesics in DL(m,n) so that they are parametrized by height minus
1
2 , i.e., by the interval [−L

2 ,
L
2 ] rather than [−L+1

2 , L+1
2 ].

Setup and Notation.

• Suppose φ : X(m,n) → X(m′, n′) is a (κ,C) quasi-isometry. Without

loss of generality, we may assume that φ is continuous.
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• Let γ : [−L
2 ,

L
2 ]→ X(m,n) be a vertical geodesic segment parametrized

by arclength where L� C.

• Let γ = φ◦γ. Then γ : [−L
2 ,

L
2 ]→ X(m′, n′) is a quasi-geodesic segment.

It follows from Lemma 4.8, that for every θ > 0 and every geodesic segment γ,

assuming that S is sufficiently large, there exists s ∈ [1, S] such that δs(γ) < θ.

The difficulty is that s may depend on γ. In our situation, this is overcome as

follows.

We will average the result of Lemma 4.8 over YL, the set of vertical

geodesics in B(L). Let |YL| denote the measure/cardinality of YL. We will al-

ways denote our average by Σ, despite the fact that when X(m,n) = Sol(m,n),

this is actually an integral over YL and not a sum. When X(m,n) = DL(m,n),

it is actually a sum. Changing order, we get

S∑
s=1

Ñ
1

|YL|
∑
γ∈YL

δs(γ)

é
≤ 16κ3

ε
.

Let δ > 0 be a small parameter. (In fact, we will choose δ so that δ1/4 =

min(ε, θ/256), where θ is as in Theorem 4.3.) Then if we choose S > 16κ3

εδ4
,

there exists a scale s such that

(5)
1

|Y |
∑
γ∈Y

δs(γ̄) ≤ δ4.

Conclusion. On the scale R ≡ rs, at least 1 − δ4 fraction of all vertical

geodesic segments of length R in B(L) have nearly vertical images under φ.

From now on, we fix this scale and drop the index s. We will refer to

segments of length R arising in our subdivision as edges of length R. In the

case of DL(m,n) these edges are unions of edges in the graph. In what follows

we will use the terms big edges for edges of length R if there is any chance of

confusion with an actual edge in the graph DL(m,n).

Remark. The difficulty is that, at this point, even though we know that

most edges have images under φ that are nearly vertical, it is possible that

some may have images that are going up, and some may have images that are

going down.

4.3. Alignment. We assume that L/R ∈ Z. As described in Section 3.4,

we tile

B(L) =
⊔
i∈I

Bi(R).

Let Yi denote the set of vertical geodesic segments in Bi(R). We have

(6)
1

|YL|
∑
γ∈YL

δs(γ̄) =
∑
i∈I

µ(Bi(R))

µ(B(L)

Ñ
1

|Yi|
∑
λ∈Yi

δs(λ̄)

é
+O(RL ),
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where λ̄ = φ ◦ λ, and δ(λ̄) = δs(λ̄) is equal to 0 if λ is ε-monotone, and equal

to 1 otherwise. The error term of O(R/L) is due to the fact that the tiling

may not be exact; see Lemma 3.4. To justify equation (6), one uses that

µ(B(L)) = |YL|L and µ(Bi(R)) = |Yi|R.

Since the left-hand side is bounded by δ4 and assuming R/L � δ2, we

conclude the following.

Lemma 4.9. Let us tile B(L) by boxes Bi(R) of size R, so that B(L) =⊔
i∈I Bi(R). Then there exists a subset Ig of the indexing set I with

µ(
⋃
i∈Ig

Bi(R)) ≥ (1− δ2)µ(B(L))

such that if we let Yi denote the set of vertical geodesics in Bi(R), then

(7)
1

|Yi|
∑
γ∈Yi

δs(γ̄) ≤ 2δ2.

Note that R is the length of one big edge so that the set Yi of vertical

geodesics in Bi(R) consists of big edges connecting the top to the bottom.

Equation (7) means that the fraction of these edges that are not ε-monotone

is at most 2δ2.

Notation. In the rest of Section 4.3 and in Section 4.4 we fix i ∈ Ig and

drop the index i. We refer to a vertical geodesic segment e running from

bottom to top of B(R) as an edge of B(R). We say that e is “upside-down” if

φ(e) is going down and “right-side-up” if φ(e) is going up.

Lemma 4.10 (Alignment). Let e be an ε-monotone big edge of B(R) going

from the bottom to the top. Then either the fraction of the big edges in B(R)

that are upside-down or the fraction of the big edges in B(R) that are right-

side-up is at least 1− 4δ.

Proof. We have a natural notion of “top” vertices and “bottom” vertices

so that each big edge connects a bottom vertex to a top vertex. Then B(R)

is a complete bipartite graph. There must be a subset E of vertices of density

1 − 4δ such that for each vertex in v ∈ E, the fraction of the edges incident

to v that are not ε-monotone is at most δ/2. Let Γ1 be the subgraph of B(R)

obtained by erasing any edge e such that φ(e) is not ε-monotone. We orient

each edge e of Γ1 by requiring that φ(e) is going down.

Let p1, p2 ∈ E be any two top vertices in the good set. Then we can find

two bottom vertices q1, q2 such that all four quasigeodesic segments φ(p1q1),

φ(p1q2), φ(p2q1) and φ(p2q2) are all ε-monotone, p1q1 and p1q2 diverge quickly

at p1, and p2q1 and p2q2 diverge quickly at p2. We can arrange for the fast

divergence, since fast divergence occurs generically, i.e., on the complement of

a set of small measure.
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We now apply Lemma 3.1 to conclude that h(φ(p1)) = h(φ(p2)) +O(εR)

and that all the segments φ(piqj) with i, j = 1, 2 have the same orientation.

Thus, any two top vertices in E have images on essentially the same height, say

h1. Similarly, any two bottom vertices in E have images on the same height,

say h2. Since we must have h1 > h2 or h1 < h2, the lemma holds. �

We define the dominant orientation to be right-side-up or upside-down so

that the fraction of big edges that have the dominant orientation is at least

1− 4δ.

4.4. Construction of a product map. Recall that Y is the set of vertical

geodesics in B(R). Let Y ′ denote the space of pairs (γ, x) where γ ∈ Y is

a vertical geodesic in B(R) and x ∈ γ is a point. Let | · | denote uniform

measure on Y ′. (In the case of DL(m,n) this is just the counting measure.)

The following lemma is a formal statement regarding subsets of Y ′ of large

measure.

Lemma 4.11. Suppose R � 1/θ1 (where the implied constant depends

only on the model space). Suppose E ⊂ Y ′, with |E| ≥ (1 − θ1)|Y ′|. Then

there exists a subset U ⊂ B(R) such that

(i) µ(U) ≥ (1− 2
√
θ1)µ(B(R)), where µ is defined in Section 3.2.

(ii) If x ∈ U , then for at least (1 −
√
θ1) fraction of the vertical geodesics

γ ∈ Y passing within distance 1/2 of x, (γ, x) ∈ E.

Remark. Note that for the case of DL(m,n), any geodesic passing within

distance (1/2) of x passes through x.

Proof. For x ∈ B(R), let Y (x) ⊂ Y denote the set of geodesics that pass

within 1/2 of x. For clarity, we first give the proof for the DL(m,n) case. Note

that |Y (x)| = cµ({x}), where c depends on m,n and the location and size of

B(R). Note that

(8) |Y |R =
∑

x∈B(R)

∑
γ∈Y (x)

1 =
∑

x∈B(R)

|Y (x)| =
∑

x∈B(R)

cµ({x}) = cµ(B(R)).

Suppose f(γ, x) is any function of a geodesic γ and a point x ∈ γ. Then

1

|Y |R
∑
γ∈Y

∑
x∈γ

f(γ, x) =
1

|Y |R
∑

x∈B(R)

∑
γ∈Y (x)

f(γ, x)(9)

=
1

|Y |R
∑

x∈B(R)

1

|Y (x)|
∑

γ∈Y (x)

|Y (x)|f(γ, x)

=
1

µ(B(R))

∑
x∈B(R)

1

|Y (x)|
∑

γ∈Y (x)

µ({x})f(γ, x),

where in the last line we used (8).
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We apply (9) with f the characteristic function of the complement of E.

We get

(10)
1

µ(B(R))

∑
x∈B(R)

µ({x})
Ç

1

|Y (x)|
∑

γ∈Y (x)

f(γ, x)

å
< θ1.

Let F (x) denote the parenthesized quantity in the above expression. Let E2 =

{x ∈ B(R) : F (x) >
√
θ1}. Recall that Markov’s inequality says that for

any real-valued function f , and any real number a > 0, the measure of the

set {|f | > a} is at most 1
a

∫ |f |. Then, by this inequality, µ(E2)/µ(B(R)) ≤√
θ1/θ1 =

√
θ1, and for x 6∈ E2, for at least (1−

√
θ1) fraction of the geodesics

γ passing through x, (γ, x) ∈ E.

This completes the proof for the DL(m,n) case. In Sol(m,n) the compu-

tation is essentially the same, except for the fact that |Y (x)| (i.e., the measure

of set of geodesics passing within (1/2) of x) can become smaller when x is

within (1/2) of the boundary of B(R). However, the relative µ measure of

such points is O(1/R) by Lemma 3.3. Therefore, (8) and (9) hold up to error

O(1/R) < θ1. �

Corollary 4.12. There exists a subset U ⊂ B(R) with

µ(U) > (1− 8
√
δ)µ(B(R))

such that for x ∈ U , (1 − 2
√
δ)-fraction of the geodesics passing within (1/2)

of x have ε-monotone image under φ and have images with the dominant ori-

entation.

Proof. Let E denote the set of pairs (γ, x) where γ ∈ Y is a dominantly

oriented ε-monotone geodesic segment and x is a point of γ. Let U ⊂ B(R)

be the subset constructed by Lemma 4.11. Since |E| ≥ (1 − 4δ)|Y ′|, µ(U) ≥
(1− 8

√
δ)µ(B(R)). �

Lemma 4.13. Suppose φ and B(R) and U are as in Corollary 4.12. Then

there exist functions ψ : R3→R2, q : R→R, and a subset U1 ⊂ B(R) with

µ(U1) > (1− 128δ1/4)µ(B(R)) such that for (x, y, z) ∈ U1,

(11) d(φ(x, y, z), (ψ(x, y, z), q(z))) = O(εR).

Proof. We assume that the dominant orientation is right-side-up (the

other case is identical). Now suppose p1, p2 ∈ U belong to the same x-horo-

cycle. By the construction of U there exist q1, q2 in B(R) (above p1, p2) such

that for each i = 1, 2, the two geodesic segments piq1 and piq2 leaving pi di-

verge quickly, and each of the quasigeodesic segments φ(piqj) is ε-monotone.

Then by Lemma 4.6, each of the φ(piqj) is within O(εR) of a quasi-geodesic

segment λij . Now by applying Lemma 3.1 to the λij , we see that φ(p1) and

φ(p2) are on the same x-horocycle, up to an error of O(εR). Thus, the restric-

tion of φ to U preserves the x-horocycles. A similar argument (but now we
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will pick q1, q2 below p1, p2) shows that the restriction of φ to U preserves the

y-horocycles. We can now conclude that φ is height respecting on a slightly

smaller set U1; i.e., there exist functions ψ : R3 → R2 and q : R→ R such that

for (x, y, z) ∈ U1, (11) holds. �

Proposition 4.14. Suppose φ and B(R) and U are as in Corollary 4.12.

Then there exist functions f , g, q, a corresponding product map φ̂, and a subset

U2 ⊂ B(R) with µ(U2) > (1− 256δ1/4)µ(B(R)) such that for (x, y, z) ∈ U2,

d(φ(x, y, z), φ̂(x, y, z)) = O(εR).

Proof. To simplify language, we assume that the dominant orientation is

right-side-up (the other case is identical). Let z1 (resp. z2) denote the height

of the bottom (resp. top) of B(R). If (x, y, z) ∈ B(R), we let γxy : [z1, z2] →
B(R) denote the vertical geodesic segment γxy(t) = (x, y, t). Let F1 (resp.

F2) denote the subset of the bottom (resp. top) face of B(R) that is within

8δ1/4 of a point of U . Since µ(U) ≥ (1− 8
√
δ)µ(B(R)), each Fi has nearly full

µ-measure. In fact, if we let U ′ ⊂ B(R) denote the set of points (x, y, z) such

that (x, y, z1) ∈ F1, (x, y, z2) ∈ F2, and γxy has ε-monotone image under φ,

then µ(U ′) ≥ (1− 8δ1/4)µ(B(R)).

Note that F1 is an O(1) neighborhood of a (subset of a) segment of a

x-horocycle, say {(x, y1, z1) : x ∈ A}. Since the restriction of φ to U preserves

the x-horocycles, δ1/4 < ε, there exist numbers y′1 and z′1 and a function

f : A → R or Qm such that for x ∈ A, φ(x, y1, z1) is at most O(εR) distance

from (f(x), y′1, z
′
1). Similarly, F2 is bounded distance from a set of the form

{(x2, y, z2) : y ∈ A′}, and there exists a function g : A′ → R or Qn such

that the restriction of φ to F2 is O(εR) distance from a map of the form

(x2, y, z2)→ (x′2, g(y), z′2).

Let U1 be as in Lemma 4.13. Now suppose p = (x, y, z) ∈ U ′ ∩ U1.

Since p ∈ U ′, φ(p) is O(εR) from a vertical geodesic connecting a point in

the O(εR) neighborhood of φ(x, y, z1) to a point in the O(εR) neighborhood

of φ(x, y, z2). Hence, φ(p) is within O(εR) distance of the vertical geodesic

connecting (f(x), y′1, z
′
1) to (x′2, g(y), z′2). This, combined with (11), implies

the proposition and hence Theorem 4.3. �

Remark. The product map φ̂ produced in the proof of Proposition 4.14 is

not defined on the entire box. Since we are not assuming anything about the

regularity of the maps f, g and q that define φ̂, one can choose an arbitrary

extension to a product map defined on the box. This is sufficient for our

purposes here.

Order in which constants are chosen.

• We may assume that ε is sufficiently small so that in Lemma 3.1, the

O(εr) error term is smaller than (r/100).
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• We choose N = N(ε, κ, C) so that Lemma 4.7 works. We may assume

N ∈ Z.

• As described in Section 4.2, we choose δ = δ(ε, θ, κ, C) so that δ1/4 < ε

(see proof of Proposition 4.14), 256δ1/4 < θ (see Proposition 4.14) and

also δ2 < θ; see Lemma 4.9.

• We choose S = S(δ, κ, ε) so that S > 32κ3

εδ4
, as described in Section 4.2.

• For s = 1, . . . , S, write rs = r0N
s.

• Write L = ∆r0. Choose ∆ = Np for some p ∈ Z so that for R = rS , the

O(R/L) error term in (6) is at most δ2. Then the same is true for any

R = rs, 1 ≤ s ≤ S.

Now assume r0 is sufficiently large so that Lemma 4.11 holds with R = r0

and θ1 = 2δ. Theorem 4.3 holds with α = 1 and β = NS .

5. Step II

In this section we assume that m > n. We prove the following theorem.

Theorem 5.1. For every δ > 0, κ > 1 and C > 0, there exists a constant

L0 > 0 (depending on δ, κ, C) such that the following holds. Suppose that

φ : X(m,n) → X(m′, n′) is a (κ,C) quasi-isometry. Then for every L > L0

and every box B(L), there exists a subset U ⊂ B(L) with |U | ≥ (1− δ)|B(L)|
and a height-respecting map φ̂(x, y, z) = (ψ(x, y, z), q(z)) such that

(i) d(φ|U , φ̂) = O(δL).

(ii) For z1, z2 heights of two points in B(L), we have

(12)
1

2κ
|z1 − z2| −O(δL) < |q(z1)− q(z2)| ≤ 2κ|z1 − z2|+O(δL).

(iii) For all x ∈ U , at least (1 − δ) fraction of the vertical geodesics passing

within O(1) of x are (η,O(δL))-weakly monotone, where η depends only

on the model space.

Remark. It is not difficult to conclude from Theorem 5.1 that φ̂ is in fact

a product map (not merely height-respecting). However, we will not need this.

Theorem 5.1 is true also for the case m = n; its proof for that case is the

content of [EFW]. The proof presented in this section is much simpler, but

applies only to the case m > n.

The main point of the proof is to show that if m > n, then in the notation

of Theorem 4.3, for each i ∈ Ig, the maps φ̂i must preserve the up direction.

This is done in Section 5.3. The deduction of Theorem 5.1 from that fact is in

Section 5.4. The argument here for showing that the up direction is preserved

uses the fact that when m 6= n, each box B(R) has most of its mass at the

bottom of the box.
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5.1. Volume estimates. This section collects a number of purely geometric

facts needed in the proof of Theorem 5.1. The point is merely to show that

quasi-isometries quasi-preserve volume in an appropriate sense.

The following is a basic property shared for example by all homogeneous

spaces and all spaces with a transitive isometry group (such as X(m,n)).

Lemma 5.2. For p ∈ X(m,n), let D(p, r) denote the metric ball of radius

r centered at p. Then for every b > a > 0, there exists ω = ω(a, b) > 1 with

logω = O(b− a) such that for all p, q ∈ X(m,n),

ω(a, b)−1|D(p, a)| ≤ |D(q, b)| ≤ ω(a, b)|D(p, a)|,

where | · | denotes volume (relative to the X(m,n) metric). Also logω(a, b) =

O(b− a), where the implied constant depends on the model space X(m,n).

Proof. The first statement is immediate since X(m,n) is a homogeneous

space and therefore |D(q, a)| = |D(p, a)| for p, q. The second statement is a

consequence of exponential growth of balls. �

In this section we prove some fairly elementary facts about quasi-isometries

quasi-preserving volume. The main tool is the following basic covering lemma.

Lemma 5.3. Let X be a metric space, and let F be a collection of points

in X . Then for any a > 0, there is a subset G in F such that

(i) The sets {B(x, a)|x∈G} are pairwise disjoint.

(ii)
⋃
F B(x, a) ⊂ ⋃G B(x, 5a).

This lemma and its proof (which consists of picking G by a greedy algo-

rithm) can be found in [Hei01, Ch. 1]. This argument is implicit in almost any

reference that discusses covering lemmas.

Recall that we are assuming that φ is a continuous (κ,C) quasi-isometry.

From this we can deduce the following fact about quasi-isometries of

X(m,n). This fact holds much more generally for metric measure spaces that

satisfy Lemma 5.2.

Proposition 5.4. Let φ : X(m,n)→X(m′, n′) be a continuous (κ,C)

quasi-isometry. Then for any a � C , there exists ω1 > 1 with logω1 = O(a)

such that for any U ⊂ X(m,n),

ω−1
1 |φ(Na(U))| ≤ |Na(U)| ≤ ω1|Na(φ(U))|,

where Na(U) = {x ∈ X(m,n) : d(x, U) < a}.
Proof. We assume that a > 4κC. Note that we are assuming that every

point is within distance C of the image of φ. Let F be the covering of Na(U)

consisting of all balls of radius a centered in U . By Lemma 5.3, we can find a
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(finite) subset G of U such that
⋃
x∈G D(x, 5a) cover Na(U) and such that the

balls centered at G are pairwise disjoint. Hence,∑
x∈G
|D(x, a)| ≤ |Na(U)| ≤

∑
x∈G
|D(x, 5a)|.

Now φ(Na(U)) is covered by
⋃
x∈G φ(D(x, 5a)) ⊂ ⋃x∈G D(φ(x), 5κa+ C).

Hence,

|φ(Na(U))| ≤
∑
x∈G
|D(φ(x), 5κa+ C)| ≤ ω(a, 5κa+ C)

∑
x∈G
|D(x, a)| ≤

≤ ω(a, 5κa+ C)|Na(U)|.
For the other inequality,

|Na(φ(U))| ≥ |Na(φ(G))| =
∣∣∣∣∣ ⋃
x∈G

D(φ(x), a)

∣∣∣∣∣ ≥
∣∣∣∣∣ ⋃
x∈G

D(φ(x), a/κ− C)

∣∣∣∣∣
=
∑
x∈G
|D(φ(x), a/κ− C)|

≥ ω(a/κ− 2C, 5a)−1
∑
x∈G
|D(x, 5a)| ≥ ω−1

1 |Na(U)|. �

Terminology. The “coarse volume” of a set E means the volume of Na(E)

for a suitable a. If the set E is essentially one dimensional (resp. two dimen-

sional), we use the term “coarse length” (resp. “coarse area”) instead of coarse

volume, but the meaning is still the volume of Na(E). We also use `(·) to

denote coarse length.

5.2. The trapping lemma. Again this section contains purely geometric

facts needed in the proof of Theorem 5.1. The facts in this section concern the

geometry of the model space X(m,n). For a path γ, let `(γ) denote the length

of γ (measured in the X(m,n)-metric). Recall that we are assuming m≥n.

Lemma 5.5. Suppose L is a constant z plane, and suppose U is a bounded

set contained in L. Suppose k > r > 0 and γ is a path that stays at least k units

below L, i.e., that maxx∈γ(h(x)) < h(L) − k. Suppose also that any vertical

geodesic ray starting at U and going down intersects the r-neighborhood of γ.

Then
`(γ) ≥ ec1k−c2r Area(U),

where c1 > 0 and c2 > 0 depend only on the model space, and both the length

and the area are measured using the X(m,n) metric.

Proof. We give a proof for DL(m,n), the proof for Sol(m,n) is similar.

Let ∆ denote the r-neighborhood of γ, then |∆| ≤ ec2r`(γ). Pick N so that

∆ stays above height h(L) −N . Let A denote the set of vertical segments of

length N that start at height h(L) and go down. Let AU denote the elements

of A that start at points of U . Then |AU | = |U |mN . Now for 0 < s < N , any
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point at height h(U)−s intersects exactly nsmN−s elements of A. Thus, by the

assumption on the height of ∆, any point of ∆ can intersect at most nkmN−k

elements of A. But by assumption, ∆ intersects any element of AU . Thus,

|∆| ≥ (|U |mN )/(nkmN−k) = |U |(m/n)k, which implies the lemma. (Recall

that in our notation, length = area = cardinality in DL(m,n).)

For Sol(m,n), the proof is similar but uses smooth volume rather than

counting. First observe that the volume of the r neighborhood of γ is at most

l(γ)ec2r, where c2 depends only on the model space by exponential volume

growth. Second observe that projecting upward by t units of height contracts

volume by ec1t. Since U is contained in the projection of the r neighborhood of

γ up to height L, and γ is always at least k units below L, the desired estimate

follows. �

Remark. When m = n, Lemma 5.5 still holds (but with c1 = 0) and also,

in addition, with the word below replaced by the word above. When m 6=n,

volume decreases on upwards projection.

5.3. Vertical Orientation preserved. Given a box B(R), an y-horocycle H

in B(R) and a number ρ, we let the shadow, Sh(H, ρ), of H in B(R) be the set

of points that can be reached by a vertical geodesics going straight down from

the ρ neighborhood of H. Note that if H is the top of the box, Sh(H, 1) is the

entire box. Similar definitions hold for x-horocycles, but then the shadow will

be above the horocycle.

The goal of this subsection is the following

Theorem 5.6. Suppose that m > n and that ε and θ are sufficiently

small (depending only on the model space). Let I , Ig , Ui and φ̂i be as in

Theorem 4.3. Suppose i ∈ Ig . Then the product map φ̂i : B(R)→X(m′, n′)

can be written as φ̂i(x, y, z) = (fi(x), gi(y), qi(z)), with qi : R → R coarsely

orientation preserving.

Remark. The result of Theorem 5.6 is false in the case m = n, since there

exist “flips,” i.e., isometries that reverse vertical orientation. This is the point

where the proof in the case m = n diverges from the case m > n.

In the rest of Section 5.3 we prove Theorem 5.6. We pick i ∈ Ig and

suppress the index i for the rest of this subsection. Pick 1 � ρ2 � ρ1 � ε to

be determined later (see the end of this subsection).

Lemma 5.7. Let θ be as in Theorem 4.3. All but O(4
√
θ) proportion of the

y-horocycles H that are above the middle of the box B(R) have all but O(
√
θ)

fraction of the µ-measure of both Nρ1R(H) and Sh(H, ρ1R) in U .

Proof. Let P be a constant z plane above the middle of the box (and

not too close to the top). We choose horocycles Hi in P such that P =
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∐
iNρ1R(Hi). The subset of B(R) below P is then the disjoint union of the

shadows
∐
i Sh(Hi, ρ1R). Since at least half the measure of B(R) is below

P , it follows that there is some i so that all but O(
√
θ) of the µ-measure of

Sh(Hi, ρ1R) is in U . To guarantee the same fact about Nρ1R(H), we pick P

such that Nρ1R(P ) has all but O(
√
θ) fraction of its µ-measure in U . �

Lemma 5.8. For any H as in Lemma 5.7, there exists a constant z plane

P such that Nρ1R(P ) ∩ Sh(H, ρ1R)∩U contains all but O(θ1/4) fraction of the

µ-measure in Nρ1R(P ) ∩ Sh(H, ρ1R). Furthermore, we can choose P and H

such that ρ2R < d(P,H) < 2ρ2R.

Proof. Let

E = Sh(H, ρ1R) ∩ h−1(h(H)− 2ρ2R, h(H)− ρ2R).

By Lemma 5.7, µ(E ∩ U) ≥ (1 − c
√
θ/ρ2)µ(E) ≥ (1 − θ1/4)µ(E), where c is

the implied constant in Lemma 5.7 and we have assumed that cθ1/2/ρ2 ≤ θ1/4.

Now this is another application of Fubini’s theorem, where we partition E into

its intersections with neighborhood of constant z planes. �

Lemma 5.9. Let P be as in the conclusion of Lemma 5.8. There are

subsets S1, S2 of P∩B(R) such that

1. Nρ1R(Si)∩U contains all but O(θ1/4) fraction of the µ-measure of Nρ1R(Si).

2. For si∈Si, any path joining s1 to s2 of length less than κ3ρ2R passes within

O(ρ1R) of H .

3. For i = 1, 2, Area(Si) � 1
6 Area(Sh(H, ρ1R)∩P ) > ecρ2R`(H ∩ B(R)),

where c depends on the model spaces.

Proof. We divide P∩Sh(H, ρ1R) into equal thirds where each third has

the entire y-extent and a third of the x-extent. We let S̃1 and S̃2 be the two

nonmiddle thirds. Now let Si be the portion of S̃i that is at least κ3ρ2R away

from the edges of B(R). The area of each of these regions is much more than

the coarse area `(H ∩B(R)) since projecting upwards decreases area and each

region projects upwards onto H. �

The proof of Theorem 5.6 involves deriving contradiction to the reversal

of orientation of vertical geodesics under φ̂ on Bi(R). The goal is to show that

if the orientation were to reverse, we could find a path in the target joining

φ̂(s1) to φ̂(s2) that contradicts Lemma 5.9.

Proof of Theorem 5.6. We assume that vertical orientation is not pre-

served but reversed. This means the z component q(z) of the product map in

Theorem 4.3 is orientation reversing. Let Hp denote the x-horocycle through p.

For i = 1, 2, let

S′i = {p ∈ Si ∩ U : for j = 1, 2, `(Hp ∩ U ∩ Sj) > 0.5`(Hp ∩ Sj)}.
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Let Wi = φ̂(Si). By Proposition 5.4, and Lemma 5.9 part 3, we have

(13) Area(Wi) ≥ e−Dρ1R Area(S′i) > e(cρ2−Dρ1)R`(H),

where D depends only on the model spaces, κ and C. Assuming ε is sufficiently

small, `(H) � Area(Wi). Then by Lemma 5.5, 99.9% of the geodesics going

down from Wi do not enter the O(ρ1R) neighborhood of φ(H). Let W ′i denote

the set of p ∈ Wi so that 99% of the geodesics going down from (the 1/2-

neighborhood of) p do not enter the O(ρ1R) neighborhood of φ(H). Then

Area(W ′i ) ≥ 0.9 Area(Wi).

Let H denote the set of y-horocycles H ′ such that Wi∩H ′ is nonempty for

some (or equivalently for all) i ∈ {1, 2}. Let Hi = {H ′ ∈ H : W ′i ∩H ′ 6= ∅}. We

claim that H1 ∩H2 6= ∅. Indeed, Wi =
∐
H′∈HWi ∩H ′, and Area(Wi) = |H|ci,

where ci = |Wi ∩H ′| is independent of H ′ ∈ H. Now,

0.9ci|H| = 0.9 Area(Wi) ≤ Area(W ′i ) ≤ ci|Hi|.
Thus, we have |Hi| ≥ 0.9|H|, and hence there exists H ′ ∈ H1 ∩ H2. By the

definition of theHi, we can find p1, p2 such that pi ∈ H ′∩W ′i . Then for i = 1, 2,

by the definition of W ′i , we can find geodesics γi going down from pi, such that

γi do not enter the O(ρ1R) neighborhood of φ(H), and such that γ1 and γ2

meet at some point p′. By construction d(p′,Wi) ≤ 2κ2ρ2R. Concatenating

subsegments of these two geodesics yields a path connecting p1 to p2 of length

d(p1, p2) that avoids the O(ρ1R) neighborhood of φ(H). Pulling back, we have

a path of length at most 16κ3ρ2R and avoiding the O(ρ1R) neighborhood of

H, which connects a point within O(εR) of S1 to a point within O(εR) of S2.

This contradicts Lemma 5.9. �

Remark. The only place in this paper where we make essential use of the

fact that φ satisfies (2) of Definition 1.1 is in pulling back the path connecting

p1 and p2 at the end of the proof of Theorem 5.6.

Choice of constants. Let A be the largest constant depending only on κ,C

and the model spaces, which arises in the course of the argument in Section 5.3.

We choose ρ2 so that Aρ2 < 1. Similarly, we choose ρ1 so that Aρ1 < ρ2

and ε Aε < ρ1. We also choose θ so that Aθ1/4 < ρ1. We also make sure that

ε and θ are sufficiently small so that Theorem 5.6 applies. In addition, we

choose r0 in the statement of Theorem 4.3 such that the constant e(cρ2−Dρ1)R

that appears in the proof of Theorem 5.6 is at least 1000. Our other choices

guarantee that ρ2 >
D
c ρ1, so this is just a lower bound on R and therefore r0.

5.4. Proof of Theorem 5.1. The uniform set and the exceptional set. Let

Ig and Ui, i ∈ Ig be as in Theorem 4.3. Let W =
⋃
i∈Ig Ui.

Recall that YL is the set of vertical geodesics in B(L). Here we will work

with a fixed geodesic γ ∈ YL. Let W c ⊂ B(L) denote the complement of W in



COARSE DIFFERENTIATION OF QUASI-ISOMETRIES I 249

B(L). For a point x ∈ γ and T > 0, let

P (x, γ, T ) = |W c ∩ γ ∩D(x, T )|,
where D(x, T ) is the ball of radius T centered at x (so that γ ∩D(x, T ) is an

interval of length 2T centered at x).

Lemma 5.10. For every η1 > 0, there exists η > 0 (with η → 0 as η1 → 0)

such that the following holds. Suppose γ is a geodesic ray leaving x, and for

any T > 1, P (x, γ, T ) < η1T . Then γ̄ = φ ◦ γ is (η, C1)-weakly-monotone,

where C1 = O(η1R).

Proof. Parametrize γ so that γ(0) = x. Without loss of generality, we

may assume that γ is going up. Let γ̄ = φ ◦ γ. Suppose 0 < t1 < t2 are such

that h(γ̄(t1)) = h(γ̄(t2)). Write q(t) = h(γ̄(t). Subdivide [t1, t2] into intervals

I1, . . . , IN of length ≤ η1R and so that the length of all but the first and last

is exactly η1R. We may assume N ≥ 3. Let J ⊂ [1, . . . , N ] be the set of j ∈ Z
such that γ̄(Ij) ∩W 6= ∅. For j ∈ J , pick sj such that γ̄(sj) ∈ W , and pick

s ∈ Ij arbitrarily otherwise. Now

(14) 0 = q(t2)− q(t1) = q(t2)− q(sN ′) +
N ′∑
j=3

j odd

(q(sj)− q(sj−2)) + q(s1)− q(t1),

where N ′ is either N or N − 1, depending on whether N is odd or even.

Let Q0 = {odd j ∈ [3, N ′] : γ(sj) ∈ Ui, γ(sj−2) ∈ Ui} (same Ui). Let Q1

denote the set of odd j ∈ [3, N ′] such that γ(sj) and γ(sj+1) are in different

boxes Bi(R). Finally, let Q2 denote the set of odd j ∈ [3, N ′] such that γ(Ij) ⊂
W c or γ(Ij−2) ⊂ W c. By assumption, |Q2| ≤ t2/R and also |Q1| ≤ t2/R.

Then |Q| ≥ (1/3)(t2 − t1)/(η1R). Note that if j ∈ Q, then |q(sj)− q(sj−2)| ≥
η1R/(2κ), and for any j, |q(sj+2)− q(sj)| ≤ 4κη1R. Hence,∑

j∈Q
q(sj)− q(sj−2) ≥ |Q|η1R

κ
≥ t2 − t1

6κ
.

Also, ∣∣∣∣∣∣ ∑
j∈Q1∪Q2

q(sj)− q(sj−2)

∣∣∣∣∣∣ ≤ |Q1 ∪Q2|2κη1R ≤ 2κη1t2.

Plugging into (14), we see that

0 ≥ t2 − t1
6κ

− 2κη1t2 −O(η1R)

or
t2 − t1

6κ
≤ 2κη1t2 +O(η1R),

which implies the lemma. �



250 ALEX ESKIN, DAVID FISHER, and KEVIN WHYTE

Pick A� 1. (In fact we will eventually choose A = (4(128/δ)4.) Suppose

γ ∈ YL. We define a point x ∈ γ to be A-uniform along γ, if for all T > 1,

P (x, γ, T )

T
< A
|γ ∩W c|

L
.

Lemma 5.11. Let θ(γ) denote the proportion of non-A-uniform points

along γ. Then θ(γ) ≤ 2/A.

Proof. This is a standard application of the Vitali covering lemma. Let

ν = |γ∩W c|
L . Suppose x is nonuniform. Then there is an interval Ix centered at

x such that

|Ix ∩W c| ≥ Aν|Ix|.
The intervals Ix obviously cover the nonuniform set of γ, and, by Vitali, we

can choose a disjoint subset Ij that covers at least half the measure of the

nonuniform set. Then

|
⋃
Ij | ≤

∑
|Ij | ≤ (Aν)−1|Ij ∩W c| ≤ (Aν)−1|γ ∩W c|.

Dividing both sides by L (the length γ), and recalling that |γ ∩W c|/L = ν,

we obtain the estimate. �

Let θ1 = θ
η1

+ 2
A .

Corollary 5.12. There exists a subset U ⊂ B(L) with

µ(U) > (1− 2
√
θ1)µ(B(L))

such that for x ∈ U , (1 −
√
θ1)-fraction of the geodesics passing within (1/2)

of x are right-side-up (η, η1R)-weakly-monotone.

Proof. Let Y ′ denote the space of pairs (γ, x) where γ ∈ YL is a vertical

geodesic in B(L) and x ∈ γ is a point. Let E ⊂ Y ′ denote the set of pairs

(γ, x) such that |γ ∩W | ≥ (1 − η1/A)L and x is A-uniform along γ. Then,

by Lemma 5.11, we have |E| ≥ (1− θ1)|Y ′|. Let U be the subset constructed

by applying Lemma 4.11. Then µ(U) ≥ (1 − 2
√
θ1)µ(B(L)), and for x ∈ U

by Lemma 5.10 at least (1 −
√
θ1) fraction of the geodesic rays leaving x are

(η,O(η1R))-weakly-monotone. �

Lemma 5.13. Suppose φ and B(L) and U are as in Corollary 5.12, and

suppose η is sufficiently small (depending only on the model space). Then there

exist functions ψ, q, and a subset U1 ⊂ B(L) with µ(U1) > (1−128θ
1/4
1 )µ(B(L))

such that for (x, y, z) ∈ U1,

(15) d(φ(x, y, z), (ψ(x, y, z), q(z))) = O(δL).

Proof. This proof is identical to that of Lemma 4.13. �
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Proof of Theorem 5.1. Choose η so that Lemma 5.13 holds. Choose η1 so

that Lemma 5.10 holds and also that the O(η1R) term in Lemma 5.10 is at most

δL. Choose A−1 = (δ/128)4/4, and choose θ = (δ/128)4/η1 so that 128θ4
1 < δ.

Now the theorem follows from combining Corollary 5.12 and Lemma 5.13. �

6. Step III

In this section we complete the proof of Theorems 2.1 and 2.3. We as-

sume that φ is a κ,C quasi-isometry from X(m,n) to X(m′, n′) satisfying the

conclusion of Theorem 5.1. All the arguments in this section are valid also in

the case m = n (and are used in [EFW]).

6.1. A weak version of height preservation. In this subsection our main

goal is to prove the following

Theorem 6.1. Let φ : X(m,n) → X(m′, n′) be a (κ,C) quasi-isometry

satisfying the conclusions of Theorem 5.1. Then for any θ � 1, there exists

M > 0 (depending on θ, κ, C) such that for any x and y in X(m,n) with

h(x) = h(y),

(16) |h(φ(x))− h(φ(y))| ≤ θd(x, y) +M.

Note. This is a step forward, since the theorem asserts that (16) holds for

all pairs x, y of equal height (and not just on a set of large measure).

We would like to restrict Theorem 5.1 to the neighborhood of a constant

z plane. Let ν =
√
δ. Fix a constant z plane P . For notational convenience,

assume that P is at height 0. Let R(L) ⊂ P denote the intersection of P with

a box B(2L) whose top face is at height L and bottom face at −L. Then R(L)

is a rectangle. (In fact, when m = n, with this choice of P , R(L) is a square

in the Euclidean metric.) We will call L the size of R(L). Let R+(L) denote

the “thickening” of R(L) in the z-direction by the amount νL; i.e., R+(L) is

the intersection of B(2L) with the region {p ∈ X(m,n) : −(ν/2)L ≤ h(p) ≤
(ν/2)L}, where as above h(·) denotes the height function.

We now have the following corollary of Theorem 5.1.

Corollary 6.2. Suppose L > L0. Then for every rectangle R(L) ⊂ P ,

there exists U ⊂ R+(L) with µ(U) ≥ (1 − ν)µ(R+(L)) and a standard map

φ̂ : U → X(m′, n′) such that d(φ|U , φ̂) ≤ νL. Furthermore, for any p ∈ U ,

for 99% of the geodesics γ leaving p, φ(γ ∩ B(2L)) is within δL of a vertical

geodesic segment (in the right direction).

The tilings. Choose β � 1 depending only on κ,C,m and n. When

m = n, β ≈ 1
κ4

. Let Lj = (1 +β)jL0. For each j > 0 we tile P by rectangles R

of size Lj ; we denote the rectangles by Rj,k, k ∈ N. For x ∈ X(m,n), let Rj [x]
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denote the unique rectangle in the jth tiling to which the orthogonal projection

of x to P belongs.

Warning. Despite the fact that Lj+1 = (1+β)Lj , the number of rectangles

of the form Rj [x] needed to cover a rectangle of the form Rj+1[y] is very

large (on the order of eβLj ). This is because the Euclidean size of R(Lj) is

approximately eLj .

The sets Uj . For each rectangle Rj,k, Corollary 6.2 gives us a subset of

R+
j,k which we will denote by Uj,k. Let

Uj =
∞⋃
k=1

Uj,k.

In view of Corollary 6.2, for any x ∈ Uj ,

(17) sup
y∈R+

j [x]∩Uj

|h(φ(y))− h(φ(x))| ≤ 2νLj .

We also have the following generalization.

Lemma 6.3. For any x ∈ Uj and any y ∈ R+
j+1[x] ∩ Uj ,

|h(φ(y))− h(φ(x))| ≤ 12νLj .

Proof. Let Rj [p] be a rectangle on the same “row” as Rj [x] and the same

“column” as Rj [y]. Then since ν � 1, there exists an x-horocycle H that

intersects bothR+
j [x]∩Uj andR+

j [p]∩Uj ; let us denote the points of intersection

by x1 and p1 respectively.

Now for i = 1, 2, choose (sufficiently different) vertical geodesics γi coming

down from (near) x1 and γ′i coming down from (near) p1 such that for i = 1, 2,

γi(Lj+1) and γ′i(Lj+1) are close. (Here all the geodesics are parametrized

by arclength.) In view of Corollary 6.2, since x1 and p1 are in Uj , we may

assume that there exist vertical geodesics λi and λ′i such that for 0 ≤ t ≤ Lj ,

d(γi(t), λi) ≤ ν + ηt where η � 1. Similarly, d(γ′i(t), λ
′
i) ≤ ν + ηt.

Thus, in particular, h(φ(γi(Lj))) ≤ h(φ(x1))−Lj/κ+η ≤ h(H)−Lj/(2κ)

and, similarly, h(φ(γ′i(Lj))) ≤ h(p1)−Lj/(2κ). Now note that d(γi(Lj), γ
′
i(Lj)

= βLj + O(1). Hence d(φ(γi(Lj)), φ(γ′i(Lj))) ≤ 2κβLj + O(1) and, by as-

sumption, κ2β � 1. Then by Lemma 3.1, φ(x1) and φ(p1) are near the same

horocycle, and thus, in particular,

(18) |h(φ(x1))− h(φ(p1))| ≤ 4νLj .

Similarly, we can find p2 ∈ R+
j [p] ∩ Uj and y2 ∈ R+

j [y] ∩ Uj such that p2 and

y2 are on the same y-horocycle. Then, by the same argument,

(19) |h(φ(p2))− h(φ(y2))| ≤ 4νLj .
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Hence, in view of (18), (19) and (17),

|h(φ(x))− h(φ(y))| ≤ 12νLj ,

as required. �

Lemma 6.4. Suppose p ∈ R+
j [x] ∩ Uj , q ∈ R+

j+1[x] ∩ Uj+1. Then

(20) |h(φ(p))− h(φ(q))| ≤ 16νLj+1.

Proof. Note that the orthogonal projection of Uj ∩R+
j+1[x] to Rj+1[x] has

full µ-measure (up to order ν). The same is true of Uj+1 ∩ R+
j+1[x]. Thus,

the projections intersect, and thus we can find p′ ∈ Uj ∩ R+
j+1[x] and q′ ∈

R+
j+1[x] ∩ Uj+1 such that d(p′, q′) ≤ 2νLj+1. Now, in view of Lemma 6.3,

|h(φ(p))− h(φ(p′))| ≤ 12νLj ,

and in view of (17),

|h(φ(q′))− h(φ(q))| ≤ 2νLj+1.

This implies (20). �

Proof of Theorem 6.1. We have

R0[x] ⊂ R1[x] ⊂ R2[x] ⊂ · · ·
and

R0[y] ⊂ R1[y] ⊂ R2[y] ⊂ · · · .
There exists N with LN comparable to d(x, y) such that (after possibly shifting

theN th grid by a bit)RN [x] = RN [y]. Now for 0 ≤ j ≤ N , pick xj ∈ R+
j [x]∩Uj ,

yj ∈ R+
j [y] ∩ Uj . We may assume that xN = yN . Now, using Lemma 6.4,

|h(φ(x0))− h(φ(y0))| ≤
N−1∑
j=0

|h(φ(xj+1)− h(φ(xj))|

+
N−1∑
j=0

|h(φ(yj+1)− h(φ(yj))|

≤ 2
N−1∑
j=0

16νLj+1

≤ 32ν

β
LN ,

where in the last line we used that Lj = (1 + β)jL0. Now since x0 ∈ R0[x],

d(x, x0) ≤ L0, so |h(φ(x) − φ(x0)| = O(L0). Similarly, |h(φ(y) − h(φ(y0))| =

O(L0). Also note that LN+1 is within a factor of 2 of d(x, y). Thus the theorem

follows. �
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6.2. Completion of the proof of height preservation.

Lemma 6.5. Let φ : X(m,n) → X(m′, n′) be a (κ,C) quasi-isometry.

Then for any η � 1, there exists C1 > 0 (depending on η, κ, C) such that for

any vertical geodesic ray γ, φ ◦ γ is (η, C1)-weakly monotone.

Proof. This is a corollary of Theorem 6.1. Suppose γ is a vertical geodesic

ray parametrized by arclength, and suppose γ̄ = φ ◦ γ. Suppose 0 < t1 <

t2 are such that h(γ̄(t1)) = h(γ̄(t2)). We now apply Theorem 6.1 to φ−1

instead of φ (with x = γ̄(t1)) and y = γ̄(t2)). We get |h(γ(t1)) − h(γ(t2))| ≤
θd(γ̄(t1)), γ̄(t2)) +O(M), i.e.,

|t2 − t1| ≤ θκ2|t2 − t1|+O(M).

That is to say, γ̄ is (θκ2, O(M))-weakly monotone. �

Proof of Theorem 2.1 and Theorem 2.3. Suppose p1 and p2 are two points

of X(m,n), with h(p1) = h(p2). We can find q1, q2 in X(m,n) such that

p1, p2, q1, q2 form a quadrilateral. By Lemma 6.5, each of the segments γij
connecting a point in the O(1) neighborhood of pi to a point in the O(1)

neighborhood of qj maps under φ to an O(η, C1)-weakly monotone quasi-

geodesic segment. Then by Lemma 4.6, and Lemma 3.1, we see that h(φ(p1)) =

h(φ(p2)) +O(C1). �

7. Deduction of rigidity results

The purpose of this section is to apply the previous results on self quasi-

isometries of Sol(m,n) and the DL-graphs to understand all finitely generated

groups quasi-isometric to either one. This follows a standard outline: if Γ is

quasi-isometric to X, then Γ quasi-acts on X. (In this case that just means

there is a homomorphism Γ→ QI(X) with uniformly bounded constants.) We

then need to show that such a quasi-action can be conjugated to an isometric

action. The basic ingredients we need to do this are the following.

Theorem 7.1 ([FM99]). Every uniform quasi-similarity action on R is

bilipschitz conjugate to a similarity action.

The proof of this theorem makes substantial use of work of Hinkannen

[Hin85] who had shown that a uniform quasi-symmetric action was quasi-

symmetrically conjugate to a symmetric action.

Theorem 7.2 ([MSW03]). Let Γ have a uniform quasi-similarity action

on Qm. If the Γ action is cocompact on the space of pairs of distinct points in

Qm, then there is some n and a similarity action of Γ on Qn that is bilipschitz

conjugate to the given quasi-similarity action.
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It is useful to think about these results in a quasi-action interpretation.

One can view R as S1 − {pt} and interpret a uniform quasi-similarity action

on R as the boundary of a quasi-action on H2 fixing a point at infinity. The

result of Farb and Mosher then says that this quasi-action is quasi-conjugate

to an isometric action on H2. The interpretation of the second result is similar,

with a tree of valence m + 1 replacing H2. The hypothesis of cocompactness

on pairs in that theorem then translates to cocompactness of the quasi-action

on the tree.

We now state and prove a result that immediately implies Theorem 1.2.

This result is also used in [EFW].

Theorem 7.3. Assume every (κ,C) self quasi-isometry of Sol(m,n) is at

bounded distance from a b-standard map where b = b(κ,C). Then any uniform

group of quasi-isometries of Sol(m,n) is virtually a lattice in Sol(m,n).

Proof. Let f : Γ → Sol(m,n) be a quasi-isometry. For each γ in Γ, we

have the self-quasi-isometry Tγ of Sol(m,n) given by

x 7→ f(γf−1(x)).

By Theorem 2.1, Tγ is bounded distance from a standard map. On a subgroup

Γ′ of Γ of index at most two, this gives a homomorphism Φ : Γ′ → Qsim(R)×
Qsim(R). By Theorem 7.1, each of these quasi-similarity actions on R can be

bilipschitz conjugated to a similarity action. This gives Ψ : Γ′ → Sim(R) ×
Sim(R).

Since the quasi-isometries Tγ have uniformly bounded constants, we know

that the stretch factors of the two quasi-similarity actions Φ are approximately

on the curve (emt, e−nt), meaning that the products weighted by these factors

are uniformly close to 1. Therefore, this is true for Ψ as well. So, in the

sequence

Γ′ → Sim(R)× Sim(R)→ R× R,
where the final map is the log of the stretch factor, we know that the image

lies within a bounded neighborhood of the line ny = −mx. Since the image

is a subgroup, this implies that it must lie on this line. Since the subgroup of

Sim(R) × Sim(R) above this line is Sol(m,n), we have produced a homomor-

phism

Ψ : Γ′ → Sol(m,n).

We now show that the kernel is finite and the image discrete and cocompact.

This follows essentially from the fact that the map f is a quasi-isometry.

Consider a compact subset K ⊂ Sol(m,n). The set F = Ψ−1(K) consists

of maps with uniformly bounded stretch factors, and that move the origin at

most a bounded amount. Transporting this information back to the standard

maps of Sol(m,n), we see that for γ ∈ F , the maps Tγ move the identity a
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uniformly bounded amount. However, the quasi-action T of Γ on Sol(m,n)

is the f -conjugate of the left action of Γ on Γ. This action is proper, so we

conclude that F is finite. This implies that Ψ has finite kernel and discrete

image. In the same way, the fact that the Γ action on Γ is transitive implies

that the image of Ψ is cocompact.

Thus, the image of Γ′ is a lattice in Sol(m,n). �

This proves Theorem 1.2, since if m 6= n, the group Sol(m,n) is not uni-

modular and therefore does not contain lattices. We next prove Theorem 1.4.

In fact, we show

Theorem 7.4. Assume every (κ,C) self quasi-isometry of DL(m,n) is at

bounded distance from a b-standard map where b = b(κ,C). Then any uniform

group of quasi-isometries of DL(m,n) is virtually a lattice in Isom(DL(n′, n′)),

where n′,m, n are all powers of a common integer.

Some complications arise from the differences between Theorem 7.2 and

Theorem 7.1. We need the following theorem of Cooper.

Theorem 7.5 ([Coo98]). The metric spaces Qp and Qq are bilipschitz

equivalent if and only if there are integers d, s, t so that p = ds and q = dt.

This immediately implies a weaker version Theorem 1.5. We now turn to

Theorem 7.4.

Proof. We proceed as in the previous proof for Sol(m,n). The first differ-

ence is that to apply Theorem 7.2 we need to know that the quasi-similarity

actions of Γ′ on Qn and Qm are cocompact on pairs of points. As discussed

above, this is equivalent to asking the corresponding quasi-action on the trees

of valence n + 1 and m + 1 to be cocompact. This then follows immediately

from the fact that Γ′ is cocompact on DL(m,n).

Thus we have Ψ : Γ′ → Sim(Qa) × Sim(Qb) for some a and b. Thus we

know that we have di, si, ti for i = 1, 2 with n = d1
s1 , m = d2

s2 and that

Ψ : Γ′ → Sim(Qd1
t1 )× Sim(Qd2

t2 ).

We know, as before, that the weighted stretch factors are approximate inverses.

In this case the stretch factors are in Z; in Sim(Qm) one can stretch only by

powers of m. Thus the image is a subgroup lying on the line {(a, b); a ∗ log d1 ∗
t1
s1

+ b ∗ log d2 ∗ t2
s2

= 0}. For this to be a nonempty subgroup of Z2 we must

have log d1
log d2

rational, which implies that there is a d with d1 = du, d2 = dv for

some u and v.

There is still some ambiguity in the choices, since many groups occur

as subgroups of Sim(Qpk) for many different k. As in the construction of

[MSW03], we can make the choices unique by choosing the ti the maximum
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possible, so that all powers of di
ti occur as stretch factors. With these choices

we are forced to have the line {(a, b) : a + b = 0} as this is the only line

of negative slope in Z2 surjecting to both factors. Thus we have Ψ : Γ′ →
Sim(Qdt1 )×Sim(Qdt2 ), with the image contained in the subgroup having inverse

stretch factors. This group is, up to finite index, Isom(DL(dt1 , dt2). So we have

Ψ : Γ′ → Isom(DL(dt1 , dt2).

Exactly as before, one can see that the kernel is finite and the image is a

lattice, which implies that t1 = t2. This implies that Γ is amenable, and hence

it and DL(m,n) have metric Fölner sets. This is true only for m = n, which

completes the proof. �

This immediately implies Theorem 1.4, since DL(m,n) is only amenable

as a metric space when m = n.

Proof of Theorem 1.3. Since all Sol(n, n) are obviously quasi-isometric to

one another, it suffices to consider the case m6=n. This then follows immedi-

ately from Theorem 2.1 and [FM00a, Th. 5.1]. �

Proposition 7.6. Theorem 2.3 implies Theorem 1.5.

Proof. In view of Theorem 2.3, the proof of this result is similar to the

last one. The point is that (up to permuting m and n) the quasi-isometry

DL(m,n)→DL(m′, n′) induces quasi-similarities Qn→Qn′ and Qm→Qm′ . The-

orem 7.5 then implies that m and m′ are both powers of some number d and

that n and n′ are both powers of some number s. However, since the quasi-

similarities both come from the same map on vertical geodesics, the scale

factors must agree. This immediately implies logm′/ logm = log n′/ log n. �
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