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Bounds for the multiplicities of
cohomological automorphic forms on GL2

By Simon Marshall

Abstract

We prove a power saving for the dimension of the space of cohomological

automorphic forms of fixed level and growing weight on GL2 over any num-

ber field that is not totally real. Our proof involves the theory of p-adically

completed cohomology developed by Calegari and Emerton and a bound

for the growth of coinvariants in certain finitely generated noncommutative

Iwasawa modules.

1. Introduction

Let F be a number field of degree n, with r1 real places and r2 complex

places, and with ring of adeles A and finite adeles Af . Let F∞ = F ⊗Q R, so

that GL2(F∞) = GL2(R)r1 ×GL2(C)r2 , and let Z∞ be the centre of GL2(F∞).

Let Kf be a compact open subgroup of the finite adele group GL2(Af ), and

define X = GL2(F )\GL2(A)/KfZ∞. If d = (d1, . . . , dr1+r2) is an (r1 + r2)-

tuple of positive even integers, we shall let Sd(Kf ) denote the space of cusp

forms on X which are of cohomological type with weight d, and define ∆(d)

to be

∆(d) =
∏
i≤r1

di ×
∏
i>r1

d2
i .

In this paper, we shall investigate the dimension of Sd(Kf ) as d varies with

Kf held fixed. When F is totally real, Shimizu [15] has proven that

dimSd(Kf ) ∼ C∆(d)

for some constant C independent of d, while if F is not totally real, it may be

proven using the trace formula that

(1) dimSd(Kf ) = o(∆(d))

(see for instance [9]). The purpose of this paper is to strengthen (1) by a

power in the case where some entries of d are held fixed while the rest grow
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uniformly. To be precise, if I is a subset of [1, . . . , r1 + r2] and n = (ni|i ∈ I) is

an |I|-tuple of positive even integers, we define D(n) to be the set of weights

d such that di = ni for i ∈ I. We then prove

Theorem 1. If F is not totally real, then for any fixed Kf , I , and n, we

have

(2) dimSd(Kf )�ε (min
i /∈I

di)
−1/3+ε∆(d)

for all d ∈ D(n).

We may restate this more simply in the case of parallel weight as follows.

Corollary 2. If F is not totally real, then for any fixed Kf and d =

(d, . . . , d) parallel, we have

dimSd(Kf )�ε d
n−1/3+ε.

Note that Theorem 1 strengthens (1) by a power if we restrict to d ∈ D(n)

such that
c ≤ ln di/ ln dj ≤ C, i, j /∈ I

for some C, c > 0. It is interesting to compare our theorem with results of

Finis, Grunewald, and Tirao [9] in the case when F is imaginary quadratic.

They prove the bounds

(3) d� dimSd(Kf )� d2

ln d
, d = (d)

using base change and the trace formula respectively, where the upper bound

is valid for any Kf and the lower bound for any Kf contained in the product of

the standard maximal compact subgroups of the p-adic groups GL2(Fp). For

imaginary quadratic F , Theorem 1 reads

dimSd(Kf )�ε d
5/3+ε,

and (3) demonstrates that the actual growth rate of dimSd(Kf ) is a smaller

power of d (which is probably d, as the experimental data of [9] shows). When

F is contained in a solvable extension of its maximal totally real subfield F0

and d = (d, . . . , d) is parallel, Rajan [14] has also used base change to show

that

dimSd(Kf )� d|F0:Q|

after shrinking Kf if necessary. (Note the distinction between this result and

that of [9], which shows that this lower bound holds for Kf maximal.)

Automorphic forms in dimSd(Kf ) are tempered but not in the discrete

series, and bounds for the multiplicities of such forms which improve over

the trivial bound by a power are quite rare. Indeed, the best known bounds

for tempered multiplicities that may be proven using purely analytic methods

such as the trace formula only strengthen the trivial bound by a power of log,
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and to obtain more than this it seems necessary to exploit some additional

number theoretic or cohomological properties of the automorphic forms. To

our knowledge, there are only two other families of automorphic forms for which

bounds of this kind are known. The first of these is S1(q), the space of classical

holomorphic forms of weight 1, level q, and character the Legendre symbol ( ·q ),

for which bounds were proven by Duke [7] and Michel and Venkatesh [13] using

the restrictions placed on the Fourier coefficients of such forms by the theorem

of Deligne and Serre.

The second is the collection of automorphic forms of cohomological type

appearing in a ‘p-adic congruence tower,’ studied by Calegari and Emerton

in [4]. Here they prove a bound for the multiplicity of cohomological forms of

fixed weight and full level Npk with k →∞ on any reductive group G, provided

the form makes a contribution to cohomology outside of the degree in which

the discrete series of G (if any) appears. One of the interesting features of the

proof of Theorem 1 is that it draws heavily on the methods used by Calegari

and Emerton, in spite of the differences between the families of automorphic

forms the two results deal with.
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2. Notation and outline of proof

Let us first give a rough outline of the proof of Theorem 1, which we shall

expand on in the remainder of the section. Let Y be the locally symmetric

space attached to X. Because the forms in Sd are of cohomological type,

bounding their multiplicity is equivalent to bounding the cohomology of certain

complex local systems Wd on Y , and because Y was arithmetic we are able

to replace Wd with analogous systems Vd over Qp. By choosing a lattice in

Vd and reducing mod p it will suffice to bound the Fp homology of a family of

congruence covers of Y . The family of covers that appears is sufficiently similar

to the kind studied by Calegari and Emerton that we may apply their theory of

p-adically completed homology, which converts the statement about Fp growth

that we require into one about the coinvariants of noncommutative Iwasawa
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modules. This is Proposition 4 below, whose proof will be discussed seperately

in Section 3 and which should be regarded as the key ingredient in Theorem 1.

2.1. The Eichler-Shimura isomorphism. X may be written as a disjoint

union

X =
N∐
i=1

Γi\SL2(F∞),

where Γi are lattices of the form SL2(F ) ∩ Ki for compact open subgroups

Ki of SL2(Af ), and by shrinking Kf if necessary we may assume that Γi are

torsion free. We define

Y =
N∐
i=1

Γi\SL2(F∞)/K∞

=
N∐
i=1

Yi

to be the associated locally symmetric spaces, where K∞ ⊂ SL2(F∞) is the

standard maximal compact subgroup. We defineWd to be the representation of

SL2(F∞) obtained by taking the tensor product of the representation Symdi−2

of SL2(Fvi) when vi is a real place and the representation Symdi/2−1⊗Sym
di/2−1

of SL2(Fvi) when vi is complex. We also use Wd to denote the local system on

Y obtained by restricting Wd to each of the groups Γi. It should be noted that

while one may consider more general local systems by allowing representations

of the form Syma⊗ Sym
b

with a 6= b at complex places, the cuspidal cohomol-

ogy with coefficients in such systems is trivial by a theorem of Borel-Wallach

([3, Th. 6.7, VII, p. 226]). This theorem is stated only in the case of compact

quotient, but the proof (via vanishing of (g,K)-cohomology) applies more gen-

erally to the cuspidal cohomology in the noncompact case, as this may also be

computed via (g,K)-cohomology.

Let H i(Y,Wd) be the cohomology groups of the local system Wd, and let

H i
c(Y,Wd) be the subspace of classes whose restriction to some neighbourhood

of the cusps is trivial. It follows from the Eichler-Shimura isomorphism (see

[10, §3] or [1, Th.3.5] and [2, Cor. 5.5]) that if dimWd > 1, then

(4) dimHr1+r2
c (Y,Wd) = 2r1 dimSd(Kf ).

Using the duality between H i
c and Hi, we see that Theorem 1 would be implied

by the following proposition.

Proposition 3. Let Y = SL2(F )\SL2(A)/KfK∞ for some compact open

Kf ⊂ SL2(Af ), and let I and n be as in Theorem 1. For any fixed Kf , I , and

n, we have

(5) dimHi(Y,Wd)�ε (min
i /∈I

di)
−1/3+ε∆(d)

for all i and all d ∈ D(n).
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Remark. While the notational convention we have introduced for Wd al-

lows us to state the Eichler-Shimura isomorphism (4) simply, it will be more

convenient in the remainder of the paper to adopt the following convention:

let {σ1, . . . , σn} be the complex embeddings of F , and let d be an n-tuple of

nonnegative integers indexed by the σi for which di = dj when σi and σj are

complex conjugates. We then let Wd be the representation of SL2(F∞) ob-

tained by forming the tensor product of the representations Symdi of SL2(Fvi)

when σi corresponds to a real place vi and Symdi ⊗Sym
di of SL2(Fvi) when σi

is either of the two embeddings corresponding to a complex place vi.

2.2. Completed homology. Define the compact p-adic analytic subgroups

G,G(pk), H(pk) and T (pk) of SL2(Zp) by

G(pk) =

®Ç
a b

c d

å ∣∣∣∣a− 1, b, c, d− 1 ∈ pkZp
´
, G = G(p),

H(pk) =

®Ç
a b

c d

å ∣∣∣∣b ∈ pkZp´ ∩G, and T (pk) =

®Ç
a b

c d

å ∣∣∣∣b, c ∈ pkZp´ ∩G.
Moreover, if t ≥ 1 is an integer and k = (k1, . . . , kt) is a t-tuple of positive

integers, define

(6)

G =
t∏
i=1

Gi, Gk =
t∏
i=1

Gi(p
ki), Hk =

t∏
i=1

Hi(p
ki) and Tk =

t∏
i=1

Ti(p
ki),

where Gi ' G for all i, etc. In Section 5 we shall prove that if we choose t = n,

there exists an algebraic representation Vd of G over Qp and an injection Γ→ G
such that if we also let Vd denote the local system on Y obtained by restricting

Vd to Γ, we have

(7) dimCHi(Y,Wd) = dimQp Hi(Y, Vd).

The advantage of this p-adic reformulation is that we may study the right-

hand side of (7) using the completed homology modules defined by Emerton in

[8] and studied by Calegari and Emerton in [4], [5]. These are finitely generated

modules over noncommutative Iwasawa algebras ΛQp and Λ, defined to be

ΛQp = ΛZp ⊗Zp Qp, ΛZp = lim←−
k

Zp[G/Gk],

Λ = lim←−
k

Fp[G/Gk],

where the projections are given by the trace maps Zp[G/Gk′ ] → Zp[G/Gk] for

k′ ≥ k. We shall describe the structure of these algebras and their associated

modules in more depth in Section 3. In Section 5 we shall define finitely

generated ΛQp modules ‹Hj(Vd), which may be used to calculate the right-hand
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side of (7) via a spectral sequence

Ei,j2 = Hi(GP , ‹Hj(Vd)⊗Zp Qp) =⇒ Hi+j(Y, Vd).

This spectral sequence allows us to reduce our problem to one of bounding

the dimension of Hi,con(G,M ⊗ Vd), where M is a fixed torsion ΛQp module

and d varies. (Note that hereafter we shall always assume homology groups of

G to be computed with continuous chains, and drop the subscript ‘con.’) We

shall do this by choosing lattices L ⊂ M and Vd ⊂ Vd, so that L ⊗ Vd is a

lattice in M ⊗ Vd, and applying the bound

(8) dimQp Hi(G,M ⊗ Vd) ≤ dimFp Hi(G, L⊗ (Vd/p)).

In Section 4 we shall prove that Vd may be chosen to have the property that

Vd/p is a submodule of Fp[G/Hk] for any k satisfying pki−1 > di for all i. We

will also provide a characterization of the submodules of Fp[G/Hk] that allows

us to apply Shapiro’s lemma to the right-hand side of (8) and transfers the

problem to one of bounding Hi(Hk,M
′) for M ′ a fixed torsion Λ module and

k varying. Finally, by using the commensurator of Γ to replace Hk with Tk,

it suffices to bound Hi(Tk,M ′). The trivial bound for the dimension of this

space is

(9) dimHi(Tk,M ′)� |G : Tk|,

and it turns out that the reductions we have made are tight in the sense that we

may recover the trivial bound for Sd(Kf ) from (9). The problem then becomes

one of making a power improvement in (9), and this is solved by the following

proposition, which lies at the heart of our proof. (We define the rank r of a Λ

module in Section 3; it suffices here to know that r = 0 when M is torsion.)

Proposition 4. For any t ≥ 1, let G and Tk be as in (6) and let M be a

finitely generated Λ module of rank r. Then

dimMTk = (r +O(ηκ))|G : Tk|,(10)

dimHi(Tk,M)� ηκ|G : Tk|, i ≥ 1,(11)

for all t - tuples k, where κ = min(ki) and η = 10p−2/3.

Remark. We have attempted to extend this proof to higher rank groups,

but have so far been prevented from doing so by the fact that the subgroup

H for which we can realize Vd as a subrepresentation of Fp[G/H], and the

subgroups T for which we are able to prove analogues of Proposition 4, are not

conjugate to one another under the noncompact p-adic group containing them.

Structure of Paper. Proposition 4 is proven in Section 3, and Section 4

contains results on the structure of Fp[G/Hk] including how to choose the

lattice Vd ⊂ Vd such that Vd/p ⊂ Fp[G/Hk]. We apply the theory of p-adically
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completed cohomology in Section 5 and combine these ingredients in Section 6

to conclude the proof.

3. Coinvariants of Λ-modules

This section contains the proof of Proposition 4. Once we have proven

the case i = 0 and r = 0 the others will follow by the same arguments used

by Harris [11] and Calegari and Emerton [4], and so we restate this case as a

seperate proposition.

Proposition 5. If t ≥ 1, G and Tk are as in (6), and M is any torsion

Λ module, we have

(12) dimMTk � ηκ|G : Tk|,
for all k, where κ = min(ki) and η = 10p−2/3.

We shall prove Proposition 5 by induction on t, the number of factors of G.

Proposition 7 forms the base case of the induction, and the inductive step is

carried out in Section 3.1.

We begin the proof by describing the structure of the algebras Λ and ΛQp

in more detail. (Although we will not work with ΛQp in this section, it is

convenient to present its structure theory together with that of Λ.) Λ is a

noncommutative Noetherian integral domain, and so its field of fractions L is

a division ring that is flat over Λ on both sides (and likewise for ΛQp and its

field of fractions LQp). If M is a finitely generated Λ (resp. ΛQp) module, then

M ⊗ΛL (resp. M ⊗ΛQp
LQp) is a finite dimensional L (resp. LQp) vector space,

and we define the rank of M to be the dimension of this vector space. We see

that rank is additive in short exact sequences by the flatness of L over Λ and

that M has rank 0 if and only if it is torsion.

The basic result on the growth of coinvariants in a finitely generated mod-

ule M for Λ or ΛQp is due to Harris [11]. To state it in the case under consider-

ation, let Gn denote the group Gk with k chosen to be (n, . . . , n). We then have

Theorem 6. Let M be a finitely generated module for either ΛQp or Λ of

rank r. We then have

(13) dimMGn = r|G : Gn|+O(p(3t−1)n).

The significance of the exponent 3t − 1 is that it is one less than the

dimension of G, so that |G : Gn| = cp3tn for some c and hence the error term

in Theorem 6 is smaller than the main term by a power. When M is torsion

and k = (k, . . . , k) is parallel, (12) and (13) become

dimMTk � 10k|G : Tk|1−1/3t and dimMGn � |G : Gn|1−1/3t,

so that Proposition 5 extends the Λ-module case of Theorem 6 to the family

of subgroups Tk (up to the factor of 10k, which becomes negligible when p is
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large). The key difference between these two results is that the groups Tk are

not shrinking uniformly to the identity.

We shall break the proof of Proposition 5 into two parts, the first of which

establishes the case t = 1 and the second of which applies induction in t. It is

possible that the method we have used in the case t = 1 could be extended to

provide the entire proof, but we believe that the inductive argument is simpler

as it avoids having to keep track of large numbers of incidence relations. The

case t = 1 is proven in Proposition 7 below, and the inductive step is carried

out in Section 3.1.

Proposition 7. Let M be a Λ = FpJGK module, and suppose that for

some C, k > 0, M satisfies the bound

(14) dimMG(pl) ≤ Cp2l

for all l ≤ k. Then we have

dimMT (pk) ≤ Cηk−2p2k.

Proof. We assume that p 6= 2, as η > 1 in that case. We shall apply an

inductive argument to a family of subgroups that interpolates between G(pk)

and T (pk). For 0 ≤ j ≤ l − 1, let T (l, j) be the group

T (l, j) =

®Ç
a

a−1

å
|a ≡ 1(pl−j)

´
+G(pl),

so that for fixed l, T (l, j) forms a family growing from T (l, 0) = G(pl) to

T (l, l − 1) = T (pl). Let (l, j) be given, and assume that we have the bound

(15) dimMT (l′,j′) ≤ Cηj
′−1p2l′

for all pairs (l′, j′) that are smaller than (l, j) in the lexicographic ordering.

We shall then deduce this bound for the pair (l, j). Note that (15) follows from

the assumption (14) when j = 0, 1, and so we may assume that j ≥ 2.

We shall establish (15) by applying inclusion-exclusion counting to the

groups lying between T (l − 1, j − 1) and T (l, j − 1). It may be checked that

V = T (l − 1, j − 1)/T (l, j − 1) is Abelian and isomorphic to the vector space

F3
p. We define the plane U ⊂ V to be the image of G(pl−1) in V and the line

µ to be the image of T (l, j). It will be more convenient in what follows to

work with invariants rather than coinvariants, and so we define A = M∗T (l,j−1).

V acts on A, and if L ⊆ V is any subset, we let AL denote the subspace of A

fixed by all elements of L. The problem is now to deduce the bound

dimAµ = dimMT (l,j) ≤ Cηj−1p2l

from the inductive hypotheses

(16)

dimA = dimMT (l,j−1) ≤ Cηj−2p2l, dimAV = dimMT (l−1,j−1) ≤ Cηj−2p2l−2.



COHOMOLOGICAL AUTOMORPHIC FORMS 1637

We shall do this using the following two lemmas.

Lemma 8. If ` 6⊂ U is a line, there is g ∈ G(p) whose action on G(p) by

conjugation descends to V and such that g`g−1 = µ.

Proof. Define the elements α(l, j), N and N of G(p) by

α(l, j)=

Ç
1 + pl−j 0

0 (1 + pl−j)−1

å
, N=

Ç
1 pj−1

0 1

å
, N=

Ç
1 0

pj−1 1

å
.

We shall show that we may take g in the statement of the lemma to be of the

form NaN
b
. We have

T (l − 1, j − 1) = 〈α(l − 1, j − 1)〉G(pl−1), T (l, j − 1) = 〈α(l, j − 1)〉G(pl).

It can be seen that N normalizes G(pl) and G(pl−1), and a calculation gives

Nα(l − 1, j − 1)N−1

(17)

=

Ç
1 + pl−j pj−1[(1 + pl−j)−1 − (1 + pl−j)]

0 (1 + pl−j)−1

å
∈ T (l − 1, j − 1),

Nα(l, j − 1)N−1

=

Ç
1 + pl−j+1 pj−1[(1 + pl−j+1)−1 − (1 + pl−j+1)]

0 (1 + pl−j+1)−1

å
∈ T (l, j − 1),

so that it also normalizes T (l − 1, j − 1) and T (l, j − 1). It may be shown in

the same way that N normalizes these groups, so that N and N act on V .

To calculate this action, we define N ′ and N
′

to be

N ′ =

Ç
1 pl−1

0 1

å
N
′
=

Ç
1 0

pl−1 1

å
and let {v1, v2, v3} be the basis of V consisting of the respective images of

α(l− 1, j − 1), N ′ and N
′
. We clearly have Nv2N

−1 = v2, and it follows from

equation (17) and our assumption that p 6= 2 that Nv1N
−1 = v1 − 2v2. A

calculation shows that

NN
′
N−1 =

Ç
1 + pl+j−2 −pl+2j−3

pl−1 1− pl+j−2

å
∈ N ′ +G(pl),

so that Nv3N
−1 = v3. (Note that we have used the assumption j ≥ 2 here.)

Therefore N acts on V by shearings that leave the plane U fixed and translate

v1 in the direction v2, and a similar calculation shows that N acts by shearings

in the direction v3. The group generated by these is transitive on lines not

contained in U , which completes the proof. �
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Lemma 9. Let P ⊂ V be a plane that is not equal to U , and let `1, . . . , `k, `

be distinct lines in P that do not lie in U . If we define N =
∑k
i=1A

`i , then we

have

dimA` + dimN ≤ dim(A` +N) + k dimAP .

Proof. Inclusion-exclusion counting gives

dimA` + dimN = dim(A` +N) + dimA` ∩N,

so it suffices to show that dimA` ∩ N ≤ k dimAP . Choose v ∈ P that does

not lie in ` or U , and consider the action of the element (0 − v)k ∈ Fp[V ] on

z ∈ A` ∩N . For any `i, we can find ui ∈ ` so that ui + v = vi ∈ `i. We have

(0− v)x = (0− vi)x for any x ∈ A`, and because (0− vi)A`i = 0, this implies

that

(0− v)kz =
k∏
i=1

(0− vi)z = 0.

It follows that A` ∩N ⊂ ker(0 − v)k. 0 − v maps A` to itself, and the kernel

is Av ∩A` = AP . We therefore have

dim ker(0− v)k : A` → A` ≤ k dimAP ,

which completes the proof. �

If P 6= U is a plane and `1, . . . , `k ⊂ P are distinct lines that do not lie

in U , we may apply Lemma 9 repeatedly to show that

k∑
i=1

dimA`i ≤ dim
k∑
i=1

A`i +
k(k − 1)

2
dimAP .

It follows from Lemma 8 that dimA` = dimAµ for all ` 6⊂ U , and applying

this to the above equation gives

k dimAµ≤ dimA+
k(k − 1)

2
dimAP

2

k − 1
dimAµ − 2

k(k − 1)
dimA≤ dimAP .(18)

If P1, . . . , Pj are planes containing µ, we may apply the argument in the

proof of Lemma 9 to the space V/µ to show that

j∑
i=1

dimAPi ≤ dimAµ +
j(j − 1)

2
dimAV .

Applying (18) to each summand dimAPi and rearranging givesÅ
2j

k − 1
− 1

ã
dimAµ ≤ 2j

k(k − 1)
dimA+

j(j − 1)

2
dimAV .
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After combining this with the inductive hypotheses (16), we haveÅ
2j

k − 1
− 1

ã
dimAµ ≤ Cηj−2p2l

Ç
2j

k(k − 1)
+
j(j − 1)

2
p−2

å
.

Choosing j = k = bp2/3c (note that k ≥ 2 as p ≥ 3) gives

dimAµ ≤ Cηj−2p2l(10p−2/3),

which completes the proof. �

3.1. Proof of Proposition 5: the inductive step. We now assume that t > 1

and factorize the groups and rings under consideration as

G = G1 × G′, Tk = T1(pk1)× T ′k , and Λ = Λ1 ⊗ Λ′.

A natural approach to Proposition 5 would be to consider MT ′
k

as a Λ1 module

and apply Proposition 7 to derive a bound for MTk from a bound for the

coinvariant spaces (MT ′
k
)G1(pl) for l ≤ k1. Indeed, it would suffice to know that

(19) dimMG1(pl)×T ′
k
� p2l|G′ : T ′k|

uniformly in k and l. However, MT ′
k

need not be torsion for Λ1, and so (19)

will not hold in general. We get around this difficulty by showing that the

Λ1-module MT ′
k

may be written as an extension of K by L, where K satisfies

(19) and L has few generators. KTk may be thought of as the part of MTk
that may be bounded using the action of Λ1, and LTk as the part that may be

bounded using the action of Λ′.

We construct L by using the action of Λ1 to define a filtration of M by

Λ′ modules, one of which must be torsion. To demonstrate this in a simple

case, assume that MG1 is torsion as a Λ′ module. If we apply the inductive

hypothesis that Proposition 5 holds for the lower dimensional group G′, we

obtain

dim(MT ′
k
)G1 � ηκ|G′ : T ′k|.

We may lift a basis for (MT ′
k
)G1 to a generating set for MT ′

k
as a Λ1 module,

and (12) then follows trivially from this bound on the number of generators.

In this case, we therefore see that we may take K = 0, L = MT ′
k
.

In the general case, first assume without loss of generality that M is a

cyclic Λ module. To define the filtration we shall use, we need the following

structure theorem for Λ, taken from [6].

Theorem 10. Let g1, . . . , gd be a topological generating set for G. The

completed group ring Λ = FpJGK is generated by zi = 1− gi, and every element

of it can be uniquely expressed as a sum over multi-indices α,

x =
∑
α

λαz
α,
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where zα = Πd
i=1z

αi
i and all λα ∈ Fp. Moreover, all such sums are in Λ.

The filtration by degree gives Λ the structure of a filtered ring whose associated

graded ring is commutative, i.e., zαzβ = zα+β up to terms of degree > |α|+|β|.

When applied to Λ1, Theorem 10 says that Λ1 is an almost commutative

polynomial algebra in three variables, equal to the Fp span of zα = zα1
1 zα2

2 zα3
3

for α ∈ (Z≥0)3. Let us define a total ordering � on such triples α by requiring

that α � β if |α| > |β| and ordering those triples α with a common value of

|α| lexicographically. We denote the successor of α under this ordering by α+.

We shall also define a partial ordering ≥ on triples by declaring that α ≥ β if

this inequality holds entrywise.

Define Iα to be the subspace of Λ1 spanned by all monomials zβ with

β � α, which is a two-sided ideal by the almost commutativity of Λ1, and if

N is any Λ1 module, we define Nα = IαN .

Lemma 11. If α ≥ β, multiplication by zα−β induces a surjection

zα−β : Nβ/Nβ+ −→ Nα/Nα+ .

Proof. This follows from the definition of Nα and the fact that multipli-

cation by zα−β induces an isomorphism Iβ/Iβ+ ' Iα/Iα+ . �

We note that the first quotient of the filtration {Nα} of N is equal to

NG1 . We shall consider the filtration {Mα} of M . If v ∈M is a generator, the

sucessive quotients Mα/Mα+ of this filtration are cyclic Λ′ modules generated

by zαv. Write M as Λ/I for some left ideal I ⊂ Λ, and let α be the last tuple in

the ordering � such that I ⊂ Iα⊗Λ′. Because Mα/Mα+ is a nontrivial quotient

of (Iα/Iα+) ⊗ Λ′, which is free of rank one for Λ′, we see that Mα/Mα+ is a

torsion Λ′-module. We then deduce that

(20) dim(Mα/Mα+)T ′
k
� ηκ|G′ : T ′k|

by applying the inductive hypothesis to Mα/Mα+ as a Λ′ module, and this

will allow us to control the size of various filtered pieces of the Λ1 module

N = MT ′
k
. Because the projection M � N commutes with the action of Λ1,

it induces projections Mα � Nα and hence a surjection

(Mα/Mα+)T ′
k
� Nα/Nα+ .

It then follows from (20) that

(21) dimNα/Nα+ � ηκ|G′ : T ′k|.

By Lemma 11 and the subsequent comment, there is a surjection

(22) zα : NG1 −→ Nα/Nα+ ,
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and we may choose a subspace L ⊂ NG1 for which the restriction of (22) is an

isomorphism. It follows from (21) that

dimL� ηκ|G′ : T ′k|.

Choose a basis for L, lift its elements to N , and let L ⊂ N be the submodule

they generate under the action of Λ1. Because L has � ηκ|G′ : T ′k| generators,

we have

LT1(pk)� ηκ|G1 : T1(pk)| × |G′ : T ′k|
= ηκ|G : Tk|,

so that it suffices to bound the T1(pk) coinvariants in K = N/L.

Lemma 12. Kβ/Kβ+ = 0 for all β ≥ α, where we recall that ≥ is the

partial ordering introduced after Theorem 10.

Proof. We have

zα : LG1 � Nα/Nα+

by construction, so that Lα/Lα+ � Nα/Nα+ . We therefore have Lα +Nα+ =

Nα = Lα +Nα, so Nα+ + L = Nα + L. However

Kα = (Nα + L)/L and Kα+ = (Nα+ + L)/L,

so that Kα/Kα+ = 0 and hence Kβ/Kβ+ = 0 for all β ≥ α by Lemma 11. �

Our last step is to use the triviality of Kβ/Kβ+ to bound KG1(pl), so that

Lemma 7 may be applied. Define the two-sided ideal I(pl) of Λ1 by

0 −→ I(pl) −→ FpJG1K −→ Fp[G1/G1(pl)] −→ 0.

I(pl) may also be described as the span of the monomials zγ for

γ 6≤ (pl − 1, pl − 1, pl − 1).

Lemma 11 provides us with maps

(23) KG1 � Kβ/Kβ+ = IβK/Iβ+K � (Iβ + I(pl))K/(Iβ+ + I(pl))K

for all β, so that

dim(Iβ + I(pl))K/(Iβ+ + I(pl))K ≤ dimKG1(24)

≤ dimNG1

≤ |G′ : T ′k|.

Lemma 12 and the second map in equation (23) also imply that (Iβ+I(pl))K =

(Iβ+ + I(pl))K for all β ≥ α.

If Sl is the set of indices β ≤ (pl − 1, pl − 1, pl − 1), we have

(25) |{β ∈ Sl|α 6≤ β}| �α p
2l.
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Because the ideals Iβ + I(pl) form an exhaustive filtration of I(pl), we have

dimKG1(pl) = dimK/I(pl)K =
∑
β

dim(Iβ + I(pl))K/(Iβ+ + I(pl))K.

Suppose that zβ ∈ I(pl). Then Iβ + I(pl) = Iβ+ + (zβ) + I(pl) = Iβ+ + I(pl),

and the quotient above is zero. Hence it follows that

dimKG1(pl) = dimK/I(pl)K =
∑
β∈Sl

dim(Iβ + I(pl))K/(Iβ+ + I(pl))K.

If β ≥ α, then the corresponding term is zero. Because there are at most p2l

nonzero terms by (25), and every such term has order at most |G′ : T ′k|, we

conclude that

dimKG1(pl) �α p
2l|G′ : T ′k|.

The required bound for dimKT1(pk) now follows from Proposition 7, which

completes the proof of Proposition 5.

3.2. Extension to higher homological degree. We finish this section by de-

ducing the remaining statements of Proposition 4 from Proposition 5, following

Harris [11] and Calegari and Emerton [4]. Recall that we must prove that if

M is a finitely generated Λ module of rank r, then

dimMTk = (r +O(ηκ))|G : Tk|,(26)

dimHi(Tk,M)� ηκ|G : Tk|, i ≥ 1.(27)

We begin with equation (26), which we have just proven in the case r = 0.

In general, there is an exact sequence

0 −→ T −→M −→M ′ −→ 0

with T torsion and M ′ torsion free of rank r, and by applying the rank 0 result

to T , we deduce

| dimMTk − dimM ′Tk | � ηκ|G : Tk|,
so that we may assume M is torsion free. This implies the existence of mor-

phisms Λr →M and M → Λr with torsion cokernels, from which (26) follows

from the associated long exact sequences on homology and dim ΛrTk = r|G : Tk|.
Turning to i > 0, because M is finitely generated, there exists a short

exact sequence

0 −→ N −→ Λn −→M −→ 0

of finitely generated Λ modules for some n ≥ 0. Because Λn is acyclic, the

associated long exact sequence in homology gives

0 −→ H1(Tk,M) −→ NTk −→ ΛnTk −→MTk −→ 0,(28)

Hi(Tk,M) ' Hi−1(Tk, N), i ≥ 2.(29)

The lemma for i = 1 now follows from (28) and (26), taking into account

the fact that rank is additive in short exact sequences. For higher i, we use
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induction. Assume the result for all i ≤ m and all finitely generated modules, in

particular for N . We then obtain it for M in degree m+1 from the isomorphism

(29), which completes the proof.

4. The structure of Fp[G/H(pk)]

The goal of this section is to prove the following structure result, which

will allow us to decompose a subrepresentation L ⊂ Fp[G/H(pk)] into pieces to

which Shapiro’s lemma can be applied. More precisely, we shall filter L with

quotients isomorphic to Fp[G/H(pl)] for l ≤ k, in a manner analogous to the

base p expansion of an integer.

Proposition 13. Fp[G/H(pk)] has a filtration 0 = F (0) ⊂ · · · ⊂ F (pk−1)

= Fp[G/H(pk)] such that for all 1 ≤ l ≤ k and all 0 ≤ a < pk−l,

F ((a+ 1)pl−1)/F (apl−1) ' Fp[G/H(pl)].

Moreover, F (i) is the unique subrepresentation of Fp[G/H(pk)] of dimension i.

The filtration of L which we may construct from this is described below.

Corollary 14. Let L ⊂ Fp[G/H(pk)] be a submodule of dimension d,

and let the base p expansion of d be written

d =
l∑

i=1

pα(i),

where α(i) is a nonincreasing sequence of nonnegative integers (that is, we

write the larger powers of p first). Then there exists a filtration 0 = L0 ⊂
· · · ⊂ Ll = L of L by submodules Li such that Li/Li−1 ' Fp[G/H(pα(i)+1)].

Proof. Let the partial sums of the expansion of d be

s(i) =
i∑

j=1

pα(j),

and let Li = F (s(i)). We have s(i) = s(i− 1) + pα(i) and pα(i)|s(i− 1), so by

the proposition, Li/Li−1 ' Fp[G/H(pα(i)+1)] as required. �

We begin the proof of Proposition 13 by defining φ : G→ pZp by

φ :

Ç
a b

c d

å
7→ c

a
.

It can be seen that φ intertwines the right action of G on itself with the

action on pZp by fractional linear transformations given by

g : z 7→ dz + c

bz + a
.
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Moreover, if we let φ denote the composition of φ with reduction modulo

pkZp, then it may be seen that φ factors through the right action of H(pk).

Therefore, φ defines an isomorphism between the actions of G on G/H(pk) and

pZp/pk, and hence the representations Fp[G/H(pk)] and Fp[pZp/pk]. There is

an important collection of subspaces of Fp[pZp/pk], which we shall denote by

F (i) for 0 ≤ i ≤ pk−1, and which may be defined as the space of all functions on

pZp obtained by taking the reductions modulo p of polynomials p : Qp → Qp

of degree at most i − 1 that take integer values on that set (and where we

set F (0) = 0). It is a theorem of Lucas [12] that such functions are in fact

constant on cosets of pkZp, and moreover, that a basis for F (i) is given by the

binomial coefficients x 7→
(x/p
t

)
, 0 ≤ t ≤ i− 1, so that dimF (i) = i. The lower

unipotent matrix

N =

Ç
1 0

−p 1

å
acts on pZp by z 7→ z − p and so acts on the function

(x/p
t

)
by

N

Ç
x/p

t

å
=

Ç
x/p+ 1

t

å
(30)

=

Ç
x/p

t

å
+

Ç
x/p

t− 1

å
.

Equation (30) implies that the action of N − I on Fp[pZp/pk] with respect to

the basis

{x 7→
(x/p
t

)
|0 ≤ t ≤ pk−1 − 1}

is given by a matrix with ones along the upper off-diagonal and zeros elsewhere,

and it follows from this that F (i) is the unique i-dimensional subspace of

Fp[pZp/pk] that is stable under N .

We may prove more about the spaces F (i) after defining an object that

will play a key role later in the proof. For 0 ≤ d ≤ pk−1 − 1, let Symd be the

standard dth symmetric power representation of G, realized on the space of

functions f : G→ Qp of the form

f :

Ç
a b

c d

å
7→ p(a, c)

for some homogeneous polynomial p of degree d.

Definition 15. Vd ⊂ Symd is the lattice of integrally valued functions.

With this in mind, we may prove

Lemma 16. The subspaces F (i) are stable under G.
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Proof. For f ∈ Vd, we have

f

ñÇ
a b

c d

åô
= p(a, c)(31)

= adp(1, ca)

≡ p(1, ca) mod p,

so that when we transfer functions in Vd to pZp via φ and reduce modulo p, we

obtain exactly the space F (d + 1). Vd is clearly preserved by G, and because

φ was an intertwiner, we see that F (d+ 1) is also. �

The proof of Lemma 16 also allows us to see the following important

property of Vd.

Lemma 17. Vd/p occurs as a submodule of Fp[G/H(pk)].

Proof. If f ∈ Vd, it follows from equation (31) that the reduction of f

modulo p is invariant from the right under H(pk). �

In light of Lemma 16, we see that F (i) are exactly the subspaces de-

scribed in the filtration of Proposition 13. The key idea behind the main claim

of Proposition 13 is a certain recursive characterization of the subspaces F (i).

If we define F (a, l) to be the subspace of Fp[plZp/pk] obtained by reducing

polynomials of degree at most a−1 that are integral valued on plZp modulo p,

we then see that F (apl−1) is exactly the subspace of Fp[pZp/pk] consisting of el-

ements whose restrictions to the cosets Fp[z+plZp/pk] all lie in F (a, l). Indeed,

this follows from the observation that both spaces have the same dimension

and are stable under the lower unipotent subgroup. We therefore have

F ((a+ 1)pl−1)/F (apl−1)' (F (a+ 1, l)/F (a, l))⊗ Fp[pZp/pl](32)

'Fp[pZp/pl]

as vector spaces, and so the proposition would follow from knowing that the

identification (32) commutes with the action of G on both sides. To show

this, let g ∈ G be given. By restriction, g gives a map from z + plZp/pk to

gz + plZp/pk, and when we choose an identification of both of these sets with

pZp/pk−l+1 in the natural way, we see that this map is equal to a fractional

linear transformation x 7→ g′x for some g′ ∈ G. Therefore, using our claim

that the fractional linear action of G preserves F (a, l), we see that the map

Fp[z + plZp/pk] −→ Fp[gz + plZp/pk]

preserves F (a, l) and F (a+ 1, l), and because F (a+ 1, l)/F (a, l) is one dimen-

sional, it acts trivially on the quotient. It follows that the isomorphism (32)

commutes with G, which concludes the proof.
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5. Completed homology

In this section, we shall construct the p-adic local system Vd with the

property that

(33) dimCHi(Y,Wd) = dimQp Hi(Y, Vd).

We shall then apply the theory of p-adically completed cohomology developed

by Calegari and Emerton [4], [5], [8] to convert the problem of bounding the

right-hand side to one of bounding Hi(G,M ⊗ Vd), where M is a fixed ΛQp

modules and d varies. To begin, let p be a prime that is totally split in F . If

{p1, . . . , pn} are the primes of F above p, and Fpi is the completion of F at pi,

Γ has an embedding

φ : Γ −→ SL2(Fp) :=
∏
i

SL2(Fpi),

the closure of whose image is a compact open subgroup of the target p-adic

group. If we let G be as in (6) with t = n, then SL2(Fp) contains G as a

compact open subgroup, and by passing to a finite index sublattice we may

assume that φ(Γ) ⊂ G. We shall in fact assume that φ(Γ) = G, which is not

necessary for the proof but allows us to avoid cluttering the previous sections

with excessive notation. In any case, it may always be arranged after first

choosing p at which Γ has full level.

Recalling our convention that d was an n-tuple of nonnegative integers,

we define the representation Vd of G to be the tensor products of the repre-

sentations Symdi of Gi, and we denote both the restriction of Vd to Γ under φ

and the associated local system on Y in the same way. Note that this defini-

tion relies on a choice of bijection between the complex embeddings {σi} and

p-adic embeddings {pi} of F . The following lemma shows that (33) holds if

this choice is made in a natural way.

Lemma 18. Let F be the Galois closure of F . There exist a complex and

p-adic place σ and p of F , and a bijection between the set of all complex and

p-adic places {σi} and {pi} of F , such that for all d ∈ (Z≥0)n, there exists a

representation ρ of Γ over F such that

• ρ⊗σ C 'Wd,

• ρ⊗p Qp ' Vd.

Proof. Let G = Gal(F/Q) and H = StabG(F ). If σ = σ0 is a chosen com-

plex embedding of F and gi ∈ G/H is a fixed system of coset representatives,

the set of all complex embeddings of F is equal to the restrictions of σi = σ◦gi.
Likewise, if we choose a p-adic place p of F , the restrictions of pi = p ◦ gi form

a complete set of p-adic embeddings of F .
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Let Symd denote the dth symmetric power representation of SL2(F ). If

we define the representation ρ of SL2(F ) by

ρ '
⊗
i

Symdi ◦ gi,

then on restriction to SL2(F ) we have

ρ⊗σ C'
⊗
i

(Symdi ◦ gi)⊗σ C

'
⊗
i

Symdi ⊗σi C

'Wd,

and likewise for Vd. The lemma follows on restriction to Γ. �

We now introduce the p-adic tools that we shall use to study the right-

hand side of (33). Let P ⊂ {p1, . . . , pn} be the set of places at which we

are allowing the weight to vary, so that P is the complement of I under the

bijection of Lemma 18. Let

GP =
∏
pi∈P

Gi,

and factorize Vd as Vd,P⊗V Pd . We shall choose a G-stable lattice Vd ⊂ Vd using

Lemma 16, by letting k be the smallest t-tuple of integers≥ 1 satisfying pki−1 >

di and 4|ki − 1, and choosing Vdi ⊂ Vdi such that Vdi/p ⊂ Fp[Gi/Hi(p
ki)] for

all i. We let Vd = ⊗Vdi , which we factorize as Vd,P ⊗ V Pd . Let

GP,r =
∏
pi∈P

Gi(p
r)

be the principal congruence subgroups of GP , Γr = Γ∩ GP,r, and let Yr be the

corresponding covers of Y . Following Emerton, we define‹Hi(Vd) = lim←−
s

lim←−
r

Hi(Yr,Vd/ps)

to be the ith completed homology module of the tower {Yr} with coefficients

in Vd. We shall use the following fact about these modules, taken from [4], [8]:

(1) ‹Hi(Vd) is a p-adically complete and separated Zp module.

(2) ‹Hi(Vd) has the structure of a finitely generated ZpJGPK module that

extends the natural action of GP by conjugation.

(3) Because SL(2,C) does not admit discrete series, ‹Hi(Vd) is a torsion

ZpJGPK module for all i.

(4) ‹Hi(Vd) carries a natural action of SL(2, Fpi) for those pi ∈ P satisfying

di = 0, which extends the action of Gi.

(5) There is a spectral sequence

(34) Ei,j2 = Hi(GP , ‹Hj(Vd)⊗Zp Qp) =⇒ Hi+j(Y, Vd).
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The spectral sequence (34) implies an upper bound

(35) dimHq(Y, Vd) ≤
∑
i+j=q

dimHi(GP , ‹Hj(Vd)⊗Zp Qp)

for the classical homology group we are interested in, and after some simpli-

fications this will reduce the problem of a power saving to a statement about

torsion ZpJGPK modules with a compatible SL2 action, which will follow from

the results of Sections 3 and 4. Because we have defined the representation

Vd by pulling back, a representation of G, Vd,P/ps is eventually trivial as a

representation of Γr. We therefore have‹Hj(Vd)' lim←−
s

lim←−
r

Hi(Yr,VPd /ps)⊗ Vd,P/ps

' ‹Hj(VPd )⊗ Vd,P
as representations of GP , and because we are fixing di for those pi 6∈ P, we

shall simply write ‹Hj for ‹Hj(VPd ) and ‹Hj,Qp for ‹Hj(VPd )⊗Zp Qp. Furthermore,

as we do not need to give any further consideration to the primes not in P,

we shall ignore them from this point on and write G for GP , Vd for Vd,P , and

assume that P = {p1, . . . , pt}. The upper bound (35) may then be rewritten

(36) dimHq(Y, Vd) ≤
∑
i+j=q

dimHi(G, ‹Hj,Qp ⊗ Vd).

6. Reduction modulo p

We now combine the results of the previous sections to prove an upper

bound for the right-hand side of (36) by choosing a lattice inside ‹Hj,Qp ⊗ Vd
that we then reduce modulo p. The lattice we take will be the tensor product

of the image of ‹Hj in ‹Hj,Qp and a lattice Vd ⊂ Vd that is the tensor product

of the lattices Vdi defined in Definition 15. By Lemma 17, we know that Vd/p
is a submodule of Fp[G/Hk] that we denote by L.

The image of ‹Hj in ‹Hj,Qp is isomorphic to the p-torsion free quotient ‹Hj,tf

of ‹Hj , and we denote the reduced lattice ‹Hj,tf/p by Mj . By property (2),‹Hj,Qp is a torsion ΛQp module, which implies that Mj is a torsion Λ module.

Moreover, ‹Hj,tf is stable under SL(2, Fpi) for any pi, so that Mj also carries

an action of these groups. We may now reduce our chosen lattice modulo p to

obtain

dimQp Hi(G, ‹Hj,Qp ⊗ Vd) ≤ dimFp Hi(G,Mj ⊗ L),

and the required bound on the right-hand side is obtained by combining the

results of Sections 3 and 4 in the following lemma.

Lemma 19. Let M be a torsion Λ module with a compatible action of

SL2, and let L be any subrepresentation of Fp[G/Hk] that factorizes as ⊗Li
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with Li ⊂ Fp[Gi/Hi(p
k)]. We then have

(37) dimHi(G,M ⊗ L)� ακ|G : Hk|

for all i, where α = η1/2 and the implied constant depends only on M .

We shall prove Lemma 19 with the aid of the following lemma, which will

allow us to make approximations to the subgroups of G appearing there.

Lemma 20. Let G be a pro-p group, and let H ≤ G be a subgroup of index

p. If M is a representation of G over Fp, we have

dimHi(H,M) ≤ pdimHi(G,M)

for any i ≥ 0.

Proof. By Shapiro’s lemma, Hi(H,M) ' Hi(G,M ⊗ FP [G/H]). As all

the composition factors of the G-module Fp[G/H] are isomorphic to Fp, the

lemma follows. �

Proof of Lemma 19. When L = Fp[G/Hk], we apply Shapiro’s lemma and

use a diagonal element of SL2 to conjugate Hk to a group gHkg
−1 with the

following properties:

gHkg
−1 ≤ Tk′ , |Tk′ : gHkg

−1| ≤ p3t, |k′i − ki/2| ≤ 2.

The inequality (37) then follows from Lemma 20 and Proposition 5.

For general L, we apply Proposition 13 to the factors Li to obtain a

filtration L = F0 ⊃ F1 ⊃ · · · such that every quotient Fi/Fi+1 is isomorphic

to Fp[G/Hl] for some l ≤ k and each isomorphism class of quotient occurs at

most pt times. By applying (37) in the case L = Fp[G/Hl] to the quotient

modules, we obtain

dimHi(G,M ⊗ L) ≤ pt
∑
l≤k

dimHi(Hl,M)

�
∑
l≤k

αmin(li)|G : Hl|

�
t∑
i=1

∑
l≤k

αli |G : Hl|

�
t∑
i=1

αki |G : Hk|

� ακ|G : Hk|. �

It remains to follow the bound we have proven back to one for the original

cohomology group Hi(Y,Wd). Lemma 19 gives

dimHi(Y, Vd)� ακ|G : Hk|,
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where k is a |P|-tuple of integers satisfying |ki − logp di| ≤ 1 for i ∈ P. We

therefore have

dimHi(Y, Vd)�ακ
∏

pki

� (min
i∈P

di)
−1/3+(ln 10)/(2 ln p)

∏
i∈P

di.

If we express this in terms of the original notation for Wd with d ∈ (Z≥0)r1+r2 ,

and choose p to be sufficiently large, we see that this implies Proposition 3 and

hence Theorem 1.
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