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Convergent sequences of dense graphs II.
Multiway cuts and statistical physics

By C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi

Abstract

We consider sequences of graphs (Gn) and define various notions of con-

vergence related to these sequences including “left-convergence,” defined in

terms of the densities of homomorphisms from small graphs into Gn, and

“right-convergence,” defined in terms of the densities of homomorphisms

from Gn into small graphs.

We show that right-convergence is equivalent to left-convergence, both

for simple graphs Gn, and for graphs Gn with nontrivial nodeweights and

edgeweights. Other equivalent conditions for convergence are given in terms

of fundamental notions from combinatorics, such as maximum cuts and Sze-

merédi partitions, and fundamental notions from statistical physics, like

energies and free energies. We thereby relate local and global properties of

graph sequences. Quantitative forms of these results express the relation-

ships among different measures of similarity of large graphs.
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1. Introduction

Growing sequences of graphs arise naturally in many contexts, both fun-

damental and applied. How do we characterize and classify such sequences?

In particular, under what conditions do such sequences converge to something

nontrivial and yet sufficiently universal to be conceptually meaningful? A con-

siderable part of graph theory and combinatorics in the past fifty years has

been devoted to classifying large, but finite graphs. However, surprisingly, un-

til the work here, there was not a general theory for sequences of dense graphs

that grow without bound. This paper is the second of two papers in which

we develop a theory of convergent sequences of dense graphs; see [5] for an

announcement of some of these results.

Our theory draws heavily on perspectives and results from both combi-

natorics and statistical physics. We will therefore explain our results in both

languages and provide examples of relevance to both fields.

Consider a dense sequence of simple graphs (Gn) such that the number

of nodes in Gn goes to infinity with n (where, as usual, a graph is simple

if it has no loops and no multiple edges, and dense means that the average

degree grows like the number of vertices in Gn). In this paper we will consider
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several natural notions of convergence for such a sequence—some motivated

by combinatorics and others by statistical physics. Our main result will be

a theorem showing that many of these notions of convergence are equivalent.

These equivalences allow simple proofs of many of the fundamental results in

combinatorics and also provide a framework for addressing some previously

unapproachable questions; see, e.g., [2]. These equivalences also help to unify

central notions of combinatorics, discrete optimization, and statistical physics.

From the point of view of combinatorics, our theory can be viewed as

a substantial generalization of the theory of quasirandom graphs, which are

sequences of graphs that “look like” random graphs . Obviously, there are many

ways in which one could make this precise, but interestingly, many natural ways

in which a sequence of graphs could be defined to be quasirandom turn out to

be equivalent [13], [6].

Here we prove similar equivalences for the notion of convergent graph se-

quences. In fact, most of the equivalences for quasirandom graphs are immedi-

ate corollaries of the general theory developed here and in our companion paper

[3]. A notable exception is the spectral representation of quasirandom graphs:

while it turns out that convergence of the spectrum is implied by our other

conditions of convergence, it is not equivalent in our general setting. Indeed,

already in the setting of generalized quasirandom graph sequences considered

in [8], neither the knowledge of the limiting spectrum of the adjacency matri-

ces nor the knowledge of the limiting spectrum of the Laplacians is enough to

characterize the sequences.

From the viewpoint of physics, our results show that convergence of vari-

ous thermodynamic quantities, notably microcanonical free energies or ground

state energies for all so-called “soft-core” models, is equivalent to convergence

of apparently more local graph properties, as defined below.

1.1. Equivalent notions of convergence. The first notion of convergence

for a sequence (Gn) we consider is what we call “left-convergence.” It was

introduced in the companion of this paper [3] and is a way of characterizing

a large graph G in terms of the number of copies of a small graph F that are

contained in G. Given two simple graphs F and G, we denote the number

homomorphisms from F to G by hom(F,G). Let t(F,G) be the probability

that a random map φ : V (F )→ V (G) is a homomorphism,

(1.1) t(F,G) =
1

|V (G)||V (F )|hom(F,G),

where V (G) and V (F ) are the set of vertices in G and F , respectively. We then

called a sequence (Gn) of simple graphs left-convergent if the “homomorphism

densities” t(F,Gn) converge for all simple graphs F .

Instead of testing a graph sequence (Gn) with homomorphisms “from the

left,” i.e., with homomorphisms from a small graph F into the graphs (Gn), one
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might want to test (Gn) with homomorphisms “from the right,” i.e., one might

want to consider the homomorphisms from Gn into some small graph H. For

this to be interesting, we have to work with weighted graphs, i.e., graphsH with

nodeweights αi(H) > 0 for the nodes i ∈ V (H) and edgeweights βij(H) ∈ R
for the edges ij ∈ E(H). A simple graph can be considered as a weighted

graph with all nodeweights and edgeweights equal to 1. The homomorphism

number from a simple graph G into a weighted graph H is then defined as

(1.2) hom(G,H) =
∑

φ:V (G)→V (H)

∏
u∈V (G)

αφ(u)(H)
∏

uv∈E(G)

βφ(u),φ(v)(H),

where E(G) denotes the set of edges in G. We will often restrict ourselves to so-

called “soft-core” graph, i.e., complete graphs H with all loops present, strictly

positive nodeweights αi(H) > 0, and strictly positive edgeweights βij(H) =

βji(H) > 0.

For soft-core graphs H, these homomorphism numbers “from the right”

typically grow or fall exponentially in the number of edges of G. Since the num-

ber of edges in a sequence of dense graphs grows like the square of the number

of nodes, it seems natural to define a sequence (Gn) of graphs to be right-

convergent if 1
|V (Gn)|2 ln hom(Gn, H) converges for every soft-core graph H. For

reasons explained below, we will call such a sequence naively right-convergent.

Naive right-convergence turns out to be interesting from both a combi-

natorics and a statistical physics point of view. Indeed, as we will see below,

the convergence of 1
|V (Gn)|2 ln hom(Gn, H) for a certain graph H on two nodes

is equivalent to the convergence of the density of the largest cut in Gn; and

right-convergence is equivalent to the convergence of the density of the largest

cut in weighted multiway cut problems. From the viewpoint of physics, the

homomorphism number hom(G,H) is just the canonical partition function of

a suitable soft-core model on the graph G. One might therefore guess that

naive right-convergence corresponds to the convergence of the free energies of

these models, but due to our normalization, it actually corresponds to the

convergence of ground state energies; see Section 2.3 below.

In contrast to the notion of left-convergence, which corresponds to the

convergence of local properties like the density of triangles or the density of

4-cycles, naive right-convergence thus corresponds to convergence of global

properties like the density of the largest cut and the ground state energies of

suitable soft-core models. This raises the question whether the a priori quite

different notions of left- and right-convergence are equivalent, the starting point

of this paper. While it turns out that left-convergence is not equivalent to naive

right-convergence (hence the term naive), a strengthened condition involving

homomorphisms for which the number of vertices in Gn that map onto a given

i ∈ V (H) is restricted to be a given fraction of V (Gn) gives equivalence.
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In addition to left and right-convergence, we consider several other natural

notions of convergence, all of which turn out to be equivalent. Among these

notions is that of convergence in a suitably defined metric, a concept already

considered in [3]. Another one concerns partitions and the graphs obtained

from taking “quotients” with respect to these partitions. More precisely, given

a partition P = (V1, . . . , Vq) of a graph G, we define the q-quotient G/P as the

weighted graph on [q] with edgeweights βij given by the edge density between

Vi and Vj . (In the theory of Szemerédi partitions, the graph G/P is often

called a cluster graph.) For two graphs G and G′ on at least q nodes, we

may then want to know how close the sets of q-quotients of these two graphs

are. Measuring similarity in terms of Hausdorff distance, this leads to a fourth

notion of convergence, convergence of quotients.

In addition to the above four notions, we will be interested in several

notions of convergence motivated by statistical physics. We will, in particular,

ask under which conditions on a sequence of graphs (Gn) the ground state

energies and free energies of finite spin systems defined on Gn are convergent.

We also address the same question for the so-called microcanonical ground state

energies and free energies. We will show that left-convergence of (Gn) implies

convergence of the ground state energies and the free energies of all “soft-core”

finite spin systems on (Gn), and we will show that both convergence of the

microcanonical ground state energies and convergence of the microcanonical

free energies are equivalent to left-convergence.

1.2. The limit object. Given the equivalence of the above six notions of

convergence, one might want to ask whether a convergent sequence has a nat-

ural limit object, in terms of which the limiting homomorphism densities, quo-

tients, free energies, etc. can be expressed.

We start with an example, the random graph sequence (G(n, p)) where, as

usual, G(n, p) is the graph on n nodes in which any two nodes are connected

independently with probability p. It is not hard to see that t(F,G(n, p)) con-

verges to p|E(F )| with probability one. Interestingly, this limit can be written

as the homomorphism density of a finite weighted graph. Indeed, defining the

homomorphism densities of a weighted graph G with nodeweights αi(G) > 0

and βij(G) ∈ R by

(1.3) t(F,G) =
hom(F,G)

αkG
,

where k is the number of nodes in the simple graph F and αG =
∑
i∈V (G) αi(G)

is the total nodeweight of G, we clearly have that p|E(F )| = t(F,G0), where G0

is the graph with one node, a loop at this node, and weight p for the loop. (The

node weight is irrelevant in this case, and can, e.g., be set to 1.) This raises the

question of which graph sequences have a limit that can be expressed in terms
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of a finite, weighted graph, which in turn leads to the notion of generalized

quasirandom graphs, studied in detail in [8].

For a left-convergent sequence of simple graphs, the limit cannot be ex-

pressed in terms of a finite graph in general. Given that one of our equivalences

is convergence in metric, one might therefore want to define the limit in the

usual abstract way by identifying sequences that are Cauchy. But it turns

out that there is a much more natural limit object in terms of measurable,

bounded, symmetric 2-variable functions, which we call graphons.

It was already observed by Frieze and Kannan [7] that functions of this

form are natural generalizations of weighted graphs. (They proved a Regular-

ity Lemma for this generalization.) Of more relevance for us is the work of

Lovász and Szegedy [9], who showed that the limit points of left-convergent

graph sequences can be identified with graphons, in the sense that given a

left-convergent sequence (Gn), there exists a graphon W such that the limit

of the homomorphism densities can be expressed in terms of suitably defined

homomorphism densities of W .

The notion of a graphon is useful in an even wider setting, and will, in par-

ticular, allow us to find simple expressions for the limit objects corresponding

to the various notions of convergence considered in this paper. Moreover, most

of the statements of our main theorems, Theorems 2.8 and 2.9, have a natu-

ral formulation for sequences of uniformly bounded graphons Wn ∈ W, with

proofs that turn out to be much cleaner than the corresponding direct proof

of these theorems in terms of graphs. Indeed, many of the technical details

of this paper concern rounding techniques that reduce Theorems 2.8 and 2.9

to the corresponding statements for sequence of graphons. It turns out that

this approach naturally gives not only the equivalence of the above notions

for sequences of simple graphs but also for sequences of weighted graphs; see

Section 2.4 for the precise statements.

The organization of this paper is as follows. In the next section we define

our main concepts and state our results; first for sequences of simple graphs,

and then for sequences of weighted graphs. The analogues of these concepts

and results for graphons are presented in the Section 3 and proved in Section 4.

In Section 5 we give the details of the rounding procedures needed to reduce

the results of Section 2 to those of Section 3. In our final section, Section 6,

we discuss weaker notions of convergence; in particular, convergence of the

spectrum of the adjacency matrices, including an example that shows that the

convergence of spectra is not sufficient for convergence from the left.

2. Convergent sequences of graphs

2.1. Definitions. We start by recalling the definition of left-convergence.
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Definition 2.1 ([3]). A sequence (Gn) of simple graphs is called left-conver-

gent if the homomorphism densities t(F,Gn) converge for all simple graphs F .

Next we formalize the definition of right-convergence in terms of homomor-

phism for which the number of vertices in G that map onto a given i ∈ V (H)

is restricted to be a given fraction. To this end, we label the nodes of H as

1, . . . , q, and define Pdq to be the set of vectors a ∈ Rq for which
∑
i ai = 1

and ai ≥ 0 for all i ∈ [q]. Given a probability distribution a ∈ Pdq, we set

(2.1)

Ωa(G) =
{
φ : V (G)→ [q] :

∣∣∣∣|φ−1({i})| − ai|V (G)|
∣∣∣∣ ≤ 1 for all i ∈ [q]

}
and define a constrained version of the homomorphism numbers by

(2.2) homa(G,H) =
∑

φ∈Ωa(G)

∏
uv∈E(G)

βφ(u)φ(v)(H).

Note the absence of the factors αi(H) corresponding to the nodeweights. These

would be essentially the same for each term and are not carried along. This

quantity is natural from the viewpoint of statistical physics: it is the micro-

canonical partition function on G of a model characterized by the weights in

H, at fixed “particle densities” specified by a.

Definition 2.2. A sequence (Gn) of simple graphs (Gn) is called right-

convergent if
1

|V (Gn)|2
ln homa(Gn, H)

converges for every soft-core graph H and every probability distribution a on

V (H), and it is called naively right-convergent if

1

|V (Gn)|2
ln hom(Gn, H)

converges for every soft-core graph H.

Example 2.3 (Max-Cut). Let H be the weighted graph on {1, 2} with

nodeweights α1(H) = α2(H) = 1 and edgeweights β11(H) = β22(H) = 1

and β12(H) = e (where e is the base of the natural logarithm). The leading

contributions to hom(G,H) then come from the maps φ : V (G)→ {1, 2} such

that the bichromatic edges of φ form a maximal cut in G. Using the fact that

there are only 2|V (G)| mappings, we get that

maxcut(G) ≤ ln hom(G,H)

|V (G)|2
≤ maxcut(G) +

ln 2

|V (G)|
,

where maxcut(G) is the density of the largest cut, i.e., the number of edges

in this cut divided by |V (G)|2. This implies, in particular, that for a naively

right-convergent sequence (Gn), the density of the largest cut is convergent.
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Next we define the metric introduced in [3]. It is derived from the so-

called cut-norm and expresses similarity of global structure; graphs with small

distance in this metric have cuts of similar size. This is easily made precise for

two simple graphs G and G′ on the same set V of nodes, where we define

d�(G,G′) = max
S,T⊂V

∣∣∣∣eG(S, T )

|V |2
− eG′(S, T )

|V |2
∣∣∣∣,

with eG(S, T ) denoting the number of edges in G that have one endpoint in S

and one endpoint in T (with edges in S ∩ T counted twice).

But some care is needed when G and G′ have different nodesets. Here we

use the notion of fractional overlays; see [3] for a motivation of our definition.

We will give the definition in the more general case where both G and G′ are

weighted graphs.

Definition 2.4 ([3]). Let G,G′ be weighted graphs with nodeset V and V ′,

respectively. For i ∈ V and u ∈ V ′, let µi = αi(G)/αG and µ′u = αu(G′)/αG′ .

We then define the set of fractional overlays of G and G′ as the set X (G,G′)

of probability distributions X on V × V ′ such that∑
u∈V ′

Xiu = µi for all i ∈ V and
∑
i∈V

Xiu = µ′u for all u ∈ V ′,

and we set

(2.3) δ�(G,G′) = min
X∈X (G,G′)

max
S,T⊂V×V ′

∣∣∣∣ ∑
(i,u)∈S
(j,v)∈T

XiuXjv

Ä
βij(G)− βuv(G′)

ä∣∣∣∣.
One of the main results of [3], and one of the main inputs needed for this

paper, is the statement that left-convergence is equivalent to convergence in

the metric δ�.

Another notion of convergence that we will also show to be equivalent is

the convergence of “quotients.” The quotients of a simple graph G are defined

in terms of the partitions P = {V1, . . . , Vq} of its node set by contracting all

nodes in a given group to a new node, leading to a weighted graph G/P on

q nodes. More precisely, we define G/P as the weighted graph on [q] with

weights

(2.4) αi(G/P) =
|Vi|
|V (G)|

and βij(G/P) =
eG(Vi, Vj)

|Vi| · |Vj |
.

The quotient graph G/P thus has nodeweights proportional to the sizes of

the classes in P, and edgeweights that are equal to the edge densities between

the corresponding classes of P. We denote the set of quotients obtained by

considering all possible partitions of V (G) into q classes by Ŝq(G). Since a

quotient G/P ∈ Ŝq(G) can be characterized by q+ q2 real numbers (the node-

and edgeweights of G/P), we may consider the set Ŝq(G) as a subset of Rq+q2 .
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It might therefore seem natural to consider two q-quotients as close if their

`1 distance on Rq+q2 is small. But for our purpose, the following distances

between two weighted graphs H, H ′ on q labeled nodes are more useful:

d1(H,H ′) =
∑
i,j∈[q]

∣∣∣∣αi(H)αj(H)βij(H)

(αH)2
− αi(H

′)αj(H
′)βij(H

′)

(αH′)2

∣∣∣∣(2.5)

+
∑
i∈[q]

∣∣∣∣αi(H)

αH
− αi(H

′)

αH′

∣∣∣∣
and

d�(H,H ′) = sup
S,T⊂[q]

∣∣∣∣∑
i∈S
j∈T

(αi(H)αj(H)βij(H)

(αH)2
− αi(H

′)αj(H
′)βij(H

′)

(αH′)2

)∣∣∣∣(2.6)

+
∑
i∈[q]

∣∣∣∣αi(H)

αH
− αi(H

′)

αH′

∣∣∣∣.
Let (X, d) be a metric space. As usual, the Hausdorff metric dHf on the set of

subsets of X is defined by

(2.7) dHf(S, S′) = max
{

sup
x∈S

inf
y∈S′

d(x, y), sup
x∈S′

inf
y∈S

d(x, y)
}
.

Definition 2.5. A sequence (Gn) of simple graphs has convergent quotients

if for all q ≥ 1, the sequence of sets of quotients Ŝq(Gn) is a Cauchy sequence

in the Hausdorff distance dHf
1 .

In addition to the four notions of convergence defined above, we will also

consider convergence of the free energies and ground state energies of certain

models of statistical physics. The models we will be concerned with are so-

called soft-core spin systems with finite spin space. They are defined in terms

of a finite set [q] = {1, . . . , q}, a symmetric q × q matrix J with entries in R
(we denote the set of these matrices by Symq), and a vector h ∈ Rq. A “spin

configuration” on a simple graph G is then given by a map φ : V (G) → [q],

and the energy density of such a spin configurations is defined as

(2.8) Eφ(G, J, h) = − 1

|V (G)|
∑

u∈V (G)

hφ(u) −
2

|V (G)|2
∑

uv∈E(G)

Jφ(u)φ(v).

Here hi has the meaning of a generalized magnetic field, describing the pref-

erence of the “spin” φ(u) to be aligned with i ∈ [q], and Jij represents the

strength of the interaction between the spin states i, j ∈ [q]. Note that we

divided the second sum by |V (G)|2 to compensate for the fact that, in a dense

graph, the number of edges grows like the square of the number of nodes.

Our normalization therefore guarantees that the energy density stays bounded

uniformly in the size of V (G).
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As usual, the partition function on a simple graph G is defined as

(2.9) Z(G, J, h) =
∑

φ:V (G)→[q]

e−|V (G)|Eφ(G,J,h),

and the free energy and ground state energy per node are defined as

(2.10) “F(G, J, h) = − 1

|V (G)|
lnZ(G, J, h)

and

(2.11) Ê(G, J, h) = min
φ:V (G)→[q]

Eφ(G, J, h),

respectively. We will often leave out the qualifier “per node,” and refer to

the quantities “F(G, J, h) and Ê(G, J, h) as free energy and ground state energy

of the model (J, h) on G. More specifically, J is called the coupling constant

matrix, and h is called the magnetic field, and the model (J, h) will be referred

to as the soft-core model with spin state [q], coupling constant matrix J and

magnetic field h. We are also interested in the so-called microcanonical versions

of these quantities, defined as

Za(G, J) =
∑

φ∈Ωa(G)

exp
(
−|V (G)|Eφ(G, J, 0)

)
,(2.12) “Fa(G, J) = − 1

|V (G)|
lnZa(G, J)(2.13)

and

Êa(G, J) = min
φ∈Ωa(G)

Eφ(G, J, 0).(2.14)

In this microcanonical version, the magnetic field h would only add a constant,

and therefore we do not consider it.

Example 2.6 (The Ising Model). The simplest model that fits into our

framework is the so-called Ising model. It has spin configurations φ : V (G)→
{−1,+1}, and the energy density of a spin configuration φ is defined as

Eφ(G, J, h) = − 1

|V (G)|2
∑

uv∈E(G)

Kφuφv −
1

|V (G)|
∑

u∈V (G)

µφu,

where K and µ are real parameters. Note that this fits into our scheme by

setting Jφ,φ′ = K
2 φφ

′ and hφ = µφ.

Definition 2.7. Let (Gn) be a sequence of simple graphs. We say that

(Gn) has convergent ground state energies and free energies if Ê(Gn, J, h) and“F(Gn, J, h) converge for all q, all h ∈ Rq, and all J ∈ Symq, respectively. Sim-

ilarly, we say that (Gn) has convergent microcanonical ground state energies

and free energies if Êa(Gn, J) and “Fa(Gn, J) converge for all q, all a ∈ Pdq,

and all J ∈ Symq, respectively.
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2.2. Main results for sequences of simple graphs. The main results of this

paper are summarized in the following theorems, except for the results concern-

ing the limiting expression for the ground state energy and free energy, which

require some additional notation and are stated in Theorem 3.7 in Section 3.6.

Theorem 2.8. Let (Gn) be a sequence of simple graphs such that |V (Gn)|
→ ∞ as n→∞. Then the following statements are equivalent :

(i) The sequence (Gn) is left-convergent.

(ii) The sequence (Gn) is a Cauchy sequence in the metric δ�.

(iii) The quotients of (Gn) are convergent in the Hausdorff distance dHf
1 .

(iv) The sequence (Gn) is right-convergent.

(v) The microcanonical ground state energies of (Gn) are convergent.

(vi) The microcanonical free energies of (Gn) are convergent.

Conditions (i) and (ii) were shown to be equivalent in [3]. Extending

Example 2.3, it is easy to see that conditions (iv) and (v) are equivalent. (See

Lemma 5.7 for a quantitative relation.) Note finally that statements (iii)–

(vi) implicitly contain a parameter q, referring to the number of classes in a

partition, or the number of nodes in the soft-core graph under consideration.

One might therefore ask whether the equivalence of (iii)–(vi) holds separately

for each q. While this is true for the equivalence of (iv) and (v), our proofs

suggest that this is not the case for the equivalence of (iii) and (v) or (vi).

In contrast to the notions of convergence discussed in Theorem 2.8, conver-

gence of the energies and free energies Ê(Gn, J, h) and “F(Gn, J, h) (and naive

right-convergence) are not equivalent to left-convergence; see Example 6.3 for

a counterexample. But left-convergence does imply convergence of the energies

and free energies, as well as naive right-convergence. It also implies conver-

gence of the spectrum. This is the content of our second theorem.

Theorem 2.9. Let (Gn) be a left-convergent sequence of simple graphs

such that |V (Gn)| → ∞ as n→∞. Then the following holds :

(i) The sequence (Gn) is naively right-convergent.

(ii) The ground state energies of (Gn) are convergent.

(iii) The free energies of (Gn) are convergent

(iv) The spectrum of (Gn) is convergent in the sense that if λn,1 ≥ λn,2 ≥
· · · ≥ λn,|V (Gn)| are the eigenvalues of the adjacency matrix of Gn, then

|V (Gn)|−1λn,i and |V (Gn)|−1λn,|V (Gn)|+1−i converge for all i > 0.

These theorems, as well their analogues for sequences of weighted graphs,

Theorems 2.14 and 2.15, are proved in Section 5, except for the statement

about spectra, which is proved in Section 6.
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2.3. Ground state energies, maximum multiway cuts, and quotients. In

this section, we discuss the combinatorial meaning of our results, in particular

the relation between ground state energies and generalized max-cut problems

on one hand, and the relation between ground state energies and quotients on

the other.

We start with the former. To this end, we insert (2.8) into (2.11), leading

to

(2.15)

− Ê(G, J, h) = max
φ:V (G)→[q]

( 1

|V (G)|
∑

u∈V (G)

hφ(u) +
2

|V (G)|2
∑

uv∈E(G)

Jφ(u)φ(v)

)
.

Let us first consider the case of zero magnetic field. For the special case

where q = 2, Jij = 1
2(1− δij) and h = 0, the ground state energy of this model

can easily be calculated, giving that −Ê(G, J, 0) is just equal to the density of

the largest cut,

−Ê(G, J, 0) = max
S⊂V (G)

eG(S, V \ S)

|V (G)|2
.

For general q and J , we obtain a natural generalization to weighted multiway

cuts. As in Example 2.3, the solution to this weighted multiway cut problem

gives a good approximation to log hom(G,H) for general soft-core graphs H.

More precisely, if βij(H) = e2Jij , then

(2.16)
1

|V (G)|2
ln hom(G,H) = −Ê(G, J, 0) +O

( 1

|V (G)|

)
,

with the implicit constant in the error term depending on the nodeweights

of H; see Lemma 5.7. As a consequence, naive right-convergence is equivalent

to convergence of the ground state energies for models without magnetic fields.

Turning to nonzero magnetic fields, even the simplest case q = 2 and Jij =
1
2(1 − δij) leads to a problem that, while quite natural from a combinatorial

point of view, to our knowledge has not been studied in the literature. Taking,

e.g., hi = µδi1 with µ ∈ R, we get the following generalization of the standard

max-cut problem:

−Ê(G, J, h) = max
S⊂V (G)

(eG(S, V \ S)

|V (G)|2
+ µ

|S|
|V (G)|

)
.

This problem interpolates, to some extent, between the standard max-cut prob-

lem (where the size of S is ignored) and the max-bisection problem (where the

size of S is prescribed exactly). We will call it the “biased max-cut problem,”

and the generalization to arbitrary q, J , and h the “biased weighted multiway

cut problem.”
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Considering finally the microcanonical ground state energies,

(2.17) − Êa(G, J) =
2

|V (G)|2
max

φ∈Ωa(G)

∑
uv∈E(G)

Jφ(u)φ(v),

we are faced with a multiway max-cut problem where the number of vertices

in φ−1({i}) is constrained to be approximately equal to ai|V (G)|.

Remark 2.10. If we leave out the convergence of microcanonical free en-

ergies, whose combinatorial significance is less clear, the theorems proved in

this paper (together with Example 6.3) lead to the following interesting hier-

archy of max-cut problems. The weakest form of convergence is that of naive

right-convergence, which is equivalent to the convergence of the density of the

largest weighted multiway cut (ground state energies with zero magnetic field).

The next strongest notion is that of convergence of biased weighted multiway

cuts (ground state energies with nonzero magnetic field). The strongest is

that of convergence of the weighted multiway cuts with prescribed proportions

for the different parts of the cut (microcanonical ground state energies). The

remaining notions of convergence (left-convergence, convergence in metric, con-

vergence of quotients, and right-convergence) are equivalent to the convergence

of the weighted multiway cuts with arbitrary prescribed proportions.

Turning finally to the relation between quotients and ground state ener-

gies, let us note that any map φ contributing to the right-hand side of (2.15)

defines a partition P = (V1, . . . , Vq) of V (G): just set Vi = φ−1({i}). As a

consequence, we can rewrite Ê(G, J, h) as

(2.18) Ê(G, J, h) = − max
H∈Ŝq(G)

( q∑
i=1

αi(H)hi +
q∑

i,j=1

αi(H)αj(H)βij(H)Jij
)
.

This relation shows that the consideration of quotients is quite natural when

analyzing weighted multiway cut problems (a.k.a. ground state energies). It

also immediately gives that convergence of quotients implies convergence of

the ground state energies. The corresponding relation for the microcanonical

ground state energies is more complicated due to the fact that a quotient H

contributing to Ea(G, J) has nodeweights that are only approximately equal to

the entries of a.

Remark 2.11. Together with the concept of the cut-metric introduced in

(2.3), quotients also allow for a very concise formulation of Szemerédi’s Reg-

ularity Lemma [12], at least in its weak form of Frieze and Kannan [7]. In

this formulation, the Weak Regularity Lemma states that given ε > 0 and any

simple graph G, we can find a q ≤ 41/ε2 and a quotient H ∈ Ŝq(G) such that

δ�(G,H) ≤ ε; see [3] for details.
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2.4. Extension to weighted graphs. Although Theorems 2.8 and 2.9 are

stated for simple graphs, it turns out that the proofs of most of these statements

hold more generally, namely for any sequence (Gn) of weighted graphs such that

(Gn) has uniformly bounded edgeweights and no dominant nodeweights in the

sense that

(2.19)
αmax(Gn)

αGn
→ 0 as n→∞,

where αmax(G) = maxi∈V (G) αi(G).

We use the symbols α(G) and β(G) to denote the vector of nodeweights

and the matrix of edgeweights of a weighted graph G. Recall that αG =∑
i αi(G), and set

αmin(G) = min
i∈V (G)

αi(G) and βmax(G) = max
ij∈E(G)

|βij(G)|.

A sequence (Gn) has uniformly bounded edgeweights if supn βmax(Gn) <∞.

We generalize the homomorphism numbers hom(G,H) to the case where

both G and H are weighted. Assume thus that H is soft-core, with

(2.20) αi(H) = ehi and βij(H) = e2Jij ,

and that G is a general weighted graph. Setting βuv(G) = 0 if uv is not an

edge in G, we then define

hom(G,H) =
∑

φ:V (G)→V (H)

exp
( ∑
u∈V (G)

αu(G)hφ(u)

(2.21)

+
∑

u,v∈V (G)

αu(G)αv(G)βuv(G)Jφ(u)φ(v)

)
,

an expression that reduces to (1.2) if G is simple.

Remark 2.12. This notation allows us to express partition functions as

homomorphism numbers of weighted graphs. For every simple graph G,

Z(G, J, h) = hom(G′, H),

where G′ is obtained from G by weighting its edges by 1/|V (G)|.

Recall that we defined the metric δ� for general weighted graphs. Let H

be a soft-core graph with nodeset [q], and let a ∈ Pdq. For a weighted graph G,

we then set

(2.22) Ωa(G) =
{
φ : V (G)→ [q] :

∣∣∣∣ ∑
u∈φ−1({i})

αu(G)− aiαG
∣∣∣∣ ≤ αmax(G)

}
,

and we define

(2.23) homa(G,H) =
∑

φ∈Ωa(G)

exp
( ∑
u,v∈V (G)

αu(G)αv(G)βuv(G)Jφ(u)φ(v)

)
,

where J is again related to the edgeweights of H by (2.20).



CONVERGENT SEQUENCES OF DENSE GRAPHS II 165

To generalize the notion of quotients to a weighted graph G, let us again

consider a partition P = (V1, . . . , Vq) of the nodeset of G. We then define the

quotient G/P to be the weighted graph with nodeset [q] and weights

(2.24) αi(G/P) =
αG[Vi]

αG
and βij(G/P) =

∑
u∈Vi
v∈Vj

αu(G)αv(G)βuv(G)

αG[Vi]αG[Vj ]
,

where αG[Vi] =
∑
u∈Vi αu(G) is the total weight of the partition class Vi. As

before, we call G/P a q-quotient of G if P is a partition of V (G) into q classes,

and denote the set of q-quotients of a given graph G by Ŝq(G).

To define a soft-core spin model on G, let [q] = {1, . . . , q}, let h ∈ Rq, let

J be a symmetric q × q matrix with entries in R, and let φ : V (G)→ [q]. We

then generalize the definition (2.8) to

(2.25)

Eφ(G, J, h) = −
∑

u∈V (G)

αu(G)

αG
hφ(u) −

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

α2
G

Jφ(u)φ(v).

The partition function, free energy, and ground state energy of the model (J, h)

on the weighted graph G are then defined in the same way as in the unweighted

case; see equations (2.9), (2.10), and (2.11). Similarly, the microcanonical

partition functions, free energies, and ground state energies on a weighted

graph G are again defined by (2.12), (2.13), and (2.14). Note by definition,

the energies (2.25), and hence also the partition functions, free energies, and

ground state energies, are invariant under rescaling of the nodeweights of G.

Example 2.13 (The Inhomogeneous Ising Model). Recall the Ising model

from Example 2.6, with spin space {−1,+1}, coupling constants Jφ,φ′ = K
2 φφ

′,

and magnetic fields hφ = µφ. When defined on a simple graph, it is often called

a “homogeneous model” because the coupling constants and magnetic fields

are constant. But if we take the graph G to be weighted with edgeweights

βuv(G) (but still unit nodeweights), the model becomes an “inhomogeneous

Ising model,” with energy density

Eφ(G, J,H) = − 1

|V (G)|2
∑

uv∈E(G)

Kuvφuφv −
1

|V (G)|
∑

u∈V (G)

µφu,

where the coupling constants, Kuv = Kβuv(G), represent variations due to

inhomogeneities in the underlying crystal structure.

Just as for simple graphs, a sequence (Gn) of weighted graphs with uni-

formly bounded edgeweights is called left-convergent if t(F,Gn) converges for
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every simple graph F . A sequence (Gn) of weighted graphs is called right-

convergent if
ln homa(Gn, H)

α2
Gn

converges for every soft-core graph H and every probability distribution a on

V (H), and it is called naively right-convergent if

ln hom(Gn, H)

α2
Gn

converges for every soft-core graph H.

The following two theorems generalize Theorems 2.8 and 2.9 to weighted

graphs.

Theorem 2.14. Let (Gn) be a sequence with uniformly bounded edge-

weights and no dominant nodeweights. Then the following statements are

equivalent :

(i) The sequence (Gn) is left-convergent.

(ii) The sequence (Gn) is a Cauchy sequence in the metric δ�.

(iii) The quotients of (Gn) are convergent in the Hausdorff distance dHf
1 .

(iv) The microcanonical ground state energies of (Gn) are convergent.

If, in addition, α2
Gn
/|V (Gn)| → ∞, then the following is also equivalent to the

statements above:

(v) The sequence (Gn) is right-convergent.

If the assumption of no dominant nodeweights is replaced by the stronger as-

sumption that all nodes have weight one and |V (Gn)| → ∞, then the following

is also equivalent :

(vi) The microcanonical free energies of (Gn) are convergent.

Theorem 2.15. Let (Gn) be a left-convergent sequence of weighted graphs

with uniformly bounded edgeweights. Then :

(i) If (Gn) has no dominant nodeweights and α2
Gn
/|V (Gn)| → ∞, then

the sequence (Gn) is naively right-convergent.

(ii) If (Gn) has no dominant nodeweights, then the ground state energies

of (Gn) are convergent.

(iii) If all nodes have weight one and |V (Gn)| → ∞, then the free energies

of (Gn) are convergent.

(iv) The spectrum of (Gn) is convergent in the sense that if λn,1 ≥ λn,2 ≥
· · · ≥ λn,|V (Gn)| are the eigenvalues of the adjacency matrix of Gn, then

|V (Gn)|−1λn,i and |V (Gn)|−1λn,|V (Gn)|+1−i converge for all i > 0.

As pointed out earlier, the equivalence of the first two statements in The-

orem 2.14 was proved in the first part of this paper [3]. Here our main focus
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is on establishing the equivalence of convergence in metric with the other no-

tions of convergence, i.e., the equivalence of (ii) through (vi). Let us note that

the additional condition needed for the equivalence of (vi) with the remaining

statements is not merely a technical condition. In fact, not all left-convergent

sequences of graphs lead to convergent microcanonical free energies if we allow

nonconstant nodeweights; see Example 6.4 in Section 6.

Remark 2.16. The reader may notice that none of our theorems assumed

that the sequence (Gn) is dense, in the sense that the edge density

1

α2
G

∑
u,v∈V (Gn)

αu(Gn)αv(Gn)βuv(Gn)

is bounded from below by a constant. That does not mean, however, that our

theorems say very much for nondense sequences. Indeed, if the edge density of

Gn tends to zero, then most of the statements of the theorem become trivial.

The ground state energies and free energies, as well as their microcanonical

counterparts, tend to zero, the homomorphism density t(F,Gn) of every simple

graph tends to zero, etc.

A similar remark applies to disordered spin systems. While our results

for the free energies require that the nodeweights are one, they do not require

that βuv(Gn) has a definite sign. But if 1
|V (Gn)|2

∑
u,v∈V (Gn) βuv(Gn) tends to

zero (which will happen with probability one if, e.g., βuv is chosen i.i.d. from

{−1,+1}), then the limiting free energies are zero as well. This is due to the

fact that we have chosen the ferromagnetic normalization |V (Gn)|−2 for the

energy Eφ per node, rather than the “spin-glass” normalization |V (Gn)|−3/2.

Remark 2.17. Let H be a soft-core graph on q nodes, and let a ∈ Pdq.

Extending Example 2.3, it is easy to see

ln homa(G,H)

α2
G

= −Êa(G, J) +O

Ç
|V (Gn)|
α2
G

å
,

with J given by (2.20). (See Lemma 5.7 for a quantitative relation.) This shows

why right-convergence is equivalent to the convergence of the microcanonical

ground state energies if α2
Gn
/|V (Gn)| → ∞.

On the other hand, if we consider sequences (Gn) with α2
Gn
/|V (Gn)| → c

for some c ∈ (0,∞), then

ln homa(G,H)

α2
G

= −1

c
“Fa(G, cJ) + o(1),

and right-convergence becomes equivalent to the convergence of the micro-

canonical free energies.
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The least interesting case is the case α2
Gn
/|V (Gn)| → 0. In this case,

ln homa(G,H)

|V (Gn)|
= log q + o(1)

and the homomorphism numbers homa(G,H) do not contain any interesting

information about Gn as n→∞.

3. Convergent sequences of graphons

In this section we discuss the generalization of the concepts and results of

the last section to graphons, already mentioned in Section 1.

Definition 3.1. A graphon is a bounded measurable functionW : [0, 1]2→R
which is symmetric; i.e., W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2.

We denote the subset of graphons with values in some bounded interval I

by WI .

3.1. Graphons as limits of left-convergent graph sequences. Let W ∈ W,

and let F be a simple graph with V (F ) = {1, . . . , k}. Following [9], we then

define the homomorphism density of W as

(3.1) t(F,W ) =

∫
[0,1]k

∏
ij∈E(F )

W (xi, xj) dx.

It is not hard to see that this definition extends the definition of homomorphism

densities from graphs to graphons. Indeed, let G be a weighted graph on n

nodes, and let I1, . . . , In be consecutive intervals in [0, 1] of lengths α1(G)/αG,

. . . , αn(G)/αG, respectively. We then define WG to be the step function that

is constant on sets of the form Iu × Iv, with

(3.2) WG(x, y) = βuv(G) if (x, y) ∈ Iu × Iv.

Informally, we consider the adjacency matrix of G and replace each entry

(u, v) by a square of size αu(G)αv(G)/α2
G with the constant function βuv on

this square. With the above definitions, we have that t(F,G) = t(F,WG).

Let (Gn) be a sequence of weighted graphs and W be a graphon. We say

that Gn → W if t(F,Gn) → t(F,W ) for every simple graph F . Generalizing

the results of [9] to weighted graphs the following was shown in [3].

Theorem 3.2. For every left-convergent sequence (Gn) of weighted graphs

with uniformly bounded edgeweights, there exists a W ∈ W such that Gn →W .

Conversely, for every W ∈ W , there exists a sequence (Gn) of weighted graphs

with uniformly bounded edgeweights such that Gn →W .
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3.2. The metric space of graphons. We will need several norms on the

space of graphons. In addition to the standard L∞, L1, and L2 norms of a

graphon W (denoted by ‖W‖∞, ‖W‖1, and ‖W‖2 respectively), we need the

cut-norm introduced in [7]. It is defined by

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣,
where the supremum goes over measurable subsets of [0, 1].

There are several equivalent ways of generalizing the definition of the dis-

tance δ� to graphons; see [3]. Here, we define the cut-distance of two graphons

by

(3.3) δ�(U,W ) = inf
φ
‖U −W φ‖�,

where the infimum goes over all invertible maps φ : [0, 1] → [0, 1] such that

both φ and its image are measure preserving, and W φ is defined by W φ(x, y) =

W (φ(x), φ(y)). It is not hard to show that this distance indeed extends the

distance of weighted graphs, in the sense that δ�(G,G′) = δ�(WG,WG′), where

WG is the step function defined in (3.2). We will use the notation δ�(G,W ) =

δ�(WG,W ) for a weighted graph G and graphon W .

Similar construction can be applied to the Lp norm on W, and we can

define distance δp(U,W ) = infφ ‖U −W φ‖p. (We will need this construction

only near the end of the paper for p = 2.)

It is not hard to check that δ� satisfies the triangle inequality, so after

identifying graphons with distance zero, the space (W, δ�) becomes a metric

space, denoted by W̃. The subspace corresponding to the graphons in WI will

be denoted by W̃I . It was shown in [10] that the space W̃[0,1] is compact. This

immediately implies that for any bounded interval I, the metric space W̃I is

compact as well.

One of the main results of our companion paper [3] is the following theo-

rem.

Theorem 3.3 ([3]). Let I be a bounded interval, and let (Wn) be a se-

quence of graphons with values in I .

(i) t(F,Wn) is convergent for all simple graphs F if and only if (Wn) is a

Cauchy sequence in the metric δ�.

(ii) Let W be an arbitrary graphon. Then t(F,Wn) → t(F,W ) for all

simple graphs F if and only if δ�(Wn,W )→ 0.

In particular, it follows that Gn → W if and only if δ�(WGn ,W ) → 0.

We call two graphons W and W ′ weakly isomorphic if t(F,W ) = t(F,W ′) for

every simple graph F . It follows from Theorem 3.3 that this is equivalent to

δ�(W,W ′) = 0. The results of [4] imply a further equivalent condition: there
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exists a third graphon U such that W = Uφ and W ′ = Uψ for two measure-

preserving functions φ, ψ : [0, 1]→ [0, 1].

By the compactness of W̃I , any Cauchy sequence of graphons Wn ∈ WI

has a limit W ∈ WI , but this does not guarantee uniqueness. Indeed, every

graphon weakly isomorphic to W could serve as the limit graphon. It follows

from the discussion above that this covers all the nonuniqueness, in other

words, the limit is unique as an element of W̃I .

3.3. Quotients and approximations by step functions. We call a function

W : [0, 1]2 → [0, 1] a step function, if [0, 1] has a partition {S1, . . . , Sk} into a

finite number of measurable sets such that W is constant on every product set

Si×Sj . It can be seen that every step function is at cut-distance zero from WG

for some finite, weighted graph G. Graphons, as limits of finite graphs, can

thus be approximated by step functions in the cut-distance. One way to find

such an approximation is as follows. Given a graphon W ∈ W and a partition

P = (V1, . . . , Vq) of [0, 1] into measurable sets, we define a finite, weighted

graph W/P on [q] by setting

αi(W/P) = λ(Vi) and βij(W/P) =
1

λ(Vi)λ(Vj)

∫
Vi×Vj

W (x, y) dx dy

(if λ(Vi)λ(Vj) = 0, we define βij(W/P) = 0) and the corresponding function

WP by

(3.4) WP(x, y) =
q∑

i,j=1

βij(W/P)1x∈Vi1y∈Vj .

We call the graph W/P a q-quotient of W and use Ŝq(W ) to denote the set of

all q-quotients of W .

It is not hard to check that the averaging operation W 7→WP is contrac-

tive with respect to the norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖� on W:

(3.5) ‖WP‖1 ≤ ‖W‖1, ‖WP‖2 ≤ ‖W‖2, and ‖WP‖� ≤ ‖W‖�.
The following theorem is an extension of the Weak Regularity Lemma [7]

from graphs to graphons and states that every graphon can be well approxi-

mated by a step function.

Theorem 3.4. Let U ∈ W and k ≥ 1.

(i) There exists a partition P of [0, 1] into at most k measurable parts

such that

‖U − UP‖� <
 

2

log2 k
‖U‖2.

(ii) There exists a q ≤ k and a quotient H ∈ Ŝq(U) such that

δ�(U,H) <

 
2

log2 k
‖U‖2.
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The first statement of the theorem gives an approximation of a graphon

by step functions and is essentially due to Frieze and Kannan [7]. Indeed,

with a slightly worse constant, it follows from Theorem 12 of [7]. In the above

form, the first statement of the theorem is proved in Section 4.4.2 below. The

second statement gives an approximation by a finite, weighted graph, a factor

U/P ∈ Ŝq(U), and can easily be seen to be equivalent to the first. Stronger

versions of the regularity lemma for graphons, in particular a version of the

original Szemerédi lemma, can be found in [9], [10].

We will also need a fractional version of q-quotients with which it will be

easier to work. First, a fractional partition of a set [0, 1] into q classes (briefly, a

fractional q-partition) is a q-tuple of measurable functions ρ1, . . . , ρq : [0, 1]→
[0, 1] such that for all x ∈ [0, 1], we have ρ1(x) + · · · + ρq(x) = 1. Given a

fractional q-partition ρ = (ρ1, . . . , ρq) of [0, 1], we then set

αi(ρ) =

∫ 1

0
ρi(x)dx

and define U/ρ to be the weighted graph on [q] with weights

(3.6)

αi(U/ρ) = αi(ρ) and βij(U/ρ) =
1

αi(ρ)αj(ρ)

∫
[0,1]2

ρi(x)ρj(y)U(x, y) dx dy.

If αi(ρ)αj(ρ) = 0, we set βij(U/ρ) = 0. We call U/ρ a fractional q-quotient of

U and denote the set of these fractional q-quotients by Sq(U).

3.4. Energy, entropy, and free energy. Recall the definition (2.8) of the

energy density of spin configuration φ : V (G) → [q] on a simple graph G.

Such a spin configuration defines a partition P = (V1, . . . , Vq) of V (G) via

Vi = φ−1({i}). In terms of this partition, we can rewrite the energy of the

configuration φ as

Eφ(G, J, h) = − 1

|V (G)|
∑
i

hi
∑

u∈V (G)

1u∈Vi

− 1

|V (G)|2
∑
i,j

Jij
∑

u,v∈V (G)

1u∈Vi1v∈Vj1uv∈E(G).

Our attempt to generalize this form to graphons leads to the following defini-

tions. Given a graphon W , an integer q ≥ 1, a matrix J ∈ Symq, and a vector

h ∈ Rq, we define the energy of a fractional q-partition ρ of [0, 1] as

(3.7)

Eρ(W,J, h) = −
∑
i

hi

∫
[0,1]

ρi(x) dx−
∑
i,j

Jij

∫
[0,1]2

ρi(x)ρj(y)W (x, y) dx dy.

The ground state energy of the model (J, h) on W is then defined as

(3.8) E(W,J, h) = inf
ρ
Eρ(W,J, h),
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where the infimum runs over all fractional q-partitions of [0, 1]. The most im-

portant energy measure for us will be the microcanonical ground state energy,

given by

(3.9) Ea(W,J) = inf
ρ:α(ρ)=a

Eρ(W,J, 0),

where the infimum now runs over all fractional q-partitions [0, 1] such that

α(ρ) = a. Note that

(3.10) E(W,J, h) = inf
a∈Pdq

(
Ea(W,J)−

∑
i

aihi
)
.

As we will see in Theorem 3.7, the definitions (3.8) and (3.9) are not only nat-

ural analogues of the corresponding definitions for finite graphs, but they are

also the correct limiting expressions of the ground state energies of convergent

graphs sequences.

The definition of the free energy of graphs ((2.10) and (2.13)) does not

carry over to graphons in a direct way. In fact, there is no natural notion of

homomorphism numbers from a graphon W into a finite graph H, which is

related to the fact that hom(G,H) is not invariant under blow ups of its first

argument (where, as usual, the blow up of a weighted graph G on n nodes

is the graph G[k] on kn nodes labeled by pairs iu, i ∈ V (G), u = 1, . . . , k,

with edgeweights βiu,jv(G[k]) = βij(G) and nodeweights αiu(G[k]) = αi(G)).

To circumvent this difficulty, we define the free energy of a graphon W by a

variational formula involving the entropy of a fractional q-partition ρ of [0, 1],

(3.11) Ent(ρ) =

∫ 1

0
Ent(ρ(x)) dx with Ent(ρ(x)) = −

q∑
i=1

ρi(x) ln ρi(x).

In terms of this entropy we define the free energy of the model (J, h) on W as

(3.12) F(W,J, h) = inf
ρ

Ç
Eρ(W,J, h)− Ent(ρ)

å
,

where the infimum again runs over all fractional q-partitions of [0, 1]. The

microcanonical free energy is defined analogously:

(3.13) Fa(W,J) = inf
ρ:α(ρ)=a

Ç
Eρ(W,J, 0)− Ent(ρ)

å
,

where the infimum again runs over all fractional q-partitions of [0, 1] such that

α(ρ) = a. Note that again

(3.14) F(W,J, h) = inf
a∈Pdq

(
Fa(W,J)−

∑
i

aihi
)
.

While the definitions (3.12) and (3.13) may seem unintuitive from a math-

ematical point of view, they are quite natural from a physics point of view.

Ultimately, the most convincing justification for these definitions is again given
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by our results, which prove that the limiting expressions of the free energies of

a convergent sequence of graphs are given by (3.12) and (3.13).

3.5. Equivalent notions of convergence. Next we state the graphon version

of the main result of this paper, Theorem 2.8. It gives several equivalent

properties characterizing convergence in the space of graphons.

Theorem 3.5. Let I be a bounded interval, and let (Wn) be a sequence

of graphons in WI . Then the following statements are equivalent :

(i) For all simple graphs F , the sequence of homomorphism densities

t(F,Wn) is convergent.

(ii) (Wn) is a Cauchy sequence in the cut-metric δ�.

(iii) For every q ≥ 1, the sequence (Sq(Wn)) is Cauchy in the Hausdorff

distance dHf
1 .

(iv) The sequence (Ea(Wn, J)) is convergent for all q ≥ 1, all a ∈ Pdq , and

all J ∈ Symq .

(v) The sequence (Fa(Wn, J)) is convergent for all q ≥ 1, all a ∈ Pdq ,

and all J ∈ Symq .

The reader may notice that the analogue of statement (iv) of Theorem 2.8,

i.e., right-convergence of the sequence (Wn), is missing in the above theorem.

This is because there is no natural notion of homomorphism numbers from

a graphon W into a finite graph H, as explained above. Condition (iv) here

corresponds to condition (v) in Theorem 2.8, which (as remarked earlier) is

easily seen to be equivalent to condition (iv) in Theorem 2.8.

Finally, taking into account the representations (3.10) and (3.14), we im-

mediately get the following corollary of Theorem 3.5.

Corollary 3.6. Let I be a bounded interval, and let (Wn) be a sequence

of graphons in WI . If t(F,Wn) → t(F,W ) for some W ∈ W and all simple

graphs F , then E(Wn, J, h)→ E(W,J, h) and F(Wn, J, h)→ F(W,J, h) for all

q ≥ 1, h ∈ Rq , and J ∈ Symq .

By this corollary, the convergence of the energies E(Wn, J, h) and free

energies F(Wn, J, h) is necessary for the convergence of the homomorphism

densities t(F,Wn), but it is not sufficient. In fact, it is not that hard to con-

struct two graphons W and W ′ that have different homomorphism densities,

but for which E(W,J, h) = E(W ′, J, h) and F(W,J, h) = F(W ′, J, h) for all

q ≥ 1, h ∈ Rq, and J ∈ Symq; see Example 6.1.

3.6. Limit expressions for convergent sequences of graphs. Our next the-

orem states that the limiting quantities referred to in Theorems 2.14 and 2.15

are equal to the corresponding objects defined for graphons.
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Theorem 3.7. Let W ∈ W , and let Gn be a sequence of weighted graphs

with uniformly bounded edgeweights and no dominant nodeweights. Let F be

a simple graph, let q ≥ 1, a ∈ Pdq , and J ∈ Symq , and let H be a soft-core

weighted graph with βij(H) = e2Jij . If δ�(Gn,W )→ 0, then

t(F,Gn)→ t(F,W ),

dHf
1 (Ŝq(Gn), Ŝq(W ))→ 0,

Êa(Gn, J)→ Ea(W,J),

Ê(Gn, J, h)→ E(W,J, h).

If, in addition, α2
Gn
/|V (Gn)| → ∞, then

− 1

α2
Gn

ln homa(Gn, H)→ Ea(W,J),

− 1

α2
Gn

ln hom(Gn, H)→ E(W,J, 0).

If, in addition, all nodes in Gn have weight one, then“Fa(Gn, J)→ Fa(W,J),“F(Gn, J, h)→ F(W,J, h).

We illustrate the last theorem and the expression (3.12) for the limiting

free energy in a few simple examples: first the standard ferromagnetic Ising

model on a general convergent sequence of simple graphs, next the particu-

larly simple special case in which the convergent sequence is just a sequence

of complete graphs, and finally an example of a so-called disordered Ising fer-

romagnet. We end this section with a general result on the free energy of

disordered spin systems.

Example 3.8 (Ising Model on Convergent Graphs Sequences). Consider

the inhomogeneous Ising model of Example 2.13 with K > 0 (called the fer-

romagnetic Ising model), and assume that Gn is a sequence of simple graphs

such that Gn → W from the left. By Theorems 3.3 and 3.7, the free energy“F(Gn, J, h) converges to the free energy F(W,J, h) defined in (3.12). Express-

ing the fractional partitions ρ±(x) as 1
2(1 ±m(x)), we rewrite this expression

as

F(W,J, h) = inf
m:[0,1]→[−1,1]

Ç
−K

2

∫
W (x, y)m(x)m(y)dxdy − µ

∫
m(x)dx

+

∫
1

2
(1 +m(x)) ln

(1

2
(1 +m(x))

)
+

∫
1

2
(1−m(x)) ln

(1

2
(1−m(x))

)å
,

where the infimum goes over all measurable functions m : [0, 1]→ [−1, 1].
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Example 3.9 (Curie-Weiss Model). Next we specialize to the case where

Gn = Kn, the complete graph on n nodes. In the physics literature, the

Ising model on this graph is known as the mean-field Ising model or as the

Curie-Weiss model. For the complete graph, the frequencies t(·,Kn) are easily

calculated: t(F,Kn) = 1+O(1/n), implying that Kn converges to the constant

function 1 from the left. By Theorems 3.3 and 3.7, the free energies “F(Kn, J, h)

therefore converge to

F(1, J, h) = inf
m∈[−1,1]

Ç
−K

2
m2 − µm

+
1 +m

2
ln(1 +m) +

1−m
2

ln(1−m)

å
− ln 2.

It is not hard to see that the infimum is in fact a minimum and that the

minimizer obeys the equation

m = tanh(Km+ µ),

which is the well-known mean-field equation for the “order parameter” m. For

µ = 0, this equation has either one or three solutions, depending on whether

K ≤ 1 or K > 1. The largest solution,

M(K) = max{m : m = tanh(Km)},

is called the magnetization, and both m = M(K) and m = −M(K) are

minimizers for the free energy. It is not hard to see that M(K) = 0 for

K ∈ [0, 1] and that for K > 1, the function K 7→ M(K, 0) is a real analytic

function that takes values that lie strictly between 0 and 1. As a consequence,

the free energy in zero magnetic field, F(1,K, 0), is an analytic function of

K on both (0, 1) and (1,∞), with a singularity (called a phase transition) at

K = 1, and

F(1, J, 0) = − ln 2 if K ≤ 1 and F(1, J, 0) < − ln 2 if K > 1.

We will use this fact later to give a counterexample showing that not all left-

convergent sequences of graphs lead to convergent microcanonical free energies

if we allow nonconstant nodeweights.

The function m(x) in Example 3.8 is the inhomogeneous analogue of this

order parameter m, and more generally, the fractional partitions ρi(x) in (3.12)

represent inhomogeneous order parameters for a soft-core spin system with spin

space [q].

Example 3.10 (Disordered Ising Ferromagnets). Our next example con-

cerns the Ising model on a simple graph G with nonconstant coupling con-

stants. Writing the varying coupling constants as Kβuv, this can clearly be

modeled in our framework by moving from the simple graph G to a weighted
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graph G′ with nodeweights one and edgeweights βuv(G
′) = βuv. To be specific,

let us assume that the weights βuv are chosen i.i.d. from some probability dis-

tribution with bounded support and expectation β̄. It is quite easy to show

that whenever the original sequence Gn is left-convergent with Gn →W , then

the sequence G′n is left-convergent with probability one and G′n → β̄W . Thus

“F(G′n, J, h)→ F(β̄W, J, h) = F(W, β̄J, h) with probability 1.

In order to interpret this result, let us first consider the case where the distri-

bution of βuv is symmetric and β̄ = 0. This represents a so-called spin-glass,

and our result only expresses the well-known fact that, with the normaliza-

tion chosen in equations (2.8) and (2.9), the free energy of a spin glass is

zero. For nontrivial results in spin glasses, one would need to scale Jφ(u)φ(v) by

1/
»
|V (G)| rather than 1/|V (G)|. If β̄ is positive, the model describes a so-

called disordered ferromagnet, and the above identity expresses the fact that,

provided that the coupling asymmetry is strong enough, a disordered ferro-

magnet on a sequence of dense graphs has the same thermodynamic limit as a

homogeneous ferromagnet on the same graph sequence, except for a rescaling

of the coupling constant.

As our next proposition shows, the above result holds for arbitrary soft-

core spin systems with finite spin space.

Proposition 3.11. Let (Gn) be a sequence of simple graphs, and let (G′n)

be a sequence of weighted graphs with V (G′n) = V (Gn), E(G′n) = E(Gn),

nodeweights one, and edgeweights βuv(G
′
n) = X

(n)
uv , where X

(n)
uv are real valued

i.i.d. random variables with compact support and expectation β̄. Let q ≥ 1,

h ∈ Rq , J ∈ Symq , and assume that “F(Gn, β̄J, h) converges as n → ∞. Then“F(G′n, J, h) converges with probability one and

lim
n→∞

“F(G′n, J, h) = lim
n→∞

“F(Gn, β̄J, h) with probability 1.

Note that the proposition only requires that “F(Gn, β̄J, h) is convergent, a

condition that is weaker than left-convergence of the original sequence (Gn).

The proof of the proposition gives a similar statement for an arbitrary

function from the set of graphs into R that is invariant under graph isomor-

phisms and continuous with respect to the cut-metric. As a consequence, an

analogue of the above proposition holds, e.g., for the ground state energies

Ê(G′n, J, h).
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4. Proof of Theorem 3.5

The equivalence of (i) and (ii) was proved in [3]. In fact, the following

quantitative form is true. (Conclusion (a) was proved in [9] and (b) was proved

in [3].)

Theorem 4.1. Let U,W ∈ W and C = max{1, ‖W‖∞, ‖U‖∞}.
(a) Let F be a simple graph. Then

|t(F,U)− t(F,W )| ≤ 4|E(F )|C |E(F )|−1δ�(U,W ).

(b) Suppose that for some k ≥ 1,

|t(F,U)− t(F,W )| ≤ 3−k
2

for every simple graph F on k nodes. Then

δ�(U,W ) ≤ 22C√
log2 k

.

This theorem should motivate the rest of the section, where we prove

quantitative forms of the main implications among (ii)–(v). We start with

some preliminaries.

4.1. Preliminaries.

4.1.1. More on distances for weighted graphs. Recall that the q-quotients

of a graphon U are weighted graphs on q nodes with total nodeweight one. We

will often identify these weighted graphs with a point (a, X) ∈ Rq+q2 , where

a ∈ Rq is the vector of nodeweights and X ∈ Symq is the matrix of edgeweights

of the quotient under consideration.

To work with quotients, we will use several different distances on weighted

graphs. In addition to the distances d1 and d� introduced in (2.5) and (2.6),

we use the `2-norm of a weighted graph H,

‖H‖2 = ‖WH‖2 =

Ñ ∑
i,j∈V (H)

αi(H)αj(H)

α2
H

βij(H)2

é1/2

and the `2 distance between two weighted graphs H and H ′ with the same

nodeset and identical nodeweights,

(4.1) d2(H,H ′) =
1

α2
H

Ñ∑
i,j∈V

αi(H)αj(H)
(
βij(H)− βij(H ′)

)2

é1/2

.

Note that for two weighted graphs with the same nodeset and identical node-

weights, these distances are related to the corresponding norms on graphons

by d1(H,H ′) = ‖WH −WH′‖1, d2(H,H ′) = ‖WH −WH′‖2 and d�(H,H ′) =

‖WH −WH′‖�.
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For a fixed a ∈ Pdn, it will be convenient to introduce on Symn the inner

product

(4.2) 〈X,Y 〉a =
n∑

i,j=1

aiajXijYij

and the corresponding norms

‖X‖a,1 =
n∑

i,j=1

aiaj |Xij |, ‖X‖a,2 = 〈X,X〉1/2a(4.3)

and

‖X‖a,� = max
S,T⊆[n]

∣∣∣∣∑
i∈S
j∈T

aiajXij

∣∣∣∣.
Note that with these definitions, we have

(4.4)
1

n2
‖X‖a,1 ≤ ‖X‖a,� ≤ ‖X‖a,1 ≤ ‖X‖a,2 ≤ ‖X‖∞.

Note also that for two weighted graphs H,H ′ with the same nodeweights

αi(H) = αi(H
′) and edgeweights β(H) = X, β(H ′) = X ′, the above norms

allow us to express the distances introduced in (2.5) and (4.1) as

d1(H,H ′) = ‖X −X ′‖a,1, d2(H,H ′) = ‖X −X ′‖a,2,
and

d�(H,H ′) = ‖X −X ′‖a,�,

where a is the vector with components ai = αi(H)/αH = αi(H
′)/αH′ . We will

make repeated use of this representation in this paper.

4.1.2. Fractional and integer quotients. We start by discussing the rela-

tionship between fractional and integer quotients. Let U ∈ W, let q ≥ 1, and

let a ∈ Pdq. In addition to the sets Sq(U) and Ŝq(U) introduced in Section 3.3,

we need the set Sa(U) of quotients H ∈ Sq(U) with α(H) = a, and similarly

for Ŝa(U), as well as the sets Ba(U) = {X ∈ Symq : (a, X) ∈ Sq(U)} and

B̂a(U) = {X ∈ Symq : (a, X) ∈ Ŝq(U)}.
Note that these sets are invariant under measure preserving bijections

φ : [0, 1] → [0, 1]. Indeed, for any such φ, let Uφ(x, y) = U(φ(x), φ(y))

and ρφ(x) = ρ(φ(x)). Then U/ρ = Uφ/ρφ, implying that Sq(U) = Sq(Uφ).

In a similar way, one proves that Ŝq(U) = Ŝq(Uφ), Ba(U) = Ba(Uφ), and

B̂a(U) = B̂a(Uφ).

The next lemma states that the set of quotients Sq(U) is compact in the

topology induced by the metric d1 defined in (2.5).

Lemma 4.2. Let U ∈ W and q ≥ 1. Then (Sq(U), d1) is compact.
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Proof. Let H1, H2, . . . ∈ Sq(U). Then there are fractional partitions ρ(i)

of [0, 1] such that Hn = U/ρ(n). For each i ∈ [q], let µ
(n)
i be the measure on

the Borel sets of [0, 1] with density function ρni . By going to a subsequence, we

may assume that the sequence (µ
(n)
i (D) : n = 1, 2, . . . ) is convergent for every

i ∈ [q] and rational interval D. Let µi(D) be its limit. From the fact that

µ
(n)
i ≤ λ (the Lebesgue measure), it follows that µi extends to all Borel sets

as a measure and that this measure is absolutely continuous with respect to λ.

Hence the function ρi = dµi/dλ is well defined. It also follows that 0 ≤ ρi ≤ 1

almost everywhere and that
∑
i ρi(x) = 1 for almost all x. So changing the ρi

on a set of measure 0, we get a fractional partition ρ = (ρ1, . . . , ρq) of [0, 1].

Let ε > 0. Let P be a partition of [0, 1] into rational intervals such that

‖U − UP‖1 ≤ ε/3. Then∣∣∣∣∫
[0,1]2

ρ
(n)
i (x)ρ

(n)
j (y)U(x, y) dx dy −

∫
[0,1]2

ρi(x)ρj(y)U(x, y) dx dy

∣∣∣∣
≤
∣∣∣∣∫

[0,1]2
ρ

(n)
i (x)ρnj (y)

(
U(x, y)− UP(x, y)

)
dx dy

∣∣∣∣
+

∣∣∣∣∫
[0,1]2

(
ρ

(n)
i (x)ρnj (y)− ρi(x)ρj(y)

)
UP(x, y) dx dy

∣∣∣∣
+

∣∣∣∣∫
[0,1]2

ρi(x)ρj(y)
(
U(x, y)− UP(x, y)

)
dx dy

∣∣∣∣.
The first and third terms on the right-hand side are bounded by ‖U −UP‖1/3;

the middle term will be less than ε/3 if n is large enough, since if D is a step

of P, then ∫
D
ρ

(n)
i (x) dx→

∫
D
ρi(x) dx

by the construction of ρi. Since αi(U/ρ
(n)) = µni ([0, 1])→ µi([0, 1]) = αi(U/ρ)

for all i, this implies that

βij(U/ρ
(1))=

1

αi(U/ρ(n))αj(U/ρ(n))

∫
[0,1]2

ρ
(n)
i (x)ρ

(n)
j (y)U(x, y) dx dy→βij(U/ρ)

whenever αi(U/ρ)αj(U/ρ) > 0.

If αi(U/ρ)αj(U/ρ) = 0, we cannot conclude anything about the limit of

βij(U/ρ
(n)), but fortunately, this is not needed. Indeed, in order to show that

d1(U/ρ(n), U/ρ) → 0 as n → ∞, we only need to show that βij(U/ρ
(n)) →

βij(U/ρ) if αi(U/ρ)αj(U/ρ) > 0. To see this, we note that the first sum in

(2.5) is a sum of terms of the form∣∣∣∣αi(U/ρ)αj(U/ρ)βij(U/ρ)− αi(U/ρ(n))αj(U/ρ
(n))βij(U/ρ

(n))

∣∣∣∣.
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If αi(U/ρ)αj(U/ρ) = 0, then the first term in this difference is identically zero,

while the second tends to zero as n → ∞ due to the facts that α(U/ρ(n)) →
α(U/ρ) and |βij(U/ρ(n))| ≤ ‖U‖∞. �

The following lemma is easy to prove along the same lines. Here d1 is

again the distance defined in (2.5), while da,1 is the distance induced by the

norm ‖ · ‖a,1 defined in (4.3).

Lemma 4.3. Let U ∈ W , let q ≥ 1, and let a ∈ Pdq . Then (Sq(U), d1) is

the closure of (Ŝq(U), d1) and (Ba(U), da,1) is the closure of (B̂a(U), da,1).

While the two sets Sq(U) and Ŝq(U) are equal if U is a step function (see

Proposition 5.3), they are not equal in general. This is the content of the

following example.

Example 4.4. Let W ∈ W[0,1] be positive definite as a kernel. The frac-

tional partition (ρ, 1 − ρ) of [0, 1] with ρ ≡ 1/2 gives a weighted graph (a, B)

on two nodes, with both nodeweights ai = 1/2, and all edgeweights Bij =∫
W (x, y)dxdy. Using the positive definiteness of W , it is then not hard to

see that any fractional partition σ with W/σ = W/ρ must actually be equal

to ρ almost everywhere. Thus (a, B) cannot be obtained from any fractional

partition other than ρ; in particular, not from any ordinary partition. Hence

Ŝq(W ) 6= Sq(W ).

When analyzing the relationship between ground state energies and quo-

tients, we will naturally be lead to the Hausdorff distance between the subsets

of quotients Sa(U) and Sa(W ) for two graphons U and W . The following

lemma relates the Hausdorff distance of these two sets to the Hausdorff dis-

tance between Sq(U) and Sq(W ).

Lemma 4.5. For any two graphons U,W ∈ W and q ≥ 1,

dHf
1 (Sq(U),Sq(W )) ≤ max

a
dHf

1 (Sa(U),Sa(W ))

≤ (1 + 2‖W‖∞)dHf
1 (Sq(U),Sq(W )).

Proof. The lower bound is trivial. Let d = maxa d
Hf
1 (Sa(U),Sa(W )), and

let H ∈ Sq(U). Then H ∈ Sa(U) for some a, and so by the definition of

Hausdorff distance, there is an H ′ ∈ Sa(W ) such that d1(H,H ′) ≤ d. Thus H ′

is a point in Sq(W ) such that d1((a, B), (a, B′)) = ‖B −B′‖a,1 ≤ d.

To prove the upper bound, it will be convenient to introduce the distance

d̃1((a, B), (b, C)) =
∑
i,j

|aiajBij − bibjCij |
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and the Hausdorff distance d̃Hf
1 inherited from d̃1. As we will see below, we

then have that

(4.5) d̃Hf
1 (Sa(W ),Sb(W )) ≤ 2‖a− b‖1 ‖W‖∞

for all a,b ∈ Pdq.

Before establishing the bound (4.5), we show how it can be used to

prove the upper bound of the lemma. Let (a, B) ∈ Sq(U), and let d′ =

dHf
1 (Sq(U),Sq(W )). By the definition of Hausdorff distance, there is a weighted

graph (c, D) ∈ Sq(W ) such that

d1((a, B), (c, D)) = d̃1((a, B), (c, D)) + ‖a− c‖1 ≤ d′,

and by the bound (4.5), there is a matrix B′ ∈ Ba(W ) such that

d̃1((c, D), (a, B′)) ≤ 2‖a− c‖1‖W‖∞.

Hence

d1((a, B), (a, B′)) = d̃1((a, B), (a, B′))≤ d̃1((a, B), (c, D)) + d̃1((c, D), (a, B′))

≤ d̃1((a, B), (c, D)+2‖a− c‖1‖W‖∞≤(1 + 2‖W‖∞)d′,

which completes the proof of the upper bound of the lemma.

We are left with the proof of (4.5). Let H ∈ Sa(U), so that H = U/ρ

for some fractional partition ρ = (ρ1, . . . , ρq) with αi(ρ) = ai. It is easy

to define a fractional partition ρ′ = (ρ′1, . . . ρ
′
q) of [0, 1] with αi(ρ) = bi and∑

i ‖ρi−ρ′i‖1 = ‖a−b‖1. In order to prove the bound (4.5), we will show that

d̃1(U/ρ, U/ρ′) ≤ 2‖a− b‖1‖U‖∞.

Let i, j ∈ [q]. Then∣∣∣∣aiajβij(U/ρ)− bibjβij(U/ρ′)
∣∣∣∣

=

∣∣∣∣∫
[0,1]2

U(x, y)
(
ρi(x)ρj(y)− ρ′i(x)ρ′j(y)

)
dx dy

∣∣∣∣
≤ ‖U‖∞

∫
[0,1]2

∣∣∣∣ρi(x)ρj(y)− ρ′i(x)ρ′j(y)

∣∣∣∣ dx dy
≤ ‖U‖∞

∫
[0,1]2

∣∣∣∣ρi(x)ρj(y)− ρi(x)ρ′j(y)

∣∣∣∣ dx dy
+ ‖U‖∞

∫
[0,1]2

∣∣∣∣ρi(x)ρ′j(y)− ρ′i(x)ρ′j(y)

∣∣∣∣ dx dy
= ‖U‖∞

Ä
ai‖ρj − ρ′j‖1 + ‖ρi − ρ′i‖1bj

ä
.

Summing over i and j this gives the desired bound. �
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4.1.3. Ground state energies and quotients. We close our section on pre-

liminaries with an expression of the ground state energy and the free energy

in a “finite” way in terms of the corresponding quotients. Let J ∈ Symq and

h ∈ Rq. Using the closedness of Sq(W ) and Ba(W ) and the fact that the map

(a, X) 7→ 〈X, J〉a + 〈a, h〉 is continuous in the d1-metric, one easily shows that

(4.6) E(W,J, h) = − max
(a,X)∈Sq(W )

(
〈X, J〉a + 〈a, h〉

)
and

(4.7) Ea(W,J) = − max
X∈Ba(W )

q∑
i,j=1

aiajXijJij = − max
X∈Ba(W )

〈X, J〉a.

4.2. From distances to quotients. The next theorem is a quantitative form

of the implication (ii)⇒(iii) in Theorem 3.5.

Theorem 4.6. Let q ≥ 1 and U,W ∈ W . Then

dHf
1 (Sq(U),Sq(W )) ≤ q2δ�(U,W ).

Proof. We first prove that

(4.8) dHf
� (Sa(U),Sa(W )) ≤ ‖U −W‖�

for all a ∈ Pdq. Let H ∈ Sa(U). Then there exists a fractional partition

ρ = (ρ1, . . . , ρq) of [0, 1] such that H = U/ρ. Let H ′ = (a, β(W/ρ)). Then for

every S, T ⊆ [q], we have∣∣∣∣∑
i∈S
j∈T

aiaj(βij(H)− βij(H ′))
∣∣∣∣

=

∣∣∣∣∑
i∈S
j∈T

∫
[0,1]2

ρi(x)ρj(y)(U(x, y)−W (x, y)) dx dy

∣∣∣∣
=

∣∣∣∣∫
[0,1]2

(∑
i∈S

ρi(x)
)(∑

j∈T
ρj(y)

)
(U(x, y)−W (x, y)) dx dy

∣∣∣∣
≤ ‖U −W‖�,

and hence d�(H,H ′) ≤ ‖U −W‖�, which proves the bound (4.8).

Since the sets Sa(U) and Sa(W ) are invariant under measure preserving

bijections, the bound (4.8) implies that dHf
� (Sa(U),Sa(W )) ≤ δ�(U,W ), and

taking into account the bound (4.4), this in turn implies that

(4.9) dHf
1 (Sa(U),Sa(W )) ≤ q2δ�(U,W ).

Together with Lemma 4.5 this gives the desired bound on dHf
1 (Sq(U),Sq(W )).

�
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4.3. From quotients to energies. The next theorem is a quantitative ver-

sion of the implication (iii)⇒(iv) from Theorem 3.5.

Theorem 4.7. Let q ≥ 1, a ∈ Pdq , J ∈ Symq , and U,W ∈ W . Then

|Ea(U, J)− Ea(W,J)| ≤ (1 + 2‖W‖∞) ‖J‖∞ dHf
1 (Sq(U),Sq(W )).

Proof. In view of Lemma 4.5, it is enough to prove that

(4.10) |Ea(U, J)− Ea(W,J)| ≤ ‖J‖∞dHf
1 (Sa(U),Sa(W )).

Let H ∈ Sa(U) attain the maximum in the representation (4.7) for Ea(U, J),

so that

Ea(U, J) = −〈J, β(H)〉a.
By the definition of Hausdorff distance, there is an H ′ ∈ Sa(W ) such that

d1(H,H ′) ≤ dHf
1 (Sa(U),Sa(W )). Then

Ea(W,J)− Ea(U, J) ≤ 〈J, β(H)〉a − 〈J, β(H ′)〉a

= 〈J, β(H)− β(H ′)〉a ≤ ‖J‖∞
q∑

i,j=1

aiaj |βij(H)− βij(H ′)|

= ‖J‖∞d1(H,H ′) ≤ ‖J‖∞dHf
1 (Sa(U),Sa(W )).

In a similar way, one proves a lower bound of −‖J‖∞dHf
1 (Sa(U),Sa(W )), giving

(4.10) and hence the statement of the theorem. �

The following theorem is the analogue of Theorem 4.7 for the ground

state energies E(W,J, h) and is a quantitative version of the first statement

from Corollary 3.6.

Theorem 4.8. Let q ≥ 1, h ∈ Rq , J ∈ Symq , and U,W ∈ W . Then

(4.11) |E(U, J, h)− E(W,J, h)| ≤ max{‖J‖∞, ‖h‖∞} dHf
1 (Sq(U),Sq(W )).

Proof. This bound is proved in the same way as the bound (4.10) and is

left to the reader. �

4.4. From energies back to distances. Combining the bounds (4.9) and

(4.10), we get

(4.12) |Ea(U, J)− Ea(W,J)| ≤ q2‖J‖∞δ�(W,U).

The next theorem, which is one of the main results in this paper, gives a

bound in the opposite direction, and thereby provides a quantitative proof of

the implication (iv)⇒(ii) in Theorem 3.5.

Theorem 4.9. Let U,W ∈ W , and suppose that

|Ea(U, J)− Ea(W,J)| ≤ ε2

64q2
‖J‖∞max{‖U‖∞, ‖W‖∞}
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for all q ≤ 49/ε2 , a ∈ Pdq , and J ∈ Symq . Then

δ�(U,W ) ≤ εmax{‖U‖∞, ‖W‖∞}.

The proof of Theorem 4.9, to be given in the next sections, is based on

the following idea, which is very similar to the main idea in the proof of the

Weak Regularity Lemma. For q ≥ 1, let

(4.13) Lq(U) = max
(a,B)∈Sq(U)

(−Ea(U,B))

and

(4.14) ∆q(U) =
»
L4q(U)− Lq(U).

We will show that

(4.15) δ�(U,H) ≤ ∆q(U)

whenever H = (a, B) is such that it attains the maximum in (4.13). Since

0 ≤ Lq(U) ≤ ‖U‖2∞ for all q, Lq cannot decrease by a substantial amount too

many times implying, in particular, that there must be a q ≤ 49/ε2 such that

∆q ≤ ε
3‖U‖∞. But this implies that for this q, the maximizer in (4.13) must

be a good approximation to U in the δ� distance, δ�(U,H) ≤ ε
3‖U‖∞. Thus

a good knowledge of the ground state energies allows us to calculate a good

approximation to the graphon U by a finite graph in the δ� distance.

4.4.1. The geometry of fractional quotients. In this subsection, we give a

different representation for Lq(U), which will allow us to prove (4.15). To this

end, we first prove the following lemma.

Lemma 4.10. Given q ≥ 1, a ∈ Pdq , and U ∈ W , let

(4.16) La(U) = max
B∈Ba(U)

‖B‖2a,2.

Then

(4.17) La(U) = max
B∈Ba(U)

Ä
−Ea(U,B)

ä
,

where any B that attains the maximum in the first expression also attains the

maximum in the second expression, and vice versa.

Proof. Since 〈X,B〉a ≤ ‖X‖a,2‖B‖a,2 ≤ La(U), we have

‖B‖2a,2 = 〈B,B〉a ≤ −Ea(U,B) = max
X∈Ba(U)

〈X,B〉a ≤ La(U).

Taking the maximum over B ∈ Ba(U), we obtain the identity (4.17) as well

as the statement that any matrix that attains the maximum in (4.16), also
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attains the maximum in (4.17). To prove the converse statement, we use that

〈(X −B), (X −B)〉a ≥ 0 for all X,B ∈ Ba(U) implying, in particular, that

−2Ea(U,B) ≤ ‖B‖2a,2 + La(U).

If B0 is such that −Ea(U,B) attains its maximum for B = B0, we therefore

have that

2La(U) = −2Ea(U,B0) ≤ ‖B0‖2a,2 + La(U) ≤ 2La(U),

which implies that ‖B0‖2a,2 = La(U), as required. �

4.4.2. Step function approximation. As a consequence of Lemma 4.10, we

may rewrite Lq(U) as

(4.18) Lq(U) = sup
P∈Pq

‖UP‖22,

where the supremum goes over all partitions of [0, 1] into q classes. Indeed, let

P be a partition of [0, 1] into q classes, and let a = α(U/P). Then U/P is a

quotient of U , and

‖UP‖22 =
q∑

i,j=1

αi(U/P)αj(U/P)βij(U/P) = ‖β(U/P)‖2a,2.

Using the fact that Ba(U) is the closure of B̂a(U), we now rewrite the right-

hand side of (4.18) as

sup
P∈Pq

‖UP‖22 = sup
a∈Pdq

sup
B∈B̂a(U)

‖B‖2a,2 = max
a∈Pdq

max
B∈Ba(U)

‖B‖2a,2.

With the help of Lemma 4.10, this gives (4.18). In particular, it follows that

(4.19) Lq(U) ≤ ‖U‖22.

The next lemma will be important in proving bounds on the approxima-

tion by step functions.

Lemma 4.11. For every partition P of [0, 1] into q classes, we have

‖U − UP‖2� ≤ L4q(U)− ‖UP‖22.

Proof. Let S and T be arbitrary measurable subsets of [0, 1], and let P ′
be the partition of [0, 1] generated by S, T and P. Clearly P ′ has at most

4q classes. Since UP ′ gives the best L2-approximation of U among all step

functions with steps P ′, we conclude that for every real number t, we have

‖U − UP ′‖22 ≤ ‖U − UP − t1S×T ‖22,

which in turn implies that

‖U − UP ′‖22 ≤ ‖U − UP‖22 − 2t〈1S×T , U − UP〉+ t2.
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Choosing t = 〈1S×T , U − UP〉, this gives

〈1S×T , U−UP〉2 ≤ ‖U−UP‖22−‖U−UP ′‖22 = ‖UP ′‖22−‖UP‖22 ≤ L4q(U)−‖UP‖22.

Since the supremum of the left-hand side over all sets S, T is just ‖U −UP‖2�,

this proves the statement of the lemma. �

It is instructive to show that Lemma 4.11 implies the Weak Regularity

Lemma for graphons, Theorem 3.4.

Proof of Theorem 3.4. Set ε = ‖U‖2
»

2/ log2 k. If ‖U − UP‖� ≥ ε for all

partitions P with at most k classes, then by Lemma 4.11, L4q(U)−‖UP‖22 ≥ ε2

for every 1 ≤ q ≤ k and every P ∈ Pq. Hence L4q(U) − Lq ≥ ε2 for every

1 ≤ q ≤ k, which in turn implies that

L4k ≥
(⌊1

2
log2 k

⌋
+ 1

)
ε2 >

(1

2
log2 k

)
ε2 ≥ ‖U‖2,

which contradicts (4.19). �

The following corollary verifies (4.15).

Corollary 4.12. Let q ≥ 1, U ∈ W , and H ∈ Sq(U). Then

(4.20) δ�(U,H) ≤
»
L4q(U)− ‖H‖22.

If H attains the maximum in (4.13), then

δ�(U,H) ≤
»
L4q(U)− Lq(U).

Proof. By Lemma 4.10, the second bound of the lemma immediately fol-

lows from the first. Thus it is enough to prove (4.20). Let P be a partition

of [0, 1] into q classes, and let U/P = H be the corresponding integer quotient

of U . By Lemma 4.11, we have that

δ�(U,U/P)2 ≤ ‖U − UP‖2� ≤ L4q − ‖H‖22.

Since Sa(U) is the closure of Ŝa(U), this gives (4.20), as desired. �

4.4.3. Completion of the proof. Rescaling W and U by a constant factor

if necessary, we may assume that ‖U‖∞, ‖W‖∞ ≤ 1. Let τ = ε2/(64q2), and

let q0 = 4d9/ε
2e−1.

Since 0 ≤ Lq(U) ≤ 1, there is a 1 ≤ q ≤ q0 such that L4q(U)−Lq(U) ≤ ε2

9 .

Choose H = (a, B) ∈ Sq(U) in such a way that Lq(U) = −Ea(U,B). We have

δ�(U,W ) ≤ δ�(U,H) + δ�(H,H ′) + δ�(H ′,W ).

Let us estimate the three terms on the right-hand side separately.

By Corollary 4.12, we have

(4.21) δ�(U,H) ≤ ε

3
,
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and by Lemma 4.10, we have that −Ea(U,B) = ‖B‖2a,2. Due to the assumption

that ‖U‖∞ ≤ 1, we also have ‖B‖∞ ≤ 1.

Let Y ∈ Ba(W ) attain the maximum in the definition of −Ea(W,B). Then

(4.22) 〈Y,B〉a = −Ea(W,B) ≥ −Ea(U,B)− τ = ‖B‖2a,2 − τ,

and also
〈Y, Y 〉a ≤ −Ea(W,Y ) ≤ −Ea(U, Y ) + τ

= max
X∈Ba(U)

〈X,Y 〉a + τ ≤ ‖B‖a,2‖Y ‖a,2 + τ

≤ 1

2

(
‖B‖2a,2 + ‖Y ‖2a,2

)
+ τ,

implying that

〈Y, Y 〉a ≤ ‖B‖2a,2 + 2τ.

Hence

‖B − Y ‖2a,2 = ‖B‖2a,2 + ‖Y ‖2a,2 − 2〈B, Y 〉a
≤ ‖B‖2a,2 + (‖B‖2a,2 + 2τ)− 2(‖B‖2a,2 − τ) = 4τ.

Let H ′ = (a, Y ). Using Cauchy-Schwarz, we get that

(4.23) δ�(H,H ′) ≤ ‖B − Y ‖a,� ≤ q
√

4τ ≤ ε

4
.

We are left with a bound on δ�(H ′,W ). To this end, we again use Corol-

lary 4.12, this time in the form of the bound (4.20), which gives that

(4.24)
Ä
δ�(H ′,W )

ä2 ≤ L4q(W )− ‖Y ‖2a,2.

By the definition of Lb and the conditions of the theorem, we have that

Lb(W ) ≤ Lb(U) + τ for every b ∈ Pd4q, and hence

(4.25) L4q(W ) ≤ L4q(U) + τ.

On the other hand, (4.22) implies that ‖Y ‖2a2 + ‖B‖2a2 ≥ 2〈Y,B〉a ≥ 2‖B‖2a2

− 2τ, and so

(4.26) ‖Y ‖2a2 ≥ ‖B‖22a − 2τ = Lq(U)− 2τ.

Combining (4.24), (4.25), and (4.26), we getÄ
δ�(H ′,W )

ä2 ≤ L4q(U) + τ − Lq(U) + 2τ ≤ ε2

9
+ 3τ ≤

(5ε

12

)2
,

and so

(4.27) δ�(H ′,W ) ≤ 5ε

12
.

To sum up, by (4.21), (4.23), and (4.27), we get

δ�(U,W ) ≤ δ�(U,H) + δ�(H,H ′) + δ�(H ′,W ) ≤ ε

3
+
ε

4
+

5ε

12
= ε,

which completes the proof of Theorem 4.9.
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4.5. From distances to free energies and back. In this section we prove

the implications (ii)⇒(v)⇒(iv), which will complete the proof of Theorem 3.5.

Again, we prove two (simple) quantitative versions.

Theorem 4.13. Let q ≥ 1, let a ∈ Pdq , let J ∈ Symq , let h ∈ Rq , and let

U,W ∈ W . Then

(4.28)
∣∣∣Fa(U, J)−Fa(W,J)

∣∣∣ ≤ ‖J‖1δ�(U,W )

and

(4.29)
∣∣∣F(U, J, h)−F(W,J, h)

∣∣∣ ≤ ‖J‖1δ�(U,W ).

Proof. Since the left-hand side of the above bounds does not change if

we replace U by Uφ for a measure preserving bijection φ : [0, 1] → [0, 1], it is

enough to prove the lemma with a bound in terms of ‖U −W‖� instead of

δ�(U,W ). Let ρ = (ρ1, . . . , ρq) be a fractional partition of [0, 1]. Recall the

definition (3.7) of Eρ(W,J, h). Using the fact that the cut-norm ‖ · ‖� can be

rewritten as

(4.30) ‖W‖� = sup
f,g: [0,1]→[0,1]

∣∣∣∣∣
∫
W (x, y)f(x)g(y) dx dy

∣∣∣∣∣,
where the suprema go over measurable and functions f, g : [0, 1] → [0, 1], we

then have ∣∣∣Eρ(U, J, h)− Eρ(W,J, h)
∣∣∣ ≤ ‖J‖1‖U −W‖�.

Recalling the definitions (3.12) and (3.13), this completes the proof. �

Theorem 4.14. Let q ≥ 1, a ∈ Pdq , J ∈ Symq , and let U,W ∈ W . Let

ε > 0 and c = (2 ln q)/ε. Then∣∣∣Ea(W,J)− Ea(U, J)
∣∣∣ ≤ 1

c

∣∣∣Fa(W, cJ)−Fa(U, cJ)
∣∣∣+ ε.

Proof. Using the fact that Ent(ρ) ≤ ln q, we get by (3.9) and (3.13) that∣∣∣Ea(W,J)−Fa(W,J)
∣∣∣ ≤ ln q,

and similarly for U . Hence∣∣∣Ea(W,J)− Ea(U, J)
∣∣∣ =

1

c

∣∣∣Ea(W, cJ)− Ea(U, cJ)
∣∣∣

≤ 1

c

(∣∣∣Fa(W, cJ)−Fa(U, cJ)
∣∣∣+ 2 ln q

)
,

which proves Theorem 4.14 and thereby also completes the proof of Theo-

rem 3.5. �
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5. Graphs vs. graphons

We will use the results of the last section to prove Theorem 2.14 and

Theorem 2.15(i)–(iii). Indeed, if we have a sequence of graphs (Gn), we can

consider the sequence of associated graphons WGn and apply Theorem 3.5 to

that sequence. The main technical issue here will be to relate parameters like

t(F,G), Êa(G, J), and “Fa(G, J) to the corresponding parameters t(F,WG),

Ea(WG, J), and Fa(WG, J) of the associated graphon. In some cases, this

relationship is trivial:

(5.1) t(F,G) = t(F,WG)

for any two graphs F and G; but the corresponding relations for the ground

state energies and free energies hold only asymptotically. A related technical

issue will be the relationship between fractional and integral partitions, which

will be more complicated than for graphons. (Compare, e.g., Lemma 4.3 and

Theorem 5.4.)

5.1. Fractional partitions and quotients. Recall the definition of quotient

graphs from Section 2.4. We will often consider Ŝq(G) as a subset of Rq+q2 , de-

noting its elements H as (a, X), with X = β(H) ∈ Symq and a = α(H) ∈ Pdq.

Given a vector a ∈ Pdq, we finally introduce the set B̂a(G) of all weighted

adjacency matrices of all quotients of G with nodeweights a, B̂a(G) = {X ∈
Symq : (a, X) ∈ Ŝq(G)}.

For a finite graph G, the set Ŝq(G) is typically a very large finite set, which

makes it difficult to work with. It will be convenient to introduce a fractional

version of quotients. First, a fractional partition of a set V into q classes (briefly,

a fractional q-partition) is a q-tuple of functions ρ1, . . . , ρq : V → [0, 1] such

that for all x ∈ V , we have ρ1(x) + · · ·+ ρq(x) = 1.

Let G be a weighted graph. For every fractional partition ρ = (ρ1, . . . , ρq)

of V (G), we define the fractional quotient G/ρ as the weighted graph with

nodeweights

αi(G/ρ) =
∑

u∈V (G)

αu(G)

αG
ρi(u)

and edges weights

βij(G/ρ) =
1

αi(G/ρ)αj(G/ρ)

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

α2
G

ρi(u)ρj(v);

compare to the expressions (3.6) for graphons. To distinguish the fractional

quotients from the quotients introduced in Section 2.4, we will often call the

latter integer quotients. Note that the above definition reduces to the definition

(2.24) if ρi(x) is the indicator function of the event that x ∈ Vi. Note also that

neither the integer quotients nor the fractional quotients of a graph G change

if we rescale all nodeweights of G by a constant factor.
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We call a graph H a fractional q-quotient of G if H = G/ρ for some frac-

tional q-partition of V (G), and we denote the set of all fractional q-quotients

of G by Sq(G). Finally, we define the fractional analogue of the set B̂a(G) as

Ba(G) = {X ∈ Symq : (a, X) ∈ Sq(G)}.
It follows from Lemma 4.2 and Proposition 5.3 that Sq(G) is a closed set,

and it is not hard to see that Sq(G) is connected, but in general it is not convex

(see Example 5.2). Obviously, Sq(G) contains Ŝq(G), but it is not its closure in

general (since the latter is a finite set). We will come back to how well Ŝq(G)

approximates Sq(G) in Lemma 5.4. Most of the time, we will work with the

fractional versions, which are much easier to handle.

We can use fractional partitions to define fractional versions of ground

state energy by replacing the partitions in the definition by fractional parti-

tions. For every fractional partition ρ of V (G), define

Eρ(G, J, h) = −
∑

u∈V (G)

∑
i

hi
αu(G)

αG
ρi(u)(5.2)

−
∑

u,v∈V (G)

∑
i,j

αu(G)αv(G)

α2
G

βuv(G)ρi(u)ρj(v)Jij .

If ρ is a proper partition corresponding to a map φ : V (G) → [q], then

Eρ(G, J, h) = Eφ(G, J, h). Using this notation, we can define

E(G, J, h) = −max
ρ
Eρ(G, J, h) = − max

(a,X)∈Sq(G)

(
〈X, J〉a + 〈a, h〉

)
(5.3)

and

(5.4) Ea(G, J) = − max
ρ:α(ρ)=a

Eρ(G, J, 0) = − max
X∈Ba(G)

〈X, J〉a.

We will come back to how well these fractional versions approximate the “real”

versions in Section 5.3.

We conclude with a couple of examples illustrating the set of quotients

and its complexity. In particular, we see that Sq is not convex in general.

Example 5.1. Let K1(p) be a single node with a loop with weight p. For

every fractional q-quotient H of K1(p), we have β(H) ≡ p, and so Ba(K1(p))

consists of a single q × q matrix with constant entry p, no matter what value

we choose for a ∈ Pdq.

Example 5.2. This example gives a weighted graph G for which Sq(G) is

not convex. Let L2(p) be the two-node graph with a loop with weight p at

each node (and no other edge). Let ρ be a fractional q-partition of V (L2(p)) =

{u, v}, and let H denote the corresponding quotient. Then

αi(H) =
1

2
(ρi(u) + ρi(v)) and βij(H)) =

(1
2)2ρi(u)ρj(u)p+ (1

2)2ρi(v)ρj(v)p

αi(H)αj(H)
.
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For q = 2, the fractional partition ρ can be expressed by two parameters x, y:

ρ1(u) = x, ρ2(u) = 1 − x, ρ1(v) = y, ρ2(v) = 1 − y, which reduces to one

parameter, say the parameter x, if we fix α(H)) = a for some a ∈ Pd2. The

edgeweights β(H) can then be expressed as a quadratic function in x, giving

that Ba(L2(p)) is a nonconvex function in the parameter x in the space of 2×2

matrices. Then of course S2(L2(p)) is not convex either.

5.2. Quotients of graphs and graphons. We start by noting the following

simple fact.

Proposition 5.3. For every weighted graph G and every q ≥ 1,

Ŝq(G) ⊆ Sq(G) = Sq(WG) = Ŝq(WG).

Proof. It is obvious that Ŝq(G) ⊆ Sq(G) and Ŝq(WG) ⊆ Sq(WG), so we

only have to show that Sq(G) ⊆ Ŝq(WG) and Sq(WG) ⊆ Sq(G). Every frac-

tional q-partition ρ of V (G) gives a (nonfractional) q-partition (S1, . . . , Sq) of

[0, 1] as follows. Partition the interval Iv corresponding to v ∈ V (G) into q in-

tervals Iv1, . . . , Ivq of lengths ρ1(v)αv(G)/αG, . . . , ρq(v)αv(G)/αG, respectively,

and define Si = ∪v∈V (G)Ivi. It is straightforward to check that G/ρ = (WG)/P,

and hence Sq(G) ⊆ Ŝq(WG). Finally, every fractional partition ρ of [0, 1] de-

fines a fractional partition ρ̄ of V (G) by

ρ̄i(v) =

∫
Iv

ρi(x) dx.

Again, it is easy to check that G/ρ̄ = W/ρ. This proves that Sq(WG) ⊆ Sq(G)

and completes the proof of the proposition. �

The following technical lemma asserts that by restricting our attention

to integral partitions we do not lose too much, provided the graph has no

dominating nodeweights.

Theorem 5.4. For every weighted graph G and every q ≥ 1,

dHf
1 (Ŝq(G),Sq(G)) ≤ q

 
αmax(G)

αG

Ä
1 + 4β∞(G)

ä
.

Proof. Let c = αmax(G)/αG. We have to show that for every H ∈ Sq(G)

there is an H ′ ∈ Ŝq(G) such that

d1(H,H ′) ≤ q
√
c
Ä
1 + 4β∞(G)

ä
.

Since quotients and fractional quotients do not change if we rescale the weights

of G, we may assume that αG = 1.

Let ai = αi(H) and Bij = aiajβij(H), and let ρ = (ρ1, . . . , ρq) be a

fractional partition of V (G) such that H = G/ρ. In other words, let ρ be such
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that∑
u∈V (G)

αu(G)ρi(u) = ai and αu(G)αv(G)βuv(G)ρi(u)ρj(v) = Bij .

Let P = (V1, . . . , Vq) be a random partition of V (G) obtained by “rounding” ρ

as follows. For every u ∈ V (G), we draw a random index i from the probability

distribution (ρ1(u), . . . , ρq(u)), and we put u in Vi. Let H ′ = G/P, and set

a′i = αi(H
′) and B′ij = a′ia

′
jβij(H

′).

We use a standard (though somewhat lengthy) second moment argument

to show that with large probability, a′ is close to a and B′ is close to B. Let

Xiu be the indicator variable that we put u in Vi. Clearly E(Xiu) = ρi(u).

Using that Xiu and Xju are independent if u 6= v,

E((a′i − ai)2) =
∑
u6=v

αu(G)αv(G)E((Xiu − ρi(u))(Xiv − ρi(v)))

+
∑
u

αu(G)2E((Xiu − ρi(u))2)

=
∑

u∈V (G)

αu(G)2(ρi(u)− ρi(u)2) ≤ c
∑

u∈V (G)

αu(G)ρi(u) = cai,

and summing over all i, we get

(5.5) E(‖a− a′‖22) ≤ c.

The argument for B is similar but more involved. Let us assume for the

moment that |βuv(G)| ≤ 1. Writing B′ij −Bij as

B′ij −Bij =
∑

u,v∈V (G)

αu(G)αv(G)βuv(G)(XiuXjv − ρi(u)ρj(v))

and introducing the shorthand αu for αu(G), we bound

E((B′ij −Bij)2) =
∑

u1,v1,u2,v2

αu1αu2αv1αv2βu1v1(G)βu2v2(G)

(5.6)

× E
(Ä
Xiu1Xjv1 − ρi(u1)ρj(v1)

äÄ
Xiu2Xjv2 − ρi(u2)ρj(v2)

ä
)
)

≤
∑

u1,v1,u2,v2

αu1αu2αv1αv2

∣∣∣∣E(ÄXiu1Xjv1 − ρi(u1)ρj(v1)
ä

×
Ä
Xiu2Xjv2 − ρi(u2)ρj(v2)

ä
)
)∣∣∣∣,

where the sum goes over nodes u1, v1, u2, v2 ∈ V (G). Consider any term above:

(5.7) E
(Ä
Xiu1Xjv1 − ρi(u1)ρj(v1)

äÄ
Xiu2Xjv2 − ρi(u2)ρj(v2)

ä
)
)
.

If u1, u2, v1, v2 are all different, then Xiu1 , Xjv1 , Xiu2 , Xjv2 are independent,

and hence this expectation is 0.
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Next, suppose that there is one coincidence. If this coincidence is u1 = v1,

we can use the independence of the three random variables Xiu2 , Xjv2 , and

Xiu1Xjv1 to conclude that this gives again no contribution, and similarly for

u2 = v2. Consider one of the other four coincidences, say u1 = u2. Then the

expectation in (5.7) is ρi(u1)ρj(v1)ρj(v2), and the contribution of these terms

to the sum in (5.6) is bounded by∑
u1,v1,v2

α2
u1αv1αv2ρi(u1)ρj(v1)ρj(v2) ≤ caiaj .

There are four similar terms, so the total is bounded by 4caiaj .

In the case of two coincidences, we have either u1 = u2 and v1 = v2 or

u1 = v2 and v1 = u2 or v1 = u1 and v2 = u2. Consider the case u1 = u2 = u,

v1 = v2 = v 6= u. The expectation in (5.7) is then ρi(u)ρj(v)
Ä
1− ρi(u)ρj(v)

ä
.

The contribution of these terms to the sum in (5.6) is at most∑
u,v

α2
uα

2
vρi(u)ρj(v) ≤ caiaj .

The two other cases are similar, giving a total of at most 3caiaj .

For three coincidences, there are four cases, which all are similar. Taking,

e.g., the case u1 = u2 = v1 = u and v2 = v 6= u, we get ρi(u)ρj(v)δij(1 − ρi(u)).

The sum of these terms over u and v gives a contribution that is at most

δij
∑
u,v

α3
uαvρi(u)ρj(v) ≤ caiaj .

The other three terms are similar, giving a total contribution of 4caiaj .

We are left with the case of four coincidences, u1 = u2 = v1 = v2 = u,

which gives an expectation of ρi(u)δij − 2ρi(u)3δij + ρi(u)2ρj(u)2, and a total

contribution of at most∑
u

α4
u

(
ρi(u)δij + ρi(u)ρj(u)

)
≤ caiδij + caiaj .

To sum up, we get that

E((Bij −B′ij)2) ≤ 12caiaj + caiδij

whenever β∞(G) ≤ 1. Rescaling the edgeweights of G to remove the condition

β∞(G) ≤ 1, this gives

E(‖B −B′‖22) = E
(∑
i,j

(Bij −B′ij)2
)
≤ 13c(β∞(G))2.
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Combined with (5.5) and Cauchy-Schwarz, this gives

E
Ä
d1(H,H ′)

ä
= qE

(1

q

q∑
i=1

|ai − a′i|
)

+ q2E
( 1

q2

q∑
i,j=1

|Bij −B′ij |
)

≤ q
(
E
(1

q

q∑
i=1

|ai − a′i|2
))1/2

+ q2
(
E
( 1

q2

q∑
i,j=1

|Bij −B′ij |2
))1/2

≤ √qc+ q
√

13cβ∞(G) ≤ q
√
c
Ä
1 + 4β∞(G)

ä
.

Hence with positive probability, d1(H,H ′) ≤ q
√
c
Ä
1 + 4β∞(G)

ä
, as required.

�

5.3. Ground state energies of graphs and graphons. We start with the

remark that Proposition 5.3 and equation (5.4) imply that

(5.8) Ea(G, J) = Ea(WG, J).

The next theorem relates this common value to the microcanonical ground

state energy Êa introduced in Section 2.4.

Theorem 5.5. Let G be a weighted graph, and let q ≥ 1, a ∈ Pdq and

J ∈ Symq . Then

(5.9) |Êa(G, J)− Ea(G, J)| ≤ 6q3αmax(G)

αG
βmax(G) ‖J‖∞.

First we show that the fractional version of Ê(G, J, h) does not carry new

information, at least if we restrict ourselves to weighted graphs without loops.

Proposition 5.6. Let q ≥ 1, J ∈ Symq and h ∈ Rq . If G is a weighted

graph with βxx(G) = 0 for all x ∈ V (G), then

(5.10) Ê(G, J, h) = E(G, J, h).

In the more general case where βuu(G) is arbitrary, we have

(5.11)
∣∣∣Ê(G, J, h)− E(G, J, h)

∣∣∣ ≤ 2
αmax

αG
βmax(G)‖J‖∞.

To prove these results, we need some preparation.

5.3.1. Preliminaries. Let ρ and ρ′ be two fractional partitions of [0, 1].

We define the distance

(5.12) d1(ρ, ρ′) =
1

q

q∑
i=1

∫
[0,1]
|ρi(x)− ρ′i(x)|dx
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on fractional q-partitions. For a weighted graph G and two fractional q-parti-

tions of V (G), we define

(5.13) d1,G(ρ, ρ′) =
1

q

q∑
i=1

∑
v∈V (G)

αv(G)

αG
|ρi(v)− ρ′i(v)|.

(If G has nodeweights one, we often leave out the subscript of G and denote

this distance by d1(ρ, ρ′) as well.)

The following inequalities are immediate consequences of the definitions

(3.7), (5.2), and (2.25). Let W ∈ W, let G be a weighted graph, and let q ≥ 1,

J ∈ Symq, and h ∈ Rq. If ρ, ρ′ are fractional q-partitions of [0, 1], then

(5.14) |Eρ(W,J, h)− Eρ′(W,J, h)| ≤ q(2‖J‖∞‖W‖∞ + ‖h‖∞) d1(ρ, ρ′).

If ρ, ρ′ are fractional q-partitions of V (G), then

(5.15) |Eρ(G, J, h)− Eρ′(G, J, h)| ≤ q(2‖J‖∞βmax(G) + ‖h‖∞) d1,G(ρ, ρ′).

If G′ is a weighted graph on the same nodeset as G, then

(5.16)
∣∣∣Eφ(G, J, h)− Eφ(G′, J, h)

∣∣∣ ≤ max{‖h‖∞, q2‖J‖∞}d�(G,G′),

and if G and G′ also have the same nodeweights, then

(5.17)
∣∣∣Eφ(G, J, h)− Eφ(G′, J, h)

∣∣∣ ≤ q2‖J‖∞d�(G,G′).

5.3.2. Proof of Theorem 5.5. Without loss of generality, we may assume

that αG = 1 and βmax(G) = 1. First we prove that

(5.18) Ea(G, J) ≤ Êa(G, J) + 2q‖J‖∞αmax(G).

Rewrite the microcanonical ground state energy as

(5.19) Êa(G, J) = − max
φ∈Ωa(G)

∑
u,v∈V (G)

αu(G)αv(G)βuv(G)

α2
G

Jφ(u)φ(v),

let φ : V (G) → [q] be a map attaining the optimum on the right-hand side,

and let ρ be the corresponding partition of V (G), considered as a fractional

partition. Then Êa(G, J) = Eρ(G, J, 0) and |αi(ρ) − ai| ≤ αmax(G). It is now

easy construct another fractional partition ρ′ with αi(ρ
′) = ai and d1,G(ρ, ρ′) ≤

αmax(G). Invoking (5.15), the inequality (5.18) follows.

The main part of the proof is to show that

(5.20) Êa(G, J) ≤ Ea(G, J) + 6q3αmax ‖J‖∞.

For a given fractional partition ρ of V (G) with α(ρ) = a, call a node v bad if

ρ(v) is not a 0-1 vector. Suppose that there are at least q + 1 bad nodes, and

let S be any set of q + 1 bad nodes. For a bad node v, the vector ρ(v) has at

least two fractional entries, so the selected nodes have at least 2q+2 fractional

entries. If we fix the sums
∑q
i=1 ρi(v) for v ∈ S and

∑
v∈S ρi(v) for i = 1, . . . , q,
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we have fixed 2q + 1 sums, so there is a family of solutions with dimension

at least 1. That is to say, we have an affine family ρt,i(v) = ρi(v) + tri(v) of

“deformations” of ρ such that ρt is a fractional partition of V (G) for every t,

α(ρt) = a, and ri(v) = 0 unless v ∈ S and 0 < ρi(v) < 1.

Let X and Xt be such that G/ρ = (a, X) and G/ρt = (a, Xt). Then

〈J,Xt〉a = 〈J,X〉a + C1t+ C2t
2,

where

C1 = 2
∑
u∈S

v∈V (G)

αu(G)αv(G)βuv(G)
q∑

i,j=1

Jijrj(u)ρi(v)

and

C2 =
∑
u,v∈S

αu(G)αv(G)βuv(G)
q∑

i,j=1

Jijri(u)rj(v).

Choosing the sign of t so that C1t ≥ 0, we increase the absolute value of t

until there is at least one new pair (v, i) for which ρt,i(v) is 0 or 1, while we

still have ρt ≥ 0. Starting with an optimal fractional partition, we repeat

this operation until we are left with a set R of at most q bad nodes. Then

we replace the resulting fractional partition ρ̃ on R by any integer partition

(V1, . . . , Vq) obeying the condition∣∣∣∣∑
u∈R

ρ̃i(u)αu(G)−
∑
u∈Vi

αu(G)

∣∣∣∣ ≤ αmax(G).

How much do these operations decrease the value 〈J,X〉a? Replacing ρ by

ρt, we lose at most C2t
2. Since for every u, (ρ1(u) + tr1(u), . . . , ρq(u) + trq(u))

is still a fractional partition, we have
∑
i ri(u)t = 0 and 0 ≤ ρi(u) + ri(u)t ≤ 1

implying, in particular, that
∑
i |ri(u)t| = 2

∑
i |ri(u)t|1ri(u)t<0≤2

∑
i ρi(u)≤2.

Hence

|C2t
2| ≤ ‖J‖∞

∑
u,v∈S

αu(G)αv(G)|βuv(G)|
q∑

i,j=1

|ri(u)t| · |rj(v)t|

≤ 4‖J‖∞
∑
u,v∈S

αu(G)αv(G) = 4‖J‖∞α2
G[S] ≤ 4‖J‖∞(q + 1)αmaxαG[S].

Thus the cost of replacing one fractional entry in S by an integer entry is

not more than 4‖J‖∞(q+ 1)αmaxαG[S]. To estimate the total cost of reducing

the set of bad nodes to a set R of at most q nodes, we formulate the following

game. There are n items of prices α1 ≥ · · · ≥ αn, which sum to 1, and there

are q− 1 copies of each. At each step, you select q+ 1 different items and pay

the total price; then your adversary points at q of them, which you have to

give back without compensation. The game stops when there are at most q

different items left. Your goal is to minimize your total payment. How much

do you have to pay, if both you and your adversary play optimally?
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Let us follow the simple greedy strategy of selecting the q + 1 cheapest

items each time. It is easy to argue that the best strategy for the adversary

is to take away all but the cheapest of these q + 1 items at each time. Then

you pay (αn + αn−1 + · · · + αn−q+1) q − 1 times, (αn−1 + αn−2 + · · · + αn−q)

q−1 times, etc. In total you pay for every item at most (q−1)(q+ 1) < q2−1

times, and so your total cost is less than q2 − 1, leading to a decrease in the

value of 〈J,X〉a that is less than 4‖J‖∞(q + 1)(q2 − 1)αmax.

To estimate the cost to convert the fractional partition ρ̃ on R to an

ordinary partition P = (V1, . . . , Vq), we bound the difference∑
u,v∈V (G)

αu(G)αv(G)βuv(G)
q∑

i,j=1

Jij
(
1u∈Vi1v∈Vj − ρ̃i(u)ρ̃j(v)

)

=
∑

u∈V (G)
v∈R

αu(G)αv(G)βuv(G)
q∑

i,j=1

Jij
(
ρ̃i(u) + 1u∈Vi

)(
1v∈Vj − ρ̃j(v)

)

by 4‖J‖∞αG[R] ≤ 4qαmax‖J‖∞, leading to an overall bound of

4‖J‖∞
Ä
(q + 1)(q2 − 1) + q

ä
αmax ≤ 6q3αmax‖J‖∞.

This concludes the proof of (5.20). �

5.3.3. Proof of Proposition 5.6. We first prove the identity (5.10). Rewrit-

ing both E(G, J,H) and Ê(G, J, h) in terms of factors, this amounts to showing

that

max
(a,X)∈Ŝq(G)

(
〈X, J〉a + 〈a, h〉

)
= max

(a,X)∈Sq(G)

(
〈X, J〉a + 〈a, h〉

)
.

Let ρ be a fractional q-partition of G, and let G/ρ = (a, X). Assuming without

loss of generality that αG = 1, we have the identity

〈X, J〉a + 〈a, h〉 =
∑

u,v∈V (G)

αu(G)αv(G)βuv(G)
q∑

i,j=1

Jijρi(u)ρj(v)

+
∑

u∈V (G)

αu(G)
q∑
i=1

hiρi(u).

For a fixed u ∈ V (G), this is a linear function of (ρ1(u), . . . , ρq(u)) (here we use

that βuu(G) = 0), and so its maximum is attained at a vertex of the simplex

Pdq, i.e., a vector (ρ1(u), . . . , ρq(u)) that is integer valued. Repeating this for

every u ∈ V (G), we see that the maximum over fractional partitions is attained

for an ordinary partition, as desired.

To obtain the bound (5.11), we note that the error from removing the

diagonal terms can be bounded by

2
∑

u∈V (G)

(αu(G))2|βuu(G)|
α2
G

‖J‖∞ ≤ 2
αmax(G)

αG
βmax(G)‖J‖∞. �
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5.4. Graph homomorphisms and ground state energy of graphons. The

next lemma generalizes the bound in Example 2.3 and gives a quantitative

version of the bound (2.16).

Lemma 5.7. Let G be an weighted graph on n nodes, and let H be a soft-

core weighted graph on q nodes, with weights αi(H) = ehi and βij(H) = e2Jij .

Then

−Ê(G, J, 0)+
lnαmin(H)

αG
≤ ln hom(G,H)

α2
G

≤ −Ê(G, J, 0)+
lnαmax(H)

αG
+
n log q

α2
G

and for every a ∈ Pdq ,

−Êa(G, J) +
lnαmin(H)

αG
≤ ln homa(G,H)

α2
G

≤ −Êa(G, J) +
lnαmax(H)

αG
+
n log q

α2
G

.

Proof. We prove the first inequality; the proof of the second is similar.

Write hom(G,H) as

hom(G,H) =
∑

φ:V (G)→V (H)

αφe
−α2

GEφ(G,J,0),

where αφ =
∏
i∈V (G) αφ(i)(H)αi(G). Since, by definition, the minimum of

Eφ(G, J, 0) is the ground state energy Ê(G, J, 0), we have

hom(G,H) ≤
∑
φ

αφe
−α2

GÊ(G,J,0) ≤ qnαmax(H)αGe−α
2
GÊ(G,J,0),

and
hom(G,H) ≥ max

φ
αφe

−α2
GEφ(G,J,0) ≥ αmin(H)ne−α

2
GÊ(G,J),

from which the lemma follows. �

5.5. Free energies of graphs and graphons. We now turn to the main the-

orem of this section, namely that the free energy of G is close to that of WG.

Theorem 5.8. Let q ≥ 1, a ∈ Pdq , h ∈ Rq , and J ∈ Symq . Let G be a

graph on n nodes with all nodeweights 1. Then∣∣∣“Fa(G, J)−Fa(WG, J)
∣∣∣ ≤ 12q2

n1/4
+

65q2

√
lnn
‖J‖∞βmax(G)

and∣∣∣“F(G, J, h)−F(WG, J, h)
∣∣∣ ≤ 12q2

n1/4
+ q2 65√

lnn
‖J‖∞βmax(G) +

5q2

n1/2
‖h‖∞.

The proof of this inequality is more involved than the proof of the corre-

sponding statement for ground state energies. The additional difficulties here

are not just technical. They are related to the fact, noted earlier, that there

is no natural way to define homomorphism numbers from graphons to finite

graphs. Thus, while we could define approximations to the ground state en-

ergies E(W,J, h) and Ea(W,J) that involved only integer partitions, it is not
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possible to do the same thing in the case of the free energies F(W,J, h) and

Fa(W,J) — since the entropy Ent(ρ) of an integer partition is zero. In other

words, we will have to translate the information contained in the discrete sums

defining Z(G, J, h) and Za(G, J) into entropy information involving fractional

partitions.

This is best explained in the case where the graph under consideration is

a blow up G[k] of a much smaller graph G. In this situation, there are large

classes of configurations that have exactly the same energy density. Indeed,

for u ∈ V (G), let Vu be the set of nodes in V (G[k]) that are blow ups of u, and

let ki(u) be the number of nodes in Vu that are mapped onto i ∈ [q]. Then all

configurations φ : V (G[k]) → [q] with given numbers {ki(u)} have the same

energy. Counting how many such configurations we can find, we will get a

term that eventually will lead to a term Ent(ρ) in an optimization problem.

In a final step, we will use the Weak Regularity Lemma to approximate the

graphs in a convergent sequence (Gn) by blow ups of a suitable sequence of

smaller graphs.

5.5.1. Entropies. Recall the definition (3.11) of the entropy of a fractional

partition ρ. If ρ is a fractional partition of a finite set V , this definition can

be modified in the following way:

Ent(ρ) = − 1

|V |

q∑
i=1

∑
v∈V

ρi(v) ln ρi(v) =
1

|V |
∑
v∈V

Ent(ρ(v)).

Let ρ be a fractional q-partition of [0, 1] and P = {I1, . . . , In} be an

equipartition of [0, 1], i.e., a partition such that all classes of P have the same

Lebesgue measure. We define the fractional partition ρP of [0, 1] and the

fractional partition ρ/P of [n] as follows:

(ρ/P)i(v) =
1

n

∫
Iv

ρi(x) dx and (ρP)i(y) = (ρ/P)i(v) if y ∈ Iv.

Proposition 5.9. For every fractional q-partition ρ of [0, 1] and every

equipartition P = {I1, . . . , In} of [0, 1], we have

Ent(ρ) ≤ Ent(ρP) = Ent(ρ/P).

Proof. The equality of Ent(ρP) and Ent(ρ/P) is straightforward. The

function Ent(x) = −∑q
i=1 xi lnxi is concave for x ∈ Pdq, so the inequality

follows by Jensen’s inequality. �

As a consequence, we have the following finite formula for the free energy

of the graphon WG associated with a graph G with nodeweights 1:

(5.21) Fa(WG) = inf
ρ

Ä
Eρ(G, J, 0)− Ent(ρ)

ä
,

where ρ ranges over all fractional partitions of V (G) with α(ρ) = a.
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Together with (5.15), the next lemma shows that the quantities on the

right-hand side of (5.21) are continuous functions of ρ.

Lemma 5.10. Let ρ, ρ′ be fractional q-partitions (of a finite set or of [0, 1]).

If d1(ρ, ρ′) ≤ 1/e, then

|Ent(ρ)− Ent(ρ′)| ≤ qd1(ρ, ρ′) ln
1

d1(ρ, ρ′)
.

Proof. We do the proof for fractional partitions of [0, 1]. Define f : [0, 1]

→ R by f(x) = −x lnx. As a consequence of the concavity of f , we have that

|f(x)− f(y)| ≤ max{f(|x− y|), f(1− |x− y|} ≤ g(|x− y|),

where g(x) is the concave hull of max{f(x), f(1− x)},

g(x) =


f(x) if x ∈ [0, 1/e],

1/e if x ∈ (1/e, 1− 1/e),

f(1− x) if x ∈ [1− 1/e, 1].

By Hölder’s inequality, we thus have

1

q
|Ent(ρ)− Ent(ρ′)| =

∣∣∣∣1q
q∑
i=1

∫
[0,1]

(
f(ρi(x))− f(ρ′i(x))

)
dx

∣∣∣∣
≤ 1

q

q∑
i=1

∫
[0,1]

g
Ä
|ρi(x)− ρ′i(x)|

ä
dx

≤ g
(1

q

q∑
i=1

∫
[0,1]
|ρi(x)− ρ′i(x)|dx

)
= g(d1(ρ, ρ′)) = f(d1(ρ, ρ′)),

where we used the assumption that d1(ρ, ρ′) ≤ 1/e in the last step. This proves

the lemma. �

The following lemma is also easy to prove

Lemma 5.11. Let G be an weighted graph on n nodes, and let H be a soft-

core weighted graph on q nodes, with weights αi(H) = ehi and βij(H) = e2Jij .

Then “F(G, J, h) ≤ Ê(G, J, h) ≤ “F(G, J, h) + ln q

and “Fa(G, J) ≤ Êa(G, J) ≤ “Fa(G, J) + ln q.
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5.5.2. Blowups of a graph. Instead of directly relating the free energies of

G and WG, we first look at blow ups of G.

Lemma 5.12. Let G be a weighted graph with nodeweights one, let q ≥ 1,

and let a ∈ Pdq , h ∈ Rq , and J ∈ Symq . Denote the k-fold blow up of G by

G[k]. Then

(5.22)

∣∣∣∣“Fa(G[k], J)−Fa(WG, J)

∣∣∣∣ ≤ 2q2

k
‖J‖∞βmax(G) + 3q2 ln(k + 1)

k

and

(5.23)∣∣∣∣“F(G[k], J, h)−F(WG, J, h)

∣∣∣∣ ≤ 2q2

k
max{‖J‖∞βmax(G), ‖h‖∞}+3q2 ln (k + 1)

k
.

Proof. Let V (G) = {1, . . . , n}, and let I1, . . . , In ⊂ [0, 1] be consecutive

intervals of lengths 1/n. Given a configuration φ : V (G[k])→ [q] and a node

u ∈ V (G), let ki(u) be the number of nodes u′ ∈ V (G[k]) such that u′ is a copy

of u and φ(u′) = i, and set ρ̂i(x) = ki(u)/k whenever x ∈ Iu. Let Ra be the

set of all fractional q-partitions ρ of V (G) such that α(ρ) = a, and let “Ra be

the set fractional q-partitions τ of V (G) such that τi(x) is an integer multiple

of 1/k, and

(5.24) |αi(τ)− ai
∣∣∣∣ ≤ 1

nk
for all i ∈ [q].

Then Ωa(G[k]) is precisely the set of configuration φ : V (G[k])→ [q] for which

ρ̂ ∈ “Ra.

We write the energy density of the configuration φ as

Eφ(G[k], J, 0) =
1

n2

q∑
i,j=1

Jij
∑

u,v∈V (G)

βuv(G)ρ̂i(u)ρ̂j(v).

The number of configurations φ corresponding to a fixed set of numbers (ki(u))

(i ∈ [q], u ∈ [n]) is given by the product of multinomials∏
u∈[n]

k!

k1(u)! . . . kq(u)!
.

To continue, we approximate the factorials by the leading term in their asymp-

totic expansion. Neglecting, for the moment, the error term, we have∏
u∈[n]

k!

k1(u)! . . . kq(u)!
≈
∏
u∈[n]

(k/e)k

(k1(u)/e)k1(u) . . . (kq(u)/e)kq(u)
=exp

(
nkEnt(ρ̂)

)
.

To bound the error in the above approximation, we use the following simple

inequality, valid for all integers m ≥ 1:(m
e

)m
≤ m! ≤ em

(m
e

)m
.
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As a consequence, we have that( 1

ek

)qn
enkEnt(ρ̂) ≤

∏
u∈[n]

k!

k1(u)! . . . kq(u)!
≤ (ek)qnenkEnt(ρ̂).

Bounding finally the number of choices for the qn-tuple (ki(u)) by (k+1)n(q−1)

≤ (k + 1)nq, we conclude that

(ek)−qn max
ρ̂∈R̂a

e
nk(Ent(ρ̂)−E

ρ̂
(WG,J,0)) ≤ Za(G[k], J)

≤ (ek(k + 1))qn max
ρ̂∈R̂a

e
nk(Ent(ρ̂)−E

ρ̂
(WG,J,0))

.

The above bound on the partition function implies that

(5.25)∣∣∣∣“Fa(G[k], J)− min
ρ̂∈R̂a

(
Eρ̂(WG, J, 0)− Ent(ρ̂)

)∣∣∣∣ ≤ q ln(ek(k + 1))

k
≤ 3q

ln(k + 1)

k
.

By (5.21), we have

(5.26) Fa(WG, J) = min
ρ∈Ra

(
Eρ(WG, J, 0)− Ent(ρ)

)
.

To complete the proof of the lemma, we therefore have to compare the frac-

tional partitions in “Ra to those in Ra.

Let ρ̂ ∈ “Ra attain the minimum in the expression on the left-hand side

of (5.25). Using the fact that ρ̂ obeys the constraint (5.24), it is not hard to

show that there exists a fractional q-partition ρ ∈ Ra such that d1(ρ, ρ′) ≤ 1
k .

Inequality (5.14) gives∣∣∣∣Eρ(WG, J, 0)− Eρ̂(WG, J, 0)

∣∣∣∣ ≤ 2q‖J‖∞‖WG‖∞d1(ρ, ρ̂) ≤ 2q‖J‖∞βmax(G)
1

k
,

while Lemma 5.10 (together with the fact that |Ent(ρ) − Ent(ρ̂)| ≤ ln q ≤
q
k ln(k + 1) if k ≤ 2) implies that

|Ent(ρ)− Ent(ρ̂)| ≤ q ln(k + 1)

k
.

Hence, using also (5.25),

F̂a(G[k], J) ≥ Eρ̂(WG, J, 0)− Ent(ρ̂)− 3q
ln(k + 1)

k
(5.27)

≥ Eρ(WG, J, 0)− Ent(ρ)

− 2q‖J‖∞βmax(G)
1

k
− q ln(k + 1)

k
− 3q

ln(k + 1)

k

≥ Fa(WG, J)− 2q‖J‖∞βmax(G)
1

k
− 4q

ln(k + 1)

k
.

To prove a bound in the opposite direction, consider a fractional q-partition

ρ that attains the minimum in (5.26). Given this partition, we will construct
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a partition ρ̂ ∈ “Ra. Let bi(u) = kρi(u); then by the Integer Making Lemma

[1], there exists integers ki(u) such that

(5.28) |bi(u)− ki(u)| < 1 (1 ≤ i ≤ q, 1 ≤ u ≤ n),

(5.29)

∣∣∣∣ q∑
i=1

bi(u)−
q∑
i=1

ki(u)

∣∣∣∣ < 1 (1 ≤ u ≤ n),

and

(5.30)

∣∣∣∣ n∑
u=1

bi(u)−
n∑
i=u

ki(u)

∣∣∣∣ < 1 (1 ≤ i ≤ q).

Since
∑
i bi(u) = k is an integer, (5.29) implies

∑
i ki(u) = k, and so ρ̂i(u) =

ki(u)/k is a fractional partition. Furthermore (5.30) implies that |αi(ρ̂)−ai| ≤
1/(nk), and so ρ̂ ∈ “Ra. Finally, (5.28) gives that

d1(ρ, ρ̂) ≤ q

k
.

Hence, using Lemma 5.10 (this time together with the fact that |Ent(ρ) −
Ent(ρ̂)| ≤ ln q ≤ q2

k ln(k + 1) if 1 ≤ k ≤ bqec) and the inequalities (5.14) and

(5.25) again, we get

Fa(WG, J) = Eρ(WG, J, 0)− Ent(ρ)

≥ Eρ̂(G[k], J, 0)− Ent(ρ̂)− 2q2‖J‖∞βmax(G)
1

k
− q2 ln(k + 1)

k

≥ “Fa(G[k], J)− 3q
ln(k + 1)

k
− 2q2‖J‖∞βmax(G)

1

k
− q2 ln(k + 1)

k

≥ “Fa(G[k], J)− 2q2‖J‖∞βmax(G)
1

k
− 3q2 ln(k + 1)

k
,

where in the last step we assume (without loss of generality) that q ≥ 2.

Together with (5.27), this proves the bound (5.22). The bound (5.23) is proved

in the same way; in fact, its proof is slightly easier. �

We also need the following lemma of a somewhat similar nature.

Lemma 5.13. Let G be a graph with nodeweights 1, and let q ≥ 1, a ∈ Pdq ,

h ∈ Rq , and J ∈ Symq . Let G′ be obtained from G by adding k new isolated

nodes with nodeweights 1. Then

(5.31)

|F̂a(G′, J)− F̂a(G, J)| ≤ k

|V (G)|

(q
2

ln |V (G)|+ (q + 2)
(
βmax‖J‖∞ +

1

2
ln q

))
,

(5.32) |F̂(G′, J, h)− F̂(G, J, h)| ≤ k

|V (G)|

(
βmax‖J‖∞ + ‖h‖∞ + ln q

)
,
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and

(5.33) |Fa(WG′ , J)−Fa(WG, J)| ≤ 2q2k

|V (G)|
‖J‖∞βmax.

Proof. It suffices to prove the case k = 1. Let n = |V (G)|. Let φ ∈ Ωa(G).

We claim that after changing the value of φ on at most b(q − 1)/2c nodes, it

can be extended to the new node to get a configuration φ′ = φ′(φ) ∈ Ωa(G′).

Indeed, let Vi = φ−1({i}), and let δi = (n + 1)ai − |Vi|. Then
∑
i δi = 1 and

−1 + ai ≤ δi ≤ ai + 1 (by the assumption that φ ∈ Ωa(G)). Let S+ be the set

of indices for which δi > 1, and let S− be the set of indices for which δi ≤ 0.

Since
∑
i δi = 1, we know that |S−| ≥ |S+| − 1. Choose |S+| − 1 vertices of G

in such a way that each has a different image in S−, and change the images

of each of them to a different element of S+. If we map the new vertex n+ 1

to the remaining element in S+, we obtain a configuration φ′ ∈ Ωa(G′). Since

|S+| + |S+| − 1 ≤ q, the number of vertices whose image was changed is at

most b(q − 1)/2c, as claimed.

If φ′ = φ′(φ) is obtained from φ by the above procedure, then

|Eφ(G, J, 0)− Eφ′(G′, J, 0)| ≤ 2‖J‖∞βmaxnd(q − 1)/2e ≤ n(q − 1)βmax‖J‖∞.

It is also not hard to check that each configuration φ′ can arise from at most

nb(q−1)/2cqb(q−1)/2c ≤ (nq)q/2 different configurations φ. As a consequence,

Za(G′, J) =
∑

ψ∈Ωa(G′)

e−
1

n+1
Eψ(G′,J,0) ≥ 1

(nq)q/2

∑
φ∈Ωa(G)

e−
1

n+1
Eφ′(φ)(G′,J,0)

≥ 1

(nq)q/2

∑
φ∈Ωa(G)

e−
1
n
Eφ(G′,J,0)e−qβmax‖J‖∞

=
1

(nq)q/2
exp(−qβmax‖J‖∞)Za(G, J).

Conversely, from every ψ ∈ Ωa(G′) we can construct a φ ∈ Ωa(G) by delet-

ing the new node and changing the image of at most max{1, b(q−1)/2c} ≤ q/2
nodes (where we used that, without loss of generality, q ≥ 2 since other-

wise we do not have to change any nodes). This time, there are at most

q(nq)max{1,b(q−1)/2c} ≤ q(nq)q/2 different configurations ψ ∈ Ωa(G′) that can

give rise to the same configuration φ. As a consequence, we now have

Za(G′, J) =
∑

ψ∈Ωa(G′)

e−
1

n+1
Eψ(G′,J,0)

≤ q(nq)q/2enqβmax‖J‖∞
∑

φ∈Ωa(G)

e−
1

n+1
Eφ(G,J,0)

≤ q(nq)q/2 exp((q + 1)βmax‖J‖∞)Za(G, J).
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Combined with the trivial inequality e−nβmax‖J‖∞ ≤ Za(G, J) ≤ qnenβmax‖J‖∞ ,

this gives

|F̂a(G′, J)− F̂a(G, J)| =
∣∣∣∣ 1

n+ 1
lnZa(G′, J)− 1

n
lnZa(G, J)

∣∣∣∣
≤ q + 2

n
βmax‖J‖∞ +

ln q

n
+
q ln(nq)

2n

=
q + 2

n

(
βmax‖J‖∞ +

1

2
ln q

)
+

q

2n
lnn.

This proves (5.31). The inequality (5.32) follows from the observation that

Z(G′, J, h) = Z(G, J, h)
q∑
i=1

ehi ,

and the inequality (5.33) follows easily from Theorem 4.13. �

5.5.3. Conclusion. To conclude the proof of Theorem 5.8, we use the fol-

lowing form of the Weak Regularity Lemma due to Frieze and Kannan [7]; see

also [3]. We define, for a weighted graph G and a partition P = (V1, . . . , Vk) of

V (G), the weighted graph GP on V (G) with nodeweights α(GP) = α(G) and

edgeweights βuv(GP) = βij(G/P) if (u, v) ∈ Vi × Vj . We call P equitable if⌊ |V (G)|
k

⌋
≤ |Vi| ≤

⌈ |V (G)|
k

⌉
for all i ∈ [q].

Lemma 5.14 ([7]). For every weighted graph G with all nodeweights 1 and

integer 1 ≤ k ≤ |V (G)|, there is an equitable partition P of V (G) into k classes

such that

d�(G,GP) ≤ 20√
log2 k

βmax(G).

With the help of this lemma, we now complete the proof of Theorem 5.8

as follows. Let k = dn1/2e. It will be convenient to assume that m = n/k

is an integer. To this end, add k′ = kdn/ke − n ≤ n1/2k new isolated nodes

to G. By Lemma 5.13, the cumulative change to “Fa(G, J) and Fa(WG, J) can

be bounded by

1

n1/2

(q
2

lnn+
q + 2

2
ln q + (2q2 + q + 2)βmax‖J‖∞

)
≤ q2

n1/2

(1

2
lnn+

1

2
+ 5βmax‖J‖∞

)
.

By the Weak Regularity Lemma 5.14, we may now choose an equitable parti-

tion P of V (G) into k classes such that

d�(G,GP) ≤ 20βmax(G)√
log2 k

≤ 20
√

2βmax(G)√
lnn

.
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To complete the proof, we use the triangle inequality,∣∣∣“Fa(G, J)− “Fa(WG, J)
∣∣∣ ≤ ∣∣∣“Fa(G, J)− “Fa(GP , J)

∣∣∣
+
∣∣∣“Fa(GP , J)−Fa(WGP , J)

∣∣∣
+
∣∣∣Fa(WGP , J)−Fa(WG, J)

∣∣∣.
Here the first term is bounded by q2‖J‖∞d�(G,GP) by (5.16), (2.12) and

(2.13), and the last term is bounded by the same quantity by Theorem 4.13.

To estimate the middle term, let G′ = G/P. Then GP = G′[m] and

WGP = WG′ , and hence by Lemma 5.12,∣∣∣“Fa(GP , J)−Fa(WG′ , J)
∣∣∣ =

∣∣∣“Fa(G′[m], J)−Fa(WG′ , J)
∣∣∣

≤ q2

m

(
2‖J‖∞βmax(G) + 3(1 + lnm)

)
≤ q2

n1/2

(
4‖J‖∞βmax(G) + 6

(
1 +

1

2
lnn

))
.

Combining the various error terms, we get that∣∣∣“Fa(G, J)− “Fa(WG, J)
∣∣∣ ≤ q2

n1/2

(7

2
lnn+

13

2
+ 9βmax(G)‖J‖∞

)
+ q2 40

√
2√

lnn
‖J‖∞βmax(G)

≤ q2

n1/2

(13

2
+

14n1/4

e

)
+ q2 40

√
2 + 9√
lnn

‖J‖∞βmax(G)

≤ 12q2

n1/4
+ q2 65√

lnn
‖J‖∞βmax(G).

This proves the first bound of the theorem. The proof of the second bound is

completely analogous and is left to the reader.

5.6. Proof of Theorem 2.14. Let (Gn) be a sequence of graphs with uni-

formly bounded edgeweights and no dominating nodeweight.

The equivalence of (i) and (ii) was proved in [3].

Theorem 5.4 and Proposition 5.3 imply that dHf
1 (Ŝq(Gn),Sq(WGn)) → 0,

and hence the sequence Ŝq(Gn) is Cauchy in the dHf
1 distance if and only if the

sequence Sq(WGn) is. By Theorem 3.5, this happens if and only if the graphon

sequence (WGn) is convergent, which is equivalent to (i).

Similarly, equation (5.8) and Theorem 5.5 imply that

|Êa(Gn, J)− Ea(WGn , J)| → 0,

and hence the sequence Êa(Gn, J) is convergent if and only if the sequence

Ea(WGn , J) is. By Theorem 3.5, this happens for all a and J if and only if the

graphon sequence (WGn) is convergent, which is again equivalent to (i).
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Next suppose that α2
Gn
/n → ∞. Lemma 5.7 implies that for every

weighted graph H = (a, J),∣∣∣∣homa(Gn, H)

α2
Gn

− Ea(WGn , J)

∣∣∣∣→ 0,

and hence the sequence (homa(Gn, H)/α2
Gn

) is convergent if and only if the

sequence (Ea(WGn , J)) is. As we have seen, this is equivalent to (i).

Now suppose that all nodeweights in the graphs Gn are 1. Then Theo-

rem 5.8 implies that |“Fa(Gn, J) − Fa(WGn , J)| → 0, and hence the sequence“Fa(Gn, J) is convergent if and only if the sequence Fa(WGn , J) is. We conclude

by Theorem 3.5 as before. Similar arguments also prove Theorems 2.15 and

3.7.

5.7. Proof of Proposition 3.11. The following lemma is a slight general-

ization of Lemma 4.3 in [3], and the proof is essentially the same.

Lemma 5.15. Let λ > 0, and let H be a weighted graph on n nodes with

nodeweights 1. Let Xij (ij ∈ E(H)) be independent random variables such that

E(Xij) = βij(H) and |Xij | ≤ C . Let G be the random graph on V (H) with

edgeweights Xij . Then

d�(H,G) < C

Ç 
λ+ 4 log 4

n
+

1

n

å
with probability at least 1− e−λn/4.

Turning to the proof of Proposition 3.11, recall that we are considering

two sequences (Gn) and (G′n) of graphs. Consider a third sequence, G′′n, with

V (G′′n) = V (G′n), E(G′n) = E(G′′n) and βuv(G
′′
n) = β̄.

Lemma 5.15 implies that with probability one, d�(G′n, G
′′
n)→ 0 as n→∞.

Combined with the easy bound (5.16), this immediately gives the statement of

the proposition. Indeed, using the fact that “F(Gn, β̄J, h) = “F(Gn,
′′ J, h), we

may use (5.16) to bound∣∣∣∣“F(G′n, J, h)− “F(Gn, β̄J, h)

∣∣∣∣ =

∣∣∣∣“F(G′n, J, h)− “F(Gn,
′′ J, h)

∣∣∣∣
≤ q2 max{‖J‖∞, ‖h‖∞}d�(G,′′G′).

6. Weaker convergence

6.1. Counterexamples. By Theorems 4.13 and 4.14, graphons that are

near in the cut-metric have similar free energies, and thus also similar ground

state energies. Our first example shows that the converse does not hold. In-

deed, it gives a family of distinct graphons that have the same free energies

and ground state energies.
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Example 6.1 (Block Diagonal Graphons). Given 0 < α < 1 and β1, β2 ≥ 0,

let W be the block diagonal graphon

(6.1) W (x, y) =


β1 if 0 ≤ x, y ≤ α,
β2 if α ≤ x, y ≤ 1,

0 otherwise.

It is easy to express the free energies of W in terms of the free energies of the

constant graphons W1 ≡ αβ1 and W2 ≡ (1 − α)β2. If q ≥ 1, h ∈ Rq, and

J ∈ Symq, then

(6.2)

F(W,J, h) =
∑
u=1,2

min
ρ(u)∈Pdq

(
α2
uβu

∑
i,j

Jijρ
(u)
i ρ

(u)
j − αu

∑
i

ρ
(u)
i hi − αuEnt(ρ(u))

))
=
∑
u=1,2

αuF(βuαu, J, h),

where α1 = α and α2 = 1− α. The same calculation also shows that

(6.3) E(W,J, h) =
∑
u=1,2

αuE(βuαu, J, h).

Choosing

β1 = 1/α and β2 = 1/(1− α) with α ∈ (0, 1/2],

we obtain a one-parameter family of distinct graphons that cannot be dis-

tinguished by their free energies or ground state energies since F(W,J, h) =

F(1, J, h) and E(W,J, h) = E(1, J, h) for all W in the family.

Obviously, two distinct graphons that can be distinguished by their ground

state energies without magnetic fields can also be distinguished if we allow

magnetic fields. Our next example shows that the converse is not true.

Example 6.2. Consider again the block diagonal graphon defined in (6.1).

It is easy to calculate the ground state energy of this graphon for h = 0, giving

E(W,J, 0) =
(
α2β1 + (1− α)2β2

)
E(1, J, 0).

Choosing

β1 =
λ

α
and β2 =

1− αλ
(1− α)2

with α ∈ (0, 1/2] and λ ∈ (0, 1/α], we obtain a two-parameter family of distinct

graphons that cannot be distinguished by the ground state energies without

magnetic fields.

But only the subfamily considered in Example 6.1, i.e., the subfamily

with λ = 1, remains indistinguishable if we allow magnetic fields. Indeed,

consider the case q = 2, Jij = 1− δi,1, and hi = cδ1,i from the biased max-cut
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problem discussed in Section 2.3. The biased max-cut for W ≡ β can be easily

calculated, giving

−E(β, J, h) = max
a∈[0,1]

(
2a(1− a)β + ca

)
=
β + c

2
+
c2

8β

provided |c| ≤ 2β. Taking into account the relation (6.3), we conclude that for

all graphons W in the above family, we have

−E(W,J, h) =
c+ 1

2
+ +

c2

8

(α
λ

+
(1− α)2

1− αλ

)
provided |c| ≤ min{2λ/α, (1− αλ/(1− α)2}. Thus two elements of the family

can be distinguished by the biased max-cut problem unless α
λ + (1−α)2

1−αλ = 1,

i.e., unless λ = 1, as claimed.

We have seen in the previous sections that right-convergence implies con-

vergence of the ground state energies, which in turn implies convergence of

the ground state energies without magnetic fields, and hence naive right-

convergence. Using Examples 6.1 and 6.2, it is not hard to show that right-

convergence is in fact strictly stronger than convergence of the ground state

energies, which in turn is strictly stronger than naive right-convergence. This

is the content of the next example.

Example 6.3. We first give an example of a sequence of simple graphs that

has convergent ground state energies, but is not left-convergent, and therefore

also not right-convergent. Let p ≤ 1/2, let Gn = G(n, p), and let G′n be the

disjoint union of two random graphs G(n, 2p). With probability one, Gn then

converges from the left to the constant graphon W ≡ p, and G′n converges from

the left to the graphon W ′ defined by (6.1) with α = 1/2 and β1 = β2 = 2p.

As a consequence, Ê(Gn, J, h)→ E(W,J, h) and Ê(G′n, J, h)→ E(W ′, J, h). By

the identity (6.3), E(W,J, h) = E(W ′, J, h) for all q ≥ 1, all J ∈ Symq, and all

h ∈ Rd, implying that the ground state energies of Gn and G′n converge to the

same limiting ground state energy. Interleaving the two sequences (Gn) and

(G′n), we get a sequence of simple graphs that is not left-convergent, but has

convergent ground state energies. (Taking into account the identity (6.2), we

see that this sequence has convergent free energies as well.)

In a similar way, we can use Example 6.2 to construct a sequence of simple

graphs that is naively right-convergent but does not have convergent ground

state energies. Indeed, let W be the constant graphon W ≡ p, and let W ′

be the graphon defined in (6.1) with α = 1/2, β1 = p, and β2 = 3p. Then

E(W ′, J, 0) =
(
p
4 + 3p

4

)
E(1, J, 0) = E(W,J, 0). Let Gn = G(p, n) and G′n be the

disjoint union of G(p, n) and G(3p, n). If H is a soft-core graph on q nodes with

βij(H) = e2Jij , then 1
n2 hom(Gn, H)→ E(W,J, 0) and 1

(2n)2
log hom(G′n, H)→
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E(W ′, J, 0) = E(W,J, 0). Interleaving the two sequences, we thus obtain a se-

quence which is naively right-convergent, but does not have convergent ground

state energies once we allow for nonzero magnetic fields.

We finally give an example showing that the statements of Theorems 2.14,

2.15, and 3.7 concerning the free energy do not hold if we relax the condition

that (Gn) has nodeweights one.

Example 6.4. LetG be the weighted graph on {1, 2} with weights β11(G) =

β22(G) = 1, α1(G) = 1/3, and α2(G) = 2/3, and let Gn be obtained from G

by blowing up each node n times, Gn = G[n]. Then Gn converges to the

block-diagonal graphon

W (x, y) =

1 if 0 ≤ x, y ≤ 1/3 or 1/3 ≤ x, y ≤ 1,

0 otherwise.

But the free energies and microcanonical free energies of Gn do not converge

to those of W . Indeed, let q ≥ 2, a ∈ Pdq, and J ∈ Symq. Proceeding as in the

proof of Lemma 5.12, it is then not hard to show that “Fa(G[n], J) converges

to

F∞a = inf
ρ

(
Eρ(G, J, 0) +

1

2

∑
x∈V (G)

∑
i∈[q]

ρi(x) log ρi(x)
)
,

where the infimum goes over all fractional partitions ρ of V (G) = {1, 2}
obeying the constraint 1

3ρi(1) + 2
3ρi(2) = ai, while F(G[n], J, 0) converges

to F∞ = mina∈Pdq F∞a . Note that the nodeweights of G enter into the en-

ergy term Eρ(G, J, 0) and the condition on ρ, but not into the entropy term
1
2

∑
x
∑
i ρi(x) log ρi(x), in contrast to the corresponding expression for the mi-

crocanonical free energies of the limit W ,

Fa(W,J) = inf
ρ

(
Eρ(G, J, 0) +

1

3

∑
i∈[q]

ρi(1) log ρi(1) +
2

3

∑
i∈[q]

ρi(2) log ρi(2)
)
,

where the nodeweights enter into both the energy and the entropy term.

Specializing to the Ising model with spin space {−1,+1} and coupling

constants Jφ,φ′ = K
2 φφ

′, we write the limit F∞a as

F∞a = − max
m1,m2∈[−1,1]
1
3
m1+ 2

3
m2=m

(K
2

(1

9
m2

1 +
4

9
m2

2

)
+

1

2
Ent(m1) +

1

2
Ent(m2)

)

and the free energy of the limit W as

Fa(W,J) = − max
m1,m2∈[−1,1]
1
3
m1+ 2

3
m2=m

(K
2

(1

9
m2

1 +
4

9
m2

2

)
+

1

3
Ent(m1) +

2

3
Ent(m2)

)
.
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Here m = m(a) = a+ − a− and

Ent(m) = −1 +m

2
ln
(1 +m

2

)
− 1−m

2
ln
(1−m

2

)
.

Let K = 3/2, let “m ≥ 0 be such that

max
m2∈[−1,1]

(m2
2

3
+

1

2
Ent(m2)

)
=
“m2

3
+

1

2
Ent(“m),

and let â ∈ Pd2 and be such that “m = â1 − â2. Using the fact that

max
M∈[−1,1]

(K̃
2
M2 + Ent(M)

)
≥ ln 2 = Ent(0),

with equality if and only if K̃ ≤ 1 (see Example 3.9), it is then not hard to

check that

F∞ = F∞
â

= −
“m2

3
− 1

2
Ent(“m)− 1

2
Ent(0) < − ln 2,

while

Fâ(W,J) ≥ F(W,J, 0)

= − max
m1,m2

(m2
1

12
+
m2

2

3
+

1

3
Ent(m1) +

2

3
Ent(m2)

)
= Ent(0) = − ln 2.

This proves that limn→∞ “Fâ(G[n], J) < Fâ(W,J) and limn→∞ “F(G[n], J, 0) <

F(W,J, 0).

Interspersing the sequence (G[n]) with an arbitrary sequence of simple

graphs that converges to W , this also yields an example of a convergent se-

quence of weighted graphs whose free energies and microcanonical free energies

do not converge.

6.2. Naive right-convergence with two weights. We have seen that naive

right-convergence is not enough to guarantee left-convergence. But there is

a way of saving the equivalence of right-convergence with left-convergence,

by considering target graphs H with two edgeweights βij and γij . We call

these graphs doubly weighted. We say that H is soft-core if βij , γij > 0 for all

i, j ∈ V (H). The value hom(G,H) is defined as

hom(G,H) =
∑

φ:V (G)→V (H)

∏
u∈V (G)

αφ(u)(H)

×
∏

uv∈E(G)

βφ(u),φ(v)(H)
∏

uv/∈E(G)

γφ(u),φ(v)(H).

Theorem 6.5. Let (Gn) be a sequence with uniformly bounded edgeweights,

and nodeweights 1. Then (Gn) is left-convergent if and only if

ln hom(Gn, H)

|V (G)|2

has a limit for each doubly weighted soft-core graph H .
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Proof. The proof of the “only if” part is analogous to the proof of the

first statement in Theorem 2.15 and is left to the reader. The idea of the

proof of the “if” part is that one can use the second set of edgeweights to force

the dominating partition to have prescribed sizes, and thereby show that the

microcanonical ground state energies converge. To be more precise, let q ≥ 1,

a ∈ Pdq, and J ∈ Symq. Define a doubly weighted graph HC by

αi = 1, γij = exp
(−C
ai

1i=j
)
, βij = exp

(
Jij +

C

ai
1i=j

)
(i, j ∈ [q]).

Then for every graph G,

hom(G,HC) exp(C|V (G)|2)

=
∑
φ

αφ exp(Eφ(G, J, 0)) exp
(
−
∑
i

C

ai

Ä
ain− |φ−1(i)|

ä2)
.

The last factor is maximized when φ ∈ Ωa(G), from which it is not hard to

show that

lim
C→∞

( ln hom(G,HC)

|V (G)|2
+ C

)
= Ea(G, J),

uniformly in G, and hence the theorem follows. �

6.3. Convergence of spectra. Every graphon W ∈ W defines an operator

TW : L2[0, 1]→ L2[0, 1] by

TW f(x) =

∫ 1

0
W (x, y)f(y) dy.

It is well known that this operator is self-adjoint and compact, and hence it

has a discrete real spectrum Λ(W ), whose only possible point of accumulation

is 0. We consider Λ(W ) as multiset. For i ≥ 1, let λi(W ) denote the ith largest

element of the spectrum (counting multiplicities), provided the spectrum has

at least i positive elements; otherwise, let λi(W ) = 0. Similarly, let λ′i(W )

denote the ith smallest element of the spectrum, provided the spectrum has at

least i negative elements; otherwise, let λ′i(W ) = 0.

It is known that for k ≥ 2, the sum
∑
λ∈Λ(W ) λ

k is absolute convergent.

In fact, we have

(6.4)
∑

λ∈Λ(W )

λ2 = ‖W‖22 and
∑

λ∈Λ(W )

λk = t(Ck,W ) for all k ≥ 3.

It follows that
∑m
i=1 λ

3
i ≤ t(C3,W ), and hence

(6.5) λm ≤
t(C3,W )1/3

m1/3
.

For a graph G with n nodes, we consider its adjacency matrix AG and

its eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn. We define its normalized eigenvalues
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λi = µi/n, (i = 1, . . . , n). Again for k ≥ 3, we have

(6.6)
n∑
i=1

λki = t(Ck, G).

We note that the spectrum of WG is the normalized spectrum of G, together

with infinitely many 0’s.

The following is a generalization of Theorem 2.9(ii) to weighted graphs,

and it also gives the values of the limiting eigenvalues.

Theorem 6.6. Let W be a graphon, and let (Gm : m = 1, 2, . . . ) be a

sequence of weighted graphs with uniformly bounded edgeweights tending to W .

Let |V (Gm)| = nm, and let λm,1 ≥ λm,2 ≥ · · · ≥ λn,nm be the normalized

spectrum of Gm. Then for every i ≥ 1,

λm,i → λi(W ) and λm,nm+1−i → λ′i(W ) as n→∞.

We can prove a bit more.

Theorem 6.7. Let (W1,W2, . . .) be a sequence of uniformly bounded graph-

ons, converging (in the δ� metric) to a graphon W . Then for every i ≥ 1,

(6.7) λi(Wn)→ λi(W ) and λ′i(Wn)→ λ′i(W ) as n→∞.

Proof. If the conclusion does not hold, then there is an i0 ≥ 0 for which

(say) λi(Wn) 6→ λi(W ). Choosing a suitable subsequence, we may assume that

for each j ≥ 1, the limits

µj = lim
n→∞

λj(Wn) and µ′j = lim
n→∞

λ′j(Wn)

exist and that µi0 6= λi0(W ).

We claim that for every k ≥ 4,

(6.8) lim
n→∞

∞∑
j=1

λkj (Wn) −→
∞∑
j=1

µkj , and lim
n→∞

∞∑
j=1

λ′j
k
(Wn) −→

∞∑
j=1

µ′j
k
.

Indeed, the sequence t(C3,Wn) is convergent, and hence it is bounded by some

constant c; but then (6.5) tells us that λm(Wn) < (c/m)1/3, and hence the

sum
∑
m λ

k
m(Wn) is uniformly majorized by the convergent series

∑
m(c/m)4/3.

Hence we can take the limit term-by-term in the sums on the left-hand side.

Using once more the convergence of t(Ck,Wn) to t(Ck,W ), we conclude

that for every k ≥ 4, we have

(6.9)
∞∑
j=1

µkj +
∞∑
j=1

µ′j
k

=
∞∑
j=1

λj(W )k +
∞∑
j=1

λ′j(W )k.

To conclude, it suffices to prove that the two sums on each side are the same

term-by-term:

(6.10) µj = λj(W ) and µ′j = λ′j(W ) (j ≥ 0).
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Indeed, this can be proved by induction on j. Let λj occur a times in the

sequence (λ1, λ2, . . . ) and b times in the sequence (µ1, µ2, . . . ). Let −λj occur

a′ times in the sequence (λ′1, λ
′
2, . . . ) and b′ times in the sequence (µ′1, µ

′
2, . . . ).

Assume by induction that λi = µi for i < j and that λ′i = µ′i whenever |λ′i| > λj
or |µ′i| > λj . Subtracting the contribution of these terms from both sides of

(6.9), and sending k → ∞ through the even numbers, the left-hand side is

asymptotically (b+ b′)λkj , while the right-hand side is (a+ a′)λkj . This implies

that a + a′ = b + b′. Similarly, letting k tend to infinity through the odd

numbers, we get that a − a′ = b − b′. This implies that a = b and a′ = b′ so,

in particular, λj = µj as claimed. �

Let I be a bounded interval. The previous theorem then states that for

all i ≥ 1, the maps W 7→ λi(W ) and W 7→ λ′i(W ) are continuous maps from

(WI , δ�) to R. By the compactness of (WI , δ�), these maps are uniformly

continuous, implying the following.

Corollary 6.8. For every bounded interval I , every ε > 0, and every

i ≥ 1, there is a δi > 0 such that if U,W ∈ WI and δ�(U,W ) ≤ δi, then

|λi(U)− λi(W )| ≤ ε and |λ′i(U)− λ′i(W )| ≤ ε.

For the special case when the sequence (Gn) is quasirandom with density

p, the largest normalized eigenvalue of Gn tends to p, while the others tend

to 0. In this special case, this statement has a converse. If (Gn) is a sequence

of graphs such that the edge-density on Gn tends to p, the largest normalized

eigenvalue of Gn tends to p, and all the other eigenvalues tend to 0, then (Gn)

is quasirandom.

This converse, however, does not extend to a characterization of conver-

gent graph sequences in any direct way. Consider two regular nonisomorphic

graphs G1 and G2 with the same spectrum, say the incidence graphs of two

nonisomorphic finite projective planes of the same order n. Consider the blow

ups G1(n) and G2(n), n = 1, 2, . . . , and merge them into a single sequence.

This sequence is not convergent, but all graphs in it have the same edge density,

and the spectra of all graphs are the same except for the 0’s.

7. Quasi-inner product and noneffective arguments

There is an alternative way of expressing ground state energies, which

leads to a shorter, but noneffective proof of our main result, the equivalence

of left and right-convergence. Moreover, it reduces significantly the set of test

graphs {(a, H)} respectively {(a, J)} in Definition 2.2 respectively in Defini-

tion 2.7 (see Corollary 7.4).

The best space to work with graphons is the compact space W̃I . (For

simplicity, assume that I = [0, 1].) This space has no linear structure, and
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the sum U + W or inner product 〈U,W 〉 of two graphons cannot be defined

in a way that would be invariant under weak isomorphism. However, we can

replace the inner product by the following version, which will be very useful:

C(U,W ) = sup
φ
〈U,Wφ〉 = sup

φ

∫
[0,1]2

U(x, y)W (φ(x), φ(y)) dx dy,

where the supremum is taken over all measure preserving bijections φ : [0, 1]

→ [0, 1].

We can use this quasi-inner product to express ground state energies.

Let a ∈ Pdq and J ∈ Symq, and let H be the weighted graph on [q] with

nodeweights a and edgeweights J . Then for every graphon W ,

(7.1) Ea(W,J) = C(W,WH).

We can also express the cut norm with this functional as

(7.2) ‖W‖� = sup
S,T⊆[0,1]

〈W,1S×T 〉 = sup
a,b∈[0,1]

C(W,1[0,a]×[0,b]).

The functional C(U,W ) has many good properties. It follows, just like for

the cut norm in [3], that

(7.3) C(U,W ) = sup
φ
〈U,Wφ〉 = sup

φ
〈Uφ,W 〉 = sup

σ,τ
〈Uσ,W τ 〉,

where φ ranges over all measure preserving bijections [0, 1] → [0, 1], and

σ, τ range over all measure preserving, but not necessarily bijective maps

[0, 1] → [0, 1]. Hence the overlay functional is invariant under measure pre-

serving transformations of the graphons U and W ; i.e., it is a functional on

the space W̃I ×W̃I . It also follows that this quantity has the (somewhat unex-

pected) symmetry property C(U,W ) = C(W,U) and satisfies the inequalities

(7.4) 〈U,W 〉 ≤ C(U,W ) ≤ ‖U‖2‖W‖2, C(U,W ) ≤ ‖U‖∞‖W‖1.

This supports the claim that C(., .) behaves like some kind of inner product.

This analogy is further supported by the following identity, a kind of “Cosine

Theorem,” relating it to the distance δ2 derived from the L2-norm:

(7.5)

2C(U,W ) = ‖U‖22 + ‖W‖22 − δ2(U,W )2 = δ2(U, 0)2 + δ2(W, 0)2 − δ2(U,W )2.

But we have to be a bit careful; the functional C(U,W ) is not bilinear,

only subadditive:

(7.6) C(U + V,W ) ≤ C(U,W ) + C(V,W ).

It is homogeneous for positive scalars. If λ > 0, then

(7.7) C(λU,W ) = C(U, λW ) = λC(U,W )
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and C(U,W ) = C(−U,−W ), but C(U,W ) and C(−U,W ) are not related in

general.

A less trivial property of this functional is that it is continuous in each

variable with respect to the δ� distance. This does not follow from (7.5),

since the distance δ2(U,W ) is not continuous with respect to δ�, only lower

semicontinuous.

Lemma 7.1. If δ�(Un, U)→ 0 as n→∞ (U,Un ∈ W1), then C(Un,W )→
C(U,W ) for every W ∈ W1.

Proof. We may assume that ‖Un − U‖� → 0. By subadditivity (7.6), we

have

−C(U − Un,W ) ≤ C(Un,W )− C(U,W ) ≤ C(Un − U,W ),

and hence it is enough to prove that C(Un − U,W ), C(U − Un,W ) → 0. In

other words, it suffices to prove the lemma in the case when Un → U = 0.

The usual inner product 〈U,W 〉 is continuous in each variable with respect

to the cut norm, which was noted, e.g., in [11, Lemma 2.2]. Since C(Un,W ) ≥
〈Un,W 〉, it follows that lim infn C(Un,W ) ≥ 0.

To prove the opposite inequality, we start with the case when W is a

stepfunction. Write W =
∑m
i=1 ai1Si×Ti . Then using (7.6) and (7.2), we get

C(Un,W ) ≤
m∑
i=1

C(Un, ai1Si×Ti)

=
m∑
i=1

C(aiUn,1Si×Ti) ≤
m∑
i=1

‖aiUn‖� =
m∑
i=1

|ai|‖Un‖�.

Since every term tends to 0, we get that lim sup C(Un,W ) ≤ 0.

Now if W is an arbitrary kernel, then for every ε > 0, we can find a

stepfunction W ′ such that ‖W −W ′‖1 ≤ ε/2. Then C(Un,W ′)→ 0, and hence

C(Un,W ′) ≤ ε/2 if n is large enough. But then

C(Un,W ) ≤ C(Un,W −W ′) + C(Un,W ′) ≤ ‖Un‖∞‖W −W ′‖1 + ε/2 ≤ ε.

This shows that lim supn C(Un,W ) ≤ 0 and completes the proof. �

Remark 7.2. While the functional C(U,W ) is continuous in each variable,

it is not continuous as a function on W̃1 × W̃1. Let (Gn) be any quasirandom

graph sequence, and let Wn = Un = 2WGn − 1. Then Un,Wn → 0 in the cut

norm (and so also in δ�), but C(Un,Wn) = 1 for all n.

We use the quasi-inner product to give a proof of what can be considered

as the main result in this paper, the equivalence of (ii) and (iv) in Theorem 3.5.
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Theorem 7.3. A sequence (Wn) of graphons in WI is convergent in the

δ� distance if and only if (Ea(Wn, J)) is convergent for every a ∈ Pdq and

J ∈ Symq .

Proof. Note that by (7.1), (Ea(Wn, J)) is convergent for every a ∈ Pdq and

J ∈ Symq if and only if C(Wn,WH) is convergent for every weighted graph H.

Suppose that Wn → W in the cut distance. We may apply measure pre-

serving transformations so that the Wn →W in the cut norm. Then for every

U ∈ W1, by (7.6) and Lemma 7.1, we have

C(U,Wn)− C(U,W ) ≤ C(U,Wn −W )→ 0,

and hence lim supn C(U,Wn) ≤ C(U,W ). Replacing U by −U shows that

lim infn C(U,Wn) ≥ C(U,W ), and hence limn C(U,Wn) = C(U,W ). In particu-

lar, C(Wn,WH) is convergent for every weighted graph H.

Conversely, let (Wn) be a sequence that is not convergent in the cut dis-

tance. By the compactness of the graphon space, it has two subsequences,

(Wni) and (Wmi), converging to different (not weakly isomorphic) graphons

W and W ′. Then there is a graphon U such that C(W,U) 6= C(W ′, U); in fact,

(7.5) implies

(C(W ′,W ′)− C(W ′,W )) + (C(W,W )− C(W ′,W ))

= δ2(W ′,W )2 ≥ δ�(W ′,W )2 > 0,

and so either C(W ′,W ′) 6= C(W,W ′) or C(W,W ′) 6= C(W,W ).

Suppose that C(W,U) 6= C(W ′, U), and let (Hk) be any sequence of simple

graphs such that Hk → U in the δ� distance. Then by Lemma 7.1, we have

C(W,WHk) 6= C(W ′,WHk) if k is large enough, and for this simple graph Hk,

the sequence C(Wn,WHk) is not convergent. �

The proof above is not effective; it does not provide explicit inequali-

ties between the different distance measures that we considered, like Theo-

rems 4.6, 4.7, or 4.9. However, it has the following corollary. Let F be a simple

graph, and let HF be the soft-core weighted graph with V (HF ) = V (F ) = [q],

nodeweights 1, and edgeweights

βi,j(HF ) =

e, if (i, j) ∈ E(F ),

1, otherwise.

Let u = (1/q, . . . , 1/q) ∈ Rq.

Corollary 7.4. (a) A sequence (Gn) of weighted graphs is right-con-

vergent if and only if
1

α2
Gn

ln homu(Gn, HF )

is convergent for every simple graph F .
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(b) A sequence (Gn) of weighted graphs has convergent microcanonical

ground state energies if and only if Eu(Gn, J) converges for every symmetric

0-1 matrix J with 0’s in the diagonal.
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[12] E. Szemerédi, Regular partitions of graphs, in Problèmes Combinatoires et
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