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Norm convergence of
nilpotent ergodic averages

By Miguel N. Walsh

Abstract

We show that multiple polynomial ergodic averages arising from nilpo-

tent groups of measure preserving transformations of a probability space

always converge in the L2 norm.

1. Introduction

The purpose of this paper is to prove the following result.

Theorem 1.1. Let G be a nilpotent group of measure preserving trans-

formations of a probability space (X,X , µ). Then, for every T1, . . . , Tl ∈ G,

the averages

(1.1)
1

N

N∑
n=1

d∏
j=1

(
T
p1,j(n)
1 · · ·T pl,j(n)

l

)
fj

always converge in L2(X,X , µ) for every f1, . . . , fd ∈ L∞(X,X , µ) and every

set of integer valued polynomials pi,j .

This result was conjectured in the present form by Bergelson and Leibman,

who also showed that even limN→∞
1
N

∑N
n=1 T

nfSng need not exist if T and

S only generate a solvable group [6].

1.1. Historical background. Partial results towards Theorem 1.1 have a

rich history. Notice that when d = l = 1 and the polynomial is linear it reduces

to the classical mean ergodic theorem. The only case of Theorem 1.1 that was

fully settled is that in which T1 = · · · = Tl, that is, when G is a cyclic group.

The study of this case originated in the seminal work of Furstenberg [10] on

Szemerédi’s theorem, while a general solution when the polynomials are linear

was later provided by Host and Kra [15] following the work of several authors

(with a different proof subsequently found by Ziegler [22]). Convergence for

general polynomials was established by Bergelson [5] under the assumption of
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weakly mixing, while the first unconditional nonlinear result was obtained by

Furstenberg and Weiss [11]. The general result for cyclic groups and arbitrary

polynomials was finally settled by Host and Kra [14] and Leibman [18].

Another case of Theorem 1.1 that is known is that in which G is abelian

and every polynomial is linear. Here, the case d = 2 was proven by Conze and

Lesigne [8], and assuming extra ergodicity hypothesis on the transformations,

Zhang [21] gave a proof for d = 3 and Frantzikinakis and Kra [9] for general d.

Without these assumptions, this result was established by Tao [19] and by now

possesses several different proofs [1], [13], [20]. However, when G is abelian but

the polynomials are arbitrary, very little was known. It was shown by Chu,

Frantzikinakis and Host [7] that

(1.2)
1

N

N∑
n=1

T
p1(n)
1 f1 · · ·T pl(n)

l fl

converges whenever the polynomials pi have distinct degrees, but the conver-

gence of (1.2) has remained open for arbitrary polynomials. Notice that (1.2)

corresponds to taking pi,j = 0 whenever i 6= j in Theorem 1.1. More generally,

very little was known until now for convergence of Zd actions along polynomi-

als. A particular result in this direction is the convergence of the averages

1

N

N∑
n=1

Tn
2
f
Ä
Tn

2
Sn
ä
g,

which was established by Austin [2], [3].

Finally, when G is only assumed to be nilpotent the results are much

scarcer. Prior to this paper, it was known by the work of Bergelson and

Leibman [6] that the averages

1

N

N∑
n=1

TnfSng

always converge in L2, but even in the linear case no convergence result has

been previously established for more than two transformations.

1.2. Overview of the proof. Our proof of Theorem 1.1 does not make use

of the aforementioned results and therefore provides an alternative proof of

these statements, which in many cases is substantially simpler than the origi-

nal ones. In particular, we do not make use of the machinery of characteristic

factors that is heavily used in previous literature. The price we pay in doing

so is that we do not obtain any explicit description of the limits. In this sense,

our approach is similar to that of Tao [19] in that we use a weak inverse the-

orem (see Lemma 3.4) to decompose our functions into the sum of a random

component, which is easily treatable, and a structured one, which can be han-

dled by an adequate induction. Interestingly, we find that our decomposition
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is best carried out by adapting ideas of Gowers related to the Hahn-Banach

separation theorem [12], and this is done in Section 2. This is arguably the

first time that these ideas are used in a purely ergodic theoretical context.

The main new ingredient of the proof is the concept of an L-reducible

function (Definition 3.3), which will play the role of the structured component

of our decompositions. We refer to Section 3 for precise definitions, but for now

let us discuss what these are in the linear abelian case. Here, an L-reducible

function σ with respect to a set of transformations T1, . . . , Tj , is a function

for which the behavior of Tnj σ can be somewhat recovered from that of the

set Tn1 b1, . . . , T
n
j−1bj−1 for some prescribed set of functions bi. This way, the

problem of convergence for the set of transformations T1, . . . , Tj is reduced

to the analogous question for the smaller set T1, . . . , Tj−1, and one may then

proceed inductively. The details of these reductions are carried out in Section 3.

When either G is not abelian or the polynomials are not linear, the system

of transformations to which L-reducible functions allow us to pass does not

admit such a simple expression. In general, it will consist of twice as many

transformations as the original one and the degree of the polynomials involved

may not necessarily decrease, so that it may seem that we have not gained much

with this procedure. As it turns out however, one can define a suitable notion

of complexity for every set of transformations and show that the above process

does indeed lead us to a set of lower complexity. The proof that every system

of transformations of the type studied in Theorem 1.1 reduces in finitely many

steps to one consisting only of the identity transformation Ix = x is performed

in Section 4, and this completes the proof of Theorem 1.1.

The methods of this paper immediately shield some further convergence

results, and these are discussed in Section 5. We also include an appendix

with several examples of how the induction process mentioned in the previous

paragraph works in some concrete cases.

Acknowledgments. I would like to thank my advisor Román Sasyk for a

careful reading of the manuscript and several helpful discussions. I would also

like to thank Tim Austin, Vitaly Bergelson and Nikos Frantzikinakis for their

useful comments.

2. Decompositions through the Hahn-Banach theorem

In this section we will review some of the tools developed by Gowers and

adapt them to the context of our problem. For a much better discussion of

these topics the reader is referred to Gowers’s paper [12]. We begin by stating

the Hahn-Banach separation theorem in the form it will be needed.

Theorem 2.1 (Geometric Hahn-Banach). Let A be an open convex subset

containing 0 of a real topological vector space V , and suppose v ∈ V does not
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lie in A. Then there exists some continuous linear functional φ : V → R such

that φ(v) ≥ 1 and φ(w) < 1 for every w ∈ A.

The idea of Gowers to obtain decompositions can roughly be described

as follows. While it may be difficult to check directly whether an arbitrary

function can be described by the sum of a structured and a random component,

if such a decomposition fails to exist, then an application of the Hahn-Banach

theorem would allow us to find, since these sets tend to be convex, some large

functional that does not correlate with random functions (therefore having a

kind of structure itself) nor with structured functions (therefore also having

some randomness). This way, we are only left with proving that no object can

be random and structured at the same time, which generally tends to be an

easier task.

We will concentrate on the study of a real Hilbert space H with norm ‖·‖.
In order to apply the above scheme, we will need the following corollary.

Corollary 2.2 (cf. [12, Cor. 3.2]). Let A1, . . . , An be open convex subsets

containing 0 of some real Hilbert space H. Let c1, . . . , cn > 0 be positive real

numbers, and suppose f ∈ H cannot be written as
∑n
j=1 cjfj with fj ∈ Aj .

Then there exists some φ ∈ H such that 〈φ, f〉 ≥ 1 and 〈φ, gi〉 < c−1
i for every

gi ∈ Ai.

Proof. Since the set A :=
∑n
i=1 ciAi will be an open convex set in H

containing 0 but not f , it follows by the Hahn-Banach theorem that there

exists some φ ∈ H satisfying 〈φ, f〉 ≥ 1 and 〈φ, g〉 < 1 for every g ∈ A. The

result follows immediately, since cigi ∈ A for every g ∈ Ai. �

Given a positive real number δ and some decreasing function η : R+ → R+,

we will consider the sequence Cδ,η1 , . . . , Cδ,ηd2δ−2e defined recursively by

(2.1) Cδ,ηd2δ−2e := 1, Cδ,ηn−1 := max
¶
Cδ,ηn , 2η(Cδ,ηn )−1

©
.

We shall also write Cδ,η := Cδ,η1 . These constants will provide the parameters

for the decomposition obtained below, and the fact that they are independent

of the specific decomposition will allow us to do a priori modifications on

our set of structured functions so that they are better suited to the resulting

bounds.

Given some norm ‖·‖N on H equivalent to ‖·‖, we define its dual norm by

‖f‖∗N := sup
‖g‖N≤1

|〈f, g〉| .

Notice that ‖·‖∗N is then also equivalent to ‖·‖. We will be concerned with the

study of an infinite family of norms (‖·‖N )N∈N measuring increasing rates of

structure and for which their dual norms (‖·‖∗N )N∈N measure decreasing rates



NORM CONVERGENCE OF NILPOTENT ERGODIC AVERAGES 1671

of randomness. As it turns out, we will need to work with this large family of

norms simultaneously, so that if we know one of the components is random at

a level A (that is, ‖‖∗A is small), we need the other component to be structured

at a much higher level B (that is, ‖‖B must be small for some B much larger

than A). This is accomplished by the following result.

Proposition 2.3. Let (‖·‖N )N∈N be a family of norms on H equivalent

to ‖·‖ and satisfying ‖·‖∗N+1 ≤ ‖·‖
∗
N for every N . Let 0 < δ, c < 1 be positive

real numbers, η : R+ → R+ some decreasing function and ψ : N → N some

function satisfying ψ(N) ≥ N for all N . Then, for every integer M• > 0, there

exists a sequence

M• ≤M1 ≤ · · · ≤Md2δ−2e ≤M• = OM•,δ,c,ψ(1),

which does not depend on the specific family of norms, with the property that

for any f ∈ H with ‖f‖ ≤ 1, we can find some 1 ≤ i ≤ d2δ−2e and integers

A,B with M• ≤ A < cMi < ψ(Mi) ≤ B, such that we have the decomposition

f = f1 + f2 + f3 with

‖f1‖B < Cδ,ηi , ‖f2‖∗A < η(Cδ,ηi ), ‖f3‖ < δ.

Proof. Our proof is modeled on the proof of Proposition 3.5 of [12]. Set

A1 := M•, M1 := dc−1A1 + 1e and B1 := ψ(M1). If there is no decomposition

of the desired form with these parameters and C1 := Cδ,η1 , we may apply

Corollary 2.2 to obtain some φ1 ∈ H such that 〈φ1, f〉 ≥ 1, ‖φ1‖∗B1
≤ C−1

1 ,

‖φ1‖∗∗A1
≤ η(C1)−1 and ‖φ1‖ ≤ δ−1, where we are using the fact that if ‖·‖N is

some norm equivalent to ‖·‖, then {f ∈ H : ‖f‖N < 1} is an open convex set

in H containing 0.

Recursively, if we cannot find a decomposition with parameters Aj−1,

Mj−1, Bj−1, Cj−1, then we set Aj := Bj−1, Mj := dc−1Aj + 1e, Bj := ψ(Mj)

and Cj := Cδ,ηj . If no such decomposition exists with these parameters, we

can then use Corollary 2.2 to find some φj ∈ H with properties analogous to

the ones above. This way we construct a sequence of elements obeying the

orthogonality relationships

|〈φj , φi〉| ≤ ‖φj‖∗∗Aj
‖φi‖∗Aj

≤ ‖φj‖∗∗Aj
‖φi‖∗Bi

≤ η(Cj)
−1C−1

i ≤ 1/2,

whenever i < j, by construction of Ck. But then, by the bounds on ‖φi‖, we

obtain upon expanding the inner product

(2.2) ‖φ1 + · · ·+ φr‖2 ≤ δ−2r +
r2 − r

2
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for each r ≤ d2δ−2e. On the other hand, the condition 〈φi, f〉 ≥ 1 for all i

implies that the left-hand side of (2.2) is at least r2. Since this is absurd for

r = d2δ−2e, the result follows. �

Finally, we also prove the following lemma that will be needed later.

Lemma 2.4 (cf. [12, Cor. 3.5]). Let Σ ⊆ H be a bounded set and suppose

the norm

(2.3) ‖f‖Σ := inf


k−1∑
j=0

|λj | : f =
k−1∑
j=0

λjσj , σj ∈ Σ


is well defined and equivalent to ‖·‖. Then its dual norm is given by ‖f‖∗Σ =

supσ∈Σ |〈f, σ〉|.

Proof. Given some f ∈ H, it is clear on one hand that

sup
σ∈Σ
|〈f, σ〉| ≤ sup

‖g‖Σ≤1
|〈f, g〉|.

On the other hand, for every ε > 0, if g =
∑k−1
j=0 λjσj with

∑k−1
j=0 |λj | < 1 + ε,

then |〈f, g〉| ≤ (1 + ε) supσ∈Σ |〈f, σ〉|. The result follows. �

3. Norm convergence for systems of finite complexity

From now on fix a nilpotent group G and a probability space X as in

the statement of Theorem 1.1. By a G-sequence we shall mean a sequence

{g(n)}n∈Z taking values in G. An ordered tuple g = (g1, . . . , gj) of G-sequences

will be called a system, and for each system one can ask whether the corre-

sponding ergodic averages

(3.1) Ag
N [f1, . . . , fj ] := En∈[N ]

j∏
i=1

gi(n)fi

converge in L2(X) for every f1, . . . , fj ∈ L∞(X). Here, for a finite set A

we write Ex∈Af(x) := 1
|A|
∑
x∈A f(x), and for every positive integer N it is

[N ] := {1, . . . , N}. We say two systems are equivalent if they consist of the

same G-sequences, so for example if g, h are G-sequences, then the system (h, g)

is equivalent to the system (g, h), and so is (g, h, h). Clearly, the convergence

of the averages of the form (3.1) for some system implies the convergence of the

averages associated to every equivalent system, since T (f1)T (f2) = T (f1f2) for

every T ∈ G and f1, f2 ∈ L∞(X).

To each pair of G-sequences g, h we will associate, for each positive inte-

ger m, the G-sequence

〈g|h〉m(n) := g(n)g(n+m)−1h(n+m),
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and we define the m-reduction of a system g = (g1, . . . , gj) to be the system

g∗m = (g1, . . . , gj−1, 〈gj |1G〉m, 〈gj |g1〉m, . . . , 〈gj |gj−1〉m),

where by a slight abuse of notation we write 1G for theG-sequence 1G(n) := 1G,

where 1G is the identity of G. The main purpose of this section will be to show

that one can deduce the convergence of the averages (3.1) for some system g

from knowing this (actually, the slightly stronger Theorem 3.2 below) for every

reduction g∗m of g. This leads us to define the complexity of a system.

Definition 3.1 (Complexity of a system). We say a system g has complex-

ity 0 if it is equivalent to the trivial system (1G) (that is, the system consisting

only on the sequence 1G). Recursively, we say a system g has complexity d, for

some positive integer d ≥ 1, if it is not of complexity d′ for any 0 ≤ d′ < d and

it is equivalent to some system h for which every reduction h∗m has complexity

≤ d− 1. We say a system has finite complexity if it has complexity d for some

integer d ≥ 0.

Given a system g = (g1, . . . , gj), some set of functions f1, . . . , fj ∈ L∞(X)

and a pair of integers N,N ′, write

Ag
N,N ′ [f1, . . . , fj ] := Ag

N ′ [f1, . . . , fj ]−Ag
N [f1, . . . , fj ].

We have the following result.

Theorem 3.2. Let G and X be as above, and let d ≥ 0. Let F : N→ N be

some nondecreasing function with F (N) ≥ N for all N , and let ε > 0 be some

positive real number. Then, for every integer M > 0, there exists a sequence

of integers

(3.2) M ≤M ε,F,d
1 ≤ · · · ≤M ε,F,d

Kε,d
≤M ε,F,d = Od,F,ε,M (1),

for some Kε,d = Oε,d(1), such that for every system g = (g1, . . . , gj) of complex-

ity at most d and every choice of functions f1, . . . , fj ∈ L∞(X) with ‖fi‖∞ ≤ 1,

there exists some 1 ≤ i ≤ Kε,d such that

(3.3)
∥∥∥Ag

N,N ′ [f1, . . . , fj ]
∥∥∥
L2(X)

≤ ε

for every M ε,F,d
i ≤ N,N ′ ≤ F (M ε,F,d

i ).

This type of statement already appears in the works of Tao [19] and of

Avigad, Gerhardy and Towsner [4]. Clearly, Theorem 3.2 implies that the

averages (3.1) converge in L2(X) for every system g of finite complexity, since

otherwise one could find some ε > 0 and some increasing function F : N→ N
such that

∥∥∥Ag
N,F (N)[f1, . . . , fd]

∥∥∥
L2(X)

> ε for every integer N . The usefulness of

Theorem 3.2 lies on its uniformity over all systems of a fixed complexity, which

plays an important role in the inductive argument. In fact, the ergodic averages

(3.1) associated to a system g for which the reductions g∗m do not satisfy
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stability bounds that are uniform on m may not necessarily converge, even if

the ergodic averages associated to each individual reduction g∗m do converge.

The rest of this section is devoted to the proof of Theorem 3.2. In Section 4

we will show that every system of the form given in Theorem 1.1 has finite

complexity, thereby completing the proof of that theorem.

3.1. L-reducible functions. Since Theorem 3.2 is trivially true when d = 0,

we may proceed by induction. Thus, let d > 0 be some positive integer, and

assume the result holds for every d′ < d. Let F and 0 < ε < 1 be as in

the statement of the theorem, and let g = (g1, . . . , gj) be some system of

complexity at most d. Since it clearly sufficies to prove the result for any

system equivalent to g, by definition of the complexity we may assume without

lost of generality that g∗m has complexity ≤ d− 1 for every positive integer m.

Let C∗ denote the quantity Cδ,η defined in (2.1) associated to δ := ε/(253)

and η(x) := ε2/(2333x) so that, in particular, C∗ depends only on ε. We will

sometimes use the shorthands ‖·‖∞ for ‖·‖L∞(X), ‖·‖2 for ‖·‖L2(X) and 〈·, ·〉 for

〈·, ·〉L2(X). The following definition will be crucial.

Definition 3.3 (reducible functions). Given a positive integer L, we say

σ ∈ L∞(X), ‖σ‖∞ ≤ 1, is an L-reducible function (with respect to g) if

there exists some integer M > 0 and a family b0, b1, . . . , bj−1 ∈ L∞(X) with

‖bi‖∞ ≤ 1, such that for every positive integer l ≤ L,∥∥∥∥∥gj(l)σ − Em∈[M ] (〈gj |1G〉m(l)) b0

j−1∏
i=1

(〈gj |gi〉m(l)) bi

∥∥∥∥∥
L∞(X)

<
ε

16C∗
.

Reducible functions will play a role similar to the one played by basic

anti-uniform functions in [19]. We stress that we do not care for the value

of M in Definition 3.3. We will show in Lemma 3.4 below that every func-

tion giving rise to a large average must resemble a reducible function. The

main feature of these objects is that the role of the G-sequence gj on the av-

erages (3.1) can essentially be recovered by means of the set of G-sequences

〈gj |1G〉m, 〈gj |g1〉m, . . . , 〈gj |gj−1〉m.

Lemma 3.4 (Weak inverse result for ergodic averages). Assume the in-

equality
∥∥Ag

N [f1, . . . , fj−1, u]
∥∥

2 > ε/6 holds for some ‖u‖L∞(X) ≤ 3C , some

1 ≤ C ≤ C∗ and some f1, . . . , fj−1 ∈ L∞(X) with ‖fi‖∞ ≤ 1. Then, there ex-

ists some constant 0 < c1 < 1, depending only on ε, such that for every positive

integer L < c1N , there is an L-reducible function σ with 〈u, σ〉 > 2η(C).

Proof. We begin by noticing that
∥∥Ag

N [f1, . . . , fj−1, u]
∥∥2

2 = 〈u, h〉, where

(3.4) h := En∈[N ]gj(n)−1Ag
N [f1, . . . , fj−1, u]

j−1∏
i=1

gj(n)−1gi(n)fi.
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We claim σ := h/3C is an L-reducible function for every L < c1N and some

0 < c1 < 1 depending only on ε, from where the result immediately follows

since by the observation above it is 〈u, σ〉 > 2η(C).
It remains to prove this claim. Write c1 := ε

96(C∗)2 and assume that

0 < l < c1N . Then, if we shift [N ] to [N ] + l, we see that the right-hand
side of (3.4) changes by a magnitude of at most 6lC∗/N < ε/(16C∗) (since∥∥Ag

N [f1, . . . , fj−1, u]
∥∥
∞ ≤ 3C ≤ 3C∗), and thus∥∥∥∥∥h− En∈[N ]gj(l + n)−1Ag

N [f1, . . . , fj−1, u]

j−1∏
i=1

gj(l + n)−1gi(l + n)fi

∥∥∥∥∥
L∞(X)

<
ε

16C∗
.

Applying gj(l) we get∥∥∥∥∥gj(l)h− En∈[N ] (〈gj |1G〉n(l))Ag
N [f1, . . . , fj−1, u]

j−1∏
i=1

(〈gj |gi〉n(l)) fi

∥∥∥∥∥
L∞(X)

<
ε

16C∗
.

The claim then follows with M :=N , b0 := 1
3CAN [f1, . . . , fj−1, u] and bi :=fi.

�

As mentioned previously, the advantage of L-reducible functions is that

they allow us to reduce the study of the ergodic averages of g to the study

of averages arising from the reductions g∗m, which we already know to satisfy

uniform stability bounds by the induction hypothesis. This idea is carried out

in the next proposition.

Proposition 3.5. For every positive integer M∗, there exists a sequence

(3.5) M∗ ≤M1 ≤ · · · ≤MK̃ ≤M
∗ = OM∗,ε,d,F (1)

depending only on M∗, ε, d and F , and with K̃ depending only on ε and d,

such that if f1, . . . , fj−1 ∈ L∞(X) with ‖fi‖∞ ≤ 1 and f =
∑k−1
t=0 λtσt, where∑k−1

t=0 |λt| ≤ C∗ and each σt is an L-reducible function for some L ≥ F (M∗),

then there exists some 1 ≤ i ≤ K̃ such that∥∥∥Ag
N,N ′ [f1, . . . , fj−1, f ]

∥∥∥
L2(X)

≤ ε/4

for every pair Mi ≤ N,N ′ ≤ F (Mi).

Proof. For every σt, let M (t) be the integer coming from the definition

of an L-reducible function and let b
(t)
i ∈ L∞(X) be the corresponding family

of functions. It follows from the definition of an L-reducible function that for

every N ≤ L and every 0 ≤ t ≤ k − 1, we may replace Ag
N [f1, . . . , fj−1, σt] by

Em∈[M(t)]

En∈[N ]

Ñ
j−1∏
i=1

gi(n)fi

é(
(〈gj |1G〉m(n)) b

(t)
0

)Ñj−1∏
i=1

(〈gj |gi〉m(n)) b
(t)
i

é,
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at the cost of an L∞ error of at most ε/(16C∗). Thus, we get by Minkowski’s

inequality that for N,N ′ ≤ L,
∥∥∥Ag

N,N ′ [f1, . . . , fj−1, f ]
∥∥∥

2
is bounded by

(3.6)(
k−1∑
t=0

|λt|Em∈[M(t)]

∥∥∥Ag∗m
N,N ′

[
f1, . . . , fj−1, b

(t)
0 , b

(t)
1 , . . . , b

(t)
j−1

]∥∥∥
L2(X)

)
+ ε/8.

We are thus given a large family of averages coming from the lower com-

plexity systems g∗m. Write γ := ε
16C∗ . Clearly, it would suffice to find a suitable

interval on which each of these lower dimensional averages is bounded by γ.

Although this will not be possible, we will indeed show by repeated applica-

tions of the induction hypothesis that we can get such a bound for all but a

negligible subset of these averages. In order to do this, consider nondecreasing

functions F1, . . . , Fr : N → N, for some r = Oε,d(1), to be specified, defined

recursively by Fr := F and Fi−1(N) := max1≤M≤N Fi(M
γ,Fi,d−1), where we

are using the notation in the statement of Theorem 3.2. Also, let K := Kγ,d−1

be as in that theorem. For each tuple 1 ≤ i1, . . . , is ≤ K, s ≤ r and integer M ,

we define recursively

M (i1,...,is) :=

ÅÅÄ
Mγ,F1,d−1
i1

äγ,F2,d−1

i2

ã
· · ·
ãγ,Fs,d−1

is

.

Thus, M (i1) is the integer Mγ,F1,d−1
i1

obtained in (3.2) by starting at M , M (i1,i2)

is the integer Mγ,F2,d−1
i2

obtained by starting the sequence (3.2) at M = M (i1),

etc. In particular, notice that this sequence depends only on ε, F, d and M .

Observe also that since each of the averages in (3.6) satisfies

(3.7)
∥∥∥Ag∗m

N,N ′

[
f1, . . . , fj−1, b

(t)
0 , b

(t)
1 , . . . , b

(t)
j−1

]∥∥∥
L∞(X)

≤ 1,

the sum on (3.6) is bounded by
∑k−1
t=0 |λt| ≤ C∗.

We now proceed as follows. By the induction hypothesis we know that

each of the reduced averages in (3.6) is bounded by γ for every pair N,N ′ ∈
[M

(i)
∗ , F1(M

(i)
∗ )] and some 1 ≤ i ≤ K, which depends on the particular average.

By the pigeonhole principle and (3.7), this implies that we may find some

1 ≤ i1 ≤ K such that the contribution to (3.6) of those averages which are not

bounded by γ for every pair N,N ′ ∈ [M
(i1)
∗ , F1(M

(i1)
∗ )] is at most

Ä
K−1
K

ä
C∗.

We now apply the induction hypothesis to these remaining averages with the

function F2, the parameter γ and the starting point M
(i1)
∗ . This way, for each

of these remaining averages, we know that there exists some 1 ≤ i ≤ K such

that the average is bounded by γ for every pair N,N ′ ∈ [M
(i1,i)
∗ , F2(M

(i1,i)
∗ )].

Since by construction of F1 it is [M
(i1,i)
∗ , F2(M

(i1,i)
∗ )] ⊆ [M

(i1)
∗ , F1(M

(i1)
∗ )], we

see that those averages that we bounded in the previous step remain bounded

by γ on each of these new intervals. Thus, we may apply the pigeonhole

principle as before to find some 1 ≤ i2 ≤ K such that the contribution to
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(3.6) of those averages that are not bounded by γ for every pair N,N ′ ∈
[M

(i1,i2)
∗ , F2(M

(i1,i2)
∗ )] is at most

Ä
K−1
K

ä2
C∗.

Iterating the above process r times, we find a tuple 1 ≤ i1, . . . , ir ≤ K

such that the set of reduced averages that are not bounded by γ for every pair

N,N ′ ∈ [M
(i1,...,ir)
∗ , Fr(M

(i1,...,ir)
∗ )] = [M

(i1,...,ir)
∗ , F (M

(i1,...,ir)
∗ )], contributes at

most Å
K − 1

K

ãr
C∗ < ε/16

to (3.6), upon choosing r sufficiently large in terms of ε and d. Since the sum

over the remaining terms will be bounded by
∑k−1
t=0 |λt|γ < ε/16, we conclude

that (3.6), and therefore
∥∥∥Ag

N,N ′ [f1, . . . , fj−1, f ]
∥∥∥

2
, is bounded by ε/4, for ev-

ery N,N ′ ∈ [M
(i1,...,ir)
∗ , F (M

(i1,...,ir)
∗ )]. Notice that while the specific integer

M
(i1,...,ir)
∗ we have obtained depends on the set of functions f1, . . . , fj−1, f and

the system g, this integer belongs to the sequence M
(j1,...,jr)
∗ , 1 ≤ j1, . . . , jr

≤ K, which depends only on F, ε, d and M∗. The result follows from this ob-

servation with the sequence (3.5) given by the integers M
(j1,...,jr)
∗ , 1 ≤ j1, . . . , jr

≤ K. �

3.2. Proof of Theorem 3.2. We can now conclude the proof of Theo-

rem 3.2. As it was done before, we fix X,G,F, ε, d and g as in the statement

of that theorem and assume without lost of generality that each reduction g∗m
of g is of complexity at most d − 1 and that the result is already proven for

every d′ < d. We will also write M0 for the integer M to be chosen as the

starting point of the sequence (3.2) in Theorem 3.2. Let δ, η be as specified

at the beginning of Section 3.1, and write Ci := Cδ,ηi for the constants defined

in (2.1). Given some positive integer L, write ΣL for the set of L-reducible

functions and set

Σ+
L := ΣL ∪B2(δ/C∗),

where we write B2(δ/C∗) for the set of f ∈ L2(X) with ‖f‖2 ≤ δ/C∗. Consider

on L2(X) the norms ‖·‖L := ‖·‖Σ+
L

defined as in (2.3). It is easy to see that

these norms are well defined and equivalent to ‖·‖L2(X) (by the presence of the

small L2 ball and the fact that reducible functions are bounded by 1). Also,

notice that Σ+
L+1 ⊆ Σ+

L for every L, which in turn implies (by Lemma 2.4) that

‖·‖∗L+1 ≤ ‖·‖
∗
L.

Given any integer M write ψ(M) := F (M∗), where M∗ is the integer ob-

tained in Proposition 3.5 with M∗ = M . Let f1, . . . , fj ∈ L∞(X), ‖fi‖∞ ≤ 1

be given, and consider for fj a decomposition of the form provided in Propo-

sition 2.3 with (‖·‖L)L∈N, ψ, δ, η as above and c equal to the constant c1 in

Lemma 3.4. This allows us to find a constant 1 ≤ Ci ≤ C∗ and some integer
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M with M0 ≤M = OM0,ε,F,d(1) such that

(3.8) fj =
k−1∑
t=0

λtσt + u+ v,

where
∑k−1
t=0 |λt| ≤ Ci, each σt belongs to Σ+

B for some B ≥ ψ(M) (and there-

fore to Σ+
ψ(M)), ‖u‖

∗
A < η(Ci) for some A < c1M and ‖v‖2 < δ. We remark

that this constant Ci is the one defined in (2.1) and that the integer M ob-

tained belongs to the sequence given in Proposition 2.3, which does not depend

on the family of norms (‖·‖L)L∈N and in the present case is therefore indepen-

dent of the particular system g we have fixed (although it certainly depends

on its complexity d, as well as on ε, F and M0). Since ‖∑∗t λtσt‖2 ≤ δ, where

the sum is restricted to those σt ∈ B2(δ/C∗), we may assume that each σt in

(3.8) actually belongs to Σψ(M), at the cost of softening our bound on v to

‖v‖2 < 2δ.

We would like to use Lemma 3.4 to study the function u, but first we need

to gain some control on its L∞ norm. In order to do this, denote by S ∈ X the

set of points on which the inequality |v(s)| ≤ Ci holds (in particular one has

µ(Sc) < (2δ/Ci)
2), and write v′ := u1Sc +v. From the fact that ‖σj‖L∞(X) ≤ 1

for every σj ∈ Σψ(M), (3.8) and the definition of S, one easily checks that

|u1Sc(x)| ≤ 3|v(x)| almost everywhere and therefore ‖u1Sc‖2 ≤ 3 ‖v‖2. Hence,

it follows that for every pair of integers N,N ′,

∥∥AN,N ′ [f1, . . . , fj−1, v
′]
∥∥

2 ≤
∥∥AN ′ [f1, . . . , fj−1, v

′]
∥∥

2 +
∥∥AN [f1, . . . , fj−1, v

′]
∥∥

2

(3.9)

≤ 2(4 ‖v‖2)

< ε/3,

where we are using Minkowski’s inequality and the fact that ‖fi‖∞ ≤ 1 for

every 1 ≤ i ≤ j − 1. Consider now u1S . Similarly as above, one sees that

‖u1S‖L∞(X) ≤ 3Ci. Also, it follows from Lemma 2.4 that for every σ ∈ ΣA, it is

|〈u1S , σ〉| ≤ |〈u, σ〉|+ |〈u1Sc , σ1Sc〉|
≤ ‖u‖∗A + ‖u1Sc‖2 ‖σ1Sc‖2
< η(Ci) + 12δ2/Ci

< 2η(Ci).

We are now in a position to apply Lemma 3.4, which implies that for every

pair N,N ′ ≥M ,∥∥AN,N ′ [f1, . . . , fj−1, u1S ]
∥∥

2 ≤ ‖AN ′ [f1, . . . , fj−1, u1S ]‖2(3.10)

+ ‖AN [f1, . . . , fj−1, u1S ]‖2
≤ ε/3.
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It only remains to analyze
∑k−1
t=0 λtσt. But we may now invoke Proposition 3.5

to conclude from our choice of ψ that

(3.11)

∥∥∥∥∥∥AN,N ′ [f1, . . . , fj−1,
k−1∑
t=0

λtσt]

∥∥∥∥∥∥
L2(X)

< ε/3

for every pair Mi ≤ N,N ′ ≤ F (Mi) and some Mi ∈ [M,ψ(M)] that belongs to

the corresponding sequence (3.5). Theorem 3.2 then follows from (3.8), (3.9),

(3.10), (3.11) and Minkowski’s inequality.

4. The complexity of polynomial systems

In this section we will prove that every system of the form given in The-

orem 1.1 has finite complexity, thereby finishing the proof of that theorem.

In order to do this, we begin by reviewing some facts about polynomial se-

quences in nilpotent groups. For a detailed treatment of this topic, the reader

is referred to the work of Leibman [16], [17].

For a G-sequence g = (g(n))n∈Z taking values in a nilpotent group G and

some integer m, we define the operator Dm that takes g to the G-sequence

(Dmg)(n) := g(n)g(n + m)−1. In particular, 〈g|h〉m(n) = (Dmg)(n)h(n + m)

for every pair of G-sequences g, h and every positive integer m. We say that a

G-sequence is polynomial if there exists some positive integer d such that for

every choice of integers m1, . . . ,md, we have Dm1 · · ·Dmd
g = 1G, where we

recall that 1G stands for the constant sequence that equals the identity of G.

It is known that if (g(n))n∈Z is a sequence in a nilpotent group G that is of

the form

(4.1) g(n) = T
p1(n)
1 · · ·T pk(n)

k

for some T1, . . . , Tk ∈ G and some set of integer valued polynomials p1, . . . , pk,

then g is a polynomial sequence. Indeed, each T
pi(n)
i is clearly a polynomial

sequence and the product of polynomial sequences is polynomial by Lemma 4.1

below. (The converse also holds; see, for example, [16].)

By a polynomial system we shall mean a system g = (g1, . . . , gj), where

each gi, 1 ≤ i ≤ j, is a polynomial sequence. We define the size of such a

system to be |g| = j. To prove Theorem 1.1 it will suffice, by Theorem 3.2 and

the fact that sequences of the form (4.1) are polynomial, to prove that every

polynomial system has finite complexity.

In order to proceed, we will need to define the degree of a polynomial

sequence. Unfortunately, the natural choice of taking the least positive integer

d for which every d successive application of the above operators returns the

identity is not appropriate for our purposes, since with this definition the set

of polynomial sequences of degree ≤ d need not form a group. In order to

amend this, we need to introduce some notation. Write N0 = N ∪ {0} and
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N∗ = N0 ∪ {−∞}. We say a vector d = (d1, . . . , dk) ∈ Nk∗ is superadditive if

di ≤ di+1 for every 1 ≤ i < k and di + dj ≤ di+j for every pair i, j, where we

are using the conventions −∞ + t = −∞ for every t ∈ N∗ and −∞ < r for

every r ∈ N0. Also, given a superadditive vector d = (d1, . . . , dk) and some

nonnegative integer t, we write d− t := (d′1, . . . , d
′
k), where d′i = di− t if t ≤ di

and d′i = −∞ otherwise. Notice that d − t so defined is also a superadditive

vector.

Fix a nilpotent group G of nilpotency class s, and let G = G1 ⊃ G2 ⊃
· · · ⊃ Gs ⊃ Gs+1 = {1G} be its lower central series. As in [16], [17], we

say a sequence g = (g(n))n∈Z taking values in G is a polynomial sequence

of (vector) degree ≤ (d1, . . . , ds) if (Dm1 · · ·Dmdk+1
g)(n) ∈ Gk+1 for every n,

every 1 ≤ k ≤ s and every choice of m1, . . . ,mdk+1 ∈ Z. If dk = −∞, we

take this to mean that g itself takes values in Gk+1. We will make use of the

following results of Leibman.

Lemma 4.1 ([17, §3]). Let d = (d1, . . . , ds) be a superadditive vector, and

let t, t1, t2 ≥ 0 be nonnegative integers. Then we have the following properties :

(1) If g is a polynomial sequence of degree ≤ d−t, then Dmg is a polynomial

sequence of degree ≤ d− (t+ 1) for every m ∈ Z.

(2) The set of polynomial sequences of degree ≤ d− t forms a group.

(3) If g is a polynomial sequence of degree ≤ d− t1 and h is a polynomial

sequence of degree ≤ d − t2, then [g, h] is a polynomial sequence of

degree ≤ d− (t1 + t2), where [g, h](n) := g−1(n)h−1(n)g(n)h(n).

Remark. The results of [17] concern the operators

(‹Dmg)(n) := g(n)−1g(n+m) = (Dmg
−1)(n).

Nevertheless, using Lemma 4.1 for these operators and a straightforward de-

scending induction on t, one can easily check that a G-sequence g has degree

≤ d − t with respect to the operators ‹Dm if and only if it has degree ≤ d − t
with respect to the operators Dm, from where we recover Lemma 4.1 as stated.

We say a polynomial system g = (g1, . . . , gj) has degree ≤ d if the degree

of gi is ≤ d for every 1 ≤ i ≤ j. We will show that any system of degree

≤ d, for some superadditive vector d = (d1, . . . , ds), has finite complexity.

Notice that this is enough to prove Theorem 1.1, since if a polynomial sequence

g has degree ≤ (d1, . . . , ds), then it also has degree ≤ (d, 2d, . . . , sd), with

d = max {di : 1 ≤ i ≤ s}, and this last vector is clearly superadditive.

Given a polynomial system g, we are concerned with the process that

consists of passing from g to an equivalent system g′, then taking the m-

reduction (g′)∗m of g′ for some m, passing to an equivalent system ((g′)∗m)′

and then taking the m′-reduction of this for some m′, etc. What we are

free to choose in the above process is to which equivalent system we apply
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the reductions (but not the integer on which we subsequently reduce), and

our objective is to show that there exists some constant C, depending on

g, such that for every sequence of positive integers m,m′,m′′, . . ., we can go

to the trivial system (1G) by means of at most C repetitions of the above

transformations. This clearly implies that the complexity of g is at most C.

In order to simplify notation we will omit the reference to the specific

sequence of integers on which we reduce. So, for instance, we will generically

refer to the reduction of a system g = (g1, . . . , gj) to be the system

g∗ = (g1, . . . , gj−1, 〈gj |1G〉, 〈gj |g1〉, . . . , 〈gj |gj−1〉).

Similarly, we have the identity

〈g|h〉(n) = Dg(n)(Dh(n))−1h(n)

provided, of course, that the omitted subindices are the same. We define a step

to be the process of passing from a system g to the reduction (g′)∗ of some

system g′ equivalent to g. We will show that one can pass from a polynomial

system g to the trivial system in a number of steps that is bounded in terms

of the size and degree of g.

We define the complete reduction of a system g to be the system

g∗∗ = (g1, . . . , gj−1, 〈gj |g1〉, . . . , 〈gj |gj−1〉).

Thus, g∗∗ = g∗ \ {〈gj |1G〉}. We define a complete step in the same way as a

step, but with the reduction replaced by the complete reduction. Complete

steps are needed for a technical reason related to the inductive process to be

applied. Precisely, in order to handle steps involving systems of degree ≤ d,

we will need to assume some control on both steps and complete steps over

systems of degree ≤ d− 1.

Theorem 1.1 follows from Theorem 3.2 and the following result.

Theorem 4.2. Let g be a polynomial system of size |g| ≤ C1 and degree

≤ d for some superadditive vector d = (d1, . . . , ds). Then

• one can go from g to the trivial system (1G) in OC1,d
(1) steps,

• one can go from g to a system consisting of a single sequence of degree

≤ d in OC1,d
(1) complete steps

for every sequence of positive integers m,m′,m′′, . . . . In particular, g has com-

plexity OC1,d
(1).

Proof. Let d be as in the statement. We begin by noticing that the result

is trivially true for systems of degree ≤ d − (ds + 1) = (−∞, . . . ,−∞), since

1G is the only sequence lying in Gk+1 for every 1 ≤ k ≤ s. We will proceed by

induction. Since d − t is superadditive for every t ≥ 0, it will suffice to prove
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that if Theorem 4.2 holds for systems of degree ≤ d− 1, then it also holds for

systems of degree ≤ d.

Thus, let g be as in the statement. We will first prove that we can go from

g to the trivial system in OC1,d
(1) steps (and therefore, that g has complexity

OC1,d
(1)). In order to do this, observe that g can be rewritten in the form

(4.2) g = h0 ∪
l⋃

i=1

sihi

for some polynomial sequences s1, . . . , sl of degree ≤ d, l ≤ C1, and some

polynomial systems hi of degree ≤ d − 1 and size ≤ C1, with h0 possibly

empty. (For example, one could simply take si = gi and hi = (1G) for every

1 ≤ i ≤ l.) Here, if h = (h1, . . . , hk), then sh is the system (sh1, . . . , shk)

and the union of two systems (h1, . . . , hk), (h′1, . . . , h
′
r) is understood to be the

system (h1, . . . , hk, h
′
1, . . . , h

′
r).

The idea will be to show that for systems of the form (4.2) one can perform

steps in such a way that the resulting systems are also of the form (4.2) for

the same set of sequences s1, . . . , sl. Furthermore, we will show that in finitely

many steps we may actually discard the sequence sl, therefore arriving at a

system like (4.2) in which only the sequences s1, . . . , sl−1 are present. Iterating

this l times we shall then end up with a system of degree ≤ d− 1, from where

one can proceed by induction.

In order to carry out this plan, we begin by observing that if si, sj are

sequences of degree ≤ d and hi, hj are sequences of degree ≤ d− 1, we have

〈sjhj |sihi〉 = D(sjhj)(D(sihi))
−1sihi(4.3)

= siD(sjhj)(D(sihi))
−1
î
D(sjhj)(D(sihi))

−1, si
ó
hi

= sih
j,i

for some polynomial sequence hj,i that is seen to have degree ≤ d − 1 by

Lemma 4.1. Furthermore, if si = sj = s, it is easy to check that

〈shj |shi〉 = s〈hj |hi〉.

It follows from these formulas that, provided |hl| > 1, the reduction g∗ of g is

equivalent to a system of the form

(4.4) h
(1)
0 ∪

(
l−1⋃
i=1

sih
(1)
i

)
∪ slh∗∗l ,

for some systems h
(1)
0 ,h

(1)
1 , . . . ,h

(1)
l−1 of degree ≤ d−1 and size |h(1)

0 | ≤ 2|h0|+1

and |h(1)
i | ≤ 2|hi| for every other i, and where we recall that h∗∗l refers to the

complete reduction of hl. Explicitly, if hi = (hi,1, . . . , hi,ji) for every 0 ≤ i ≤ l,
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then

h
(1)
0 = (〈slhl,jl |1G〉, h0,1, . . . , h0,j0 , 〈slhl,jl |h0,1〉, . . . , 〈slhl,jl |h0,j0〉) ,

while sih
(1)
i equals

(sihi,1, . . . , sihi,ji , 〈slhl,jl |sihi,1〉, . . . , 〈slhl,jl |sihi,ji〉)
for every 1 ≤ i ≤ l − 1. We see by (4.3) that this is of the desired form.

Observe now that if h is equivalent to h′, then the system sh is also

equivalent to sh′. Since by the induction hypothesis we know that one can

pass from hl to a system h consisting of a single sequence of degree ≤ d − 1

in OC1,d−1(1) complete steps, it follows from the above observation and (4.4)

that we may pass from g to a system of the form

(4.5) h
(2)
0 ∪

(
l−1⋃
i=1

sih
(2)
i

)
∪ slh,

inOC1,d−1(1) steps, where each system h
(2)
i has degree≤ d−1 and sizeOC1,d

(1),

and h is a system consisting of a single sequence of degree ≤ d− 1. But then

we see from (4.3) that the reduction of (4.5) will be of the form

h
(3)
0 ∪

(
l−1⋃
i=1

sih
(3)
i

)
,

with each h
(3)
i having degree ≤ d − 1 and size OC1,d

(1). We have therefore

succeeded in discarding the sequence sl from our system. We can now repeat

the same process as before with sl−1 in place of sl. Since the size of h
(3)
l−1 is

OC1,d
(1), we see that this new process finishes in OC1,d

(1) steps, leaving us

with a system of the form

h
(4)
0 ∪

(
l−2⋃
i=1

sih
(4)
i

)
.

Therefore, iterating the above process l times, we are finally left in OC1,d
(1)

steps with a system of degree ≤ d − 1 from where we may apply the induc-

tion hypothesis to obtain the trivial system in OC1,d
(1) further steps, thereby

completing the proof of the finite complexity of g.

Now it only remains to show that one can pass from g to a system con-

sisting of a single sequence of degree ≤ d in OC1,d
(1) complete steps. But it is

clear that the above reasoning to pass from g to a system of degree ≤ d − 1

works in exactly the same way for complete steps, since the only things that

may change are the systems h
(1)
0 ,h

(2)
0 ,h

(3)
0 , . . ., which nevertheless will always

have degree ≤ d− 1 and whose size may only be smaller than in the previous

case. Thus, the above reasoning allows us to pass to a system of degree ≤ d−1

from where we may apply induction, as long as after any of the complete steps

we are not left with a system that can be written in its entirety as sih for
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some si as above and h of degree ≤ d − 1 and size |h| = 1 (because if the

whole system has size 1, the complete reduction is not defined). But since in

such a case we are already done, this completes the proof of Theorem 4.2 and

therefore of Theorem 1.1. �

5. Further results

The next result is easily seen to follow from the methods of this paper.

Theorem 5.1. Let G be a nilpotent group of measure preserving trans-

formations of a probability space (X,X , µ). Then, for every T1, . . . , Tl ∈ G,

every f1, . . . , fr ∈ L∞(X), every set of polynomials pi,j : Zd → Z and every

Følner sequence {ΦN}∞N=1 in Zd, the averages

(5.1)
1

|ΦN |
∑
u∈ΦN

r∏
j=1

(
T
p1,j(u)
1 . . . T

pl,j(u)
l

)
fj

converge in L2(X,X , µ).

During the proof of Theorem 1.1 we used crucially the fact that the L∞

norm is an algebra norm (‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞). While this is not true for the

L2 norm, if we are concerned with the study of a single function f ∈ L2(X), this

issue is no longer present. Furthermore, in this case our polynomial systems will

always have size 1, a fact that allows us to drop the hypothesis of nilpotency on

our group G (because we no longer need the product of polynomial sequences

to be polynomial). More generally, it is easy to see from these observations

that our methods produce the following result, which was also conjectured by

Bergelson and Leibman in [6].

Theorem 5.2. Let G be a group of unitary operators on a Hilbert space H.

If (g(n))n∈Z is a polynomial sequence in G, then

lim
N→∞

1

N

N∑
n=1

g(n)u

exists for every u ∈ H.

This was established by Bergelson and Leibman [6] for nilpotent G. While

our result drops this hypothesis, it should be noted that it is not presently

known if there are polynomial sequences whose study does not essentially re-

duce to the nilpotent case.

Appendix A. Some examples of reductions

We now provide some concrete examples of how the process studied in

Section 4 returns the trivial system for some polynomial systems. Given sys-

tems g and h, we write g ∼ h to mean that both systems are equivalent and we
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write g
m→ h to mean that h is the m-reduction of g. Given measure preserving

transformations T, S,C of a probability space, we will use the convention of

writing Tn
2
SnC for the G-sequence g given by g(n) = Tn

2
SnC.

Example A.1. As a trivial example, suppose our system is constant i.e.,

of the form (C1, . . . , Cj) for some constant G-sequences C1, . . . , Cj . Then its

m-reduction is equivalent to (1G, C1, . . . , Cj−1) for every m so, in particular,

we get the trivial system after at most j steps.

Example A.2. If we are given a system of the form

(Ln1C1,1, . . . , L
n
1C1,i1 , . . . , L

n
kCk,1, . . . , L

n
kCk,ik),

with the transformations generating an abelian group, its m-reduction will be

equivalent to

(L−mk , Ln1C1,1, . . . , L
n
1C1,i1 , L

n
1C1,1L

−m
k Lm1 , . . . , L

n
1C1,i1L

−m
k Lm1 , . . . ,

Lnk−1Ck−1,1, . . . , L
n
k−1Ck−1,ik−1

, Lnk−1Ck−1,1L
−m
k Lmk−1, . . . ,

Lnk−1Ck−1,ik−1
L−mk Lmk−1, L

n
kCk,1, . . . , L

n
kCk,ik−1).

In particular, Lni appears twice as many times as before for every 1 ≤ i < k,

while Lnk appears one time less, therefore disappearing after ik steps. Notice

also that at each step we get twice plus one as many constant sequences as

before. Applying these observations we see that the system (Ln1C1, . . . , L
n
jCj)

reduces to one consisting only of constant sequences after at most a(j) steps,

with a : N → N the function recursively defined by a(1) = 1 and a(n + 1) =

a(n) + 2a(n). We may then proceed as in Example A.1.

Example A.3. Consider now a system of the form

(Sn1C1, . . . , S
n
j−1Cj−1, T

n2
Snj Cj)

for commuting T, Si, Ci. The m-reduction is given by

(Sn1C1, . . . , S
n
j−1Cj−1, T

−2mn−m2
S−mj , T−2mn−m2

S−mj Sn+m
1 C1, . . . ,

T−2mn−m2
S−mj Sn+m

j−1 Cj−1),

which is a linear system and therefore reduces to the trivial system by the

procedure discussed in Example A.2.

Example A.4. Let the system be (Tn
2
, Tn

2
Sn) for commuting T and S.

The m-reduction is given by

(Tn
2
, T−2mn−m2

S−m, Tn
2
S−m)

l→ (Tn
2
, T−2mn−m2

S−m, T−2ln−l2 , Tn
2
, T−2ln−l2−2m(n+l)−m2

S−m),

and this is equivalent to a system of the form studied in Example A.3.
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Example A.5. Consider (Tn, Sn) with T and S generating a nilpotent

group. The m1-reduction is given by

(Tn, S−m1 , S−m1Tm1Tn).

Write C := S−m1Tm1 , C(1) := S−m1 . Then the m2-reduction of this is given

by

(Tn, C(1), CT−m2C−1, CT−m2C−1Tm2Tn, CT−m2C−1C(1))

∼ (C(1), C(2), C(3), Tn, [C−1, Tm2 ]Tn)

for some constant G-sequences C(2), C(3) that depend on m1,m2. By the same

reasoning we see that after reducing at m3, . . . ,ml (and passing to equivalent

systems), we get the system

(C(1), C(2), . . . , C(c(l)), Tn, [[[[C−1, Tm2 ]−1, Tm3 ]−1 . . .]−1, Tml ]Tn),

for some constant G-sequences C(i), 1 ≤ i ≤ c(l), with c : N→ N the increasing

function defined recursively by c(1) = 1 and c(n+ 1) = 2c(n) + 1. Clearly, this

is equivalent to (C(0), C(1), . . . , C(c(l)), Tn) for some l of size at most s+1, with

s the nilpotency class of the group. Since any reduction of this last system

will be a constant system of size c(l + 1), it follows that our original system

(Sn, Tn) reduces to the trivial one in at most s+ 2 + c(s+ 2) steps.

Example A.6. Our last example is the system (Tn
2
, Sn

2
) for commuting

T and S. We have

(Tn
2
, Sn

2
)
m1→ (Tn

2
, S−2nm1−m2

1 , S−2nm1−m2
1Tn

2
T 2nm1+m2

1)

∼ (S−2nm1−m2
1 , Tn

2
, S−2nm1−m2

1Tn
2
T 2nm1+m2

1)

m2→ (S−2nm1−m2
1 , Tn

2
, T−2nm2−m2

2−2m1m2S2m1m2 ,

T−2nm2−m2
2−2m1m2S−2nm1−m2

1 , Tn
2
S2m1m2T−2m1m2)

m3→ (S−2nm1−m2
1 , Tn

2
, T−2nm2−m2

2−2m1m2S2m1m2 ,

T−2nm2−m2
2−2m1m2S−2nm1−m2

1 , T−2nm3−m2
3 ,

T−2nm3−m2
3S−2nm1−2m1m3−m2

1 , Tn
2
,

T−2nm3−m2
3−2nm2−2m2m3−m2

2−2m1m2S2m1m2 ,

T−2nm3−m2
3−2nm2−2m2m3−m2

2−2m1m2S−2nm1−2m1m3−m2
1),

and this last system is equivalent to one of the form studied in Example A.3.
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