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Convergent sequences of dense graphs II.

Multiway cuts and statistical physics

By C. Borgas, J. T. CHAYES, L. LovAsz, V. T. S6s, and K. VESZTERGOMBI
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Abstract

We consider sequences of graphs (G) and define various notions of con-
vergence related to these sequences including “left-convergence,” defined in
terms of the densities of homomorphisms from small graphs into G,, and
“right-convergence,” defined in terms of the densities of homomorphisms
from G, into small graphs.

We show that right-convergence is equivalent to left-convergence, both
for simple graphs G, and for graphs G,, with nontrivial nodeweights and
edgeweights. Other equivalent conditions for convergence are given in terms
of fundamental notions from combinatorics, such as maximum cuts and Sze-
merédi partitions, and fundamental notions from statistical physics, like
energies and free energies. We thereby relate local and global properties of
graph sequences. Quantitative forms of these results express the relation-
ships among different measures of similarity of large graphs.
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1. Introduction

Growing sequences of graphs arise naturally in many contexts, both fun-
damental and applied. How do we characterize and classify such sequences?
In particular, under what conditions do such sequences converge to something
nontrivial and yet sufficiently universal to be conceptually meaningful? A con-
siderable part of graph theory and combinatorics in the past fifty years has
been devoted to classifying large, but finite graphs. However, surprisingly, un-
til the work here, there was not a general theory for sequences of dense graphs
that grow without bound. This paper is the second of two papers in which
we develop a theory of convergent sequences of dense graphs; see [5] for an
announcement of some of these results.

Our theory draws heavily on perspectives and results from both combi-
natorics and statistical physics. We will therefore explain our results in both
languages and provide examples of relevance to both fields.

Consider a dense sequence of simple graphs (G,) such that the number
of nodes in G,, goes to infinity with n (where, as usual, a graph is simple
if it has no loops and no multiple edges, and dense means that the average
degree grows like the number of vertices in G,,). In this paper we will consider
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several natural notions of convergence for such a sequence—some motivated
by combinatorics and others by statistical physics. Our main result will be
a theorem showing that many of these notions of convergence are equivalent.
These equivalences allow simple proofs of many of the fundamental results in
combinatorics and also provide a framework for addressing some previously
unapproachable questions; see, e.g., [2]. These equivalences also help to unify
central notions of combinatorics, discrete optimization, and statistical physics.

From the point of view of combinatorics, our theory can be viewed as
a substantial generalization of the theory of quasirandom graphs, which are
sequences of graphs that “look like” random graphs . Obviously, there are many
ways in which one could make this precise, but interestingly, many natural ways
in which a sequence of graphs could be defined to be quasirandom turn out to
be equivalent [13], [6].

Here we prove similar equivalences for the notion of convergent graph se-
quences. In fact, most of the equivalences for quasirandom graphs are immedi-
ate corollaries of the general theory developed here and in our companion paper
[3]. A notable exception is the spectral representation of quasirandom graphs:
while it turns out that convergence of the spectrum is implied by our other
conditions of convergence, it is not equivalent in our general setting. Indeed,
already in the setting of generalized quasirandom graph sequences considered
in [8], neither the knowledge of the limiting spectrum of the adjacency matri-
ces nor the knowledge of the limiting spectrum of the Laplacians is enough to
characterize the sequences.

From the viewpoint of physics, our results show that convergence of vari-
ous thermodynamic quantities, notably microcanonical free energies or ground
state energies for all so-called “soft-core” models, is equivalent to convergence
of apparently more local graph properties, as defined below.

1.1. Equivalent notions of convergence. The first notion of convergence
for a sequence (G,) we consider is what we call “left-convergence.” It was
introduced in the companion of this paper [3] and is a way of characterizing
a large graph G in terms of the number of copies of a small graph F' that are
contained in G. Given two simple graphs F' and G, we denote the number
homomorphisms from F to G by hom(F,G). Let t(F,G) be the probability
that a random map ¢ : V(F') — V(G) is a homomorphism,

1
(1.1) t(F,G) = Whom(ﬂ G),
where V(G) and V(F') are the set of vertices in G and F', respectively. We then
called a sequence (Gy,) of simple graphs left-convergent if the “homomorphism
densities” t(F, G,,) converge for all simple graphs F.

Instead of testing a graph sequence (G, ) with homomorphisms “from the
left,” i.e., with homomorphisms from a small graph F' into the graphs (G),), one



154 C. BORGS, J. T. CHAYES, L. LOVASZ, V. T. SOS, and K. VESZTERGOMBI

might want to test (G,,) with homomorphisms “from the right,” i.e., one might
want to consider the homomorphisms from G,, into some small graph H. For
this to be interesting, we have to work with weighted graphs, i.e., graphs H with
nodeweights o;(H) > 0 for the nodes ¢ € V(H) and edgeweights 5;;(H) € R
for the edges ij € F(H). A simple graph can be considered as a weighted
graph with all nodeweights and edgeweights equal to 1. The homomorphism
number from a simple graph G into a weighted graph H is then defined as

(12)  hom(G,H)= 3 II %u)( ) 1T Boww.ew (H),

¢:V(G)—V (H) ueV (G weE(G)

where F(G) denotes the set of edges in G. We will often restrict ourselves to so-
called “soft-core” graph, i.e., complete graphs H with all loops present, strictly
positive nodeweights o;(H) > 0, and strictly positive edgeweights 3;;(H) =
Bji(H) >0

For soft-core graphs H, these homomorphism numbers “from the right”
typically grow or fall exponentially in the number of edges of G. Since the num-
ber of edges in a sequence of dense graphs grows like the square of the number
of nodes, it seems natural to define a sequence (G,,) of graphs to be right-

convergent, if 4EN In hom(G,,, H) converges for every soft-core graph H. For

IV(
reasons explained below, we will call such a sequence naively right-convergent.

Naive right-convergence turns out to be interesting from both a combi-
natorics and a statistical physics point of view. Indeed, as we will see below,

the convergence of YENE Inhom(G,,, H) for a certain graph H on two nodes

is equivalent to thenf:E)nvergence of the density of the largest cut in G,; and
right-convergence is equivalent to the convergence of the density of the largest
cut in weighted multiway cut problems. From the viewpoint of physics, the
homomorphism number hom(G, H) is just the canonical partition function of
a suitable soft-core model on the graph G. One might therefore guess that
naive right-convergence corresponds to the convergence of the free energies of
these models, but due to our normalization, it actually corresponds to the
convergence of ground state energies; see Section 2.3 below.

In contrast to the notion of left-convergence, which corresponds to the
convergence of local properties like the density of triangles or the density of
4-cycles, naive right-convergence thus corresponds to convergence of global
properties like the density of the largest cut and the ground state energies of
suitable soft-core models. This raises the question whether the a priori quite
different notions of left- and right-convergence are equivalent, the starting point
of this paper. While it turns out that left-convergence is not equivalent to naive
right-convergence (hence the term naive), a strengthened condition involving
homomorphisms for which the number of vertices in G,, that map onto a given
i € V(H) is restricted to be a given fraction of V(G,,) gives equivalence.
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In addition to left and right-convergence, we consider several other natural
notions of convergence, all of which turn out to be equivalent. Among these
notions is that of convergence in a suitably defined metric, a concept already
considered in [3]. Another one concerns partitions and the graphs obtained
from taking “quotients” with respect to these partitions. More precisely, given
a partition P = (Vi,...,V,) of a graph G, we define the g-quotient G/P as the
weighted graph on [q] with edgeweights 3;; given by the edge density between
Vi and Vj. (In the theory of Szemerédi partitions, the graph G/P is often
called a cluster graph.) For two graphs G and G’ on at least ¢ nodes, we
may then want to know how close the sets of g-quotients of these two graphs
are. Measuring similarity in terms of Hausdorff distance, this leads to a fourth
notion of convergence, convergence of quotients.

In addition to the above four notions, we will be interested in several
notions of convergence motivated by statistical physics. We will, in particular,
ask under which conditions on a sequence of graphs (G,) the ground state
energies and free energies of finite spin systems defined on G,, are convergent.
We also address the same question for the so-called microcanonical ground state
energies and free energies. We will show that left-convergence of (G,,) implies
convergence of the ground state energies and the free energies of all “soft-core”
finite spin systems on (G,), and we will show that both convergence of the
microcanonical ground state energies and convergence of the microcanonical
free energies are equivalent to left-convergence.

1.2. The limit object. Given the equivalence of the above six notions of
convergence, one might want to ask whether a convergent sequence has a nat-
ural limit object, in terms of which the limiting homomorphism densities, quo-
tients, free energies, etc. can be expressed.

We start with an example, the random graph sequence (G(n,p)) where, as
usual, G(n,p) is the graph on n nodes in which any two nodes are connected
independently with probability p. It is not hard to see that ¢(F,G(n,p)) con-
verges to plZ@E)| with probability one. Interestingly, this limit can be written
as the homomorphism density of a finite weighted graph. Indeed, defining the
homomorphism densities of a weighted graph G with nodeweights «;(G) > 0
and f;;(G) € R by
hom(F, Q)

k )
ote

(1.3) tHF,G) =

where k is the number of nodes in the simple graph F and ag = Y ey (q) @i(G)
is the total nodeweight of G, we clearly have that plZ@) = t(F,Gyp), where Gy
is the graph with one node, a loop at this node, and weight p for the loop. (The
node weight is irrelevant in this case, and can, e.g., be set to 1.) This raises the
question of which graph sequences have a limit that can be expressed in terms
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of a finite, weighted graph, which in turn leads to the notion of generalized
quasirandom graphs, studied in detail in [8].

For a left-convergent sequence of simple graphs, the limit cannot be ex-
pressed in terms of a finite graph in general. Given that one of our equivalences
is convergence in metric, one might therefore want to define the limit in the
usual abstract way by identifying sequences that are Cauchy. But it turns
out that there is a much more natural limit object in terms of measurable,
bounded, symmetric 2-variable functions, which we call graphons.

It was already observed by Frieze and Kannan [7] that functions of this
form are natural generalizations of weighted graphs. (They proved a Regular-
ity Lemma for this generalization.) Of more relevance for us is the work of
Lovész and Szegedy [9], who showed that the limit points of left-convergent
graph sequences can be identified with graphons, in the sense that given a
left-convergent sequence (Gy,), there exists a graphon W such that the limit
of the homomorphism densities can be expressed in terms of suitably defined
homomorphism densities of W.

The notion of a graphon is useful in an even wider setting, and will, in par-
ticular, allow us to find simple expressions for the limit objects corresponding
to the various notions of convergence considered in this paper. Moreover, most
of the statements of our main theorems, Theorems 2.8 and 2.9, have a natu-
ral formulation for sequences of uniformly bounded graphons W,, € W, with
proofs that turn out to be much cleaner than the corresponding direct proof
of these theorems in terms of graphs. Indeed, many of the technical details
of this paper concern rounding techniques that reduce Theorems 2.8 and 2.9
to the corresponding statements for sequence of graphons. It turns out that
this approach naturally gives not only the equivalence of the above notions
for sequences of simple graphs but also for sequences of weighted graphs; see
Section 2.4 for the precise statements.

The organization of this paper is as follows. In the next section we define
our main concepts and state our results; first for sequences of simple graphs,
and then for sequences of weighted graphs. The analogues of these concepts
and results for graphons are presented in the Section 3 and proved in Section 4.
In Section 5 we give the details of the rounding procedures needed to reduce
the results of Section 2 to those of Section 3. In our final section, Section 6,
we discuss weaker notions of convergence; in particular, convergence of the
spectrum of the adjacency matrices, including an example that shows that the
convergence of spectra is not sufficient for convergence from the left.

2. Convergent sequences of graphs

2.1. Definitions. We start by recalling the definition of left-convergence.
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Definition 2.1 ([3]). A sequence (G,) of simple graphs is called left-conver-
gent if the homomorphism densities t(F, G,,) converge for all simple graphs F'.

Next we formalize the definition of right-convergence in terms of homomor-
phism for which the number of vertices in G that map onto a given i € V(H)
is restricted to be a given fraction. To this end, we label the nodes of H as
1,...,q, and define Pd, to be the set of vectors a € R, for which };a; =1
and a; > 0 for all i € [g]. Given a probability distribution a € Pd,, we set
(2.1)

2(6) = {6: V(€)= [4] ’|¢—1({¢})\ - ai]V(G)|‘ <1 forall iclq)
and define a constrained version of the homomorphism numbers by

(22) homa(G,H) = Z H 64’(“)(1’(”) (H)

P€Qa(G) weE(Q)
Note the absence of the factors a;( H) corresponding to the nodeweights. These
would be essentially the same for each term and are not carried along. This
quantity is natural from the viewpoint of statistical physics: it is the micro-
canonical partition function on G of a model characterized by the weights in
H, at fixed “particle densities” specified by a.

Definition 2.2. A sequence (G,) of simple graphs (G,) is called right-

convergent if
1

V(G2
converges for every soft-core graph H and every probability distribution a on

In homa (G, H)

V(H), and it is called naively right-convergent if
1
[V(Gn)]?

converges for every soft-core graph H.

Inhom(G,,, H)

Ezample 2.3 (Max-Cut). Let H be the weighted graph on {1,2} with
nodeweights a1(H) = az(H) = 1 and edgeweights S11(H) = fao(H) = 1
and 12(H) = e (where e is the base of the natural logarithm). The leading
contributions to hom(G, H) then come from the maps ¢ : V(G) — {1,2} such
that the bichromatic edges of ¢ form a maximal cut in G. Using the fact that
there are only 2/V() mappings, we get that

Inhom(G, H) In2
———— < maxcut(G) + ——-,
UEE @+ v

where maxcut(G) is the density of the largest cut, i.e., the number of edges
in this cut divided by |V (G)|?. This implies, in particular, that for a naively
right-convergent sequence (G, ), the density of the largest cut is convergent.

maxcut(G) <
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Next we define the metric introduced in [3]. It is derived from the so-
called cut-norm and expresses similarity of global structure; graphs with small
distance in this metric have cuts of similar size. This is easily made precise for
two simple graphs G and G’ on the same set V' of nodes, where we define

/ eG’(S7T) B eG’(SaT)
(@, C) = mes | =y vE |
with eg(S,T) denoting the number of edges in G that have one endpoint in S
and one endpoint in 7" (with edges in S N T counted twice).

But some care is needed when G and G’ have different nodesets. Here we

use the notion of fractional overlays; see [3] for a motivation of our definition.
We will give the definition in the more general case where both G and G’ are
weighted graphs.

Definition 2.4 ([3]). Let G, G’ be weighted graphs with nodeset V and V",
respectively. For i € V and u € V', let pu; = a;(G)/ag and p, = a,(G")/agr.
We then define the set of fractional overlays of G and G’ as the set X(G,G’)
of probability distributions X on V' x V' such that

Z Xiu=p; forall i€V and ZXZ'“ =, forall uweV’

ueV’ eV
and we set

/
(23) (G &) = Xeg?(lcl:lcf) STCVXV’

Z XWXJU<51]( ) ﬁuv(G/)>‘

u)eS
( 7, U)ET
One of the main results of [3], and one of the main inputs needed for this
paper, is the statement that left-convergence is equivalent to convergence in
the metric 0.

Another notion of convergence that we will also show to be equivalent is
the convergence of “quotients.” The quotients of a simple graph G are defined
in terms of the partitions P = {V1,...,V,} of its node set by contracting all
nodes in a given group to a new node, leading to a weighted graph G/P on
g nodes. More precisely, we define G/P as the weighted graph on [g] with
weights

‘V;’ 6G(V;7 V})
V(G)] Vil - 1V

The quotient graph G/P thus has nodeweights proportional to the sizes of

(2.4) (G/P) and 51](G/P) =

the classes in P, and edgeweights that are equal to the edge densities between
the corresponding classes of P. We denote the set of quotients obtained by
considering all possible partitions of V(G) into ¢ classes by gq(G). Since a
quotient G/P € gq(G) can be characterized by ¢+ ¢? real numbers (the node-
and edgeweights of G/P), we may consider the set §q (@) as a subset of RIT4’.
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It might therefore seem natural to consider two g-quotients as close if their
¢, distance on R%t¢” is small. But for our purpose, the following distances
between two weighted graphs H, H' on ¢ labeled nodes are more useful:

N oi(H)oy(H)Bii(H) — ai(H" )i (H')Bi;(H')
(25)  (HLH)= 2, <aH>2 ()2

2

i€lq]

H’)

/

and

(2.6) do(H,H') = sup

i H)oy (H) By (H) ai<H'>aj<H’>6ij<H'>)'

sTCl)l i (op)? (opr)?
JeET
Lyt it
iclg “H an

Let (X,d) be a metric space. As usual, the Hausdorff metric d'f on the set of
subsets of X is defined by
(2.7) d"(s, 8" = max{sup 1nf d(z,y), sup inf d(a: y)}
zeS YES zeS YES
Definition 2.5. A sequence (G,,) of simple graphs has convergent quotients

if for all ¢ > 1, the sequence of sets of quotients §q(Gn) is a Cauchy sequence
in the Hausdorff distance di'f.

In addition to the four notions of convergence defined above, we will also
consider convergence of the free energies and ground state energies of certain
models of statistical physics. The models we will be concerned with are so-
called soft-core spin systems with finite spin space. They are defined in terms
of a finite set [¢] = {1,...,¢}, a symmetric ¢ X ¢ matrix J with entries in R
(we denote the set of these matrices by Sym, ), and a vector h € R%. A “spin
configuration” on a simple graph G is then given by a map ¢ : V(G) — [q],
and the energy density of such a spin conﬁgurations is defined as

1
Yo o~ A D J¢ (W)b(v)-

(28) g¢(G7 Ja h) =
’V( )’ ueV(G) quE

Here h; has the meaning of a generalized magnetic field, descrlblng the pref-
erence of the “spin” ¢(u) to be aligned with ¢ € [q], and J;; represents the
strength of the interaction between the spin states i,7 € [g]. Note that we
divided the second sum by |V (G)|? to compensate for the fact that, in a dense
graph, the number of edges grows like the square of the number of nodes.
Our normalization therefore guarantees that the energy density stays bounded
uniformly in the size of V/(G).
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As usual, the partition function on a simple graph G is defined as

(2.9) Z(G,J,h) = Z e~ V(@& (G Th)
»:V(G)—[d]
and the free energy and ground state energy per node are defined as
=~ 1
(2.10) F(G,J,h) = ———=InZ(G, J, h)
V(G|
and
2.11 E(G,J,h)= min E4G,J,h),
(211) (G.h) = min £,(G.J.h)

respectively. We will often leave out the qualifier “per node,” and refer to
the quantities f(G, J, h) and (‘,A’(G’, J,h) as free energy and ground state energy
of the model (J,h) on G. More specifically, J is called the coupling constant
matrix, and h is called the magnetic field, and the model (J, h) will be referred
to as the soft-core model with spin state [q], coupling constant matriz J and
magnetic field h. We are also interested in the so-called microcanonical versions
of these quantities, defined as

(2.12) Zo(G, D)= > exp(=[V(G)IE4(G, 1,0)),
0€Qa(G)
_ 1
2.13 FalG ) = —————nZa(G, T
(2.13) (G, J) ViG] (G,J)
and
2.14 ELG.J)= min &,(G,J,0).
(2.14) (,)¢£h¢h,)

In this microcanonical version, the magnetic field h would only add a constant,
and therefore we do not consider it.

Ezample 2.6 (The Ising Model). The simplest model that fits into our
framework is the so-called Ising model. It has spin configurations ¢ : V(G) —
{—1,+1}, and the energy density of a spin configuration ¢ is defined as

1 1
Eo(G T h) =~ Y Kbubs — e D hdu,
V(OP ik VO
where K and p are real parameters. Note that this fits into our scheme by
setting Jy o = %qﬁqﬁ’ and hg = pg.

Definition 2.7. Let (G,) be a sequence of simple graphs. We say that
(G,) has convergent ground state energies and free energies if £(Gy, J, h) and
j—"\(Gn, J, h) converge for all ¢, all h € R?, and all J € Sym,, respectively. Sim-
ilarly, we say that (G,) has convergent microcanonical ground state energies
and free energies if éa(Gn, J) and j-:a(Gn, J) converge for all ¢, all a € Pd,,

and all J € Sym,, respectively.



CONVERGENT SEQUENCES OF DENSE GRAPHS II 161

2.2. Main results for sequences of simple graphs. The main results of this
paper are summarized in the following theorems, except for the results concern-
ing the limiting expression for the ground state energy and free energy, which
require some additional notation and are stated in Theorem 3.7 in Section 3.6.

THEOREM 2.8. Let (Gy,) be a sequence of simple graphs such that |V (Gy,)|
— 00 as n — 0o. Then the following statements are equivalent:

) The sequence (Gy,) is left-convergent.
) The sequence (Gy,) is a Cauchy sequence in the metric 0.
(iii) The quotients of (Gy,) are convergent in the Hausdorff distance dif.
) The sequence (Gy,) is right-convergent.
) The microcanonical ground state energies of (G,) are convergent.

(vi) The microcanonical free energies of (Gy,) are convergent.

Conditions (i) and (ii) were shown to be equivalent in [3]. Extending
Example 2.3, it is easy to see that conditions (iv) and (v) are equivalent. (See
Lemma 5.7 for a quantitative relation.) Note finally that statements (iii)-
(vi) implicitly contain a parameter g, referring to the number of classes in a
partition, or the number of nodes in the soft-core graph under consideration.
One might therefore ask whether the equivalence of (iii)—(vi) holds separately
for each ¢. While this is true for the equivalence of (iv) and (v), our proofs
suggest that this is not the case for the equivalence of (iii) and (v) or (vi).

In contrast to the notions of convergence discussed in Theorem 2.8, conver-
gence of the energies and free energies (G, J, h) and F(Gp, J, h) (and naive
right-convergence) are not equivalent to left-convergence; see Example 6.3 for
a counterexample. But left-convergence does imply convergence of the energies
and free energies, as well as naive right-convergence. It also implies conver-
gence of the spectrum. This is the content of our second theorem.

THEOREM 2.9. Let (G,) be a left-convergent sequence of simple graphs
such that |V (Gy)| = 0o as n — co. Then the following holds:

(i) The sequence (Gy,) is naively right-convergent.
(ii) The ground state energies of (Gy) are convergent.
(iii) The free energies of (Gy) are convergent
(iv) The spectrum of (Gy,) is convergent in the sense that if Ay 1 > Ap2 >
2 A V(G| are the eigenvalues of the adjacency matriz of Gy, then

V(Gn)| "t A\, and |V(Gn)|_1)\n’|v(gn)‘+1,i converge for all i > 0.

These theorems, as well their analogues for sequences of weighted graphs,
Theorems 2.14 and 2.15, are proved in Section 5, except for the statement
about spectra, which is proved in Section 6.
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2.3. Ground state energies, maximum multiway cuts, and quotients. In
this section, we discuss the combinatorial meaning of our results, in particular
the relation between ground state energies and generalized max-cut problems
on one hand, and the relation between ground state energies and quotients on
the other.

We start with the former. To this end, we insert (2.8) into (2.11), leading

(2.15)
2

5 1
—&(G,J,h) = max o) + o) o) ) -
G = g (vay, 32, Mo e o)

Let us first consider the case of zero magnetic field. For the special case
where ¢ = 2, J;; = %(1 —d;5) and h = 0, the ground state energy of this model
can easily be calculated, giving that —&. (G, J,0) is just equal to the density of
the largest cut,

& eG(Sa V \ S)
-£(G,J,0) = max —————
(G50 = 38808 " wiop
For general ¢ and J, we obtain a natural generalization to weighted multiway
cuts. As in Example 2.3, the solution to this weighted multiway cut problem
gives a good approximation to loghom(G, H) for general soft-core graphs H.
More precisely, if 8;;(H) = e2/ii, then

1 PN 1

(2.16) Vg I hom(G, ) = —€(C, J,O)+O(|V(G)‘),
with the implicit constant in the error term depending on the nodeweights
of H; see Lemma 5.7. As a consequence, naive right-convergence is equivalent
to convergence of the ground state energies for models without magnetic fields.

Turning to nonzero magnetic fields, even the simplest case ¢ = 2 and J;; =
%(1 — 0;5) leads to a problem that, while quite natural from a combinatorial
point of view, to our knowledge has not been studied in the literature. Taking,
e.g., h; = po;1 with p € R, we get the following generalization of the standard
max-cut problem:

= _ ea(5,V\ 5) 5]
—-&(G, J,h) = max( V(G)P +M\V(G)|)'

SCcV(Q)

This problem interpolates, to some extent, between the standard max-cut prob-
lem (where the size of S is ignored) and the max-bisection problem (where the
size of S is prescribed exactly). We will call it the “biased max-cut problem,”
and the generalization to arbitrary ¢, J, and h the “biased weighted multiway
cut problem.”
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Considering finally the microcanonical ground state energies,
(2.17) ~ &G ) = g e D Tss)
u

we are faced with a multiway max-cut problem where the number of vertices
in ¢~1({i}) is constrained to be approximately equal to a;|V(G)].

Remark 2.10. If we leave out the convergence of microcanonical free en-
ergies, whose combinatorial significance is less clear, the theorems proved in
this paper (together with Example 6.3) lead to the following interesting hier-
archy of max-cut problems. The weakest form of convergence is that of naive
right-convergence, which is equivalent to the convergence of the density of the
largest weighted multiway cut (ground state energies with zero magnetic field).
The next strongest notion is that of convergence of biased weighted multiway
cuts (ground state energies with nonzero magnetic field). The strongest is
that of convergence of the weighted multiway cuts with prescribed proportions
for the different parts of the cut (microcanonical ground state energies). The
remaining notions of convergence (left-convergence, convergence in metric, con-
vergence of quotients, and right-convergence) are equivalent to the convergence
of the weighted multiway cuts with arbitrary prescribed proportions.

Turning finally to the relation between quotients and ground state ener-
gies, let us note that any map ¢ contributing to the right-hand side of (2.15)
defines a partition P = (Vi,...,V,) of V(GQ): just set V; = ¢ *({i}). As a
consequence, we can rewrite g (G, J,h) as

(2.18)  E(G,J,h) = — max (ZO‘Z Yhi + Za@ H)Bij(H)J; )

HGSq(G) i=1 i,j=1

This relation shows that the consideration of quotients is quite natural when
analyzing weighted multiway cut problems (a.k.a. ground state energies). It
also immediately gives that convergence of quotients implies convergence of
the ground state energies. The corresponding relation for the microcanonical
ground state energies is more complicated due to the fact that a quotient H
contributing to £, (G, J) has nodeweights that are only approximately equal to
the entries of a.

Remark 2.11. Together with the concept of the cut-metric introduced in
(2.3), quotients also allow for a very concise formulation of Szemerédi’s Reg-
ularity Lemma [12], at least in its weak form of Frieze and Kannan [7]. In
this formulation, the Weak Regularity Lemma states that given € > 0 and any
simple graph G, we can find a ¢ < 41/¢” and a quotient H € gq(G) such that
(G, H) < &; see [3] for details.
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2.4. Eaxtension to weighted graphs. Although Theorems 2.8 and 2.9 are
stated for simple graphs, it turns out that the proofs of most of these statements
hold more generally, namely for any sequence (Gy,) of weighted graphs such that
(Gy) has uniformly bounded edgeweights and no dominant nodeweights in the
sense that

(2.19) Omax(Gn)

ag,
where amax(G) = max;cy () @i(G).
We use the symbols a(G) and 5(G) to denote the vector of nodeweights
and the matrix of edgeweights of a weighted graph G. Recall that ag =
> ai(G), and set

omin(G) = min 0i(G)  and () = max [5,(G)].

A sequence (Gy,) has uniformly bounded edgeweights if sup,, Bmax(Gr) < 0.
We generalize the homomorphism numbers hom(G, H) to the case where
both G and H are weighted. Assume thus that H is soft-core, with
(2.20) oi(H) =e and  Bi(H) = e*i,
and that G is a general weighted graph. Setting [,,(G) = 0 if uv is not an
edge in G, we then define
(2.21)
hom(G, H) = Z exp( Z u(G)hg ()
&V (G)—V(H) ueV(G)

+ Z au(G)OJU(G)/Buv(G)‘Lb(u)d’(v))’

u,veV(G)

— 0 as n — 00,

an expression that reduces to (1.2) if G is simple.

Remark 2.12. This notation allows us to express partition functions as
homomorphism numbers of weighted graphs. For every simple graph G,

Z(G,J,h) = hom(G', H),
where G’ is obtained from G by weighting its edges by 1/|V(G)].
Recall that we defined the metric g for general weighted graphs. Let H

be a soft-core graph with nodeset [¢], and let a € Pd,. For a weighted graph G,
we then set

(222)  Qu(@) ={o: V(G) —~ [q):

Z ay(G) — aiag‘ < amax(G)},
uep=({i})
and we define
(223)  homa(G,H)= > exp( Y au(@)au(@)Bu G)o(uyoe )-
9€Na(G) u,veV(G)
where J is again related to the edgeweights of H by (2.20).
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To generalize the notion of quotients to a weighted graph G, let us again
consider a partition P = (Vi,...,V;) of the nodeset of G. We then define the
quotient G/P to be the weighted graph with nodeset [¢] and weights

aqlvi and Bij(G/P) = Z O‘“(G)av(G)Buv(G),

aG wevi QGG
veVj

(2.24) a;(G/P) =

where agy;] = Yuey; @u(G) is the total weight of the partition class V. As
before, we call G/P a g-quotient of G if P is a partition of V(G) into ¢ classes,
and denote the set of g-quotients of a given graph G by §q(G).

To define a soft-core spin model on G, let [¢] = {1,...,q}, let h € R, let
J be a symmetric ¢ X ¢ matrix with entries in R, and let ¢ : V(G) — [¢]. We
then generalize the definition (2.8) to

(2.25)
u G u G v G uv G
Es(G, T h) == ) aa(G )h¢(u) - X - De O(%)B ( )J¢<u)¢<v>~

ueV(G) u,veV(G)
The partition function, free energy, and ground state energy of the model (J, h)
on the weighted graph G are then defined in the same way as in the unweighted
case; see equations (2.9), (2.10), and (2.11). Similarly, the microcanonical
partition functions, free energies, and ground state energies on a weighted
graph G are again defined by (2.12), (2.13), and (2.14). Note by definition,
the energies (2.25), and hence also the partition functions, free energies, and
ground state energies, are invariant under rescaling of the nodeweights of G.

Ezample 2.13 (The Inhomogeneous Ising Model). Recall the Ising model
from Example 2.6, with spin space {—1,+1}, coupling constants Jy 4 = %d)d)’ ,
and magnetic fields hy = p¢. When defined on a simple graph, it is often called
a “homogeneous model” because the coupling constants and magnetic fields
are constant. But if we take the graph G to be weighted with edgeweights
Buv(G) (but still unit nodeweights), the model becomes an “inhomogeneous
Ising model,” with energy density

1 1
(‘: G) J7 -H = T xr 10 Kuv¢u¢v TN M¢uv
A= a2 V@) g@

where the coupling constants, K, = KfBu,(G), represent variations due to
inhomogeneities in the underlying crystal structure.

Just as for simple graphs, a sequence (G,,) of weighted graphs with uni-
formly bounded edgeweights is called left-convergent if t(F, G,,) converges for
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every simple graph F. A sequence (G,) of weighted graphs is called right-
convergent if
Inhoma (G, H)

2
OéGn

converges for every soft-core graph H and every probability distribution a on
V(H), and it is called naively right-convergent if

Inhom(G,,, H)
af
converges for every soft-core graph H.

The following two theorems generalize Theorems 2.8 and 2.9 to weighted
graphs.

THEOREM 2.14. Let (Gy) be a sequence with uniformly bounded edge-
weights and no dominant nodeweights. Then the following statements are
equivalent:

(i) The sequence (G,) is left-convergent.

(ii) The sequence (G) is a Cauchy sequence in the metric dg.

(iii) The quotients of (Gy,) are convergent in the Hausdorff distance dilf.

(iv) The microcanonical ground state energies of (Gy) are convergent.

If, in addition, onGn/|V(Gn)| — 00, then the following is also equivalent to the
statements above:

(v) The sequence (Gy,) is right-convergent.

If the assumption of no dominant nodeweights is replaced by the stronger as-
sumption that all nodes have weight one and |V (G,,)| — oo, then the following
1s also equivalent:

(vi) The microcanonical free energies of (Gy) are convergent.

THEOREM 2.15. Let (G,,) be a left-convergent sequence of weighted graphs
with uniformly bounded edgeweights. Then:

(i) If (Gn) has no dominant nodeweights and o, /|V(Gyp)| — oo, then
the sequence (G,) is naively right-convergent.

(i1) If (Gn) has no dominant nodeweights, then the ground state energies
of (Gy,) are convergent.

(iii) If all nodes have weight one and |V (Gy)| — oo, then the free energies
of (Gy,) are convergent.

(iv) The spectrum of (Gy,) is convergent in the sense that if Ay 1 > Ap2 >
2 A V(G| are the eigenvalues of the adjacency matriz of G, then
[V (Gn)| "t A, and |V(Gn)|_1)\n’|v(gn)‘+1,i converge for all i > 0.

As pointed out earlier, the equivalence of the first two statements in The-
orem 2.14 was proved in the first part of this paper [3]. Here our main focus
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is on establishing the equivalence of convergence in metric with the other no-
tions of convergence, i.e., the equivalence of (ii) through (vi). Let us note that
the additional condition needed for the equivalence of (vi) with the remaining
statements is not merely a technical condition. In fact, not all left-convergent
sequences of graphs lead to convergent microcanonical free energies if we allow
nonconstant nodeweights; see Example 6.4 in Section 6.

Remark 2.16. The reader may notice that none of our theorems assumed
that the sequence (G,) is dense, in the sense that the edge density

Z au(Gn)av(Gn)ﬁuv(Gn)

1

a2G u,v€V (Gr)

is bounded from below by a constant. That does not mean, however, that our
theorems say very much for nondense sequences. Indeed, if the edge density of
G, tends to zero, then most of the statements of the theorem become trivial.
The ground state energies and free energies, as well as their microcanonical
counterparts, tend to zero, the homomorphism density ¢(F, Gy,) of every simple
graph tends to zero, etc.

A similar remark applies to disordered spin systems. While our results
for the free energies require that the nodeweights are one, they do not require
that B,,(Gy) has a definite sign. But if m D uweV (Gn) Buv(Gy) tends to
zero (which will happen with probability one if, e.g., By, is chosen i.i.d. from
{=1,+1}), then the limiting free energies are zero as well. This is due to the
fact that we have chosen the ferromagnetic normalization |V (G,,)|~2 for the
energy &, per node, rather than the “spin-glass” normalization V(G| 32

Remark 2.17. Let H be a soft-core graph on ¢ nodes, and let a € Pd,.
Extending Example 2.3, it is easy to see

ihoma(G 1) _ g o)+ O(W(Cj")'),
ag ag

with J given by (2.20). (See Lemma 5.7 for a quantitative relation.) This shows
why right-convergence is equivalent to the convergence of the microcanonical
ground state energies if ag, /|V(G,)| — oo.

On the other hand, if we consider sequences (Gy) with ag /|V(Gn)| = ¢
for some ¢ € (0, 00), then

In hom, (G, H 1~
nhomaG I _ 1 F(G.ed) +o().
G

and right-convergence becomes equivalent to the convergence of the micro-
canonical free energies.
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The least interesting case is the case ag, /|V(Gy)| — 0. In this case,

Inhom, (G, H)

VG s tol)

and the homomorphism numbers hom, (G, H) do not contain any interesting
information about G,, as n — oo.

3. Convergent sequences of graphons

In this section we discuss the generalization of the concepts and results of
the last section to graphons, already mentioned in Section 1.

Definition 3.1. A graphon is a bounded measurable function W : [0,1]2 =R
which is symmetric; i.e., W(z,y) = W(y,x) for all (z,y) € [0,1]%

We denote the subset of graphons with values in some bounded interval I
by Wr.

3.1. Graphons as limits of left-convergent graph sequences. Let W € W,
and let F' be a simple graph with V(F') = {1,...,k}. Following [9], we then
define the homomorphism density of W as

(3.1) HE, W) = / I W) da.
0.1 1icE(F)

It is not hard to see that this definition extends the definition of homomorphism
densities from graphs to graphons. Indeed, let G be a weighted graph on n
nodes, and let Iy, ..., I, be consecutive intervals in [0, 1] of lengths a1 (G)/aq,

.., an(G)/agq, respectively. We then define W to be the step function that
is constant on sets of the form I, x I,, with

(3.2) Wea(z,y) = Bun(Q) if (z,y) € I, X I.

Informally, we consider the adjacency matrix of G and replace each entry
(u,v) by a square of size a,(G)a,(G)/aZ with the constant function 8, on
this square. With the above definitions, we have that ¢(F,G) = t(F, Wg).

Let (G,) be a sequence of weighted graphs and W be a graphon. We say
that G, — W if t(F,G,) — t(F,W) for every simple graph F. Generalizing
the results of [9] to weighted graphs the following was shown in [3].

THEOREM 3.2. For every left-convergent sequence (Gy,) of weighted graphs
with uniformly bounded edgeweights, there exists a W € W such that G,, — W.
Conversely, for every W € W, there exists a sequence (Gy,) of weighted graphs
with uniformly bounded edgeweights such that G, — W.
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3.2. The metric space of graphons. We will need several norms on the
space of graphons. In addition to the standard L., L1, and Lo norms of a
graphon W (denoted by ||W||co, ||W |1, and ||IW||2 respectively), we need the
cut-norm introduced in [7]. It is defined by

[Wlo=sup
S,7Cl0,1]

W (z,y)ddy),
SxT
where the supremum goes over measurable subsets of [0, 1].
There are several equivalent ways of generalizing the definition of the dis-

tance o to graphons; see [3]. Here, we define the cut-distance of two graphons
by

(3.3) o0(U,W) = inf U — Weo,

where the infimum goes over all invertible maps ¢ : [0,1] — [0, 1] such that
both ¢ and its image are measure preserving, and W¢ is defined by W (z,y) =
W(¢(x),#(y)). It is not hard to show that this distance indeed extends the
distance of weighted graphs, in the sense that 0q(G, G') = 0o(Wg, Wer), where
W is the step function defined in (3.2). We will use the notation ép(G, W) =
oo(Wg, W) for a weighted graph G and graphon W.

Similar construction can be applied to the L, norm on W, and we can
define distance 0,(U, W) = inf, |U — W?||,. (We will need this construction
only near the end of the paper for p = 2.)

It is not hard to check that dg satisfies the triangle inequality, so after
identifying graphons with distance zero, the space (W, d) becomes a metric
space, denoted by W. The subspace corresponding to the graphons in Wy will
be denoted by Wy. It was shown in [10] that the space VN\/[OJ] is compact. This
immediately implies that for any bounded interval I, the metric space VNVI is
compact as well.

One of the main results of our companion paper [3] is the following theo-
rem.

THEOREM 3.3 ([3]). Let I be a bounded interval, and let (W,) be a se-
quence of graphons with values in I.

(i) t(F, W) is convergent for all simple graphs F if and only if (W) is a
Cauchy sequence in the metric og.

(ii) Let W be an arbitrary graphon. Then t(F,W,) — t(F,W) for all
simple graphs F if and only if oo(W,, W) — 0.

In particular, it follows that G, — W if and only if on(Wg,,, W) — 0.
We call two graphons W and W’ weakly isomorphic if t(F, W) = t(F,W') for
every simple graph F. It follows from Theorem 3.3 that this is equivalent to
do(W,W') = 0. The results of [4] imply a further equivalent condition: there
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exists a third graphon U such that W = U?® and W’ = UY for two measure-
preserving functions ¢, : [0,1] — [0, 1].

By the compactness of WI, any Cauchy sequence of graphons W,, € Wy
has a limit W € Wy, but this does not guarantee uniqueness. Indeed, every
graphon weakly isomorphic to W could serve as the limit graphon. It follows
from the discussion above that this covers all the nonuniqueness, in other
words, the limit is unique as an element of WI.

3.3. Quotients and approrimations by step functions. We call a function
W : 0,12 = [0,1] a step function, if [0,1] has a partition {Si,..., S} into a
finite number of measurable sets such that W is constant on every product set
S; x S;. It can be seen that every step function is at cut-distance zero from W
for some finite, weighted graph G. Graphons, as limits of finite graphs, can
thus be approximated by step functions in the cut-distance. One way to find
such an approximation is as follows. Given a graphon W € W and a partition
P = (Vi,...,V,) of [0,1] into measurable sets, we define a finite, weighted
graph W/P on [g] by setting

1
)‘(VZ))‘(V}) VixV;
(if M(Vi)A(V}) = 0, we define B;;(W/P) = 0) and the corresponding function
Wp by

q
(3'4) W’P(x7y) = Z Bz’j(W/,P)lmEVi]-yGVj-
ij=1
We call the graph W/P a q-quotient of W and use gq(W) to denote the set of
all g-quotients of W.
It is not hard to check that the averaging operation W +— Wp is contrac-
tive with respect to the norms || - |1, || - ||2 and || - || on W:

3:5) NWely < Wi, Wellz <[[Wll2,  and  [[Wello < [W]lo.

The following theorem is an extension of the Weak Regularity Lemma [7]
from graphs to graphons and states that every graphon can be well approxi-
mated by a step function.

THEOREM 3.4. LetU € W and k > 1.
(i) There exists a partition P of [0,1] into at most k measurable parts

such that
IV =Uplo </ 17U

(ii) There exists a ¢ < k and a quotzent H e S (U) such that

o) < [0

a(W/P)=A(V})  and  B;(W/P) = W (2, y) da dy
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The first statement of the theorem gives an approximation of a graphon
by step functions and is essentially due to Frieze and Kannan [7]. Indeed,
with a slightly worse constant, it follows from Theorem 12 of [7]. In the above
form, the first statement of the theorem is proved in Section 4.4.2 below. The
second statement gives an approximation by a finite, weighted graph, a factor
U/P € §,(U), and can easily be seen to be equivalent to the first. Stronger
versions of the regularity lemma for graphons, in particular a version of the
original Szemerédi lemma, can be found in [9], [10].

We will also need a fractional version of g-quotients with which it will be
easier to work. First, a fractional partition of a set [0, 1] into ¢ classes (briefly, a
fractional g-partition) is a ¢g-tuple of measurable functions p1,...,pq: [0,1] —
[0,1] such that for all z € [0,1], we have pi(z) + -+ + pg(x) = 1. Given a
fractional g-partition p = (p1,...,pq) of [0, 1], we then set

alp) = [ pileyia

and define U/p to be the weighted graph on [¢] with weights
(3.6)
1
a;(U/p) = oy and [;;(U :7/ pi(x)pi(y)U(x,y) dx dy.
W/p) = ailp) 010) = s [ @)U )

If ai(p)oj(p) = 0, we set B;;(U/p) = 0. We call U/p a fractional g-quotient of
U and denote the set of these fractional g-quotients by S, (U).

3.4. Energy, entropy, and free energy. Recall the definition (2.8) of the
energy density of spin configuration ¢ : V(G) — [g] on a simple graph G.
Such a spin configuration defines a partition P = (V4,...,V,) of V(G) via
Vi = ¢71({i}). In terms of this partition, we can rewrite the energy of the
configuration ¢ as

Es(G, J h) = ’Zh Y luey;

ueV(G)

- W Z ij Z 1u€V¢ 1v€Vj luveE(G)~
1, u,veV (G

Our attempt to generalize this form to graphons leads to the following defini-
tions. Given a graphon W, an integer ¢ > 1, a matrix J € Sym,, and a vector
h € R4, we define the energy of a fractional q-partition p of [0,1] as

(3.7)

W, 1) = =3 | ot o= 3 | pila)os )W () ddy.

[0,1] [0, 1]2
The ground state energy of the model (J, h) on W is then defined as
(3.8) E(W, J, 1) = inf €,(W, J,h),
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where the infimum runs over all fractional g-partitions of [0, 1]. The most im-
portant energy measure for us will be the microcanonical ground state energy,
given by
(3.9) Ea(W,J) = inf E,(W,J,0),

p:a(p)=a
where the infimum now runs over all fractional g-partitions [0, 1] such that
a(p) = a. Note that
(3.10) EOW, 1) = inf (EalW,0) - Zah)
As we will see in Theorem 3.7, the definitions (3.8) and (3.9) are not only nat-
ural analogues of the corresponding definitions for finite graphs, but they are
also the correct limiting expressions of the ground state energies of convergent
graphs sequences.

The definition of the free energy of graphs ((2.10) and (2.13)) does not
carry over to graphons in a direct way. In fact, there is no natural notion of
homomorphism numbers from a graphon W into a finite graph H, which is
related to the fact that hom(G, H) is not invariant under blow ups of its first
argument (where, as usual, the blow up of a weighted graph G on n nodes
is the graph G[k] on kn nodes labeled by pairs iu, i € V(G), v = 1,...,k,
with edgeweights By, ju(G[k]) = B5i;(G) and nodeweights o, (G[k]) = ai(G)).
To circumvent this difficulty, we define the free energy of a graphon W by a
variational formula involving the entropy of a fractional g-partition p of [0, 1],

(3.11) Ent(p /Ent ))dx with  Ent(p Zpl )In p;(x

In terms of this entropy we define the free energy of the model (J,h) on W as
(3.12) F(W,J, h) = i%f(gp(m J,h) — Ent(p)),

where the infimum again runs over all fractional g-partitions of [0,1]. The
microcanonical free energy is defined analogously:

(313) FAW) = it (&0~ En(e)).

p:a(p)=a
where the infimum again runs over all fractional g-partitions of [0, 1] such that
a(p) = a. Note that again

(3.14) F(W, J,h) = inf (Fa(W,.0) - Zah)

(2
While the definitions (3.12) and (3.13) may seem unintuitive from a math-
ematical point of view, they are quite natural from a physics point of view.
Ultimately, the most convincing justification for these definitions is again given
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by our results, which prove that the limiting expressions of the free energies of
a convergent sequence of graphs are given by (3.12) and (3.13).

3.5. Equivalent notions of convergence. Next we state the graphon version
of the main result of this paper, Theorem 2.8. It gives several equivalent
properties characterizing convergence in the space of graphons.

THEOREM 3.5. Let I be a bounded interval, and let (W,,) be a sequence
of graphons in Wy. Then the following statements are equivalent:

(i) For all simple graphs F', the sequence of homomorphism densities
t(F,W,,) is convergent.

(ii) (W) is a Cauchy sequence in the cut-metric ég.

(iii) For every q > 1, the sequence (Sq(Wy,)) is Cauchy in the Hausdorff
distance dif.

(iv) The sequence (Ea(Wh, J)) is convergent for all ¢ > 1, all a € Pdy, and
all J € Sym,.

(v) The sequence (Fa(Why,J)) is convergent for all ¢ > 1, all a € Pdy,
and all J € Sym,.

The reader may notice that the analogue of statement (iv) of Theorem 2.8,
i.e., right-convergence of the sequence (W,,), is missing in the above theorem.
This is because there is no natural notion of homomorphism numbers from
a graphon W into a finite graph H, as explained above. Condition (iv) here
corresponds to condition (v) in Theorem 2.8, which (as remarked earlier) is
easily seen to be equivalent to condition (iv) in Theorem 2.8.

Finally, taking into account the representations (3.10) and (3.14), we im-
mediately get the following corollary of Theorem 3.5.

COROLLARY 3.6. Let I be a bounded interval, and let (W,,) be a sequence
of graphons in Wr. If t(F,W,) — t(F,W) for some W € W and all simple
graphs F, then E(W,,, J,h) — E(W, J,h) and F(Wy,J,h) — F(W, J,h) for all
q>1,heRI and J € Sym,.

By this corollary, the convergence of the energies £(W,,J,h) and free
energies F (W, J,h) is necessary for the convergence of the homomorphism
densities ¢t(F,W,,), but it is not sufficient. In fact, it is not that hard to con-
struct two graphons W and W' that have different homomorphism densities,
but for which E(W,J,h) = E(W',J,h) and F(W,J,h) = F(W', J h) for all
q>1,h€R? and J € Sym; see Example 6.1.

3.6. Limit expressions for convergent sequences of graphs. Our next the-
orem states that the limiting quantities referred to in Theorems 2.14 and 2.15
are equal to the corresponding objects defined for graphons.
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THEOREM 3.7. Let W € W, and let G, be a sequence of weighted graphs
with uniformly bounded edgeweights and no dominant nodeweights. Let F' be
a simple graph, let ¢ > 1, a € Pdy, and J € Sym,, and let H be a soft-core

weighted graph with Bi;(H) = €2%is. If 6q(Gpn, W) — 0, then
t(F,Gp) — t(F,W),
i (S84(Gn), Sq(W)) = 0,
Ea(Gn, T) = Ea(W, ),
E(Gn, J k) — E(W, J,h)

If, in addition, o, /|V(Gn)| — oo, then

—%ln homg (Gr, H) — Ea(W, J),

OéGn
1
———Inhom(G,,H) — (W, J,0).
OéGn

If, in addition, all nodes in Gy, have weight one, then

Fa(Gn,J) = Fa(W, J),
F(Gn, J,h) = F(W, J, h).

We illustrate the last theorem and the expression (3.12) for the limiting
free energy in a few simple examples: first the standard ferromagnetic Ising
model on a general convergent sequence of simple graphs, next the particu-
larly simple special case in which the convergent sequence is just a sequence
of complete graphs, and finally an example of a so-called disordered Ising fer-
romagnet. We end this section with a general result on the free energy of
disordered spin systems.

Ezample 3.8 (Ising Model on Convergent Graphs Sequences). Consider
the inhomogeneous Ising model of Example 2.13 with K > 0 (called the fer-
romagnetic Ising model), and assume that G,, is a sequence of simple graphs
such that G,, — W from the left. By Theorems 3.3 and 3.7, the free energy

o~

F(Gp, J, h) converges to the free energy F (W, J, h) defined in (3.12). Express-

ing the fractional partitions p4 (z) as 3(1 +m(z)), we rewrite this expression

as

F(W, J,h) = inf (—K/W(x,y)m(x)m(y)da;dy — u/m(m)daﬁ
m:[0,1]—[=1,1] 2

+ [ 2 mE@) (G4 m@)) + [ 50 - mE)m(50 —m(a:)))),

where the infimum goes over all measurable functions m : [0,1] — [—1,1].
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Ezample 3.9 (Curie-Weiss Model). Next we specialize to the case where
G, = K,, the complete graph on n nodes. In the physics literature, the
Ising model on this graph is known as the mean-field Ising model or as the
Curie-Weiss model. For the complete graph, the frequencies t(-, K,,) are easily
calculated: ¢t(F, K,) = 14+0(1/n), implying that K, converges to the constant
function 1 from the left. By Theorems 3.3 and 3.7, the free energies F (K, J,h)
therefore converge to

K
F(1,J,h) = mei[Ilfl 1]<—m2 — pm

1 1-—-
+mln(1—i—m)—|— m

In(1 — m)) ~In2.

It is not hard to see that the infimum is in fact a minimum and that the
minimizer obeys the equation

m = tanh(Km + p),

which is the well-known mean-field equation for the “order parameter” m. For
1 = 0, this equation has either one or three solutions, depending on whether
K <1or K > 1. The largest solution,

M(K) = max{m: m = tanh(Km)},

is called the magnetization, and both m = M(K) and m = —M(K) are
minimizers for the free energy. It is not hard to see that M(K) = 0 for
K € [0,1] and that for K > 1, the function K +— M (K,0) is a real analytic
function that takes values that lie strictly between 0 and 1. As a consequence,
the free energy in zero magnetic field, F(1, K,0), is an analytic function of
K on both (0,1) and (1, 00), with a singularity (called a phase transition) at
K =1, and

F(1,J,00=-In2 if K<1 and F(1,7,0)<—-In2 if K> 1.

We will use this fact later to give a counterexample showing that not all left-
convergent sequences of graphs lead to convergent microcanonical free energies
if we allow nonconstant nodeweights.

The function m(z) in Example 3.8 is the inhomogeneous analogue of this
order parameter m, and more generally, the fractional partitions p;(z) in (3.12)
represent inhomogeneous order parameters for a soft-core spin system with spin

space [q].

Ezample 3.10 (Disordered Ising Ferromagnets). Our next example con-
cerns the Ising model on a simple graph G with nonconstant coupling con-
stants. Writing the varying coupling constants as K [(,,, this can clearly be
modeled in our framework by moving from the simple graph G to a weighted
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graph G’ with nodeweights one and edgeweights 3., (G’) = Byy. To be specific,
let us assume that the weights (5, are chosen i.i.d. from some probability dis-
tribution with bounded support and expectation (. It is quite easy to show
that whenever the original sequence G, is left-convergent with G,, — W, then
the sequence G, is left-convergent with probability one and G/, — BW. Thus

F(G, J,h) — F(BW, J,h) = F(W,3J,h)  with probability 1.

In order to interpret this result, let us first consider the case where the distri-
bution of B, is symmetric and 8 = 0. This represents a so-called spin-glass,
and our result only expresses the well-known fact that, with the normaliza-
tion chosen in equations (2.8) and (2.9), the free energy of a spin glass is
zero. For nontrivial results in spin glasses, one would need to scale Jy(,)¢(v) by

1/4/|V(G)| rather than 1/|V(G)|. If B is positive, the model describes a so-
called disordered ferromagnet, and the above identity expresses the fact that,
provided that the coupling asymmetry is strong enough, a disordered ferro-
magnet on a sequence of dense graphs has the same thermodynamic limit as a
homogeneous ferromagnet on the same graph sequence, except for a rescaling
of the coupling constant.

As our next proposition shows, the above result holds for arbitrary soft-
core spin systems with finite spin space.

PROPOSITION 3.11. Let (Gy,) be a sequence of simple graphs, and let (GY,)
be a sequence of weighted graphs with V(G)) = V(Gy), E(G),) = E(Gy),
nodeweights one, and edgeweights By, (Gh) = Xf,(f;), where Xuy are real valued
i.i.d. random variables with compact support and expectation B. Let ¢ > 1,
h € R?, J € Sym,, and assume that f(Gn,BJ, h) converges as n — oo. Then

—~

F(G!,, J, h) converges with probability one and

Tim F(G, J, ) = Tim. F(Gn,BJ,h)  with probability 1.

Note that the proposition only requires that F (G, BJ, h) is convergent, a
condition that is weaker than left-convergence of the original sequence (G,,).

The proof of the proposition gives a similar statement for an arbitrary
function from the set of graphs into R that is invariant under graph isomor-
phisms and continuous with respect to the cut-metric. As a consequence, an
analogue of the above proposition holds, e.g., for the ground state energies

~

E(GL, T, h).
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4. Proof of Theorem 3.5

The equivalence of (i) and (ii) was proved in [3]. In fact, the following
quantitative form is true. (Conclusion (a) was proved in [9] and (b) was proved
in [3].)

THEOREM 4.1. Let UyW € W and C = max{1, |W||co, ||U]|cc}-
(a) Let F be a simple graph. Then
|t(F,U) — t(F,W)| < 4|E(F)|CFE g, w).
(b) Suppose that for some k > 1,
t(F,U) — t(F,W)| < 37*

for every simple graph F' on k nodes. Then
22C

Viogy k'

This theorem should motivate the rest of the section, where we prove

5D(U7 W) <

quantitative forms of the main implications among (ii)—(v). We start with
some preliminaries.

4.1. Preliminaries.

4.1.1. More on distances for weighted graphs. Recall that the g-quotients
of a graphon U are weighted graphs on g nodes with total nodeweight one. We
will often identify these weighted graphs with a point (a, X) € Rq+q2, where
a € RY is the vector of nodeweights and X € Sym, is the matrix of edgeweights
of the quotient under consideration.

To work with quotients, we will use several different distances on weighted
graphs. In addition to the distances d; and dg introduced in (2.5) and (2.6),
we use the fo-norm of a weighted graph H,

1/2
||H||2=HWHH2=< > Wﬁmm?)

iwjevan - H
and the /5 distance between two weighted graphs H and H' with the same
nodeset and identical nodeweights,

1/2
2
(41)  d(H H) = 0%2 ( > i)y (H) (B (H) — By (H')) ) :
H \ijev

Note that for two weighted graphs with the